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Abstract 

This thesis investigates the role of the Architect in the operational performance 

of non-domestic buildings claiming to be low energy. 

The study used mixed research methods and built on the author’s previous 

work with the IEE-funded iSERV project to understand and quantify the 

influence architects exercise on the operational performance of low energy 

buildings. The mixed research methods comprised literature based research 

and a comparative case study investigation of two well monitored buildings, 

one constructed before and one after energy efficiency became a focal point of 

building regulations and energy policy. The later building promoted its low 

energy design aspirations.  

The comparative case study investigation traced the energy flows in the 

selected case studies at building, system, component, space and activity 

level. It also examined the indoor environmental quality achieved and 

occupant-perceived satisfaction with the indoor environment. The study 

demonstrated how energy was used in the selected case study buildings and 

quantified the influence of stakeholders on their energy performance. 

The thesis concluded that architects have only a partial influence on the non-

performance of low energy buildings, with occupant behaviour and facility 

management also influencing a significant portion of the total energy 

consumption. The findings of this research suggested that the architect’s 

design decisions influenced approximately 23% to 28% of the total annual 

electricity use and nearly the total heat energy use in the recent low energy 

building studied. For the conventional existing building studied, these 

proportions became approximately 43% to 47% of the total annual electricity 

use and 94% to 97% of the annual heat energy use.
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Introduction 

This chapter introduces the overarching themes of this thesis and places the 

motivation for this research into context. Thereafter, the aim and objectives of 

this research are defined. Finally, an overview of the thesis structure is 

presented on a per-chapter basis. 

Overarching Themes 

The increase of efficiency in the energy supply and use across all economy 

sectors is considered one of the major pillars of the European Union’s energy 

and climate change policy aiming to ensure sustainability, energy security and 

competitiveness in the EU area (E.C., 2013). Following the 2050 Low Carbon 

Roadmap, which framed the building sector as the largest contributor to future 

decarbonisation targets (E.C., 2010b), the European Commission has been in 

the process of implementing actions focusing on improving the energy 

efficiency of the building stock. The Commission is pushing this agenda through 

funding of research focusing on the energy performance of buildings as well as 

the implementation of relevant legislation such as the compulsory construction 

of new public buildings as near zero energy performers from 2020 onwards 

(E.C., 2010a).   

The discipline of architecture has not remained unaffected by these 

developments. A surge of buildings claiming to have a low energy performance 

has been observed since the start of the new millennium. The fact that a 

significant number of recent Pritzker-prize-winning architects have claimed that 

some of their buildings show exemplary sustainable or low energy design is a 

manifestation of this trend. However, it is becoming increasingly apparent that 

a growing number of buildings proclaimed low energy fail to perform as 

predicted (Scofield, 2009a, Scofield, 2009b, Hogg and Botten, 2012, Menezes 

et al., 2012, Bordass et al., 2004, Bordass et al., 2001, Bordass, 2000).  

Following the focus given on low energy buildings since the 1990s, and the 

research and policy actions promoting energy efficiency that have derived as a 
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result, we appear to still be struggling to achieve energy efficiency and predict 

in-use and future building performance. The extent of the operational non-

performance of low energy buildings in practice is paving the way for architects 

to be rendered liable, even contractually (Mark, 2013, O’Connor, 2012), 

concerning buildings which do not meet their design performance targets.  

The driver of this research has been to develop an understanding of the role of 

the Architect in the operational performance of buildings, with the central aim 

being to understand the Architect’s actual influence on the operational 

performance of low energy buildings.  

The research has therefore focused on quantifying the influence architects 

exercise on the operational performance of low energy buildings in two 

contrasting operational buildings. The hypothesis underpinning this research 

has been that Architects can only influence part of the operational performance 

of low energy buildings.  

As a further conclusion from this study, the study also suggests which parts of 

the energy use of a design the architect could be considered responsible for. 

This research was focused on non-domestic buildings claiming to be low 

energy. It was constructed upon a central question with both descriptive and 

explanatory aspects, it was concerned with what has happened in practice, and 

included the evaluation of building performance. To address this question 

mixed research methods combining literature based research and case study 

methods were employed.  

Case study research is concerned with the in depth empirical examination and 

astute appreciation of a single or small group of real world cases, and is 

particularly focused on contemporary phenomena as well as cases of 

descriptive or explanatory research questions which are concerned with 

capturing a phenomenon happening and the reasons behind it (Bromley, 1986, 

Yin, 2013, Shavelson et al., 2003). Literature based research aims at 

considering and scrutinising past literature to gain insight into a problem (Leedy 

and Ormrod, 2004, Machi and McEvoy, 2009). Therefore, the use of mixed 

research methods combining literature based research and case study 

methods was considered appropriate to address its central aim.  
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The driver of this research embedded the assumption that recently constructed 

buildings might present differences with regard to the implementation of the 

concept of energy efficiency when compared to older buildings constructed 

before the legislative focus on low energy building performance. Consequently, 

the case studies selected for this research were of different construction types 

to reflect this assumption. The selected case studies were: 

• a newly designed and architecturally awarded multi use building, 

claiming to be low energy through building design procurement and 

committed to abide by strict energy targets set during procurement, and  

• an existing building designed before energy efficiency was a priority, 

with a commitment to improve its performance since 2005 through 

participation in schemes and research projects focusing on energy 

efficiency of HVAC systems.  

The comparative case study empirical investigation used in this research did 

not allow for the statistical generalisation to the general building population. 

Instead, this research was committed to an analytic generalisation according 

to which it was assessed how this research’s findings could inform relationships 

between existing concepts and practices. What is presented is what should be 

important for architects to take in consideration when designing, erecting, and 

operating low energy buildings.  

Unlike previous work undertaken in this field, this research addressed the 

question of the architect’s actual influence on the operational performance of 

low energy buildings, by: 

• collecting, correlating and synthesising information from multiple 

sources regarding the case studies’ measurable energy and indoor 

environmental quality performance as well as the occupant-perceived 

satisfaction with their environment, not currently consolidated by 

architects in practice; 

• applying cross-disciplinary methods pertinent to the physical, social and 

data sciences; 
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• tracing the energy flows in the case studies at the detail of building 

systems, components, spaces and activities, currently overlooked in the 

discipline of architecture; 

• comparing the measured energy efficiency to research and 

experimental benchmarks of HVAC systems, components and end 

uses; 

• comparing two case studies from different construction types, one 

designed and constructed before and one after energy efficiency 

became a focal point in building legislation;  

• suggesting which parts of the energy use of a design the Architect could 

be considered responsible for and proposing a framework for allocating 

system energy use to building stakeholder; and 

• quantifying the influence of building stakeholders on the operational 

energy performance of the selected case studies. 

Research Objectives 

This research serves the following objectives: 

• to review the definitions of energy efficiency within the context of building 

design and operation with an aim of adopting them in this research; 

• to review the barriers to implementing energy efficiency in non-domestic 

buildings in order to identify factors pertinent to the topic of this research; 

• to understand whether we can suggest a framework for assessing the 

operation of low energy non-domestic buildings, and identify 

documented areas of operational failure in past literature which must be 

considered in this research; 

• to review the state of the art in the area of building performance 

assessment related to the use of operational data collected from 

buildings in order to identify methods and designs to be used in the 

context of this research; and 
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• to employ a comparative case study investigation of two well monitored 

buildings of different construction types to quantify the influence of 

architects on the total building energy use and test the hypothesis 

underpinning this research. 

The comparative case study investigation was employed to address the 

following specific research objectives: 

• trace the energy flows in the selected case studies; 

• examine whether the energy performance of the selected case study 

buildings was reflected by indoor environmental quality and occupant-

perceived satisfaction with the indoor environment; 

• demonstrate how energy efficiency was achieved in the selected case 

study buildings; 

• quantify the influence of stakeholders on the energy performance of the 

selected case studies. 

The essence of this research has been to understand the role of the Architect 

in the operational performance of low energy buildings.  

Thesis Structure 

This thesis comprises eight chapters organised under the structure presented 

in Table 1. 



Introduction 
 

6 
 

 
Table 1: Thesis Outline 
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Background Summary of EU Energy Security 
challenges & Climate Change 
strategic plans, UK energy efficiency 
policies, and performance gap.

Chapter 1 Energy efficiency 
within the context of 
building design and 
operation

Definition of energy efficiency in 
different disciplines & barriers 
hindering its successful 
implementation in buildings.

Chapter 2 The operation of low 
energy buildings 

Review of past building performance 
studies to understand whether we 
can suggest a framework for 
assessing the operation of low 
energy non-domestic buildings.

In
v
e

s
ti
g

a
ti
o
n

Chapter 3 Building Performance 
Assessment

Summary of state of the art in the 
area of building performance 
assessment based on operational 
data.

Chapter 4 Research 
Methodology

Presentation of the methodology 
underpinning this research.

Chapter 5 Results Presentation of main findings of 
comparative case study 
investigation. 
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Chapter 6 Discussion Discussion of principal findings of 
the conducted comparative case 
study research within the context of 
the research aim, as well as within 
the context of past research.

Chapter 7 Conclusions Discussion of the achievement of 
research objectives, presentation of 
the implications of the research 
findings, the limitations of the study 
and the areas of further 
investigation.
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Background  

The purpose of this chapter is to provide background information relevant to 

understanding the thesis’ motivation.  

Chapter 1: Energy efficiency within the context of building design and 

operation 

In Chapter 1, the definition of energy efficiency adopted in this thesis is 

established and the barriers hindering its successful implementation in 

buildings are reviewed. 

Chapter 2: The operation of low energy buildings  

In Chapter 2, a review of past low energy building performance studies is 

conducted to understand whether we can suggest a framework for assessing 

the operation of low energy non-domestic buildings and identify documented 

areas of operational failure in existing low energy buildings. 

Chapter 3: Building Performance Assessment 

Chapter 3 presents the state of the art in the area of building performance 

assessment based on operational performance data.  

Chapter 4: Research Methodology 

Chapter 4 presents the methodology underpinning this research.  

Chapter 5: Results 

Chapter 5 presents the main findings of the comparative case study 

investigation undertaken in this research in order to address the research aim.  

Chapter 6: Discussion 

Chapter 6 presents a discussion of the principal research findings of the 

conducted comparative case study investigation. 

Chapter 7: Conclusions 

Chapter 7 presents a discussion regarding the achievement of this research’s 

objectives, the implications of the research findings, the limitations of the study 

and the areas of further investigation.
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Background 

I. Introduction 

The purpose of this chapter is to provide background information relevant to 

understand the thesis’ motivation.  

The specific objectives of this chapter are to: 

• review the European Union’s energy security and climate change 

challenges; 

• discuss the role of energy efficiency in reducing global energy demand 

and battling climate change; 

• examine the European Union’s strategic plans to reduce greenhouse 

gas emissions and achieve energy security through building energy 

efficiency; 

• review the United Kingdom’s policies pertinent to energy efficiency in the 

non-domestic building sector; and 

• discuss the performance gap between designed and real world building 

performance. 

The research argument developed in this chapter is that following a few 

decades of research and policy promoting energy efficiency, as well as 

metering in buildings, we appear to still be struggling to achieve energy 

efficiency and predict in-use and future building performance. 

II. Understanding the European Union’s 

energy security challenges 

In the span of the past three decades, the world has witnessed an unparalleled 

increase in global energy demand. Before the 2008 world economy meltdown, 

the International Energy Agency was reporting that during a twenty-year period 

from 1984 to 2004, global primary energy consumption increased by 49%, 
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whereas CO2 emissions grew  by 43% (IEA, 2006). In parallel, global electricity 

energy consumption increased by over two and a half times during the same 

period  (IEA, 2006). Following a brief recovery in global financial markets (2008-

2010), global primary energy demand was observed to have rebounded by 5% 

in 2010 leading global CO2 emissions to new heights (IEA, 2011).  

