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Abstract 

 

Submarine channels are conduits that transfer sediment from continental shelves to the deep sea. 

They can form important hydrocarbon reservoirs when filled with sand-prone deposits and are, 

consequently, one of the most important hydrocarbon prospects on continental margins around the 

world. In this thesis, a 3D seismic volume from offshore Espírito Santo (SE Brazil) was used to analyse 

submarine channel systems near the modern sea floor. The aim of the thesis was to investigate the 

key controlling factors on variations in the morphology and architecture of submarine channel 

systems, at the same time, providing an analogue for modern and ancient depositional systems on 

continental slopes around the world.  

 

This work shows significant variations in morphology and architectures along the investigated 

submarine channel systems. The spatial variations in both channel and valley morphology 

documented here suggest an important role of local factors (e.g. mass-wasting events, tributaries, 

substrate lithology and salt tectonics) in the development of channel systems. It also records in great 

detail the nature of the interaction between mass-transport deposits and turbidity currents at the 

early stages of channel evolution. Basal scars created by mass-wasting events can capture turbidity 

currents and facilitate flow channelisation, which is a key process for submarine-channel initiation. 

In addition, the replacement of MTDs by channel-fill deposits has profound implications for 

reservoir volumes and net-to-gross ratios in channel systems. Spatial variations in channel sinuosity 

observed in this work are interpreted as reflecting substrate erodibility beneath the channel system. 

Submarine channels will show higher sinuosity when encountering resistant substrates, and lower 

sinuosity when the substrate is more erodible. Temporal changes in channel sinuosity resulted from 

enhanced sediment discharge from tributaries. This work stresses the role of lateral channel 

migration as an important mechanism responding to factors such as sediment supply and ultimately, 

controlling the evolution of submarine channel systems. 
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1. Introduction 

 

1.1 Thesis structure 

 

This thesis is divided into eight Chapters. Chapter 1 presents background information on 

submarine channels and the aims of this thesis. This chapter includes: a) a brief history of 

submarine-channel research, b) an overview of current understanding about submarine channels, 

c) the rationale of this work, and d) the objectives of this thesis. Chapter 2 presents the seismic 

dataset used in this thesis, and introduces the principles behind the acquisition, processing and 

interpretation of seismic reflection data. Chapter 3 summarises: a) the Mesozoic–Cenozoic 

geological evolution and salt tectonics of the Espírito Santo Basin, b) the geological background of 

the area where the studied seismic volume located. Chapter 4 presents a quantitative analysis of 

submarine channel systems in terms of hierarchical framework. Chapter 5 shows spatial variations 

in the sediment dispersal pattern(s) of the channel systems. Chapter 6 describes mass-wasting 

related erosional and depositional features within the channel systems. Chapter 7 discusses: 1) 

controls on the morphology and sediment dispersal pattern of the channel systems, 2) the role of 

mass-wasting events in the initiation and development of submarine channels, 3) the impacts of 

salt diapirs on channel evolution, 4) channel stacking patterns within the channel system and its 

implications in channel evolution, and 5) the limitations of this thesis and future work. Chapter 8 

summaries the main conclusions of the thesis.  

 

1.2 Background and overview of submarine channels 

 

1.2.1 Background 

 

In the early 20th century, a multitude of submarine canyons were recognised on continental 

shelves and slopes due to the development of echo-sounding technology (e.g. Spencer, 1903; Hull, 

1912; Veatch and Smith, 1939). Because submarine canyons reveal a similar morphology to rivers, 

and connect with river mouths at places, river entrenchment was proposed at the time as the main 
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mechanism forming submarine canyons on continental shelves and slopes (e.g. Spencer, 1903; 

Shepard et al., 1936). However, key limitations soon arose from this interpretation, including: 1) a 

lack of evidence for large-scale uplift on land allowing for river erosion on continental slopes, 2) the 

realisation that the extent of lowering sea level cannot explain submarine canyons located far below 

sea level, where fluvial rivers were unlikely to develop (e.g. Shepard et al., 1936; Shepard and Emery, 

1941).  

Ocean currents were also proposed to be a major factor forming submarine canyons. In fact, 

Daly (1936) suggested that during glacial periods when sea level is relatively low, wind, waves and 

tidal waves are capable of eroding mud and sands on the continental shelves. Sediment-loaded 

currents are thus formed and lead to the incision of submarine canyons. However, direct 

measurements of currents beneath the sea undertaken at that time (1936) did not confirm the 

existence of high energy flows (Shepard, 1936). Furthermore, it is difficult to imagine ocean currents 

capable of cutting submarine canyons through highly resistant rocks (e.g. granite, as sometimes 

recorded) on their flanks (e.g. Shepard, 1936).  

Stimulated by Daly’s (1936) density-flow hypothesis, many researchers carried out a series of 

tank experiments to study the importance of density flows in submarine environments. Their results 

have demonstrated the effect of sediment transport from onshore areas into the deep sea (Kuenen, 

1937; Kuenen and Migliorini, 1950). At the same time, depositional products of turbidity currents 

were found, and studied at outcrop (e.g. Kuenen and Carozzi, 1953; Natland and Kuenen, 1951), 

and using sediment cores collected from deep-sea areas (e.g. Ericson et al., 1952; Phleger, 1951). 

The resulting observations supported, at the time, the theory that turbidity currents are capable of 

transporting sediment via submarine canyons. Heezen and Ewing (1952) further ascribed the break 

of submarine telegraph cables to slump-generated turbidity currents due to earthquakes. Based on 

these observations, turbidity currents were finally recognised as a major control on the geometry 

and evolution of submarine canyons (e.g. Shepard, 1951; Menard, 1955; Ericson et al., 1961).  

In the middle 20th century, many submarine channels connected to submarine canyons were 

also recognised on the continental slopes and abyssal plains (e.g. Tolstoy, 1951; Ewing et al., 1953; 

Dietz, 1953; Dill et al., 1954; Menard, 1955; Laughton, 1960; Heezen et al., 1964). They show similar 
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characteristics to fluvial channel in subaerial settings, such as the presence of distributaries (e.g. 

Heezen et al., 1964) and the development of meandering patterns (e.g. Tolstoy, 1951; Dill et al., 

1954).  

Notwithstanding these efforts, difficulties in observing submarine canyons and channels still 

frustrated our understanding, and detailed knowledge was only significantly improved when 

seafloor-mapping technology, such as single- and multi-beam equipment and side-scan sonar, was 

fully developed (e.g. Normark and Piper, 1969; Damuth and Kumar, 1975; Garrison et al., 1982; 

Kastens and Shor, 1985, 1986; McHargue and Webb, 1986; Flood and Damuth, 1987; Hagen et al., 

1994; Pirmez and Flood, 1995). These technology and data have formed, for the past few decades, 

the basic building blocks for our understanding of submarine canyons and channels.  

With the development of hydrocarbon exploration on deep-water margins, seismic data, 

particularly high-resolution 3D seismic datasets, provided unprecedented detail about the internal 

architecture of submarine canyons and channels. New data gathered from 3D seismic volumes have 

enabled interpretation of both modern and ancient systems in a degree of detail never achieved 

before (e.g., Roberts and Compani, 1996; Kolla et al., 2001; Abreu et al., 2003; Posamentier and 

Kolla, 2003; Deptuck et al., 2003, 2007; Janocko et al., 2013).  

To understand flow processes within submarine canyons and channels, a wide range of 

numerical and physical experiments were conducted to understand the flow properties of turbidity 

currents within and outside submarine canyons and channels (e.g., Komar, 1973; Imran et al., 1999; 

Peakall et al., 2000, 2007; Pirmez and Imran, 2003; Kane et al., 2008). Since the early 2000s, more 

direct observations derived from oceanographic moorings (e.g. Xu et al., 2002, 2004; Khripounoff 

et al., 2003; Vangriesheim et al., 2009) have filled the gap between numerical results and the ‘true’ 

flow parameters recorded in nature. Together with lithology and sedimentary structures observed 

from outcrop analogues (e.g. Normark and Piper, 1969; Piper, 1970; Walker, 1975; Mutti, 1977; 

Cronin, 1994; Clark et al., 1996; Piper et al., 1999; Abreu et al., 2003; Arnott, 2007; Pyles et al., 2012; 

Hubbard et al., 2014), the scientific community have recently gathered important insights on the 

interaction between turbidity currents and the sea floor. 
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1.2.2 Overview of submarine channels  

 

Submarine channels are V- or U-shaped negative features on the seafloor. They are generally 

located on the middle-lower continental slope and abyssal plains, while submarine canyons are 

typically located on upper continental slope, some of canyons are markedly incising the shelf edge 

and being part of continental shelf. However, there is no clear dividing line between the 

characteristic that distinguishes a submarine canyon from a submarine channel as they usually 

merge with each other (e.g. Wynn et al., 2007). This thesis focuses on submarine channels, which 

are V- or U-shaped negative features typically located on the middle-lower continental slope and 

abyssal plains. 

Submarine channels are conduits that transfer sediment from continental shelves to deep-sea 

depositional areas such as submarine fans. They link terrestrial and deep-marine environments and 

are considered as crucial components of mass distribution on Earth (e.g. Normark et al., 1993; 

Posamentier et al., 2003). To date, submarine channels have been widely recognised on continental 

slopes and submarine fan systems such as the Amazon Fan (Damuth and Kumar, 1975; Damuth et 

al., 1983; Pirmez and Flood, 1995), the Mississippi Fan (Garrison et al., 1982; Bouma et al., 1985; 

Kastens and Shor, 1985, 1986), the Bengal Fan (Emmel et al., 1985; Curray et al., 2003), the Indus 

Fan (McHargue and Webb, 1986; Kolla and Coumes, 1987; Clift et al., 2002), the Nile Fan (Kenyon 

et al., 1975; Mascle et al., 2001), and the Zaire Fan (Babonneau et al., 2002). 

A key aspect of submarine channels is that they become major depositional features on 

continental slopes when filled with sediment. Understanding their distribution and evolution in 

response to various forcing mechanisms is thus essential for understanding source-to-sink dynamics, 

a sub-discipline that investigates the role of hinterland tectonics, climate, and sea level changes in 

sediment distribution. Moreover, submarine channels can form important hydrocarbon reservoirs 

when filled with sand (e.g. Mayall and Stewart, 2000; Mayall et al., 2006; McHargue et al., 2011), 

and are one of the most important hydrocarbon prospects on continental margins around the world. 

Understanding their evolution leads to more accurate predictions of reservoir distribution and 

heterogeneity within submarine channel systems.  
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1.3 Hierarchical framework and terminology associated with submarine channels 

 

Previous studies have documented a range of hierarchical framework associated with 

submarine channels, in order to classify and synthesise genetically-related channel-form sand 

bodies from various settings, locations, and datasets (e.g. Mutti and Normark, 1987; Pickering et al., 

1995; Campion et al., 2000; Gardner and Borer, 2000; Sprague et al., 2002, 2005; McHargue et al., 

2011). For example, Mutti and Normark (1987) proposed five orders of spatial and temporal scales 

of turbidite deposits: complex, system, stage, sub-stage and beds. Pickering et al. (1995) applied the 

classification of zero to sixth order bounding-surface hierarchy to submarine environment. Some 

authors built hierarchical scales based on outcrop studies of submarine channels (e.g. Beaubouef 

et al., 1999; Gardner and Borer; 2000; Campion et al., 2003).  

The hierarchical framework used in this thesis is similar to the classification of Sprague et al. 

(2002, 2005) and McHargue et al. (2011) (Fig. 1.1). Three orders of stratigraphic elements were used 

in this thesis, channel element, channel complex and channel complex set, all of which are 

extensively described and mostly used in the published literatures (e.g. Cronin, 1994; Clark and 

Pickering, 1996; Abreu et al., 2003; Di Celma et al., 2011; Thomas and Bodin, 2013; Bain and 

Hubbard, 2016).  

Channel element is the fundamental element of the hierarchical framework (e.g. Sprague et 

al., 2002; McHargue et al., 2011). It consists of a channel-form erosional surface and the sediments 

fill within the erosional surface (McHargue et al., 2011) (Fig. 1.1A). Deposits within channels 

comprise channel-fill deposits. The term ‘channel’ here refers to V or U shaped, unfilled 

morphological feature on the seafloor. It indicates a present channel on the seafloor and is distinct 

from the ‘channel element’, which indicates an ancient channel. They are in the same order of 

hierarchical framework. Gully is generally straight and small-scale channels, i.e. tens of meters deep 

at most, tens to hundreds of meters wide (Field, et al., 1999; Surpless et al., 2009; Micallef and 

Mountjoy, 2011). 

Channel complex is an architectural element of a higher order than the channel element. It is 

composed of two or more genetically related channel-fill episodes and is formed by lateral migration 
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Figure 1.1. Schematic diagram showing the stratal hierarchy of submarine channels (from Di Celma 

et al., 2011). The channel element, the channel complex, and the channel complex set are 

commonly observed architectural elements of this hierarchical framework. Envelope shaped facies 

at the base of channel element is basal lag deposits.
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and vertical stacking of a single channel element (e.g. Sprague et al., 2002; Abreu et al., 2003; 

McHargue et al., 2011; Thomas and Bodin, 2013) (Fig. 1.1B). It refers to channel belt in some studies 

(e.g. Deptuck et al., 2003; Posamentier, 2003; Catterall et al., 2010; Kane and Hodgson, 2011; 

Gamberi et al., 2013; Hansen et al., 2015; Jobe et al., 2016).  

Valley is used here to refer to a composite erosional surface confining the channel complex, 

rather than a morphological feature on the seafloor (e.g. Posamentier and Kolla, 2003; Samuel et 

al., 2003; Deptuck et al., 2003; Babonneau et al., 2004; Kolla, 2007; Kolla et al., 2012; Sylevester et 

al., 2011; Janocko et al., 2013) (Fig. 1.1B). It is a time-transgressive erosional surface that is formed 

during lateral and vertical movement of a single channel. Similar erosional surfaces have also been 

described in previous studies as erosional fairway (Deptuck et al., 2003; Catterall et al., 2010), 

master erosion/incision surface (Gee et al., 2007), channel-belt erosion surface (Kane and Hodgson, 

2011), or bounding erosion surface (Hansen et al., 2015).  

Levees are overbank deposits with gull-wing geometries that converge away from the channel 

thalweg. External levees (outer levees sensu Deptuck et al., 2003, 2007; master-bounding levees 

sensu Posamentier, 2003) and internal levees (inner levee sensu Deptuck et al., 2003, 2007) are 

used to differentiate levees deposited outside and inside the valley (Kane and Hodgson, 2011). 

The term channel system is used here to refer to all genetically-related morphological and 

depositional components. It is defined by channel complex plus the external levees.  

Channel complex set is composed of multiple genetically related channel complexes (e.g. 

Sprague et al., 2002; McHargue et al., 2011) (Fig. 1.1C).  

 

1.4 Geomorphology of submarine channels and channel complexes 

 

1.4.1 Channel and channel-complex dimensions 

 

1.4.1.1 Channel dimensions 

The cross-section of a channel is commonly symmetrical when the channel is relatively straight; 

however, it is markedly asymmetric at meander bends (e.g. Kolla et al., 2001; Wynn et al., 2007; 

Deptuck et al., 2007). In these latter bends, the channel shows steeper margins on its outer bends  
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and gentler margins on its inner bends. 

Morphological parameters such as channel width (i.e. the distance between internal levees or 

erosional banks of channels), height (i.e. the distance between levee crest or the top of erosional 

banks and channel thalweg), and cross-sectional area (CSA) have been widely used in previous 

studies (e.g. Flood and Damuth, 1987; Pirmez et al., 1995; Babonneau et al., 2002; Estrada et al., 

2005; Antobreh and Krastel, 2006; Deptuck et al., 2007; Jobe et al., 2015) (Fig. 1.2). These 

parameters are recognised as being associated with changes in the dynamics of turbidity currents 

within submarine channels (e.g. Komar, 1969, 1973; Bowen et al., 1984; Klaucke et al., 1997; 

Babonneau et al., 2002; Pirmez and Imran, 2003; Estrada et al., 2005; Sequeiros, 2012; Konsoer et 

al., 2013; Jobe et al., 2015). For example, Pirmez and Imran (2003) reconstructed the characteristics 

of turbidity currents (e.g. flow velocity, thickness, concentration and duration) within the Amazon 

submarine channels based on channel morphology and depositional patterns. Konsoer et al. (2013) 

found that the size of submarine channels is related to bankfull discharge (i.e. the flow condition 

that turbidity current just spills over channel levees). Making use of chronostratigraphic constraints 

provided from high-resolution stratigraphic data, Jobe et al. (2015) correlated temporal variations 

in channel size to changes in sediment supply associated with sea level changes.  

Submarine channels documented by literature are generally hundreds of meters wide, and 

tens of meters high (e.g. Normark, 1978; Walker, 1985; Shanmugam and Moiola, 1988; Clark and 

Pickering, 1996; Gardner et al., 2003; Deptuck et al., 2007; Di Celma et al., 2011; Moody et al., 2012; 

Sylvester et al., 2012; Jobe et al., 2015; Maier et al., 2012; Brunt et al., 2013; Figueiredo et al., 2013; 

Bain and Hubbard, 2016). However, kilometre-wide channels are also recorded in previous studies 

(Shanmugam and Moiola, 1988; Pirmez and Flood, 1995; Clark and Pickering, 1996; Babonneau et 

al., 2002). Jobe et al. (2016) collected morphological data of 21 submarine systems from seismic 

and outcrop studies. They found that channel width ranges from 400 m to 1200 m, whereas channel 

thickness ranges from 20-100 m (Jobe et al., 2016). However, morphological data collected by 

McHargue et al. (2011) shows smaller channels elements than Jobe et al. (2016). McHargue et al. 

(2011) showed that the mean value of channel width is ~ 300 m for outcrop data and ~ 200 m for 

seismic data, whereas the mean value of channel thickness is ~ 10 m. Therefore, more studies about 
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Figure 1.2. Schematic representation of morphological analyses commonly used in the interpretation submarine channels. Parameters analysed include the 

channel-floor width, channel width, height, and the calculation of cross-sectional area (CSA) and channel sinuosity.
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channel dimensions are needed to truly correlate channel dimensions with the flow properties of 

turbidity currents. 

Jobe et al. (2016) compiled morphological data from submarine and fluvial channels from a 

range of tectonic settings to find that the average thickness of channels and channel belts in the 

submarine realm is much larger than in sub-aerial settings. In addition, they also found that the 

aspect ratio of channel belts approaches a value of 9 for submarine channels, which is much smaller 

than the recorded value of 72 for fluvial channels (Jobe et al., 2016). These differences in thickness 

and aspect ratio between fluvial and submarine channels are interpreted as caused by distinct (and 

variable) flow properties, i.e. higher quantities of suspended sediment in the upper portions of 

turbidity currents promote levee growth and vertical aggradation in submarine channel systems 

(Jobe et al., 2016). 

 

1.4.1.2 Channel-complex dimensions 

Channel complexes documented in the literature show striking morphological variations. For 

example, channel complexes can be less than 1000 m wide and similar to the width of submarine 

channels (e.g. Gardner et al., 2003; Pyles et al., 2010; Thomas and Bodin, 2013; Macauley and 

Hubbard, 2013). In comparison, channel complexes wider than 3000 m have been recorded on 

seismic data (e.g. Samuel et al., 2003; Deptuck et al., 2007; Catteral et al., 2010; De Ruig and 

Hubbard, 2006; Kolla et al., 2012; Jolly et al., 2016), and at outcrop (e.g. Cronin et al., 2005b; Bain 

and Hubbard, 2016; Grecula et al., 2003). In the Indus fan, the valley can be up to 10 km wide 

(Deptuck et al., 2003). These marked variations are likely due to differences in the degree of lateral 

channel migration, and by channel kinematics influenced by local factors (e.g. Bain and Hubbard, 

2016; Jobe et al., 2016).  

 

1.4.1.3 Summary 

To date, the majority of previous studies from seismic data have been focused on either the 

channel scale (e.g. Flood and Damuth, 1987; Clark et al., 1992; Pirmez and Flood, 1995; Babonneau 

et al., 2002; Antobreh and Krastel, 2006; Gee et al., 2007; Estrada et al., 2005; Clark and Cartwright, 
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2009; Peakallet al., 2012; Kolla et al., 2012; Georgiopoulou and Cartwright, 2013; Jobe et al., 2015; 

Reimchen et al., 2016) or the channel-complex scale (e.g. Catterall et al., 2010; Wood and Mize-

Spansky, 2009). Few published papers addressing the morphological characteristics of both scales 

in the same channel system (e.g. Wonham et al., 2000; Deptuck et al., 2007; Wood and Mize-

Spansky, 2009). 

Outcrops of submarine channel systems have shown stratigraphic elements of distinct sizes, 

from small-scale channel elements to large-scaled channel complexes and channel complex sets 

(e.g. Grecula et al., 2003; Lien et al., 2003; Cronin et al., 2005b; Vigorito et al., 2006; Hubbard et al., 

2008, 2009, 2014; Thomas and Bodin, 2013; Gamberi et al., 2013; Macauley and Hubbard, 2013; 

Bain and Hubbard, 2016). They have revealed the size of channel complexes and channel complex 

sets to be similar to the seismic scale, allowing for comparisons between seismic and outcrop data 

(e.g. Lien et al., 2003; Vigorito et al., 2006; Thomas and Bodin, 2013; Bain and Hubbard, 2016). 

However, to further bridge the gap between seismic and outcrop studies, new morphological data 

are increasingly needed from high-quality seismic volumes, especially when addressing spatial 

changes in channel-associated stratigraphic elements.  

 

1.4.2 Channel sinuosity 

 

Sinuosity is a prominent planform characteristic of submarine channels (Fig. 1.2). It can be 

formed either at early incision stages, or at subsequent aggradation stages (e.g. Mayall et al., 2006). 

Various forms of channel sinuosity, including downstream or upstream translation, lateral expansion, 

or a combination of all these, have been found in submarine channels (e.g. Chough and Hesse, 1976; 

Droz and Bellaiche, 1985; Pirmez and Flood, 1995; Kolla et al., 2001, 2007; Abreu et al., 2003; Wynn 

et al., 2007; Janocko et al., 2013).  

Quantitative analyses have been used to address the relationship between channel sinuosity 

and valley slope in submarine settings, such as the Amazon Fan (Flood and Damuth, 1987; Pirmez 

and Flood, 1995), the Indus Fan (Amir, 1992), the Mississippi Fan (Weimer, 1991), Mediterranean 

Sea (Cronin et al., 1995), Peru-Chile forearc (Hagen et al., 1994), West Africa (Babonneau et al. 2002; 

Ferry et al., 2005; Gee et al., 2007), and offshore Japan (Soh et al., 1990; Soh and Tokuyama, 2002; 
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Noda et al., 2008). For example, Flood and Damuth (1987) first documented a positive relationship 

between channel sinuosity and valley slope on the Amazon fan, i.e. channel sinuosity increases as 

valley slope increases and channel sinuosity decreases as valley slope decreases. This relationship 

was later confirmed by more detailed morphological studies on the Amazon fan undertaken by 

Pirmez and Flood (1995), and other studies from the Indus Fan (Amir, 1992), the Zaire fan in west 

Africa (Babonneau et al. 2002), Almeria canyon in the Mediterranean Sea (Cronin et al., 1995), and 

the Boso Canyon from offshore Japan (Soh et al., 1990). Clark et al. (1992) further compiled 

morphological data from a range of submarine fans and found similar trends to the curves obtained 

from flume experiments conducted by Schumm and Khan (1972). The curves show that channel 

sinuosity increases as valley slope increases until a threshold slope is reached, after which channel 

sinuosity decreases (Clark et al., 1992).  

Not all previous studies documented a positive relationship between valley slope and channel 

sinuosity (e.g. Ferry et al., 2005; Noda et al., 2008). For example, both negative and positive 

relationships have been observed on the Angolan continental margin (Gee et al., 2007). In addition, 

in the Tenryu Canyon offshore Japan, correlations are unclear between valley slope and channel 

sinuosity (Soh and Tokuyama, 2002). The absence of positive relationships in these studies is 

probably due to diverse factors, such as: 1) the existence of a threshold slope gradient (i.e. a gradient 

that above which channels can follow a more direct course rather than a more sinuous course 

downslope). For example, channel sinuosity decreases when channel gradient is higher than 

threshold slope gradient (Clark et al., 1992; Gee et al., 2007); 2) different measurement intervals 

adopted by researchers, resulting in erroneous scenarios as the measured intervals can be too large 

(or too small) to capture the actual variations in sinuous loops with valley slope (e.g. Wynn et al., 

2007). For example, channel sinuosity measured at 10 km, 20 km, and 30 km intervals shows 

different patterns at places in the Bengal fan (Kolla et al., 2012); 3) channels can be in a state of 

adjustment (i.e. out of equilibrium) rather than having reached their local equilibrium state (Pirmez 

and Flood, 1995; Ferry et al., 2005); 4) channel sinuosity is affected by other factors such as tectonic 

controls and sediment supply (e.g. Cronin, 1994; Clark and Cartwright, 2011; Babonneau et al., 

2002).  
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Wood and Mize-Spansky (2009) found a positive relationship between seafloor gradient and 

sinuosity. However, in some regions with similar seafloor gradient, channels may display different 

sinuosity (e.g. Maier et al., 2013; Zucker et al., 2017; Hansen et al., 2017), a character suggesting 

that seafloor gradient is not the key factor controlling channel sinuosity.  

Sediment supply (e.g. grain size, density and frequency of turbidity current) is also suggested 

to be an important factor affecting channel sinuosity (e.g. Weimer, 1991; Babonneau et al., 2002; 

Kolla et al. 2007; Wynn et al., 2007; Hansen et al., 2017). For example, Babonneau et al. (2002) 

suggest that decreases in flow energy and erosive power downslope result in a decrease in channel 

sinuosity. However, it is difficult to evaluate the relationship between sediment supply and channel 

sinuosity without lithological data.  

Additionally, some authors suggest that channel sinuosity increases with time, with meander 

cut-offs forming during this process (e.g. Deptuck et al., 2003; Gee et al., 2007; Wynn et al., 2007; 

Babonneau et al., 2010; Maier et al., 2013). Babonneau et al. (2010) attributed the increases in 

irregularity and complexity of meandering shape to the maturity of channel. They suggest that 

meander cut-off, asymmetrical and composite meander shape show a longer evolutionary history 

compared to less sinuous channels (Babonneau et al., 2010). Furthermore, Gee et al. (2007) and 

Maier et al. (2013) proposed an evolutionary model in which submarine channels developed from 

relatively straight to more sinuous pathways. Flow frequency maybe is important in this process as 

flow frequency increases with time within a specific channel, thus resulting in increased channel 

sinuosity. 

Previous studies have also linked the variations of channel sinuosity to other factors such as 

Coriolis force (e.g. Peakall et al., 2012; Wells and Cossu, 2013). Peakall et al. (2012) found that more 

sinuous channels tend to be located in low latitudinal areas, while less sinuous channels tend to be 

located in higher latitudinal area. They attributed such variations in channel sinuosity to the Coriolis 

force, which changes with latitude and leads to variations in intra-channel flow and subsequent 

channel sinuosity (Peakall et al. 2012).  

Substrate is also proposed to be one of factors affect channel sinuosity (e.g. Hansen et al., 

2017). However, related studies are still lacking because of difficulties in obtaining information 



                                                                        Chapter 1 - Introduction 

16 

 

about lithological variations beneath channels. Seafloor topography (e.g. Mayall et al., 2006; Clark 

and Cartwright, 2011) is another factor influencing channel pathways and associated sinuosity. The 

role of this factor is discussed in Section 1.7.1.  

 

1.4.3 Longitudinal profile of submarine channels 

 

The thalweg-depth profiles (i.e. longitudinal profile) of submarine channels are generally 

measured at the channel thalweg (i.e. the deepest point of a channel) along the channel axis. Three 

types of longitudinal profiles, convex, slightly concave, and very concave profiles, were documented 

by Covault et al. (2011) (Fig. 1.3), and indicate variations in continental slope settings and local 

structures. For example, convex-upward profiles generally develop in passive margins affected by 

tectonic deformation and active convergent margins. Slightly concave-upward profiles commonly 

occur in mature passive continental margins not subjected to significant tectonic deformation 

(Covault et al., 2011).  

Despite variations in channel longitudinal profiles, an equilibrium profile exists for submarine 

channels along their paths because turbidity currents tend to seek a balance between erosion and 

deposition (Normark and Piper, 1969; Pirmez et al., 2000) (Fig. 1.4). It is an equilibrium condition 

for deep-water channels that prevailing sediment discharge is carried through the channels with 

minimum aggradation or degradation (Pirmez et al., 2000). Georgiopoulou and Cartwright (2013) 

further defined the concept of equilibrium profiles from the perspective of flow energy. They 

suggested that a slope in equilibrium is the most energy-efficient route (i.e. the path of least 

resistance) for flows, which tend to conserve as much energy as possible and bypass the slope 

without erosion or deposition. However, it is usually difficult to generalise the form of equilibrium 

profiles of submarine channels because of a wide range of factors, such as temporal and spatial 

changes in flow properties (Kneller, 2003), and modifications in seafloor topography induced by 

local tectonic structures (e.g. Pirmez et al., 2000; Georgiopoulou and Cartwright, 2013).  
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Figure 1.3. Three types of longitudinal-profile shape, slightly concave, convex and very concave profiles (Covault et al., 2011). 
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Figure 1.4. Schematic illustration of equilibrium slope profiles for submarine channels, and associated erosional and depositional processes (from Kneller, 

2003). Base level is defined as the deepest point in the basin that can be reached by gravity flows (Carter, 1988; Pirmez et al., 2000).  
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1.5 Architectural elements in submarine channels systems 

 

In order to build a conceptual framework for comparing modern and ancient turdidite systems 

Mutti and Normark (1987) introduced the concept of ‘element’, which includes channels, overbank 

deposits, lobes, channel/lobe transition features, and scours, to provide a characterization of facies 

assemblage. The term ‘architectural element’ was later borrowed from fluvial system to build a 

hierarchical classification of depositional elements in turbidite system (Miall, 1989). An architectural 

element is a depositional body defined by its geometry, scale and facies (Miall, 1989; Pickering et 

al., 1995). It is formed by a particular process or series of processes within a depositional system 

(Miall, 1989).  

Previous studies have documented a variety of architectural elements associated with 

submarine channel systems such as internal and external levees, thalweg deposits, slump/slide 

deposits, and deposits associated with lateral channel migration (e.g. Mutti and Ricci Lucchi, 1975; 

Pickering, 1982; McHargue and Webb, 1986; Shanmugam and Moiola, 1988; Mutti and Normark, 

1991; Normark et al., 1993; Cronin, 1994; Clark and Pickering, 1996; Kolla et al., 2001; Abreu et al., 

2003; Deptuck et al., 2003; Mayall et al., 2006; Kane and Hodgson, 2011; Janocko et al., 2013).  

 

1.5.1 Deposits associated with lateral migration 

 

In submarine channels, two types of migration, discrete and continuous migration, have been 

widely documented in the literature from high-resolution subsurface data (e.g. Kolla et al., 2001; 

Abreu et al., 2003; Deptuck et al., 2003, 2007; Maier et al., 2012) (Fig. 1.5). They are interpreted to 

result from variations in flow properties (Kolla et al., 2001, 2007). Steady and surge-type turbidity 

currents result in varying degrees of discrete and continuous channel migration, while steadier flows 

cause subtler and more continuous lateral channel migration than surge flows (Kolla et al., 2001, 

2007).  
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Figure 1.5. Comparison between continuous and discrete lateral migration in submarine channels (modified from Abreu et al., 2003). Continuous migration is 

characterised by inclined strata, while discrete migration is characterised by sub-horizontal strata. 
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1.5.1.1 Continuous migration  

Continuous migration has been observed in submarine channels, as shown by Lateral Accretion 

Packages (LAPs) on seismic data from West Africa (e.g. Abreu et al., 2003; Flood et al., 2009; Jancko 

et al., 2013) (Fig. 1.5). These LAPs are located at the inner bends of channels, and are characterised 

by: a) inclined seismic reflections dipping towards the channels axis in vertical seismic profiles, and 

b) "scroll bar" geometries on horizon slices (Abreu et al., 2003).  

They represent the lateral accretion of sediments formed by lateral migration of the channel 

thalweg, in a process similar to the formation of point-bars in fluvial channels (Abreu et al., 2003) 

(Fig. 1.6).  

Lateral-accretion deposits, which correspond to LAPs on seismic data, have been documented 

at outcrop (e.g. Cronin, 1994; Elliott et al., 2000; Abreu et al., 2003; Pyles et al., 2010; Arnott, 2007; 

Wynn et al., 2007; Dykstra and Kneller, 2009). Lithofacies associated with these deposits range from 

conglomerates and coarse-sandstones, to sandy and muddy turbidites (Cronin, 1994; Abreu et al., 

2003). Fining-upward trends (e.g. Abreu et al., 2003; Wynn et al., 2007; Janocko et al., 2013) and 

coarsening-upward profiles (Pyles et al., 2012) are both found in 'point bars' of submarine channels. 

Arnott (2007) documented two repeating and interstratified types of strata: a) coarse-grained 

deposits consisting of strata as coarse as granule conglomerates, and b) fine-grained deposits 

composed of thin- to medium-bedded fine-grained turbidites. The dip angles of lateral-accretion 

surfaces range from 4° to 26° on seismic data (Abreu et al., 2003; Kolla et al., 2007; Janocko et al., 

2013), and from 7° to 16° at outcrop (Cronin, 1994; Arnott, 2007; Abreu et al., 2003). 

 

1.5.1.2 Discrete migration 

The discrete migration of submarine channels occurs in the form of cut-and-fill processes that 

involve the infilling of the channel before shifting its position, with flows eroding the channel banks 

and generating remnant channel-fill deposits (e.g. Deptuck et al., 2007; Maier et al., 2012) (Fig. 1.7). 

During this process, turbidity currents can erode the inner or outer banks of previous channels, 

resulting in lateral migration with no clear patterns (Fig. 1.8). Deptuck et al. (2007) suggest that the 

position of channels re-incision is strongly influenced by the thickness of channel-fill deposits. For  
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Figure 1.6. Continuous lateral migration within submarine channels. This process is similar to the 

formation of point-bars in fluvial channels and is characterised by the accumulation of Lateral 

Accretion Packages (LAPs).  
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Figure 1.7. Discrete lateral migration within submarine channels (modified from Maier et al., 2012). This figure illustrates a cut-and fill process involving the 

total infill of the channel before the channel shifts its position, with flows eroding the channel banks and generating remnant channel-fill deposits.  
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Figure 1.8. Variation in channels migration patterns (Deptuck et al., 2007). This variation is associated with flow parameters and the morphology of the old 

channels. 
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example, thicker channel-fill deposits result in the reduced confinement of subsequent ‘erosive’ 

flows - these flows are thus less likely to follow their previous pathway(s) (Deptuck et al., 2007). 

 

1.5.2 Basal lags 

 

Basal lags are deposits accumulated on the channel floor when turbidity currents bypass 

channels (e.g. Normark et al., 1993; Mayall et al., 2006). There are, at least, three types of basal-lag 

depositional facies recorded in the literature: 1) coarse sands and conglomerates, 2) mud-clast 

conglomerates, and 3) shale drapes (Mayall et al., 2006). The occurrence of these three types of 

basal lag result in different reservoir properties of channel bases (Mayall et al., 2006). For example, 

coarse sands and conglomerates form high permeability zones and mud-clast conglomerates and 

shale drapes form permeability barriers (Mayall et al., 2006).  

Basal lags in channels are often interpreted as High Amplitude Reflections (HARs) on seismic 

data which are discontinuous, high amplitude seismic reflections (Damuth et al., 1983; Stelting and 

DSDP Leg 96 shipboard scientists, 1985; McHargue and Webb, 1986; Deptuck et al., 2003; Catterall 

et al., 2010; Wynn et al., 2007).  

 

1.5.3 Bank failures 

 

Bank failures can be recognised by the presence of amphitheatre-shaped scars on the banks of 

channel systems (e.g. Deptuck et al., 2003; Cronin et al., 2005a; Janocko et al., 2013; Hansen et al., 

2017). Their corresponding deposits are usually composed of a muddy matrix, and muddy to clean 

sands, and show a contorted internal structure (e.g. Cronin et al., 1998; Mayall et al., 2006). On 

seismic data, mass-failure deposits are characterised by the presence of discordant to chaotic, 

transparent to high-amplitude, hummocky reflections (e.g. Embley, 1980; Kastens and Shor, 1985; 

McHargue and Webb, 1986; Hess and Rakofsky, 1992; Mayall et al., 2006; Gaudin et al., 2006; Gee 

et al., 2007; Janocko et al., 2013). In some cases, reflections within rotational slide blocks are 

inclined towards the sidewalls, which may be correlated with adjacent undeformed strata (e.g. 
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Deptuck et al., 2003, Catterall et al., 2010).  

Excess overpressures are thought to be the main cause for mass failures on channel margins. 

These overpressures are often generated during the rapid deposition of low-permeability, fine-

grained sediment such as levee deposits (Dugan and Sheahan, 2012; Sawyer et al., 2013). Sawyer 

et al. (2013) studied the relationship between levee height and bank failure using numerical models. 

Their results show that rapid levee deposition above the channel banks can generate high fluid 

pressures in near-seafloor strata, reducing effective stresses within the strata and promoting mass 

failures above a critical bank height (Sawyer et al., 2013). In addition, local oversteepening of 

channel walls resulting from undercutting is another mechanism capable of causing bank failures 

(e.g. Deptuck et al., 2003; Noda et al., 2008; Catterall et al., 2010).  

 

1.5.4 Levees  

 

Levees are formed by the overspilling and flow stripping of turbidity currents from the channel 

onto its overbank (e.g. Buffington, 1952; Komar, 1973; Piper and Normark, 1983; Hübscher et al., 

1997; Skene et al., 2002). They are often recognised as high- to low-amplitude, continuous, parallel 

to subparallel, wedge-shaped reflections on seismic data (e.g. McHargue and Webb, 1986; Deptuck 

et al., 2003; Gee et al., 2007; Catterall et al., 2010; Kane and Hodgson, 2011; Janocko et al., 2013). 

There are two scales of levees documented within submarine channel systems: external levees 

(outer levees sensu Deptuck et al., 2003, 2007) or master-bounding levees (sensu Posamentier, 2003) 

that confine submarine channel complexes; and internal levees (inner levee sensu Deptuck et al., 

2003, 2007) that confine submarine channels (Kane and Hodgson, 2011). Within submarine 

complexes, accommodation space for internal-levee deposition is often provided by features such 

as erosional terraces, abandoned meander loops and slumps or slides (e.g. Deptuck et al., 2003; 

Babonneau et al., 2004, 2010).  

In the published literature, sediment waves have been recognised on the external levees of 

submarine channel systems (e.g. Nakajima et al., 1998; Wynn et al., 2002, 2007; Posamentier and 

Kolla, 2003). They are symmetrical to asymmetrical wave-like bedforms observed in unconfined 
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submarine environments, and are formed by spillover and flow stripping due to super-elevation of 

turbidity currents associated to centrifugal forces (Piper and Normark, 1983; Normark et al., 2002). 

 

1.5.5 Last-stage channel fills 

 

Last-stage channel fill deposits record the abandonment stage of submarine channels (Clark et 

al., 1996; Kneller, 2003; Wynn et al., 2007; Janocko et al., 2013). They vary from sand– to mud- 

prone, high- to low-amplitude (continuous) horizontal seismic reflections (e.g. Janocko et al., 2013), 

and commonly show convex-upward “hat” shapes after compaction (Posamentier, 2003). Such a 

geometry is ascribed to the differential compaction of the axial sandy fill deposited adjacent to 

muddy deposits (Posamentier, 2003).  

 

1.5.6 Cyclic steps  

 

When turbidity currents hit a change in seafloor gradient, increasingly downward-directed 

stresses and associated turbulence lead to sea bed erosion and the occurrence of a hydraulic jump 

(Menard, 1964; Van Andel and Komar, 1969; Komar, 1971; Mutti and Normark, 1987; Garcia and 

Parker, 1989; Kostic and Paker, 2006; Covault et al., 2016). At the seafloor slope transition areas, the 

turbidity currents change from supercritical flows (Froude number > 1) on the steeper slope area to 

subcritical flows (Froude number < 1) on the gentler slope areas (Van Andel and Komar, 1969; Komar, 

1971). Froude number (Frd) can be shown as (Van Andel and Komar, 1969; Covault et al., 2016): 

 

Frd = U/ gh





 ------------------------------------------- (Eq. 1.1) 

 

where U is the depth-averaged velocity of currents, g is the gravitational acceleration, Δρ/ρ is 

the submerged specific gravity of the currents, and h is the current thickness. 

Hydraulic jumps are associated with the presence of cyclic steps, which are step-like bed forms 
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and have been recorded in several areas such as offshore California (e.g. Fildani et al., 2006; 

Normark et al., 2009; Covault et al., 2016), the Espírito Santo Basin (Heiniö and Davies, 2009), Niger 

Delta (Armitage et al., 2012) and South China Sea (Zhong et al., 2015). A series of linear cyclic steps 

are suggested to be relate to the initiation of submarine channels (Fildani et al, 2006; Covault et al., 

2013).   

 

1.5.7 Summary 

 

The distribution of channel-associated deposits provides information about depositional 

processes and associated flows dynamics, as well as the assessment of reservoir quality (e.g. Mayall 

et al., 2006; Peakall and Sumner, 2015). However, sedimentation within submarine channels is still 

lacking due to difficulties in direct observations and measurements of on-going depositional 

processes within submarine channels. Current understanding about sedimentation and associated 

flow processes are mainly from experimental and numerical modelling (e.g. Komar, 1973; Imran et 

al., 1999; Peakall et al., 2000, 2007; Pirmez et al., 2003; Kane et al., 2008). For example, deposition 

in inner- and outer-bends is both observed within sinuous submarine channels (Abreu et al., 2003; 

Nakajima et al., 2009; Kane et al., 2008). The sedimentation processes of such deposits mainly 

depend on the degree of confinement; the higher degree of confinement results in strongly 

bypassing flows and sedimentation in inner bend, while a relatively lower degree of confinement 

results in weakly bypassing flows and sedimentation in outer bend (Kane et al., 2008).  

