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Microwaves effectively examine the extent and
type of coking over acid zeolite catalysts
B. Liu1, D.R. Slocombe1,2, J. Wang3, A. Aldawsari1, S. Gonzalez-Cortes1, J. Arden1, V.L. Kuznetsov1, H. AlMegren4,

M. AlKinany4, T. Xiao1 & P.P. Edwards1

Coking leads to the deactivation of solid acid catalyst. This phenomenon is a ubiquitous

problem in the modern petrochemical and energy transformation industries. Here, we show a

method based on microwave cavity perturbation analysis for an effective examination of both

the amount and the chemical composition of cokes formed over acid zeolite catalysts. The

employed microwave cavity can rapidly and non-intrusively measure the catalytically coked

zeolites with sample full body penetration. The overall coke amount is reflected by the

obtained dielectric loss (ε″) value, where different coke compositions lead to dramatically

different absorption efficiencies (ε″/cokes’ wt%). The deeper-dehydrogenated coke com-

pounds (e.g., polyaromatics) lead to an apparently higher ε″/wt% value thus can be effec-

tively separated from lightly coked compounds. The measurement is based on the nature of

coke formation during catalytic reactions, from saturated status (e.g., aliphatic) to graphitized

status (e.g., polyaromatics), with more delocalized electrons obtained for enhanced

Maxwell–Wagner polarization.
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Zeolite catalysts, such as acid zeolite H-Y, H-ZSM-5, and H-
SAPO-34 are widely employed across the modern petro-
chemical and fine chemical industries, for their excellent

catalytic performance in hydrocarbon conversions and related
chemistries1, 2. However, progressive product/intermediate
accumulation in/on these porous catalysts followed by inevitable
dehydrogenation into the coke deposits always leads to catalyst
deactivation, necessitating catalyst replacement to maintain the
reaction activity and minimize production interruptions3–6.

For zeolite catalyzed hydrocarbon conversions, conjugated
olefins, polyaromatics, and other pre-graphite (deeply dehy-
drogenated, sp2 carbon rich) species are the major components in
coke deposits and therefore allow the detection of their existence
via electromagnetic (EM) spectroscopy on targeted chemical
structures, e.g., C= C bond in an olefin molecule4, 6–10. Fourier-
transform infrared (FT-IR) spectroscopy11, better applied for
in situ studies12, plus Laser-Raman (optimized by Vis to UV)13, 14

have been employed to draw a complementary picture of the
various coke compounds. However, problems caused by complex
sample preparation (e.g., when IR samples need to be mixed with
KBr), atmospheric contamination of samples (e.g., moisture in
air) and rigid temperature requirements greatly limit the wide-
spread application of these measurements8, 10. More importantly,
one common feature of the above spectroscopies, is a beam to
sample working mode applied to coke analysis, according to
which the EM wave propagates to a single point on the sample
surface then transmission or reflectance data are recorded. Dis-
advantages include a localized, single point interrogation and the
lack of information from internal coke species (deposited inside
the zeolite cavity/channel) due to the limitation of energy pene-
tration (here incident radiation needs to pass through the mate-
rial layers to reach the inner part of the sample, in which process
energy is gradually absorbed, and a thin film of sample is nor-
mally required)4, 8, 10, 11, 13, 14. On the contrary, nuclear magnetic
resonance (NMR) spectroscopy works in a sample inside EM field
mode, where the sample is instead bathed in the EM (i.e., mag-
netic) field for measurement with the entire sample body volu-
metrically interrogated (not focused on a single point on the
sample surface). Theoretically, for such mode field penetration to
each part of the sample is allowed, where sample thickness is no
longer the major technical issue, thus, this is better for analysis of
cokes located deeply inside the zeolite structures. However, pro-
blems of 13C NMR in coke analysis arise from the higher cost and
low efficiency of 13C isotope exchange; and in the case of cross
polarization (CP) without 13C exchange, the signal of deeply
dehydrogenated coke species is extremely poor due to the dis-
sipation of hydrogen in substance15, 16. To overcome the above
shortcomings we resort to using the microwave cavity perturba-
tion technique which also enables sample interrogation in an EM
field, and can show the growth of carbonaceous species quanti-
tatively, as well as the dielectric property change of the whole
catalyst body even in situ17, 18.