While energy demand has been increasing, the global energy system is placed 

under stress due to geopolitical events comprising conflicts in the Middle East, 

the sole large source of low-cost oil, and conflicts between Russia, EU’s main 

gas provider, and Eastern European countries (IEA, 2014e). According to the 

International Energy Agency (IEA, 2014e), the global energy system is at risk 

of being unable to fulfil the expectations placed upon it when we consider the 

geopolitical events compromising energy security, the uncertain outlook of 

nuclear energy, the millions for whom electricity is still a luxury and the 

continuous increase of greenhouse gas emissions resulting in air pollution of 

emerging urban centres. 

In the realm of these developments, the European Union is faced with its own 

particular challenges sourcing from its dependence on energy imports. To date, 

oil is the EU’s primary fuel. Although it is estimated that as a result of the 

planned transition to low-carbon energy systems and renewable energy 

sources (IEA, 2014e, E.C., 2010c) the growth of fossil fuel use will be 

restrained, the domestic EU oil production is expected to shrink further and 

dependence on oil imports is expected to rise from 82% to 94% by 2030 (E.C., 

2013) creating conditions of almost absolute dependence. In parallel, it is 

estimated that the forecasted depletion of EU indigenous gas sources will 

accentuate the EU’s need for gas imports affecting more EU member states 

(E.C., 2013). In addition, the EU’s dependence on energy imports becomes a 

more perplexed issue when considering that one nation, the Russian 

Federation, is the EU’s leading crude oil supplier and single natural gas source 

providing a number of EU member states (E.C., 2013). With regard to the UK, 

since 2006 energy security has become an important policy as the country has 

been gradually developing into a net energy importer following the decline of 

North Sea oil and gas (Mallaburn and Eyre, 2014). 
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It is important to note that although Europe maintains great coal reserves, their 

use either in the present or the future is limited by policies aiming at reducing 

CO2 emissions contributing to air pollution and climate change (IEA, 2014e). 

The European Commission's 2050 Low Carbon Roadmap (E.C., 2010b) has 

placed at its centre the achievement of a 80% greenhouse gas reduction in line 

with creating a low carbon economy and ensuring energy security. Hence, EU 

member states are looking instead into actions aiming at increasing the use of 

renewable energy resources (E.C., 2013).  

In summary, the EU’s high-energy import dependence makes its future energy 

availability less predictable. Despite efforts to reduce consumption of fossil 

fuels by boosting energy produced from renewable resources, the gravity of the 

future implications deriving from this dependence is made more apparent when 

considering the forecasted decrease of the EU’s share in the global non-

renewable energy market  (Pérez-Lombard et al., 2008). The EU’s core 

dependence on energy imports, therefore, places its future energy security at 

risk. 

III. The role of energy efficiency in 

reducing global energy demand and 

battling climate change 

While the EU is looking to address its energy security issues, research shows 

that technological advances improving energy efficiency across all sectors 

could become a reliable path in combating these issues (IEA, 2014f).  

The role of energy efficiency in reducing global energy consumption has been 

widely debated. In 2012, the IEA’s World Energy Outlook highlighted the 

importance of energy efficiency in battling climate change using the prolific 

headline “Energy efficiency can keep the door to 2 °C open for just a bit longer” 

(IEA, 2012). The report explained that according to the IEA  450 scenario1, 

                                                 
1 The 450 Scenario is one of the climate change mitigation scenarios 
compiled by the International Energy Agency. This scenario assumes an 
“energy pathway consistent with the goal of limiting the global increase in 
temperature to 2°C” by reducing the concentration of greenhouse gas in the 
atmosphere to around 450 parts per million of CO2”. The 450 scenario 
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which aims at limiting the global increase of temperature to 2°C by reducing 

the atmospheric concentration of greenhouse gas emissions, about four fifths 

of the CO2 emissions that can be allowed in the atmosphere by 2035 are 

already “locked-in” in existing buildings, energy generation plants and factories. 

To avoid reaching the limit of allowable emissions in short time, it is necessary 

that appropriate actions are taken by 2017, specifically the diffusion, uptake 

and application of energy efficient and low carbon technology which has the 

potential of postponing the complete lock-in by 2022. More effective solutions 

are either achieving a worldwide agreement on cutting greenhouse gas 

emissions or deploying carbon capture and storage technology (IEA, 2012). 

However, both options are subject to uncertainty to date, and as a result energy 

efficiency along with low carbon technology are currently considered the most 

realistic options. 

The most important contribution to reaching energy security 

and climate goals comes from the energy that we do not 

consume (IEA, 2011). 

Earlier research proposed that efficiency should be considered as one the four 

factors that will determine the total global energy consumption along with 

population (with access to energy) growth, GDP growth and mainstream fuel 

type used  (Hassol et al., 2002). Although it is considered to have the smallest 

potential to affect greenhouse gas  emission production in comparison to other 

factors, it has been argued to be more manageable with regard to reducing 

emissions while meeting energy demands at a reasonable cost (Hassol et al., 

2002). Table 1 shows the predicted effect of growth in population and income 

on future energy demand. If this is combined with the fact that income rising 

from a low level results to higher energy use than income rising from a higher 

                                                 

proposes to achieve emissions reductions by 2020 by implementing four no 
net economic cost approaches; targeted improvement of energy efficiency 
across the industry, buildings and transport sectors; limitations in the use and 
construction of inefficient coal fired power plants; limitations in methane 
emissions in the production of oil and gas; gradual phasing out of fossil-fuels 
subsidies to end-users IEA 2014a. 450 Scenario: Method and Policy 
Framework. In: AGENCY, I. E. (ed.). OECD Publishing. 
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level, it is evident that energy consumption per capita has an important role in 

global energy demand reduction (Hassol et al., 2002). 

Annual change 
in energy 

intensity per 
capita of the 

global economy 

Global energy requirement in the year 2100 as a % 
of year 2000 (base level of 100) 

No change in 
population or 
income 

Double population 
at same income 

Double population 
and double 
income 

-3% 4.8 9.6 19.2 

-2% 13.3 26.6 53.2 

-1% 36.6 73.2 146.4 

No change 100 200 400 

+1% 270 540 1080 

Table 2: An illustration of the importance of energy intensity per capita (Hassol 
et al., 2002) 

As an alternative viewpoint, critics of the concept which describes energy 

efficiency as an important factor in total global energy consumption, have 

argued that energy efficiency leads to direct cuts in energy prices and long term 

increase in energy consumption, a phenomenon titled the “rebound” or “take 

back effect” (Herring, 2006). They have counter-proposed the concept of 

energy sufficiency through concentrated shift to non-fossil fuels. Herring (2006) 

has put forward the view that energy efficiency might result in energy 

consumption reductions at a microeconomic level but will increase energy use 

at a macroeconomic level as indicated by historical records of the 20th century 

showing the change of the electricity providers market from a low sales/high 

profit per unit to lower profit per unit/vast sales, after massive production of new 

bulbs with increased energy efficiency was initiated. Jevons’ proposal that it 

would be a mistake to consider economy in fuel as equivalent to economy in 

consumption is in line with this assumption (Jevons, 1865). Therefore, the issue 

to be re-introduced is what would be the magnitude of this rebound effect. This 

has been rather difficult to determine and predict (Greene et al., 1999).  

As an example, Figure 1 illustrates the large increase in electricity consumption 

and efficiency of UK public lighting since the 1920s. In the same period, 

mileage of the principal road network was increased by approximately 50%, 

while street lamps efficiency increased from approximately 10 lumen/W for 

incandescent bulbs to over 200 lumens/W for low-pressure sodium lamps in 

the 1990’s. The net result of this increase since the early 1920’s was for the 
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light intensity (lumens per mile) to have increased to 400 times its 1920 value, 

with a fourfold increase since 1960. Over the same period energy intensity 

(MWh per mile) increased 25 times with a 250% increase since 1960. Herring 

(2006) concluded that the vast increase in lamp efficiency “has been taken in 

the form of higher levels of service, both in more miles illuminated and in higher 

illumination levels, not in the form of lower consumption”. This example 

illustrates the tendency to use technology to provide greater levels of service; 

to maximise the available power, instead of reducing consumption. 

 
Figure 1: Public lighting intensity (lumens per mile) in Great Britain 1920-1995: 
net result of the increase in consumption and efficiency since the early 1920s 
(Adapted from Herring (2006)) 

Hassol et. al. (2002) suggested that, although affordable energy leads to higher 

estimates of future energy demand and reduces any saving incentive, price is 

not the only factor affecting the reduction of greenhouse gas  emissions through 

energy efficiency - with energy and tax related legislation or commercialisation 

of relevant technologies able to have a significant impact. They emphasised 

the importance of the role of the state as a regulator, for energy efficiency to 

have a wider impact, while holding political decisions accountable for current 

choices with regard to less efficient practice and carbon based fuel types. This 

is a view that Herring (2006) seems to have adopted as well by proposing a 

reduction in energy consumption through taxation and regulation in the sense 

of carbon – and not energy.  

It is also important to consider the impact of the rebound effect deriving from 

the wider penetration of efficiency into the market and the resulting reduction 

of service cost. The IEA has estimated that the increase of the mean income in 



Background 
 

14 
 

emerging economies will push the demand for optimum energy services to 

reach levels of saturation and as a result the rebound effect will be reduced 

(IEA), 2012b). Indirect effects have been argued to be graver with respect to 

allowing energy to reach its full potential as end users might use cost savings 

deriving from improvements in energy efficiency to purchase energy intensive 

products and services of other sectors. The prediction of this aspect of the 

rebound effect has been equally difficult to make as it depends on specific traits 

of affected regions, sectors and targeted groups as well as the wider interaction 

between energy efficiency and end user behaviour dictated by local practices 

and culture ((IEA), 2012b).  

The effect of cultural and social dynamics on energy consumption behavioural 

trends has been researched by Hassol et. al. (2002) who argued that cultural 

and social dynamics have the potential of blocking the emergence of energy 

efficiency practices. This is in agreement with Herring’s (2006) reference to 

Rees’ findings with regard to the relation between energy demand and type of 

economy (Herring, 2006).  Rees has suggested that the transition towards 

service orientated economies disassociates the concept of economy from the 

concept of the environment, therefore leading to high energy and material 

consumption (Wackernagel and Rees, 1996). On these grounds, it can be 

argued that consumption trends have  a more crucial role than wealth 

production practices (Adriaanse et al., 1997).   

With regard to the implementation of energy efficiency, Hassol et. al. (2002) 

have suggested that technological advances cannot drive alone us to energy 

efficiency improvement on a mass scale. They have argued that this is only 

achieved through greater shifts on social, economic and legislative levels. This 

is the reason behind the difficulty in making predictions regarding future energy 

efficiency development and also explains why energy efficiency was 

disassociated from ecology and sustainability in the building sector until fairly 

recently, when the International Energy Agency estimated that shifts in energy 

efficiency on a global scale will have a similar potential to achieving reduction 

in energy demand when compared to other actions such as fuel shift (IEA). As 

the International Energy Agency’s (IEA) Executive Director explained during 

the IEA 2012 World Energy Outlook’s presentation, “energy efficiency is just as 
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important as unconstrained energy supply, and increased action on efficiency 

can serve as an unifying energy policy that brings multiple benefits”(IEA, 

2013a).  

According to the 2014 World Energy Outlook Atlas (IEA, 2014e), breakthroughs 

in both renewables and energy efficiency have already contributed in alleviating 

some of the stress put onto the global energy system but the pace at which 

these advances are made and picked up by the market has to accelerate 

compared to the last two decades, if we are to effectively counter climate 

change (IEA, 2011). Allocating more capital investment towards targeted 

improvement of energy efficiency across the industry, buildings and transport 

sectors is currently considered one of the four pillars that will help achieve 

reductions in emission by 2020 at no net economic cost ((IEA), 2014c).  

The EC is in harmony with the IEA’s preposition on energy efficiency and has 

already agreed on a broad energy efficiency policy framework which aims at a 

20% reduction in energy demand by 2020 compared according to 2007 levels, 

by providing incentives for increasing investment in energy efficiency. 

