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• ��
�����
���
����
��
�
��	��������� ��!�Cutaneous cell therapy is currently perceived

as a promising new way of treating skin damage, depigmentation and genetic disorders, 

and has many possible cosmetic applications. 

• ��
��������������	���
��!�In this study we explore for the first time the potential of

microneedle delivery systems as a novel, minimally�invasive delivery tool for facilitating 

cell therapy in skin.�

• ��
�����������

��
���

������
��! A microneedle delivery platform would offer a less

invasive, more controlled and targeted system for the delivery of cell therapy to skin and 

is thus likely to be welcomed by the patients, clinicians and regulatory bodies.�
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"	��
��:  BACKGROUND: Translation of cell therapies to the clinic is accompanied by 

numerous challenges, including controlled and targeted delivery of the cells to their site of 

action, without compromising cell viability and functionality. OBJECTIVES: To explore the use 

of hollow microneedle devices (to date only used for the delivery of drugs and vaccines into the 

skin and for the extraction of biological fluids) to deliver cells into skin in a minimally�invasive, 

user�friendly and targeted fashion. METHODS: Melanocyte, keratinocyte and mixed epidermal 

cell suspensions were passed through various types of microneedles and subsequently delivered 

into the skin. RESULTS: Cell viability and functionality is maintained after injection through 

hollow microneedles with a bore size ≥75 µm.  Healthy cells are delivered into skin at clinically 

relevant depths. CONCLUSIONS: Hollow microneedles provide an innovative and minimally�

invasive method for delivering functional cells into the skin. Microneedle cell delivery represents 

a potential new treatment option for cell therapy approaches including skin re�pigmentation, 

wound repair, scar and burn remodelling, immune therapies, and cancer vaccines. 
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�
����	����
�

Cell therapies have potential application in a diverse range of disciplines
1
, including

dermatology. For example, autologous epidermal cell suspensions have been used clinically to 

treat wounds, burns, skin ulcers, scars
2
 and skin pigmentation disorders

3
. Non�cutaneous cells,

allogeneic cells and genetically manipulated cells have also been investigated as novel treatments 

for skin damage
2,4

 or to correct genetic skin disorders
5,6

 and autologous fibroblast transplantation

has been approved by the Food and Drug Administration for aesthetic applications
7
. Direct

accessibility to the organ makes the skin an attractive target for cell therapy approaches with 

approximately 90 clinical trials investigating cell therapy applications in dermatology currently 

active (source: https://clinicaltrials.gov April 2017). Translation of cell based therapies to the 

clinical environment is accompanied by challenges that will require innovative solutions. 

Controlled and targeted delivery of a cell therapy to its site of action, without compromising cell 

viability and functionality is one of these challenges. In this study we propose the use of 

microneedle devices to facilitate cell therapy applications in the skin. 

Microneedles are microscopic needles that are engineered to allow for minimally�invasive 

perturbation of the stratum corneum barrier
8
 to deliver therapeutics both to and through skin

9�11

in a pain�free and blood�free fashion, with minimal skin trauma, reduced risk of infection, 

reduced stress in needle�phobic patients, ease of disposal, and diminished risk of needle�stick 

injury and cross�contamination
12

. Microneedles have been microfabricated in a range of

materials
9
, geometries and spatial arrangements

10
. The shape, length, width and sharpness of

microneedles can be adapted
11

 and, depending on the application, microneedles can be arranged

as a single�needle, a row of needles or an array of protrusions for insertion into skin by hand, or 

with the assistance of an applicator device
13

.  Many studies have shown the utility of
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microneedle devices for the intradermal delivery of low molecular weight drugs, biological 

therapies and vaccines
10,13,14

. Microneedle systems have also been used to extract blood and

interstitial fluid for real�time monitoring of biomarkers
15,16

. This study is the first to exploit

microneedles for the targeted delivery of cells into skin and aims to exemplify the potential of 

microneedle�mediated cell delivery for the minimally�invasive treatment of vitiligo. 