Here, we show a microwave cavity perturbation based method
to effectively measure the coke accumulation in the whole
structure of an acid zeolite catalyst (volumetrically), and separate
different coke compositions. We have shown that different coking
levels (they have different coke accumulations) of acid zeolite
catalysts can be readily distinguished by their dielectric loss
properties, as reflected in their different ε″ values probed by the
microwave cavity perturbation technique. The contribution to
integral dielectric loss value of a coked sample by unit weight of
cokes, given by ε″/wt%, is entirely characteristic of the coke
composition formed under different reaction conditions. Parti-
cularly, we find that at the working frequencies near 2.45 GHz,
polyaromatics dominate in the microwave response, with out-
standing ε″/wt% values, as compared to olefin/paraffin cokes. The

observed results correspond closely with data obtained from
previous coke characterization methods, e.g., Raman, thermo-
gravimetric analysis (TGA) and 13C NMR. The present technique
possesses distinct advantages in terms of volumetric measurement
with sample full body penetration, and higher sensitivity for
deeply dehydrogenated cokes. This advance could provide critical
information for monitoring catalyst coking and deactivation in
important industrial processes (e.g., an industrial fluid catalytic
cracking (FCC) process for petroleum refinery). The microwave-
based approach interrogates the nature of catalytic coke forma-
tion which is an evolution from sp3 carbons to sp2 carbons that
possess a further delocalized bond electron distribution, i.e., from
saturated alkanes/olefins to the coke graphite structures with a
conjugated π electron system. By far, the available spectrum for
catalyst analysis ranges from X-ray, to UV, Vis, and IR, and here
our findings embody the potential to extend this to the
microwaves.

Results
Our method measures samples with full body penetration.
Here a zeolite sample (un-reacted or coked) is placed into a quasi-
static electric field (E-field) generated inside a microwave reso-
nant cavity for measurement. The microwave electric field
penetrates (interacts with) all of the volume and so the entire
sample is interrogated. The results reveal the dielectric properties
of the whole sample18–20. Such a whole-body, volumetric sample
interrogation presents two advantages when applied to coke
analysis. One important feature is that the measured data reflect
the integrated coke accumulation of the entire sample, informa-
tion are not obtained from a beam-focused point. The other is
that the response derives from the fact that the effects (e.g.,
polarization) of the employed E-field work on each part of the
sample body, and this fully penetrating feature can measure all
coke contents even those deep in the zeolite porous structure19.
More importantly, the technique is better suited to those deeper
dehydrogenated coke species (giving an excellent signal
response), thus it well covers the shortcomings of CP 13C NMR.

The employed microwave cavity (Fig. 1) uses a TM010 mode
operating around 2.45 GHz18, 19. Schematic of representative
resonant traces showing |S21|2 (transmitted microwave power) as
a function of frequency is shown in Fig. 1a19. Sample insertion
into the E-field antinode (this is exactly where the measurement is
carried out) of the TM010 mode causes a negative shift in the
resonant frequency (f), and an increase in the bandwidth (BW).
From the changes in resonant frequency (Δf) and bandwidth
(ΔBW) we can infer the dielectric properties (complex permit-
tivity) of sample (all frequency and bandwidth measurements are
adjusted to account for the presence of the quartz sample tube).
Here, the complex permittivity (ε*) is defined as ε*= εʹ-jε″, where
the real part (εʹ) describes the polarization of material in response
to the EM field and the imaginary part (ε″) describes the EM
energy absorption (dielectric loss) in the sample21, 22. In this
work, we focus on the imaginary permittivity, ε″, obtained with
Eq. (1) adjusted from previous studies20.

2ε00AVs ¼ ΔBW
f0

ð1Þ

Here f0 is the unperturbed resonant frequency. A is a constant
determined by the size and geometry of the cavity. For the present
system, A is ∼7.34 × 10−3, as detected using a polytetrafluor-
oethylene (PTFE) sample of known complex permittivity23. Vs is
the effective volume of sample in the cavity (i.e., ~ 0.126 cm3)19.
This is a non-destructive, non-invasive, and contact-less mea-
surement, plus data acquisition takes only milliseconds and shows
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excellent repeatability among multiple tests. Besides, previous
research has shown that these measurements can be taken at
higher temperatures which would benefit future in situ applica-
tions and better contribute to the real-time monitoring of catalyst
deactivation17, 24.