However, even after applying the expected effect of the newly proposed 

policies on a global level, two-thirds of the economic potential to improve 

energy efficiency is not expected to be harnessed during the period from 2011 

to 2035, with the lion’s share held by buildings (Fig. 2) (IEA, 2012). More effort 

must therefore be made to allow energy efficiency to reach its full potential. 

 
Figure 2: Utilised long-term energy efficiency economic potential in the New 
Policies Scenario 2011-2035 (IEA, 2012) 



Background 
 

16 
 

From the foregoing discussion, we can observe that critics of energy 

efficiency’s ability to reduce greenhouse gas emissions are introducing a theory 

which is valid under an environment of continuous economic growth, fuel 

source adequacy and resource adequacy. However, it is important not to 

underestimate the power of both economic recession and climate change on 

user mentality and behaviour. Furthermore, it is important to understand it is 

difficult to estimate the exact impact and magnitude of the rebound effect as it 

depends on a series of factors that would require individual studies in order to 

be assessed. 

In addition, despite the criticism on energy efficiency’s ability to reduce 

greenhouse gas emissions, we can observe that energy efficiency is currently 

considered by the International Energy Agency and the European Commission 

as important as unconstrained energy supply, with shifts in global energy 

efficiency predicted to have similar potential in achieving energy savings as 

other large scale measures such as fuel shift. However, more actions are 

required with regard to the implementation of energy efficiency in the building 

sector as the sector itself still maintains the largest untapped energy efficiency 

potential to date.   

IV. EU strategic plans to reduce 

greenhouse gas emission and achieve 

energy security through building energy 

efficiency 

Following the signing of the Kyoto protocol which engaged all participating 

countries to decarbonise their economies and reduce their carbon emission by 

2050, the EU member states announced their objective to reduce these 

emissions by at least 80% below 1990 levels (E.C., 2010b) and to reduce 

primary energy demand by 30% to 40% by 2050 (E.C., 2013). The European 

Climate Foundation has since published the 2050 Low Carbon Roadmap which 

among other goals discusses the technical feasibility of this objective (E.C., 

2010b). The Roadmap analysis framed the building sector as the largest 
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contributor to the general 2050 decarbonisation targets   (E.C., 2010b). To 

understand the focus given on buildings, we can consider the following facts. 

• The EU building sector held the lion’s share of the EU final energy use 

accounting for almost 40% in 2010 (IEA, 2013b). 

• During the period 1990 - 2010, EU buildings energy use grew by 0.9% 

per year (IEA, 2013b), following the growth of EU office area (Pérez-

Lombard et al., 2008).  

Although the EU is targeting the entirety of the building sector, the following 

facts help us understand the case for non-domestic buildings and their HVAC 

energy use. 

• Non-domestic buildings have been documented to account for 

approximately a quarter of the total EU building energy use or 11% of 

the final EU energy use (Pérez-Lombard et al., 2008), having risen to be 

a larger consumer of electricity than households following 2008 (EEA, 

2015a). 

• Since 2010 the EU services sector has been steadily increasing its share 

of EU electricity use (EEA, 2015a). 

• HVAC systems were documented to be responsible for over a half of the 

UK non-domestic building energy use, a figure that agrees with the 

trends reported in developed countries and varies according to building 

type and system, with space heating is responsible for 40% of the 

services energy use (IEA, 2013b). 

• Although space cooling was reported to account for less than 5% of the 

final energy use in buildings, it represented the “fastest-growing end-use 

in both the residential and services sub-sectors” having increased by 

approximately two quarters during the decade 2000 to 2010 in the EU 

(IEA, 2013b). 

• The potential for cost-effective carbon mitigation in the building sector is 

documented to be approximately twice more compared to other sectors 

(GBC, 2011).   
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The increase of efficiency in the energy supply and use across all economy 

sectors is considered one of the major pillars of the EU energy and climate 

policy (Commission, 2013) aiming to ensure sustainability, energy security and 

competitiveness in the EU area.  

The European Commission has been implementing this agenda through: 

• the Energy Performance of Buildings Directive 2010/31/EU (EPBD), the 

main legislative instrument that has been adopted by the EU in an effort 

to reach reductions in building energy consumption (E.C., 2010a). Its 

main focus has been on leading EU member states to adopt a 

methodology for calculating energy performance in buildings, to set and 

apply minimum building energy performance requirements, to design 

financial incentives and lift market barriers, to establish certification of 

building energy performance and legislate for the regular inspection of 

HVAC systems in buildings.   

• the implementation of relevant legislation such as the compulsory 

construction of new building as near zero energy from 2020 onwards, 

which is estimated to increase the investments in energy efficient 

technologies by up to £167 billion (E.C., 2010b) 

• the proposal of building-focused measures to address the gap between 

projected achieved savings and the 2020 savings target though the 

Energy Efficiency Plan (E.C., 2011) 

• funding research in the areas of building energy performance and the 

implementation of energy efficiency using EASME, the Executive 

Agency for small and medium sized Enterprises (previously known as 

the Executive Agency for Competitiveness & Innovation - EACI) to 

manage and deliver, amongst others, a number of these research 

projects. A prominent example of these projects is the iSERV project 

(www.iservcmb.info) (Knight et al., 2014b) which demonstrated the 

practical operation and benefits of an automatic monitoring and 

feedback system and showed significant savings of up to 33% in a 

http://www.iservcmb.info/
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building’s total electrical energy use achieved by applying the iSERV 

process to the operational buildings participating in the project (Fig. 3). 

 
Figure 3: Annual electrical energy savings at building level across entire iSERV 
database (Knight et al., 2014b) 

As demonstrated above, a strand of the European climate change policy 

focuses on Energy efficiency through the various Directives. Directive 

2011/0172 established a number of compulsory measures to be used in order 

to reduce energy use by 20% according to 2007 levels by 2020 (Fig. 4), and to 

create opportunities of future energy efficiency improvements (E.C., 2011 ). 

Key measures described in the latest Energy Directive on energy efficiency 

(2012/27/EU) included a requirement for the public sector to renovate 3% of 

government owned or occupied buildings, a request for EU countries to draw 

up a roadmap to make the entire buildings sector more energy efficient by 

2050, and a requirement for large companies to conduct energy audits and 

management plans, with cost-benefit analyses for the deployment of combined 

heat and power generation and public procurement (E.C., 2012). Based on 

achievements to date and following a review of the Energy Directive on Energy 

Efficiency (2012/27/EU), on October 2014, the European Council “adopted an 

indicative 27% energy efficiency target” as part of the European Commission’s 

2030 policy framework, reducing the 30% target presented a few months before 

(REHVA, 2014).  



Background 
 

20 
 

 
Figure 4: Trends in primary energy consumption compared to EU target in 2020 
(E.C., 2011 ). Encouraging developments to be presented in the Commission's 
2014 report on the progress towards the EU target (Miladinova, 2013). 

Ultimately, the European Commission is aiming at achieving the EU’s 

decarbonisation goals through research and implementation of relevant 

legislation such as the compulsory construction of new buildings as near zero 

energy performers from 2020 onwards (E.C., 2010a). The Energy Performance 

of Buildings Directive Recast (E.C., 2010a) notes that all EU Member States 

shall ensure that by 31 December 2020, all new buildings are near-zero energy 

buildings; and after 31 December 2018, new buildings occupied and owned by 

public authorities are near-zero energy buildings. However, the larger shift to a 

low carbon economy and low carbon energy systems requires the 

implementation of long-term policies addressing changes in the way we 

produce and consume energy in the EU. Although the EU leadership has taken 

some action to encourage the wider application of energy efficiency and low 

carbon technology, the desired shift has been unachieved at the required level 

(IEA, 2014d, IEA, 2014c). Nevertheless, it is expected the legislative and policy 

actions focusing on energy efficiency in the building sector will contribute 

decisively in achieving the set EU decarbonisation strategic plans, if applied 

effectively. 
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V. Outline of UK policies related to energy 

efficiency in the non-domestic building 

sector. 

It has been documented that the UK building sector is responsible for 39% of 

the national energy consumption (Pérez-Lombard et al., 2008), with the 

construction sector affecting 47% of UK carbon emissions (CarbonTrust, 2009, 

DBIS, 2010). The 2011 Carbon Plan noted that 38% of the UK greenhouse gas 

emissions derives from buildings (HM Goverment, 2011). The non-domestic 

building stock has been reported to account for approximately 18% of UK 

carbon emissions (CarbonTrust, 2009) with offices, universities and retail 

reported as the most energy intensive building uses responsible for over a half 

of the total energy use in non-domestic buildings, followed by hotels, 

restaurants and schools (Pérez-Lombard et al., 2008, DECC, 2013). The UK 

energy use of non-domestic buildings has been growing in parallel to the 

growth of office area (Pérez-Lombard et al., 2008), although this is taking place 

at a slower rate compared to other EU countries as a result of the parallel 

improvement of efficiency and service levels (Pérez-Lombard et al., 2008).  

Among other EU nations the U.K. signed the Kyoto treaty and in the context of 

the goals set by the EU 2050 Roadmap, it implemented the 2008 Climate 

Change Act which align the UK emissions goals with that of the rest of the EU 

through the establishment of five yearly carbon budgets (HM Goverment, 

2008), becoming the first nation to introduce binding greenhouse gas targets 

on a national level (Mallaburn and Eyre, 2014). In England and Wales 

decarbonisation goals were set to be achieved in the span of three year interim 

periods bounded by short term milestones for new and existing buildings as 

well as renewables to gradually bring the set reductions to practice.  

To achieve the carbon reductions set out by the outlined policy, a number of 

instruments have been available to building professionals to comply with 

energy performance regulation. The key compliance instruments vary across 

the UK, and in England and Wales comprise the approved Document Part L, 

Conservation of Fuel and Power (HM Goverment, 2010b) which sets the 

minimum energy benchmarks, and the national calculation methodology met 
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by the Simplified Building Energy Model (SBEM) (Communities & Local 

Goverment, 2010a, Communities & Local Goverment, 2010b). Furthermore, 

new buildings ought to achieve a Building Emissions Rate (BER) lower than 

the Targeted Emissions Rate (TER) appointed for each building type, 

calculated using the Simplified Building Energy Model (SBEM). 

Minimum energy efficiency standards, as well as methods of measuring and 

certifying the as-built and operational performance of buildings were also 

introduced, namely the energy performance certificate (EPC) and display 

energy certificate (DEC) (HM Goverment, 2010a). In parallel, a number of 

standards and guides have been introduced to help designers achieve low 

energy design, including BREEAM (BRE), CIBSE Guidance (CIBSE) and 

Passivhaus (McLeod et al., 2013). For existing buildings of large sized 

organisations, the Energy Saving Opportunities Scheme (HM Goverment, 

2014) has been introduced and requires these organisations to complete 

energy use audits of buildings, transport and processes.  

VI. The performance gap 

There is a rapidly growing literature on operational building performance which 

indicates that buildings, both conventional and green,  fail to perform in practice 

as predicted by both accreditation schemes and dynamic simulation models 

(Bordass et al., 2001, Bordass et al., 2004, Fowler and Rauch, 2008, Turner 

and Frankel, 2008, Scofield, 2009a, Widener, 2009, Menezes et al., 2012, 

Hogg and Botten, 2012, CarbonTrust, 2011). The PROBE studies 

demonstrated that in-use electricity consumption usually is twice than 

predicted, subject to activities housed, with the largest divergences witnessed 

in university campuses, schools and general office buildings (UBT, Leaman et 

al., 1999, Bordass et al., 2001, Menezes et al., 2014). Similar figures have been 

reported by the CarbonBuzz project which evidenced that electricity use can 

be up to 70% than predicted during design, with this figure increasing to over 

85% in higher education buildings (CarbonBuzz, 2015).  

The PROBE studies suggested the sources of divergence can be divided to 

those related to modelled performance and those related to actual 
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performance. The main sources have been reported by the same project to 

comprise limitations of modelling programs, poor assumptions entered as 

modelling input, and the lack of systematic monitoring.  