High-resolution 3D seismic data allows the detailed interpretation of sediment types and 

quantification of sediment volume within submarine channel systems. However, there is still less 

attention has been paid on the quantification of sediment-dispersal patterns within submarine 

channel systems. More quantitative work from seismic data is needed to explore sedimentation 

processes within submarine channels and associated flow processes. 
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1.6 The influence of mass-transport deposits (MTDs) on submarine-channel development 

 

Mass-wasting processes have a significant impact on seafloor morphology and sediment 

distribution on continental slopes (e.g. Nardin et al., 1979; Embley, 1980; Damuth and Embley, 1981; 

Hampton et al., 1996; McAdoo et al., 2000; Kneller et al., 2016). They evacuate large volumes of 

sediment and are capable of changing seafloor topography, ultimately controlling the distribution 

of turbidites that may form important reservoirs for hydrocarbons (e.g. Cronin et al., 1998; Pickering 

and Corregidor, 2005; Armitage et al., 2009; Jackson and Johnson, 2009; Joanne et al., 2010; Hansen 

et al., 2013; Olafiranye et al., 2013; Ortiz-Karpf et al., 2015; Turner, 2015; Kneller et al., 2016; Corella 

et al., 2016).  

The relationship between accommodation space and the geometry and internal structure of 

mass-transport deposits (MTDs), the common product of mass-wasting events, has been addressed 

using seismic data (e.g. Kertznus, 2009; Bernhardt et al., 2012; Hansen et al., 2013; Olafiranye et al., 

2013; Ortiz-Karpf et al., 2015; Masalimova et al., 2015; Kneller et al. , 2016) and outcrop data (Cronin 

et al., 1998; Pickering and Corregidor, 2005; Shultz et al., 2005; Lucente and Pini, 2008; Armitage et 

al., 2009; Jackson and Johnson, 2009; Eggenhuisen et al., 2010), bathymetric data (Corella et al., 

2016), well and core data (Eggenhuisen et al., 2010; Corella et al., 2016), and numerical models 

(Stright et al., 2013). 

A variety of turbidity-current responses to pre-existing MTDs have been recorded in previous 

studies. For example, the irregular top surfaces of MTDs can create ponded accommodation space 

for subsequent turbidites (e.g. Cronin et al., 1998; Shultz et al., 2005; Moscardelli et al., 2006; 

Moscardelli and Wood, 2008; Alves, 2010; Armitage et al., 2009; Jackson and Johnson, 2009; 

Olafiranye et al., 2013). Armitage et al. (2009) further established a surface hierarchy based on the 

vertical and lateral scale of topographic irregularities on MTD top surfaces (Tiers 1 to 3; Fig. 1.9). 

Tier 1 relates to the presence of topographic features of several meters in their horizontal and 

vertical dimensions, and is associated with cohesive freezing (Embley, 1980) or buckling of MTDs 

(Olafiranye et al., 2013). Tier 2 is one order of magnitude larger (i.e., tens of metres) in the two 

dimensions than Tier 1. Features associated with Tier 2 include rafted blocks with different size(s),  
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Figure 1.9. Conceptual diagram showing MTD surface-topography hierarchy (from Armitage et al., 

2009). Three distinct tiers are identified based on the vertical and lateral scale of the irregularities 

on MTDs top surfaces: Tier 1 (metres to several metres), Tier 2 (10 m to several tens of metres), and 

Tier 3 (100m to several hundreds of metres).  
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and the degree to which they protrude above the top surface at the time of deposition, being 

important to analyse their impact on subsequent depositional systems (Armitage et al., 2009; 

Olafiranye et al., 2013). Tier 3 is hundreds of metres or more in at least two dimensions, and is 

interpreted to be the result of individual MTDs (or outsized rafted blocks) and large-scale hummocky 

topography on the MTD top surface (Armitage et al., 2009). Such a topographic hierarchy leads to 

diverse sediment distribution patterns (Armitage et al., 2009), as variations in the volume of 

accommodation space on top of MTDs often depend on the internal structure of the MTDs; 

particularly on the distribution of megaclasts, or blocks, and orientation and scale of faults within 

MTDs (Armitage et al., 2009; Alves 2010; Olafiranye et al., 2013; Ortiz-Karpf et al., 2015; Kneller et 

al., 2016). Folds and pressure ridges within MTDs also contribute to the generation of irregularities 

on the top surfaces of MTDs (Olafiranye et al., 2013; Kneller et al., 2016). 

In addition, turbidity currents can deposit upstream and above MTDs (e.g. Jacobi, 1976; Jansen 

et al., 1987; Dam and Sønderholm, 1994; Henrich et al., 2008; Bernhardt et al., 2012; Ortiz-Karpf et 

al., 2015; Corella et al., 2016) or, instead, can be erosive to create large-scale scours (e.g. Shultz et 

al., 2005). Furthermore, turbidity currents can be diverted by topographic highs created by MTDs, 

leading to the generation of new sediment routes (e.g. Droz and Bellaiche, 1985; Hansen et al., 2013; 

Masalimova et al., 2015; Kertznus, 2009; Corella et al., 2016). Large-scale mass-wasting events can, 

therefore, modify the geometry of sedimentary basins and result in rapid shifts in the location of 

depocentres on continental slopes (Lucente and Pini, 2008). Kneller et al. (2016) further pointed out 

that the deflection (and reflection) of turbidity currents, and associated erosion, bypass, and 

deposition processes, are controlled by: a) the scale and geometry of MTD-associated topographic 

relief, and b) turbidity currents properties, e.g. thickness, grain-size distribution, and variations in 

the vertical density of flows (Kneller et al., 2016; Kneller and McCaffrey, 1999). 

Previous studies focused mainly on the channel location and pathways influenced by MTDs 

(e.g. Kertznus, 2009; Hansen et al., 2013; Masalimova et al., 2015; Kneller et al., 2016; Corella et al., 

2016), but less attention has been paid to the initiation and development of submarine channels 

affected by MTD-related topography. The presence of MTDs at the base of channel systems has 

been documented on both seismic (e.g. Deptuck et al., 2003; Mayall et al., 2006) and outcrop data 
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(e.g. Cronin et al., 2005b; Macauley and Hubbard, 2013; Bain and Hubbard, 2016), leading some 

authors to suggest that seafloor roughness produced by mass-wasting processes can capture and 

accelerate turbidity currents, facilitating the formation of channels (e.g. Deptuck et al., 2003; Gee 

et al., 2007; Abdurrokhim and Ito, 2013). In fact, flow-capture processes associated with mass 

wasting have recently been documented in the Gulf of Mexico and the Nile Delta (e.g. Kertznus, 

2009; Kneller et al., 2016). For example, evacuation zones created by mass failure on the upper and 

middle slope can capture flows derived from shelf areas, focusing subsequent flows into conduits 

created by mass-failure events (Hackbarth and Shew, 1994; Shultz et al., 2005; Kneller et al., 2016). 

However, the role of mass-wasting processes in channel initiation and development is still poorly 

understood due to the lack of good-quality seismic and stratigraphic data.  

 

1.7 The role of tectonic structures in submarine-channel evolution  

 

1.7.1 The responses of submarine channels to tectonic structures  

 

The behaviours of turbidity currents, such as erosion, bypassing or deposition, are closely 

related to variations in seafloor gradient, the development of submarine channels is thus strongly 

influenced by variable seafloor topography generated by active faults, folds, and gravity tectonics 

such as mud and salt diapirs (e.g. Graham and Bachman, 1983; Droz and Bellaiche, 1985; Cronin, 

1995; Pirmez et al., 2000; Huyghe et al., 2004; Ferry et al., 2005; Gee and Gawthorpe, 2006; Mayall 

et al., 2006, 2010; Clark and Cartwright, 2011). Studies of channel adjustment in response to 

tectonic structures commonly help to reconstruct the deformation history of these structures and 

predict sediment distribution patterns on continental slopes.  

A wide variety of submarine-channel responses have been documented in the literature. For 

example, Clark and Cartwright (2009) identified four types of responses of submarine channels to 

tectonic structures: confinement, diversion, deflection and blocking (Fig. 1.10). Detailed responses 

of submarine channels to seafloor deformation induced by tectonic structures, documented by 

previous studies, are as follows:  
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Figure 1.10. Schematic representation of the four end-member interaction between submarine-channel development and underlying deformation (from Clark 

and Cartwright, 2009). A: Confinement is defined as the restriction of channel courses and channel deposits because of pre-existing structures. B: Diversion is 

defined as changes in channel courses due to pre-existing structures obstructing flow pathways by modifying the seafloor gradient. C: Deflection is defined as 

progressive shifts in channel courses away from adjacent growing structures. D: Blocking is defined as termination of channel courses due to structures 

orientated at a high angle to channel courses. 
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1.7.1.1 Variations in channel pathways 

Active tectonic structures change seafloor gradient by generating topographic highs and lows. 

Turbidity currents are preferentially transported in a down-dip direction towards topographic lows, 

and the diversion and deflection of channels caused by structures have been widely documented in 

the literature (e.g. Cronin, 1995; Posamentier and Kolla, 2003; Gee and Gawthorpe, 2006; Mayall et 

al., 2006, 2010; Clark and Cartwright, 2009; Zucker et al., 2017). In some cases, submarine channels 

can be confined by fault-related topography and their pathways can, as a result, show similar 

orientations to the faults (e.g. Antobreh and Krastel, 2006; Chiang et al., 2006; Clark and Cartwright, 

2009).  

 

1.7.1.2 Variations in channel morphology 

Variations in channel gradient and the presence of knickpoints are widely documented along 

channel pathways near tectonic structures (e.g. Pirmez et al., 2000; Huyghe et al., 2004; Ferry et al., 

2005; Mitchell, 2006; Heiniö and Davies, 2007; Georgiopoulou and Cartwright, 2013). As channels 

attempt to reach the equilibrium profile by incision or aggradation due to base-level change caused 

by tectonic deformation, increases in channel gradient and convex-upward longitudinal profiles are 

commonly observed near active uplifting structures such as fold and thrusts faults (e.g. Huyghe et 

al., 2004; Deptuck et al., 2007; Heiniö and Davies, 2007; Noda et al., 2008). They are interpreted to 

result from deep incision of turbidity currents in response to local uplift (Huyghe et al., 2004; 

Deptuck et al., 2007; Noda et al., 2008).  

In addition to channels gradient, variations in channel sinuosity and dimension have also been 

associated with tectonic structures (e.g. Pirmez et al., 2000; Deptuck et al., 2007; Clark and 

Cartwright, 2011; Posamentier and Kolla, 2003). For example, a narrow channel with relatively high 

sinuosity was observed downstream of a sill (i.e. a horizontal or gently-dipping sheet intrusion of 

igneous rock) when compared to upstream areas (Posamentier and Kolla, 2003). Mayall et al. (2006) 

documented a narrower and deeper channel system when crossing an anticline. 
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1.7.1.3 Variations in the architectural elements within channels systems 

Erosion and deposition associated with gradient changes caused by active tectonic 

deformation, lead to variations in the architectural elements of submarine channel systems. For 

instance, erosional terraces may be formed due to channel incision caused by tectonic uplift (e.g. 

Pirmez et al., 2000; Deptuck et al., 2003; Huyghe et al., 2004; Noda et al., 2008), whereas bank 

failures may be triggered by fault activity (e.g. Antobreh and Krastel, 2006). Additionally, variations 

in levee morphology and distribution have been documented next to tectonic structures (e.g. Wood 

and Mize-Spansky, 2009; Catterall et al., 2010; Clark and Cartwright, 2009, 2011). Wood and Mize-

Spansky (2009) found that the morphology of channel levees is associated with the regional tilting 

directions of basins in the Caribbean Sea. Levees are higher and wider on the south side than on 

the north side of channel, with regional basin slope tilting southward (Wood and Mize-Spansky, 

2009). In addition, Clark and Cartwright (2011) show that levee morphology and distribution is also 

controlled by deformation patterns of adjacent structures (Fig. 1.11). For example, the internal 

reflections of levees downlap onto the flank of uplifted structures when the uplift occurs before 

channel development, whereas levees are folded due to adjacent growing structures when the 

deformation of structures coeval with or occur after channel development (Clark and Carwright, 

2011) (Fig. 1.11).  

Because submarine channels tend to migrate to topographic lows when relative seabed uplift 

occurs (e.g. Clark and Carwright, 2009; Mayall et al., 2010), the architecture of channel systems 

usually changes with the patterns of deformation (e.g. deformation rate) near the sea floor and the 

frequency and/or magnitude of turbidity currents (e.g. Kane et al., 2010, 2012) (Fig. 1.12). For 

instance, submarine channels developed on the flanks of salt structures avulse downslope during 

salt growth (Fig. 1.12A-D), and show aggradation patterns during periods of salt withdrawal and 

subsidence (Kane et al., 2010, 2012) (Fig. 1.12F).  

 

1.7.1.4 Channel spacing 

Gamboa et al. (2012) documented a close relationship between the topographic confinement 

imposed by growing salt diapirs and channel spacing. They found that channel spacing decreases  
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Figure 1.11. Schematic representation of the responses of levee morphology to the effects of tectonic deformation (from Clark and Cartwright, 2009). 
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Figure 1.12. Schematic illustrations showing channel evolution in response to the movement of 

nearby salt structures with time (T1-T5). SP indicates actual channel slope profile, and EP is the 

equilibrium profile channels attempt to reach. Channel incision and aggradation are related to the 

relative movement of salt structure. Its longitudinal profile moves downwards (A-D) or upwards (F) 

in order to achieve a stable equilibrium profile (from Kane et al., 2012). 
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from unconfined regions of the slope to topographically confined regions delimited by salt diapirs 

(Gamboa et al., 2012). 

 

1.7.1.5 Factors controlling channel response(s) to tectonic structures 

Several factors are related to channel adjustment in response to tectonic structures: 1) the 

location, geometry, number, and deformation time and rates of tectonic structures, and 2) the 

relative rates of channel deposition and erosion (Clark and Cartwright, 2011; Mayall et al., 2010; 

Kane et al., 2012; Oluboyo et al., 2013). For example, whether channels are able to cut through a 

growing structure such as folds is dependent on the uplift rate of structures, the susceptibility of 

the substrate to erosion and the erosive power of turbidity currents associated with the frequency, 

vigour and duration of flows (Huyghe et al., 2004; Mitchell et al., 2006; Noda et al., 2008; Mayall et 

al., 2010; Clark and Cartwright, 2011; Chiang et al., 2012; Jolly et al., 2016). Submarine channels 

deflect away from growing structures if the incision rate of turbidity currents cannot keep pace with 

the uplift rate of the structures (e.g. Clark and Cartwright, 2009; Mayall et al., 2010). However, if the 

incision rate of turbidity currents is higher than the rates of tectonic uplift, channels will cut across 

structures such as growing folds (e.g. Morgan et al., 2004; Huyghe et al., 2004; Mayall et al., 2010; 

Jolly et al., 2016). 

 

1.7.2 The role of salt tectonics on submarine channels 

 

Salt structures such as salt diapirs and salt walls, and associated faults are widely documented 

on continental margins around the world. Key study areas where salt structures have been 

documented together with submarine channels include the Gulf of Mexico (e.g. Tripsanas et al., 

2004; Carter et al., 2016), the Nile fan (e.g. Loncke et al., 2009), offshore Angola (e.g. Gee et al., 

2006; Oluboyo et al., 2013), and offshore Brazil (e.g. Alves et al., 2009; Gamboa et al., 2012; Gamboa 

and Alves, 2015). Salt structures modify the seafloor morphology by generating topographic highs 

and lows, leading to variations in seafloor slope. These variations, in turn, result in major changes 

in sediment routes and sediment distribution (e.g. Gamboa and Alves, 2015; Alves et al., 2009; Gee 
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et al., 2006; Mayall et al., 2010; Oluboyo et al., 2013). In the Espírito Santo Basin of SE Brazil, for 

example, Gamboa and Alves (2015) analysed the spatial and dimensional relationships of 

depositional elements in the basin. They found that the dimension of depositional elements 

changes with the distance between these elements and evolving salt ridges. Next to salt ridges, 

there are larger variations in dimension, and lower continuity of depositional elements such as 

submarine channels and turbidite lobes (Gamboa and Alves, 2015).  

Apart from the location and distribution of salt structures, the relative movement of salt 

structures also affects depositional elements on other continental margins. For instance, Kane et al. 

(2012) suggest that the cycles of salt growth and withdrawal may result in distinct cycles of channel 

evolution, from entrenched channels and/or channels migrating away from growing structures, to 

marked backfilling when salt growth slows down and ceases. Previous studies indicated that 

interactions between salt structures and turbidity currents are associated with the size, shape, uplift 

rate of salt structures, incidence angle between regional flow direction and structural strike (Mayall 

et al., 2010; Kane et al., 2012; Oluboyo et al., 2013; Carter et al., 2016).  

 

1.8. Flows within submarine channels 

 

Turbidites, which are deposits of turbidity currents, are characterised by graded bedding 

(Kuenen and Migliorini, 1950) and Bouma sequence that consists of five divisions (A, B, C, D, and E) 

(Bouma, 1962). Such deposits have been extensively described around the world from outcrops (e.g. 

Kuenen and Carozzi, 1953; Walker, 1975; Mutti and Ricci Lucchi, 1975; Pickering et al., 1986; 

Shanmugam and Moiola, 1988; Cronin, 1994; Piper et al., 1999; Abreu et al., 2003; Wynn et al., 

2007). Many numerical and experimental studies were also conducted to provide insights into flow 

processes of turbidity currents within submarine channels (e.g. Imran et al., 1999; Peakall et al., 

2000, 2007; Pirmez and Imran, 2003; Kane et al., 2008). Despite the fact that debris-flow deposits 

were also recognised in ancient channel systems at outcrop (e.g. Mutti and Ricci Lucchi, 1975; 

Pickering et al., 1986; Shanmugam and Moiola, 1988; Cronin, 1994; Clark and Pickering, 1996; 

Beaubouef, 2004; Mayall et al., 2006), the majority of channel-fill deposits is turbidity current-
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deposits, suggesting that turbidity currents are predominant within the submarine channels.  

Three main types of initiation processes for turbidity currents have been proposed by previous 

studies (e.g. Normark and Piper, 1991; Piper and Normark, 2009; Meiburg and Kneller, 2010): a) 

transformation of failed sediment, which can be triggered by earthquakes and volcanic eruptions, 

b) hyperpycnal flows from rivers, and c) resuspension of sediment near the shelf edge due to 

oceanographic processes (e.g., storms, tides and internal waves).  

Direct measurements of turbidity currents have been conducted in submarine canyons and 

channels (e.g. Hay, 1987; Khripounoff et al., 2003; Xu et al., 2004). They show distinct turbidity 

currents within submarine canyons and channels such as 1) high-magnitude and short duration 

gravity currents; 2) low-magnitude and high-frequency currents; 3) erosive and sandy turbidity 

currents; 4) sluggish and muddy turbidity currents (Arzola et al., 2008; Vangriesheim et al., 2009; 

Mas et al., 2010; Mulder et al., 2012; Jobe et al. 2011). Conway et al. (2012) suggest that flow 

properties vary not only from one event to another, but also within the time frame of single event.  

Apart from turbidity currents, low-energy, tide-initiated hydrodynamic events have also been 

observed within canyons (Masson et al., 2011; Mulder et al., 2012). Normandeau et al., (2014) 

further suggested that slope failure and internal tides/waves are frequent enough to remobilise in-

situ sediment within the canyon. Consequently, gravity flows sourced from adjacent shores and 

shelves may not a prerequisite for the activity of canyons. 

 

1.9 Stratigraphic evolution of submarine channels 

 

The stratigraphic evolution of submarine channels from early incision to later-stage 

aggradation has been documented from both outcrop studies (e.g. Normark and Piper, 1969; Walker, 

1975; Mutti and Normark, 1987; Clark and Pickering, 1996; Cronin, 1994; Hodgson et al., 2011; 

Figueiredo et al., 2013; Hubbard et al., 2014; Covault et al., 2016) and subsurface data (e.g. Samuel 

et al., 2003; Deptuck et al., 2003, 2007; Cross et al., 2009; Janocko et al., 2013). This cycle of erosion 

and deposition may occur repeatedly during channel evolution (e.g. Mutti and Normark, 1987; 

Cronin, 1994; Clark and Pickering, 1996). In addition, a period of sediment bypass has been 
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interpreted between early erosion and final deposition based on the internal architecture of 

channel-fill deposits (e.g. Walker, 1975; Mutti and Normark, 1987, 1991; Cronin, 1994; Beaubouef, 

2004; McHargue et al., 2011; Stevenson et al., 2013; Hubbard et al., 2014).  

McHargue et al. (2011) suggest that the cycle of degradation-aggradation is caused by waxing-

waning cycles, which alter flow energy, the volume and calibre (i.e. grain size) of turbidity currents, 

and lead to the rise and fall of the equilibrium profile of submarine channels (Fig. 1.13). For example, 

increases in flow thickness and density remove accommodation space for sediment, leading to the 

fall of equilibrium profile and the generation of erosional channels (Fig. 1.13A). Decreases in flow 

thickness and density create accommodation space and result in the rise of equilibrium profile and 

the generation of aggradational channels (Kneller, 2003; McHargue et al., 2011) (Fig. 1.13C).      

There are a range of external and internal factors, such as sediment supply, sea-level changes 

and local basin morphology, suggested as important for channel evolution (e.g. Shanmugam and 

Moiola, 1982; Samuel et al., 2003; Posamentier and Kolla, 2003; Kneller, 2003; Kolla, 2007; 

McHargue et al., 2011) (Fig. 1.14). For example, flows tend to be sand rich during relative sea-level 

rises, resulting in degradation, while flows tend to be mud rich during relative sea-level falls, leading 

to aggradation (Posamentier and Kolla, 2003). However, modelling results from Sylvester et al. (2011) 

suggest that the architectures of most submarine channel-levee systems can also reflect a simpler 

model involving a single channel form that evolves from incision and migration to aggradation 

without large temporal variations in flow magnitude. Sylvester and Covault (2016) further found 

that internal factors such as the process of meander cutoff, can lead to the retreat of knickpoints 

and complexity of submarine-channel architectures. 

The architecture of channel systems is associated with the interaction between lateral and 

vertical movements in individual channel element (e.g. Mutti and Normark, 1987; Weimer, 1991; 

Clark and Pickering, 1996; Deptuck et al., 2003; Sylvester et al., 2011; Jobe et al., 2016). Lateral 

migration with no or little aggradation at early stage of channel evolution has been recorded in West 

Africa (e.g. Deptuck et al., 2003; Janocko et al., 2013; Covault et al., 2016). This type of lateral 

migration led to the formation of highly-amalgamated sheet deposits at the base of channel systems 

(e.g. Sameul et al., 2003; Mayall et al., 2006) and suggests that the channels are in equilibrium state,  
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Figure 1.13. Schematic diagram showing the response of submarine channels to variations in 

sediment supply (Modified from Kneller, 2003). 
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Figure 1.14. Flow chart summarising external and internal controls on deep-water depositional 

systems (Richards et al., 1998). 
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in which state channel migrates within a plane parallel to the equilibrium profile (Kneller, 2003). 

However, lateral migration may occur at any stage of channel evolution (e.g. Samuel et al., 2003; 

Deptuck et al., 2007; Janocko et al., 2013; Jobe et al., 2015), and occur with either degradation (e.g. 

Jobe et al., 2015) or aggradation (e.g. Kolla et al., 2001; Deptuck et al., 2007; Janocko et al., 2013). 

Such variations in the occurrence of lateral migration make the drivers of lateral migration difficult 

to understand.  

 

1.10 Rationale 

 

Despite the significant advances made in the past decades, controlling factors for stratigraphic 

evolution of submarine channels are still under debate, such as the cause for a switch from incision 

to aggradation and the cause for lateral channel migration (e.g. McHargue et al., 2011; Sylvester et 

al., 2011). The quantitative analysis of temporal stacking patterns of submarine channels is a key 

point to improve our understanding of external and internal factors affecting channel evolution (e.g. 

Jobe et al., 2016).  

This work provides an example of a submarine channel system developed near the modern sea 

floor. This submarine channel system preserved the most recent erosional and depositional features 

without experiencing the effect of diagenesis (e.g. compaction). High resolution 3D seismic data 

used in this study allows a detailed characterisation of the modern channel system in terms of its 

morphology and stacking patterns. Studies of modern channel systems often provide valuable 

insights on ancient submarine channel systems. In addition, quantitative analyses of modern 

submarine channel systems help to understand and predict variations sediment budgets at different 

locations of sediment routing systems, as well as the prediction of reservoir distribution in deep-

water margins.  

 

1.11 Aims of this study 

 

The aims and objectives of this thesis are as follows:  

 

1) To document the quantitative seismic geomorphology of submarine channel systems by:  

A) Conducting quantitative analyses of submarine channel systems at channel and valley scales.  
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B) Undertaking a comparison between the studied channel system and other channel systems 

around the world. 

  

2) To investigate the evolution of submarine channel systems by: 

A) Identifying architectural elements within the study channel system developed on the 

seafloor.  

B) Investigating temporal variations in the morphology and architectures of channel systems. 

C) Evaluating the relationship among the morphology and internal architectures of the 

channel systems. 

 

3) To understand the controlling factors for the evolution of submarine channel systems by:  

A) Assessing the direct and indirect impacts of salt diapirs on channel evolution.  

B) Assessing the role of MTD-associated topography in turbidity currents and channel 

evolution.  

C) Investigating other possible geological and oceanographic factors controlling channel 

evolution.  
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2. Seismic data and methods 

 

2.1 Introduction 

 

This chapter presents the seismic reflection data used in this study, including the principles 

behind the acquisition, processing and interpretation of seismic-reflection data, and is followed by 

a brief introduction of the seismic dataset used in this thesis. 

 

2.2 Seismic-data acquisition  

 

Marine seismic data are acquired by creating an acoustic pulse using airgun arrays on ships (Fig. 

2.1). The sound wave travels down through the sea water into subsurface rocks. Some of the sound 

waves are reflected back to the sea surface whenever interfaces with changes in physical properties 

are found (e.g. density and velocity changes). The reflected waves are then received and recorded 

by a series of hydrophones on the ships (Fig. 2.1). The time seismic wave travel from the source (i.e. 

airguns) to the receivers (i.e. geophones) is measured in two-way travel time (TWTT). 

 

2.3 Seismic waves 

 

Despite many types of waves that travel through the Earth, most seismic datasets use 

compressional waves or P-waves. The key variables defining the shape of a wave are amplitude, 

period, frequency and wavelength (Fig. 2.2). The wave display changes in amplitude, which can be 

represented by a maximum (i.e. peak) and a minimum value (i.e. trough) (Fig. 2.2). The separation 

(in time) between two successive peaks or troughs is the wave period (𝑇) (Fig. 2.2). The frequency 

of a wave is the number of cycles, i.e. peaks or troughs that pass through a specific point in a specific 

period. For example, 40 Hz indicates that 40 peaks or troughs pass through a specific point in one 

second. The wave frequency can also be shown as the inverse of the period: 

 

𝐹 =  1/𝑇 --------------------------------------------------(Eq. 2.1) 
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Figure 2.1. Schematic diagram showing the common geometry of a marine seismic survey. An acoustic source mounted on a boat emits a sound wave into 

the water. When the acoustic properties of the rock change, the P-waves are reflected back to the surface and detected by hydrophones in a long cable towed 

behind the boat (streamer) (modified from Bacon et al. 2003).  
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Figure 2.2. A simple cosine geometry illustrating traveling waves in distance A) and time B) (from 

Hart, 2011). 
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The wavelength is the distance between successive repetitions of the waveform (e.g., troughs 

or peaks) (Fig. 2.2). It is a function of the frequency (𝑓) and velocity (𝑣) in which waves travel through 

rocks: 

 

𝜆= 𝑣/𝑓  --------------------------------------------------(Eq. 2.2) 

 

However, as seismic waves commonly contain a range of frequencies, the dominant frequency 

is generally used to calculate wavelength.  

The energy of the P-waves is reflected at interfaces where changes in acoustic impedance are 

recorded (𝑍). Acoustic impedance is a function of the rocks’ P-wave velocity (𝑣) and density (𝜌): 

 

𝑍 = 𝑣 x 𝜌  --------------------------------------------------(Eq. 2.3) 

 

In this equation, velocity and density are associated with rock physical properties such as 

texture, porosity and fluid content.  

The relative amplitude of the reflected wave can be predicted by the zero-offset reflection 

coefficient (𝑅0): 

 

𝑅0 =
𝑍2−𝑍1

𝑍2+𝑍1
   ----------------------------------------------(Eq. 2.4) 

 

where 𝑍1 and 𝑍2 are the acoustic impedances of the layer above and below the interface, 

respectively.  

 

2.4 Data resolution 

 

The vertical resolution of seismic data is defined as the vertical distance between two seismic 

reflections that can be resolved separately, and this separation relates to the distance between two 

interfaces (Hart, 2011). A value of 𝜆/4 is generally considered to define the vertical resolution of 

seismic data (Fig. 2.3). Therefore, the higher the frequency and lower the velocity of the wave, the 
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Figure 2.3. The relationship between bed thickness and tuning thickness. The tuning thickness is the bed thickness that two reflections become 

indistinguishable in time. The vertical resolution is related to the interaction between two closely spaced wavelets (from Brown, 2004). 



Chapter 2 – Seismic data and methods 

52 

 

better will be the vertical resolution. 

However, as velocity increases and frequency decreases with depth, vertical resolution 

decreases. In addition, constructive interference or tuning occurs when the interfaces of layers 

spaced more closely than 𝜆/4, leading to the overlap of reflections and boosted seismic signals (Fig. 

2.3).  

Lateral resolution of seismic data is associated with the Fresnel zone (Fig. 2.4). Because the 

seismic energy travels as wave fronts, the region where the seismic energy is reflected 

constructively is known as the Fresnel zone. The width of an object equal or greater than the 

diameter of Fresnel Zone can be resolved in seismic data. The diameter of Fresnel zone depends on 

the average velocity down to a specific horizon (𝑣), two-way travel time (𝑡) and frequency (𝑓) (Hart, 

2011):  

 

𝐷𝐹 = 𝑣√
𝑡

𝑓
   ---------------------------------------------(Eq. 2.5) 

 

2.5 Seismic-data visualisation  

 

Three-dimensional (3D) seismic volumes can be considered as a series of data cubes, or voxels 

(Hart, 2000). Each voxel consists of four pieces of information: the x, y, and z showing the location 

and an amplitude value. The x-y dimension is associated with bin space during data acquisition and 

is represented by inlines and crosslines during interpretation, whereas the z dimension reflects the 

location in the depth direction (Hart, 2000). Arbitrary lines comprise a single transect or multiple 

transects extracted from the data set, in order to image structural or stratigraphic features oriented 

obliquely to the inline or crossline. Apart from seismic cross sections, 3D seismic data can also 

provide plan views of features by using time slices, and flattened time slices, allowing the detailed 

imaging of geological features.  

For example, seismic attributes are extensively used in the seismic interpretation of 

stratigraphy, structural geology, and reservoir properties. Submarine channels can be clearly imaged 

on attribute maps because of their linear and sinuous aspects. In this thesis, dip, RMS amplitude 

and variance maps are used to document the variations in pathways of submarine channels.  
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Figure 2.4. The effect of pre-and post-migration on Fresnel-zone size (from Brown, 2004). 
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Dip maps show gradient changes by comparing the time or depth value between adjacent 

points in 3D seismic data. It is a good indicator of slope changes in a reference horizon. The banks 

of submarine channel are highlighted in dip maps because they are generally steeper than the dip 

of adjacent strata (Fig. 2.5).  

Amplitude maps highlight lateral variations in acoustic impedance that are related to changes 

in the rock physical properties and fluid content of the horizon (Brown, 2004). Root-Mean Square 

(RMS) amplitude maps highlight high-amplitude reflections on seismic data in comparison with low-

amplitude ‘background’ strata. They can be extracted along a specific horizon or within a defined 

time window. Because the basal lags of submarine channels are commonly coarse-grained and 

generate high-amplitude reflections, submarine channels can be clearly identified on amplitude 

maps due to their high amplitude, sinuous reflections (Fig. 2.6).  

Variance maps are calculated based on discontinuities by comparing how similar are adjacent 

waveforms in a picked horizon, in contrast with coherence map that calculates continuities of 

seismic data. They are generally used for imaging lateral extent of geological features. The 

discontinuities shown in the variance map may be stratigraphic (e.g. channels) or fault 

discontinuities. For example, channel banks are erosional truncations on seismic data, they can be 

well defined on variance maps based on the higher variance value of channel banks (Fig. 2.7). The 

variance map is generally extracted from a variance volume that computed based on a reference 

horizon. This reference horizon can be a time slice from seismic volume or a flattened interpreted 

horizon.  

Isochron maps highlight the variations in thickness (in TWTT) between two reference horizons. 

They provide detailed information on the thickness and lateral extent of sedimentary units. For 

example, isochron maps were used to quantify variations in sediment dispersal patterns in the 

studied channel systems, and to assess the role of sediment supply from tributaries in the sediment 

distribution within the channel system.  

 

2.6 Seismic-data interpretation  

 

The mapping of structural and stratigraphic features is commonly undertaken by manual 
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Figure 2.5. Dip map highlighting submarine channels with steep banks. 
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Figure 2.6．Root-Mean Square (RMS) amplitude map highlighting submarine channels with higher-

amplitude reflections compared to lower-amplitude slope strata. High-amplitude reflections are 

also shown surrounding salt diapirs.  
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Figure 2.7. Variance map highlighting submarine channels with banks of higher variance. 
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picking and/or autotracking of relevant reflections, combined with an analysis of seismic facies 

based on the geometry, continuity and amplitude of reflections. The main principles of such an 

analysis follow concepts in Mitchum et al. (1977) (Fig. 2.8).  

Four types of seismic facies associated with submarine channels were interpreted based on 

their seismic amplitude, reflection continuity, reflection geometry, and termination patterns against 

adjacent strata (Fig. 2.9). The interpretation of seismic facies was based on widely accepted criteria 

for deep-water settings (e.g. Posamentier and Kolla, 2003; Mayall et al., 2006; Catterall et al., 2010; 

Deptuck et al., 2003; Janocko et al., 2013). 

Seismic Facies 1 is characterised by high-amplitude, continuous to discontinuous seismic 

reflections (Fig. 2.9A), and is usually confined within V- or U-shaped erosional surfaces (Fig. 2.9B–

E). This facies is interpreted as comprising the basal lags of submarine channels (e.g. Deptuck et al., 

2003; Mayall et al., 2006; Catterall et al., 2010). It corresponds to coarse-grained sediments 

accumulated at the base of submarine channels (e.g. McHargue and Webb, 1986; Mayall et al., 

2006). 

Seismic Facies 2 consists of low- to high-amplitude, subparallel and continuous seismic 

reflections (Fig. 2.9A). This facies may have different origins: channel deposits accumulated in a 

channel-abandonment stage (e.g. Deptuck et al., 2003; Catterall et al., 2010; Janocko et al., 2013), 

or overbank deposits, some of which show a wedge-shaped geometry (Fig. 2.9B–E). These latter are 

interpreted as levee deposits (e.g. Posamentier and Kolla, 2003; Deptuck et al., 2003; Catterall et 

al., 2010; Janocko et al., 2013). 

Seismic Facies 3 is composed of variable-amplitude, chaotic, discontinuous seismic reflections 

(Fig. 2.9A). This facies represents mass-transport deposits (MTDs) and is attributed to processes 

such as slides, slumps and debris flows (e.g. Posamentier and Kolla, 2003; Mayall et al., 2006; 

Janocko et al., 2013). Blocks with high-amplitude, parallel reflections are observed in the MTDs (Figs. 

2.9B and C). 

Seismic Facies 4 is composed of low-amplitude, parallel, continuous seismic reflections 

interpreted as background hemipelagic sediment (Fig. 2.9). 
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Figure 2.8. Stratal relationships within depositional sequences (from Mitchum, 1977). Erosional 

truncation highlights strata along a stratigraphic unconformity. Toplap highlights strata against an 

overlying surface. Top concordance represents strata that do not terminate against an upper 

boundary. Onlap shows horizontal strata terminate against an inclined surface. Downlap indicates 

strata terminate against an inclined surface. Base concordance shows strata do not terminate 

against a lower boundary. 
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Figure 2.9. A) Description and interpretation of seismic facies observed in the channel system. B, C, 

D, E) Uninterpreted and interpreted seismic sections highlighting the seismic facies interpreted in 

the channel system.  
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2.7 3D seismic volume used in the thesis 

 

The interpreted 3D seismic volume is located in the northern part of the Espírito Santo Basin 

(Fig. 2.10). It covers an area of 1600 km2.  

The seismic data were acquired by a dual airgun array and a 6 x 5700 m array of streamers. The 

survey has a bin spacing of 12.5 m by 12.5 m and a 2 ms vertical sampling interval, later resampled 

at 4 ms together with the application of an anti-aliasing filter. Data processing included resampling, 

spherical divergence corrections, and zero-phase conversions undertaken prior to stacking, 3D 

prestack time migration using the Stolt algorithm, and one-pass 3D migration. The polarity of data 

is SEG normal i.e., positive amplitude reflections (red) on the seismic profiles represent an increase 

in acoustic impedance. 

The vertical resolution of the data is ~10 m at the depth of analysis in this study, based on a 

dominant frequency of 40 Hz and a P-wave velocity of 1600 m/s for near-seafloor strata.  

Petrel provided by Schlumberger is the software used for interpretation of seismic data in this 

thesis.  
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Figure 2.10. Regional map of the SE Brazilian margin (Bathymetric data from GeoMapApp, 

http://www.geomapapp.org; Amante and Eakins, 2009), showing the location of Espírito Santo 

Basin and the studied 3D seismic volume in the Espírito Santo Basin. 
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3. Geological setting  

 

3.1 Introduction 

 

To better understand the impact of local geological setting on channel evolution, this chapter 

starts with geological setting of the Espírito Santo Basin, where study area is located (Fig. 3.1). This 

section includes: 1) tectono-sedimentary evolution of the Espírito Santo Basin; 2) salt tectonics in 

the Espírito Santo Basin; 3) submarine channel system in the Espírito Santo Basin. The second 

section of this chapter shows a brief introduction of study area, including: 1) seismic stratigraphy of 

study area, 2) salt tectonics in the study area, 3) seafloor morphology of study area, 4) studied 

channel system in the thesis, and 5) possible sediment sources for the seafloor channel.  

 

3.2 Geological setting of the Espírito Santo Basin 

 

3.2.1 Tectono-sedimentary evolution of the Espírito Santo Basin 

 

The Espírito Santo Basin is located on the continental margin of SE Brazil in the area between 

the Abrolhos Bank and the Campos Basin (Fig. 3.1). The basin covers approximately 41, 500 km2 in 

area, of which 300 km2 are located onshore (França et al., 2007). The width of the Espírito Santo 

Basin’s continental shelf increases from 50-60 km in the south of the study area, to 240 km on the 

Abrolhos Bank to the north (Bastos et al., 2015) (Fig. 3.1). The modern shelf break varies in depth 

from 40 to 80 m (Knoppers et al., 1999; Bastos et al., 2015). 

The basement of the Espírito Santo Basin is part of the São Francisco Craton, which is 

composed of migmatites, granulites and granitoids (França et al., 2007). The development of the 

Espírito Santo Basin is closely related to the breakup of Gondwana supercontinent (Ojeda, 1982; 

Mohriak, 2008). Four tectono-sedimentary stages have been interpreted in the Espírito Santo Basin 

by Ojeda (1982) and Mohriak et al. (2008): pre-rift, syn-rift, transition and drift stages (Fig. 3.2). 

However, Chang et al. (1992) and França et al. (2007) did not recognized deposits of ‘pre-rift’ stage 

in the Espírito Santo Basin.  
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Figure 3.1. A) Regional map of the SE Brazilian margin showing the location of the studied 3D seismic 

volume from the Espírito Santo Basin. B) Contoured seafloor map of the study area generated from 

the interpreted seismic volume. It highlights the location of the modern channel relatively to salt 

diapirs D1 to D6. 
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Figure 3.2. Schematic diagram showing major tectonic stages of the Brazilian margin (redrawn from 

Ojeda, 1982). The location of the Espírito Santo Basin (ESB) is highlighted by the red box. A) Syn-rift 

phase dominated by continental environments. B) Transitional phase characterised by the 

deposition of evaporites. C) Early drift phase, with the formation of shallow-marine carbonate 

platforms. D) Late drift phase characterised by open marine sedimentation. 
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The ‘pre-rift’ stage spans the Late Jurassic to Early Cretaceous, when the breakup of Gondwana 

supercontinent started (Mohriak et al., 2008). This stage is marked by a small degree of 

asthenospheric uplift and lithospheric thinning. These processes resulted in normal faulting and the 

formation of local depocentres (Mohriak et al., 2008). A thin sedimentary sequence was deposited 

within these depocentres during this period. It is mainly located in the Barreirinhas and Sergipe-

Alagoas basins offshore Brazil (Ojeda, 1982; Mohriak et al., 2008), but is likely absent in the Espírito 

Santo Basin (França et al., 2007). This thin sequence comprises fluvial and alluvial-fan deposits, 

together with lacustrine deposits (Ojeda, 1982).  

The ‘syn-rift’ stage developed from the Late Berriasian to Early Aptian. This stage is 

characterised by an increased degree of asthenospheric uplift and lithospheric thinning (Mohriak 

et al., 2008). In the basins located in the south-southeastern part of offshore Brazil, such as the 

Espirito Santo Basin, the presence of Neocomian tholeiitic basalts overlying the Precambrian 

basement marks increased lithospheric stretching (Ojeda, 1982; Chang et al., 1992; Mohriak et al., 

2008). This magmatic event was followed by intense normal faulting, and the formation of a series 

of half grabens and rift valleys (Mohriak et al., 2008). This stage records the widespread formation 

of rift sub-basins in the Espírito Santo Basin, in which fluvial-lacustrine sediments were accumulated 

(Ojeda, 1982; Chang et al., 1992) (Fig. 3.2). These fluvial-lacustrine sediments are interbedded with 

volcaniclastic intervals (Chang et al., 1992; França et al., 2007), comprising the lower-Cretaceous 

Cricaré Formation (França et al., 2007) (Fig. 3.3). The terrestrial deposits in this formation change 

from conglomerates and coarse sandstones in the proximal region to fine-grained mudstones and 

shales in more distal regions of the basin (França et al., 2007). The lacustrine shales of the Cricaré 

Formation are the main source rock of the basin (Estrella, 1984). The Cricaré Formation is overlain 

by the Mucuri Member, which changes from alluvial fan and fluvial deposits to lacustrine deposits 

and associated sabkha deposits (França et al., 2007) (Fig. 3.3). 