The microwave cavity is designed in a cylindrical shape, as
shown schematically in Fig. 1b. The sample was placed in a thin-
walled high-purity quartz tube and introduced axially through a
small insertion hole in the center of the top and bottom plates of
the cavity (Fig. 1c). The cavity is made from aluminum with an
unloaded quality factor (Q factor) of ~8000 at room temperature.
The internal dimensions of the cavity are radius a= 4.6 cm and
length d= 4.0 cm. Here we choose TM010 mode for the complex
permittivity measurement of sample since it has a highly uniform
E-field (the E-field antinode of this mode) near the cavity axis,
resulting in minimal depolarization of sample in this experi-
mental configuration25. The E-field is directed and parallel to the
cavity axis, thus, parallel to the axis of the sample tube giving
insignificant modification of the local electric field in the presence
of the quartz tube. The distribution of the electric field magnitude
is shown in Fig. 1d–f. For tubes of inner radii r ≪ a, we may
assume the electric field of the TM010 mode to be in the small
perturbation limit19. In our work, r/a= ~ 0.022, so the E-field
remains highly uniform when applied to the sample. The radius a
is chosen so that the TM010 mode has a resonant frequency of
~ 2.45 GHz (the exact working frequency may change within a
small range in different tests and only causes a negligible
difference). The cavity aspect ratio d/a is tuned to be small
enough for the TM010 mode to be the dominant mode and clear
of other, higher order modes in the cavity, but not too small to
significantly compromise the high Q factor or the axial
uniformity of the electric field. Microwave measurements are
carried out using an Agilent E5071B network analyzer. Using the
S21 scattering parameter, measurements of the transmitted

microwave power |S21|2 are taken and non-linear, least-squares
curve fitting to a Lorentzian curve is used to extract the resonant
frequencies and the loaded quality factors (QL). Microwaves are
delivered to the cavity via a pair of SMA jack connectors,
positioned in the top surface of the cavity, 3.0 cm from the axis.
The open circuit terminations have an extended center
conductor, which couples capacitively to the TM010 mode electric
field. We remove the effects of cavity couplings by converting QL

into the unloaded quality factor Q in each case. The sample tubes
were filled to a depth of 5 cm with the powder samples (4.0 cm of
which will be in the active region of the cavity). The active sample
volume is therefore 0.126 cm3.

Cavity response clearly reflects the coke accumulation. Before
all analyses, precise loading of the sample (~0.15 g) was required
for minimal influence caused by the difference in sample weight.
We initially tested a variety of zeolite types (QD Lianxin, China).
Samples were coked in carefully controlled methanol-to-
hydrocarbons (MTH) reactions where different reaction periods
(2 h and 5 h, respectively) resulted in evolving different coke
depositions for a given zeolite. Further investigations were carried
out into three nano H-ZSM-5 zeolites (Si/Al ratios= 46, 60, and
160, ZEOLYST, USA) with various numbers of Brønsted acid
sites. These zeolites with superior coke tolerance allow us to
separate their post-run samples coked at the top part (top) and
bottom part (bottom) of the catalyst bed (the reactor is set ver-
tically with gas flow passing through from top to bottom), all
achieved in the same 5 h MTH reaction. The resultant coke
depositions along catalyst bed are illustrated in Fig. 2.

We have selected nano H-ZSM-5 (Si/Al= 160, marked as ZEO
160) samples for demonstration, which exhibit the most obvious
visual color difference. The coked top sample, as shown in Fig. 2,
is in darker black color (more coke deposits), whereas the coked
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bottom sample only exhibits light gray color (less coke deposits),
all in comparison with the fresh-white (no coke deposits)
unreacted zeolite. Further, easily distinguished in transmission
electron microscopy (TEM), the coked top sample possesses