Divergence sources related to predicted performance include unrealistic design 

assumptions and modelling software shortcomings which keep designers from 

realistically modelling building use and operation. The input data employed in 

energy models can escape thorough questioning as during the design phase 

many building aspects remain undetermined. As a result, simplistic inputs are 

used to model building performance which in concert with possible fundamental 

flaws or restrictions with regard to the applicability to certain building types, and 

invalidated equations, can lead to exaggerations or oversimplifications of the 

modelled predictions. Therefore, although through stringer regulation there is 

emphasis on achieving energy saving in the design phase, advances in 

computing cannon be harnessed because of uncertainty on the relations 

between buildings, their surrounding environment and occupants. The absence 

of feedback with regard to building use and operation, and the resulting in-use 

performance does not allow the narrowing of the performance gap (Oreszczyn 

and Lowe, 2009). 

Divergence sources related to actual performance include the management of 

buildings services, occupant behaviour and the quality of building components. 

Erratic management of building services by facility managers has been 

demonstrated to account for a large part of the total building energy 

consumption according to most PROBE case studies (Leaman et al., 1999, Min 

et al., 2016). On the other hand, even in automated buildings where occupants 

are provided with limited access to personal controls of their work environment, 

occupants can have an important impact on the total building energy use 

related to the levels of comfort and satisfaction they experience.  Additionally, 

equipment and appliances can lead to unregulated loads which are often 

difficult to manage, especially when considering extended opening hours in 

buildings. The quality of construction is another crucial factor to in-use energy 

consumption. Problems in thermal bridging and insulation, although common, 

are rarely accounted for in modelling where building components are assumed 

to perform at an optimum level. 
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As a result, modelled performance can become improbably low and actual 

energy performance avoidably high (Menezes et al., 2012). At present, there is 

a compelling and continuous absence of large datasets of actual energy 

performance deriving from the existing building stock. This absence will 

probably lead to the gradual widening of the gap between theory and practice, 

and detachment from the EU’s strategic set goals (Oreszczyn and Lowe, 2009).  

Therefrom, there is scope for further investigation into the actual performance 

of buildings. However, although the persistence of the performance gap has 

allowed for an interest in assessing post occupancy building performance to be 

renewed, these assessments are still not in effective use in actual practice 

(Roberts, 2001, Göçer et al., 2015). 

VII. Summary 

The high dependency of the EU on energy imports makes its future energy 

availability less predictable. Despite criticism on its ability to reduce 

greenhouse gas emissions, energy efficiency is currently considered by the 

European Commission as important as unconstrained energy supply. 

Ultimately, the European Commission has aimed at achieving the EU’s 

decarbonisation goals through research and implementation of legislation and 

policy focusing on energy efficiency in the building sector. However, following 

a decade of relevant research and policy, we appear to still be struggling to 

achieve energy efficiency and predict future building performance.  There is a 

rapidly growing literature on operational building performance which indicates 

that buildings, both conventional and green, fail to perform in practice as 

predicted by both accreditation schemes and dynamic simulation models 

creating what has been defined as the performance gap.  

Although the persistence of the performance gap has allowed for an interest in 

assessing post occupancy building performance to be renewed, these 

assessments are still not in effective use in actual practice. The compelling and 

continuous absence of large datasets of operational building performance from 

the existing building stock is expected to lead to the gradual widening of the 
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gap between theory and practice, and to the detachment from the set EU 

strategic decarbonisation goals.  
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Chapter 1  

Energy efficiency within the context of 

building design and operation 

1.1 Introduction 

This chapter is concerned with the definition of energy efficiency and the 

barriers hindering its successful implementation in buildings. 

The specific objectives of this chapter are to: 

• review the definitions proposed for energy efficiency in the field of 

sciences with an aim of adopting them in this research; 

• relate energy efficiency to the concepts of sustainability and low energy 

buildings; 

• explore how architects define and address energy efficiency; and 

• review the barriers observed in the implementation of energy efficiency 

in buildings with a particular focus on barriers related to the discipline of 

architecture. 

This chapter begins with the presentation of a review on the definition of energy 

efficiency across different disciplines. Thereafter, it is concerned with the 

implementation barriers of energy efficiency in buildings. 

1.2  The definition of energy efficiency 

The term efficiency is common in the field of sciences. In applied sciences, the 

definition of efficiency is that is represents the ratio of useful effect to the used 

resources (1). 
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(1) 

 

 

In engineering, energy efficiency is defined as the ratio of useful energy output 

to the energy input (2) (Avison, 2014). 

 

 
(2) 

 

 

Alternatively, energy efficiency has been defined as the ratio of energy required 

to the provided output or service (3) (DoE, 2015, Pérez-Lombard et al., 2008, 

Pérez-Lombard et al., 2012). This definition is used widely in the US and the 

EU, and is the base formula behind the measure of Energy Intensity (EI) 

(Pérez-Lombard et al., 2009).  

 

 
(3) 

 

 

According to Herring (2006), the term energy efficiency is not to be confused 

with energy conservation. Herring considers energy conservation as being 

influenced greatly by legislation, consumer and lifestyle culture and defines it 

as “reduced energy consumption through lower quality of energy services”. As 

a rebuttal to the definitions above, he has argued for energy efficiency to be 

equal to the ratio of energy output to energy input; a term that expresses the 

need to make the most  out of every energy unit (Herring, 2006).   

𝐄𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲 =
𝐔𝐬𝐞𝐟𝐮𝐥 𝐄𝐟𝐟𝐞𝐜𝐭

𝐔𝐬𝐞𝐝 𝐑𝐞𝐬𝐨𝐮𝐫𝐜𝐞𝐬
 

𝐄𝐧𝐞𝐫𝐠𝐲 𝐄𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲 =
𝐔𝐬𝐞𝐟𝐮𝐥 𝐄𝐧𝐞𝐫𝐠𝐲 𝐎𝐮𝐭𝐩𝐮𝐭

𝐄𝐧𝐞𝐫𝐠𝐲 𝐈𝐧𝐩𝐮𝐭
 

𝐄𝐧𝐞𝐫𝐠𝐲 𝐈𝐧𝐭𝐞𝐧𝐬𝐢𝐭𝐲 =
𝐄𝐧𝐞𝐫𝐠𝐲 𝐈𝐧𝐩𝐮𝐭

𝐄𝐧𝐞𝐫𝐠𝐲 𝐎𝐮𝐭𝐩𝐮𝐭
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Alternatively, the International Energy Agency (IEA, 2014b) defines energy 

efficiency as “a way of managing and restraining the growth in energy 

consumption”, and energy efficient as something that “delivers more services 

for the same energy input, or the same services for less energy input”. In a 

similar interpretation, energy efficiency should be viewed as “an investment in 

reducing kWh to meet rising energy demands” (McLean-Conner, 2009). 

An inherent problem of the definition of energy efficiency is the measurement 

of the energy output. Although, the energy input represents a physical quantity 

of energy that can be directly measured, the quantification of the energy output 

poses problems sourcing from what one includes in its definition. This problem 

is particularly challenging when referring to services and their output e.g. 

lighting. Services have both quality and quantity components (Pérez-Lombard 

et al., 2012). The quantified component can be measured using physical or 

economic indicators which allow for comparisons between methods and 

products (E.I.A., 1995); e.g. the use of the ratio of lumens to energy 

consumption (luminous efficacy) as a measure of the effectiveness of 

illumination. The definition of the quality component usually receives less 

attention because it is open to interpretation as to the various direct and indirect 

effects a service can have; e.g. quality lighting contributes to wellbeing and 

work productivity (Pérez-Lombard et al., 2012).   

To date, there is a wide range of energy efficiency indicators available both at 

the level of policy and practice. Patterson (1996) has underlined that the 

formation of these indicators is characterised by methodological problems from 

value judgement to energy disaggregation and boundary definition. Since there 

has been an inconclusive debate about the aforementioned issues, Pérez-

Lombard et al. (2012) have proposed the following steps in constructing energy 

efficiency indicators that can be applied specifically to HVAC systems (Fig. 5): 

• establishing the service quality;  

• identifying the level at which energy use will be aggregated;  

• describing the indicators to be used to measure energy use;  

• selecting the appropriate indicators to measure the quantity of service.  
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Figure 5: Systematic approach in constructing energy efficiency indicators 
(Pérez-Lombard et al., 2012) 

In summary, the various articulations of the concept of energy efficiency are 

founded on an imperative to make the most out of every energy unit. 

Furthermore, the definition of energy efficiency strongly depends on the 

definition of the resulting energy output. It is therefore, crucial to define how to 

approach the assessment of this resulting energy output before proceeding to 

measure energy efficiency.  

1.3 Building Energy Efficiency in the 

context of sustainability 

Sustainability has emerged as one of our era’s focal points on a social and 

political level. This is largely due to the debate on climate change which has 

contributed positively to raising awareness for the phenomenon itself as well 

as the terms sustainability and sustainable development as means of tackling 

Setting service 
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•quality of the service provided by the system should be clearly 
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•aggregation levels for energy use should be identified and 
represented on an efficiency pyramid 

defining 
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•a magnitude to measure energy use should be selected

choosing 
demand 

indicators

•a magnitude to measure the quantity of service provided should 
be selected
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the threat climate change poses. Building related disciplines have not remained 

unaffected by the debate on climate change. Sustainable design is a prominent 

topic in scholar research pertinent to the built environment. A manifestation of 

the topic’s prominence is the numerous research projects related to 

sustainability that have been and are being funded by the European 

Commission as well as its multifaceted applications in practice, e.g. NZEB 

buildings. It is therefore critical to have an overview of the current theoretical 

and practical perspectives in this field.  

A universal definition for sustainable building has not been agreed to date, and 

various interpretations can be found in literature (Hill and Bowen, 1997, 

Cassidy, 2003, EPA, 2008, Lowe, 2007, Kibert, 1994, Berardi, 2013). This 

pluralism affects the processes of identifying a sustainable building and 

allocating appropriate merit to its various aspects.   These issues are best 

presented in the work of Berardi (Berardi, 2013) elaborating on the new 

interpretations of the concept of sustainable buildings. Berardi claimed that an 

update of the term is necessary to accurately reflect the continuous evolution 

of the concept of sustainable development but concluded that the difficulty in 

producing a universal definition derives from the following uncertainties that are 

inherent in the multidimensional concept of sustainable development: 

• time - long lifecycle of ever changing buildings versus one off 

evaluations considering a single dimension horizon; 

• scale - relationship of buildings with their immediate and wider 

environment; 

• domain - definition of the economically sustainable building varies per 

region/ country; and  

• social uncertainties - differences among stakeholders impeding the 

definition of a sustainable building.  

Thus, he suggested for the concept to be viewed as a transition “path 

characterized by constraints and uncertainties” instead of a label. This position 

is in line with Kemp’s paper (2010) which characterised sustainable 

development as an “ongoing quest in a developing world” and underlined that 
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the labelling of technologies as sustainable is wrong as no technology is 

sustainable when considering its lifecycle (Kemp, 2010). 

Nonetheless, in the midst of this pluralism, resource efficiency appears to be 

common ground among the various definitions of a sustainable building (Kibert, 

1994, Cassidy, 2003, EPA, 2008).   

Resource efficiency is considered an essential principle of sustainable 

buildings as well as an assessment criterion along with greenhouse gas 

emissions (Hill and Bowen, 1997, Kibert, 1994, Lowe, 2007). Building energy 

efficiency specifically along with thermal building performance and material 

efficiency are also considered energy performance indicators in sustainable 

performance evaluations (Mwasha et al., 2011). Along its lifecycle, a 

sustainable building is in other words expected to use materials, energy and 

water with high efficiency and have limited effects on the occupants’ wellbeing 

and on the environment (Cassidy, 2003, EPA, 2008). 

Berardi (2013) suggested that the increased focus on resource efficiency and 

the environmental impact of buildings, observed in these approaches, was born 

in advance and in independence of the sustainable development concept. 