By the end of this stage, a relative increase in lithospheric extension resulted in the reactivation 

of large faults and the formation of a regional breakup unconformity (Mohriak and Fainstein, 2012). 

This unconformity separates continental fluvial-lacustrine sediments from microbialites (pre-salt 

units) and overlying evaporates, and marks the beginning of the transitional stage, which spanned 

the Middle Aptian to Late Aptian/Early Albian. The deposition of thick evaporite sequences and  
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Figure 3.3. Stratigraphic column of the Espírito Santo Basin highlighting the main tectono-

sedimentary stages and magmatic events in the basin (modified from França et al., 2007). 
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marine carbonates predominated at this stage (Ojeda, 1982) (Fig. 3.2). In the Espírito Santo Basin, 

the thick evaporite succession is named the Itaúnas Member, which belongs to the Mariricu 

Formation (França et al., 2007) (Fig. 3.3). The transitional stage is followed by a drift phase spanning 

from Late Aptian/Early Albian to the present day, and is characterised by the deposition of open 

marine strata (Ojeda, 1982; Chang et al., 1992) (Fig. 3.1). Strata deposited in this phase are divided 

into two megasequences: early-drift transgressive and late-drift regressive (Mohriak, 2003; Fiduk et 

al., 2004) (Fig. 3.3).  

The transgressive megasequence consists of Albian carbonates and overlying muddy and sandy 

turbidites, and marks a general deepening-upwards trend towards the end of the Cretaceous 

(Davison, 1999; Fiduk et al., 2004; Alves et al., 2009). This megasequence started from the Eocene 

in the Espírito Santo Basin and is marked by the presence of calcareous marls (França et al., 2007). 

In the basin, the base of this megasequence comprises fan-delta clastics (São Mateus Member of 

the Barra Nova Formation) in the western proximal region, and shallow marine carbonates 

(Regência Member of the Barra Nova Formation) in distal regions of the basin (França et al., 2007) 

(Fig. 3.3). The carbonate platform is overlain by dark shales and turbidites (Urucutuca Formation) 

of Late Cretaceous age within the basin (França et al., 2007) (Fig. 3.3). Several submarine canyons 

were developed at this stage, e.g. the Regência and Fazenda Cedro Canyons, which are filled with 

turbidite and comprise important hydrocarbon reservoirs (e.g. Bruhn and Walker, 1997).  

The transgressive megasequence is followed by the regressive megasequence, which started 

at the end of the Cretaceous and is related to the clastic progradation due to the uplift of the Serra 

do Mar and Serra da Mantiqueira ranges in southeast Brazil (Mohriak and Fainstein, 2012). The 

regressive megasequence marks the reactivation of rift structures and episodic magmatic activity 

(Demercian et al., 1993; Cobbold et al., 2001; Mohriak et al., 2008) (Fig. 3.3), and is associated with 

the development of the Abrolhos Bank to the north of the study area (Cordani, 1970). The 

development of the Abrolhos Bank changed local slope configuration by extending the continental 

shelf edge as far as 200 km eastwards (Fig. 3.1). The regressive megasequence is characterized by 

the deposition of recurrent MTDs (Omosanya and Alves 2013; Gamboa et al., 2010), together with 

turbiditic channels and lobes, which were sourced from the Abrolhos Bank and fluvial rivers (Bruhn 

and Walker, 1997; Davison, 1999; Alves et al., 2009; Gamboa and Alves, 2015). 
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3.2.2 Salt tectonics in the Espírito Santo Basin 

 

In the Espírito Santo Basin, salt structures have been active since the Albian and play an 

important role in the stratigraphic architecture of the basin (Fiduk et al., 2004). Gravitational gliding 

and differential loading are two main reasons for salt movement in the basin (Demercian et al., 1993; 

Fiduk et al., 2004).  

Seismic data show distinct salt deformation styles from west to east towards the lower 

continental slope and rise (Fiduk et al., 2004) (Fig. 3.4). Three domains are recognised based on the 

different types of salt structures across the basin (Fig. 3.4). In the proximal domain, the basin is 

characterised by salt rollers and rafts formed by extensional stresses (Demercian et al., 1993; Fiduk 

et al., 2004; Alves, 2012). In the transitional domain, salt diapirs predominate (Fiduk et al., 2004). 

In the distal domain, where compressional stress dominated, the basin is characterised by 

allochthonous salt canopies, tongues and overhangs (Fiduk et al., 2004; Mohriak et al., 2008) (Fig. 

3.4). 

 

3.2.3 Submarine channel systems in the Espírito Santo Basin 

 

Submarine channels comprise the most important depositional features, and hydrocarbon 

reservoirs, in the Espírito Santo Basin (Fiduk et al., 2004). For example, Bruhn and Walker (1997) 

documented submarine channel complexes exposed near the mouth of the Rio Doce river (Fig. 3.1A). 

These channel complexes cut into underlying carbonates, evaporites and terrestrial sediments, and 

were filled with a thick succession of coarse-grained turbidites from Late Cretaceous to Middle 

Eocene. The Early Eocene coarse-grained turbidites within the channel complexes form the Lagoa 

Parda oil-field. An upwards trend of decreasing channel-element size and sediment grain size within 

the channel complexes is attributed to a reduction in sediment supply because of sea-level rise and 

decreasing fault activity (Bruhn and Walker, 1997). Multiple erosion and filling processes observed 

within the channel complexes are suggested to be controlled by variations in sediment supply, which 

in turn, are associated with sea level change, climate and tectonic events at the basin margin and 

source areas (Bruhn and Walker, 1997).  
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Figure 3.4. Simplified regional cross-section across the Espírito Santo Basin showing major depositional sequences and salt-tectonic domains (modified from 

Fiduk et al., 2004 and Gamboa et al., 2010). The location of the study area is indicated by the black box. 
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3.3 Geological setting of the study area 

 

The study area is located in the northern Espírito Santo Basin and on the south of Abrolhos Bank 

(Fig. 3.1).  

 

3.3.1 Seismic stratigraphy of study area 

 

The stratigraphy in the study area is divided into four seismic units based on the interpretation 

of distinct seismic facies and unconformities (Baudon and Cartwright, 2008; Alves, 2009; Gamboa, 

2011) (Fig. 3.5).  

Unit 1 (Late Cretaceous-Palaeocene) shows discontinuous to continuous, low to moderate 

amplitude reflections (Fig. 3.5). Its top boundary is marked by a Lower-Eocene unconformity. This 

unit is characteristic by faults and folded strata because of underlying salt structures (Baudon and 

Cartwright, 2008; Alves, 2009). An Eocene channel system developed at the top of Unit 1 (Fig. 3.5). 

The evolution of this channel system is closely related to the development of fault systems on the 

flanks of growing diapirs (Alves et al., 2009). For example, a marked reduction of channel sinuosity 

during channel evolution is attributed to the cessation of faulting in salt withdrawal basin (Alves et 

al., 2009). In addition, these authors found that the activity of normal faults limited lateral channel 

migration and resulted in the vertical stacking of submarine channels (Alves et al., 2009).  

Unit 2 (Eocene-Oligocene) shows moderate to high-amplitude seismic reflections. Several 

packages of discontinuous, chaotic reflections in this unit are interpreted as mass-transport deposits 

(MTDs) (Fig. 3.5). The high amplitude reflection in this unit may be related to volcanicalstic materials 

from the Abrolhos Bank (Gamboa, 2011).  

Unit 3 (Miocene-Pliocene) is characterised by subparallel to parallel, low to moderate 

amplitude reflections (Fig. 3.5). V or U shaped erosional features in this unit (Figs. 3.5 A and B) are 

either circular to elliptical depressions or submarine channels (Gamboa, 2011). A Miocene channel 

system developed at the base of this unit. This channel system has a straight pathway and is located 

within a confined region imposed by salt diapirs (Gamboa et al., 2012). It has two tributaries upslope 

and a post-confluence channel downslope (Figs 3.5 B and C). The two tributaries merge at the same 
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Figure 3.5. Seismic stratigraphy of study area and selected seismic sections highlighting three submarine channel systems in the study area. The location of 

the seismic sections is shown in Fig. 3.1B. Four seismic stratigraphic units are identified in the study area based on seismic facies. Three channel systems 

(Eocene, Miocene and Pliocene-Quaternary) are highlighted in blue on each seismic section. Some V or U shaped features in Unit 3 are circular to elliptical 

depressions (Gamboa and Alves, 2015).
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elevation at the confluence point (Gamboa et al., 2012). 

Unit 4 (Pliocene-Quaternary) shows parallel, low to high amplitude reflections, with 

discontinuous, chaotic reflections (MTDs) and low to high amplitude channel-fill deposits (Fig. 3.5). 

A Pliocene-Quaternary channel system developed in this unit (Fig. 3.5). Similar to the Miocene 

channel system, this channel system also consists of two tributaries and a post-confluence channel 

(Fig. 3.5), and the west tributary meets the east tributary with a steep drop at the confluence point 

(Gamboa et al., 2012).  

 

3.3.2 Salt tectonics of study area 

 

Two NW-SE trending salt ridges are observed and several salt diapirs are rooted on them 

(Gamboa and Alves, 2015) (Fig. 3.6). These two salt ridges delimited a NW-SE salt-withdrawal basin, 

within which a range of depositional elements (or genetic units) such as mass-transport deposits 

(MTDs), turbidite lobes, submarine canyons and channels are located (Gamboa and Alves, 2015). 

The distribution and geometry of these depositional elements are closely related to the location 

and movement of the salt diapirs (Baudon and Cartwright, 2008; Alves et al., 2009; Gamboa et al., 

2012; Gamboa and Alves, 2015). For example, stacking patterns of submarine channels in the study 

area are affected by faulting activity associated with salt movement (Alves et al., 2009). In addition, 

the spacing of submarine channels varies with the degree of topographic confinement created by 

salt diapirs (Gamboa et al., 2012). It decreases from the unconfined region to topographically 

confined region on the continental slope (Gamboa et al., 2012). 

Architectural elements such as mass-transport deposits (MTDs), turbidite lobes, submarine 

canyons and channels are observed within a salt-withdrawal basin delimited by salt diapirs D1 to D6 

(Gamboa and Alves, 2015). These elements are strongly influenced by the relative location and 

movement of the salt diapirs (Baudon and Cartwright, 2008; Alves et al., 2009; Gamboa et al., 2012; 

Gamboa and Alves, 2015). Topographic confinement created by salt diapirs is reflected by changes 

in channel density, geometry and sinuosity (Alves et al., 2009; Gamboa et al., 2012). As an example, 

channel density decreases from the unconfined region to the topographically confined region 

(Gamboa et al., 2012). 
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Figure 3.6. 3D morphology of salt structures in the study area. Several salt diapirs root in two NW-SE trending salt ridges (from Gamboa and Alves, 2015). The 

figure on the bottom left shows the seafloor expression of these salt diapirs. D1-D5 show the location of salt diapirs.  
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3.3.3 Seafloor morphology of study area 

 

The study area is located on the southern flank of the Abrolhos Bank, a bathymetric feature 

that is associated with a unique slope configuration in the ESB (Fig. 3.1A). The presence of the 

Abrolhos Bank forces a shift in the orientation of the continental shelf, which changes from NE 

striking to the southwest to ENE striking in the northeastern part of the ESB. This change results in 

two different slope trends in the study area (Fig. 3.7). The western half of study area displays a 

decreasing slope from 8° in the northwest to 1° in the southeast, whereas the eastern part shows a 

gentler slope ranging from 1° to 2° (Figs. 3.7). The seafloor is also affected by growing salt diapirs, 

and in some areas, the slope angle decreases to nearly 0° (Fig. 3.7). 

Three slope regions have been defined based on the degree of confinement imposed by salt 

diapirs deforming the seafloor (Gamboa et al., 2012) (Fig. 3.8). The pre-confluence slope (Zone 1) is 

relatively unconfined and shows a variety of erosional features such as gullies, channels, irregular 

depressions and headwalls of mass-wasting events (Fig. 3.8). The confluence region (Zone 2) 

presents a relatively higher topographic confinement when compared to Zone 1 due to the presence 

of salt diapirs D2, D3, D5 and D6. As a result, turbidity currents sourced from upslope are diverted 

by these salt diapirs, as shown by the shift in orientation of the two tributaries on the seafloor (Figs. 

3.8). For example, the pathway of the east tributary changes from NNE-SSW in Zone 1 to NE-SW in 

Zone 2 due to the presence of salt diapir D5 (Fig. 3.8). A distinct confluence point for two Miocene 

tributaries has been observed in the same region (Gamboa et al., 2012), suggesting that the present-

day slope configuration was established in the Miocene. Downslope from the post-confluence 

region (Zone 3), the seafloor becomes less confined after diapirs D2 and D5, and it is relatively 

smooth with fewer erosional features (Fig. 3.8). 

 

3.3.4 Studied channel system 

 

This thesis is working on the Pliocene-Quaternary channel system (Figs. 3.5 and 3.8). This 

channel system consists of a Quaternary channel system and some older channels (Fig. 3.9). The 

Quaternary channel system can be traced within entire seismic dataset, while older channels are 
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Figure 3.7. Selected seismic profiles illustrating different seafloor slope trends in the study area. The location of the seismic profiles is shown in Fig. 3.1B. A) 

Uninterpreted and B) interpreted seismic profile showing decreasing slope trend in a NW-SE direction. Salt diapir D1 decreases gradient upslope and increases 

gradient downslope. Salt diapir D2 has a minor influence on the slope. C) Uninterpreted and D) interpreted seismic profiles showing decreasing slope trends 

in a N-S direction. Salt diapir D5 induces a decrease in gradient upslope and an increase in gradient downslope. 
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Figure 3.8. Dip map of the seafloor. The Pliocene-Quaternary channel system is shown in black area. 

This channel system has seafloor channels. These seafloor channels consist mainly of west and east 

tributaries upslope, and a post-confluence channel downslope. Other small tributaries connected 

to the east tributary are also observed on the seafloor. Both west and east tributaries change their 

orientation in the pre-confluence region, and were diverted into the confluence region due to the 

presence of salt diapirs. In the confluence and post-confluence regions, the general orientation of 

the channel changes to nearly N-S until the southern limit of the seismic volume is reached. 
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Figure 3.9. Dip map showing the Pliocene-Quaternary channel system comprises a Quaternary 

channel system that can be traced from Zone 1 to Zone 3 and older channels only preserved in Zone 

2.  
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only observed in the confluence region (Fig. 3.9).  

The Pliocene-Quaternary channel system is a partially filled channel system (Fig. 3.5). It has 

channels on the seafloor (Figs. 3.5 and 3.8). The seafloor channels comprise two upslope tributaries 

in Zone 1 and a post-confluence channel downslope in Zones 2 and 3 (Fig. 3.8). The continuity of 

sedimentary fill patterns between the east tributary and the post-confluence channel, as well as the 

continuity of the channel thalweg, indicate that these two channel segments constitute the main 

flow pathway at present (Gamboa et al., 2012). Other small tributaries connected to the east 

tributary are also observed on the seafloor (Fig. 3.8). Both west and east tributaries change their 

orientations due to diapirs (Fig. 3.8). The general orientation of the channel changes to nearly N-S 

until the southern boundary of the seismic volume is reached (Fig. 3.8). 

Chapters 4 and 5 focus on the main flow pathway (east tributary and post-confluence channel) 

of the Quaternary channel system (Fig. 3.9). Chapter 6 is working on the Pliocene-Quaternary 

channel system (Fig. 3.9).  

 

3.3.5 Possible sediment sources of seafloor channels in the study area 

 

Rio Doce river is suggested to be one of sources for the submarine channels in the Espírito 

Santo Basin (Love et al., 2005). It has an annual suspended-sediment flux of 11 x 106 ton/year (Lima 

et al., 2005), and an annual average discharge of 900 m3/s (Oliveira et al., 2012). Mud river water 

has been seen 40 km off the Rio Doce river after prolonged rains (Summerhayes et al., 1976). 

Therefore, hyperpycnal flows during river flood events may have delivered sediment from the river 

to the continental slope (Summerhayes et al., 1976). However, the distance between the mouth of 

Rio Doce river and the shelf edge is ~ 70 km (Fig. 2.1). Some studies show that sediments from rivers 

are limited to the vicinity of the river mouth and to the inner shelf (Albino et al., 2010). Thus, it is 

still unclear whether the sediments from the river can be transported for such a long distance to 

submarine channels on the continental slopes at present.  

Dominguez et al. (1992) suggest that longshore drift plays a more important role in the 

transport of sediment to the continental slope than fluvial input. Longshore drift in the study area 

is controlled mainly by two types of waves (Dominguez et al., 1992) (Fig. 3.10): 1) north – 
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Figure 3.10. Schematic diagram showing major atmospheric circulation and associated longshore 

drifts along the coastline of Brazil at present (after Dominguez et al., 1992). The location of the study 

area is indicated by the black box. Seafloor channels in study area are affected by two types of waves 

related to South Atlantic high-pressure cell and cold front.  
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northeastern waves related to southern Atlantic high-pressure cell. 2) east – southeastern waves 

influenced by periodically advanced polar fronts during autumn and winter, which are less frequent 

than the southern Atlantic high-pressure cell. These two longshore drifts were recorded by the 

orientations of beach ridges at the Rio Doce strandplain (Martin and Suguio, 1992; Dominguez et 

al., 1992). In addition, seismic data shows valleys developed on the continental shelf (Bischoff and 

Lipski, 2008), and suggests that sediment transported by longshore drift may be intercepted by 

valleys and delivered to submarine channels on the continental slopes. 
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4. Quantitative seismic geomorphology of Quaternary submarine channel 

system  

 

4.1 Introduction 

 

This Chapter focuses on the morphological characteristics of the Quaternary submarine 

channel system developed near the seafloor in the study area (Fig. 4.1A). It carries out 

morphological analyses of the channel system at both channel and valley (i.e. channel complex) 

scales. It also shows temporal variations in the sinuosity of channels within the channel system. 

The formation of the studied channel system is similar to the ‘channel complex’, both of which 

were formed by vertical and lateral stacking of channels. However, the term ‘channel complex’ is 

not used here as it generally refers to filled stratigraphic element, while the studied channel system 

is partially filled. Instead, the term ‘valley’ is used to refer to the composite erosional surface formed 

by lateral channel migration in the study area. The terms used in this chapter are defined in Section 

1.3 in Chapter 1. 

 

4.2 Methods for quantitative analyses of the channel system 

 

The mapping of the seafloor and channels followed a line-by-line interpretation combined with 

3D auto-tracking. The quantitative analyses of the channel system followed the methods of Deptuck 

et al. (2007) and included channel and valley measurements (Fig. 4.1). 

Channel measurements included the depth (i.e. depth below sea level) of the channel thalweg 

(i.e. the lowest point in channel) and channel bank, channel height (i.e. the distance between 

internal-levee crest or the top of erosional banks and channel thalweg), width of channel floor (i.e. 

the length of sub-horizontal to horizontal part of channel, generally less than 15°), width of channel 

(i.e. the distance between internal-levee crests or the top of channel erosional banks), aspect ratio 

(width/height) and cross-sectional area (CSA) (Figs. 4.1 and 4.2). These parameters were measured 

in equally spaced cross-sections that were oriented perpendicularly to the channel axis line. The 

channel CSA was measured at 1-km intervals and other parameters were measured at 125-m  
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Figure 4.1. Measurements taken for the Quaternary channel system interpreted in this work. A) Dip 

map of seafloor showing the Quaternary channel system. B) and C) are uninterpreted and 

interpreted seismic sections of the channel system. D) Channel measurements were taken along the 

channel axis and included the depth of the channel bank and thalweg, the width of the channel 

floor (i.e. sub-horizontal to horizontal part of channel, generally less than 15°) and the channel, and 

the cross-sectional area (CSA) of the channel. Channel height is the distance between the depth of 

channel bank and the thalweg. E) Valley measurements were taken along the valley axis and 

included the depth of the valley wall and thalweg, the width of valley base (i.e. sub-horizontal to 

horizontal part of valley, generally less than 15°) and valley, and the cross-sectional area (CSA) of 

the valley. Valley height is the distance between the depth of valley wall and the thalweg.  
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Figure 4.2. Measurement methods of cross-sectional area (CSA) of channel and valley. In this figure, 

X0, Y0, Z0, …Xn, Yn, Zn represent the coordinates of mapped points in channels. 
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intervals. Channel gradient was calculated based on thalweg depth changes along the channel 

distance. 

Valley measurements were conducted at cross-sections that are perpendicular to the valley 

axis. The parameters measured include the depth (i.e. depth below sea level) of the valley thalweg 

(i.e. the lowest point in valley) and valley wall, valley height (i.e. the distance between external-

levee crest or the top of erosional banks and valley thalweg), width of valley base (i.e. the length of 

sub-horizontal to horizontal part of valley, generally less than 15°), width of valley ((i.e. the distance 

between external-levees crest or the top of erosional valley banks), the aspect ratio (width/height) 

and CSA of the valley (Fig. 4.1). The valley CSA was measured at 1-km intervals and other parameters 

were measured at 65 m intervals. The gradients of the valley thalweg (valley gradient) and the valley 

walls were calculated based on measurements of depth along the valley. 

Channel mapping was completed through a line-by-line interpretation, and involved a 

combination of manual and autotracking. Multiple sinuous threads or bands in horizon slices can 

be used for reconstructing the evolution of submarine channels (e.g. Abreu et al., 2003; Kolla et al., 

2007; Deptuck et al., 2007), but they are difficult to separate from each other as they vary with 

consecutive slides (i.e. upwards or downwards). Therefore, the combination of horizon slices and 

cross sections of channels are used for the reconstruction of channel pathways.  

Channel sinuosity was calculated at intervals of 2.5 km along the channel axis, and was assigned 

to the middle points of the intervals. Depth profiles of the initial channel and of the seafloor channel 

(i.e. present channel) were measured along the valley at intervals of 125 m. 

 

4.3 Spatial variations of dimensions of the Quaternary channel system 

 

4.3.1 Quantitative channel analyses 

 

The main pathway of the present channel is 42 km-long within the seismic dataset. It starts 

from a water depth of ~1000 m, down to ~1700 m at the southern edge of the seismic volume (Fig. 

4.3). The channel shows marked variations in its dimension (Fig. 4.4 and Table 4.1). Five distinct 

Reaches (Reaches a to e) are recognised based on their morphological changes (Figs. 4.3 and 4.4,  
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Figure 4.3. Dip map showing the main sediment pathway of the channel system. The pathway is 

divided into different reaches based on both channel (Reaches a to e) and valley dimensions 

(Reaches A to C).  
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Figure 4.4. Quantitative analyses of the channel. A) Depth profile of the channel thalweg and 

channel bank. B) Channel height profile. C) Width of the channel floor and channel. D) Aspect ratio 

(width/height) of the channel. E) Cross-sectional area (CSA) of the channel. 
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Table 4.1. Summary of morphological data acquired along the channel. 
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Table 4.1).  

 

4.3.1.1 Depth profiles of channel thalweg and channel bank, and channel height profile 

The depth profile of the channel thalweg shows an exponential trend and is divided into three 

intervals based on the observed variations in channel gradient (Fig. 4.4A). Channel gradient 

approaches 1.47° (25.7 m/km) in the first interval, where the steepest parts of the channel are 

recorded (Fig. 4.4A). Between 12 km and 27 km (interval 2), the channel shows a stepped profile 

and gradient decreases to 0.83° (14.5 m/km) due to the presence of salt diapir D5. In the remainder 

of the channel (interval 3), channel gradient decreases to 0.71° (12.4 m/km) between 27 and 37 m, 

and reaches its lowest value of 0.5° (8.7 m/km) in the last 8 km (Fig. 4.4A).  

The depth profile of the channel bank shows marked changes (Fig. 4.4A), which correlate with 

variations in the channel height profile (Fig. 4.4B). There are three intervals observed in the depth 

profiles of the channel bank and channel height (Figs. 4.4A and B). The first interval (0-12 km) has 

the highest value of channel height, which ranges from 80 m to 156 m (Fig. 4.4B). In interval 2, 

between 12 and 27 km, the channel height decreases rapidly due to a decrease in the depth of the 

channel bank (Figs. 4.4A and B). The channel height reaches a minimum value of 13 m at 21 km, 

and then fluctuates between 22 m and 58 m for the remainder of interval 2 (Fig. 4.4 B). The third 

interval starts with a marked increase in channel height from 22 m to 100 m at 27 km, due to an 

abrupt increase in the depth of the channel bank, and is followed by a decreasing trend. The channel 

height decreases to 26 m at the southern edge of the seismic volume (Fig. 4.4B). 

 

4.3.1.2 Width profiles of channel and channel floor 

The channel-width profile in Fig. 4.3C displays four intervals. It fluctuates between 445 and 

1060 m in the first 13 km within interval 1. In interval 2, the channel width decreases from 690 m 

to its lowest value of 240 m at 27 km. This decreasing trend is followed by an increase of the channel 

width between 27 km and 32 km (interval 3), where it ranges from 400 m to 610 m. In interval 4, 

the channel width decreases rapidly to 310 m at 32 km and then rises progressively. It increases to 

440 m at the southern limit of the seismic volume (Fig. 4.4C).  

The width of the channel floor varies from 80 to 400 m, showing an average value of 200 m, 
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and its profile can be divided in four intervals (Fig. 4.4C). For most of the channel length, channel-

floor width shows small variations, but displays two increasing trends starting at 12 km in interval 2  

and 36 km in interval 3 (Fig. 4.4C). These two trends relate to decreases in channel gradient at 12 

km and 36 km (Figs. 4.4A and C). 

 

4.3.1.3 Aspect ratio (width/height) and cross-sectional area (CSA) of channel 

The aspect ratio of the channel ranges from 5 to 27 and four intervals are observed along the 

channel (Fig. 4.4D). It shows small changes in the first 13 km, with an average value of 6 in interval 

1. The aspect ratio rises in interval 2, between 13 km and 21 km, and increases to a maximum of 27 

at 21 km. The third interval starts with an abrupt drop at 21 km, where the aspect ratio decreases 

to 9 and then remains nearly constant. Between 27.5 and 36.5 km (interval 4), the aspect ratio 

displays an increasing trend towards the southern limit of the seismic volume, where the ratio 

increases up to 17 (Fig. 4.4D). 

The CSA of the channel shows a similar trend to channel height and width (Figs. 4.4B, C and E). 

The CSA is ~0.06 km2 in the first 10 km, except for an abrupt change at 2 km where the CSA decreases 

to 0.025 km2 (Fig. 4.4E). Between 10 km and 25 km the CSA decreases by a factor of 22, from 0.067 

km2 at 10 km to a minimum value of 0.003 km2 at 21 km. This significant reduction in CSA is followed 

by a nearly three-fold increase from 21 to 22 km, where it is 0.008 km2 and remains constant for the 

next 3 km. The CSA shows a rapid increase from 25 km and an increase to 0.035 km2 at 27 km. It 

then decreases gradually to 0.013 km2 at 34 km, and varies between 0.009 km2 and 0.02 km2 for the 

remainder of the channel (Fig. 4.4E). 

 

4.3.1.4 Bank slope angle of channel 

    The slope angle of the western channel bank ranges from 13° to 48° (Fig. 4.5A). There is no 

clear increasing or decreasing trend in western bank slope angles along the channel. Slope angles 

of eastern channel bank are higher than 20°, except at 20 m, where it shows the lowest value of 14°. 

Similar to the western bank, eastern bank also shows no clear patterns of variations in slope angles 

(Fig. 4.5B).  
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Figure 4.5. Variations in bank slope angles of channel western and eastern banks. 
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4.3.1.5 Variations in channel dimension 

The channel displays significant morphological changes along the channel distance (Fig. 4.4 

and Table 4.1). Five Reaches (Reaches a to e) are observed following variations in channel 

morphological parameters (Figs. 4.3 and 4.4, Table 4.1). 

In the first 13 km of Reach a, the channel is steepest and has the largest cross-section, as shown 

by the highest value of channel gradient, height, width and CSA (Fig. 4.4 and Table 4.1). 

In Reach b, between 13 km and 22 km, channel gradient decreases and is also accompanied by 

significant decreases of channel height, width and CSA (Fig. 4.4 and Table 4.1). For example, the 

channel width decreases more than 200 m and the CSA decreases by a factor of nearly 4 in this 

reach when compared to Reach a (Table 4.1). However, the width of the channel floor and the aspect 

ratio increase to their maximum value against a decreased channel size in Reach b (Figs. 4.4B-E and 

Table 4.1). 

In Reach c (22-27 km), the channel size decreases to its lowest value, with a channel height of 

38 m, a channel-floor width of 165 m, a channel width of 345 m and CSA of 0.008 km2 (Table 4.1). 

The aspect ratio of the channel declines to 9 in this reach (Table 4.1).  

In Reach d, abrupt increases in channel height and width are observed between 27 km and 32 

km. These are accompanied by a nearly four-fold increase in the channel CSA when compared to 

Reach c (Figs. 4.4B, C and E, Table 4.1).  

In Reach e (32-42 km) channel width, height and CSA decrease again with increasing aspect 

ratios (Figs. 4.4B-E and Table 4.1). 

 

4.3.2 Quantitative valley analyses 

 

The valley is divided into three reaches (Reaches A to C) based on the observed changes in 

valley dimension (Figs. 4.3 and 4.6, Table 4.2).  

 

4.3.2.1 Depth profiles of valley thalweg and valley wall, and valley height profile 

There are five intervals observed in the depth profile of the valley thalweg (Fig. 4.6A). The 

valley is steepest in the first 6 km, with a gradient of 1.88° (32.8 m/km). The valley gradient  
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Figure 4.6. Quantitative analyses of the valley. A) Depth profile of the valley wall and thalweg. B) 

Valley height profile. C) Width of the valley base and valley. D) Aspect ratio (width/height) of the 

valley. E) Cross-sectional area (CSA) of the valley. 
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Table 4.2. Summary of morphological data acquired along the valley. 
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decreases to 1.34° (23.4 m/km) between 6 km and 13 km due to the presence of salt diapir D5. For 

the next 3 km, the valley thalweg is difficult to recognise because it presents similar seismic facies 

to an underlying MTD, both of which are composed of discontinuous, high-amplitude seismic 

reflections. Between 16 km and 22 km the valley gradient declines to 1.04° (18.2 m/km), and is then 

followed by an increase to 1.39° (24.3 m/km). In the remainder of the valley, the valley gradient 

decreases to its lowest value of 0.65° (11.3 m/km) between 30 m and 35 m (Fig. 4.6A).  

The depth profile of the valley wall shows its steepest interval in the first 4 km, with a value of 

2.01° (35.1 m/km) (Fig. 4.6A). This interval is followed by a decrease in valley wall gradient to 1.28° 

(22.3 m/km) between 4 and 21 km, and 0.72° (12.6 m/km) from 21 to 27 km. In the fourth interval, 

between 27 and 35 km, the valley wall gradient increases to 1.08° (18.9 m/km) (Fig. 4.6A). 

The valley height is dependent on variations in both the depth of valley wall and valley thalweg 

(Figs. 4.6A and B). It ranges from 230 m to 350 m along the full length of the valley (Fig. 4.6B). In 

interval 1, the valley height decreases due to a rapid drop in valley wall depth (Figs. 4.6A and B). 

This trend is followed by an increase in valley height in the second interval (4-21 km), where it 

changes from 230 m to 310 m. The valley height decreases to its lowest value of 230 m at the end 

of interval 2. In interval 3, the valley height shows a marked increase. It increases to the highest 

value of 350 m at 29 km and is followed by a decrease in the remainder of the valley (Fig. 4.6B). 

 

4.3.2.2 Width profiles of valley and valley base 

The width profiles of the valley and the valley base share similar patterns. They both have 

relatively higher average values in interval 2 than those in intervals 1 and 3 (Fig. 4.6C). 

The valley width ranges from 730 m to 2755 m (Fig. 4.6C). It fluctuates between 730 m and 

1440 m in interval 1 (0-17 km). This fluctuation is followed by an increase to 2260 m between 17 m 

and 24 km in interval 2 (Fig. 4.6C). In interval 3 (24-35 km), valley width varies from 1000 m to 1500 

m, with two maxima of 2190 m at 26.4 km and 2755 m at 33.25 km. The latter value of 2755 m 

represents where the valley width reaches its maximum (Fig. 4.6C). 

The width of the valley base varies from 160 m to 700 m for most part of the valley. However, 

a rapid increase occurs between 19 km and 23 km, where the valley base can be up to 1740 m wide 

and an increase in valley width is also recorded (Fig. 4.6C). 
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4.3.2.3 Aspect ratio and cross-sectional area (CSA) of valley 

The aspect ratio of the valley has a similar trend to the valley width (Figs. 4.6C and D), 

suggesting that valley width varies relatively more than the valley height. The aspect ratio ranges 

from 3 to 5 in the first 20 km. It is followed by an increase in interval 2 (20-24 km), where the aspect 

ratio rises up to 9. The aspect ratio decreases to 4 for the majority of interval 3 (24-35 m) but with 

two peak values, 7 at 26.5 m and 9 at 33.5 m, which are, induced by an increasing valley width (Fig. 

4.6D). 

The valley CSA also shares a similar pattern to valley width (Figs. 4.6C and E). The CSA is highest 

between 17 m and 23 m in interval 2, where it ranges from 0.25 km2 to 0.43 km2, whereas it varies 

between 0.087 and 0.337 km2 in intervals 1 and 3 (Fig. 4.6E). 

 

4.3.2.4 Variations in valley dimension 

The valley is divided into three reaches based on the observed morphological variations (Figs. 

4.3 and 4.6, Table 4.2). These reaches have similar aspect ratios but different valley CSAs (Table 4.2).  

The valley is smallest in Reach A, showing the lowest average value of valley-base width of 380 

m, valley width of 1120 m, valley height of 270 m and CSA of 0.18 km2 (Table 4.2).  

In Reach B, between 17 and 24 km, the width of the valley base and the valley record maximum 

average values of 850 m and 1600 m, respectively (Table 4.2). This is particularly observed when 

considering the width of the valley base, which increases more than two-fold from Reach A to Reach 

B (Table 4.2). Such an increase results in a relatively higher CSA value in Reach B (Table 4.2). 

The size of the valley decreases in Reach C, as shown by the relatively lower values of the valley 

width and the CSA when compared to Reach B, despite the fact that the largest valley height is 

observed in Reach C (Table 4.2). 

 

4.4 Variations in channel sinuosity within Quaternary submarine channel system  

 

The following sections focus on the channel system downstream of confluence CB, where the 

channel is more sinuous (Fig. 4.3). The studied channel system is divided into three reaches based 

on the variations in channel sinuosity (Fig. 4.7). 
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Figure 4.7. Schematic diagram showing the spatial and temporal variations in the channel 

pathways. The location of this figure is shown in Fig. 4.3. Channel sinuosity increases from 1.11 to 

1.17 in the Reach I. In contrast, there are small changes in channel sinuosity in the Reaches II and 

III.  

 

 

 

 

 

 

 

 



Chapter 4 – Quantitative seismic geomorphology 

100 

 

4.4.1 Spatial and temporal changes of channel sinuosity 

 

This study shows spatial and temporal changes in channel pathway and associated sinuosity 

(Fig. 4.7). The pathway of the initial channel has a highest sinuosity value of 1.51 in the Reach II 

(Fig. 4.7). It becomes less sinuous in the Reaches I and III, where channel sinuosity reduces to 1.11 

and 1.05, respectively (Fig. 4.7). 

The pathway of the present-day channel is much more sinuous in the Reach I and II, with 

sinuosity of 1.72 and 1.64, respectively (Fig. 4.7). Its sinuosity decreases to 1.06 in the Reach III (Fig. 

4.7).  

In addition, there are temporal changes of channel sinuosity during channel evolution (Fig. 4.7). 

In Reach I, channel sinuosity increases considerably from 1.11 for initial channel to 1.72 for present 

channel (Fig. 4.7). In contrast, channel sinuosity displays slight increases in Reaches II and III, 0.13 

in Reach II and 0.01 in Reach III from the initial to the present channel (Fig. 4.7).  

 

4.4.2 Depth profile of initial channel, present channel, and seafloor 

 

The valley slope of the initial channel is 1° in Reach I. It increases to 1.44° in Reach II and is 

followed by a decrease in the Reach III, where the valley slope decreases to 0.61° (Fig. 4.8).  

The valley-depth profile of present channel shows a similar trend to that of the initial channel 

(Fig. 4.8). It is highest (1.22°) in Reach II, and smaller in Reaches I and III, where the valley slopes are 

0.96° and 0.57°, respectively (Fig. 4.8).  

The seafloor slope on the west and east of the channels shows similar trends. It is 1.05° along 

the channel system without significant changes (Fig. 4.8).  

 

4.4.3 The relationship between valley slope and channel sinuosity 

 

The variations in valley slope of the initial channel are closely related to channel sinuosity. The 

channel is more sinuous in Reach II where valley slope is steeper, while the channel is less sinuous 

in Reaches I and III, where valley slope is lower (Fig. 4.9).  

In addition, the valley slope of the present channel shows a positive relationship with channel  
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Figure 4.8. Thalweg-depth profiles of the initial and present channels within the Quaternary channel 

system. The valley slope of these two channels shows similar trends, with steeper slope in the 

middle reach and gentler slopes in the upper and lower reaches. Seafloor slope has no clear changes.  
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Figure 4.9. Schematic diagrams showing the relationship between valley slope and channel sinuosity. 

There is a positive relationship between the valley slope and channel sinuosity for the entire length 

of initial channel, and for the middle and lower reaches of the present channel.  
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sinuosity in Reaches II and III, but a negative relationship in Reach I (Fig. 4.9).  
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5. Variations in sediment dispersal patterns within the Quaternary channel 

system 

 

5.1 Introduction 

 

This chapter focuses on spatial variations in sediment dispersal patterns (i.e. sediment volumes 

and types) within the Quaternary submarine channel system.  

 

5.2 Methods 

 

The cross-sectional area of the valley (CSAV) and valley-fill deposits (CSAVF), and valley slope 

were measured at intervals of 1 km along the valley. A depositional ratio, defined as CSAVF/CSAV, is 

used here to quantify sediment dispersal patterns in the studied channel system. This ratio is the 

percentage of the area filled by sediments within the valley. It eliminates the influence of CSAV on 

deposition, as flows may deposit more sediment when accommodation space is larger.  

Lateral channel migration involves shifts in channel thalweg and banks. As the thalweg of the 

initial channel may have been eroded by subsequent gravity flows, its inner bank is usually 

preserved during lateral migration. The lateral displacement of channel banks is thus used to 

quantify lateral migration within the channel system (Fig. 5.1). The parameter LM is the distance 

between the initial and present-day channel banks (Fig. 5.1). It indicates the magnitude of lateral 

migration and was obtained from the same cross-sections used to measure CSAV.  

 

5.3 Spatial variations in sediment volume and depositional ratio 

 

Three reaches are divided based on variations in both sediment volume and types along the 

Quaternary channel system (Fig. 5.2).  

In the upper reach, the sediment volume of the valley is 0.63 km3 and is lower than other 

reaches (Fig. 5.2). The depositional ratio is here 54% on average (Fig. 5.3A). Valley aggradation  
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Figure 5.1. A) Schematic diagram shows the morphology of the Quaternary channel system. There 

are two major tributaries that contribute sediment to the main flow pathway. B) and C) 

Uninterpreted and interpreted seismic sections summarising the terminology used in this study. D) 

Schematic diagram showing the methods used to measure the magnitude of lateral channel 

migration (LM).  
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Figure 5.2. Thickness map of valley-filling deposits within the channel system. Sediment volume is 

higher in the middle reach than in the upper and lower reaches.  
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Figure 5.3. A) Depositional ratio along the channel system. B) Valley-depth profile. C) Magnitude of 

vertical aggradation (LA) along the channel system. D) Magnitude of lateral migration (LM) along the 

channel system. E) Relationship between LA and LM. F) LM/LA along the channel system.  
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is also lowest in this reach, which shows the steepest valley slope (Figs. 5.3 B and C).  

In the middle reach, the channel system shows its largest depositional ratio (Fig. 5.3A), with an 

average value of 72%. Because the depositional ratio increases downstream of confluence points CA 

and CB (Fig. 5.3A), the observed increases in sediment amount are caused by enhanced sediment 

supply from Tributaries A and B.  

In the middle reach, sediment volume within the valley is 1.74 km3, increasing more than two-

fold when compared to the upper reach (Fig. 5.2). The channel system here also shows its largest 

depositional ratio on the middle reach, with an average value of 72% and a maximum value of ~90% 

(Fig. 5.3A). These values correlate with the presence of Tributaries A and B. Sediment supply from 

tributaries led to the higher magnitude of lateral migration and vertical aggradation in this reach 

(Figs. 5.3C and D).  

In the lower reach, the sediment volume decreases to 1.47 km3 (Fig.5.2). The depositional ratio 

in this reach decreases 22% compared to the middle reach, showing an average value of 50% (Fig. 

5.3A). These reductions in sediment volume and depositional ratio suggest that sediment sourced 

from upslope tributaries was not transported through long distances to fill the lower reach. As a 

result, LM in this reach decreases to 60-270 m, much lower than LM in the middle reach, where LM 

can be more than 1000 m (Fig. 5.3D). Aggradation varies with valley slope in this reach (Fig. 5.3C). 

Between 23 km to 29 km, where the reach shows its steeper valley slope of 1.22° (Fig. 5.3B), valley 

aggradation ranges from 140 m to 160 m (Fig. 5.3C). From 29 km to the southern limit of dataset, 

valley aggradation changes between 160 m and 200 m due to a reduced valley slope of 0.57° (Figs. 

5.3B and C). 

 

5.4 Spatial variations in sediment types 

 

Variations in sediment types of the Quaternary channel system are also described following 

three interpreted reaches (Fig. 5.2).  