significantly larger black coking zones on the crystal surfaces
(Fig. 2a), while those black areas are only randomly distributed on
the zeolite surfaces of the coked bottom sample (Fig. 2b), all
observed in multiple scans (corresponding TGA results are shown
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in Fig. 3). Darker areas are also observed on pure zeolite (Fig. 2c),
probably due to the overlapping of crystals. However, under the
vision of higher magnification only coked zeolites (Fig. 2d, e)
show some regularly continuous clear signs of superficial carbon
deposition at the non-overlapping edges of crystals (Fig. 2g),
which is consistent with the results reported previously26. Again,
the coked top sample (Fig. 2d) shows more intensively blacking
edge regions (this again indicates more cokes are formed over this
sample). One notes that this increase in coking resulted in the top
sample easily distinguished from the others in the resulted
microwave plots, as shown by the greatly broadened and shifted
resonant bands with greater associated insertion loss (light green)
in Fig. 2h. For calibration, the empty quartz tube also leads to a
small shift of the resonant frequency (red), which is accounted for
in the measurements of ΔBW and Δf though dielectric losses
associated with the sample tube are low, thus its ΔBW is nearly
zero. The pure zeolite sample (blue) shows small Δf and ΔBW,
and this is also the case (purple) for mildly coked bottom sample
(see the magnified inset in Fig. 2h). Note that the apparently poor
resolution of the GHz scale in Fig. 2h does not reflect the actually
very high resolution of the measurement itself ( ~ 10−6 GHz).

Absorption efficiency specifies the coke composition. Exact
dielectric loss values (ε″) of coked samples were calculated from
the recorded ΔBW and f0, as shown in Supplementarys Figs. 1
and 2 (Supplementary Information are not presented in the main
text and attached as supporting materials). Corresponding Raman
and TGA data were used as references to evaluate the coke
compositions and quantities (Supplementary Figs. 3–11). These
data illustrate that microwaves can quickly and accurately mea-
sure the increase in coke contents. Since the cavity perturbation
measurements are volumetric, we can normalize the measured ε″
values by the weights of cokes formed over corresponding sam-
ples, as obtained from the TGA results (weights of different
samples measured in tube are quite close and only cause negli-
gible difference, so wt% from TGA is directly employed instead of
the real coke weight in grams, also for a convenience of TGA), so
as to build up standard calibration profiles. The calculated data (ε

″/wt%) reflects the contribution of unit weight cokes to the
obtained, integral sample dielectric loss value ε″ (Supplementary
Note 1), which is characteristic of the sample’s coke composition.
It provides a unique identifier for different types of coke depos-
ited, since sp3 and sp2 type carbons will have dramatically dif-
ferent values.

Again, samples of ZEO 160 are chosen for demonstration with
all information (ε″/wt%, Raman and TGA) included in Fig. 3.
Cokes in the upper (top) part of the catalyst bed are mainly
polyaromatics (a characteristic ~1605 cm−1 band in Raman
spectra) in a large amount, while the post-run bottom sample
shows a much lower coke deposition, with mildly enhanced
Raman signals at bands between 1300 and 1550 cm−1, partially
overlapped with the zeolite framework and most possibly
assigned to some olefinic, or other aliphatic deposits (less
dehydrogenated) as precursors to the heavier coke species13, 27.
As shown in Fig. 3, an apparently higher ε″/wt% value (0.135) is
achieved by those deposited polyaromatic species which are
predominant only in the top ZEO160 sample but hardly
observable in the bottom ZEO160 sample. Similar results have
been observed in other sample groups (Supplementary Figs. 12
and 13). These samples all experienced the same MTH
conditions, but vary in coke composition, due to different zeolite
types, reaction time periods, or loading positions in the reactor.
Here our investigations reveal that polyaromatics lead to a higher
dielectric loss value when present in large portions in a sample.
Olefins, paraffins and other less-dehydrogenated species con-
tribute to only limited dielectric loss values and when present in
large proportions in coke contents can be readily separated due to
their much lower ε″/wt% values (e.g., 0.021 in Fig. 3, see also
Supplementary Note 2). Therefore, by comparing the calculated
ε″/wt% values, different coke compositions can be separated. In a
real reaction process, the coke compounds continuously evolve
(e.g., from olefins to aromatics) as they are accumulated, therefore
the difference in ε″ values, as a product of dielectric loss efficiency
(ε″/wt%) and the weight (wt% in our method) of cokes, is much
more apparent (e.g., top ZEO160 vs. bottom ZEO160 gives
2.979:0.134). Notably, the deeper dehydrogenated (graphitized)
status of polyaromatics is a key characteristic for their apparently
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higher dielectric loss, due to a rich sp2 carbon abundance8. This is
borne out by the very poor or even invisible CP 13C NMR
responses on those samples (polyaromatics rich) with higher ε
″/wt% values, which reflect the high deficiency of hydrogen atoms
(Supplementary Figs. 14–27). Hydrocarbon coking loses hydro-
gen and forms more aromatic rings made up of sp2 carbons (this
is the typical structure of ultimate coke compounds, i.e., graphite)
8. These aromatic sp2 carbons have more conjugated and further
delocalized bond electron distribution than the sp3 carbons and
sp2 carbons in non-aromatics (e.g., olefins), which possesses
highly mobile π electrons that are able to undergo
Maxwell–Wagner polarization to a greater extent (the polariza-
tion brings about separation of charges which generates local
currents in substance and the resultant electron scattering
processes cause dielectric loss in terms of heat), and therefore
leads to apparently enhanced dielectric loss performance
(reflected by ε″/wt%, see Supplementary Note 3)19.