Berardi referred to Kibert’s work  (2012) which located the start of this focus at 

an ecological movement of the 50s which promoted the concept of green 

buildings as buildings that were constructed using natural materials and were 

self-resilient as to not use a connection to the electrical grid. This was followed 

by a broad environmental debate which according to Cole (2004) started in the 

late 60s and looked at the multiple aspects and effects of development but was 

interrupted by the first energy crisis (1973), transforming it to a single track 

focus on energy which lasted well into the 80s and led professional 

associations to take action and write new directives.  Gradually, the “social, 

economic, environmental and technological dimensions” of energy became 

more apparent along with the increase and variability of energy costs observed 

during that period (Cole, 2004, Craig, 1978). Although this focus was 

broadened again by the end of the 80s, some researchers believe that energy 

had already taken a central role in the sustainability debate with energy 

performance becoming the main assessment factor of sustainability, at times 
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in expense of other aspects that differentiate sustainable buildings from other 

building categorisations (Berardi, 2013, Cole, 2004, Iannaccone et al., 2014). 

Such aspects have been suggested to include social, longevity, cultural and 

economic dimensions, which surpass fixations with the management of land, 

energy resources, and waste (UNEP, 2009). Energy performance is still the 

most frequently used assessment criterion when assessing sustainability 

making the distinction between energy efficient and sustainable buildings an 

arduous task (Berardi, 2013, Cole, 2004). This task is even more burden by the 

interchangeable use of abstractly synonymous adjectives for these building 

categories, such as green and energy conscious buildings. 

Efforts to set boundaries between these terms can be found in literature. 

Chwieduk  (2003) proceeded to create three building classification types by 

examining the focus and aims in each category; these are energy efficient, 

environmental friendly and sustainable buildings. The category of 

environmental friendly buildings encompasses passive and low energy design. 

She concluded that these three categories are interlinked and derive in a 

sequence as we widen the focus. Starting from a narrow focus on reducing 

energy demand and improving energy efficiency (energy efficient buildings), to 

one that also considers the impact on the environment and ensures the 

occupants wellbeing (environmental friendly), to a holistic approach 

(sustainable) that includes the previous but also looks at the building resource 

flows and environmental impact throughout its lifecycle (Table 3). In this 

respect, building energy efficiency is viewed as the denominator of all three 

types and the first step up the ladder leading to the holistic concept of 

sustainability.  
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F
o
c
u

s
 Implementing standard 

and economic viable 
methods of energy 
efficiency in either new 
or old buildings that are 
refurbished to reduce 
energy demand. 

Implement renewable 
energy sources in close 
vicinity, as well as 
passive design and 
energy efficiency 
measures, to reduce 
impact on the 
environment. 

Establish a balance 
between the present 
and future of a 
building’s resource 
flows and their impact 
on the environment to 
protect future resource 
availability. 

A
im

 Reduce energy demand 
by improving energy 
efficiency of building 
systems and envelope’s 
performance. 

Reduce resource 
consumption and 
environmental loading 
while ensuring indoor 
environment quality and 
quality of service 
(building adaptability, 
automated control and 
performance 
maintenance) 

View building 
performance through 
the spectrum of life 
cycle analysis 
considering the effect of 
a building on the 
environment starting 
from the extraction of its 
construction materials 
all the way to its end 
use. 

T
e
c
h

n
iq

u
e

s
 Improvement of building 

envelope 
Reduction of heat 
losses in heat systems  
Use of automation and 
control in building 
management 
Improvement or 
exchange of heat 
generation sources 
Improvement of 
appliances efficiency 
Possible Installation of 
renewable energy 
generation technology 

All aforementioned 
techniques 
Passive building design 
and concept of low 
energy architecture. 
Integration of solar 
active technologies 
Use of short and long 
term energy storage 
technology 
Use of heat pumps for 
space heating powered 
by renewable energy or 
waste heat 
Heat recovery 
Waste management 
and reuse 
Water management and 
reuse 

All aforementioned 
techniques 
Ensuring quality of 
building materials  
Select materials and 
technologies with least 
environmental impact 
through building lifetime 
(embodies energy) 
Use of recyclable 
sources and products 

Table 3: Classification of energy-efficient buildings, environmentally-friendly 
buildings sustainable buildings (Chwieduk, 2003) 

Having studied the UNEP definition of sustainable and green buildings, Berardi 

(2013) agrees with this preposition and underlined that “sustainable buildings 

at least enlarge the requirements and dimensions of sustainability”.  He also 

noted that the long-term focus on a building’s full lifecycle (cradle to cradle 

energy-efficient environment friendly sustainable
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approach) became a trending topic during the last decade as until then it was 

customary to focus only on the manufacturing of building materials and the 

operational life of a building.  

In practice, sustainability is currently manifested in the form low energy 

buildings, near zero energy buildings, zero energy buildings and zero carbon 

buildings aiming at reducing their energy demand, enhancing energy efficiency, 

applying passive design and make use of renewable energy techniques 

(GhaffarianHoseini et al., 2013, Kibert, 2012, Joelsson and Gustavsson, 2009). 

GhaffarianHoseini et al.’s study (2013) traced the current trends and 

application of green buildings, highlighted the ability to generate electricity as 

key component of sustainable energy performance which has been recently 

facilitated by technological developments. The utilisation of novel low energy 

cooling and heating systems and the implementation of vegetation centred 

technologies, such as green roofs and facades, are considered to also be 

important components of green building design facilitated by advances in 

cooling, heating and cogeneration systems e.g. thermal powered technology 

and renewable energy source heat pumps (GhaffarianHoseini et al., 2013). 

These observations sourcing from practice highlight the current impact of 

innovation in achieving building energy efficiency and sustainable performance 

of buildings. 

This section has presented a review of past literature regarding the definition 

of energy efficiency in the context of sustainability and low energy buildings. 

The consensus is that energy efficiency is the common denominator of the 

various subclasses and interpretations of sustainable buildings as well as an 

essential principle and assessment criterion of sustainable building. 

Furthermore, according to the review presented in this section, it is 

acknowledged that low energy and energy efficient buildings are two separate 

subclasses of sustainable buildings which derive in a sequence as the focus of 

sustainable buildings is narrowed. Although energy efficiency fits in the wider 

concept of sustainability, this thesis has focused only on low energy buildings. 
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1.4 Energy Efficiency in the discipline of 

architecture 

It is evident that the discipline of architecture is currently being influenced by 

the discussion on climate change and the impact buildings have on the 

environment. More importantly, the depletion of natural resources and rising 

energy costs are challenging clients and architects alike. Much of the existing 

modern building stock, along with many aspects of our modern societies, has 

been designed according to the standards and understandings of previous eras 

that experienced a time where there was an abundance of cheap energy and 

resources. This was a time that produced the modern movement which, despite 

its theoretical care for well-tempered environments, allowed for the separation 

of the building from its surrounding environment and the teachings of 

indigenous building culture (Fitch, 1961). 

Plotting the transformation of mainstream architectural practice over the past 

century shows the gradual transition of modern architecture towards structures 

that have little relation to their surrounding environment and are highly serviced 

in order to provide their users with the best working conditions possible; what 

Banham described as the Exclusive mode of environmental control (Fig. 6) 

(Banham, 1984). This transition has not been linear. During the energy crises 

that took place in the late 60s and 70s an alternative route was mapped as 

energy efficiency in buildings started to be a popular topic. The start of the 70s 

saw Architectural Design magazine publishing high tech and low tech features 

with columns titled Eco-tech and Recycling which were engaging with 

renewable energy sources, and articles on designing for survival discussing the 

CO2 debate (Moorcraft, 1972).  During this period, Banham was taking this 

discussion one step further by writing the history of architecture through the 

perspective of what we refer today as building services; “une architecture autre” 

(Banham, 1984). Nevertheless, once fuel prices were restored, most building 

professionals continued unaffected.  
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Figure 6: Diagram adapted from Banham’s categorisation of building types in 
to four modes of environmental control(Banham, 1984) 

Today, given the severity of the environmental issues we are facing, the 

practice of architecture cannot remain unaffected. The fact that a significant 

number of recent Pritzker-prize-winning architects have claimed that several 

their buildings express exemplary sustainable design is a manifestation of this 

impact. After the first wave of energy conscious buildings recorded in the 70s, 

the idea that energy efficient design is an area exclusively related to engineers 

and unavoidably in contrast with the achievement of aesthetic interest, is 

refuted strongly (Beauvais, 2008). 

A cursory exercise that can allow us to understand the level of attention that 

the term sustainability is enjoying within the discipline of architecture, is to use 

Charles Jencks's Evolutionary Tree of Twentieth-Century Architecture to 

highlight all architects and sub movements that have related themselves to the 

theory and practice of sustainability through their written or built work (Fig. 7). 
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Figure 7: Charles Jencks's "The Century is Over, Evolutionary Tree of 
Twentieth-Century Architecture" with its attractor basins, taken from 
Architectural Review (Jencks, 2000). All items highlighted in green represent 
all architects and sub movements that have r 
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Today, architects tend to describe their buildings using a variety of terms to 

explain how sustainable their creations are, such as energy efficient, high 

performance, low energy, energy-conscious or green. The term energy 

efficiency is linked to a more quantitative approach that incorporates estimating 

the building’s performance during the design process and measuring it after its 

completion to provide it with evidence based assessment of how much energy 

it consumes. In contrast, the term sustainability, as described today, allows for 

a more qualitative approach that is more generic but troubling when trying to 

distinguish what is sustainable and what is not.  

Guy and Farmer’s research Guy and Farmer (2001) has already shed some 

light onto the issue of the diverse interpretation of the term sustainability. In 

their paper “Reinterpreting Sustainable architecture: The place of Technology” 

they provided a classification of all contrasting views regarding sustainability in 

architecture design, based on built examples and architects (Fig. 8). The 

categories span between two extremes; Ecotechnic where “the emblematic 

issue is efficiency and, in line with global concerns, energy efficiency is 

prioritized” and Ecocentric where “the emblematic issue in building design is 

how to represent the epoch shift of the new millennium and the transition to a 

holistic, ecological worldview or zeitgeist”. The paper expanded on Hajer’s 

(1996) idea that “the environmental problematique is hardly ever discussed in 

its full complexity” by stressing that each of the six devised categories framed 

the issue differently (Hajer, 1997). 
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Figure 8: The six competing logics of sustainable architecture according to (Guy and Farmer, 2001)
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The absence of a framework, deriving from the discipline of architecture, in 

which sustainability can be described and assessed in relation to what the EU 

2050 Low Carbon Roadmap introduces as building energy efficiency, creates 

a challenging environment inside the practice; an environment of multiple 

definitions and building performance metrics from modelling to labelling 

(Trubiano, 2013). At the same time, this absence allows for the term to be 

converted to what many argue to be a form of consumerism, a new marketing 

tool; into greenwashing (Hoffman and Hoffman, 2008).   

Buchanan’s AR article in December 2011 expressed the need to draw a distinct 

line between the quest of sustainability and previous architectural movements 

by noting “[..]Many of these architects have welcomed the quest for 

sustainability as a way of returning dignity and serious purpose to architecture 

– as the end of Postmodernity and a return to modernity. But the quest for 

sustainability must bring an end to modernity as well as to Postmodernity” 

(Buchanan, 2011). In his article, Buchanan (2011) presented Norman Foster’s 

50 St. Mary Axe as one of the green exemplars of our time that is also a 

testimonial to one of the many ways sustainability is perceived today. Although 

considered a masterpiece of computer modelling and integrated environmental 

design, its energy performance has remained an obscure chapter as there is 

little evidence that it functions as a natural ventilated building and no official 

report evidencing its energy efficiency (Spring, 2008). Regrettably, 

sustainability has been rather dealt with in the same fashion as any other post 

modernistic current, as a fad - the new thing. This is partly behind the extensive 

green washing observed inside the architectural practice with gradually more 

architects claiming that their buildings are participating in one debatable way 

or the other in battling climate change. 