In the upper reach, the valley-fill deposits comprise slump deposits and overbank strata, as 

shown on seismic data by chaotic, transparent facies overlain by continuous, low- to high-amplitude 

reflections (Figs. 5.4A-B). Mass-transport deposits are mainly located in the upper reach. Slump  
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Figure 5.4. Selected seismic profiles from each of the reaches of the channel system. 
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deposits in this reach extend for 8 km along the channel system. Because it is unlikely that localized 

mass failure on channel banks is continuous for such a long distance, these deposits were likely 

sourced from the shelf edge.  

In the middle and lower reaches, valley-fill deposits show similar seismic facies, which 

comprises discontinuous, higher amplitude reflections on the valley bases (Figs. 5.4C-G), and 

overlying sub-horizontal to horizontal, parallel, moderate- to high-amplitude reflections (Figs. 5.4C-

D, F-G) and transparent to chaotic reflections at places (Fig. 5.4E).  

In the study area, valley-fill architecture is similar to that of Benin’s and Niger delta’s submarine 

channel systems (Deptuck et al., 2003). Discontinuous, high-amplitude seismic reflections on the 

valley base are interpreted as basal lags (Figs.5.4C-G). Moderate- to high-amplitude reflections 

above basal lags (Figs. 5.4C-D, F-G) are difficult to identify as abandoned channel-fills or overbank 

deposits because these two deposits are similar to each other (Deptuck et al., 2003, 2007). Some 

wedge-shaped seismic reflections can, however, be interpreted as internal levees of the channel 

system (Figs. 5.4C and D). 

Additionally, multiple channel-form erosional truncations are shown on the valley base in the 

middle and lower reaches (Figs. 5.4C-G). These erosional truncations are interpreted to represent 

the positions of previous channel banks (Figs. 5.4C-G). The shifts in the position of channel banks 

show the trajectory of lateral channel migration (Figs. 5.4C-G) and indicate discrete migration 

processes within the channel system. A similar discrete migration process has also been 

documented by previous studies (e.g. Deptuck et al., 2007; Kolla et al., 2007; Maier et al., 2012). 

This type of migration is a cut-and-fill process, which involves the infilling of channel before the 

channel shifts its position, with flows eroding the channel banks and generating remnant channel-

fill deposits in inner banks (Deptuck et al., 2007; Kolla et al., 2007; Maier et al., 2012). 

Inclined reflections, which indicate relative continuous migration somewhat similar to fluvial 

channels (Abreu et al., 2003; Kolla et al., 2007), are only seen at only one of the channel bends (Fig. 

5.4E). They are dipping 24° toward the channel thalweg and were probably formed by continuous 

lateral migration. However, most of the bends in the lower reach are characterised by the presence 

of channel-form erosional truncations and the absence of inclined reflections (Figs. 5.4C-D, F-G). 

Subhorizontal to horizontal, moderate- to high-amplitude reflections within the valley (Figs. 5.4 C-
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D, F) are interpreted as channel-fill deposits formed during the filling processes of discrete lateral 

migration. The presence of these reflections also supports the predominance of discrete migration 

processes within the channel system. 

 

5.5 The relationship between lateral channel migration and other parameters 

 

Lateral channel migration mainly occurred in the middle and lower reaches of the Quaternary 

channel system (Fig. 5.5). This section uses Reaches I, II and III to describe variation in the magnitude 

of lateral migration (LM) along the channel system, similarly to Section 4.4 (Figs 4.7 and 5.5). Reach 

I is the middle reach in Fig. 5.2, Reaches II and III comprise the lower reach in Fig. 5.2. 

LM is positively correlated with CSAVF in Reaches I and III (Fig. 5.6A), suggesting deposition 

during lateral migration is probably the main depositional process in these two reaches. However, 

there is no clear relationship between LM and CSAVF in Reach II (Fig. 5.6A), where numerous scars 

developed on the banks of the channel system (Fig. 5.5). These scars are formed by bank failures. 

The unclear relationship between LM and CSAVF in Reach II may relate to bank failures because some 

valley-fill deposits may have slumped into the channel.  

LM shows a positive relationship with CSAV in Reach I (Fig. 5.6B). In this reach, the increase in 

valley size (i.e. CSA) is interpreted to result from cut bank erosion during lateral channel migration. 

Turbidity currents undercut the lower part of the valley and were followed by the collapse of 

overhanging blocks (i.e. cantilever failure), leading to the lateral widening of the valley, especially 

the valley base.  

LM does not appear to correlate with CSAV in Reaches II and III (Fig. 5.6B), hinting at a different 

erosional mechanism, other than cut-bank erosion, contributing to the enlargement of the channel 

system in this reach. Such a mechanism comprised shallow-seated bank failure within the channel 

system, as evidenced by the large amounts of scars on its banks (Fig. 5.5). 
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Figure 5.5. Dip map of the part of Quaternary channel system showing different reaches along the 

channel system. Various scars are present in the lower reach (Reaches II and III). 
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Figure 5.6. A) Magnitude of lateral migration (LM) against Cross-sectional area of valley-fill deposits 

(CSAVF). B) Magnitude of lateral migration (LM) against Cross-sectional area of valley (CSAV). 
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6. Mass-wasting related features within the channel systems 

 

6.1 Introduction 

 

This chapter focuses on the erosional and depositional features related to mass-wasting events 

within the channel systems, including bank-failure scars on the banks of Quaternary channel system 

and mass-transport deposit within the Pliocene-Quaternary channel system.  

 

6.2 Mass-failure events on the banks of the Quaternary channel system 

 

A large number of arcuate-shaped scars are observed on the banks of the channel system, 

especially in Zone 3 (Fig. 6.1). Scars with different shapes, such as single scars with amphitheatre-

shape headwalls and multiple scars with curved headwalls, are mainly located on the west bank of 

channel, regardless of being in the inner or outer banks of the channel (Fig. 6.1). Additionally, there 

are some elongate scars observed on the eastern bank of the channel system (Fig. 6.1).  

These scars do not cross, or extend towards the channel floor and are located at upper part of 

channel bank, i.e. 70 m to 140 m above the modern channel thalweg (Fig. 6.2). The height of the 

scarps ranges from 30 m to 70 m. The headwall slope of scars ranges from 15° to 30°. The bottom 

of scar is nearly flat, varying in angle from 1° to 9° (Fig. 6.2). 

Continuous seismic reflections beneath and adjacent to the scars indicate these scars are 

erosional features, which are bank failure surfaces left behind by mass blocks and slides that have 

collapsed into the channel (Fig. 6.2). The location of scars suggests that they were formed by 

shallow-seated bank failure (i.e. bank failure surface above channel floor), in contrast to deep-

seated bank failures (i.e. bank failure surface cross or extend to channel floor) recognized in the Gulf 

of Mexico (Sawyer et al., 2013).  

The presence of scars coincides spatially with the peak value in valley width at 26.5 km and 33 

km (Fig. 6.3), indicating that the valley was widened through shallow-seated mass failures in Zone 

3.  
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Figure 6.1. Dip map of the Quaternary channel system investigated in this thesis. Multiple scars are 

shown on the banks of the channel system in Zone 3. 
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Figure 6.2. Dip maps and seismic sections showing bank failure scars within the Quaternary channel 

system. The location of dip maps is shown in Fig. 6.1. 
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Figure 6.3. Width profile of the Quaternary channel system. It shows two peaks at 26.5 km and 33 

km, both of which are associated with the occurrence of bank failure scars. The location of W1 and 

W2 are shown in Fig. 6.3.  
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6.3 Mass transport deposits (MTDs) and adjacent channel-fill deposits within the 

Pliocene-Quaternary submarine channels in the confluence region 

 

6.3.1 Methods 

 

The mapping of the Pliocene–Quaternary Rio Doce Channel System involved a combination of 

autotracking and manual line-by-line interpretation. Architectural elements in the channel system 

were imaged by selected seismic lines, combined with dip maps, root-mean-square (RMS) 

amplitude maps, thickness maps, and variance slices extracted from the interpreted seismic volume.  

Quantitative analyses were conducted along the main pathway (east tributary and post-

confluence channel) of the channel system (Figs. 6.4 and 6.5), with its width and height measured 

at 62.5 m intervals. The cross-sectional area (CSA) of the channel system was measured at 1 km 

intervals. 

 

6.3.2 General morphology of the Pliocene–Quaternary Rio Doce Channel System 

 

The Pliocene–Quaternary Rio Doce Channel System is a partly filled channel system. It is 

recognised as a sinuous channel on the seafloor (Fig. 6.5). The morphology of the channel system 

varies across the continental slope (Figs. 6.5 and 6.6). 

Three main regions were established as a function of the topographic confinement imposed 

by salt diapirs (Gamboa et al., 2012) (Fig. 6.5). In the pre-confluence region of lower confinement, 

the channel system is composed of two tributaries (Fig. 6.5). The west tributary shows initially a 

NNW–SSE course on the upper slope, shifting to a NW–SE strike at a water depth of ~ 1100 m. The 

east tributary shows a change in strike from NNE–SSW to NE–SW at a water depth of ~ 1300 m, due 

to the presence of salt diapir D5 (Fig. 6.5). An abandoned channel segment is identified in this same 

region (Fig. 6.5). The channel system is ~ 1000 m wide, and more than 200 m high in the pre-

confluence region (Figs. 6.6A and B). The cross-sectional area (CSA) of the channel system ranges 

from 0.087 km2 to 0.256 km2 (Fig. 6.6C). 

In the confluence region, where gravity flows tend to be deflected off the salt diapirs due to  
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Figure 6.4. Schematic diagram showing the morphological parameters used in quantitative analyses 

of the Pliocene–Quaternary channel system, including the width, height, and cross-sectional area 

of the channel system. A) Uninterpreted cross section of the channel system. B) Interpreted cross 

section of the channel system with parameters used in quantitative analyses.  
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Figure 6.5. Schematic representation of seafloor geomorphologic features in the study area. The 

Pliocene–Quaternary channel system shows different morphology from Zone 1 to Zone 3. It is 

widest in Zone 2. The seafloor channels within the channel system comprise west and east 

tributaries upslope, and a post-confluence channel downslope.  
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Figure 6.6. Quantitative analyses of the Pliocene–Quaternary channel system along the main 

pathway (East tributary and Post-confluence channel). The channel system is much larger in the 

confluence region than further upslope (i.e., pre-confluence region) and downslope (i.e., post-

confluence region). A) Width profile of the channel system. B) Height profile of the channel system. 

C) Variations in the cross-sectional area (CSA) of the channel system. 
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the higher degree of confinement imposed by these structures, the general orientation of the 

channel system changes to nearly N–S and is maintained toward the southernmost part of the study 

area (Fig. 6.5). The width, height, and CSA of the channel system increase rapidly in the confluence 

region (Fig. 6.6). The width of the channel system increases from ~ 1 km to 6 km (Fig. 6.6A). Its 

height increases by ~ 50 m on average (Fig. 6.6B), and the CSA rises up to 1.2 km2, which is 4 to 10 

times larger than the CSA in other parts of the channel system (Fig. 6.6C). 

In the post-confluence region, the width and CSA of the channel system decrease significantly, 

from 6 km to 1–2 km and from 1.2 km2 to ~ 0.2 km2, respectively (Figs. 6.6A and C). The height of 

the channel system shows small changes compared to the confluence region (Fig. 6.6B). 

 

6.3.3 Architectural elements of the Pliocene-Quaternary channel system in the confluence region 

 

The following sections focus on the Pliocene-Quaternary channel system in the confluence 

region, where the channel system shows largest width and CSA (Figs. 6.6A and C, Fig. 6.7). 

In the confluence region, multiple erosional events are identified in the channel system (Fig. 

6.8). Four main channel units, including three abandoned channels (Channels 1, 2a, and 2b), a 

channel complex (Channel 3), and an MTD are interpreted based on their seismic facies (Figs. 6.8 

and 6.9). 

 

6.3.3.1 Mass-Transport Deposit (MTD A) 

This unit is chiefly composed of Seismic Facies 3 (Figs. 6.9C–H, K and L), and is interpreted as a 

locally sourced MTD, named MTD A. This deposit is located in a basal scar. The basal scar (or scar) 

in this study is defined as the erosional morphological feature within which MTD A was contained. 

The scar has a headwall, base, lateral margins and toe area, all of which are associated with the 

headwall, base, lateral margins, and toe of MTD A (Figs. 6.9E, F and 6.10A). 

A continuous, negative-amplitude seismic reflection underlies the chaotic facies in MTD A. This 

reflection is interpreted as the basal surface of the scar (Figs. 6.9C–H, K and L). However, no clear 

kinematic indicators of mass wasting were identified on the basal surface (Fig. 6.10A). The top 
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Figure 6.7. A) Dip map of the channel system in the confluence region. The location of cross sections in Figure 6.9 are shown in this figure. B) Basal erosional 

surface of the channel system in the confluence region. The base of the channel is much wider here than in both the pre- and post-confluence regions. 
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Figure 6.8. Architectural elements of the studied channel system in the confluence region. A, B) 

Uninterpreted and interpreted variance slices acquired 60 ms above Surface E, which is shown in 

Figure 4.9. They were extracted from a seismic volume flattened on Surface E. The dark irregular 

pattern represents chaotic MTDs, and the light colours represent channel-fill deposits. C, D) 

Uninterpreted and interpreted root-mean-square (RMS) amplitude maps acquired 65 ms above 

Surface E, which is shown in Figure 4.9. They are extracted from a flattened seismic volume based 

on Surface E. The irregular amplitude reflects the presence of chaotic MTDs. The RMS amplitude of 

channel-fill deposits ranges from low to high. E) Schematic diagram showing and naming 

architectural elements of the channel system in the confluence region, including three abandoned 

channels (Channels 1, 2a, and 2b), a channel complex (Channel 3), and MTD A. Channels 2a and 2b 

are interpreted as comprising a single channel. 
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Figure 6.9. Selected seismic sections (left-hand side) and their corresponding interpretations (right-

hand side) highlighting the key architectural elements of the channel system in the confluence 

region. The location of seismic sections is shown in Figure 6.7A. 
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Figure 6.10. A) Time-structure map of the basal erosional surface of MTD A. B) Time-structure map of the top surface of MTD A. C) Thickness map of MTD A. 

The maximum thickness of MTD A is observed along its eastern margin, reaching ~120 m. The thickness of MTD A is much smaller where Channel 2b cuts 

through; it ranges from 8 to 40 m. D) Variance slice extracted 55 ms above the base of MTD A. The dark irregular pattern represents chaotic MTDs, and the 

light colours represent channel-fill deposits.  
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surface of MTD A is a hummocky surface and shows traces of channel erosion (Fig. 6.10B). A 

stratified block is recognised in the chaotic reflections of MTD A (Figs. 4.9C and D). The block is 1 

km long and 80 m thick and covers an area of 0.6 km2.  

The thickness of MTD A ranges from 8 m to 120 m (Fig. 4.10C), which is lower than the height 

of scar margin of 160–240 m (Figs. 6.9C, D, G and H). Based on the extent of MTD A, we can conclude 

that the headwall of the scar is 3 km wide (Fig. 6.8E) and at least 260 m high (Figs. 6.9E and F). The 

length of the scar is at least 8 km along its longitudinal direction (Figs. 6.9E and F). The eastern 

margin of the scar is 160–240 m high, and its width is at least 1 km (Figs. 6.9C and D). The estimated 

original volume of the scar is 1.6 km3. A scar of similar size has also been documented in Cambrian 

marine units in Canada, where the scar is at least 8 km long and 200 m high (Stewart et al., 1993). 

Following the classification of Moscardelli and Wood (2008), MTD A is a detached MTD. Its 

formation is probably associated with salt deformation due to its spatial co-occurrence with salt 

diapir D5 (Fig. 6.8E). Moscardelli and Wood (2015) documented a relationship between the 

dimension of MTDs and their origins. They show that detached MTDs are smaller than shelf- and 

slope-attached MTDs (Moscardelli and Wood, 2015). The results of this work are consistent with 

the relationship observed by Moscardelli and Wood (2015), inasmuch as the area and length of MTD 

A plot into the area-length cluster of points for detached MTDs (fig. 3 of Moscardelli and Wood, 

2015). 

The presence of MTD A indicates a mass-wasting event that occurred in the confluence region, 

where the basal scar created by the mass-wasting event was later modified by subsequent channel 

erosion, as exemplified by the channel-fill deposits that overlie MTD A (Figs. 6.9C–H, K and L) and 

attribute maps for MTD A in Figure 6.10C and D. 

MTD A was most likely frontally confined despite the fact that its frontal ramp is now eroded 

by Channel 2 (Figs. 6.9E and F). Because of topographic confinement at the toe region, MTD A was 

probably not transported downslope. This MTD is thus interpreted to have been formed by the 

mass-wasting event that created the scar, rather than being sourced from upslope regions. 

The orientation of the eastern margin of MTD A indicates that mass-wasting deposits, chiefly 

transported to the south, were confined upslope by salt diapir D5 and formed wider lobes 

downslope (Figs. 6.8E, 6.9E, F, 6.10A and B). 
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The difference between the thickness of MTD A and scar-margin height suggests that part of 

MTD A has been removed downslope by turbidity currents. This removal is also supported by the 

thinner MTD A along the pathways of Channels 2b and 3 (Fig. 6.10C).  

Additionally, significant erosion of MTD A by channels is revealed by the variance slice 

extracted above the basal surface of MTD A (Fig. 6.10D). This slice shows that channel deposits of 

lower variance cut through the higher-variance MTD A (Fig. 6.10D). 

 

6.3.3.2 Submarine channels 

Three abandoned channels (Channels 1, 2a, and 2b) and a channel complex (Channel 3) have 

been interpreted inside the channel system in the confluence region (Fig. 6.8E). These channels and 

channel complex comprise Seismic Facies 1 and 2 (Fig. 6.9). 

Channel 1 is located on the western side of the channel system, being incised and overlain by 

Channel 3 (Figs. 6.8E and 6.9G–J). The height of Channel 1 is ~ 150 m with respect to its western 

bank. Its width increases from 550 up to 1200 m due to a sharp change from a straight to a curved 

bank (Fig. 6.8E) formed by localised bank failures. 

Channel 2 is composed of two segments, identified as Channels 2a and 2b, which could have 

been connected as one single channel. Channel 2a occurs on the western side of the channel system 

and comprises an upper and a lower segment (Fig. 6.8E). The upper segment is relatively straight 

(Fig. 6.8E), and only shows its erosional base due to subsequent erosion by the west tributary of 

Channel 3 (Figs. 6.9A and B). The upper segment of Channel 2a is ~ 120 m high with a 100–200 m 

wide thalweg (Figs. 6.9A and B). The lower segment of Channel 2a is incised by Channel 3 to the 

east and shows a scalloped bank to the west (Fig. 6.8E). This segment is 150 m high and 800 m wide 

(Figs. 6.9C and D). The curved bank in this segment is interpreted to be a result of bank failure, 

which widened the base of the channel from 100 m to a maximum of 700 m (Figs. 6.9C and D). 

Channel 2b is located on the eastern side of the channel system, being 1000 m wide and 150 

m high (Figs. 6.8E, 6.9G, H, K and L). It incises MTD A in two parts and shows a relatively sinuous 

pathway, with sinuosity approaching 1.7 (Fig. 6.8E). Channel 2b is itself incised and overlain by 

Channel 3 (Figs. 6.8E, 6.9E–H, K and L). 

Channel 3 is a channel complex marked by lateral channel migration, as revealed by abrupt 
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shifts in channel-forms erosional surfaces (Fig. 6.9C, D, G and H; fig 13 of Qin et al. 2016). Channel 

3 has two tributaries and a post-confluence channel on the seafloor (Fig. 6.5). It is 1000–2000 m 

wide by 140–180 m high in the confluence region. This channel is traceable throughout the entire 

seismic volume and incises all the other erosional features, including Channels 1, 2 and MTD A (Fig. 

6.8E). It also shows well-developed levees above both MTD A and sediment fills of other channels 

(Figs. 6.9C, D and G–J). 

 

6.3.3.3 Surface E 

Surface E is a high-amplitude, negative reflection that is interpreted throughout the study area 

(Figs. 6.9C–L and 6.11A). Part of Surface E was used as the basal erosional surface of MTD A (Figs. 

6.9C–H, K and L). The thickness between Surface E and the basal erosional surfaces of channels 

(Channels 1 and 3, part of Channel 2) ranges from 0 to 10 ms (Fig. 6.11B).  
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Figure 6.11. A) Time-structure map of Surface E. B) Thickness map between the basal erosional 

surfaces of erosional events (i.e., MTD A and channels) and Surface E. The thickness between the 

basal surface of MTD A and Surface E is 0 ms, whereas the thickness between the erosional surface 

of the channels and Surface E varies from 0 to 10 ms, suggesting the role of Surface E in delimiting 

the erosional surface of MTD A and adjacent channels. 
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7. Discussion  

 

7.1 Possible causes for variations in the morphology of Quaternary channel system 

 

7.1.1 Variations in channel and valley dimension 

 

In terms of hierarchical scheme, the seafloor channel in this study is comparable to channel 

elements from the stratigraphic record (Fig. 7.1). They are all considered as basic architectural 

elements of a stratal hierarchical framework. 

The valley is a higher-order architectural element when considering the hierarchical (channel) 

framework described in this work (Fig. 7.1). It is an integrated result of lateral migration and vertical 

stacking of channel elements through time, as shown by the shift of channel forms at the valley 

base (Figs. 5.4C-G). This observation is consistent with previous studies, which have shown that 

valley base is a diachronous surface or a composite erosional surface shaped by multiple erosional 

events (e.g. Deptuck et al., 2003; Sylvester et al., 2011; Kolla et al., 2012; Thomas and Bodin, 2013; 

Macauley and Hubbard, 2013; Bain and Hubbard, 2016; Di Celma et al., 2011). 

 

7.1.1.1 Channel dimension 

The channel dimension shows significant variations along the channel (Fig. 4.4 and Table 4.1). 

This is shown, for example, by the rapid decrease in channel CSA from Reach a to Reach c, which 

decreases by a factor of 7 (Table 4.1). Channel gradient is considered to be a major control on 

turbidity-current behaviour (e.g. Komar, 1969; Friedmann et al., 2000; Babonneau et al., 2002; 

McHargue et al., 2011; Wynn et al., 2012; Stevenson et al., 2013). Correlations between decreasing 

channel gradients and widened channel floors have been observed at 12 km and 36 km along the 

channel axis (Figs. 4.4A and C). These correlations are consistent with results from previous studies 

(Babonneau et al., 2002). 

Apart from widened channel floors, decreases in channel gradient could also lead to reduced 

flow energy, sediment deposition, widened channels and decreased channel heights (e.g. 

Friedmann et al., 2000; Adeogba et al., 2005; Estrada et al., 2005). However, this is not strictly valid
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Figure 7.1. Comparison between the stratal hierarchy in this study and outcrop data from the Karoo Basin, South Africa (Di Celma et al., 2011). The channel 

corresponds to the elementary channel of the Karoo Basin, both of which are fundamental elements of hierarchy framework. The valley correlates with the 

channel complex in the Karoo Basin, both of which were formed by lateral migration and the vertical stacking of channel elements. 
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for the submarine channel investigated in this work. In our example, decreasing channel gradient 

from Reach a to Reaches b and c is accompanied by decreased channel width (Table 4.1). A similar 

relationship is also observed from Reach d to Reach e (Table 4.1). Additionally, increased channel 

height with decreased channel gradient from Reach c to Reach d also contradicts previous work. 

Therefore, channel gradient probably is not the main cause for the variations in channel size 

documented here. 

Because the height of the leveed channel indicates the minimum thickness of turbidity-flows 

that forming internal levees, and can thus be used as an indicator of flow volume (Babonneau et al., 

2002; Deptuck et al., 2003; Estrada et al., 2005), spatial variations in channel height along the 

channel length suggest that flows inside the channel were not the same in terms of their physical 

properties and erosional power. These variations may reveal spatial and temporal variations in flow 

volume. Such an observation agrees with the models proposed in McHargue et al. (2011), who 

suggest multiple waxing-waning cycles of turbidity currents at multiple scales.  

Relationships between temporal changes in flow properties and channel size have been 

observed in the Niger delta, where a temporal decrease in channel size is correlated with a decrease 

in sediment supply (Jobe et al., 2015). Similar scenarios may also occur in the studied channel. The 

volume of turbidity currents flushed into the channel may have decreased through time, leading to 

smaller channels in Reaches b, c d, and e. Additionally, tributaries in the confluence region could 

have induced variations in channel size. Apart from the intersection of the west tributary with the 

main seafloor channel observed at the confluence point, two other tributary channels connecting 

to the east tributary are observed on the seafloor (Fig. 3.8). These tributaries may have provided 

low-volume, and less erosive flows to the main pathway. These flows tended to deposit in Reaches 

b and c, rather than transporting sediments downslope towards Reaches d and e, therefore 

generating small sized channels in Reaches b and c.  

Despite the observed variations in channel size, the width of the channel floor shows relatively 

small changes (Fig. 4.4C and Table 4.1), suggesting it has been only slightly affected by variations in 

flow discharge. 
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7.1.1.2 Valley dimension 

Valley dimension reveals spatial variations in erosional processes within the valley. It is difficult 

to identify the principal erosional mechanism in Reach A, but the morphology and architecture of 

the valley suggest spatial variations in erosional processes in both Reaches B and C. 

In Reach B, the valley base is more than two times wider than in other reaches (Table 4.2). This 

difference is interpreted as resulting from cut bank erosion during multiple episodes of lateral 

channel migration (Fig. 7.2A), as shown by the channel forms at the valley base (Figs. 5.4C-G). 

Cantilever failure (i.e. a type of bank failure that occur when an overhanging block collapses due to 

undercutting erosion) is probably the main erosional processes in this reach. In Reach C, inner bank 

erosion in the form of shallow-seated mass failures (Figs. 5.4E-G) widened the upper part of the 

valley wall, and resulted in a stepped bank profile (Fig. 7.2B). Similar mass failures and associated 

scars have also been recorded in other submarine channels (e.g. Deptuck et al., 2007; Janocko et 

al., 2013), they contrast with deep-seated mass failures observed in the submarine channel system 

of the Gulf of Mexico (Sawyer et al., 2013). In addition, shallow-seated mass failures are mainly 

located in Reach C (Fig. 6.1), suggesting local factors predominantly control bank erosion in this area. 

A marked increase in valley height from Reach B and Reach C (Fig. 4.6B) reflects this process, as the 

increase may be associated with the occurrence of scars and associated mass wasting in Reach C. 

Spatial variations in valley morphology suggest valley size (i.e. CSA) can change over a short 

distance (i.e. a few kilometres), as documented by the two-fold increase in valley CSA in Reach B, 

within just 7 km (Table 4.2). Such an increase in valley size can enhance the volume of channel-fill 

deposits and the reservoir potential of the valley, but the extent of valley enlargement is relatively 

small, increasing uncertainty when drilling. This observation is consistent with Mayall et al. (2005)’s 

finding that variations in stacking pattern of submarine channel systems can occur within a short 

distance. 

 

7.1.1.3 Scale comparison with other submarine channel systems 

This work shows a channel of 240-1060 m wide, and 13-156 m high (Figs. 4.4B and C). Channels 

hundreds of meters wide, tens of meters high have been documented, on seismic data in the Gulf  
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Figure 7.2. Schematic diagram showing the effects of different erosional processes on valley morphology. A) Cut bank erosion during lateral channel migration 

caused the retreat of the entire valley wall, leading to the widening of the valley, especially at the valley base. B) Shallow-seated mass failures only enlarged 

the uppermost half of the valley wall. 
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of Mexico (Sylvester et al., 2012) and Congo (Deptuck et al., 2007; Jobe et al., 2015), and on7.1 

bathymetric data from offshore California (Normark, 1978; Maier et al., 2012). Similar channels have 

also been documented at outcrops (e.g. Mutti, 1977; Walker, 1985; Shanmugam and Moiola, 1988; 

Zelt and Rossen, 1995; Cronin, 1995; Clark and Pickering, 1996; Gardner et al., 2003; Brunt et al., 

2013; Figueiredo et al., 2013; Di Celma et al., 2011; Moody et al., 2012; Bain and Hubbard, 2016). 

Furthermore, km-wide channels are recorded in the modern Amazon and Zaire fans (Pirmez and 

Flood, 1995; Babonneau et al., 2002). As submarine channels are products of turbidity currents, 

changes in their size probably reflect variations in flow properties (e.g. flow volume, grain-size 

distribution) (e.g. Komar, 1969; Babonneau et al., 2002; Pirmez and Imran, 2003; Sequeiros, 2012; 

Konsoer et al., 2013; Jobe et al., 2015). However, km-wide channels in the modern Amazon and 

Zaire fans probably reflect the width of channel complex (i.e. valley) rather than the width of 

channels, due to lower data resolution and misused terminology such as channels and canyons. 

The valley in this work is 700-2800 m wide, 230-350 m high in this study (Figs. 4.6B and C). 

Similar valleys have been documented from both seismic (e.g. Wood and Mize-Spansky, 2009; 

Gamberi et al., 2013) and outcrop studies (e.g. Masalimova et al., 2016). However, valleys (or 

channel complexes) documented in the literature show marked variations in their height and width. 

For example, channel complexes less than 1000 m wide have been recorded at outcrop in North 

America (Pyles et al., 2010; Gardner et al., 2003), Italy (Thomas and Bodin, 2013) and Chile 

(Macauley and Hubbard, 2013). In contrast, valleys more than 3000 m wide have been recorded on 

seismic data (e.g. Samuel et al., 2003; Deptuck et al., 2007; Catterall et al., 2010; De Ruig and 

Hubbard, 2006; Kolla et al., 2012; Jolly et al., 2016), and at outcrops (e.g. Cronin et al., 2005b; Bain 

and Hubbard, 2016; Grecula et al., 2003). In the Indus fan, the valley can be up to 10 km wide 

(Deptuck et al., 2003). These marked variations may relate to the degree of lateral channel migration. 

This seems to be the case for the studied submarine channel, where the higher degree of lateral 

migration corresponds to the largest valley width and CSA in Reach B (Figs. 4.6C and D, Table 4.2). 

In contrast, the lower degree of lateral migration resulted in lower valley width and CSA (Figs. 4.6E-

G, Table 4.2). Spatial correlations between channel Reaches b and c, and valley Reach B (Fig.4.3) 

suggests that increased degree of lateral channel migration in Reach B may be associated with local 

sediment input from tributaries. Apart from cut bank erosion during lateral channel migration, inner 
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bank erosion has also contributed to the widening of the valley, as reflected by the shallow-seated 

mass failures and associated scars observed in this study (Figs. 6.3). 

The distinct channel and valley scale-relationships obtained from previous studies are also 

dependent on the data sources utilised and on the measurement methods applied (Kolla et al., 2001; 

Wood and Mize-Spansky, 2009; McHargue et al., 2011). Because of data resolution, seismic data 

seldom reveal small-scale channels, which may be only a single wavelength thick. Measurements 

performed on planform and cross-sections can make a difference to morphometric analyses (e.g. 

Wood and Mize-Spansky, 2009). Channel and valley width may be overestimated when outcrops are 

not perpendicular to the channel and valley axis, whereas they may be underestimated because 

muddy deposits at the top of channel fill tend to be eroded and poorly exposed (McHargue et al., 

2011). 

 

7.1.2 Relationship between sediment supply and channel sinuosity 

 

In Reach I, where channel sinuosity shows a temporal increase from 1.11 to 1.72 (Fig. 4.7), the 

magnitude of lateral migration is the highest (Fig. 5.6), suggesting that variations in channel 

sinuosity are caused by lateral channel migration. This relationship is also supported by seismic data, 

which shows lateral migration resulted in the formation of channel bends (Figs. 5.4C and D), which 

led to an increase in channel sinuosity. 

The magnitude of lateral channel migration (i.e., LM) shows the highest value in Reach I, ranging 

from 300 m to 1600 m (Fig. 5.6A). This higher LM is interpreted here to result from enhanced 

sediment supply from tributaries. Sediment from tributaries promoted lateral channel migration in 

the reach, leading to the formation of channel bend and temporal increases in channel sinuosity 

(Figs. 5.4C and D). During this process, valley size (CSAV) was enlarged by cut-bank erosion 

associated with lateral channel migration and sediment from tributaries was stored in the inner 

bank, as evidenced by the positive relationship among LM, CSAVF and CSAV (Fig. 5.6). These 

observations suggest that lateral channel migration is an important mechanism for accommodating 

enhanced sediment supply. 

Increased channel sinuosity downstream of tributaries is also observed in the Amazon River 
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(Constantine et al., 2014). Enhanced sediment supply from tributaries results in point-bar growth, 

facilitating lateral erosion and channel migration (Constantine et al., 2014). In addition to tributaries, 

enhanced sediment supply can also be caused by floods (e.g. Nelson and Dubé, 2016) and 

earthquakes (e.g. Liu and Yang, 2015), both of which resulted in relative increases in the rates of 

lateral migration in rivers such as the Chehalis in the USA (Nelson and Dubé, 2016) and the Jianjiang 

in China (Liu and Yang, 2015).  

However, in contrast to the continuous migration observed in fluvial rivers, a different 

migration process, punctuated migration, dominates the studied channel system (Figs. 5.4C-G), 

suggesting a different mechanism in submarine channels in response to increased sediment 

discharge. Because punctuated migration is a cut-and-fill process, we postulate that in submarine 

channels, enhanced sediment discharge leads to more frequent cut-and-fill processes, which in turn, 

result in larger scales of lateral migration, the formation of channel bends, and increased channel 

sinuosity.  

Some researchers suggest that channel sinuosity can increase with time as channels become 

mature over time (e.g. Peakall et al., 2000; Deptuck et al., 2003; Gee et al., 2007; Babonneau et al., 

2002, 2010; Maier et al., 2013). However, this channel maturity could also be affected by variations 

in sediment supply. For example, more sediment discharge in a shorter period, and less sediment 

discharge in a longer period, may result in similar frequency and magnitude of lateral channel 

migration, and similar variations in channel sinuosity. Therefore, it is difficult to determine which 

factor dominates without making use of robust age constraints.  

 

7.1.3 Relationship between valley slope and channel sinuosity 

 

Some authors suggest that submarine channels evolve from relative straight to more sinuous 

pathways, with sinuosity increases during this process (e.g. Gee et al., 2007; Maier et al. 2013). 

However, this study shows that sinuous channel can also form at the early incision stage of channel 

evolution due to the variations in valley slope.  

This study shows a close relationship between valley slope and channel sinuosity (Fig. 4.9). The 

positive relationship is observed along the entire initial channel and in the middle and lower reaches 
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of the present channel (Fig. 4.9). This relationship shows that channel sinuosity increases with 

steeper valley slope, and decreases as valley slope becomes gentler (Fig. 4.9). The results in this 

work are consistent with observations from Amazon fan (Flood and Damuth, 1987; Pirmez and Flood, 

1995), Boso canyon offshore Japan (Soh et al. 1990), southwest Mediterranean (Cronin et al., 1995), 

and Indonesia (Posmentier and Kolla, 2003). Flood and Damuth (1987) suggested that the 

adjustment of channels in response to an abrupt increase in valley slope occurs via an increase in 

channel sinuosity. This increase in sinuosity occurs in order to maintain a relatively constant channel 

slope, which is suitable to accommodate the volume of flow and sediment load that channels 

transport (Flood et al., 1987).  

However, in West Africa, negative relationships between channel sinuosity and valley slope 

have also been documented by Ferry et al. (2005) and Gee et al. (2007). In addition, there are few 

correlations between canyon slope (i.e. valley slope) and channel sinuosity in the Tenryu and 

Kushiro Canyons offshore Japan (Soh and Tokuyama, 2002; Noda et al., 2008). The absence of 

positive relationship in these studies maybe because these channels are in a state of adjustment 

(i.e. out of equilibrium) rather than reaching their local equilibrium state (Pirmez and Flood, 1995; 

Ferry et al., 2005). It is difficult to determine whether channels are under non- equilibrium or 

equilibrium conditions based solely on quantitative analyses, as the morphological parameters 

usually obtained reflect a transient state of channels, rather than the processes of adjustment to 

equilibrium profiles. In the studied channel system, however, slight temporal changes occurred in 

channel sinuosity and valley depth profiles in the middle and lower reaches (Figs. 4.7 and 4.8), 

suggesting that the studied channel system is probably close to an equilibrium state in these two 

reaches. In addition, different measurement intervals may result in the absence of positive 

relationships between sinuosity and valley slope, as the measured intervals can be too large (or too 

small) to capture actual variations in channel sinuosity. Another alternative interpretation for the 

absence of such relationship is the existence of a threshold valley slope, above which channels 

would only increase vertical incision and follow a more direct course downslope, resulting in a rapid 

decrease in sinuosity (Clark et al., 1992; Gee et al., 2007).  
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7.1.4 Controlling factors of valley-slope variations in the study area 

 

Valley-wall profiles for the channel system reflect seafloor slope, and display different trends 

from the valley-thalweg depth profile of the channel system (i.e. valley slope profile of the initial 

channel) (Fig. 4.8), suggesting the valley-thalweg slope is somewhat independent of the seafloor 

slope. Additionally, evidence for faults and folds beneath the studied channel system, channel 

avulsion events and meander cut-off, all of which can result in variations in valley slope, are not 

observed at the transition area between the reaches (Figs. 3.5 and 5.4).  

Despite the lack of lithological data from cores, changes in substrate resistance beneath the 

channel system are probably key reasons behind variations in valley slope. Similar relationship 

between substrate resistance and valley slope have been documented in studies from fluvial 

channels. In fluvial channels, some researchers found that channels are steeper through resistant 

rocks and less steep through relatively weak rocks (e.g. Duvall et al., 2004; Goode and Wohl, 2010; 

Allen et al., 2013). Despite channel slope and valley slope are different concepts, they are both a 

function of flow incision depth within a certain interval, as channel slope is calculated along the 

channel axis and valley slope is calculated along the valley. Therefore, increasing channel slope due 

to enhanced incision suggests that the valley slope is also increasing during incision processes when 

substrate is relatively more resistant.  

In the upper reach, the gentle slope observed here (1°) (Fig. 4.9B) resulted from less resistant 

sediments beneath the channel, because sediments in this reach have been reworked by several 

erosional events and became more erodible (Qin et al., 2017). In the middle reach, the channel 

probably incised into less erodible strata and resulted in a steep valley slope of 1.22°, together with 

higher channel sinuosity in this reach (Fig. 4.9B). Enhanced sinuosity with less erodible substrates 

has also been documented in a bedrock river in the Himalayan front (Allen et al., 2013). Allen et al. 

(2013) suggest that increased rock strength would promote lateral erosion and sinuosity growth. In 

the lower reach, the valley slope decreases to 0.57° (Fig. 4.9B), which could result from the presence 

of less resistant sediments.  

Hansen et al. (2017) suggest that channel displays higher sinuosity when it carries and erodes 

into fine-grained sediment, while it shows lower sinuosity when it carries and erodes into coarse-
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grained sediment. However, their study also does not show core data to validate substrate lithology. 

Therefore, the relationship between substrate and channel sinuosity needs to be investigated in 

more studies.  

 

7.2 The influence of mass-wasting events on channel evolution 

 

7.2.1 Bank failures in the Quaternary channel system 

 

7.2.1.1 Formation mechanisms of shallow-seated mass failures  

Bank height and bank slope angle are believed to be important factors controlling bank failure. 

Mass-wasting events occur if the bank height and angle exceed the critical shear strength of the 

bank materials (Thorne and Tovey, 1981; Simon et al., 2000). However, no apparent correlation 

between bank slope angles and the occurrence of mass failures can be established in the study area, 

in great part because there are no clear variations in bank slope angle along the channel axis (Fig. 

4.5). The presence of failure scars in Zone 3 corresponds to a marked increase in the height of the 

channel system (Fig. 4.6B), suggesting bank height maybe is the factor that controls the occurrence 

of bank failures in the study area.  

Sawyer et al. (2013) suggest that critical height (i.e. the threshold height above which bank 

failures occur) of channel banks could be achieved by rapid sediment loading from levees. For 

example, rapid levee deposition above channel banks is capable of generating high fluid pressures 

in near-seafloor strata, reducing effective stresses within the strata and promoting failure above a 

critical bank height (Sawyer et al., 2013). In this study, however, channel levees have not been 

observed on banks where failure scars developed (Figs. 5.4E-F), a character suggesting that 

sediment loading probably is not the main cause for shallow-seated bank failure. It is unlikely that 

levees deposited within scars and slumped in the channel. Because in that case, randomly 

distributed failure scars would indicate levee distribution without a clear pattern, which is unlikely 

to occur.  

Another explanation for the occurrence of these scars is the presence of surge-type flow events, 

which may have triggered the failure of the inner bank of channels. Detailed studies of fluvial 
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channels show that mass failures occur mainly during and after extreme flow events, resulting in 

undercutting of bank toes, and imposing local variations of pore water pressure i.e., increasing the 

weight of bank material due to saturation and loss of confining pressure on the falling limb of the 

hydrograph (Simon et al., 2000; Osman and Throne, 1988). Surge-type flows (i.e. a type of flow with 

strong erosive power) might be one of reasons for the occurrence of mass-failure scars in the study 

area. However, as submarine settings have much higher bank moisture content than in sub-aerial 

settings, variations in the weight of bank material and pore water pressure are not significant as in 

fluvial channels.  

 

7.2.1.2 The impact of bank failure on submarine channel systems 

 

Bank failure is one of main processes for the widening of the studied channel system, especially 

in Zone 3, where numerous bank-failure scars are observed (Fig. 6.1). For example, two maxima in 

the width profile of the channel system, at 26.5 km and 33.5 km, correspond to the presence of 

failure scars on the banks of the channel system (Fig. 6.3). In addition to the width, bank failure also 

modified the morphology of channel systems in the study area. For example, shallow-seated bank 

failures enlarged the upper part of banks and resulted in stepped bank profiles on cross-sections of 

the studied channel system (Fig. 7.2). These terrace-like features constitute preferential places for 

subsequent deposition.  