Vitiligo is a skin condition, with a prevalence of approximately 1% worldwide
17,18

, characterised

by the development of de�pigmented patches on the skin, hair or both, caused by the localised 

death or loss of function of the pigment�producing melanocytes. The current theory is that 

vitiligo is caused by altered inflammatory and immune responses
19�22

, with genetic and

environmental factors
23�28

 also playing important roles. There is no definitive cure for vitiligo,

with current treatments aiming to maintain and restore pigmentation. As a first line of treatment, 

patients are offered topical treatments such as corticosteroids or calcineurin inhibitors, followed 

by a combination of UV�light therapy and systemic steroid treatment, however treatment failure 

using these approaches is common
31

. Surgical treatments (i.e. tissue grafts or cellular grafts) can

be considered in patients with segmental vitiligo or with non�segmental vitiligo that has been 

stable for at least 12 months after documented non�responsive medical treatment. These surgical 

approaches have comparable re�pigmentation success rate, but cellular grafts permit treatment of 

larger areas of skin and have better cosmetic results
32

. The two currently available commercial

kits for cellular grafting, ReCell
®

 (Avita Medical) and Viticell
®

 (Laboratoires Genévrier), whilst

effective, rely upon laser abrasion or dermabrasion to prepare the recipient skin site
33

. These are

invasive, time consuming techniques, that require the use of local anaesthetics and carry the risk 

of scarring, skin discolouration, infections and bleeding
34

. Once the outer skin layers have been

removed by abrasion methods, healthy, non�cultured cells taken from a patients’ own skin (i.e. 
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autologous cells) are applied to the exposed skin in the form of a topical cell suspension or an 

aerosolised spray. The treated area is then dressed to enhance cell survival and attachment, 

protect from trauma and reduce infection risk
35

.

In this study we investigate the use of hollow microneedles for the minimally�invasive delivery 

of autologous cells to human skin and aim to exemplify their potential for cellular grafting in 

vitiligo. A microneedle delivery system for cellular grafting would negate the need for skin 

abrasion (to prepare the recipient site) and dressing (after the procedure), thus reducing 

procedural pain, post�procedural discomfort and the risk of infection for vitiligo patients.  It 

would also dramatically reduce the need for immobilisation after treatment, making it suitable 

for anatomical sites that are currently perceived as difficult to treat (e.g. lips and finger joints). 

Microneedles therefore offer a less invasive, more controlled and targeted means of cell delivery 

that is likely to reduce cell loss, enhance efficacy and thus gain greater acceptance by the 

patients, clinicians and regulatory bodies. 

#
����
���

��#�������

���������	�
�

A range of hollow silicon microneedles were manufactured by photolithography and deep silicon 

etching at Swansea University and SPTS Technologies. Rows of 5 or 6 microneedles and 3�

dimensional arrays of 5×5 microneedles with bore sizes ranging from 75 to 150 µm were 

fabricated to investigate the effect of needle bore size on cell delivery. 

Single hollow silicon microneedles (DebioJect™) of 80 µm bore size and lengths of 400, 500, 

600 or 700 µm, with apertures 200 µm from the tip, were supplied by Debiotech S. A., 

Switzerland to investigate the effect of needle length on the depth of cell delivery to skin. 
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�
����
������


��

Freshly excised human breast skin was obtained from surgical procedures under full ethical 

approval and informed patient consent (LREC Ref: 08/WSE03/55). 

�
������������	���		�


���
���
�

Epidermal cell suspensions (ECS) were prepared using a method adapted from previously 

reported work
3,36

. Cells were re�suspended in PBS, counted, diluted to a concentration of 1.5×10
6

cell/mL and either seeded in culture dishes with cell selective media or used for cell survival and 

skin delivery experiments. 

��	���������������������������		��
	�
��
�

Commercial primary melanocytes and keratinocytes (Life Technologies) were seeded at a 

density of 5×10
3
 cell/cm

2
 in medium 254 (Life Technologies) or 2.5×10

3
 cell/cm

2
 in EpiLife

medium (Life Technologies) respectively. The media were supplemented with 1% PMA�free 

human melanocyte or keratinocyte growth supplement (Life Technologies) respectively, and 1% 

Penicillin/Streptomycin/Amphotericin B solution (Merck Millipore). 

To select melanocytes or keratinocytes from the skin�derived ECS, cells were seeded at a density 

of 5×10
4
 cell/cm

2
 in the appropriate selective growth media, as detailed previously. After two

passages in selective media, pure melanocyte or keratinocyte cell cultures were obtained. 