Although many architects embrace the wider concept of sustainability, making 

sense of the role and influence of energy in the context of architectural design 

and appearances has only recently started becoming a prominent debate of 

architectural theory. Braham (2013) has argued that energy use has always 

been a primary driver in the complex processes of cultural and technical 

evolution that produce a variety of buildings types or styles or other class of 
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characteristics. In line with this argument, Oldfield et al. (2009) created chart 

catalogues which categorise large US commercial buildings under five energy 

generations according to the way building design addressed and at the same 

time expressed building energy use (Fig. 9). The fifth and latest energy 

generation included landmark buildings, such as the Commerzbank HQ (1997), 

Ken Yeang’s bioclimatic skyscrapers and SOM’s National Commercial Bank in 

Jeddah (1984) which aim at going above and beyond the norm in terms of 

reducing primary energy consumption and addressing climate change, and 

appear to move away from total reliance upon air-conditioning to strategies 

utilising natural and mixed-mode ventilation where possible. This is achieved 

by taking advantage of passive design (e.g. daylighting) and energy efficient 

technology (e.g. photo- and motion-sensors that adjust overhead lights), and 

exploiting on-site energy generation from low and zero carbon sources by 

experimenting with its integration into the building’s form. Braham (2013) has 

claimed that although such buildings might be successful in making visible the 

renewable energy production science, they bring about a discussion on 

whether the amount of renewable energy produced justifies the form of a 

building.  

Moe (2013b) has proposed thinking of architecture under the concept of “matter 

is but captured energy”. In other words, architecture should be considered as 

a formation of energy and finally be designed as such. This concept could 

potentially transform the purpose and activity of design. It would also bring 

lifecycle analysis and a more holistic consideration of architecture to the 

forefront. According to Moe’s theory, these formations demand today to focus 

on the generative and formative capacity of energy in architecture instead of 

the current errant preoccupation with efficiency in architectural discourse (Moe, 

2013b).  
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Figure 9: : Average primary energy consumption of 86 office buildings 
constructed in Manhattan between 1950 and 1970 (Oldfield et al., 2009) 

Furthermore, Moe has suggested that the origin of a building’s very appearance 

is inevitably manifold; there is a much more persistent threshold into why a 

building looks the way it does, how it performs and most importantly its relation 

to its maximum power, and thus to its contribution to the larger collective (Moe, 

2013a). The concept of the maximum power of a building is also shared by 

Braham (2013) and referred to as “power of design. To explain this concept, 

Braham described the example of the net zero building formula which is 

precisely related to site and accounts for all energy consumed and produced. 

He has suggested that the evaluation of net zero building should be based on 

the power achieved and not the energy saved, and for energy efficiency to be 

dealt as a technique for increasing or maintain the power available to support 

human activities (Braham, 2013). Moe and Braham’s approaches, therefore, 

intertwine with the discussion on the quantification of the energy output 

employed in the definition of energy efficiency. Applying their theory to this 

discussion would suggest that an educational building, for instance, would 
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justifiably use a larger amount of energy compared to a leisure building as a 

result of housing activities with a greater contribution to the larger collective. 

The aim of this section has been to explore how architects, considered to 

maintain a position at the top of the building sector pyramid, address energy 

efficiency. Overall, there appears to be an absence of a universal definition of 

what a sustainable building is, either in the form of a process or a label, deriving 

from the discipline of architecture. Instead, a variety of terms attributed to 

buildings is documented both in theory and practice. In the discipline of 

architecture, the centring of sustainability on energy efficiency has not been as 

straightforward as in other disciplines where there has been a direct focus on 

resource efficiency. Architects appear to be more accustomed with focusing on 

qualitative approaches which do not provide a direct link between energy 

efficiency and sustainability, making it difficult to distinguish what is sustainable 

and what not. As a result, the term sustainable building risks being converted 

to what many argue to be greenwashing. 

1.5 The implementation barriers of energy 

efficiency in buildings 

As discussed in the Background Chapter, although energy efficiency has been 

recognised in our time as “just as important as unconstrained energy supply” 

(IEA, 2013a), its implementation into practice on a wider scale has been 

unstraightforward. Securing gains from building energy efficiency is an 

approach that is projected to have limited cost and far reaching diffusion across 

end use sectors as long as the prescribed implementation strategies can tackle 

obstacles in the market uptake (IEA, 2011, IEA, 2013b).  Notwithstanding the 

current technological progress in individual building components, their 

implementation into the market has not progressed as required. Energy 

efficient technologies for buildings still maintain a small share of the current 

market (IEA, 2014b) .  

Setting aside individual building improvements, the importance of a whole 

building approach in achieving energy savings is equally important and 

delayed. The IEA has proposed that such policies, looking in whole building 
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performance, are “critical to moving the buildings sector along a low-energy 

path but need to be supported by policies on building components to ensure 

that affordable and widely available products can be integrated into advanced 

building systems” (IEA, 2012).  

Market barriers in implementing energy efficiency have been described as 

“manifold and divergent” (IEA, 2013b). Although regulatory policies are 

important in helping societies familiarise with energy efficient measures and 

technology, and cross over from interest in first cost only to energy efficiency 

and possible future savings, past research (IEA, 2012, U.S. Congress, 1992, 

WBCSD, 2007) has revealed that there are a number of barriers impeding the 

implementation of building energy efficiency which source from the building 

sector itself.  

The 1992 U.S. Congress Office of Technology Assessment report on building 

energy efficiency, introduced sector specific factors with regard to the inability 

to implement energy efficiency (U.S. Congress, 1992). It suggested that energy 

efficiency implementation in buildings relies heavily on decisions regarding the 

purchase and operation of energy efficient technology either at the design or 

retrofit phase of a building(U.S. Congress, 1992). Furthermore, it demonstrated 

that in commercial buildings, building owners and occupiers showed greater 

sensitivity with regard to the implementation of energy efficient measures and 

strategies in their newly constructed buildings, in contrast to owners leasing 

their buildings. In the case of building owners or occupiers this was argued to 

be the result of operating costs not having a direct connection to the corporate 

budget, while in the case of leased building owners it was concluded that they 

were more interested in leasability while tenants had little financial incentive to 

implement energy savings due to the existing high cost of their rent (U.S. 

Congress, 1992).  

Moreover, it was suggested that in commercial buildings, architects, designers 

and builders, although recognising the possible impact of energy efficiency on 

comfort and productivity, hesitate in putting such goals into practice because 

of the uncertainty over the achievement of the intended building performance 

and the clients disinterest on the subject (U.S. Congress, 1992). From their 
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perspective, energy managers were documented to often express concerns 

about the perceived poor performance of innovative energy efficient 

technologies and the need for additional training that usually follows more 

elaborate building energy efficient controls, while tenants were observed to 

associate energy efficiency with discomfort and unproductive environments 

(U.S. Congress, 1992). At the same time, it has been demonstrated that energy 

investments are  considered of higher technical and financial risk compared to 

other available investments, associated to hidden costs as a result of 

overestimation of the cost saving potential  in comparison to management and 

other associated costs (Sorrell et al., 2011). Furthermore, in buildings with local 

controls, recent studies have now highlighted the great impact that the human 

factor, facility managers and building users included, has on the success of 

energy efficient technology (Levine and Urge-Vorsatz, 2007).  

With all these perceived negative connotations, it is clear why regulatory 

policies are important in helping societies cross over from interest in first cost 

only, to energy efficiency and possible future savings. Although sustainable 

building practices are gaining more popularity through the merits offered by 

voluntary building certification schemes such as BREEAM in the UK, to date, 

there still is widespread absence of long-term incentive programmes that could 

boost energy efficiency in buildings, such as retrofit schemes, leading efforts 

for improving energy efficiency to a dead lock (IEA, 2012).  

The obstacles to energy efficiency posed by the separate and at times 

contrasting interests of different actors in the building sector were also the focus 

of the World Business Council for Sustainable Development 2007 report on 

energy efficiency in buildings. The sector was characterised as fragmented in 

“sections of the value chain and non-integration between them” (WBCSD, 

2007). The report identified two important side effects created by the 

dysfunctional coordination and management between the disciplines 

populating the building sector:  

a) The incapacity to bring forward energy saving incentives to actors who 

can invest and benefit from them (WBCSD, 2007). 
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b) The inability to provide feedback from the market to developers and 

designers. When compared to past studies such as the U.S. Congress 

1992 study on Building Energy Efficiency, we can observe that not much 

has changed. Building professionals continue to underestimate the 

contribution of buildings to climate change and overestimate the cost of 

energy efficiency measures. This highlights the need for appropriate 

policies and regulations to enable businesses and professionals to use 

the available technology to enable the building industry’s response to 

energy efficiency (WBCSD, 2007). 

An example of the first point was described by Ryghaug and Sørensen  (2009) 

in their retrospective review of the integration of energy efficiency in the 

Norwegian building sector. Following this integration process over many years, 

they identified four reciprocal issues that have curtailed the process;  flaws in 

the public policy written to encourage the implementation of energy efficiency 

not addressing the mismatch between builders focusing on costs and short 

term payback, and occupants that enjoying long term benefits for energy 

efficiency; the inadequacy of the Norwegian government to actively regulate 

the building industry through stricter building codes, allowing the market to 

direct the energy efficiency debate towards energy costs and investment rather 

than the actual energy savings; the conservativeness of the Norwegian building 

industry maintaining one track focus on building costs, low innovation, lack of 

interest and responsibility of building performance post construction; and the 

“aesthetic single track-mindedness of architects” (Ryghaug and Sørensen, 

2009) .  

With regard to absence of feedback, as already noted, building professionals 

might tend to avoid the use of energy efficient strategies and technologies in 

practice as they have uncertainty concerning their actual performance. At the 

heart of this uncertainty is the absence of large datasets of in-use data 

regarding the performance of building components and technologies deriving 

from existing building stock. This absence appears to create a three-fold 

problem in the industry with the first aspect being the gradual widening of the 

gap between theory and practice; the next being the lack of specific knowledge 

which will allow the built up of confidence in using such technology; and the 
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last being the continuation in constructing buildings which lead tenants to 

associate energy efficiency with discomfort and unproductive environments. 

This all leads to the obvious conclusion that the need for post construction 

building performance evaluation, and the reporting of these evaluations, has 

never been more pressing. 

Additional barriers that block further implementation of energy efficiency into 

the market and derive from building professionals (WBCSD, 2007, Sorrell et 

al., 2011) have been documented and include : 

• a combination of high awareness on the topic of sustainable buildings 

and incomplete specific knowledge; 

• shortage of information with regard building energy consumption use 

and cost leading to energy efficiency opportunities missed, 

• lack of appropriate leadership, and insufficient know-how and 

experience of stakeholders. 

 

      

 

Figure 10: Players and practices in the building market (WBCSD, 2007). 

Figure 10 illustrates the decision-making islands observed in commercial 

developments (WBCSD, 2007).  The first pyramid shows the building sector 

disciplines and the second pyramid shows the building delivery process.  When 

combined in the third pyramid, the ineffective coordination arising from the 

functional gaps and management discontinuities are depicted, e.g. delays 



Chapter 1 - Energy efficiency within the context of building design and operation 

48 
 

between design stages due to planning permission problems and project 

financing. 

Similar pathogenies can be observed in the discipline of architecture without 

exception. However, it would appear they take a different form as they clash 

with debates and aspects internal to the discipline itself. For instance, 

according to Wittman (1998) a sustainable brief can be important in 

commissioning a project but few architects think energy efficiency is important, 

as good design tends to be linked to function, aesthetics, and context with 

environmental considerations ranked lower in the hierarchy of design priorities.   

Furthermore, the evaluation of post-construction building performance is still 

not part of the architectural practice of theory. The Directive 2010/31/EU on the 

energy performance of buildings has fully encouraged the installation and 

operation of intelligent energy metering systems in both new and existing 

buildings (E.C., 2010a), and there is now a larger availability of operational data 

from real building compared to the past. One would expect that architects would 

take advantage of this development to understand how buildings perform in 

practice. Unfortunately, this attitude is not part of the wider practice. Although 

the responsibility transcends the building sector, if architects want to maintain 

their lead in teams designing and bringing buildings into life, they should take 

on initiatives to lead the energy efficiency agenda, and claim back facets of 

their role that have already passed on services engineers and consultants. 