Furthermore, bank failure provides abrupt and discrete sediment pulses to channels 

downslope. These sediments can block channels, resulting in the shifts in channel position and the 

variation of channel sinuosity (Kolla et al., 2001). Failed bank material deposited at the bank toe 

may temporarily increase bank stability by buttressing the bank, protecting in situ bank material 

from erosion and entrainment by the flow (Simon et al., 2000). Therefore, bank-failure deposits 

produce plugs in channels and divert flows around the deposits. For example, a channel bend 

resulted from the block of mass-failure deposits is observed in Zone 1 (Fig. 7.3A). Slide and slump 

deposits, revealed by transparent and chaotic seismic facies, occur at the inner bend of the channel 

(Fig. 7.3B). These deposits diverted flows from upslope, leading to the formation of a channel bend.  

In addition, channel-floor roughness is observed downstream the channel bend caused by 
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Figure 7.3. Dip map and seismic sections showing the effects of mass failure deposits on the channel. 

Mass failure deposits caused a formation of a channel bend, and the relative 'roughness' of the 

channel floor.  
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bank failure deposits (Fig. 7.3A), and was probably also caused by slide and slump deposits (Fig. 

7.3C). Therefore, the abrupt in channel pathway documented here is interpreted as resulting from 

bank failure processes. Similar variations in channel pathways, caused by mass failures, have also 

been documented in previous studies (e.g. Droz and Bellaiche, 1985; Greene et al., 2002; Deptuck 

et al., 2003). 

 

7.2.2 The influence of mass-transport deposits on the Pliocene-Quaternary channel system 

 

7.2.2.1 Depletion zone of the basal scar and flow capture 

Seismic data show that the enlargement of the channel system in the confluence region 

resulted mainly from the spatial co-occurrence of MTD A and Channels 1 and 2 (Fig. 6.8E). This 

character indicates that interactions between MTDs and turbidity currents occurred in the 

confluence region. Such interactions are suggested to have started with flow-capture processes. 

Turbidity currents can be captured by depletion zones on the headwall domains of basal scars 

(Shultz et al., 2005; Kertznus, 2009; Kneller et al., 2016). Depletion zone is a relative bathymetric 

low that developed due to sediment evacuation and local extension (e.g. Lewis, 1971; Martinsen 

and Bakken, 1990; Frey Martinez et al., 2005; Bull et al., 2009). These same phenomena are 

exemplified in the Gulf of Mexico and the Nile Delta continental slope, where channels have been 

captured by the headwalls of basal scars or MTDs (Hackbarth and Shew, 1994; Winker and Booth, 

2000; Loncke et al., 2009; Kertznus, 2009; Kneller et al., 2016). 

In the study area, part of the depletion zone is presently filled by channel-fill deposits, but 

there is still a topographic low downslope of the headwall of the scar (Figs. 6.9E, F and 7.4A). 

Upslope from the headwall, a channel segment (Channel A) has been identified (Fig. 7.4A). The path 

of Channel A connects to the headwall of the scar (Fig. 7.4A), suggesting that turbidity currents are 

still captured by the scar at present. In addition, a set of NW–SE-trending grooves are observed 

upslope of the headwall (Fig. 7.4). These grooves can be tracked to a channel (Channel B) where 

bank failure occurred (Figs. 7.4A and B). Because submarine channels are flushed by turbidity 

currents, the grooves are thus believed to have been formed by sheet turbidity currents that 

breached the bank of Channel B. Despite the lack of temporal constraints for their genesis, the  
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Figure 7.4. 3D view of seafloor morphology showing grooves upslope of the headwall of the scar. A) 

2D view of seafloor morphology showing the grooves can be tracked to the bank of a channel 

(Channel B) where bank failures occurred. This character suggests that the grooves were formed by 

sheet turbidity currents that breached a channel bank. The location of this figure is shown in Fig. 

7.4A. C) Seismic cross section showing a series of grooves on the seafloor. Its location is shown in 

Fig. 7.4A. 
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presence of grooves on the seafloor suggests that unconfined sheet flows may have been captured 

by the headwall of the basal scar. 

Channels 1, 2, and 3 are interpreted to reflect different episodes of flow-capture processes (Fig. 

7.5). After the basal scar was generated, it captured turbidity currents at its headwall (Figs. 7.5A and 

B) and these captured flows removed part of MTD A along the longitudinal direction (N–S) of the 

scar (Fig. 7.5B). Channel 1 was likely formed at this stage (Fig. 7.5B), because its bank orientation is 

similar to the longitudinal direction (N–S) of MTD A (Fig. 6.8E). Erosion along the longitudinal 

direction (N–S) of MTD A enlarged the depletion zone of the scar (Fig. 7.5B), and allowed flow 

capture at its west margin, as shown by the presence of Channel 2 (Fig. 7.5C). Channel 3 is believed 

to have been captured by the headwall of the scar, based on its position with respect to the scar 

(Fig. 7.5D). 

Compared to shelf-edge scars recognised in the Gulf of Mexico (Winker and Booth 2000; 

Kneller et al. 2016) and the Nile Delta slope (Kertznus, 2009), which incise the shelf break and 

connect shelf-edge deltas with upper-slope depositional systems (Kneller et al., 2016), we present 

a case study of flow capture in a different slope setting. In this work, the basal scar is located in a 

confluence region confined by salt diapirs (Fig. 7.5A). Therefore, turbidity currents derived from 

source areas upslope tend to be deflected into the basal scar due to the presence of salt diapirs 

(Figs. 7.5A). Flow deflection caused by salt diapirs increases the probability of flow-capture 

processes, which might have been frequent throughout the evolution of the channel system. For 

example, adding to flow capture in the headwall region of the scar shown by the presence of 

Channels 1, 3, and A (Figs. 7.5B and D), this work exemplifies a flow-capture pattern that has not 

been documented in previous work. The relative positions of Channel 2 and adjacent basal scar (Figs. 

6.8E and 7.5C) suggest that turbidity currents could also be captured by the lateral margins of scars. 

Such a capture process resulted mainly from flow deflection due to the presence of the confluence 

region created by the salt diapirs (Fig. 7.5A). 

 

7.2.2.2 A mechanism for channel initiation 

Flow confinement is an important process in channel initiation, and can be achieved by channel  
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Figure 7.5. Schematic diagram summarising the evolution model of the channel system in the 

confluence region. D1 to D6 show the location of salt diapirs. A) Schematic diagram showing the 

occurrence of a mass-wasting process in a confluence region confined by salt diapirs. A basal scar 

was created and was filled with MTD A. B) Schematic diagram showing that turbidity currents were 

captured by the headwall of the scar; these flows removed the upper part of MTD A downslope. 

Channel 1 was formed at this stage. C) Schematic diagram showing the stage in which Channel 2 

was captured by the western wall of the scar. Channel 2 used the eastern margin of the scar as its 

bank. D) Schematic diagram showing that Channel 3 was captured by the headwall of the scar. This 

channel incised the toe of the scar and extends downslope toward the continental rise. 
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incision and levee construction (e.g. Straub and Mohrig, 2009; Rowland et al., 2010; Weill et al., 

2014; De Leeuw et al., 2016). In addition to these studies, we suggest that flow confinement and 

channelisation also result from flow-capture processes. On the seafloor, erosional grooves 

generated by unconfined flows are observed upslope of the scar (Fig. 7.4), indicating that sheet 

turbidity currents were funnelled into the scar. This process forced the unconfined sheet flows into 

a confined flow, thus enhancing flow channelization in the study area. 

Large conduits have been suggested to be formed at the early stage of channel formation, with 

MTDs at their base (e.g. Samuel et al., 2003; Mayall et al., 2006; Macauley and Hubbard, 2013). As 

mass-wasting events can be precursors of submarine channels, some of these valleys may be 

created by mass-wasting events and filled by debris-flow deposits, and later modified by subsequent 

turbidity currents, which are able to erode MTDs on the continental slope and deposit channel-fill 

deposits in the scars (Fig. 7.5). 

Previous studies applied sequence stratigraphic models to depositional sequence related to 

submarine settings (Vail et al. 1977; Mutti 1985, 1992; Posamentier et al. 1991; Posamentier, 2000; 

Posamentier and Kolla, 2003). For example, the depositional sequence of debris-flow deposits and 

overlying channel-fill deposits has been documented by previous studies (e.g. Jacobi, 1976; Jansen 

et al., 1987; Moore et al., 1989; Dam and Sønderholm, 1994; Piper, 1997; Beaubouf and Friedmann, 

2000; Henrich, 2008; Fowler et al., 2004; Henrich et al., 2008; Bernhardt et al., 2012). This sequence 

maybe related to relative sea-level change (e.g. Dam and Sønderholm, 1994; Posamentier, 2000; 

Posamentier and Kolla, 2003). However, MTDs may occur at any stage of channel evolution, rather 

than only at the channel base (e.g. Cronin et al., 1998; Posamentier and Kolla, 2003), making it 

difficult to correlate the occurrence of MTDs and channel-fill deposits to relative sea-level change. 

In this study, it is difficult to confirm correlation between MTD and sea-level change due to the lack 

of dating results. Instead, MTD A here was probably triggered by salt movement due to close spatial 

association with salt diapir. 
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7.2.2.3 Interaction between MTDs and turbidity currents 

7.2.2.3.1 Morphological changes in the basal scar 

The basal scar is interpreted as having been widened on its western margin (Figs. 6.9C, D, G 

and H). The presence of curved banks in Channels 1 and 2a (Fig. 6.8E) highlights the role of localised 

mass failures in the widening of the scar.  

These low thickness values suggest that Surface E played a key role in delimiting the erosional 

base of both the channels and MTD A. Surface E is probably a mechanically weak layer acting as a 

detachment surface, above which mass wasting tends to occur. However, the lithology of this 

surface is unknown due to the lack of well data in the study area. 

The lateral continuity of Surface E indicates that most erosional processes occurred above this 

specific surface (Figs. 6.9C–L). Such an erosional pattern suggests that the interval between the 

deposition of MTD A and subsequent channel erosion may have been so short, that they preceded 

the consolidation of MTD A. Therefore, MTD A was weaker than the strata beneath Surface E, and, 

as a result, turbidity currents preferentially eroded less resistant MTD A above Surface E rather than 

incising downward into older deposits. This process resulted in a pronounced widening of the basal 

scar with small change in its height (Figs. 6.9C–H, K and L). 

Differences in sediment strength within and outside of the scar also influence the pathways of 

channels. For instance, Channel 2b probably used the margin of the basal scar as its east bank (Fig. 

6.8E), thus focusing erosion in areas where MTD A was present (Figs. 6.8E and 6.9E–H). A similar 

process occurred in the eastern Gulf of Mexico, where the east bank of the Einstein channel system 

was constrained by the eastern margin of a basal scar (fig. 11 of Kneller et al. 2016). Such a spatial 

association between the margins of channel systems and basal scars suggests that turbidity currents 

tend to erode less resistant MTDs within the scars rather than more resistant sediments forming 

the margins of the scars. 

 

7.2.2.3.2 Replacement of strata in the basal scar, and reservoir implications 

Along the course of Channel 2b, a large volume of MTD A was removed and replaced by sand-

prone channel-fill deposits (Figs. 6.9E–H, K and L). As a result of such an erosion, the thickness of 
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MTD A ranges from 8 m to 40 m along Channel 2b, where is smallest, whereas the remainder of 

MTD A is 40 m to 120 m thick (Fig. 6.10C). 

Additionally, the thickness variations in MTD A indicate that differential erosion occurred in 

this MTD, especially along the east margin of the scar and the pathway of Channel 2b (Fig. 6.10C). 

This erosional pattern may have resulted from variations in the properties of turbidity currents. The 

thicker MTD interval along the longitudinal direction (N–S) of the scar may have been affected by 

less erosive and less frequent flows captured by the headwall. Conversely, the thinner MTD interval 

along Channel 2b indicates more erosive and more frequent turbidity currents captured by the 

western margin of the scar. 

Although MTDs are generally considered as poor reservoirs due to their low porosity and 

permeability (Posamentier and Kolla, 2003; Moscardelli et al., 2006), their associated depositional 

systems, especially submarine channels and lobes, are recognised as important hydrocarbon 

reservoirs in deep-water settings (Mayall et al., 2006; Armitage et al., 2009; Jackson and Johnson, 

2009; Kneller et al., 2016). This work shows that the erosion and replacement of strata above basal 

scars increased reservoir potential by the continuous obliteration of pre-existing MTDs in scars. This 

process might have enhanced the lateral continuity of turbidites and limited compartmentalization 

of sandy reservoir intervals by MTDs (Mayall et al., 2006; Moscardelli et al., 2006). 

 

7.3 The influence of salt diapirs on the dimension and architecture of submarine channels 

 

In the study area, the seafloor was divided into three regions based on the degree of 

confinement imposed by salt diapirs (Figs. 3.8 and 6.5). There is the lack of evidences for faults and 

folds associated with salt structures adjacent to the studied channel system (Fig. 3.5). Therefore, 

the movement of salt diapirs and associated seafloor deformation are major factors controlling the 

dimension and architecture of submarine channel systems in the study area. 

In the confluence region with the highest degree of confinement, local uplift associated with 

the growth of salt diapirs resulted in flank oversteepening, and the lowering of strength of sediment, 

in the vicinity of salt diapirs. As a result of salt movements, multiple mass-wasting events occurred 
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in this region, as shown by varied headwall scars on the seafloor (Figs. 3.8 and 6.5). Similar zones of 

instability surrounding active salt diapirs have also been documented in the Gulf of Mexico 

(Tripsanas et al. 2004) and the Nile deep-sea fan (Lonkce et al. 2009).  

In the study area, turbidity currents were diverted into the confluence region due to the 

presence of local topographic highs created by salt diapirs, as evidenced by variations in pathways 

of channels and gullies (Fig. 6.5). Turbidity currents facilitate mass wasting on the banks of the 

channel system. As a consequence, a significantly widened channel system was formed in the 

confluence region, where the width can be increased by as much as 5 km when compared to other 

parts of the studied channel system (Fig. 6.6A). 

Previous studies have documented width variations of channel systems in a confined region 

created by salt diapirs (Gamboa et al., 2012; Sylvester et al., 2012; Carter et al., 2016). However, the 

width variation recorded in previous studies is not as significant as the channel system in this work. 

For example, in the same region, but ~ 1.5 km below the modern seafloor, Gamboa et al. (2012) 

have shown that the width of a Miocene channel system only increases 1-2 km in the confluence 

region confined by diapirs studied here. In the Gulf of Mexico, the width of channel system increases 

less than 1 km when passing through a highly-confined region delimited by salt diapirs (Sylvester et 

al., 2012). These differences in width variations in distinct channel systems are probably associated 

with the relative movement of salt diapirs. Small increases in width may suggest that salt diapirs are 

relative stable at the exact time-period of channel development. In contrast, during the active stages 

of salt growth, bank failures tend to occur and lead to much widened channel systems (Fig. 6.6A).  

Carter et al. (2016) proposed a different model to interpret width variations under salt-diapir 

confinement. They ascribed the widening of the channel system to the slowing down of the uplift 

of salt diapirs, and the narrowing of the channel system to the increased uplift rate of salt diapir 

(Carter et al., 2016). In their work, however, large slump scars are evident during the widening 

periods of channel system (Figs. 14E and F of Carter et al., 2016). These scars were possibly formed 

by bank failures triggered by the movement of salt diapirs, suggesting an increase, rather than the 

slowdown of salt movement interpreted by the latter authors.  

In addition to channel-widening processes via mass wasting, the presence of salt diapirs 



Chapter 7 – Discussions 

155 

 

resulted in another type of widening process and associated changes of architectures within 

Quaternary Rio Doce Channel system. Salt diapirs (D1, D2, D5 and D6) divert turbidity currents from 

upslope areas and coalesce these flows into a specific region (i.e. confluence region), as shown by 

the changes of channel orientation and the presence of tributaries in the studied channel systems 

(Fig. 6.5). Sediments from these tributaries promoted lateral channel migration within the channel 

system, leading to the formation of bends and a widened channel system in the confluence area 

(Figs. 5.4C and D).  

 

7.4 Variations in channel stacking patterns and its implications in channel evolution  

 

Channel evolution, from initiation to abandonment, is a process of channel thalweg shifts that 

involves lateral and vertical movement. This study shows spatial variations in channel evolution and 

weak relationship between lateral migration and aggradation (Fig. 5.3E). In the middle reach, the 

ratio of lateral migration/vertical aggradation ranges from 3 to 10, higher than the ratio in the lower 

reach, where it varies from 1 to 2 (Fig. 5.3F). This observation is consistent with Kolla et al. (2001) 

findings that the influence of lateral migration vs. vertical aggradation varies from one channel to 

another and even along the length of a single channel or across a single sinuous loop.  

Vertical aggradation appears to be related to tributaries and valley-slope variations in this work. 

It is larger where valley slope is lower and sediment input from tributaries is important (Figs. 5.3B 

and C). However, it is difficult to weight which factor is more important in aggradation amount along 

the channel system. In addition, the trigger for transition from early channel incision to vertical 

aggradation is also unknow in this work. This transition is ascribed to variations in flow properties 

within submarine channels in previous studies (e.g. Kneller et al., 2003; McHargue et al., 2011), 

though the controls on such variations is no yet unravelled.  

Lateral movement is another key element of channel evolution (e.g. Mutti and Normark, 1987; 

Clark and Pickering, 1996; Deptuck et al., 2003; Sylvester et al., 2011; Jobe et al., 2016). This work 

shows that enhanced sediment supply can promote lateral channel migration. Increased sediment 

discharge in this work is interpreted to result from tributaries based on increased sediment volume 
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downstream of confluence points, but it could also result from tectonic activity and climate change 

that affected source areas on the land and continental shelves (Kneller, 2003; Kolla, 2007; McHargue 

et al., 2011; Hodgson et al., 2011; Jobe et al., 2015).  

Sediment supply caused by tectonic deformation and climate change could result in enhanced 

lateral migration occurring at any stage of channel evolution. In this case, perhaps leading to the 

unclear patterns of lateral migration, which may have occurred at any stage of channel evolution 

(e.g. Samuel et al., 2003; Deptuck et al., 2007; Janocko et al., 2013; Jobe et al., 2015). For example, 

lateral migration with degradation (Jobe et al. 2015) and little aggradation (Sameul et al., 2003; 

Janocko et al., 2013) at the early stage of channel evolution may be caused by erosive flows, which 

have higher discharge and calibre (i.e. grain size).  

 

7.5 Limitations of this research 

 

In this study, there is a lack of accurate age constraints on the current stratigraphic framework 

of the basin, which was constructed based on variations in seismic facies and regional 

unconformities in the Espírito Santo Basin (França et al., 2007). Therefore, the ages of channel 

initiation and main stages of channel evolution are difficult to know due to a lack of 

chronostratigraphic dates for the interpreted depositional elements. This makes the relationship 

between sea level change and channel evolution hard to evaluate in the study area, and thus 

requires the future collection of sediment core data to assess this relationship.   

In addition, well data would have provided stratigraphic information necessary to develop 

time-depth conversion within the seismic data. It could also have provided lithological and age 

constraints on channels, and allowed evaluation of sediment transport processes and associated 

flows properties within the channels, as well as the reservoir potential of channel systems. 

The seismic dataset used in this work is limited to the continental slope of Espírito Santo Basin, 

making it difficult to assess the sediment sources of channel systems and the role of the Rio Doce 

river in submarine-channel evolution. Therefore, the extension of the dataset to the continental 

shelf would help elucidate 1) whether Rio Doce river delta connects to submarine channels in the 
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study area, 2) the relationship between shelf-margin architecture and submarine-channel evolution, 

and 3) sediment dispersal patterns from continental shelf to slope in the Espírito Santo Basin.  

 

7.6 Future work 

 

Bank erosion is an important process in submarine-channel evolution. Numerous bank failure 

scars are observed in this study and in other submarine channels around the world, but there are 

few studies of bank erosion processes in submarine channels compared to fluvial channels (e.g. 

Sawyer et al., 2013; Mitchell et al., 2014). Therefore, more numerical modelling and experimental 

studies of bank erosion are needed to better understand channel enlargement and turbidity-flow 

properties.  

Apart from the studied channel system, there are two other submarine channel systems in the 

study area: a Miocene channel system and an Eocene channel system. These two channel systems 

have been studied in previous work (Alves et al, 2009; Gamboa et al., 2012; Gamboa and Alves, 

2015), but more detailed studies are needed for these channel systems. For example, these three 

channel systems show different morphology and architectures. Comparison between these channel 

systems helps to reconstruct the paleogeography of the study area and their sediment sources.  

Several MTDs are observed in the study area. Their distribution and morphology seems to be 

associated with the development of submarine channels. This thesis provides a case study of 

interaction between MTDs and channels, but further studies are needed to understand how the 

internal structures and heterogeneous nature of MTDs affect turbidity currents. Lithological 

information from wells, outcrop, or flume-tank models, will be beneficial to these studies.  

Salt tectonics plays a key role in the evolution of depositional systems in the study area, such 

as submarine channels, MTDs, and lobes. For example, submarine channels are sensitive to changes 

in the seafloor deformation caused by salt structures. They respond to the deformation through 

various ways such as slope profile and sinuosity. Therefore, a detailed reconstruction of salt 

movements is crucial to further understanding the spatial and temporal distribution of multiple 

depositional elements in the study area.  
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8. Conclusions 

 

    In this thesis, a 3D seismic volume from offshore Espírito Santo (SE Brazil) was used to analyse 

a submarine channel system developed on the modern sea floor. The studied channel systems in 

this thesis show distinct spatial variations in morphology, architecture, and evolutionary history 

along their pathways. These variations suggest the impacts of local factors (e.g. mass-wasting events, 

tributaries, substrate and salt tectonics) on the submarine-channel evolution. The main conclusions 

are as follows: 

 

8.1 Quantitative analyses of Quaternary channel system 

 

This work carried out a quantitative morphological analysis of a Quaternary Channel System in 

terms of its hierarchical framework.  

 

• On channel scale at a fundamental hierarchical level, five reaches (Reaches a to e) are identified 

based on the marked variations in morphologic parameters. For example, the cross-sectional area 

of the channel decreases by a factor of 7 from Reach t a to Reach c at the maximum, and is then 

followed by a nearly four-fold increase from Reach c to Reach d. The observed variations are related 

to spatial and temporal changes of flow volume within the channel. 

 

• On valley scale of a higher-order hierarchical level, three Reaches (Reaches A to C) are 

recognised according to the morphological changes of the valley, with similar aspect ratios but 

marked variations in dimension along the valley distance. The variations of valley dimension were 

controlled by two distinct erosional processes. Cut bank erosion during lateral channel migration 

results in the widening of the valley, especially the valley base. Another form of bank failure process, 

shallow-seated mass failure, only enlarged the upper part of the valley wall, resulting in stepped 

profiles of valley cross section.  

 

• The scales of channel and valley in this study are comparable to examples observed on other 
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continental slopes. Scale comparisons of valleys between the study area and in other parts of the 

world show significant variations in valley size. These variations suggest an important role of local 

factors in the development of submarine channel systems.  

 

8.2 The role of mass-wasting events on channel evolution  

 

This work used 3D seismic data to document how mass wasting influenced the geometry and 

distribution of subsequent submarine channels, as well as the replacement of MTDs by channel-fill 

deposits. In summary: 

 

• In a confluence region confined by salt diapirs, the Pliocene–Quaternary Rio Doce Channel 

System is wider and larger than other parts of channel system. An MTD, three abandoned channels, 

and a channel complex are identified in the channel system in the confluence region confined by 

salt diapirs. In this confluence region, the cross-sectional area (CSA) of the channel system can be 

up to 1.2 km2, i.e. 4 to 10 times larger than in other parts of the study area. These morphological 

and architectural features are interpreted to result from the interaction between mass-wasting 

deposits and subsequent turbidity currents. 

 

• After a basal scar was generated by a mass-wasting event, it was used as a preferential pathway 

for subsequent turbidity currents, which were captured by the headwall and lateral margins of the 

scar. 

 

• The morphology of the scar was modified by subsequent turbidity currents. The scar was 

greatly widened, with a small change in height, because of differences in sediment strength within 

and outside of the scar. In other words, the presence of softer MTDs hindered the downward 

incision of turbidity currents which, instead, widened the scar laterally. This process resulted in a 

much wider channel system than expected in the confluence region. 

 

• Basal scars formed by mass-wasting events can provide flow confinement and facilitate flow 
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channelisation, which are key processes for submarine-channel initiation. 

• This work shows that the replacement of MTDs by channel-fill deposits was achieved through 

multiple cut-and-fill episodes associated with turbidity currents captured by the scar. The 

replacement has profound implications for reservoir volumes and net-to-gross ratios in channel 

systems. An MTD with poor reservoir quality was replaced by channel-fill deposits of higher 

reservoir potential. Such a replacement and associated reservoir potential relate to the properties 

of turbidity currents, such as their erosive ability and frequency. The more erosive and frequent 

flows are captured by the basal scar, the larger is the accommodation space created for subsequent 

sand-prone turbidites. 

 

8.3 Stacking patterns and evolution of Quaternary channel system 

 

Spatial and temporal variations in channel sinuosity are documented using 3D seismic data 

within the Quaternary submarine channel system. This work shows that a sinuous channel formed 

at early incision stage of channel evolution, and evolved through lateral channel migration. The 

channel system displays spatial variation in evolutionary history and was mainly affected by local 

factors such as tributaries and substrate lithology.  

 

• In the upper reach downstream of tributaries, the channel system shows marked temporal 

variations in channel sinuosity, which increases from 1.11 to 1.57. This increase in channel sinuosity 

resulted from higher magnitude of lateral channel migration, which in turn was caused by enhanced 

sediment supply from tributaries. The enhancement in sediment discharge led to more frequent 

and increased magnitude of lateral migration in the upper reach. Lateral channel migration is a main 

mechanism of channels response to enhanced sediment supply. The resulting enhancement in 

sediment discharge led to more frequent cut-and-fill processes. These, in turn, resulted in more 

frequent (and larger) scales of lateral migration in the submarine channel. 

 

• A positive relationship between valley slope and channel sinuosity is observed in the study area. 

The adjustment of channel in response to substrate erodibility may occur via variations in valley 

slope and channel sinuosity. Spatial variation in channel sinuosity is interpreted to reflect substrate 
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erodibility beneath the channel system. The channel has higher sinuosity when encountering 

resistant substrate, and shows lower sinuosity when the substrate is more erodible. 

• The results presented here highlight lateral channel migration as an important mechanism 

linking external factors (e.g., sediment supply) to the morphology and architecture of submarine 

channel systems. The results show that submarine channels accommodate additional sediment 

supply through erosion and deposition during lateral migration, as shown by the enlarged valley size 

and larger sediment volumes downslope of tributaries. This work offers insights on sediment 

dispersal patterns and stratigraphic evolution on the continental slopes. It provides an analogue not 

only for studying submarine channels, but also for fluvial channels in sub-aerial settings. 
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Appendix 1. Supplementary materials for Chapter 4 

 

Table A1.1. Summary of channel morphological data for the Quaternary channel system. 

Morphological parameters include the depth of channel thalweg and banks, channel height, the 

width of channel floor and channel, width/height, and cross-sectional area of channel (CSA). 

 

Channel 

distance 

/km 

Channel-

thalweg 

depth/m 

Channel-

bank 

depth/m 

Channel 

height/m 

Channel -

floor 

width/m 

Channel 

Width/m 
Width/height CSA/km2 

0 -1010.84 
  

230   
 

0.125 -1018.98 
  

242   
 

0.25 -1021.94 
  

254   
 

0.375 -1027.12 
  

237   
 

0.5 -1030.08 
  

219   
 

0.625 -1038.22 -884.3 153.92 225 830 5.39 
 

0.75 -1044.88 -897.62 147.26 233 792 5.38 
 

0.875 -1042.66 -906.5 136.16 260 782 5.74 
 

1 -1041.92 -913.16 128.76 252 843 6.55 0.068655 

1.125 -1043.4 -914.64 128.76 253 790 6.14 
 

1.25 -1041.92 -930.18 111.74 248 706 6.32 
 

1.375 -1052.28 -947.94 104.34 269 606 5.81 
 

1.5 -1063.38 -962 101.38 267 571 5.63 
 

1.625 -1067.08 -976.8 90.28 207 545 6.04 
 

1.75 -1072.26 -989.38 82.88 156 503 6.07 
 

1.875 -1076.7 -995.3 81.4 162 486 5.97 
 

2 -1080.4 -1001.22 79.18 158 464 5.86 0.024731 

2.125 -1084.84 -1000.48 84.36 166 445 5.28 
 

2.25 -1085.58 -1003.44 82.14 186 445 5.42 
 

2.375 -1086.32 -1005.66 80.66 222 471 5.84 
 

2.5 -1086.32 -1002.7 83.62 180 475 5.68 
 

2.625 -1092.98 -994.56 98.42 154 494 5.02 
 

2.75 -1092.98 -1001.22 91.76 154 531 5.79 
 

2.875 -1094.46 -951.64 142.82 180 887 6.21 
 

3 -1100.38 -962.74 137.64 207 809 5.88 0.064847 

3.125 -1106.3 -966.44 139.86 201 737 5.27 
 

3.25 -1106.3 -965.7 140.6 204 751 5.34 
 

3.375 -1111.48 -972.36 139.12 214 734 5.28 
 

3.5 -1110 -975.32 134.68 235 728 5.41 
 

3.625 -1111.48 -978.28 133.2 233 767 5.76 
 

3.75 -1132.94 -979.76 153.18 184 809 5.28  

3.875 -1135.16 -1006.4 128.76 187 633 4.92  

4 -1132.2 -1006.4 125.8 213 647 5.14 0.052429 
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Channel 

distance 

/km 

Channel-

thalweg 

depth/m 

Channel-

bank 

depth/m 

Channel 

height/m 

Channel -

floor 

width/m 

Channel 

Width/m 
Width/height CSA/km2 

4.125 -1132.2 -1010.1 122.1 240 661 5.41  

4.25 -1130.72 -1012.32 118.4 277 681 5.75 
 

4.375 -1129.24 -1014.54 114.7 280 698 6.09 
 

4.5 -1129.98 -1015.28 114.7 281 740 6.45 
 

4.625 -1132.2 -1013.8 118.4 258 774 6.54 
 

4.75 -1135.9 -1027.12 108.78 230 709 6.52 
 

4.875 -1144.04 -1025.64 118.4 230 738 6.23 
 

5 -1143.3 -1031.56 111.74 228 701 6.27 0.063326 

5.125 -1146.26 -1017.5 128.76 215 832 6.46 
 

5.25 -1153.66 -1028.6 125.06 219 718 5.74 
 

5.375 -1161.8 -1030.08 131.72 176 712 5.41 
 

5.5 -1165.5 -1033.04 132.46 179 721 5.44 
 

5.625 -1172.16 -1026.38 145.78 209 847 5.81 
 

5.75 -1178.08 -1040.44 137.64 201 752 5.46 
 

5.875 -1181.78 -1037.48 144.3 218 839 5.81 
 

6 -1187.7 -1046.36 141.34 224 741 5.24 0.052198 

6.125 -1191.4 -1047.84 143.56 216 758 5.28 
 

6.25 -1196.58 -1053.76 142.82 194 756 5.29 
 

6.375 -1200.28 -1061.16 139.12 177 703 5.05 
 

6.5 -1201.02 -1059.68 141.34 156 750 5.31 
 

6.625 -1206.2 -1064.12 142.08 143 678 4.77 
 

6.75 -1209.9 -1069.3 140.6 123 647 4.60 
 

6.875 -1213.6 -1061.16 152.44 122 765 5.02 
 

7 -1215.08 -1067.08 148 164 821 5.55 0.062935 

7.125 -1218.04 -1068.56 149.48 170 792 5.30 
 

7.25 -1218.78 -1070.04 148.74 170 805 5.41 
 

7.375 -1223.22 -1072.26 150.96 208 859 5.69 
 

7.5 -1223.96 -1072.26 151.7 198 923 6.08 
 

7.625 -1223.22 -1073 150.22 195 876 5.83 
 

7.75 -1223.22 -1079.66 143.56 202 957 6.67 
 

7.875 -1222.48 -1082.62 139.86 205 977 6.99 
 

8 -1221 -1089.28 131.72 201 895 6.79 0.064277 

8.125 -1226.92 -1092.98 133.94 205 907 6.77 
 

8.25 -1228.4 -1093.72 134.68 201 1061 7.88 
 

8.375 -1232.84 -1095.2 137.64 173 1027 7.46  

8.5 -1232.84 -1091.5 141.34 176 1026 7.26  

8.625 -1235.06 -1089.28 145.78 148 1052 7.22 
 

8.75 -1240.24 -1090.02 150.22 116 1017 6.77 
 

8.875 -1243.2 -1095.2 148 140 914 6.18 
 

9 -1251.34 -1107.78 143.56 151 823 5.73 0.066789 
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Channel 

distance 

/km 

Channel-

thalweg 

depth/m 

Channel-

bank 

depth/m 

Channel 

height/m 

Channel -

floor 

width/m 

Channel 

Width/m 
Width/height CSA/km2 

9.125 -1254.3 -1123.32 130.98 201 741 5.66  

9.25 -1255.04 -1133.68 121.36 254 705 5.81  

9.375 -1263.18 -1138.12 125.06 212 689 5.51 
 

9.5 -1268.36 -1138.12 130.24 145 687 5.27 
 

9.625 -1272.06 -1137.38 134.68 151 703 5.22 
 

9.75 -1274.28 -1139.6 134.68 169 718 5.33 
 

9.875 -1277.24 -1141.82 135.42 195 761 5.62 
 

10 -1279.46 -1140.34 139.12 232 785 5.64 0.066701 

10.125 -1281.68 -1148.48 133.2 211 718 5.39 
 

10.25 -1284.64 -1155.14 129.5 180 649 5.01 
 

10.375 -1287.6 -1173.64 113.96 169 556 4.88 
 

10.5 -1289.08 -1170.68 118.4 149 595 5.03 
 

10.625 -1292.04 -1148.48 143.56 152 1001 6.97 
 

10.75 -1289.82 -1144.78 145.04 171 1059 7.30 
 

10.875 -1289.82 -1146.26 143.56 198 1023 7.13 
 

11 -1292.04 -1148.48 143.56 215 1001 6.97 0.058692 

11.125 -1300.18 -1153.66 146.52 184 899 6.14 
 

11.25 -1303.14 -1165.5 137.64 177 790 5.74 
 

11.375 -1303.88 -1172.16 131.72 157 765 5.81 
 

11.5 -1303.14 -1166.24 136.9 161 819 5.98 
 

11.625 -1308.32 -1165.5 142.82 153 870 6.09 
 

11.75 -1314.24 -1166.98 147.26 168 894 6.07 
 

11.875 -1314.98 -1163.28 151.7 167 930 6.13 
 

12 -1315.72 -1159.58 156.14 189 1021 6.54 0.048390 

12.125 -1319.42 -1178.08 141.34 176 839 5.94 
 

12.25 -1325.34 -1195.1 130.24 156 634 4.87 
 

12.375 -1328.3 -1198.06 130.24 180 658 5.05 
 

12.5 -1328.3 -1201.02 127.28 219 667 5.24 
 

12.625 -1323.86 -1204.72 119.14 229 709 5.95 
 

12.75 -1322.38 -1201.02 121.36 263 787 6.48 
 

12.875 -1324.6 -1198.06 126.54 256 876 6.92 
 

13 -1324.6 -1221.74 102.86 252 625 6.08 0.045085 

13.125 -1328.3 -1222.48 105.82 274 659 6.23  

13.25 -1329.04 -1227.66 101.38 282 689 6.80  

13.375 -1332 -1246.9 85.1 280 545 6.40  

13.5 -1337.18 -1253.56 83.62 283 561 6.71  

13.625 -1345.32 -1263.92 81.4 290 536 6.58  

13.75 -1349.76 -1275.02 74.74 263 534 7.14  

13.875 -1352.72 -1284.64 68.08 205 503 7.39  
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Channel 

distance 

/km 

Channel-

thalweg 

depth/m 

Channel-

bank 

depth/m 

Channel 

height/m 

Channel -

floor 

width/m 

Channel 

Width/m 
Width/height CSA/km2 

14 -1355.68 -1283.9 71.78 221 540 7.52 0.028279 

14.125 -1357.9 -1284.64 73.26 228 564 7.70 
 

14.25 -1359.38 -1296.48 62.9 258 525 8.35 
 

14.375 -1357.9 -1301.66 56.24 272 509 9.05  

14.5 -1357.16 -1302.4 54.76 286 503 9.19 
 

14.625 -1357.16 -1302.4 54.76 303 525 9.59 
 

14.75 -1357.16 -1301.66 55.5 310 536 9.66 
 

14.875 -1359.38 -1305.36 54.02 328 567 10.50 
 

15 -1357.9 -1306.84 51.06 319 556 10.89 0.021701 

15.125 -1360.12 -1305.36 54.76 302 564 10.30 
 

15.25 -1361.6 -1300.92 60.68 308 584 9.62 
 

15.375 -1363.82 -1303.14 60.68 284 586 9.66 
 

15.5 -1362.34 -1297.96 64.38 294 656 10.19 
 

15.625 -1364.56 -1321.64 42.92 284 545 12.70 
 

15.75 -1365.3 -1309.8 55.5 267 561 10.11 
 

15.875 -1371.22 -1314.24 56.98 256 549 9.63 
 

16 -1373.44 -1317.94 55.5 250 512 9.23 0.018763 

16.125 -1375.66 -1315.72 59.94 250 538 8.98 
 

16.25 -1380.84 -1348.28 32.56 182 314 9.64 
 

16.375 -1387.5 -1339.4 48.1 161 329 6.84 
 

16.5 -1388.98 -1338.66 50.32 158 389 7.73 
 

16.625 -1391.2 -1340.14 51.06 191 443 8.68 
 

16.75 -1396.38 -1344.58 51.8 205 432 8.34 
 

16.875 -1395.64 -1348.28 47.36 222 459 9.69 
 

17 -1395.64 -1351.98 43.66 257 485 11.11 0.014469 

17.125 -1395.64 -1352.72 42.92 278 510 11.88 
 

17.25 -1395.64 -1354.2 41.44 307 544 13.13 
 

17.375 -1391.94 -1358.64 33.3 382 555 16.67 
 

17.5 -1389.72 -1359.38 30.34 397 571 18.82 
 

17.625 -1391.94 -1359.38 32.56 368 565 17.35  

17.75 -1393.42 -1364.56 28.86 320 499 17.29  

17.875 -1400.08   277    

18 -1404.52       

18.125 -1404.52       

18.25 -1404.52  22.2  458 20.63  

18.375 -1408.22 -1383.8 24.42 253 414 16.95  

18.5 -1407.48 -1383.06 24.42 179 409 16.75  

18.625 -1409.7 -1383.8 25.9 196 388 14.98  
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Channel 

distance 

/km 

Channel-

thalweg 

depth/m 

Channel-

bank 

depth/m 

Channel 

height/m 

Channel -

floor 

width/m 

Channel 

Width/m 
Width/height 

CSA/km2 

18.75 -1408.22 -1383.06 25.16 206 382 15.18 
 

18.875 -1409.7 -1383.8 25.9 210 374 14.44 
 

19 -1409.7 -1382.32 27.38 226 367 13.40 0.007038 

19.125 -1413.4 -1383.06 30.34 246 368 12.13 
 

19.25 -1414.14 -1383.8 30.34 252 398 13.12 
 

19.375 -1416.36 -1388.24 28.12 295 410 14.58 
 

19.5 -1418.58 -1388.98 29.6 326 442 14.93  

19.625 -1422.28 -1393.42 28.86 334 456 15.80 
 

19.75 -1421.54 -1397.12 24.42 350 471 19.29 
 

19.875 -1419.32 -1397.86 21.46 388 487 22.69 
 

20 -1420.06 -1381.58 38.48 395 577 14.99 0.013178 

20.125 -1423.76 -1386.76 37 387 575 15.54 
 

20.25 -1425.98 -1388.24 37.74 383 598 15.85 
 

20.375 -1428.94 -1388.24 40.7 376 611 15.01 
 

20.5 -1428.94 -1393.42 35.52 354 577 16.24 
 

20.625 -1434.86 -1414.88 19.98 321 455 22.77 
 

20.75 -1434.12 -1418.58 15.54 310 425 27.35 
 

20.875 -1434.86 -1417.84 17.02 283 403 23.68 
 

21 -1438.56 -1425.24 13.32 273 345 25.90 0.002867 

21.125 -1441.52 -1424.5 17.02 270 377 22.15 
 

21.25 -1443.74 -1421.54 22.2 262 366 16.49 
 

21.375 -1447.44 -1425.98 21.46 227 356 16.59 
 

21.5 -1452.62 -1428.94 23.68 192 340 14.36 
 

21.625 -1457.8 -1423.02 34.78 189 386 11.10 
 

21.75 -1461.46 -1423.72 37.74 171 340 9.01 
 

21.875 -1467.07 -1426.37 40.7 158 346 8.50 
 

22 -1462.12 -1427.34 34.78 139 353 10.15 0.007674 

22.125 -1468.38 -1432.12 36.26 131 331 9.13 
 

22.25 -1470.68 -1429.24 41.44 122 304 7.34  

22.375 -1471.67 -1428.75 42.92 111 347 8.08  

22.5 -1471.34 -1420.28 51.06 166 474 9.28 
 

22.625 -1468.71 -1414.69 54.02 174 488 9.03 
 

22.75 -1470.02 -1411.56 58.46 180 482 8.24  

22.875 -1471.01 -1443.63 27.38 171 319 11.65 
 

23 -1471.67 -1441.33 30.34 182 317 10.45 0.007220 

23.125 -1471.01 -1439.19 31.82 187 339 10.65 
 

23.25 -1470.02 -1436.72 33.3 175 334 10.03 
 

23.375 -1471.34 -1437.3 34.04 177 322 9.46  
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Channel 