��		������	���������
�������	����
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Cell viability and functionality tests were performed with ECS, cultured melanocytes and 

cultured keratinocytes, each at concentrations of 10
5
, 10

6
 and 10

7
 cells/mL. Aliquots of cell

suspension mixed with an equal volume of trypan blue solution 0.4% (Life Technologies) were 

tested before (baseline) and after passing through a syringe, either without (control) or with 

hollow microneedles attached. Stained (non�viable) and unstained (viable) cells were counted 

under a light microscope (IX50, Olympus) using a haemocytometer to calculate cell survival 

rates. 

To determine cell functionality, the extruded cells were seeded and cultured in appropriate cell 

media. Cell adhesion was evaluated after 24 hours and cell proliferation was assessed every 48 

hours. Cell phenotype was visually examined using the IX50 light microscope. Phenotype was 

also biochemically assessed by western blot on cell lysates 72 hours after confluence, or by 

immunofluorescence using either a fluorescence microscope (DM IRB, Leica Microsystems) or a 

confocal microscope (TCS SP5, Leica Microsystems). 

��
������	���

72 hours after confluence, cells were lysed with 1 mL of RIPA lysis and extraction buffer 

(VWR). Cell lysates were loaded on an SDS�Page 10% precast gel (Bio�Rad Laboratories) and 

run at 120 V for 70 minutes. Electroblotting on a nitrocellulose membrane was performed using 

a Trans Blot Turbo Transfer System (Bio�Rad Laboratories) at 25V for 30 minutes. The mouse 

monoclonal anti melan�A antibody (clone M2�7C10, Abcam) was used to confirm the 

melanocytic phenotype at a dilution of 1:500. The mouse monoclonal anti beta�actin antibody 

(Abcam) was used as a loading control at a dilution of 1:1000. 
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���
���	
���
�����������		
�

Cultured cells were grown on glass coverslips for 72 hours, fixed in cold acetone (Fisher 

Scientific), washed in PBS, incubated with 0.1% Triton X�100 (Sigma) for 15 minutes, washed 

in PBS, and blocked with 10% goat serum (Sigma) for 30 minutes. Cells were incubated with 

primary antibody overnight at 4°C. The mouse monoclonal anti melan�A antibody (1:200) and 

the rabbit polyclonal anti involucrin antibody (Abcam, 1:200) were used to confirm the 

melanocytic and the keratinocytic phenotypes respectively. Cells were then washed and 

incubated with secondary antibodies goat anti mouse IgG H&L AlexaFluor® 448 and goat anti 

rabbit IgG H&L AlexaFluor® 647 (Abcam, 1:1000) for 1 hour. Nuclei were stained with 10 µm 

Hoechst 33342 (Life Technologies) for 10 minutes. Coverslips were mounted cell�face down 

onto Superfrost™ Plus slides (VWR) and imaged using a Retiga EXi digita camera (QImaging) 

connected to the DM IRB fluorescence microscope or the TCS SP5 confocal microscope. 

������������������	�����������������ex vivo��
����
����

Following microneedle insertion into ������� human skin, disruption in the tissue was visualised 

using either a non�invasive VivoSight optical coherence tomography (OCT) clinical imaging 

system (Michelson Diagnostics) or classic histology on 10 µm thick transverse cryosections of 

the microneedle treated area of skin. 

��������	�����������
�in vivo�

Skin healing was assessed ��������following insertion of the DebioJect™ microneedles using a 

high velocity applicator. Human volunteers (N=5) aged between 18 and 30 years were recruited 

under informed consent with local ethics committee approval. The microneedle insertion site was 
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imaged using the VivoSight OCT clinical imaging system before microneedle insertion, 

immediately after, and then at 30 minutes, 1 hour, 2 hours, 4 hours and 24 hours post�insertion to 

evaluate the kinetics of microchannel closure. 

��		���
����
��������ex vivo��
����
����

Cell nuclei were stained with 10 µM Hoechst 33342 and cells were re�suspended in PBS at 

concentrations of either 10
6
 or 10

7 
cells/mL. 50 �L of these suspensions were injected into ��

���� human skin using microneedles. The injected area was excised within 5 minutes of injection 

using 6 mm biopsy punches (Miltex) and processed for cryosectioning. 10 µm thick transverse 

cryosections were mounted on Superfrost™ Plus slides and observed under the DM IRB 

fluorescence microscope to evaluate cell distribution in skin following delivery via microneedles. 