Janda (2011) has cautioned architects to “develop professional expertise and 

seek ways of integrating user involvement in building performance” as part of 

addressing carbon reduction goals, and to do so in time before other building 

disciplines do.  

It has been suggested that this attitude observed in the discipline may be the 

result of a growing shortage of architects able to interpret and understand 

operational data from real buildings. A number of points that were drawn from 

the discussions related to the Architects Journal’s “Bridge the Gap” 2013 

campaign, indicated that the industry is short of architects with an education in 

the areas of post construction building performance (Mark, 2013). 

Nevertheless, post construction evaluation of building performance is still not 
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embedded in architectural education.  Furthermore, Yannas (2013) has argued 

that a great part of the knowledge embedded in the education material and 

modelling software used today for the environmental education of architects 

has been produced during the 1970s and 1980s. Since then, there has been 

little research of equal intensity addressing the architectural aspects of building 

performance or the new know-how of designing low energy buildings with only 

few exceptions (Bleil de Souza, 2013, Bleil de Souza, 2012). Admittedly, it has 

only been a few years since RIBA produced a guide on carbon literacy (RIBA, 

2009). Therefore, it would be unfair to expect architects and engineers to be 

proficient in designing buildings that are low energy when they have received 

a somewhat outdated architectural education (Yannas, 2013). 

Yannas’ reference can be received as part of the growing arguments regarding 

the energy literacy of architects. Energy literacy is not specific to the discipline 

of architecture and has been a widely discussed topic since the 1970s either in 

the form of technological or environmental literacy of end users (UNESCO, 

1977).  In the building sector, it has been described as the “as-built energy 

performance knowledge and skills embedded within everyday activities for 

professions” (Zero_Carbon_Hub, 2014). Zero Carbon Hub has emphasised 

that energy literacy in a design team is currently lacking as “the necessary 

emphasis on building performance”, beyond the general knowledge of energy 

and environmental matters, is absent from current architectural education 

(Zero_Carbon_Hub, 2013, Zero_Carbon_Hub, 2014). Nevertheless, energy 

literacy in the discipline of architecture has recently become part of the political 

position of the Architect’s Council of Europe with regard to the debate on 

Closing the Performance Gap (Kimpian, 2013). The ACE considers greater 

energy literacy to be one of the pillars of the integrated approach to be led by 

architects when creating more resilient buildings, along with the mandate, 

transparency, and disclosure of systematic feedback and benchmarking.  

We can conclude that the implementation of energy efficiency in the building 

sector is plagued by a long list of impediments and failures. Public policy, in 

particular, has not succeeded in bringing forward energy saving incentives to 

actors who can invest and benefit from them. Thus, the market uptake of the 

latest energy efficient technologies pertinent to low energy building design is 



Chapter 1 - Energy efficiency within the context of building design and operation 

50 
 

extremely slow. Despite the public policy’s fair share in impeding the 

implementation of energy efficiency in buildings, several barriers arise from 

building professionals and in particular architects. At the broader level, there is 

the issue of building professionals underestimating or not valuing their 

contribution to climate change, and overestimating the cost of energy efficient 

measures. Within the discipline of architecture, the fundamental issues to 

address comprise an outdated education, the energy literacy and the absence 

of an investigative attitude from architects into the performance of completed 

and occupied buildings. While efforts are ongoing to produce better energy 

policies and regulation encouraging the adoption of energy efficient measures  

in the form of building codes, labelling programs, appliance performance 

standards and retrofit incentive programs (Azar and Menassa, 2014, Levine 

and Urge-Vorsatz, 2007, Allcott and Greenstone, 2012, Daouas, 2011), the 

discipline of architecture appears to remain far from either integrating energy 

efficiency into the architectural dialogue or implementing performance 

evaluation in its core education.  

1.6 Summary 

The review presented in this chapter has outlined that the various articulations 

of the concept of energy efficiency are founded on an imperative to make the 

most out of every energy unit. Furthermore, it was noted that the definition of 

energy efficiency strongly depends on the definition of the resulting energy 

output. It is therefore, crucial to define how to approach the assessment of this 

resulting energy output before proceeding to measure energy efficiency.  

Although a clear relation between energy efficiency and sustainability has not 

yet been established, in practice energy efficiency appears to be the common 

denominator of the various subclasses and interpretations of sustainable 

buildings as well as an essential principle and assessment criterion of 

sustainable buildings. Taking in consideration that past literature has 

acknowledged low energy buildings as a subclass of sustainable buildings, 

energy efficiency was considered in this research as an essential principle and 

assessment criterion of low energy buildings.  
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Reviewing how the discipline of architecture addresses the concept of energy 

efficiency, the argument developed in this chapter was that the concept of 

energy efficiency has not yet found a prominent position within the architectural 

dialogue. The discipline of architecture appears to be struggling to express its 

views on sustainability and energy efficiency and relate them to design, unlike 

other building professionals who are looking at sustainability from a more 

quantitatively driven view point.  

Considering the absence of a definition for energy efficiency deriving from the 

discipline of architecture, this research adopted the International Energy 

Agency’s definition of the terms energy efficiency as “a way of managing and 

restraining the growth in energy consumption”, and energy efficient as 

something that “delivers more services for the same energy input, or the same 

services for less energy input.”  

Reviewing the barriers impeding the implementation of energy efficiency in 

buildings, it was highlighted that aside from public policy’s fair share in not 

facilitating this implementation, several barriers arise from the building sector 

itself and in particular from architects. Notably, an outdated education, the 

energy literacy and the absence of an investigative attitude from architects into 

the performance of completed and occupied buildings were identified as 

fundamental issues to be addressed within the discipline of architecture. 

Furthermore, the overall fragmentation of the building sector into competing 

sections and the absence of integration between them, as well as the 

ineffective coordination arising from functional gaps and management 

discontinuities in the sector, were identified as adding to the diverse barriers 

deriving from market and policy actions. 

The review undertaken in this research indicates that while efforts are ongoing 

to produce better energy policies and regulation which would encourage the 

adoption of energy efficient measures in the form of building codes and 

labelling programs, appliance performance standards and retrofit incentive 

programs, the discipline of architecture appears to remain far from integrating 

energy efficiency into the architectural dialogue and implementing routine 

performance evaluation in its core education. 
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The resulting shortage of feedback regarding operational building performance 

appears to have wider implications in the building industry and creates a three-

fold problem; the first aspect of this problem being the gradual widening of the 

gap between theory and practice, the next being the shortage of specific 

knowledge which will allow the built up of confidence in implementing energy 

efficiency, and the last being the continuation in creating environments which 

lead occupants to associate energy efficiency with discomfort.  

Combined with a tendency to avoid disclosing building performance information 

to the public, it would appear that the result can only be that the same errors 

and malpractices are bound to be repeated, and that low energy buildings will 

continue to fail in achieving their designed performance.
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Chapter 2  

The operation of low energy buildings  

2.1 Introduction 

The purpose of this chapter is to understand whether we can suggest a 

framework for assessing the operation of low energy non-domestic buildings 

incorporating the concept of energy efficiency. This was achieved by examining 

past building performance assessment studies. 

The specific objectives of this chapter are to: 

• establish the definition of a low energy building in the context of energy 

efficiency; and 

• review documented studies of real world low energy building 

performance in order to identify areas where operational failure occurs 

and which must therefore be considered in this research. 

This chapter begins with a review of the definition of low energy buildings as 

they apply to this research. Thereafter, it presents the findings of the review on 

documented real world low energy building performance, and ends with a 

discussion of these findings. 

2.2 Definition of low energy buildings  

As discussed in Chapter 1, low energy buildings are considered to be one of 

the many manifestations of sustainable buildings, overall aiming at reducing 

their resource consumption and environmental loads while ensuring indoor 

environment quality and quality of service, by increasing building adaptability, 

utilising automated controls and technology promoting energy efficiency, and 

maintaining a positive performance (GhaffarianHoseini et al., 2013, Kibert, 

2012, Joelsson and Gustavsson, 2009). Furthermore, the absence of a 

comprehensive framework to define sustainability in the discipline of 

architecture hinders the establishment of strict boundaries between the many 
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different terms used in practice although efforts have been made to this effect 

(Chwieduk, 2003). 

According to Edwards (2003), green buildings, a more generic reference to 

buildings trying to achieve efficient use of energy and resources, are expected 

to be responsive, learning from their mistakes and be ready to adjust to new 

resource imperatives. The comparison of these reviews suggests that low 

energy buildings are effectively expected to secure healthy and productive 

indoor conditions at minimum possible energy expenditure by optimising their 

systems and the relationships between them. Under this description low energy 

buildings appear to share many similarities with the modern definitions of 

intelligent buildings. The definition Caffrey (1985) devised for an intelligent 

building describes it as one “that provides a productive and a cost-effective 

environment through optimisation of its four basic elements: structure, systems, 

services, and management and the interrelationships between them”; a 

definition also adopted by the US Intelligent Building Institute 

(Ghaffarianhoseini et al., 2016).  Alternatively, intelligent buildings have been 

argued to rely on the optimisation between people, products and processes 

and the relationships between them (Clements-Croome, 2004, Chen et al., 

2006); where products refer to all material components from the fabric and 

structure to the HVAC services, and processes refer to performance related 

actions from management to maintenance and evaluation. A user-focused 

definition has been adopted by the EU Intelligent Buildings Group which 

classifies as intelligent a building that “creates an environment which 

maximises the effectiveness of the building’s occupants, while at the same time 

enabling efficient management of resources with minimum life-time costs of 

hardware and facilities” (M. Wigginton and Harris, 2002). Notwithstanding a 

variation in definition, the collected literature (Caffrey, 1985, Loveday et al., 

1997, Kroner, 1997, Wong et al., 2005, Clements-Croome, 2004, Powell, 1990, 

Preiser and Schramm, 2002, Chen et al., 2006, M. Wigginton and Harris, 2002, 

So et al., 1999, Yang and Peng, 2001)  points to two important aspects that are 

central to the operation of intelligent buildings; the use of technology to collect 

data and produce information platforms allowing the efficient use of services, 

and the learning ability and performance adjustment of building systems.  



Chapter 2 - The operation of low energy buildings 

55 
 

The first aspect implies an adaptable and sustainable building operation 

buildings similar to the physiological mechanisms of the human body which 

adjust its performance based on the signals collected by its sensory system 

and the protection mechanisms developed overtime.  In technical terms, this 

description refers to a decision support system in place to help in achieving a 

balance between building performance, energy management and end user 

comfort (Ahmed et al., 2011). The second aspect refers to the accumulation of 

knowledge and past experiences which can be used to predict future 

performance or anticipate faults in performance’.  This description refers to data 

mining techniques that use collected data to analyse building performance and 

produce information that one can act upon when looking to improve future 

performance (Ahmed et al., 2011, Augenbroe and Park, 2005, Wu and 

Clements-Croome, 2007).  In an intelligent building this translates into a system 

of services that is managed and maintained based on data collected on various 

factors affecting building performance as well as feedback from users and 

predictions based on accumulated experience (Caffrey, 1985, Kasabov and 

Kozma, 1998). 

The realisation and widespread implementation of intelligent buildings are still 

challenged to this date by a number of factors. First the absence of a universal 

definition of intelligent buildings and the different weightings given to its 

elements and criteria, which has a negative impact on the potential of new and 

future building to be optimally designed and for the appropriate systems to be 

selected. Furthermore, the definitions of some of the principles internal to 

intelligent buildings such as comfort and work productivity are open to debate. 

Their complex measurement and assessment can act like drawback when 

assessing the success of intelligent buildings. Practice demonstrates that 

intelligent buildings can act as a key to future sustainable city development 

(GhaffarianHoseini et al., 2013). A review of prominent international intelligent 

buildings (Nguyen and Aiello, 2013) showed that they dynamically sensitive 

and adaptable to their occupants needs, surrounding environment and climate, 

are indistinguishably associated with the focus and objectives of sustainable 

buildings.  
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To conclude, the creation of buildings that can maintain a comfortable and 

productive environment at minimum energy and cost expenditure has been an 

aim growing in importance within the building sector since the 1980s. 