distance 

/km 

Channel-

thalweg 

depth/m 

Channel-

bank 

depth/m 

Channel 

height/m 

Channel -

floor 

width/m 

Channel 

Width/m 
Width/height 

CSA/km2 

23.5 -1472.98 -1438.2 34.78 160 317 9.11 
 

23.625 -1472.33 -1437.55 34.78 162 330 9.49 
 

23.75 -1471.99 -1438.69 33.3 167 354 10.63 
 

23.875 -1473.99 -1439.21 34.78 156 357 10.26 
 

24 -1470.35 -1438.53 31.82 173 358 11.25 0.007761 

24.125 -1472.33 -1441.99 30.34 171 334 11.01 
 

24.25 -1477.93 -1442.41 35.52 189 333 9.38 
 

24.375 -1481.89 -1444.15 37.74 175 337 8.93 
 

24.5 -1483.54 -1451.72 31.82 173 326 10.25 
 

24.625 -1484.52 -1452.7 31.82 163 321 10.09  

24.75 -1486.5 -1455.42 31.08 162 313 10.07 
 

24.875 -1488.47 -1455.91 32.56 170 342 10.50 
 

25 -1489.47 -1456.91 32.56 173 376 11.55 0.007362 

25.125 -1494.4 -1457.4 37 167 337 9.11 
 

25.25 -1498.69 -1456.51 42.18 150 341 8.08 
 

25.375 -1498.03 -1455.85 42.18 142 385 9.13 
 

25.5 -1499.02 -1468.68 30.34 156 300 9.89 
 

25.625 -1500.34 -1468.52 31.82 145 297 9.33 
 

25.75 -1505.94 -1468.94 37 134 313 8.46 
 

25.875 -1509.66 -1467.48 42.18 127 337 7.99 
 

26 -1515.57 -1461.55 54.02 96 343 6.35 0.010927 

26.125 -1521.51 -1471.19 50.32 108 354 7.03 
 

26.25 -1520.52 -1474.64 45.88 151 368 8.02 
 

26.375 -1521.18 -1483.44 37.74 160 371 9.83 
 

26.5 -1521.45 -1494.07 27.38 153 325 11.87 
 

26.625 -1524.61 -1502.41 22.2 152 271 12.21 
 

26.75 -1533.74 -1503.4 30.34 116 243 8.01 
 

26.875 -1538.32 -1468.02 70.3 124 403 5.73 
 

27 -1541.12 -1436.78 104.34 124 525 5.03 0.034732 

27.125 -1543.57 -1451.81 91.76 155 489 5.33 
 

27.25 -1546.4 -1473.14 73.26 152 404 5.51 
 

27.375 -1545.68 -1446.52 99.16 145 527 5.31  

27.5 -1548.86 -1438.6 110.26 130 550 4.99 
 

27.625 -1552.36 -1438.4 113.96 144 552 4.84 
 

27.75 -1548.86 -1440.82 108.04 140 592 5.48 
 

27.875 -1548.15 -1447.51 100.64 144 601 5.97 
 

28 -1548.15 -1465.27 82.88 166 534 6.44 0.029391 

28.125 -1549.2 -1471.5 77.7 160 586 7.54 
 

28.25 -1548.07 -1474.07 74 160 538 7.27 
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Channel 

distance 

/km 

Channel-

thalweg 

depth/m 

Channel-

bank 

depth/m 

Channel 

height/m 

Channel -

floor 

width/m 

Channel 

Width/m 
Width/height 

CSA/km2 

28.375 -1548.5 -1495.22 53.28 160 394 7.39 
 

28.5 -1551.57 -1489.41 62.16 146 396 6.37 
 

28.625 -1552.45 -1481.41 71.04 156 436 6.14 
 

28.75 -1552.88 -1476.66 76.22 161 483 6.34 
 

28.875 -1555.55 -1467.49 88.06 169 499 5.67 
 

29 -1558.71 -1464.73 93.98 176 548 5.83 0.033722 

29.125 -1561.51 -1471.97 89.54 145 567 6.33 
 

29.25 -1563.29 -1473.01 90.28 131 539 5.97 
 

29.375 -1561.51 -1474.19 87.32 161 525 6.01 
 

29.5 -1562.21 -1477.11 85.1 174 524 6.16 
 

29.625 -1567.06 -1487.88 79.18 140 483 6.10  

29.75 -1568.37 -1503.25 65.12 147 396 6.08 
 

29.875 -1570.56 -1483.24 87.32 109 450 5.15 
 

30 -1572.32 -1479.82 92.5 95 482 5.21 
 

30.125 -1571.19 -1479.43 91.76 124 500 5.45 0.02910 

30.25 -1569.79 -1483.21 86.58 126 480 5.54 
 

30.375 -1569.51 -1499.21 70.3 159 442 6.29 
 

30.5 -1571.19 -1511.25 59.94 180 442 7.37 
 

30.625 -1572.87 -1519.59 53.28 153 409 7.68 
 

30.75 -1573.99 -1528.85 45.14 163 360 7.98 
 

30.875 -1576.81 -1509.47 67.34 159 409 6.07 
 

31 -1577.66 -1504.4 73.26 164 450 6.14 0.024123 

31.125 -1576.53 -1478.85 97.68 200 621 6.36 
 

31.25 -1575.97 -1480.51 95.46 240 610 6.39 
 

31.375 -1577.38 -1486.36 91.02 245 623 6.84 
 

31.5 -1584.68 -1511.42 73.26 250 539 7.36 
 

31.625 -1579.06 -1508.76 70.3 223 545 7.75  

31.75 -1579.62 -1515.24 64.38 226 504 7.83 
 

31.875 -1582.44 -1513.62 68.82 232 534 7.76 
 

32 -1590.03 -1513.81 76.22 234 561 7.36 0.027661 

32.125 -1597.33 -1538.87 58.46 168 403 6.89  

32.25 -1601.26 -1553.9 47.36 150 314 6.63 
 

32.375 -1601.85 -1544.13 57.72 140 357 6.19 
 

32.5 -1603.95 -1544.01 59.94 112 333 5.56 
 

32.625 -1605 -1538.4 66.6 142 376 5.65 
 

32.75 -1605.7 -1548.72 56.98 140 313 5.49 
 

32.875 -1608.53 -1550.81 57.72 120 316 5.47 
 

33 -1612.39 -1550.23 62.16 136 347 5.58 0.014750 
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Channel 

distance 

/km 

Channel-

thalweg 

depth/m 

Channel-

bank 

depth/m 

Channel 

height/m 

Channel -

floor 

width/m 

Channel 

Width/m 
Width/height 

CSA/km2 

33.125 -1610.28 -1551.08 59.2 152 405 6.84 
 

33.25 -1609.24 -1557.44 51.8 165 415 8.01 
 

33.375 -1612.04 -1555.8 56.24 188 454 8.07 
 

33.5 -1614.49 -1567.87 46.62 160 361 7.74 
 

33.625 -1615.92 -1564.12 51.8 124 397 7.66 
 

33.75 -1616.61 -1564.07 52.54 147 408 7.77 
 

33.875 -1615.92 -1561.9 54.02 160 404 7.48 
 

34 -1617.66 -1562.16 55.5 134 363 6.54 0.013473 

34.125 -1622.23 -1564.51 57.72 130 367 6.36 
 

34.25 -1623.1 -1563.9 59.2 163 383 6.47 
 

34.375 -1624.86 -1564.18 60.68 172 435 7.17 
 

34.5 -1624.86 -1576.02 48.84 199 378 7.74 
 

34.625 -1626.16 -1577.32 48.84 216 378 7.74  

34.75 -1634.08 -1580.8 53.28 192 352 6.61 
 

34.875 -1637.18 -1577.24 59.94 178 361 6.02 
 

35 -1636.27 -1578.55 57.72 175 351 6.08 0.014916 

35.125 -1637.61 -1581.37 56.24 177 375 6.67  

35.25 -1638.05 -1582.55 55.5 162 350 6.31 
 

35.375 -1636.71 -1578.25 58.46 154 381 6.52 
 

35.5 -1643.75 -1577.15 66.6 166 380 5.71 
 

35.625 -1646.37 -1573.85 72.52 147 367 5.06 
 

35.75 -1650.78 -1576.04 74.74 131 454 6.07 
 

35.875 -1651.66 -1594.68 56.98 134 458 8.04 
 

36 -1652.1 -1595.12 56.98 146 452 7.93 0.018403 

36.125 -1653.85 -1594.65 59.2 139 425 7.18 
 

36.25 -1657.36 -1593.72 63.64 114 444 6.98 
 

36.375 -1658.7 -1593.58 65.12 80 444 6.82 
 

36.5 -1659.58 -1595.94 63.64 104 393 6.18 
 

36.625 -1658.7 -1597.28 61.42 150 407 6.63 
 

36.75 -1660.89 -1605.39 55.5 178 437 7.87 
 

36.875 -1663.08 -1615.72 47.36 223 431 9.10 
 

37 -1661.59 -1618.67 42.92 239 386 8.99 0.011801 

37.125 -1663.96 -1609.94 54.02 200 364 6.74 
 

37.25 -1662.64 -1606.4 56.24 175 386 6.86 
 

37.375 -1663.96 -1607.72 56.24 166 390 6.93 
 

37.5 -1663.96 -1606.98 56.98 144 400 7.02 
 

37.625 -1664.39 -1611.85 52.54 156 467 8.89 
 

37.75 -1663.08 -1615.72 47.36 178 491 10.37 
 

37.875 -1662.64 -1630.08 32.56 240 404 12.41 
 

38 -1662.64 -1630.82 31.82 265 430 13.51 0.009087 
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Channel 

distance 

/km 

Channel-

thalweg 

depth/m 

Channel-

bank 
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height/m 
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floor 

width/m 

Channel 

Width/m 
Width/height 

CSA/km2 

38.125 -1666.15 -1628.41 37.74 189 416 11.02  

38.25 -1667.89 -1628.67 39.22 186 385 9.82 
 

38.375 -1668.33 -1626.89 41.44 200 380 9.17 
 

38.5 -1668.8 -1626.62 42.18 187 381 9.03 
 

38.625 -1667.89 -1627.93 39.96 208 377 9.43 
 

38.75 -1670.72 -1630.02 40.7 204 386 9.48 
 

38.875 -1676.35 -1628.99 47.36 206 377 7.96 
 

39 -1678.11 -1629.27 48.84 195 391 8.01 0.013915 

39.125 -1679.5 -1637.32 42.18 169 339 8.04 
 

39.25 -1681.61 
  

140   
 

39.375 -1683.36 
  

   
 

39.5 -1683.66 
  

144   
 

39.625 -1692.14 
  

181   
 

39.75 -1692.61 -1645.99 46.62 220 431 9.24 
 

39.875 -1692.61 -1646.73 45.88 206 414 9.02 
 

40 -1693.66 -1648.52 45.14 161 370 8.20 0.010074 

40.125 -1692.96 -1643.38 49.58 151 363 7.32 
 

40.25 -1690.86 -1640.54 50.32 172 400 7.95 
 

40.375 -1694.36 -1636.64 57.72 204 435 7.54 
 

40.5 -1694.71 -1635.51 59.2 234 464 7.84 
 

40.625 -1695.07 -1634.39 60.68 274 481 7.93 
 

40.75 -1693.66 -1637.42 56.24 282 485 8.62 
 

40.875 -1692.61 -1645.25 47.36 286 472 9.97 
 

41 -1694.36 -1648.48 45.88 276 500 10.90 0.020439 

41.125 -1695.41 -1653.97 41.44 299 498 12.02 
 

41.25 -1700.69 -1657.77 42.92 290 496 11.56 
 

41.375 -1699.99 -1664.47 35.52 300 485 13.65 
 

41.5 -1699.64 -1666.34 33.3 318 482 14.47 
 

41.625 -1700.34 -1670 30.34 340 487 16.05 
 

41.75 -1701.74 -1672.88 28.86 366 497 17.22 
 

41.875 -1703.46 -1675.34 28.12 368 504 17.92 
 

42 -1705.62 -1678.24 27.38 364 477 17.42 0.010453 

42.125 -1705.97 -1679.33 26.64 334 461 17.30 
 

42.25 -1706.67 -1680.77 25.9 328 445 17.18 
 

42.375 -1707.73 
  

325 440  
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Table A1.2. Summary of valley morphological data for the Quaternary channel system. 

Morphological parameters include the depth of valley thalweg and banks, valley height, the width 

of valley floor and channel, width/height, and cross-sectional area of valley (CSA). 

 

Valley 

distance 

/km 

Valley-

thalweg 

depth/m 

Valley-bank 

depth/m 

Valley 

height/m 

 

Valley- 

floor 

width/m 

Valley 

Width/m 

Width/height 

  

CSA/km2 

 

0 -1113.6 
  

252 
   

0.0625 -1117.6 
  

242 
   

0.125 -1117.6 
  

207 
   

0.1875 -1120 
  

241 
   

0.25 -1124 
  

208 
   

0.3125 -1127.2 -848.04 279.16 233 1274 4.56 
 

0.375 -1129.6 -849.52 280.08 210 1235 4.41 
 

0.4375 -1129.6 -848.04 281.56 221 1232 4.38 
 

0.5 -1132.8 -856.92 275.88 256 1126 4.08 
 

0.5625 -1133.6 -870.98 262.62 271 1001 3.81 
 

0.625 -1139.2 -873.94 265.26 224 984 3.71 
 

0.6875 -1141.6 -871.72 269.88 247 1085 4.02 
 

0.75 -1142.4 -869.5 272.9 263 1278 4.68 
 

0.8125 -1143.2 -870.98 272.22 254 1271 4.67 
 

0.875 -1143.2 -873.2 270 262 1237 4.58 
 

0.9375 -1144 -874.68 269.32 265 1295 4.81 
 

1 -1143.2 -876.9 266.3 278 1284 4.82 0.255802 

1.0625 -1141.6 -879.86 261.74 317 1288 4.92 
 

1.125 -1142.4 -884.3 258.1 378 1284 4.97 
 

1.1875 -1141.6 -887.26 254.34 332 1304 5.13 
 

1.25 -1141.6 -890.22 251.38 409 1307 5.20 
 

1.3125 -1142.4 -893.92 248.48 525 1279 5.15 
 

1.375 -1147.2 -896.14 251.06 613 1301 5.18 
 

1.4375 -1161.6 -897.62 263.98 595 1343 5.09 
 

1.5 -1168.8 -899.84 268.96 620 1377 5.12 
 

1.5625 -1168.8 -901.32 267.48 672 1377 5.15 
 

1.625 -1171.2 -902.06 269.14 678 1365 5.07 
 

1.6875 -1173.6 -903.54 270.06 636 1349 5.00 
 

1.75 -1176 -906.5 269.5 592 1327 4.92 
 

1.8125 -1180 -910.2 269.8 614 1321 4.90 
 

1.875 -1180.8 -914.64 266.16 640 1313 4.93 
 

1.9375 -1181.6 -916.86 264.74 649 1299 4.91 
 

2 -1184 -919.08 264.92 662 1282 4.84 0.218449 
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Valley 

distance 

/km 

Valley-

thalweg 

depth/m 

Valley-bank 

depth/m 

Valley 

height/m 

 

Valley- 

floor 

width/m 

Valley 

Width/m 

Width/height 

  

CSA/km2 

 

2.0625 -1188 -921.3 266.7 660 1274 4.78 
 

2.125 -1193.6 -922.78 270.82 662 1268 4.68 
 

2.1875 -1194.4 -925 269.4 606 1246 4.63 
 

2.25 -1195.2 -927.96 267.24 568 1257 4.70 
 

2.3125 -1197.6 -928.7 268.9 542 1261 4.69 
 

2.375 -1198.4 -930.18 268.22 585 1219 4.54 
 

2.4375 -1205.6 -930.92 274.68 560 1215 4.42 
 

2.5 -1208 -938.32 269.68 504 1082 4.01 
 

2.5625 -1210.4 -952.38 258.02 418 940 3.64 
 

2.625 -1213.6 -948.68 264.92 439 900 3.40 
 

2.6875 -1217.6 -952.38 265.22 446 892 3.36 
 

2.75 -1217.6 -956.08 261.52 306 861 3.29 
 

2.8125 -1219.2 -962.74 256.46 318 776 3.03 
 

2.875 -1220 -965.7 254.3 324 765 3.01 
 

2.9375 -1223.2 -965.7 257.5 311 772 3.00 
 

3 -1225.6 -964.96 260.64 323 772 2.96 0.096539 

3.0625 -1227.2 -965.7 261.5 297 778 2.98 
 

3.125 -1226.4 -970.88 255.52 297 743 2.91 
 

3.1875 -1228.8 -973.84 254.96 310 734 2.88 
 

3.25 -1229.6 -975.32 254.28 308 732 2.88 
 

3.3125 -1229.6 -976.8 252.8 291 758 3.00 
 

3.375 -1232 -979.02 252.98 327 856 3.38 
 

3.4375 -1235.2 -979.76 255.44 311 885 3.46 
 

3.5 -1240.8 -982.72 258.08 356 879 3.41 
 

3.5625 -1240.8 -984.2 256.6 299 910 3.55 
 

3.625 -1240 -984.94 255.06 323 950 3.72 
 

3.6875 -1241.6 -987.16 254.44 364 977 3.84 
 

3.75 -1243.2 -988.64 254.56 389 979 3.85 
 

3.8125 -1242.4 -990.12 252.28 436 998 3.96 
 

3.875 -1240 -991.6 248.4 455 1015 4.09 
 

3.9375 -1239.2 -992.34 246.86 446 994 4.03 
 

4 -1238.4 -994.56 243.84 450 1001 4.11 0.157693 

4.0625 -1240 -996.78 243.22 445 983 4.04 
 

4.125 -1240.8 -999.74 241.06 449 995 4.13 
 

4.1875 -1242.4 -1001.96 240.44 416 984 4.09 
 

4.25 -1256.8 -1002.7 254.1 322 966 3.80 
 

4.3125 -1259.2 -1002.7 256.5 271 977 3.81 
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Valley 

distance 

/km 

Valley-

thalweg 

depth/m 

Valley-bank 

depth/m 

Valley 

height/m 

 

Valley- 

floor 

width/m 

Valley 

Width/m 

Width/height 

  

CSA/km2 

 

4.375 -1259.2 -1001.22 257.98 414 1055 4.09 
 

4.4375 -1262.4 -998.26 264.14 349 1216 4.60 
 

4.5 -1263.2 -996.04 267.16 371 1237 4.63 
 

4.5625 -1266.4 -1001.96 264.44 380 1229 4.65 
 

4.625 -1265.6 -1000.48 265.12 411 1312 4.95 
 

4.6875 -1268.8 -1010.1 258.7 436 1184 4.58 
 

4.75 -1271.2 -1010.84 260.36 421 1170 4.49 
 

4.8125 -1272.8 -1010.84 261.96 432 1160 4.43 
 

4.875 -1274.4 -1011.58 262.82 478 1121 4.27 
 

4.9375 -1276.8 -1010.84 265.96 464 1093 4.11 
 

5 -1277.6 -1010.1 267.5 405 1086 4.06 0.170393 

5.0625 -1280.8 -1010.84 269.96 397 1057 3.92 
 

5.125 -1282.4 -1012.32 270.08 340 1020 3.78 
 

5.1875 -1284.8 -1018.24 266.56 358 957 3.59 
 

5.25 -1286.4 -1018.24 268.16 309 1029 3.84 
 

5.3125 -1288 -1019.72 268.28 318 1055 3.93 
 

5.375 -1292 -1018.98 273.02 248 1123 4.11 
 

5.4375 -1293.6 -1025.64 267.96 275 1030 3.84 
 

5.5 -1296.8 -1027.12 269.68 348 1004 3.72 
 

5.5625 -1300.8 -1027.12 273.68 345 1071 3.91 
 

5.625 -1300 -1024.9 275.1 331 1137 4.13 
 

5.6875 -1300 -1026.38 273.62 363 1179 4.31 
 

5.75 -1300 -1027.12 272.88 354 1208 4.43 
 

5.8125 -1300 -1028.6 271.4 352 1217 4.48 
 

5.875 -1302.4 -1030.82 271.58 348 1175 4.33 
 

5.9375 -1304.8 -1030.82 273.98 343 1161 4.24 
 

6 -1307.2 -1033.78 273.42 350 1132 4.14 0.160301 

6.0625 -1311.2 -1036.74 274.46 438 1204 4.39 
 

6.125 -1314.4 -1037.48 276.92 409 1181 4.26 
 

6.1875 -1316 -1038.22 277.78 442 1226 4.41 
 

6.25 -1319.2 -1038.22 280.98 447 1259 4.48 
 

6.3125 -1319.2 -1038.22 280.98 514 1310 4.66 
 

6.375 -1319.2 -1039.7 279.5 505 1324 4.74 
 

6.4375 -1320 -1053.76 266.24 527 1079 4.05 
 

6.5 -1324 -1053.02 270.98 505 1046 3.86 
 

6.5625 -1328 -1054.5 273.5 522 1025 3.75 
 

6.625 -1328 -1057.46 270.54 554 1017 3.76 
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Valley 

distance 

/km 

Valley-

thalweg 

depth/m 

Valley-bank 

depth/m 

Valley 

height/m 

 

Valley- 

floor 

width/m 

Valley 

Width/m 

Width/height 

  

CSA/km2 

 

6.6875 -1328.8 -1063.38 265.42 559 1079 4.07 
 

6.75 -1329.6 -1062.64 266.96 574 1054 3.95 
 

6.8125 -1331.2 -1066.34 264.86 646 1097 4.14 
 

6.875 -1331.2 -1067.08 264.12 633 1074 4.07 
 

6.9375 -1332 -1067.08 264.92 635 1097 4.14 
 

7 -1332.8 -1067.08 265.72 649 1108 4.17 0.207305 

7.0625 -1333.6 -1069.3 264.3 645 1081 4.09 
 

7.125 -1336.8 -1070.04 266.76 620 1143 4.28 
 

7.1875 -1339.2 -1070.78 268.42 629 1155 4.30 
 

7.25 -1339.2 -1071.52 267.68 594 1152 4.30 
 

7.3125 -1338.4 -1071.52 266.88 589 1184 4.44 
 

7.375 -1340 -1071.52 268.48 616 1155 4.30 
 

7.4375 -1341.6 -1073.74 267.86 692 1148 4.29 
 

7.5 -1344 -1074.48 269.52 647 1206 4.47 
 

7.5625 -1345.6 -1078.18 267.42 600 1270 4.75 
 

7.625 -1345.6 -1079.66 265.94 583 1192 4.48 
 

7.6875 -1345.6 -1084.1 261.5 603 1172 4.48 
 

7.75 -1347.2 -1087.06 260.14 489 1169 4.49 
 

7.8125 -1347.2 -1086.32 260.88 336 1135 4.35 
 

7.875 -1350.4 -1087.06 263.34 287 900 3.42 
 

7.9375 -1353.6 -1087.8 265.8 289 903 3.40 
 

8 -1356.8 -1085.58 271.22 269 923 3.40 0.144674 

8.0625 -1361.6 -1085.58 276.02 271 942 3.41 
 

8.125 -1366.4 -1087.06 279.34 332 947 3.39 
 

8.1875 -1366.4 -1088.54 277.86 239 950 3.42 
 

8.25 -1364 -1087.8 276.2 239 988 3.58 
 

8.3125 -1364.8 -1087.8 277 232 961 3.47 
 

8.375 -1369.6 -1087.06 282.54 250 980 3.47 
 

8.4375 -1368 -1090.02 277.98 205 1028 3.70 
 

8.5 -1376.8 -1092.24 284.56 222 990 3.48 
 

8.5625 -1373.6 -1095.2 278.4 211 917 3.29 
 

8.625 -1374.4 -1105.56 268.84 289 876 3.26 
 

8.6875 -1377.6 -1104.82 272.78 331 962 3.53 
 

8.75 -1382.4 -1104.82 277.58 327 1037 3.74 
 

8.8125 -1383.2 -1106.3 276.9 371 1020 3.68 
 

8.875 -1384.8 -1107.78 277.02 423 1034 3.73 
 

8.9375 -1388 -1109.26 278.74 397 1023 3.67 
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Valley 

distance 

/km 

Valley-

thalweg 

depth/m 

Valley-bank 

depth/m 

Valley 

height/m 

 

Valley- 

floor 

width/m 

Valley 

Width/m 

Width/height 

  

CSA/km2 

 

9 -1390.4 -1111.48 278.92 475 1012 3.63 0.180376 

9.0625 -1390.4 -1115.18 275.22 456 1009 3.67 
 

9.125 -1392.8 -1097.42 295.38 434 1424 4.82 
 

9.1875 -1390.4 -1088.54 301.86 462 1439 4.77 
 

9.25 -1396 -1092.24 303.76 481 1255 4.13 
 

9.3125 -1402.4 -1092.98 309.42 538 1272 4.11 
 

9.375 -1406.4 -1093.72 312.68 427 1309 4.19 
 

9.4375 -1408 -1103.34 304.66 381 1306 4.29 
 

9.5 -1410.4 -1105.56 304.84 349 1313 4.31 
 

9.5625 -1410.4 -1107.78 302.62 387 1315 4.35 
 

9.625 -1408.8 -1111.48 297.32 399 1330 4.47 
 

9.6875 -1409.6 -1115.18 294.42 400 1264 4.29 
 

9.75 -1410.4 -1118.88 291.52 360 1217 4.17 
 

9.8125 -1413.6 -1121.84 291.76 342 1177 4.03 
 

9.875 -1415.2 -1123.32 291.88 324 1175 4.03 
 

9.9375 -1417.6 -1124.8 292.8 302 1259 4.30 
 

10 -1419.2 -1124.8 294.4 304 1261 4.28 0.186444 

10.0625 -1415.2 -1127.02 288.18 254 1281 4.45 
 

10.125 -1416 -1129.24 286.76 303 1310 4.57 
 

10.1875 -1419.2 -1132.94 286.26 298 1275 4.45 
 

10.25 -1421.6 -1146.26 275.34 296 937 3.40 
 

10.3125 -1421.6 -1145.52 276.08 302 997 3.61 
 

10.375 -1420.8 -1144.04 276.76 328 1037 3.75 
 

10.4375 -1420.8 -1143.3 277.5 226 981 3.54 
 

10.5 -1420.8 -1142.56 278.24 287 1103 3.96 
 

10.5625 -1422.4 -1143.3 279.1 280 1074 3.85 
 

10.625 -1424.8 -1147 277.8 289 1006 3.62 
 

10.6875 -1425.6 -1150.7 274.9 300 939 3.42 
 

10.75 -1426.4 -1155.14 271.26 273 934 3.44 
 

10.8125 -1428 -1156.62 271.38 255 916 3.38 
 

10.875 -1430.4 -1159.58 270.82 238 908 3.35 
 

10.9375 -1431.2 -1162.54 268.66 255 874 3.25 
 

11 -1436.8 -1161.8 275 220 834 3.03 0.087341 

11.0625 -1434.4 -1161.8 272.6 251 770 2.82 
 

11.125 -1436.8 -1163.28 273.52 246 775 2.83 
 

11.1875 -1438.4 -1162.54 275.86 295 806 2.92 
 

11.25 -1441.6 -1161.8 279.8 269 849 3.03 
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Valley 

distance 

/km 

Valley-

thalweg 

depth/m 

Valley-bank 

depth/m 

Valley 

height/m 

 

Valley- 

floor 

width/m 

Valley 

Width/m 

Width/height 

  

CSA/km2 

 

11.3125 -1442.4 -1161.8 280.6 271 877 3.13 
 

11.375 -1442.4 -1161.8 280.6 255 883 3.15 
 

11.4375 -1442.4 -1162.54 279.86 238 891 3.18 
 

11.5 -1444.8 -1161.8 283 255 1017 3.59 
 

11.5625 -1444.8 -1164.02 280.78 255 961 3.42 
 

11.625 -1440.8 -1161.06 279.74 267 970 3.47 
 

11.6875 -1447.2 -1157.36 289.84 300 1097 3.78 
 

11.75 -1449.6 -1154.4 295.2 275 1284 4.35 
 

11.8125 -1451.2 -1154.4 296.8 250 1326 4.47 
 

11.875 -1452 -1152.92 299.08 239 1348 4.51 
 

11.9375 -1456.8 -1153.66 303.14 244 1395 4.60 
 

12 -1458.4 -1169.2 289.2 247 1152 3.98 0.177246 

12.0625 -1464 -1169.2 294.8 364 1185 4.02 
 

12.125 -1464 -1169.94 294.06 278 1201 4.08 
 

12.1875 -1464 -1170.68 293.32 272 1219 4.16 
 

12.25 -1463.2 -1172.16 291.04 311 1201 4.13 
 

12.3125 -1459.2 -1175.12 284.08 317 1206 4.25 
 

12.375 -1460 -1178.08 281.92 342 1210 4.29 
 

12.4375 -1462.4 -1183.26 279.14 371 1188 4.26 
 

12.5 -1464 -1186.96 277.04 322 1137 4.10 
 

12.5625 -1467.2 -1191.4 275.8 299 1017 3.69 
 

12.625 -1467.2 -1192.88 274.32 295 1034 3.77 
 

12.6875 -1468.8 -1195.84 272.96 342 1008 3.69 
 

12.75 -1470.4 -1199.54 270.86 292 941 3.47 
 

12.8125 -1472 -1198.06 273.94 342 1306 4.77 
 

12.875 -1475.2 -1199.54 275.66 317 1353 4.91 
 

12.9375 -1476 -1202.5 273.5 267 1364 4.99 
 

13 -1477.6 -1205.46 272.14 325 1382 5.08 0.229496 

13.0625 
 

-1207.68 
 

297 1402 
  

13.125 
 

-1209.9 
 

295 1342 
  

13.1875 
 

-1215.82 
 

269 1223 
  

13.25 
 

-1216.56 
 

328 1188 
  

13.3125 
 

-1217.3 
 

392 1163 
  

13.375 
 

-1217.3 
 

425 1157 
  

13.4375 
 

-1217.3 
 

433 1155 
  

13.5 
 

-1217.3 
 

400 1155 
  

13.5625 
 

-1217.3 
 

392 1160 
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Valley 

distance 

/km 

Valley-

thalweg 

depth/m 

Valley-bank 

depth/m 

Valley 

height/m 

 

Valley- 

floor 

width/m 

Valley 

Width/m 

Width/height 

  

CSA/km2 

 

13.625 
 

-1218.78 
 

342 1201 
  

13.6875 
 

-1219.52 
 

305 1224 
  

13.75 
 

-1220.26 
 

283 1232 
  

13.8125 
 

-1221.74 
 

344 1235 
  

13.875 
 

-1223.96 
 

319 1249 
  

13.9375 
 

-1225.44 
 

325 1232 
  

14 
 

-1227.66 
 

330 1249 
 

0.220536 

14.0625 
 

-1229.14 
 

325 1224 
  

14.125 
 

-1231.36 
 

325 1226 
  

14.1875 
 

-1236.54 
 

358 1265 
  

14.25 
 

-1239.5 
 

342 1265 
  

14.3125 
 

-1240.98 
 

347 1238 
  

14.375 
 

-1241.72 
 

375 1224 
  

14.4375 
 

-1242.46 
 

353 1246 
  

14.5 
 

-1243.2 
 

367 1257 
  

14.5625 
 

-1243.2 
 

353 1229 
  

14.625 
 

-1240.24 
 

417 1249 
  

14.6875 
 

-1238.02 
 

528 1317 
  

14.75 
 

-1240.24 
 

511 1285 
  

14.8125 
 

-1241.72 
 

573 1282 
  

14.875 
 

-1243.94 
 

612 1243 
  

14.9375 
 

-1246.16 
 

603 1226 
  

15 
 

-1249.12 
 

614 1212 
 

0.225427 

15.0625 
 

-1252.08 
 

645 1192 
  

15.125 
 

-1255.04 
 

651 1162 
  

15.1875 
 

-1257.26 
 

575 1130 
  

15.25 
 

-1255.78 
 

559 1116 
  

15.3125 
 

-1257.26 
 

548 1157 
  

15.375 
 

-1258 
 

587 1054 
  

15.4375 
 

-1257.26 
 

536 1015 
  

15.5 
 

-1256.52 
 

483 999 
  

15.5625 
 

-1256.52 
 

475 1020 
  

15.625 
 

-1255.78 
 

245 1000 
  

15.6875 
 

-1255.78 
 

282 988 
  

15.75 -1530.4 -1256.52 273.88 228 941 3.44 
 

15.8125 -1549.6 -1257.26 292.34 257 936 3.20 
 

15.875 -1551.2 -1255.78 295.42 261 934 3.16 
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Valley 

distance 

/km 

Valley-

thalweg 

depth/m 

Valley-bank 

depth/m 

Valley 

height/m 

 

Valley- 

floor 

width/m 

Valley 

Width/m 

Width/height 

  

CSA/km2 

 

15.9375 -1552 -1257.26 294.74 261 1003 3.40 
 

16 -1553.6 -1257.26 296.34 295 1014 3.42 0.179847 

16.0625 -1558.4 -1254.3 304.1 282 1119 3.68 
 

16.125 -1562.4 -1254.3 308.1 224 1114 3.62 
 

16.1875 -1563.2 -1255.04 308.16 297 1144 3.71 
 

16.25 -1564 
  

293 
   

16.3125 -1564.8 
  

288 
   

16.375 -1566.4 
  

237 
   

16.4375 -1568 
  

286 
   

16.5 -1564.8 
  

322 
   

16.5625 -1564.8 
  

287 
   

16.625 -1564 
  

364 
   

16.6875 -1563.2 
  

375 
   

16.75 -1564 
  

326 
   

16.8125 -1563.2 
  

292 
   

16.875 -1564.8 
  

391 
   

16.9375 -1575.2 
  

335 
   

17 -1567.2 
  

391 
   

17.0625 -1569.6 
  

408 
   

17.125 -1572.8 
  

461 
   

17.1875 -1566.4 
  

403 
   

17.25 -1570.4 
  

408 
   

17.3125 -1575.2 
  

395 
   

17.375 -1576.8 
  

405 
   

17.4375 -1577.6 
  

501 
   

17.5 -1579.2 
  

514 
   

17.5625 -1584 
  

445 
   

17.625 -1585.6 
  

596 
   

17.6875 -1584.8 -1309.8 275 595 1321 4.80 
 

17.75 -1580.8 -1308.32 272.48 632 1308 4.80 
 

17.8125 -1577.6 -1306.84 270.76 623 1319 4.87 
 

17.875 -1577.6 -1306.1 271.5 567 1301 4.79 
 

17.9375 -1579.2 -1306.1 273.1 565 1279 4.68 
 

18 -1580 -1306.1 273.9 685 1295 4.73 0.265506 

18.0625 -1580.8 -1306.1 274.7 618 1295 4.71 
 

18.125 -1582.4 -1306.84 275.56 436 1295 4.70 
 

18.1875 -1583.2 -1308.32 274.88 454 1322 4.81 
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Valley 

distance 

/km 

Valley-

thalweg 

depth/m 

Valley-bank 

depth/m 

Valley 

height/m 

 

Valley- 

floor 

width/m 

Valley 

Width/m 

Width/height 

  

CSA/km2 

 

18.25 -1582.4 -1309.8 272.6 435 1322 4.85 
 

18.3125 -1584 -1310.54 273.46 564 1315 4.81 
 

18.375 -1587.2 -1312.76 274.44 605 1288 4.69 
 

18.4375 -1584 -1315.72 268.28 605 1270 4.73 
 

18.5 -1584.8 -1315.72 269.08 612 1286 4.78 
 

18.5625 -1585.6 -1314.98 270.62 574 1185 4.38 
 

18.625 -1583.2 -1313.5 269.7 565 1160 4.30 
 

18.6875 -1585.6 -1315.72 269.88 630 1135 4.21 
 

18.75 -1587.2 -1318.68 268.52 603 1160 4.32 
 

18.8125 -1587.2 -1322.38 264.82 539 1140 4.30 
 

18.875 -1588 -1325.34 262.66 511 1143 4.35 
 

18.9375 -1590.4 -1327.56 262.84 446 1165 4.43 
 

19 -1591.2 -1332 259.2 377 1207 4.66 0.253179 

19.0625 -1591.2 -1333.48 257.72 359 1168 4.53 
 

19.125 -1596.8 -1334.96 261.84 454 1148 4.38 
 

19.1875 -1599.2 -1335.7 263.5 440 1140 4.33 
 

19.25 -1600 -1334.96 265.04 445 1129 4.26 
 

19.3125 -1601.6 -1335.7 265.9 471 1132 4.26 
 

19.375 -1601.6 -1334.22 267.38 389 1375 5.14 
 

19.4375 -1606.4 -1337.92 268.48 411 1328 4.95 
 

19.5 -1608.8 -1344.58 264.22 567 1315 4.98 
 

19.5625 -1610.4 -1335.7 274.7 551 1295 4.71 
 

19.625 -1612 -1336.44 275.56 611 1310 4.75 
 

19.6875 -1613.6 -1338.66 274.94 707 1401 5.10 
 

19.75 -1614.4 -1340.14 274.26 787 1477 5.39 
 

19.8125 -1615.2 -1342.36 272.84 810 1497 5.49 
 

19.875 -1616.8 -1344.58 272.22 772 1498 5.50 
 

19.9375 -1616.8 -1346.8 270 829 1543 5.71 
 

20 -1616.8 -1348.28 268.52 896 1599 5.95 0.335191 

20.0625 -1617.6 -1349.02 268.58 881 1631 6.07 
 

20.125 -1616 -1349.76 266.24 1016 1634 6.14 
 

20.1875 -1617.6 -1351.24 266.36 1043 1648 6.19 
 

20.25 -1618.4 -1352.72 265.68 972 1696 6.38 
 

20.3125 -1617.6 -1354.2 263.4 1129 1760 6.68 
 

20.375 -1622.4 -1356.42 265.98 1084 1776 6.68 
 

20.4375 -1624 -1358.64 265.36 1081 1809 6.82 
 

20.5 -1623.2 -1359.38 263.82 1146 1818 6.89 
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Valley 

distance 

/km 

Valley-

thalweg 

depth/m 

Valley-bank 

depth/m 

Valley 

height/m 

 

Valley- 

floor 

width/m 

Valley 

Width/m 

Width/height 

  

CSA/km2 

 

20.5625 -1624.8 -1360.12 264.68 1122 1812 6.85 
 

20.625 -1624.8 -1361.6 263.2 1086 1815 6.90 
 

20.6875 -1624 -1362.34 261.66 1105 1815 6.94 
 

20.75 -1626.4 -1361.6 264.8 1167 1839 6.94 
 

20.8125 -1628 -1360.86 267.14 1201 1842 6.90 
 

20.875 -1628 -1360.86 267.14 1142 1846 6.91 
 

20.9375 -1628.8 -1360.86 267.94 1225 1858 6.93 
 

21 -1629.6 -1363.08 266.52 1193 1824 6.84 0.401831 

21.0625 -1630.4 -1374.92 255.48 1271 1836 7.19 
 

21.125 -1631.2 -1388.98 242.22 1254 1818 7.51 
 

21.1875 -1630.4 -1400.08 230.32 1181 1679 7.29 
 

21.25 -1631.2 -1400.08 231.12 1032 1644 7.11 
 

21.3125 -1631.2 -1395.64 235.56 1014 1605 6.81 
 

21.375 -1632 -1392.68 239.32 1009 1568 6.55 
 

21.4375 -1632 -1391.2 240.8 1023 1222 5.07 
 

21.5 -1633.6 -1394.16 239.44 1044 1288 5.38 
 

21.5625 -1634.4 -1394.16 240.24 1055 1332 5.54 
 

21.625 -1632.8 -1393.42 239.38 1079 1440 6.02 
 

21.6875 -1635.2 -1391.2 244 1143 1536 6.30 
 

21.75 -1635.2 -1392.68 242.52 1143 1582 6.52 
 

21.8125 -1640.8 -1391.2 249.6 1280 1674 6.71 
 

21.875 -1640.8 -1391.94 248.86 1445 1838 7.39 
 

21.9375 -1644 -1392.68 251.32 1500 1995 7.94 
 

22 -1650.4 -1391.2 259.2 1603 2036 7.85 0.431202 

22.0625 -1649.6 -1391.2 258.4 1695 2127 8.23 
 

22.125 -1654.4 -1390.46 263.94 1723 2175 8.24 
 

22.1875 -1655.2 -1389.72 265.48 1738 2231 8.40 
 

22.25 -1655.2 -1391.2 264 1659 2253 8.53 
 

22.3125 -1655.2 -1391.94 263.26 1703 2229 8.47 
 

22.375 -1656 -1390.46 265.54 1665 2236 8.42 
 

22.4375 -1656 -1388.24 267.76 1656 2260 8.44 
 

22.5 -1654.4 -1387.5 266.9 1576 2222 8.33 
 

22.5625 -1663.2 -1387.5 275.7 1511 2176 7.89 
 

22.625 -1668.8 -1387.5 281.3 1424 2170 7.71 
 

22.6875 -1669.6 -1388.24 281.36 1422 2110 7.50 
 

22.75 -1674.4 -1388.98 285.42 1469 2079 7.28 
 

22.8125 -1675.2 -1390.46 284.74 1392 2062 7.24 
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Valley 

distance 

/km 

Valley-

thalweg 

depth/m 

Valley-bank 

depth/m 

Valley 

height/m 

 

Valley- 

floor 

width/m 

Valley 

Width/m 

Width/height 

  

CSA/km2 

 

22.875 -1674.4 -1391.2 283.2 1397 2009 7.09 
 

22.9375 -1676.8 -1391.94 284.86 1258 1943 6.82 
 

23 -1677.6 -1392.68 284.92 767 1989 6.98 0.399908 

23.0625 -1688.8 -1394.16 294.64 747 1933 6.56 
 

23.125 -1683.2 -1394.16 289.04 501 1919 6.64 
 

23.1875 -1684 -1394.9 289.1 471 1830 6.33 
 

23.25 -1688 -1397.12 290.88 526 1736 5.97 
 

23.3125 -1688 -1399.34 288.66 609 1705 5.91 
 

23.375 -1692 -1398.6 293.4 358 1613 5.50 
 

23.4375 -1691.2 -1398.6 292.6 395 1607 5.49 
 

23.5 -1691.2 -1397.86 293.34 381 1602 5.46 
 

23.5625 -1692.8 -1397.12 295.68 388 1543 5.22 
 

23.625 -1694.4 -1397.86 296.54 276 1502 5.07 
 

23.6875 -1699.2 -1398.6 300.6 269 1380 4.59 
 

23.75 -1693.6 -1397.86 295.74 306 1286 4.35 
 

23.8125 -1696.8 -1399.34 297.46 326 1248 4.20 
 

23.875 -1700 -1400.08 299.92 272 1262 4.21 
 

23.9375 -1699.2 -1402.3 296.9 383 1303 4.39 
 

24 -1693.6 -1402.3 291.3 391 1265 4.34 0.226424 

24.0625 -1692.8 -1403.78 289.02 429 1331 4.61 
 

24.125 -1693.6 -1406 287.6 404 1328 4.62 
 

24.1875 -1706.4 -1406.74 299.66 359 1394 4.65 
 

24.25 -1707.2 -1406.74 300.46 389 1439 4.79 
 

24.3125 -1705.6 -1407.48 298.12 407 1415 4.75 
 

24.375 -1712.8 -1407.48 305.32 417 1429 4.68 
 

24.4375 -1712 -1408.96 303.04 374 1415 4.67 
 

24.5 -1713.6 -1409.7 303.9 365 1394 4.59 
 

24.5625 -1715.2 -1410.44 304.76 289 1380 4.53 
 

24.625 -1716 -1411.18 304.82 275 1338 4.39 
 

24.6875 -1717.6 -1412.66 304.94 244 1364 4.47 
 

24.75 -1716 -1414.14 301.86 247 1346 4.46 
 

24.8125 -1717.6 -1414.88 302.72 277 1356 4.48 
 

24.875 -1716.8 -1415.62 301.18 265 1394 4.63 
 

24.9375 -1718.4 -1416.36 302.04 263 1450 4.80 
 

25 -1720 -1417.1 302.9 316 1345 4.44 0.283733 

25.0625 -1720.8 -1417.84 302.96 452 1325 4.37 
 

25.125 -1724.8 -1422.28 302.52 504 1334 4.41 
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Valley 

distance 

/km 

Valley-

thalweg 

depth/m 

Valley-bank 

depth/m 

Valley 

height/m 

 