���
���	
���
���������
����

For immunofluorescence experiments in skin, 10 µm thick cryosections were incubated in 

primary antibody solution (1:200 rabbit polyclonal anti involucrin antibody and 1:200 mouse 

monoclonal anti melan�A antibody) overnight at 4°C. Sections were then washed in PBS and 

incubated in secondary antibody solution (1:1000 goat anti mouse IgG H&L AlexaFluor® 448 

and 1:1000 goat anti rabbit IgG H&L AlexaFluor® 647) for 1 hour. Slides were mounted and 

imaged to confirm cell phenotype after delivery to skin via microneedles. 

�����
����	����	�
�
�

Where applicable, statistical differences were evaluated using Student’s ��test and results were 

expressed as means ± S.E.M. A value of �<0.05 was considered statistically significant. 
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���	��� 

��		��
����
����������	���������������������		� ��������

��������
������������	�
!�

Cultured melanocytes, cultured keratinocytes, and non cultured epidermal cell suspensions 

(NCECS) at concentrations ranging from 10
5
 to 10

7
 cells/mL were passed through microneedles.

Our preliminary data indicated that cell survival was strongly reduced when cells were extruded 

through apertures with a diameter less than 75 µm, therefore our studies focused on microneedles 

with a bore size ≥75 µm. Cell counts before (baseline) and after extrusion through a syringe, both 

without (control) or with microneedles attached via a Luer fit adaptor, revealed that cell numbers 

were maintained during the injection process (Fig. 1 A and B: Supplemental Table 1). 

Furthermore, studies using a trypan blue exclusion method confirmed that cell survival was not 

adversely affected after passage through microneedles with a bore size ≥75 µm (Fig. 1 C and D: 

Supplemental Table 2). 

��		��
�������	�����
��������������		� ��������

��������
������������	�
!�

Following extrusion through microneedles and overnight incubation in appropriate culture 

media, all cell types displayed normal adhesion to the culture dishes. After 48 hours of 

incubation cells had assumed their distinctive morphologies, according to their phenotypes (Fig. 

2A). Cell phenotype was also confirmed biochemically by western blot (Fig. 2B) and 

immunofluorescence (Fig. 2C). All cell types tested maintained their phenotype after extrusion 

through microneedles with a bore size ≥75 µm. 

��		� ����������	�
�����������ex vivo�����in vivo�
�������������	�!�
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The ability of the microneedles to effectively and reliably puncture human skin ��������and ���

�����was assessed. Methylene blue staining confirmed that microneedles penetrate ��������skin 

reliably when inserting either a row of microneedles manually (Fig. 3A) or a single microneedle 

using an applicator (Fig. 3B). Efficient microneedle skin penetration ��������was also confirmed 

by histology (Fig. 3C) and optical coherence tomography (OCT) imaging (Fig. 3D). The depth of 

tissue disruption was between 60 and 250 µm, irrespective of the length of the microneedle used. 

Data obtained from OCT imaging in human volunteers (N=5) at different time points following 

insertion and removal of DebioJect™ indicates that complete closure of the microchannels 

created by the microneedle takes between 4 and 24 hours ��������(Fig. 3E). 

���������	�
��������������	����	�������		
�������������
����
���!�

Pre�labelled cell suspensions were injected into skin (50µL at 10
6
 or 10

7
 cells/mL concentration)

using single microneedles of 80 µm bore size and different lengths (between 400 and 700 µm) or 

rows of microneedles of 100 µm bore size and length of 600 µm (N=4 per condition). Cell 

distribution in the skin was tracked using fluorescence microscopy. Regardless of microneedle 

length, cells were deposited in the upper dermis, generally towards the boundary of the reticular 

and papillary dermis (Fig. 4). 

Injections performed using a single microneedle resulted in cells being deposited proximal to the 

microneedle insertion point (Fig. 4A, top row). Injections using rows of microneedles resulted in 

multiple points of dermal deposition associated with the loci of microneedle penetration (Fig. 

4A, middle row). Shorter microneedles (400 µm) were able to deliver cells slightly more 

superficially (towards the epidermal�dermal junction), however needle insertion and liquid 

injection was less reliable (Fig. 4A, bottom row). 
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��		
�����������������
�������	���� ������"�����������
����

Frozen sections of ������� human skin that had been injected with labelled NCECS via 

microneedles were used to assess cell functionality following skin delivery. Some of the injected 

cells (Fig. 4B, labelled blue nuclei) clearly express markers of melanocytic (green cytoplasm) or 

keratinocytic (red cytoplasm) differentiation, indicating that cells maintain their phenotype 

following skin delivery. 