The method is verified using carbons–zeolite mixtures. For
verification of the above, we further measured three sample
groups carefully prepared by mechanically mixing different car-
bon sources with the fresh pure ZEO160 sample. The carbon
sources include the coked top ZEO160 sample (5, 10, 20, and 50
wt% of coked top ZEO160 sample diluted in pure ZEO160, equal
to 1.1, 2.2, 4.4, and 11 wt% real cokes in the mixture, as TGA
shows coked top ZEO160 contains ~22 wt% cokes), activated
carbon (5, 10, and 20 wt%), and graphite (5, 10, and 20 wt%).
Measured results (Fig. 4) confirm that solid carbon (activated
carbon and graphite) dispersions in zeolite lead to large increase
of the sample dielectric loss value ε″ as detected by our method.
Besides, the ε″ value also arises as a function of expanding the
same coke constitution (coked top ZEO160 sample increases in
portions, wt%, in the mixtures). All the samples are well separated
in the captured plots. Notably, for mixtures with carbons, only at
5 wt% and above a well-developed linear increasing trend of ε″
value can be achieved. In contrast, the linear increase of real coke
contents in zeolite can be detected at a much lower level (starting
from 1.1 wt%). We note that the undiluted coked top
ZEO160 sample with 22 wt% real coke contents exhibits a much
higher ε″ value ( ~ 2.979), not in a same magnitude, than all the
mechanically diluted samples. This indicates that real coke
deposits formed and dispersed naturally in the zeolite structure
during reactions possess much higher microwave absorption
efficiency than those mechanical mixtures (even mixing the same
coked sample with pure zeolite cannot achieve the same effect).
The most possible reason could be a more uniform, contiguous,
thinner-layer dispersion of carbon in the zeolite system28, and can
only be achieved by the conditions of a catalytic reaction, or the
interactions between the coke species and zeolite frameworks.

Methods
General. Microwave equipment settings are discussed in the main text.

The catalyst tests were carried out with a fixed-bed-reactor system. Each time,
1.0 g of sample was loaded in the middle of the tubular reactor, supported by
carborundum particles (Fisher, 24 grit). Methanol (Sigma, reagent standard) was
injected by a HPLC pump, and preheated to 150 °C to fully vaporize into gas phase.
An enhanced Weight-Hourly-Space-Velocity of 8 h−1 was applied (i.e., every 1 h, 8
g of methanol were passed over 1 g of catalyst) in the reaction. This heavy methanol
conversion duty than usual was designed for a faster coke formation, and resulted
in distinguished coke compositions over different samples, owing to the variety in
zeo-type, reaction length, as well as sample position in the catalyst bed. N2 was used
as carrier gas to bring the vaporized methanol into reactor (5 ml min−1). The
catalyst bed temperature was set at 450 °C under atmosphere pressure, for the
maximum coking performance within the 5 h period. The catalyst testing system is
shown in Supplementary Fig. 28.

The post-run samples were carefully unloaded from the tubular reactor, after
cooled down to the room temperature. For the nano zeolites, the firstly pour-out
0.4 g catalyst powders were collected precisely and marked as the coked catalyst-
bed-top sample, whereas the later pour-out 0.5–0.6 g catalyst powders were saved

as the coked catalyst-bed-bottom sample. Grindings for 3 min were employed
before the characterizations on each sample for the best mixing effects and a fair
result.

Physical mixtures of carbons and zeolite were obtained by adding the solid
samples (coked top ZEO 160/activated carbon/graphite) into fresh pure ZEO160
zeolite in pre-calculated amounts, respectively, then grinding for 3 min until the
color of mixture became uniform.

Raman spectra were recorded on a Perkin-Elmer Raman Station 400F Raman
Spectrometer. The samples were supported on a piece of clean glass for scanning.