Valley- 

floor 

width/m 

Valley 

Width/m 

Width/height 

  

CSA/km2 

 

25.1875 -1721.6 -1428.2 293.4 468 1380 4.70 
 

25.25 -1725.6 -1432.64 292.96 410 1370 4.68 
 

25.3125 -1727.2 -1435.6 291.6 349 1390 4.77 
 

25.375 -1730.4 -1437.82 292.58 354 1398 4.78 
 

25.4375 -1737.6 -1437.82 299.78 395 1422 4.74 
 

25.5 -1735.2 -1441.52 293.68 412 1415 4.82 
 

25.5625 -1737.6 -1453.36 284.24 414 1383 4.87 
 

25.625 -1738.4 -1444.48 293.92 441 1543 5.25 
 

25.6875 -1740 -1448.18 291.82 420 1502 5.15 
 

25.75 -1733.6 -1450.4 283.2 416 1519 5.36 
 

25.8125 -1737.6 -1442.26 295.34 492 1519 5.14 
 

25.875 -1737.6 -1429.68 307.92 539 1585 5.15 
 

25.9375 -1738.4 -1425.98 312.42 678 1561 5.00 
 

26 -1744 -1422.28 321.72 714 1561 4.85 0.297392 

26.0625 -1744 -1424.5 319.5 682 1658 5.19 
 

26.125 -1745.6 -1426.72 318.88 589 1550 4.86 
 

26.1875 -1746.4 -1426.72 319.68 465 1863 5.83 
 

26.25 -1748.8 -1428.94 319.86 356 1791 5.60 
 

26.3125 -1751.2 -1429.68 321.52 284 2142 6.66 
 

26.375 -1753.6 -1429.68 323.92 394 2187 6.75 
 

26.4375 -1756 -1430.42 325.58 630 2166 6.65 
 

26.5 -1754.4 -1431.9 322.5 622 2148 6.66 
 

26.5625 -1759.2 -1431.16 328.04 666 2107 6.42 
 

26.625 -1758.4 -1432.64 325.76 702 2100 6.45 
 

26.6875 -1760 -1434.86 325.14 696 2117 6.51 
 

26.75 -1760 -1436.34 323.66 527 2058 6.36 
 

26.8125 -1758.4 -1437.08 321.32 369 2058 6.40 
 

26.875 -1772.8 -1438.56 334.24 282 1982 5.93 
 

26.9375 -1776.8 -1439.3 337.5 366 1982 5.87 
 

27 -1778.4 -1449.66 328.74 369 1721 5.24 0.279469 

27.0625 -1777.6 -1467.42 310.18 359 1286 4.15 
 

27.125 -1776 -1461.5 314.5 345 1415 4.50 
 

27.1875 -1774.4 -1462.98 311.42 399 1453 4.67 
 

27.25 -1777.6 -1465.94 311.66 401 1432 4.59 
 

27.3125 -1782.4 -1466.68 315.72 373 1429 4.53 
 

27.375 -1780.8 -1465.2 315.6 403 1436 4.55 
 

27.4375 -1782.4 -1465.94 316.46 383 1411 4.46 
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Valley 

distance 

/km 

Valley-

thalweg 

depth/m 

Valley-bank 

depth/m 

Valley 

height/m 

 

Valley- 

floor 

width/m 

Valley 

Width/m 

Width/height 

  

CSA/km2 

 

27.5 -1781.6 -1460.02 321.58 329 1443 4.49 
 

27.5625 -1784.8 -1460.02 324.78 329 1467 4.52 
 

27.625 -1787.2 -1462.98 324.22 432 1345 4.15 
 

27.6875 -1795.2 -1462.24 332.96 400 1283 3.85 
 

27.75 -1798.4 -1464.46 333.94 409 1318 3.95 
 

27.8125 -1796.8 -1471.86 324.94 332 1161 3.57 
 

27.875 -1796 -1475.56 320.44 399 1161 3.62 
 

27.9375 -1797.6 -1474.08 323.52 389 1161 3.59 
 

28 -1796.8 -1474.82 321.98 426 1165 3.62 0.192257 

28.0625 -1798.4 -1474.08 324.32 490 1147 3.54 
 

28.125 -1799.2 -1482.22 316.98 462 1109 3.50 
 

28.1875 -1796.8 -1484.44 312.36 529 1081 3.46 
 

28.25 -1796 -1474.08 321.92 558 1105 3.43 
 

28.3125 -1799.2 -1474.82 324.38 520 1220 3.76 
 

28.375 -1801.6 -1474.82 326.78 537 1297 3.97 
 

28.4375 -1801.6 -1477.04 324.56 448 1265 3.90 
 

28.5 -1804.8 -1480 324.8 427 1192 3.67 
 

28.5625 -1808 -1482.96 325.04 328 1227 3.77 
 

28.625 -1809.6 -1486.66 322.94 293 1220 3.78 
 

28.6875 -1812 -1491.84 320.16 299 1220 3.81 
 

28.75 -1815.2 -1496.28 318.92 310 1164 3.65 
 

28.8125 -1818.4 -1498.5 319.9 267 1193 3.73 
 

28.875 -1822.4 -1498.5 323.9 309 1200 3.70 
 

28.9375 -1824.8 -1498.5 326.3 340 1164 3.57 
 

29 -1836.8 -1497.76 339.04 337 1199 3.54 0.180781 

29.0625 -1847.2 -1497.76 349.44 325 1195 3.42 
 

29.125 -1848 -1497.76 350.24 288 1252 3.57 
 

29.1875 -1840.8 -1499.24 341.56 293 1224 3.58 
 

29.25 -1832 -1497.76 334.24 270 1241 3.71 
 

29.3125 -1836 -1498.5 337.5 261 1304 3.86 
 

29.375 -1838.4 -1498.5 339.9 306 1307 3.85 
 

29.4375 -1833.6 -1497.02 336.58 306 1384 4.11 
 

29.5 -1834.4 -1495.54 338.86 357 1310 3.87 
 

29.5625 -1835.2 -1502.94 332.26 302 1227 3.69 
 

29.625 -1834.4 -1506.64 327.76 331 1213 3.70 
 

29.6875 -1836.8 -1508.12 328.68 296 1171 3.56 
 

29.75 -1832.8 -1510.34 322.46 289 1091 3.38 
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Valley 

distance 

/km 

Valley-

thalweg 

depth/m 

Valley-bank 

depth/m 

Valley 

height/m 

 

Valley- 

floor 

width/m 

Valley 

Width/m 

Width/height 

  

CSA/km2 

 

29.8125 -1828 -1513.3 314.7 288 1102 3.50 
 

29.875 -1828 -1510.34 317.66 293 1060 3.34 
 

29.9375 -1828.8 -1515.52 313.28 320 1095 3.50 
 

30 -1830.4 -1516.26 314.14 274 1119 3.56 0.165813 

30.0625 -1831.2 -1515.52 315.68 326 1150 3.64 
 

30.125 -1840 -1515.52 324.48 272 1227 3.78 
 

30.1875 -1841.6 -1516.26 325.34 282 1230 3.78 
 

30.25 -1842.4 -1517 325.4 262 1258 3.87 
 

30.3125 -1840.8 -1518.48 322.32 253 1241 3.85 
 

30.375 -1840 -1519.22 320.78 266 1258 3.92 
 

30.4375 -1837.6 -1519.96 317.64 234 1286 4.05 
 

30.5 -1834.4 -1519.96 314.44 239 1300 4.13 
 

30.5625 -1834.4 -1521.44 312.96 239 1008 3.22 
 

30.625 -1834.4 -1533.28 301.12 278 998 3.31 
 

30.6875 -1834.4 -1532.54 301.86 274 1095 3.63 
 

30.75 -1834.4 -1531.06 303.34 253 1091 3.60 
 

30.8125 -1836.8 -1531.8 305 271 1088 3.57 
 

30.875 -1836 -1532.54 303.46 232 1140 3.76 
 

30.9375 -1839.2 -1532.54 306.66 225 1130 3.68 
 

31 -1840.8 -1535.5 305.3 225 1161 3.80 0.159526 

31.0625 -1841.6 -1528.84 312.76 263 1130 3.61 
 

31.125 -1843.2 -1528.84 314.36 235 998 3.17 
 

31.1875 -1840.8 -1529.58 311.22 237 998 3.21 
 

31.25 -1842.4 -1531.06 311.34 270 1015 3.26 
 

31.3125 -1842.4 -1531.06 311.34 243 1025 3.29 
 

31.375 -1843.2 -1541.42 301.78 251 1119 3.71 
 

31.4375 -1842.4 -1539.94 302.46 293 1234 4.08 
 

31.5 -1843.2 -1538.46 304.74 320 1262 4.14 
 

31.5625 -1845.6 -1536.98 308.62 344 1370 4.44 
 

31.625 -1847.2 -1537.72 309.48 386 1418 4.58 
 

31.6875 -1848.8 -1537.72 311.08 345 1432 4.60 
 

31.75 -1850.4 -1540.68 309.72 394 1415 4.57 
 

31.8125 -1850.4 
  

353 
   

31.875 -1852 -1542.9 309.1 339 1408 4.56 
 

31.9375 -1856 -1545.12 310.88 310 1382 4.45 
 

32 -1859.2 -1547.34 311.86 222 1382 4.43 0.200760 

32.0625 
 

-1548.08 
  

1342 
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Valley 

distance 

/km 

Valley-

thalweg 

depth/m 

Valley-bank 

depth/m 

Valley 

height/m 

 

Valley- 

floor 

width/m 

Valley 

Width/m 

Width/height 

  

CSA/km2 

 

32.125 
 

-1550.3 
  

1312 
  

32.1875 -1863.2 
  

282 
   

32.25 -1866.4 
  

256 
   

32.3125 -1874.4 -1554.74 319.66 293 1234 3.86 
 

32.375 -1876 -1555.48 320.52 314 1227 3.83 
 

32.4375 -1861.6 -1555.48 306.12 317 1272 4.16 
 

32.5 -1861.6 -1556.22 305.38 338 1351 4.42 
 

32.5625 -1861.6 -1555.48 306.12 399 1373 4.49 
 

32.625 -1864 -1556.96 307.04 399 1377 4.48 
 

32.6875 -1862.4 -1556.96 305.44 346 1349 4.42 
 

32.75 -1865.6 -1559.18 306.42 362 1328 4.33 
 

32.8125 -1864 -1559.92 304.08 350 1299 4.27 
 

32.875 -1868.8 -1559.92 308.88 241 1329 4.30 
 

32.9375 -1866.4 -1559.18 307.22 246 1344 4.37 
 

33 -1865.6 -1556.96 308.64 329 1527 4.95 0.165804 

33.0625 -1865.6 -1554.74 310.86 303 1539 4.95 
 

33.125 -1864 -1555.48 308.52 274 1533 4.97 
 

33.1875 -1878.4 -1556.22 322.18 210 1488 4.62 
 

33.25 -1876.8 -1559.18 317.62 186 2755 8.67 
 

33.3125 -1880.8 -1562.14 318.66 188 2729 8.56 
 

33.375 -1876.8 -1563.62 313.18 161 2681 8.56 
 

33.4375 -1880 -1565.84 314.16 224 2699 8.59 
 

33.5 -1882.4 -1565.1 317.3 202 2684 8.46 
 

33.5625 -1884.8 -1568.06 316.74 194 2613 8.25 
 

33.625 -1898.4 -1568.06 330.34 183 2640 7.99 
 

33.6875 -1901.6 -1569.54 332.06 164 2537 7.64 
 

33.75 -1890.4 -1572.5 317.9 219 2471 7.77 
 

33.8125 -1887.2 -1573.24 313.96 177 2406 7.66 
 

33.875 -1888.8 -1576.94 311.86 161 2336 7.49 
 

33.9375 -1887.2 -1578.42 308.78 183 2233 7.23 
 

34 -1888 -1579.16 308.84 177 2173 7.04 0.336700 

34.0625 -1888 -1579.9 308.1 180 2146 6.97 
 

34.125 -1888 -1577.68 310.32 181 2119 6.83 
 

34.1875 -1887.2 -1577.68 309.52 235 2090 6.75 
 

34.25 -1890.4 -1577.68 312.72 246 2038 6.52 
 

34.3125 -1892 -1580.64 311.36 232 1869 6.00 
 

34.375 -1892.8 -1582.12 310.68 255 1855 5.97 
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Valley 

distance 

/km 

Valley-

thalweg 

depth/m 

Valley-bank 

depth/m 

Valley 

height/m 

 

Valley- 

floor 

width/m 

Valley 

Width/m 

Width/height 

  

CSA/km2 

 

34.4375 -1892 -1583.6 308.4 257 1835 5.95 
 

34.5 -1888.8 -1587.3 301.5 301 1846 6.12 
 

34.5625 -1888.8 -1588.04 300.76 335 1804 6.00 
 

34.625 -1888 -1589.52 298.48 309 1742 5.84 
 

34.6875 -1888 -1591 297 329 1794 6.04 
 

34.75 -1888.8 -1593.96 294.84 315 1811 6.14 
 

34.8125 -1889.6 -1596.92 292.68 389 1770 6.05 
 

34.875 -1891.2 
  

405 
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Table A1.3. Channel bank angle of the Quaternary channel system.  

 

Channel distance/km West bank angle/° East bank angle/° 

0 
 

27 

0.125 
 

27 

0.25  29 

0.375  32 

0.5 27 34 

0.625  37 

0.75  37 

0.875  36 

1  31 

1.125  34 

1.25  38 

1.375 28 33 

1.5 29 32 

1.625 27 39 

1.75 30 25 

1.875 34 35 

2 36 27 

2.125 38 27 

2.25 36 29 

2.375 31 35 

2.5 28 31 

2.625 28 28 

2.75 28 25 

2.875 27  

3 24 31 

3.125 29 30 

3.25 29 30 

3.375 29 33 

3.5 28 28 

3.625 30 34 

3.75 30 27 

3.875 31 27 

4 29 31 

4.125 31 31 

4.25 36 38 

4.375 34 33 

4.5 32 30 

4.625 24 30 

4.75 21 30 

4.875 18 33 



 Appendix 

211 

 

Channel distance/km West bank angle/° East bank angle/° 

5 25 30 

5.125  33 

5.25 28 30 

5.375 26 23 

5.5 32 24 

5.625 31 28 

5.75 33 31 

5.875 30 30 

6 33 34 

6.125 29 28 

6.25 34 31 

6.375 34 31 

6.5 33 33 

6.625 28 29 

6.75 29 38 

6.875 26 29 

7 34 31 

7.125 34 32 

7.25 28 36 

7.375 32 34 

7.5 31 35 

7.625 29 27 

7.75 32 32 

7.875 30 27 

8 30 31 

8.125 29 29 

8.25 27 29 

8.375 24 27 

8.5 19 30 

8.625 16 30 

8.75  34 

8.875 23 25 

9 24 30 

9.125 19 24 

9.25 27 24 

9.375 28 29 

9.5 28 23 

9.625 25 21 

9.75 25  

9.875 32  

10 33  

10.125 30  
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Channel distance/km West bank angle/° East bank angle/° 

10.25 31 25 

10.375 28 37 

10.5 30 32 

10.625 25 33 

10.75 31 29 

10.875 32 31 

11 29 30 

11.125 28 31 

11.25 35 31 

11.375 30 31 

11.5 31 30 

11.625 36  

11.75 30 27 

11.875 28 24 

12 29 22 

12.125 29 22 

12.25 27 37 

12.375 25 29 

12.5 30 33 

12.625 30 31 

12.75 31 26 

12.875 36 30 

13 31 31 

13.125 34 31 

13.25 28 29 

13.375 31 35 

13.5 30 37 

13.625 30 35 

13.75 29 28 

13.875 30  

14 27 25 

14.125 26 25 

14.25 28 27 

14.375 23 26 

14.5 23 25 

14.625 26 30 

14.75 27 31 

14.875 23 29 

15 22 28 

15.125 29 26 

15.25  31 

15.375 15 33 
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Channel distance/km West bank angle/° East bank angle/° 

15.5 13 26 

15.625 14 27 

15.75  28 

15.875  26 

16 20 26 

16.125 27 24 

16.25 25  

16.375 27  

16.5 20  

16.625 19  

16.75 20  

16.875 22  

17 22  

17.125 22  

17.25   

17.375 23  

17.5 28  

17.625 25  

17.75   

17.875   

18   

18.125   

18.25   

18.375   

18.5 
 

32 

18.625 
 

33 

18.75 
 

31 

18.875 
 

35 

19 
 

29 

19.125 
 

35 

19.25 
 

28 

19.375 
 

26 

19.5 
 

23 

19.625 
  

19.75 
  

19.875 
 

21 

20 20 20 

20.125 23 24 

20.25 16 21 

20.375 23 16 

20.5 35 14 

20.625 31 
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Channel distance/km West bank angle/° East bank angle/° 

20.75 27 
 

20.875 30 
 

21 28 
 

21.125 30 
 

21.25 30 
 

21.375 
  

21.5 
  

21.625 33 
 

21.75 33 
 

21.875 35 
 

22 28 
 

22.125 32 
 

22.25 29 20 

22.375 35 
 

22.5 
  

22.625 24 21 

22.75 
 

31 

22.875 
 

32 

23 
  

23.125 
 

29 

23.25 20 27 

23.375 27 
 

23.5 27 32 

23.625 
 

36 

23.75 
 

34 

23.875 
  

24 
 

31 

24.125 
 

35 

24.25 
 

34 

24.375 
 

32 

24.5 
 

39 

24.625 23 34 

24.75 
 

37 

24.875 
 

28 

25 
 

32 

25.125 
 

34 

25.25 
 

36 

25.375 
 

35 

25.5 
 

37 

25.625 
 

30 

25.75 
 

33 

25.875 24 33 
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Channel distance/km West bank angle/° East bank angle/° 

26 23 36 

26.125 21 26 

26.25 
 

32 

26.375 18 26 

26.5 33 
 

26.625 34 
 

26.75 
  

26.875 32 25 

27 27 28 

27.125 27 30 

27.25 26 29 

27.375 27 26 

27.5 
 

27 

27.625 33 28 

27.75 24 26 

27.875 26 30 

28 27 28 

28.125 23 26 

28.25 22 30 

28.375 20 31 

28.5 28 31 

28.625 29 26 

28.75 21 31 

28.875 26 29 

29 21 28 

29.125 29 27 

29.25 33 27 

29.375 30 25 

29.5 30 25 

29.625 28 29 

29.75 32 24 

29.875 33 24 

30 32 23 

30.125 30 25 

30.25 
 

29 

30.375 26 
 

30.5 27 32 

30.625 26 30 

30.75 
 

33 

30.875 
 

34 

31 22 31 

31.125 26 27 
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Channel distance/km West bank angle/° East bank angle/° 

31.25 27 27 

31.375 31 23 

31.5 28 25 

31.625 
  

31.75 30 
 

31.875 31 26 

32 30 24 

32.125 33 23 

32.25 32 
 

32.375 33 25 

32.5 34 29 

32.625 37 31 

32.75 36 30 

32.875 
 

31 

33 31 35 

33.125 26 22 

33.25 22 31 

33.375 
 

26 

33.5 
 

33 

33.625 24 32 

33.75 
 

30 

33.875 25 31 

34 
 

29 

34.125 
 

31 

34.25 
 

33 

34.375 25 27 

34.5 
 

26 

34.625 36 
 

34.75 33 24 

34.875 34 20 

35 35 23 

35.125 28 25 

35.25 32 22 

35.375 34 30 

35.5 31 30 

35.625 37 32 

35.75 
 

25 

35.875 
 

25 

36 28 30 

36.125 21 26 

36.25 23 29 

36.375 
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Channel distance/km West bank angle/° East bank angle/° 

36.5 28 34 

36.625 28 30 

36.75 27 20 

36.875 33 21 

37 28 
 

37.125 34 25 

37.25 33 24 

37.375 38 28 

37.5 24 28 

37.625 
 

27 

37.75 
 

38 

37.875 16 36 

38 
 

34 

38.125 15 34 

38.25 19 38 

38.375 23 34 

38.5 
 

33 

38.625 
 

34 

38.75 25 32 

38.875 23 33 

39 26 36 

39.125 29 35 

39.25 22 
 

39.375 
  

39.5 
  

39.625 
  

39.75 
  

39.875 31 
 

40 28 
 

40.125 27 
 

40.25 29 21 

40.375 28 24 

40.5 28 23 

40.625 28 29 

40.75 29 27 

40.875 32 
 

41 28 21 

41.125 27 23 

41.25 24 25 

41.375 21 25 

41.5 
 

28 
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Channel distance/km West bank angle/° East bank angle/° 

41.625 
 

23 

41.75 
 

23 

41.875 
 

24 

42 
 

33 

42.125 
 

29 

42.25 
 

33 

42.375 
 

34 
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Table A1.4. Summary of morphological data for the Quaternary channel system. Morphological 

parameters include the thalweg depths of initial and present channels.  

 

Valley distance/km Thalweg depth of initial channel/m Thalweg depth of present channel/m 

18 -1580 -1407.48 

18.0625 -1580.8 -1408.96 

18.125 -1582.4 -1408.22 

18.1875 -1583.2 -1406.74 

18.25 -1582.4 -1408.96 

18.3125 -1584 -1406.74 

18.375 -1587.2 -1408.96 

18.4375 -1584 -1408.22 

18.5 -1584.8 -1411.18 

18.5625 -1585.6 -1413.4 

18.625 -1583.2 -1413.4 

18.6875 -1585.6 -1414.88 

18.75 -1587.2 -1415.62 

18.8125 -1587.2 -1414.88 

18.875 -1588 -1416.36 

18.9375 -1590.4 -1419.32 

19 -1591.2 -1422.28 

19.0625 -1591.2 -1420.8 

19.125 -1596.8 -1420.8 

19.1875 -1599.2 -1420.06 

19.25 -1600 -1418.58 

19.3125 -1601.6 -1420.8 

19.375 -1601.6 -1422.28 

19.4375 -1606.4 -1422.28 

19.5 -1608.8 -1424.5 

19.5625 -1610.4 -1426.72 

19.625 -1612 -1425.98 

19.6875 -1613.6 -1428.2 

19.75 -1614.4 -1430.42 

19.8125 -1615.2 -1432.64 

19.875 -1616.8 -1434.12 

19.9375 -1616.8 -1434.86 

20 -1616.8 -1435.6 

20.0625 -1617.6 -1437.82 

20.125 -1616 -1440.04 

20.1875 -1617.6 -1440.78 

20.25 -1618.4 -1443 

20.3125 -1617.6 -1443.74 
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Valley distance/km Thalweg depth of initial channel/m Thalweg depth of present channel/m 

20.375 -1622.4 -1444.48 

20.4375 -1624 -1445.96 

20.5 -1623.2 -1449.66 

20.5625 -1624.8 -1451.14 

20.625 -1624.8 -1462.98 

20.6875 -1624 -1457.8 

20.75 -1626.4 -1456.32 

20.8125 -1628 -1461.5 

20.875 -1628 -1468.9 

20.9375 -1628.8 -1466.68 

21 -1629.6 -1464.46 

21.0625 -1630.4 -1464.46 

21.125 -1631.2 -1468.16 

21.1875 -1630.4 -1470.38 

21.25 -1631.2 -1471.86 

21.3125 -1631.2 -1472.6 

21.375 -1632 -1470.38 

21.4375 -1632 -1470.38 

21.5 -1633.6 -1470.38 

21.5625 -1634.4 -1471.12 

21.625 -1632.8 -1470.38 

21.6875 -1635.2 -1469.64 

21.75 -1635.2 -1472.6 

21.8125 -1640.8 -1474.08 

21.875 -1640.8 -1474.08 

21.9375 -1644 -1471.12 

22 -1650.4 -1475.56 

22.0625 -1649.6 -1477.78 

22.125 -1654.4 -1479.26 

22.1875 -1655.2 -1482.22 

22.25 -1655.2 -1482.96 

22.3125 -1655.2 -1482.22 

22.375 -1656 -1485.18 

22.4375 -1656 -1484.44 

22.5 -1654.4 -1485.18 

22.5625 -1663.2 -1486.66 

22.625 -1668.8 -1521.44 

22.6875 -1669.6 -1522.18 

22.75 -1674.4 -1525.88 

22.8125 -1675.2 -1528.1 

22.875 -1674.4 -1534.02 

22.9375 -1676.8 -1538.46 
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Valley distance/km Thalweg depth of initial channel/m Thalweg depth of present channel/m 

23 -1677.6 -1537.72 

23.0625 -1688.8 -1541.42 

23.125 -1683.2 -1540.68 

23.1875 -1684 -1543.64 

23.25 -1688 -1542.9 

23.3125 -1688 -1543.64 

23.375 -1692 -1545.86 

23.4375 -1691.2 -1546.6 

23.5 -1691.2 -1545.86 

23.5625 -1692.8 -1548.82 

23.625 -1694.4 -1551.04 

23.6875 -1699.2 -1549.56 

23.75 -1693.6 -1548.82 

23.8125 -1696.8 -1548.08 

23.875 -1700 -1548.08 

23.9375 -1699.2 -1548.08 

24 -1693.6 -1548.82 

24.0625 -1692.8 -1549.56 

24.125 -1693.6 -1548.08 

24.1875 -1706.4 -1550.3 

24.25 -1707.2 -1548.08 

24.3125 -1705.6 -1552.52 

24.375 -1712.8 -1552.52 

24.4375 -1712 -1556.22 

24.5 -1713.6 -1558.44 

24.5625 -1715.2 -1561.4 

24.625 -1716 -1562.88 

24.6875 -1717.6 -1562.14 

24.75 -1716 -1562.88 

24.8125 -1717.6 -1561.4 

24.875 -1716.8 -1560.66 

24.9375 -1718.4 -1561.4 

25 -1720 -1562.88 

25.0625 -1720.8 -1562.88 

25.125 -1724.8 -1567.32 

25.1875 -1721.6 -1568.8 

25.25 -1725.6 -1571.76 

25.3125 -1727.2 -1570.28 

25.375 -1730.4 -1571.76 

25.4375 -1737.6 -1573.98 

25.5 -1735.2 -1573.24 

25.5625 -1737.6 -1573.24 
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Valley distance/km Thalweg depth of initial channel/m Thalweg depth of present channel/m 

25.625 -1738.4 -1574.72 

25.6875 -1740 -1576.2 

25.75 -1733.6 -1576.2 

25.8125 -1737.6 -1576.94 

25.875 -1737.6 -1577.68 

25.9375 -1738.4 -1585.08 

26 -1744 -1582.12 

26.0625 -1744 -1579.9 

26.125 -1745.6 -1582.12 

26.1875 -1746.4 -1582.86 

26.25 -1748.8 -1588.78 

26.3125 -1751.2 -1591.74 

26.375 -1753.6 -1596.18 

26.4375 -1756 -1597.66 

26.5 -1754.4 -1599.88 

26.5625 -1759.2 -1600.62 

26.625 -1758.4 -1600.62 

26.6875 -1760 -1601.36 

26.75 -1760 -1603.58 

26.8125 -1758.4 -1611.72 

26.875 -1772.8 -1614.68 

26.9375 -1776.8 -1614.68 

27 -1778.4 -1616.16 

27.0625 -1777.6 -1616.16 

27.125 -1776 -1618.38 

27.1875 -1774.4 -1617.64 

27.25 -1777.6 -1616.9 

27.3125 -1782.4 -1618.38 

27.375 -1780.8 -1620.6 

27.4375 -1782.4 -1624.3 

27.5 -1781.6 -1624.3 

27.5625 -1784.8 -1625.04 

27.625 -1787.2 -1628.74 

27.6875 -1795.2 -1633.18 

27.75 -1798.4 -1636.88 

27.8125 -1796.8 -1637.62 

27.875 -1796 -1636.88 

27.9375 -1797.6 -1636.88 

28 -1796.8 -1636.14 

28.0625 -1798.4 -1636.14 

28.125 -1799.2 -1636.14 

28.1875 -1796.8 -1636.14 
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Valley distance/km Thalweg depth of initial channel/m Thalweg depth of present channel/m 

28.25 -1796 -1636.88 

28.3125 -1799.2 -1635.4 

28.375 -1801.6 -1639.84 

28.4375 -1801.6 -1642.06 

28.5 -1804.8 -1647.98 

28.5625 -1808 -1651.68 

28.625 -1809.6 -1651.68 

28.6875 -1812 -1650.94 

28.75 -1815.2 -1650.2 

28.8125 -1818.4 -1652.42 

28.875 -1822.4 -1653.16 

28.9375 -1824.8 -1653.16 

29 -1836.8 -1656.12 

29.0625 -1847.2 -1656.86 

29.125 -1848 -1658.34 

29.1875 -1840.8 -1659.82 

29.25 -1832 -1659.08 

29.3125 -1836 -1659.82 

29.375 -1838.4 -1659.82 

29.4375 -1833.6 -1661.3 

29.5 -1834.4 -1662.78 

29.5625 -1835.2 -1663.52 

29.625 -1834.4 -1663.52 

29.6875 -1836.8 -1661.3 

29.75 -1832.8 -1661.3 

29.8125 -1828 -1663.52 

29.875 -1828 -1664.26 

29.9375 -1828.8 -1663.52 

30 -1830.4 -1664.26 

30.0625 -1831.2 -1664.26 

30.125 -1840 -1662.78 

30.1875 -1841.6 -1665 

30.25 -1842.4 -1665 

30.3125 -1840.8 -1664.26 

30.375 -1840 -1665 

30.4375 -1837.6 -1665 

30.5 -1834.4 -1664.26 

30.5625 -1834.4 -1662.04 

30.625 -1834.4 -1662.78 

30.6875 -1834.4 -1662.78 

30.75 -1834.4 -1666.48 

30.8125 -1836.8 -1666.48 
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Valley distance/km Thalweg depth of initial channel/m Thalweg depth of present channel/m 

30.875 -1836 -1667.22 

30.9375 -1839.2 -1668.7 

31 -1840.8 -1669.44 

31.0625 -1841.6 -1667.96 

31.125 -1843.2 -1668.7 

31.1875 -1840.8 -1667.96 

31.25 -1842.4 -1667.96 

31.3125 -1842.4 -1667.96 

31.375 -1843.2 -1667.96 

31.4375 -1842.4 -1668.7 

31.5 -1843.2 -1673.88 

31.5625 -1845.6 -1676.1 

31.625 -1847.2 -1677.58 

31.6875 -1848.8 -1679.06 

31.75 -1850.4 -1679.06 

31.8125 -1850.4 -1680.54 

31.875 -1852 -1682.76 

31.9375 -1856 -1683.5 

32 -1859.2 -1684.24 

32.0625 
 

 

32.125 
 

 

32.1875 -1863.2 -1693.12 

32.25 -1866.4 -1693.12 

32.3125 -1874.4 -1693.86 

32.375 -1876 -1692.38 

32.4375 -1861.6 -1690.9 

32.5 -1861.6 -1693.12 

32.5625 -1861.6 -1693.12 

32.625 -1864 -1693.86 

32.6875 -1862.4 -1693.86 

32.75 -1865.6 -1690.9 

32.8125 -1864 -1689.42 

32.875 -1868.8 -1690.9 

32.9375 -1866.4 -1693.86 

33 -1865.6 -1693.86 

33.0625 -1865.6 -1695.34 

33.125 -1864 -1693.12 

33.1875 -1878.4 -1694.6 

33.25 -1876.8 -1692.38 

33.3125 -1880.8 -1691.64 

33.375 -1876.8 -1691.64 

33.4375 -1880 -1692.38 
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Valley distance/km Thalweg depth of initial channel/m Thalweg depth of present channel/m 

33.5 -1882.4 -1693.86 

33.5625 -1884.8 -1693.86 

33.625 -1898.4 -1695.34 

33.6875 -1901.6 -1697.56 

33.75 -1890.4 -1699.04 

33.8125 -1887.2 -1699.04 

33.875 -1888.8 -1699.04 

33.9375 -1887.2 -1698.3 

34 -1888 -1699.04 

34.0625 -1888 -1699.78 

34.125 -1888 -1699.78 

34.1875 -1887.2 -1701.26 

34.25 -1890.4 -1702 

34.3125 -1892 -1702 

34.375 -1892.8 -1702 

34.4375 -1892 -1704.22 

34.5 -1888.8 -1703.48 

34.5625 -1888.8 -1705.7 

34.625 -1888 -1705.7 

34.6875 -1888 -1704.96 

34.75 -1888.8 -1706.44 

34.8125 -1889.6 -1707.18 

34.875 -1891.2 -1707.18 
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Appendix 2. Supplementary materials for Chapter 5. 

 

Table A2.1. Summary of morphological data for the Quaternary channel system. Morphological 

parameters include the depth of valley thalweg, magnitude of vertical aggradation (LA) and lateral 

migration (LM), LM/LA, and depositional ratio. 

 

 

Valley distance 

/km 

 

Depth of valley 

thalweg/m 

Magnitude of 

Vertical 

aggradation 

(LA)/m 

Magnitude of 

Lateral 

migration 

(LM)/m 

LM/LA 

 

 

Depositional 

ratio 

0 -1113.6 102.02 
  

 

0.0625 -1117.6 103.06 
  

 

0.125 -1117.6 100.1 
  

 

0.1875 -1120 101.02 
  

 

0.25 -1124 102.06 
  

 

0.3125 -1127.2 103.04 
  

 

0.375 -1129.6 101 
  

 

0.4375 -1129.6 101.74 
  

 

0.5 -1132.8 101.98 
  

 

0.5625 -1133.6 99.82 
  

 

0.625 -1139.2 100.98 
  

 

0.6875 -1141.6 99.68 
  

 

0.75 -1142.4 94.56 
  

 

0.8125 -1143.2 100.54 
  

 

0.875 -1143.2 100.54 
  

 

0.9375 -1144 101.34 
  

 

1 -1143.2 102.02 
  

 

1.0625 -1141.6 98.94 
  

 

1.125 -1142.4 99.74 
  

 

1.1875 -1141.6 98.94 
  

 

1.25 -1141.6 98.94 
  

 

1.3125 -1142.4 96.04 
  

 

1.375 -1147.2 95.66 
  

 

1.4375 -1161.6 104.14 
  

 

1.5 -1168.8 104.68 
  

 

1.5625 -1168.8 102.46 
  

 

1.625 -1171.2 104.12 
  

 

1.6875 -1173.6 102.08 
  

 

1.75 -1176 103.74 
  

 

1.8125 -1180 105.52 
  

 

1.875 -1180.8 102.62 
  

 

1.9375 -1181.6 101.94 
  

 



 Appendix 

227 

 

Valley distance 

/km 

 

Depth of valley 

thalweg/m 

Magnitude of 

Vertical 

aggradation 

(LA)/m 

Magnitude of 

Lateral 

migration 

(LM)/m 

LM/LA 

 

 

Depositional 

ratio 

2 -1184 102.12 
  

 

2.0625 -1188 103.16 
  

 

2.125 -1193.6 108.76 
  

 

2.1875 -1194.4 108.08 
  

 

2.25 -1195.2 109.62 
  

 

2.3125 -1197.6 111.28 
  

 

2.375 -1198.4 108.38 
  

 

2.4375 -1205.6 111.88 
  

 

2.5 -1208 116.5 
  

 

2.5625 -1210.4 116.68 
  

 

2.625 -1213.6 119.14 
  

 

2.6875 -1217.6 120.92 
  

 

2.75 -1217.6 116.48 
  

 

2.8125 -1219.2 117.34 
  

 

2.875 -1220 115.92 
  

 

2.9375 -1223.2 116.9 
  

 

3 -1225.6 118.56 
  

 

3.0625 -1227.2 120.16 
  

 

3.125 -1226.4 115.66 
  

 

3.1875 -1228.8 120.28 
  

 

3.25 -1229.6 119.6 
  

 

3.3125 -1229.6 115.9 
  

 

3.375 -1232 119.78 
  

 

3.4375 -1235.2 105.96 
  

 

3.5 -1240.8 106.38 
  

 

3.5625 -1240.8 105.64 
  

 

3.625 -1240 106.32 
  

 

3.6875 -1241.6 107.92 
  

 

3.75 -1243.2 109.52 
  

 

3.8125 -1242.4 110.2 
  

 

3.875 -1240 107.8 
  

 

3.9375 -1239.2 107.74 
  

 

4 -1238.4 109.16 
  

 

4.0625 -1240 110.02 
  

 

4.125 -1240.8 110.82 
  

 

4.1875 -1242.4 111.68 
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Valley distance 

/km 

 

Depth of valley 

thalweg/m 

Magnitude of 

Vertical 

aggradation 

(LA)/m 

Magnitude of 

Lateral 

migration 

(LM)/m 

LM/LA 

 

 

Depositional 

ratio 

4.25 -1256.8 126.08 
  

 

4.3125 -1259.2 129.22 
  

 

4.375 -1259.2 127.74 
  

 

4.4375 -1262.4 130.2 
  

 

4.5 -1263.2 127.3 
  

 

4.5625 -1266.4 125.32 
  

 

4.625 -1265.6 121.56 
  

 

4.6875 -1268.8 124.76 
  

 

4.75 -1271.2 127.9 
  

 

4.8125 -1272.8 128.02 
  

 

4.875 -1274.4 128.88 
  

 

4.9375 -1276.8 128.32 
  

 

5 -1277.6 124.68 
  

 

5.0625 -1280.8 124.18 
  

 

5.125 -1282.4 120.6 
  

 

5.1875 -1284.8 123 
  

 

5.25 -1286.4 120.9 
  

 

5.3125 -1288 122.5 
  

 

5.375 -1292 121.32 
  

 

5.4375 -1293.6 118.48 
  

 

5.5 -1296.8 120.2 
  

 

5.5625 -1300.8 120.5 
  

 

5.625 -1300 119.7 
  

 

5.6875 -1300 113.04 
  

 

5.75 -1300 110.82 
  

 

5.8125 -1300 111.56 
  

 

5.875 -1302.4 111 
  

 

5.9375 -1304.8 111.92 
  

 

6 -1307.2 110.62 
  

 

6.0625 -1311.2 113.14 
  

 

6.125 -1314.4 113.38 
  

 

6.1875 -1316 114.24 
  

 

6.25 -1319.2 115.96 
  

 

6.3125 -1319.2 115.22 
  

 

6.375 -1319.2 113 
  

 

6.4375 -1320 112.32 
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Valley distance 

/km 

 

Depth of valley 

thalweg/m 

Magnitude of 

Vertical 

aggradation 

(LA)/m 

Magnitude of 

Lateral 

migration 

(LM)/m 

LM/LA 

 

 

Depositional 

ratio 

6.5 -1324 112.62 
  

 

6.5625 -1328 113.66 
  

 

6.625 -1328 113.66 
  

 

6.6875 -1328.8 115.2 
  

 

6.75 -1329.6 115.26 
  

 

6.8125 -1331.2 113.9 
  

 

6.875 -1331.2 113.9 
  

 

6.9375 -1332 113.22 
  

 

7 -1332.8 113.28 
  

 

7.0625 -1333.6 114.08 
  

 

7.125 -1336.8 112.84 
  

 

7.1875 -1339.2 113.76 
  

 

7.25 -1339.2 115.98 
  

 

7.3125 -1338.4 115.18 
  

 

7.375 -1340 116.04 
  

 

7.4375 -1341.6 116.9 
  

 

7.5 -1344 120.78 
  

 

7.5625 -1345.6 123.12 
  

 

7.625 -1345.6 123.86 
  

 

7.6875 -1345.6 126.08 
  

 

7.75 -1347.2 125.46 
  

 

7.8125 -1347.2 121.76 
  

 

7.875 -1350.4 123.48 
  

 

7.9375 -1353.6 125.94 
  

 

8 -1356.8 128.4 
  

 

8.0625 -1361.6 131.72 
  

 

8.125 -1366.4 132.82 
  

 

8.1875 -1366.4 135.04 
  

 

8.25 -1364 131.16 
  

 

8.3125 -1364.8 131.22 
  

 

8.375 -1369.6 134.54 
  

 

8.4375 -1368 130.72 
  

 

8.5 -1376.8 136.56 
  

 

8.5625 -1373.6 131.88 
  

 

8.625 -1374.4 131.2 
  

 

8.6875 -1377.6 130.7 
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Valley distance 

/km 

 

Depth of valley 

thalweg/m 

Magnitude of 

Vertical 

aggradation 

(LA)/m 

Magnitude of 

Lateral 

migration 

(LM)/m 

LM/LA 

 

 

Depositional 

ratio 

8.75 -1382.4 131.06 
  

 

8.8125 -1383.2 130.38 
  

 

8.875 -1384.8 130.5 
  

 

8.9375 -1388 132.96 
  

 

9 -1390.4 130.18 
  

 

9.0625 -1390.4 125 
  

 

9.125 -1392.8 125.92 
  

 

9.1875 -1390.4 120.56 
  

 

9.25 -1396 125.42 
  

 