$���	����
 

Microneedles of different materials, shapes, lengths, and spatial arrangements have been 

exploited pre�clinically and clinically for drug delivery, vaccination and biosensing applications. 

In this study we explored the use of hollow microneedles for delivering cells to skin, thus 

providing a minimally�invasive technology platform for the delivery of cell therapies. Cell 

delivery via microneedles was examined using silicon devices with bore sizes ≥75 µm. A range 

of individual and mixed cell types (i.e. human melanocytes, human keratinocytes and mixtures of 

epidermal cells derived from fresh human skin explants) and three clinically relevant cell 

concentrations (10
5
, 10

6
 or 10

7
 cells/mL) were specifically selected to demonstrate broad clinical

applicability of the microneedle cell delivery system. Effective extrusion of cell suspensions 

through the microneedles, with no loss of cells at all of the tested conditions, indicates that 

neither cell adhesion to the inner surfaces of the device, aggregation of the biological material or 

physical obstruction of the microneedle aperture impede effective delivery of the cells. The 

viability of cells was preserved following microneedle injection. The only statistically significant 

(�<0.05) reduction in cell survival was observed when extruding NCECS at the concentration of 
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10
6
 cells/mL through microneedles with a bore size of 150 µm (�=0.04). However, cell survival

at this concentration was not affected when passing through smaller aperture microneedles, 

suggesting that this may be an anomalous result. Our data indicates that the integrity of the cell 

membrane is maintained when cells are extruded through apertures of 75�150 µm, however a 150 

µm aperture should not be considered an upper limit; increasing the dimensions of the 

microchannels is likely to further reduce the sheer forces exerted on cells, facilitating their 

survival. 

All cell types investigated maintained their distinctive phenotype after extrusion through 

microneedles and at all concentrations tested. This was evidenced by retention of typical 

morphological features and expression of specific intracellular markers. From a clinical 

perspective, it is encouraging that microneedle injection of a range of cell types and 

concentrations is possible and the injection process does not adversely affect cell viability and 

functionality. 

Success of the microneedle device as a platform for cutaneous cell therapy applications, 

including vitiligo and wound healing, is initially dependent on reliable insertion of the needle 

into the tissue. The microneedles used in this study punctured both ������� (human skin explant) 

and ��������(human volunteer)�skin reproducibly. The observable depth of the microchannels that 

remained in the skin following the removal of the microneedles was measured in skin explants 

and was found to be between 60 and 250 µm, regardless of the length and the type of 

microneedles used. The small dimensions of these microchannels is likely to be the result of 

sealing of the puncture site, in which the elasticity of the dermal tissue enables physical closure 

of the perturbation. OCT data exploring the ������� kinetics of skin closure in young adults 

confirms the physical dimensions of the skin disruption immediately following microneedle 
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insertion and removal.  Monitoring the same skin puncture site over time in human subjects 

demonstrates the organ’s wound healing capabilities to ensure restoration of the biological 

barrier. These studies suggest that healing of the more superficial cellular epidermis layer begins 

relatively quickly, with restoration of the visible skin barrier 4 � 24 hours after microneedle 

application. 

Having established cell survival and functionality following extrusion through microneedles that 

are able to penetrate human skin, an excised human skin model
37

 was used to investigate

intradermal cell delivery. These studies used microneedles with different spatial arrangements 

(single and rows) and lengths (from 400 µm to 700 µm), and clinically relevant volumes and 

concentrations of cell suspensions. Regardless of the length of the devices, hollow microneedles 

deposited cells in the upper dermis. The shortest microneedles available (400 µm) facilitated 

more superficial delivery, predominantly in the papillary dermis, but delivery efficiency was less 

reproducible due to incomplete insertion of the microneedle below the depth of the bore and 

resulting leakage of the cell suspension onto the skin surface. This suggests that hollow 

microneedles at least 500 µm in length may be more appropriate for cell delivery to the skin, 

with longer microneedles used for applications that require deposition in the deep dermis. After 

deposition, cells did not distribute widely from the injection site, tending to cluster in an area 

proximal to the point of microneedle insertion. Therefore, multiple microneedles can be 

employed for therapeutic applications that require cell delivery over a wider surface area (e.g. for 

the treatment of extensive vitiliginous patches on the arms and legs), while the use of single 