A SDT Q600 (TA instruments) thermogravimetric analyzer was used to assess
the coke content over the used catalysts. The coke amount was measured by the
weight loss of coked samples during temperature-programmed calcination in air
from 20 to 1120 °C (temp. ramp 10 °C min−1). An aliquot of 50 mg of spent sample
was used each time.

13C NMR experiments were carried out on a Varian VNMRS spectrometer at
ambient temperature with a resonance frequency of 100.562MHz. CP technique
was employed. The 13C CP NMR used a 6 mm probe, with data acquisition in
30.0 ms, recycle delay of 2.0 s and sample spinning rate at 6 KHz.

TEM measurements were undertaken using JEM-3000F microscope (300 kV).
Samples were dispersed in ethanol and baked out in vacuum after transferring onto
300-mesh copper TEM holey carbon grids.

Some more discussions on the Supporting materials as Supplementary
Information are included in Supplementary Discussion. Supplementary Table 1 is
employed to explain the abbreviations in Supplementary Figures.

Data availability. The authors declare that the data supporting the findings of this
study are available from the authors upon reasonable request.

Received: 12 April 2017 Accepted: 12 July 2017

References
1. Choi, M. et al. Stable single-unit-cell nanosheets of zeolite MFI as active and

long-lived catalysts. Nature 461, 246–249 (2009).
2. Haag, W. O., Lago, R. M. & Weisz, P. B. The active-site of acidic aluminosilicate

catalysts. Nature 309, 589–591 (1984).
3. Milina, M., Mitchell, S., Crivelli, P., Cooke, D. & Pérez-Ramírez, J. Mesopore

quality determines the lifetime of hierarchically structured zeolite catalysts. Nat.
Commun. 5, 3992 (2014).

4. Olsbye, U. et al. Conversion of methanol to hydrocarbons: how zeolite cavity
and pore size controls product selectivity. Angew. Chem. Int. Ed. 51, 5810–5831
(2012).

5. Buurmans, I. L. et al. Catalytic activity in individual cracking catalyst particles
imaged throughout different life stages by selective staining. Nat. Chem. 3,
862–867 (2011).

6. Anderson, M. W. & Klinowski, J. Direct observation of shape selectivity in
zeolite ZSM-5 by magic-angle-spinning NMR. Nature 339, 200–203 (1989).

7. Ilias, S. & Bhan, A. Mechanism of the catalytic conversion of methanol to
hydrocarbons. ACS Catal. 3, 18–31 (2013).

8. Guisnet, M. & Ribeiro, R. F. Deactivation and Regeneration of Zeolite Catalysts,
Vol. 9, 60–71 (Imperial College Press, 2011).

9. Haw, J. F., Song, W., Marcus, D. M. & Nicholas, J. B. The mechanism of
methanol to hydrocarbon catalysis. Acc. Chem. Res. 36, 317–326 (2003).

10. Karge, H. G. in Studies in Surface Science and Catalysis Vol. 137 (eds Flanigen,
E. M., Jacobs, P. A., van Bekkum, H. & Jansen, J. C.) 707–746 (Elsevier, 2001).

11. Sarbak, Z. Fourier - transform infrared studies on coke formation over alumina
silica-alumina and zeolites. React. Kinet. Catal. Lett. 69, 177–181 (2000).

12. Li, C., Chen, Y.-W., Yang, S.-J. & Yen, R.-B. In-situ FTIR investigation of coke
formation on USY zeolite. Appl. Surf. Sci. 81, 465–468 (1994).

13. Chua, Y. T. & Stair, P. C. An ultraviolet Raman spectroscopic study of coke
formation in methanol to hydrocarbons conversion over zeolite H-MFI. J.
Catal. 213, 39–46 (2003).

14. Li, C. & Stair, P. C. Ultraviolet Raman spectroscopy characterization of coke
formation in zeolites. Catal. Today 33, 353–360 (1997).

15. Snape, C. E., McGhee, B. J., Martin, S. C. & Andresen, J. M. Structural
characterization of catalytic coke by solid-state 13C-NMR spectroscopy. Catal.
Today 37, 285–293 (1997).

16. Behera, B. & Ray, S. S. Structural changes of FCC catalyst from fresh to
regeneration stages and associated coke in a FCC refining unit: a multinuclear
solid state NMR approach. Catal. Today 141, 195–204 (2009).