9.3125 -1402.4 129.6 
  

 

9.375 -1406.4 130.64 
  

 

9.4375 -1408 130.76 
  

 

9.5 -1410.4 131.68 
  

 

9.5625 -1410.4 130.2 
  

 

9.625 -1408.8 127.86 
  

 

9.6875 -1409.6 128.66 
  

 

9.75 -1410.4 127.24 
  

 

9.8125 -1413.6 128.22 
  

 

9.875 -1415.2 129.82 
  

 

9.9375 -1417.6 131.48 
  

 

10 -1419.2 130.86 
  

 

10.0625 -1415.2 126.12 
  

 

10.125 -1416 127.66 
  

 

10.1875 -1419.2 127.16 
  

 

10.25 -1421.6 131.78 
  

 

10.3125 -1421.6 130.3 
  

 

10.375 -1420.8 129.5 
  

 

10.4375 -1420.8 130.24 
  

 

10.5 -1420.8 130.98 
  

 

10.5625 -1422.4 130.36 
  

 

10.625 -1424.8 130.54 
  

 

10.6875 -1425.6 126.16 
  

 

10.75 -1426.4 124.74 
  

 

10.8125 -1428 124.86 
  

 

10.875 -1430.4 125.78 
  

 

10.9375 -1431.2 128.06 
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Valley distance 

/km 

 

Depth of valley 

thalweg/m 

Magnitude of 

Vertical 

aggradation 

(LA)/m 

Magnitude of 

Lateral 

migration 

(LM)/m 

LM/LA 

 

 

Depositional 

ratio 

11 -1436.8 132.18 
  

 

11.0625 -1434.4 132 
  

 

11.125 -1436.8 129.96 
  

 

11.1875 -1438.4 129.34 
  

 

11.25 -1441.6 129.58 
  

 

11.3125 -1442.4 128.16 
  

 

11.375 -1442.4 128.16 
  

 

11.4375 -1442.4 128.16 
  

 

11.5 -1444.8 129.08 
  

 

11.5625 -1444.8 128.34 
  

 

11.625 -1440.8 123.6 
  

 

11.6875 -1447.2 129.26 
  

 

11.75 -1449.6 127.22 
  

 

11.8125 -1451.2 125.12 
  

 

11.875 -1452 125.18 
  

 

11.9375 -1456.8 129.98 
  

 

12 -1458.4 129.36 
  

 

12.0625 -1464 134.96 
  

 

12.125 -1464 137.92 
  

 

12.1875 -1464 140.88 
  

 

12.25 -1463.2 139.34 
  

 

12.3125 -1459.2 136.82 
  

 

12.375 -1460 136.88 
  

 

12.4375 -1462.4 138.54 
  

 

12.5 -1464 140.88 
  

 

12.5625 -1467.2 141.12 
  

 

12.625 -1467.2 141.86 
  

 

12.6875 -1468.8 139.76 
  

 

12.75 -1470.4 141.36 
  

 

12.8125 -1472 142.96 
  

 

12.875 -1475.2 143.2 
  

 

12.9375 -1476 
   

 

13 -1477.6 141.9 
  

 

13.0625 
    

 

13.125 
    

 

13.1875 
    

 

      

      

      



 Appendix 

232 

 

Valley distance 

/km 

 

Depth of valley 

thalweg/m 

Magnitude of 

Vertical 

aggradation 

(LA)/m 

Magnitude of 

Lateral 

migration 

(LM)/m 

LM/LA 

 

 

Depositional 

ratio 

13.25 
    

 

13.3125 
    

 

13.375 
    

 

13.4375 
    

 

13.5 
    

 

13.5625 
    

 

13.625 
    

 

13.6875 
    

 

13.75 
    

 

13.8125 
    

 

13.875 
    

 

13.9375 
    

 

14 
    

 

14.0625 
    

 

14.125 
    

 

14.1875 
    

 

14.25 
    

 

14.3125 
    

 

14.375 
    

 

14.4375 
    

 

14.5 
    

 

14.5625 
    

 

14.625 
    

 

14.6875 
    

 

14.75 
    

 

14.8125 
    

 

14.875 
    

 

14.9375 
    

 

15 
    

 

15.0625 
    

 

15.125 
    

 

15.1875 
    

 

15.25 
    

 

15.3125 
    

 

15.375 
    

 

15.4375 
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Valley distance 

/km 

 

Depth of valley 

thalweg/m 

Magnitude of 

Vertical 

aggradation 

(LA)/m 

Magnitude of 

Lateral 

migration 

(LM)/m 

LM/LA 

 

 

Depositional 

ratio 

15.5 
    

 

15.5625 
    

 

15.625 
    

 

15.6875 
    

 

15.75 -1530.4 149.56 
  

 

15.8125 -1549.6 165.8 
  

 

15.875 -1551.2 164.44 
  

 

15.9375 -1552 163.76 
  

 

16 -1553.6 165.36 
  

 

16.0625 -1558.4 169.42 
  

 

16.125 -1562.4 171.94 
  

 

16.1875 -1563.2 171.26 
  

 

16.25 -1564 171.32 
  

 

16.3125 -1564.8 169.16 
  

 

16.375 -1566.4 170.76 
  

 

16.4375 -1568 173.84 
  

 

16.5 -1564.8 169.9 
  

 

16.5625 -1564.8 169.16 
  

 

16.625 -1564 167.62 
  

 

16.6875 -1563.2 169.78 
  

 

16.75 -1564 168.36 
  

 

16.8125 -1563.2 170.52 
  

 

16.875 -1564.8 173.6 
  

 

16.9375 -1575.2 185.48 
  

 

17 -1567.2 176 
  

 

17.0625 -1569.6 178.4 
  

 

17.125 -1572.8 183.08 
  

 

17.1875 -1566.4 174.46 
  

 

17.25 -1570.4 174.76 
  

 

17.3125 -1575.2 178.82 
  

 

17.375 -1576.8 176.72 
  

 

17.4375 -1577.6 174.56 
  

 

17.5 -1579.2 166.54 
  

 

17.5625 -1584 174.3 
  

 

17.625 -1585.6 180.34 
  

 

17.6875 -1584.8 181.02 500 2.76  
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Valley distance 

/km 

 

Depth of valley 

thalweg/m 

Magnitude of 

Vertical 

aggradation 

(LA)/m 

Magnitude of 

Lateral 

migration 

(LM)/m 

LM/LA 

 

 

Depositional 

ratio 

17.75 -1580.8 174.06 
  

 

17.8125 -1577.6 171.6 
  

 

17.875 -1577.6 171.6 
  

 

17.9375 -1579.2 173.2 
  

 

18 -1580 172.52 600 
 

0.72 

18.0625 -1580.8 171.84 
  

 

18.125 -1582.4 174.18 
  

 

18.1875 -1583.2 176.46 
  

 

18.25 -1582.4 173.44 
  

 

18.3125 -1584 177.26 
  

 

18.375 -1587.2 178.24 
  

 

18.4375 -1584 175.78 607 3.45  

18.5 -1584.8 173.62 
  

 

18.5625 -1585.6 172.2 
  

 

18.625 -1583.2 169.8 
  

 

18.6875 -1585.6 170.72 
  

 

18.75 -1587.2 171.58 
  

 

18.8125 -1587.2 172.32 
  

 

18.875 -1588 171.64 
  

 

18.9375 -1590.4 171.08 
  

 

19 -1591.2 168.92 302 
 

0.78 

19.0625 -1591.2 170.4 
  

 

19.125 -1596.8 176 
  

 

19.1875 -1599.2 179.14 
  

 

19.25 -1600 181.42 
  

 

19.3125 -1601.6 180.8 
  

 

19.375 -1601.6 179.32 
  

 

19.4375 -1606.4 184.12 
  

 

19.5 -1608.8 184.3 
  

 

19.5625 -1610.4 183.68 
  

 

19.625 -1612 186.02 
  

 

19.6875 -1613.6 185.4 
  

 

19.75 -1614.4 183.98 
  

 

19.8125 -1615.2 182.56 
  

 

19.875 -1616.8 182.68 
  

 

19.9375 -1616.8 181.94 
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Valley distance 

/km 

 

Depth of valley 

thalweg/m 

Magnitude of 

Vertical 

aggradation 

(LA)/m 

Magnitude of 

Lateral 

migration 

(LM)/m 

LM/LA 

 

 

Depositional 

ratio 

20 -1616.8 181.2 769 
 

0.76 

20.0625 -1617.6 179.78 
  

 

20.125 -1616 175.96 
  

 

20.1875 -1617.6 176.82 
  

 

20.25 -1618.4 175.4 
  

 

20.3125 -1617.6 173.86 
  

 

20.375 -1622.4 177.92 
  

 

20.4375 -1624 178.04 
  

 

20.5 -1623.2 173.54 
  

 

20.5625 -1624.8 173.66 
  

 

20.625 -1624.8 161.82 
  

 

20.6875 -1624 166.2 
  

 

20.75 -1626.4 170.08 
  

 

20.8125 -1628 166.5 
  

 

20.875 -1628 159.1 1261 7.93  

20.9375 -1628.8 162.12 
  

 

21 -1629.6 165.14 1235 
 

0.77 

21.0625 -1630.4 165.94 
  

 

21.125 -1631.2 163.04 
  

 

21.1875 -1630.4 160.02 
  

 

21.25 -1631.2 159.34 
  

 

21.3125 -1631.2 158.6 
  

 

21.375 -1632 161.62 
  

 

21.4375 -1632 161.62 
  

 

21.5 -1633.6 163.22 
  

 

21.5625 -1634.4 163.28 
  

 

21.625 -1632.8 162.42 
  

 

21.6875 -1635.2 165.56 
  

 

21.75 -1635.2 162.6 
  

 

21.8125 -1640.8 166.72 
  

 

21.875 -1640.8 166.72 
  

 

21.9375 -1644 172.88 
  

 

22 -1650.4 174.84 1621 
 

0.85 

22.0625 -1649.6 171.82 
  

 

22.125 -1654.4 175.14 
  

 

22.1875 -1655.2 172.98 
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Valley distance 

/km 

 

Depth of valley 

thalweg/m 

Magnitude of 

Vertical 

aggradation 

(LA)/m 

Magnitude of 

Lateral 

migration 

(LM)/m 

LM/LA 

 

 

Depositional 

ratio 

22.25 -1655.2 172.24 
  

 

22.3125 -1655.2 172.98 1698 9.82  

22.375 -1656 170.82 
  

 

22.4375 -1656 171.56 
  

 

22.5 -1654.4 169.22 
  

 

22.5625 -1663.2 176.54 
  

 

22.625 -1668.8 147.36 
  

 

22.6875 -1669.6 147.42 
  

 

22.75 -1674.4 148.52 
  

 

22.8125 -1675.2 147.1 
  

 

22.875 -1674.4 140.38 
  

 

22.9375 -1676.8 138.34 
  

 

23 -1677.6 139.88 
  

 

23.0625 -1688.8 147.38 
  

 

23.125 -1683.2 142.52 
  

 

23.1875 -1684 140.36 
  

 

23.25 -1688 145.1 
  

 

23.3125 -1688 144.36 
  

 

23.375 -1692 146.14 
  

 

23.4375 -1691.2 144.6 
  

 

23.5 -1691.2 145.34 
  

 

23.5625 -1692.8 143.98 173 1.20  

23.625 -1694.4 143.36 
  

 

23.6875 -1699.2 149.64 
  

 

23.75 -1693.6 144.78 
  

 

23.8125 -1696.8 148.72 
  

 

23.875 -1700 151.92 
  

 

23.9375 -1699.2 151.12 
  

 

24 -1693.6 144.78 242 
 

0.61 

24.0625 -1692.8 143.24 
  

 

24.125 -1693.6 145.52 
  

 

24.1875 -1706.4 156.1 
  

 

24.25 -1707.2 159.12 
  

 

24.3125 -1705.6 153.08 
  

 

24.375 -1712.8 160.28 
  

 

24.4375 -1712 155.78 
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Valley distance 

/km 

 

Depth of valley 

thalweg/m 

Magnitude of 

Vertical 

aggradation 

(LA)/m 

Magnitude of 

Lateral 

migration 

(LM)/m 

LM/LA 

 

 

Depositional 

ratio 

24.5 -1713.6 155.16 
  

 

24.5625 -1715.2 153.8 
  

 

24.625 -1716 153.12 
  

 

24.6875 -1717.6 155.46 193 1.24  

24.75 -1716 153.12 
  

 

24.8125 -1717.6 156.2 
  

 

24.875 -1716.8 156.14 
  

 

24.9375 -1718.4 157 
  

 

25 -1720 157.12 137 
 

0.5 

25.0625 -1720.8 157.92 
  

 

25.125 -1724.8 157.48 
  

 

25.1875 -1721.6 152.8 
  

 

25.25 -1725.6 153.84 
  

 

25.3125 -1727.2 156.92 
  

 

25.375 -1730.4 158.64 
  

 

25.4375 -1737.6 163.62 
  

 

25.5 -1735.2 161.96 
  

 

25.5625 -1737.6 164.36 
  

 

25.625 -1738.4 163.68 231 1.41  

25.6875 -1740 163.8 
  

 

25.75 -1733.6 157.4 
  

 

25.8125 -1737.6 160.66 
  

 

25.875 -1737.6 159.92 
  

 

25.9375 -1738.4 153.32 
  

 

26 -1744 161.88 141 
 

0.48 

26.0625 -1744 164.1 
  

 

26.125 -1745.6 163.48 
  

 

26.1875 -1746.4 163.54 
  

 

26.25 -1748.8 160.02 
  

 

26.3125 -1751.2 159.46 
  

 

26.375 -1753.6 157.42 
  

 

26.4375 -1756 158.34 366 2.31  

26.5 -1754.4 154.52 
  

 

26.5625 -1759.2 158.58 
  

 

26.625 -1758.4 157.78 
  

 

26.6875 -1760 158.64 
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Valley distance 

/km 

 

Depth of valley 

thalweg/m 

Magnitude of 

Vertical 

aggradation 

(LA)/m 

Magnitude of 

Lateral 

migration 

(LM)/m 

LM/LA 

 

 

Depositional 

ratio 

26.75 -1760 156.42 
  

 

26.8125 -1758.4 146.68 
  

 

26.875 -1772.8 158.12 
  

 

26.9375 -1776.8 162.12 
  

 

27 -1778.4 162.24 268 
 

0.49 

27.0625 -1777.6 161.44 
  

 

27.125 -1776 157.62 
  

 

27.1875 -1774.4 156.76 
  

 

27.25 -1777.6 160.7 330 2.05  

27.3125 -1782.4 164.02 
  

 

27.375 -1780.8 160.2 
  

 

27.4375 -1782.4 158.1 
  

 

27.5 -1781.6 157.3 
  

 

27.5625 -1784.8 159.76 
  

 

27.625 -1787.2 158.46 
  

 

27.6875 -1795.2 162.02 
  

 

27.75 -1798.4 161.52 
  

 

27.8125 -1796.8 159.18 
  

 

27.875 -1796 159.12 
  

 

27.9375 -1797.6 160.72 
  

 

28 -1796.8 160.66 146 
 

0.54 

28.0625 -1798.4 162.26 
  

 

28.125 -1799.2 163.06 
  

 

28.1875 -1796.8 160.66 
  

 

28.25 -1796 159.12 
  

 

28.3125 -1799.2 163.8 
  

 

28.375 -1801.6 161.76 299 1.85  

28.4375 -1801.6 159.54 
  

 

28.5 -1804.8 156.82 
  

 

28.5625 -1808 156.32 
  

 

28.625 -1809.6 157.92 
  

 

28.6875 -1812 161.06 
  

 

28.75 -1815.2 165 
  

 

28.8125 -1818.4 165.98 
  

 

28.875 -1822.4 169.24 
  

 

28.9375 -1824.8 171.64 
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Valley distance 

/km 

 

Depth of valley 

thalweg/m 

Magnitude of 

Vertical 

aggradation 

(LA)/m 

Magnitude of 

Lateral 

migration 

(LM)/m 

LM/LA 

 

 

Depositional 

ratio 

29 -1836.8 180.68 126 
 

0.48 

29.0625 -1847.2 190.34 
  

 

29.125 -1848 189.66 
  

 

29.1875 -1840.8 180.98 137 0.76  

29.25 -1832 172.92 
  

 

29.3125 -1836 176.18 
  

 

29.375 -1838.4 178.58 
  

 

29.4375 -1833.6 172.3 
  

 

29.5 -1834.4 171.62 
  

 

29.5625 -1835.2 171.68 
  

 

29.625 -1834.4 170.88 
  

 

29.6875 -1836.8 175.5 
  

 

29.75 -1832.8 171.5 
  

 

29.8125 -1828 164.48 
  

 

29.875 -1828 163.74 
  

 

29.9375 -1828.8 165.28 
  

 

30 -1830.4 166.14 158 
 

0.49 

30.0625 -1831.2 166.94 
  

 

30.125 -1840 177.22 161 0.91  

30.1875 -1841.6 176.6 
  

 

30.25 -1842.4 177.4 
  

 

30.3125 -1840.8 176.54 
  

 

30.375 -1840 175 
  

 

30.4375 -1837.6 172.6 
  

 

30.5 -1834.4 170.14 
  

 

30.5625 -1834.4 172.36 
  

 

30.625 -1834.4 171.62 
  

 

30.6875 -1834.4 171.62 
  

 

30.75 -1834.4 167.92 
  

 

30.8125 -1836.8 170.32 
  

 

30.875 -1836 168.78 
  

 

30.9375 -1839.2 170.5 
  

 

31 -1840.8 171.36 105 
 

0.45 

31.0625 -1841.6 173.64 
  

 

31.125 -1843.2 174.5 
  

 

31.1875 -1840.8 172.84 
  

 

      

      

      



 Appendix 

240 

 

Valley distance 

/km 

 

Depth of valley 

thalweg/m 

Magnitude of 

Vertical 

aggradation 

(LA)/m 

Magnitude of 

Lateral 

migration 

(LM)/m 

LM/LA 

 

 

Depositional 

ratio 

31.25 -1842.4 174.44 
  

 

31.3125 -1842.4 174.44 
  

 

31.375 -1843.2 175.24 
  

 

31.4375 -1842.4 173.7 
  

 

31.5 -1843.2 169.32 
  

 

31.5625 -1845.6 169.5 
  

 

31.625 -1847.2 169.62 
  

 

31.6875 -1848.8 169.74 264 1.56  

31.75 -1850.4 171.34 
  

 

31.8125 -1850.4 169.86 
  

 

31.875 -1852 169.24 
  

 

31.9375 -1856 172.5 
  

 

32 -1859.2 174.96 124 
 

0.49 

32.0625 
    

 

32.125 
    

 

32.1875 -1863.2 170.08 
  

 

32.25 -1866.4 173.28 
  

 

32.3125 -1874.4 180.54 
  

 

32.375 -1876 183.62 
  

 

32.4375 -1861.6 170.7 
  

 

32.5 -1861.6 168.48 
  

 

32.5625 -1861.6 168.48 
  

 

32.625 -1864 170.14 226 1.33  

32.6875 -1862.4 168.54 
  

 

32.75 -1865.6 174.7 
  

 

32.8125 -1864 174.58 
  

 

32.875 -1868.8 177.9 
  

 

32.9375 -1866.4 172.54 
  

 

33 -1865.6 171.74 66 
 

0.32 

33.0625 -1865.6 170.26 
  

 

33.125 -1864 170.88 
  

 

33.1875 -1878.4 183.8 
  

 

33.25 -1876.8 184.42 
  

 

33.3125 -1880.8 189.16 
  

 

33.375 -1876.8 185.16 
  

 

33.4375 -1880 187.62 
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Valley distance 

/km 

 

Depth of valley 

thalweg/m 

Magnitude of 

Vertical 

aggradation 

(LA)/m 

Magnitude of 

Lateral 

migration 

(LM)/m 

LM/LA 

 

 

Depositional 

ratio 

33.5 -1882.4 188.54 
  

 

33.5625 -1884.8 190.94 
  

 

33.625 -1898.4 203.06 
  

 

33.6875 -1901.6 204.04 
  

 

33.75 -1890.4 191.36 
  

 

33.8125 -1887.2 188.16 
  

 

33.875 -1888.8 189.76 
  

 

33.9375 -1887.2 188.9 
  

 

34 -1888 188.96 
  

 

34.0625 -1888 188.22 
  

 

34.125 -1888 188.22 
  

 

34.1875 -1887.2 185.94 
  

 

34.25 -1890.4 188.4 
  

 

34.3125 -1892 190 
  

 

34.375 -1892.8 190.8 
  

 

34.4375 -1892 187.78 
  

 

34.5 -1888.8 185.32 
  

 

34.5625 -1888.8 183.1 
  

 

34.625 -1888 182.3 
  

 

34.6875 -1888 183.04 
  

 

34.75 -1888.8 182.36 
  

 

34.8125 -1889.6 182.42 
  

 

34.875 -1891.2 184.02 
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Table A2.2. Summary of morphological data for the Quaternary channel system. Morphological 

parameters include Cross-sectional area of valley-fill deposits (CSAVF) and valley (CSAV), 

depositional ratio (CSAVF/CSAV), and magnitude of lateral migration (LM). 

 

Valley 

distance/km CSAVF/km2 CSAV/km2 

Depositional ratio 

(CSAVF/CSAV) LM/m 

0 
    

1 0.150691 0.255802 0.589092345 
 

2 0.120344 0.218449 0.550902041 
 

3 0.030813 0.096539 0.319176706 
 

4 0.089047 0.157693 0.564685814 
 

5 0.100738 0.170393 0.591209733 
 

6 0.083286 0.160301 0.519560078 
 

7 0.145255 0.207305 0.700682569 
 

8 0.091181 0.144674 0.630251462 
 

9 0.101224 0.180376 0.561183306 
 

10 0.100981 0.186444 0.541615713 
 

11 0.02978 0.087341 0.340962435 
 

12 0.097655 0.177246 0.550957426 
 

13 0.149799 0.229496 0.652730331 
 

14 0.135026 0.220536 0.612262851 
 

15 0.151755 0.225427 0.673189103 
 

16 0.113793 0.179847 0.632721146 277 

17 
   

198 

18 0.191765 0.265506 0.722262397 600 

19 0.196271 0.253179 0.775226223 302 

20 0.255914 0.335191 0.763487086 769 

21 0.309917 0.401831 0.771262048 1235 

22 0.365542 0.431202 0.847727979 1621 

23 0.2282 0.399908 0.570631245 
 

24 0.138872 0.226424 0.613327209 242 

25 0.141884 0.283733 0.500061678 137 

26 0.144016 0.297392 0.484263195 141 

27 0.136101 0.279469 0.486998558 268 

28 0.104628 0.192257 0.544209054 146 

29 0.086129 0.180781 0.476427279 126 

30 0.081894 0.165813 0.493893724 158 

31 0.071854 0.159526 0.450421875 105 

32 0.097441 0.20076 0.48536063 124 

33 0.053575 0.165804 0.323122482 66 

34 0.210333 0.3367 0.624689635 
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Appendix 3. Supplementary materials for Chapter 6. 

 

Table A3.1. Summary of morphological data for the Pliocene-Quaternary channel system. 

Morphological parameters include width, height, and cross-sectional area (CSA). 

 

Distance/km Width/m Height/m CSA/km2 

0 
   

0.0625 
   

0.125 
   

0.1875 
   

0.25 
   

0.3125 1274 
  

0.375 1235 279.16 
 

0.4375 1232 280.08 
 

0.5 1126 281.56 
 

0.5625 1001 275.88 
 

0.625 984 262.62 
 

0.6875 1085 265.26 
 

0.75 1278 269.88 
 

0.8125 1271 272.9 
 

0.875 1237 272.22 
 

0.9375 1295 270 
 

1 1284 269.32 0.255802 

1.0625 1288 266.3 
 

1.125 1284 261.74 
 

1.1875 1304 258.1 
 

1.25 1307 254.34 
 

1.3125 1279 251.38 
 

1.375 1301 248.48 
 

1.4375 1343 251.06 
 

1.5 1377 263.98 
 

1.5625 1377 268.96 
 

1.625 1365 267.48 
 

1.6875 1349 269.14 
 

1.75 1327 270.06 
 

1.8125 1321 269.5 
 

1.875 1313 269.8 
 

1.9375 1299 266.16 
 

2 1282 264.74 0.218449 

2.0625 1274 264.92 
 

2.125 1268 266.7 
 

2.1875 1246 270.82 
 

2.25 1257 269.4 
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Distance/km Width/m Height/m CSA/km2 

2.3125 1261 267.24 
 

2.375 1219 268.9 
 

2.4375 1215 268.22 
 

2.5 1082 274.68 
 

2.5625 940 269.68 
 

2.625 900 258.02 
 

2.6875 892 264.92 
 

2.75 861 265.22 
 

2.8125 776 261.52 
 

2.875 765 256.46 
 

2.9375 772 254.3 
 

3 772 257.5 0.096539 

3.0625 778 260.64 
 

3.125 743 261.5 
 

3.1875 734 255.52 
 

3.25 732 254.96 
 

3.3125 758 254.28 
 

3.375 856 252.8 
 

3.4375 885 252.98 
 

3.5 879 255.44 
 

3.5625 910 258.08 
 

3.625 950 256.6 
 

3.6875 977 255.06 
 

3.75 979 254.44 
 

3.8125 998 254.56 
 

3.875 1015 252.28 
 

3.9375 994 248.4 
 

4 1001 246.86 0.157693 

4.0625 983 243.84 
 

4.125 995 243.22 
 

4.1875 984 241.06 
 

4.25 966 240.44 
 

4.3125 977 254.1 
 

4.375 1055 256.5 
 

4.4375 1216 257.98 
 

4.5 1237 264.14 
 

4.5625 1229 267.16 
 

4.625 1312 264.44 
 

4.6875 1184 265.12 
 

4.75 1170 258.7 
 

4.8125 1160 260.36 
 

4.875 1121 261.96 
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Distance/km Width/m Height/m CSA/km2 

4.9375 1093 262.82 
 

5 1086 265.96 0.170393 

5.0625 1057 267.5 
 

5.125 1020 269.96 
 

5.1875 957 270.08 
 

5.25 1029 266.56 
 

5.3125 1055 268.16 
 

5.375 1123 268.28 
 

5.4375 1030 273.02 
 

5.5 1004 267.96 
 

5.5625 1071 269.68 
 

5.625 1137 273.68 
 

5.6875 1179 275.1 
 

5.75 1208 273.62 
 

5.8125 1217 272.88 
 

5.875 1175 271.4 
 

5.9375 1161 271.58 
 

6 1132 273.98 0.160301 

6.0625 1204 273.42 
 

6.125 1181 274.46 
 

6.1875 1226 276.92 
 

6.25 1259 277.78 
 

6.3125 1310 280.98 
 

6.375 1324 280.98 
 

6.4375 1079 279.5 
 

6.5 1046 266.24 
 

6.5625 1025 270.98 
 

6.625 1017 273.5 
 

6.6875 1079 270.54 
 

6.75 1054 265.42 
 

6.8125 1097 266.96 
 

6.875 1074 264.86 
 

6.9375 1097 264.12 
 

7 1108 264.92 0.207305 

7.0625 1081 265.72 
 

7.125 1143 264.3 
 

7.1875 1155 266.76 
 

7.25 1152 268.42 
 

7.3125 1184 267.68 
 

7.375 1155 266.88 
 

7.4375 1148 268.48 
 

7.5 1206 267.86 
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Distance/km Width/m Height/m CSA/km2 

7.5625 1270 269.52 
 

7.625 1192 267.42 
 

7.6875 1172 265.94 
 

7.75 1169 261.5 
 

7.8125 1135 260.14 
 

7.875 900 260.88 
 

7.9375 903 263.34 
 

8 923 265.8 0.144674 

8.0625 942 271.22 
 

8.125 947 276.02 
 

8.1875 950 279.34 
 

8.25 988 277.86 
 

8.3125 961 276.2 
 

8.375 980 277 
 

8.4375 1028 282.54 
 

8.5 990 277.98 
 

8.5625 917 284.56 
 

8.625 876 278.4 
 

8.6875 962 268.84 
 

8.75 1037 272.78 
 

8.8125 1020 277.58 
 

8.875 1034 276.9 
 

8.9375 1023 277.02 
 

9 1012 278.74 0.180376 

9.0625 1009 278.92 
 

9.125 1424 275.22 
 

9.1875 1439 295.38 
 

9.25 1255 301.86 
 

9.3125 1272 303.76 
 

9.375 1309 309.42 
 

9.4375 1306 312.68 
 

9.5 1313 304.66 
 

9.5625 1315 304.84 
 

9.625 1330 302.62 
 

9.6875 1264 297.32 
 

9.75 1217 294.42 
 

9.8125 1177 291.52 
 

9.875 1175 291.76 
 

9.9375 1259 291.88 
 

10 1261 292.8 0.186444 

10.0625 1281 294.4 
 

10.125 1310 288.18 
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Distance/km Width/m Height/m CSA/km2 

10.1875 1275 286.76 
 

10.25 937 286.26 
 

10.3125 997 275.34 
 

10.375 1037 276.08 
 

10.4375 981 276.76 
 

10.5 1103 277.5 
 

10.5625 1074 278.24 
 

10.625 1006 279.1 
 

10.6875 939 277.8 
 

10.75 934 274.9 
 

10.8125 916 271.26 
 

10.875 908 271.38 
 

10.9375 874 270.82 
 

11 834 268.66 0.087341 

11.0625 770 275 
 

11.125 775 272.6 
 

11.1875 806 273.52 
 

11.25 849 275.86 
 

11.3125 877 279.8 
 

11.375 883 280.6 
 

11.4375 891 280.6 
 

11.5 1017 279.86 
 

11.5625 961 283 
 

11.625 970 280.78 
 

11.6875 1097 279.74 
 

11.75 1284 289.84 
 

11.8125 1326 295.2 
 

11.875 1348 296.8 
 

11.9375 1395 299.08 
 

12 1152 303.14 0.177246 

12.0625 1185 289.2 
 

12.125 1201 294.8 
 

12.1875 1219 294.06 
 

12.25 1201 293.32 
 

12.3125 1206 291.04 
 

12.375 1210 284.08 
 

12.4375 1188 281.92 
 

12.5 1137 279.14 
 

12.5625 1017 277.04 
 

12.625 1034 275.8 
 

12.6875 1008 274.32 
 

12.75 941 272.96 
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Distance/km Width/m Height/m CSA/km2 

12.8125 1306 270.86 
 

12.875 1353 273.94 
 

12.9375 1364 275.66 
 

13 1712 273.5 0.458460 

13.0625 1680 288.48 
 

13.125 1828 305.9 
 

13.1875 1950 316.68 
 

13.25 1955 325.18 
 

13.3125 2121 334.54 
 

13.375 2127 343.96 
 

13.4375 2200 335.52 
 

13.5 2267 336.68 
 

13.5625 2127 321.04 
 

13.625 2230 316.66 
 

13.6875 2247 310.68 
 

13.75 2200 311.6 
 

13.8125 2235 329.14 
 

13.875 2369 335.66 
 

13.9375 2232 350.8 
 

14 2433 357.26 0.558103 

14.0625 2345 362.74 
 

14.125 2376 352.4 
 

14.1875 2365 355.54 
 

14.25 2265 354.06 
 

14.3125 2238 355.54 
 

14.375 2294 350.8 
 

14.4375 2246 341.8 
 

14.5 2311 336 
 

14.5625 2329 334.58 
 

14.625 2326 335.5 
 

14.6875 2333 331.62 
 

14.75 2395 331.8 
 

14.8125 2458 330.32 
 

14.875 2403 333.46 
 

14.9375 2392 332.04 
 

15 2382 332.34 0.706487 

15.0625 2402 336.22 
 

15.125 2305 337.32 
 

15.1875 2340 332.76 
 

15.25 2312 334.98 
 

15.3125 2295 329.06 
 

15.375 2239 327.7 
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Distance/km Width/m Height/m CSA/km2 

15.4375 2239 326.22 
 

15.5 2204 324.06 
 

15.5625 
 

319 
 

15.625 
 

314.68 
 

15.6875 
 

318.5 
 

15.75 
 

319.92 
 

15.8125 
 

318.38 
 

15.875 
 

321.46 
 

15.9375 
 

320.78 
 

16 
  

0.713840 

16.0625 
   

16.125 
   

16.1875 
   

16.25 
   

16.3125 
   

16.375 
   

16.4375 
   

16.5 
   

16.5625 
   

16.625 
   

16.6875 
   

16.75 
   

16.8125 
   

16.875 
   

16.9375 
   

17 
   

17.0625 3112 
  

17.125 3107 310.02 
 

17.1875 3186 313.16 
 

17.25 3246 314.76 
 

17.3125 3312 314.08 
 

17.375 3333 314.08 
 

17.4375 3338 315.68 
 

17.5 3386 314.88 
 

17.5625 3386 314.2 
 

17.625 3483 311.92 
 

17.6875 3459 311.18 
 

17.75 3503 307.3 
 

17.8125 3499 308.96 
 

17.875 3490 309.02 
 

17.9375 3551 309.14 
 

18 3551 308.46 0.904941 
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Distance/km Width/m Height/m CSA/km2 

18.0625 3607 310.18 
 

18.125 3581 308.58 
 

18.1875 3621 306.18 
 

18.25 3590 307.72 
 

18.3125 3647 307.72 
 

18.375 3638 309.38 
 

18.4375 3612 308.64 
 

18.5 3650 306.36 
 

18.5625 3625 308.02 
 

18.625 3690 309.68 
 

18.6875 3673 309.68 
 

18.75 3642 310.54 
 

18.8125 3616 312.14 
 

18.875 3651 317.8 
 

18.9375 3629 319.4 
 

19 3580 318.78 0.858614 

19.0625 3450 318.1 
 

19.125 3344 316.68 
 

19.1875 3243 315.26 
 

19.25 3227 315.38 
 

19.3125 3241 317.04 
 

19.375 2879 318.02 
 

19.4375 2868 312.04 
 

19.5 2819 323.18 
 

19.5625 3130 326.32 
 

19.625 3260 316.9 
 

19.6875 3351 313.02 
 

19.75 3377 311.54 
 

19.8125 3425 310.12 
 

19.875 3468 307.22 
 

19.9375 3612 304.38 
 

20 3668 299.2 0.828541 

20.0625 3742 296.92 
 

20.125 3742 293.9 
 

20.1875 3782 292.42 
 

20.25 3824 293.34 
 

20.3125 3715 296.54 
 

20.375 3742 293.64 
 

20.4375 3817 295.86 
 

20.5 3810 295.12 
 

20.5625 3837 296.78 
 

20.625 3919 297.58 
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Distance/km Width/m Height/m CSA/km2 

20.6875 3952 298.38 
 

20.75 3980 296.16 
 

20.8125 3939 294.74 
 

20.875 3973 292.58 
 

20.9375 4095 290.36 
 

21 4217 289.74 0.995464 

21.0625 4319 286.72 
 

21.125 4367 290.72 
 

21.1875 4421 291.58 
 

21.25 4543 291.64 
 

21.3125 4598 295.7 
 

21.375 4577 300.5 
 

21.4375 4638 303.08 
 

21.5 5148 297.78 
 

21.5625 5154 301.42 
 

21.625 5175 300.74 
 

21.6875 5257 298.52 
 

21.75 5304 298.58 
 

21.8125 5304 295.5 
 

21.875 5372 295.56 
 

21.9375 5467 294.08 
 

22 5766 298.26 1.218831 

22.0625 5832 303.18 
 

22.125 5790 301.76 
 

22.1875 5866 305.02 
 

22.25 5840 311.48 
 

22.3125 5857 313.14 
 

22.375 5909 309.26 
 

22.4375 6002 315.72 
 

22.5 5959 310.24 
 

22.5625 5892 311.16 
 

22.625 5773 312.08 
 

22.6875 5959 309.8 
 

22.75 5790 312.26 
 

22.8125 5747 313.24 
 

22.875 5840 313.24 
 

22.9375 5695 309.24 
 

23 5594 306.96 1.221705 

23.0625 5280 302.96 
 

23.125 5263 311.08 
 

23.1875 5170 310.1 
 

23.25 4915 306.96 
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Distance/km Width/m Height/m CSA/km2 

23.3125 4669 296.74 
 

23.375 4567 319.2 
 

23.4375 4465 322.52 
 

23.5 4126 321.78 
 

23.5625 4000 324.98 
 

23.625 3905 322.7 
 

23.6875 3820 324.24 
 

23.75 2461 321.96 
 

23.8125 2309 322.82 
 

23.875 2156 324.42 
 

23.9375 2113 325.34 
 

24 2017 325.46 0.352194 

24.0625 2105 325.52 
 

24.125 2105 325.58 
 

24.1875 2096 330.5 
 

24.25 1370 326.06 
 

24.3125 1390 292.96 
 

24.375 1398 291.6 
 

24.4375 1422 292.58 
 

24.5 1415 299.78 
 

24.5625 1383 293.68 
 

24.625 1543 284.24 
 

24.6875 1502 293.92 
 

24.75 1519 291.82 
 

24.8125 1519 283.2 
 

24.875 1585 295.34 
 

24.9375 1561 307.92 
 

25 1561 312.42 0.297392 

25.0625 1658 321.72 
 

25.125 1550 319.5 
 

25.1875 1863 318.88 
 

25.25 1791 319.68 
 

25.3125 2142 319.86 
 

25.375 2187 321.52 
 

25.4375 2166 323.92 
 

25.5 2148 325.58 
 

25.5625 2107 322.5 
 

25.625 2100 328.04 
 

25.6875 2117 325.76 
 

25.75 2058 325.14 
 

25.8125 2058 323.66 
 

25.875 1982 321.32 
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Distance/km Width/m Height/m CSA/km2 

25.9375 1982 334.24 
 

26 1721 337.5 0.279469 

26.0625 1286 328.74 
 

26.125 1415 310.18 
 

26.1875 1453 314.5 
 

26.25 1432 311.42 
 

26.3125 1429 311.66 
 

26.375 1436 315.72 
 

26.4375 1411 315.6 
 

26.5 1443 316.46 
 

26.5625 1467 321.58 
 

26.625 1345 324.78 
 

26.6875 1283 324.22 
 

26.75 1318 332.96 
 

26.8125 1161 333.94 
 

26.875 1161 324.94 
 

26.9375 1161 320.44 
 

27 1165 323.52 0.192257 

27.0625 1147 321.98 
 

27.125 1109 324.32 
 

27.1875 1081 316.98 
 

27.25 1105 312.36 
 

27.3125 1220 321.92 
 

27.375 1297 324.38 
 

27.4375 1265 326.78 
 

27.5 1192 324.56 
 

27.5625 1227 324.8 
 

27.625 1220 325.04 
 

27.6875 1220 322.94 
 

27.75 1164 320.16 
 

27.8125 1193 318.92 
 

27.875 1200 319.9 
 

27.9375 1164 323.9 
 

28 1199 326.3 0.180781 

28.0625 1195 339.04 
 

28.125 1252 349.44 
 

28.1875 1224 350.24 
 

28.25 1241 341.56 
 

28.3125 1304 334.24 
 

28.375 1307 337.5 
 

28.4375 1384 339.9 
 

28.5 1310 336.58 
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Distance/km Width/m Height/m CSA/km2 

28.5625 1227 338.86 
 

28.625 1213 332.26 
 

28.6875 1171 327.76 
 

28.75 1091 328.68 
 

28.8125 1102 322.46 
 

28.875 1060 314.7 
 

28.9375 1095 317.66 
 

29 1119 313.28 0.165813 

29.0625 1150 314.14 
 

29.125 1227 315.68 
 

29.1875 1230 324.48 
 

29.25 1258 325.34 
 

29.3125 1241 325.4 
 

29.375 1258 322.32 
 

29.4375 1286 320.78 
 

29.5 1300 317.64 
 

29.5625 1008 314.44 
 

29.625 998 312.96 
 

29.6875 1095 301.12 
 

29.75 1091 301.86 
 

29.8125 1088 303.34 
 

29.875 1140 305 
 

29.9375 1130 303.46 
 

30 1161 306.66 0.159526 

30.0625 1130 305.3 
 

30.125 998 312.76 
 

30.1875 998 314.36 
 

30.25 1015 311.22 
 

30.3125 1025 311.34 
 

30.375 1119 311.34 
 

30.4375 1234 301.78 
 

30.5 1262 302.46 
 

30.5625 1370 304.74 
 

30.625 1418 308.62 
 

30.6875 1432 309.48 
 

30.75 1415 311.08 
 

30.8125 
 

309.72 
 

30.875 1408 
  

30.9375 1382 309.1 
 

31 1382 310.88 0.200760 

31.0625 1342 311.86 
 

31.125 1312 
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Distance/km Width/m Height/m CSA/km2 

31.1875 
   

31.25 
   

31.3125 1234 
  

31.375 1227 319.66 
 

31.4375 1272 320.52 
 

31.5 1351 306.12 
 

31.5625 1373 305.38 
 

31.625 1377 306.12 
 

31.6875 1349 307.04 
 

31.75 1328 305.44 
 

31.8125 1299 306.42 
 

31.875 1329 304.08 
 

31.9375 1344 308.88 
 

32 1527 307.22 0.165804 

32.0625 1539 308.64 
 

32.125 1533 310.86 
 

32.1875 1488 308.52 
 

32.25 2755 322.18 
 

32.3125 2729 317.62 
 

32.375 2681 318.66 
 

32.4375 2699 313.18 
 

32.5 2684 314.16 
 

32.5625 2613 317.3 
 

32.625 2640 316.74 
 

32.6875 2537 330.34 
 

32.75 2471 332.06 
 

32.8125 2406 317.9 
 

32.875 2336 313.96 
 

32.9375 2233 311.86 
 

33 2173 308.78 
 

33.0625 2146 308.84 
 

33.125 2119 308.1 
 

33.1875 2090 310.32 
 

33.25 2038 309.52 
 

33.3125 1869 312.72 
 

33.375 1855 311.36 
 

33.4375 1835 310.68 
 

33.5 1846 308.4 
 

33.5625 1804 301.5 
 

33.625 1742 300.76 
 

33.6875 1794 298.48 
 

33.75 1811 297 
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Distance/km Width/m Height/m CSA/km2 

33.8125 1770 294.84 
 

33.875 
 

292.68 
 

 