microneedles could be more appropriate when more precise delivery is needed (e.g. for the 

treatment of small de�pigmented areas around the eyes, lips or finger joints of vitiligo patients). 
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This study aimed to exemplify the potential of microneedle�assisted cell delivery in the context 

of vitiligo treatment. Current cell therapy procedures in vitiligo patients require dermabrading 

the skin, a procedure that is painful and prone to scarring, and then applying a topical cell 

therapy. Delivering an autologous, non�cultured cell suspension to a de�pigmented site using 

microneedles will be less painful for patients, with a reduced risk of scarring and infection. This 

will also reduce the inefficiency (i.e. cell loss) associated with topical application and will negate 

the need to immobilise the patient after treatment, representing a significant clinical advantage. 

Cell therapy for vitiligo aims to restore a functional melanocyte population to the basal 

epidermis, however all hollow microneedles tested in this study deposited the NCECS in the 

upper dermis. Published research indicates that following an intradermal injection of NCECS 

using a 30G hypodermic needle, melanocytes are able to migrate to the basal layer, where they 

start producing melanin, inducing re�pigmentation
38

. Therefore, following microneedle delivery,

melanocytes will be expected to migrate to the basal layer of the viable epidermis in response to 

local signalling, and produce melanin to re�pigment the skin. The use of multiple microneedles to 

deliver multiple pockets of cells would negate the need for lateral diffusion of melanocytes. We 

are now conducting a first�in�human pilot study to test the safety and efficacy of microneedles 

for cell delivery in vitiligo patients. 

In conclusion, we have shown for the first time that hollow microneedles are an appropriate 

delivery technology for precise, minimally�invasive cell therapy applications in the skin. 

Microneedles of appropriate length, bore size and spatial arrangement can deliver cells to 

appropriate compartments of the skin across a clinically relevant surface area. Cell therapy is a 

new and exciting clinical application for these versatile medical devices, with microneedles 

being readily adaptable for simple and targeted delivery of various cells (including, but not 
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restricted to, keratinocytes, Langerhans cells, dendritic cells, stem cells, T cells, fibroblasts, 

melanocytes, Merkel cells, mast cells and macrophages) into skin compartments for a variety of 

therapeutic and cosmetic applications, including treatment of vitiligo and post�inflammatory 

depigmentation, scar and burn remodelling and re�pigmentation, wound and skin ulcer repair, 

immune therapies, and cancer vaccines. 
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�����
������0 Melanocytes (�, �) or non�cultured epidermal cell suspensions (NCECS, �, 

$) were counted before (in this case 10
6
 cells/mL) and after extrusion through microneedles

(�, �). No significant cell loss was observed. Results are expressed as number of cells/mL ± 

SEM (N=3). Viability studies (�, $) using a trypan blue exclusion method indicate there are 

no significant changes after extrusion of a cell solution of 10
6
 cells/mL, apart from a

reduction in cell survival when NCECS were extruded through 150 µm bore size 

microneedles compared to control samples (* �=0.04). Results are expressed in % cells ± 

SEM (N=3). 

/��	���'0�������	
����

���������
�
�
�
���
������2��	���
�����	��������
������0  (�) After 

48 hours of incubation, cells extruded through microneedles with 75, 80, 100 and 150 µm bore 

size had assumed their distinctive morphologies. Scale bars = 100 µm. (�) Cell lysates obtained 

from melanocytes cultured for 72 h after being passed through microneedles of different bore 

sizes show that cells still express the melanocytic marker melan�A. +ve=positive control 

(melanocyte culture), �ve=negative control (keratinocyte culture), β�actin=loading control. (�) 

Confocal microscopy images of an ECS grown on glass coverslips for 72 hours after extrusion 

through microneedles of different bore sizes show that melanocytes (positive to melan�A, green) 

and keratinocytes (positive to involucrin, red) have maintained their phenotypes. Scale bars = 50 

µm. 
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/��	���+0�#����
������ �
���
���
�����	�

����
0 Methylene blue staining of ������� 

human skin reveals efficient skin penetration following manual insertion (�) and applicator�

assisted insertion (�) of microneedles. Classic histology (�) and Optical Coherence 

Tomography (OCT) ($) also confirm efficient skin penetration (blue arrows highlight the 

microchannels remaining in the skin after microneedle application). Scale bars = 200 µm. SC: 

Stratum corneum; Ep: Epidermis; De: Dermis. Skin healing ��������(3) was measured using 

OCT up to 24 hours after microneedle (700 µm) insertion into human volunteers (N=5). 