17. Dietrich, M., Rauch, D., Porch, A. & Moos, R. A laboratory test setup for in situ
measurements of the dielectric properties of catalyst powder samples under
reaction conditions by microwave cavity perturbation: set up and initial tests.
Sensors 14, 16856–16868 (2014).

18. Slocombe, D., Porch, A., Bustarret, E. & Williams, O. A. Microwave properties
of nanodiamond particles. Appl. Phys. Lett. 102, 244102 (2013).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00602-8

6 NATURE COMMUNICATIONS | 8:  514 |DOI: 10.1038/s41467-017-00602-8 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


19. Porch, A., Slocombe, D. & Edwards, P. P. Microwave absorption in powders of
small conducting particles for heating applications. Phys. Chem. Chem. Phys.
15, 2757–2763 (2013).

20. Klein, O. D. S. et al. Microwave Cavity Perturbation Technique (International
Journal of Infrared and Millimeter Waves, 1993).

21. Menéndez, J. A. et al. Microwave heating processes involving carbon materials.
Fuel Process. Technol. 91, 1–8 (2010).

22. Zlotorzynski, A. The application of microwave radiation to analytical and
environmental chemistry. Crit. Rev. Anal. Chem. 25, 43–76 (1995).

23. de Paula, A. L., Barroso, J. J. & Rezende, M. C. in Proc. SBMO/IEEE MTT-S
International Microwave and Optoelectronics Conference (IMOC), Belem, Brazil
519–522 (IEEE, 2009).

24. Hutcheon, R., De Jong, M. & Adams, F. A system for rapid measurements of RF
and microwave properties up to 1400 C. J. Microw. Power Electromagn. Energy
27, 87–92 (1992).

25. Metaxas, A. C. & Meredith, R. J. Industrial Microwave Heating (Peter
Peregrinus Ltd., 1983).

26 Mores, D. et al. Space- and time-resolved in-situ spectroscopy on the coke
formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5
and H-SAPO-34. Chem.-A Eur. J. 14, 11320–11327 (2008).

27 Vandenabeele, P. Practical Raman Spectroscopy: An Introduction (John Wiley &
Sons, 2013).

28 Kim, T., Lee, J. & Lee, K.-H. Full graphitization of amorphous carbon by
microwave heating. RSC Adv. 6, 24667–24674 (2016).

Acknowledgements
We would like to thank our colleagues of the PPE group at Oxford, and financial support
from KACST, Saudi Arabia. We are also grateful to the careful characterization using
NMR by Dr. David Apperley et al. at Durham University (of the EPSRC). Dr. Apperley
also helped to explain why an aromatic rich sample would have a poorer CP 13C NMR
response when there is no 13C exchange. Also, we thank Prof. Roger Y. Tsien (University
of California, San Diego, USA) and Sir John Meurig Thomas (University of Cambridge,
UK) for helpful discussions during their visits to Oxford and subsequent
communications.

Author contributions
B.L. conceived the study, designed the MTH reactions and also prepared the coked
zeolite samples. He later performed the MW measurements as well as other
characterizations, and finished the data treatments and analyses, with which he

completed most of the manuscript. D.R.S. designed the MW cavity and was the leader in
system set-up and adjustment, who was a senior researcher in MW absorption. P.P.E.
(FRS) was the group leader at KOPRC and he supervised the above work. T.X. also
supervised the project, with the initial idea sparked in his mind. Both the
corresponding authors have put their great efforts into the revising work of the manu-
script. J.W. is a third year PhD student in the Materials Department of Oxford, who
performed all the TEM studies. A.A., S.G.-C., J.A., and V.L.K. are the key members of
PPE group at Oxford who donated important jobs in the catalyst testings, character-
izations as well as paper writings. H.A. and M.A. are the group leaders of KACST and
they took part in the important works in the reaction design and their organization has
funded the study.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/s41467-017-00602-8.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2017

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00602-8 ARTICLE

NATURE COMMUNICATIONS |8:  514 |DOI: 10.1038/s41467-017-00602-8 |www.nature.com/naturecommunications 7

http://dx.doi.org/10.1038/s41467-017-00602-8
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Microwaves effectively examine the extent and type of coking over acid zeolite catalysts
	Results
	Our method measures samples with full body penetration
	Cavity response clearly reflects the coke accumulation
	Absorption efficiency specifies the coke composition
	The method is verified using carbons–nobreakzeolite mixtures

	Methods
	General
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