/��	���.0�#����
�����4����
�������������1��������	�

����
0 (�) Fluorescence microscopy of 

cryosections from human skin explants injected with labelled NCECS (blue) at a concentration 

of 10
7
 cells/mL reveals that the cells are mainly delivered to the upper dermis. The images

shown are from injections performed with a single microneedle of 700 µm length (Single), a row 

of microneedles of 600 µm length (Row), or a single microneedle of 400 µm length (Short). The 

red dashed line indicates the epidermal/dermal junction (epidermis above and dermis below the 

line). The red asterisk indicates the insertion point, the yellow asterisks mark the clusters of 

injected cells, and the yellow arrows point at the cells injected in the basal layer. (�) Confocal 

microscopy images of cryosections of excised human skin injected with labelled ECS and 

incubated with anti melan�A and anti involucrin antibodies show that the injected cells (blue 

nuclei) maintain their melanocytic (green cytoplasm, green arrow) or keratinocytic (red 

cytoplasm, red arrow) phenotype after delivery. Scale bars = 100 µm. 
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Cell numbers and cell viability are maintained after extrusion through microneedles. Melanocytes (A, C) or 
non�cultured epidermal cell suspensions (NCECS, B, D) were counted before (in this case 106 cells/mL) and 
after extrusion through microneedles (A, B). No significant cell loss was observed. Results are expressed as 

number of cells/mL ± SEM (N=3). Viability studies (C, D) using a trypan blue exclusion method indicate 
there are no significant changes after extrusion of a cell solution of 106 cells/mL, apart from a reduction in 

cell survival when NCECS were extruded through 150 µm bore size microneedles compared to control 
samples (* p=0.04). Results are expressed in % cells ± SEM (N=3).  

338x190mm (96 x 96 DPI) 

Page 22 of 25British Journal of Dermatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Cell functionality is maintained after extrusion through microneedles.  (A) After 48 hours of incubation, cells 
extruded through microneedles with 75, 80, 100 and 150 µm bore size had assumed their distinctive 

morphologies. Scale bars = 100 µm. (B) Cell lysates obtained from melanocytes cultured for 72 h after 
being passed through microneedles of different bore sizes show that cells still express the melanocytic 

marker melan+A. +ve=positive control (melanocyte culture), +ve=negative control (keratinocyte culture), β+

actin=loading control. (C) Confocal microscopy images of an ECS grown on glass coverslips for 72 hours 
after extrusion through microneedles of different bore sizes show that melanocytes (positive to melan+A, 
green) and keratinocytes (positive to involucrin, red) have maintained their phenotypes. Scale bars = 50 

µm.  
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Microneedle penetration of human skin. Methylene blue staining of ex vivo human skin reveals efficient skin 
penetration following manual insertion (A) and applicator�assisted insertion (B) of microneedles. Classic 
histology (C) and Optical Coherence Tomography (OCT) (D) also confirm efficient skin penetration (blue 

arrows highlight the microchannels remaining in the skin after microneedle application). Scale bars = 200 
µm. SC: Stratum corneum; Ep: Epidermis; De: Dermis. Skin healing in vivo (E) was measured using OCT up 

to 24 hours after microneedle (700 µm) insertion into human volunteers (N=5).  
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Microneedle
mediated cell delivery to human skin. (A) Fluorescence microscopy of cryosections from human 
skin explants injected with labelled NCECS (blue) at a concentration of 107 cells/mL reveals that the cells 
are mainly delivered to the upper dermis. The images shown are from injections performed with a single 

microneedle of 700 µm length (Single), a row of microneedles of 600 µm length (Row), or a single 
microneedle of 400 µm length (Short). The red dashed line indicates the epidermal/dermal junction 

(epidermis above and dermis below the line). The red asterisk indicates the insertion point, the yellow 
asterisks mark the clusters of injected cells, and the yellow arrows point at the cells injected in the basal 

layer. (B) Confocal microscopy images of cryosections of excised human skin injected with labelled ECS and 

incubated with anti melan
A and anti involucrin antibodies show that the injected cells (blue nuclei) maintain 
their melanocytic (green cytoplasm, green arrow) or keratinocytic (red cytoplasm, red arrow) phenotype 

after delivery. Scale bars = 100 µm.  
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