Considering the aspects presented above, it is futile in this age to try 

differentiating intelligent buildings from modern low energy buildings as the 

majority of low energy buildings constructed in the past decade are intended to 

be “intelligent by design”; they encompass the collection and use of data 

pertinent to performance indicators including energy, comfort and cost; they 

are often meant to be dynamically sensitive and adaptable to their occupants 

needs, surrounding environment and climate, which also renders them 

indistinguishably associated with the focus and objectives of sustainable 

buildings. 

In this respect, low energy buildings which secure healthy and productive 

indoor conditions at possible minimum energy expenditure are considered in 

this research as having achieved operational success in becoming low energy 

performers. 

2.3 The performance of real world low 

energy buildings 

There is considerable amount of past research projects which have 

documented that low energy buildings fail to perform as predicted by design 

estimates and accreditation schemes (Bordass et al., 2001, Bordass et al., 

2004, Fowler and Rauch, 2008, Turner and Frankel, 2008, Scofield, 2009a, 

Widener, 2009, Menezes et al., 2012, Hogg and Botten, 2012, CarbonTrust, 

2011). To meet the aim of this research, it was imperative to conduct a review 

of documented studies on the performance of real world low energy buildings 

to compile a list of issues encountered in practice following the completion and 

occupation of such buildings, and trace patterns among them. The results of 

this review provided useful insights into the performance challenges of low 

energy buildings.  

The following tables (Table 4, Table 5, Table 6) present the results of this 

review which comprised non-domestic buildings that claim to be either high 
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performance, low energy, near zero, energy efficient, energy saving, 

environmentally concerned, and some green buildings without lifecycle carbon 

targets. 
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Table 4: Performance Failure Issues related to Design 

Design Aspect Problems highlighted in Literature Review Reference 

Design 
Assumptions & 

Design Estimates 

-Design estimates overlook unregulated energy  
-Compliance schemes and calculations can be a good indicator for potential energy 
performance but cannot consider changes in design or operation or occupant 
behaviour, and make optimistic assumptions about hours of use.  

(Menezes et al., 2012, Johnson, 
2003, Hogg and Botten, 2012) 

Passive Strategies -Glare appears to worsen when design focuses on specifically proving daylighting. 
-Natural ventilation techniques in green offices materialized by large open volumes 
for the natural displacement of air contribute to the transmission of noise often 
travelling diagonally through the glazed facades from one part of the building to 
another and exposure to outdoors noise. The increase of equipment in the 
workplace adds to interior noise.  
-Air tightness of building impeding passive design strategies 
-Noise problems can be the result of green design instructing leaving doors open 
for natural ventilation and using materials of low embodied energy that deter space 
acoustics. 
-Greater thermal variations compared to conventional AC buildings. 
-Poor airtightness due to leakage at eaves, around and through windows (often in 
motorized windows) and at junctions between heavyweight and lightweight 
cladding, which results oversizing HVAC plant to overcome risks at the design 
stage and sometimes extensive remedial action once the office is occupied.  
-Ineffective window design consisting of poor user controls of workspace, poor 
positioning of window handles, wind disturbance and management system 
problems especially in heavy computerized systems.  
-Ineffective window blind design including poor occupant control, with internal blinds 
often left in one position irrespective of external conditions and external blinds 
suffering from wind turbulence.  
-Shading systems that are centrally controlled can create more problems than they 
solve. 

(Leaman et al., 1999, Edwards, 
2006, Armitage et al., 2011, Best 
and Purdey, 2012, Baird, 2010, 
Bordass and Leaman, 1997, 
Newsham, 2010, Heerwagen and 
Associates, 2005, Witterseh et 
al., 2004, InnovateUK, 2014, 
Roulet et al., 2006, Zhang and 
Altan, 2011, Abbaszadeh et al., 
2006, Filippín and Beascochea, 
2007, Deuble and de Dear, 2012) 
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-Daylighting, natural ventilation, and passive heating/cooling strategies not 
effectively reducing the loads to be served by HVAC and Lighting systems.  
-Lighting not following diurnal and seasonal daylight variations  
-Shading elements (roof wood structure, overhangs, and recessions on the facade) 
not effectively limiting glare while ensuring good daylight levels. 
-Excessive noise deriving from natural ventilation strategies, greater intensification 
of space, larger use of equipment and dense mix of activities. 
-Discomfort in areas can be the result of the clash of passive strategies, e.g. design 
often aiming to maximise use of daylight and provide views to the outside but 
creating issues with to glare and overheating 
-More glare problems experienced compared to conventional AC buildings.  
-Blinds often added after end users complains leading to the all-day use of artificial 
lights 

Automation & 
Controls 

-Tendency to make controls for heating, cooling, and lighting systems 
overcomplicated making it difficult for resident to use them effectively.  
-Window opening problems due to failed actuator motors on louvres and or 
oversized actuators. 
-Unresponsive controls which cannot be overridden by users.  
-BEMS operational problems not allowing it to monitor energy use and intervene in 
controls - user manuals they often seem to be installed as tick box exercise to 
comply with building regulations or certification programs.  
- Buildings performing less well usually are equipped with technologies which from 
a management point of view are considered challenging to operate. 

(Leaman et al., 1999, Edwards, 
2006, Armitage et al., 2011, 
Leaman and Bordass, 2007, Best 
and Purdey, 2012, Heerwagen 
and Associates, 2005, 
InnovateUK, 2014, Liang et al., 
2014, Hirning et al., 2013, 
Abbaszadeh et al., 2006, Kato 
and Murugan, 2010, Barlow and 
Fiala, 2007, Levin, 1995) 

HVAC systems -Multiple systems installed operating simultaneously and counteracting                                                                                            
-Cooling against heating or different heating systems jockeying for control                                                                                            
-Systems are overcooling or overwarming 
-Buildings are not operated as intended with large loads recorded during non-
working hours, and individual HVAC components behaving either outside their 
design scope or erratically.  
-Innovative systems seldom work perfectly to start with and the rush to hand over 
can squeeze out opportunities to optimise and maintain new systems.  

(InnovateUK, 2014, Keyvanfar et 
al., 2014, Torcellini et al., 2004, 
Leavey et al., 2015, Pfafferott et 
al., 2004, Tuohy et al., 2010, 
Barlow and Fiala, 2007, DoE, 
2001, DoE, 2002, 
GhaffarianHoseini et al., 2013, 
Knight et al., 2014a) 
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-Night cooling: if building occupied until late then the heating system is turned on to 
reheat space to stop temperature from dropping below acceptable level requiring 
careful control of heating and cooling set points. Reduce energy use as less heat 
was lost overnight, in turn cut heating demand in morning but increased risk of 
overheating during day and reducing indoor IAQ? 
-Heat recovery: frost coil in AHU set point Continuously operation - high 
consumption? 
-Earth tube: local manual override switch - noise issues 

Metering Strategy -Sub metering strategy required by Building Regulations but seldom fully complies 
with regulations due to ambiguities in guidance.  
-Comprehensive and overcomplicated sub metering strategies often driven by need 
to achieve BREEAM credit but not installed as specified or without due care 
calibration and placement.  
-Time and cost of setting up complex metering system should be carefully 
considered during construction.  
-Meters are often not calibrated or installed properly 

(InnovateUK, 2014, Torcellini et 
al., 2004, Barlow and Fiala, 2007, 
Knight et al., 2014a) 

Adaptation -Changes in energy profiles and zone comfort per season can be substantial -this 
might question the design assumptions for which the building was designed.  
-Although, sub-categories such as IT equipment, lighting and small power loads, 
which are less weather dependent, are expected to consume relatively constant 
energy throughout the year, and HVAC energy use is expected to change from 
month to month, this is not always the case.  

(InnovateUK, 2014, Barlow and 
Fiala, 2007, Knight et al., 2014a) 
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Table 5: Performance Failure Issues related to Facility Management 

Aspect Problems highlighted in Literature Review Reference 

Management, 
Automation, 
Metering & 

Controls 

-After handover, metering responsibility is often with a controls subcontractor who is 
not responsible for the M&E systems being monitored and is unaware of design 
decisions that have been made to try to get everything to work together. As a result, 
there can be lack of ownership over data and often none checks the integrity of the 
collected data.  
-Metering and BEMS systems can be challenging to operate.  
-In some buildings none of the staff member in charge of their maintenance and the 
BEMS skills are not passed over to other FM staff members.  
-Slow response to addressing occupant complaints. 
-Problematic access to building plants, components that need regular maintenance 
(e.g. fire detectors, lights) including monitoring systems (external sensors), blinds 
and motorized window equipment e.g. lofty atrium spaces and intelligent facade 
systems. 
-Problems with scheduling, lack of maintenance or understanding from FM. 

(Leaman et al., 1999, Edwards, 
2006, InnovateUK, 2014, 
Torcellini et al., 2004, DoE, 2001, 
Knight et al., 2014a) 
 

Handover, 
Commissioning & 

Maintenance 

-Complex BEMS systems need a careful handover especially where multiple 
subcontractors are involved.  
-BEMS systems are often not set up for data collection - max of collection data 
points                                                                                                                                          
-At times, member of staff actually responsible for operation of a building might not 
be present during handover                                                                
 -User guides lost or contained to much material irrelevant to occupant and cover 
more significant aspects with basic detail.  
-Manuals mainly drafted to gain BREEAM credits or building regulation as tick box 
exercise without attempting to have useful info - out of data user guides and specs 
and drawings - lost warrantied contracts.  
-Must also be wary of using innovative systems unless we know the installers had 
first-hand experience in using and installing them before (specific individual sent to 
install them) in similar contexts.  

(Leaman et al., 1999, Armitage et 
al., 2011, InnovateUK, 2014, 
Torcellini et al., 2004, Knight et 
al., 2014a) 
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-Continuous problems are partly because of brief and management deficiencies in 
the procurement process with ends and means confused. 

 
Table 6: Performance Failure Issues related to Occupants 

Aspect Problems highlighted in Literature Review Reference 

Building Design -Forgiveness is often observed in buildings POEs from occupants. The effect 
of forgiveness can improve the given POE scores and often leads to a 
building’s overall rating being higher than the rating of any of its 
components. 
-Compliance calculation ignores energy used out of normal working hours 
and awareness of building's strengths and weaknesses by occupants. 

(Deuble and de Dear, 2012, 
Liang et al., 2014, Singh et al., 
2010, Gou et al., 2013, Kato 
and Murugan, 2010, Bordass 
et al., 2001, Leaman and 
Bordass, 2007, Heerwagen 
and Associates, 2005, Best 
and Purdey, 2012) 

Behaviour -Differences between comfort and satisfaction among genders.  
-Association of different IEQ aspects to productivity and satisfaction. 

(Deuble and de Dear, 2012, 
Singh et al., 2010, Best and 
Purdey, 2012, Karjalainen, 
2007, Kim et al., 2013a, Kim 
and de Dear, 2012a) 

Understanding 
and Training 

-Unexpected outcomes occur where built logic does not match reality or 
where occupants do not understand systems but have manual control                  
-User engagement in during the briefing stage is crucial to the success of 
green offices. 

(Armitage et al., 2011, 
InnovateUK, 2014) 
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On a general note and in line with the widely documented performance gap, 

many documented studies revealed a discord of design and real world 

performance. Compliance schemes and calculations were observed to be 

unable to account for occupant behaviour, and engaged in optimistic 

assumptions about hours of use which led design estimates to overlook 

unregulated and out of hours’ energy use. 

At the level of passive and active systems carrying out functions necessary to 

provide a healthy and working environment for end users, the findings gathered 

in this review suggest that a number of the systems introduced during the 

design phase are not as effective as predicted either due to poor design and in 

some cases, due to problems deriving from the quality of particular system 

components, e.g.  HVAC systems counteracting. Furthermore, the findings of 

this review indicate that the design of these systems can lack in the ability to 

adapt to seasonal changes on occupancy profiles and indoor comfort. These 

problems refer to the ability of design teams to grasp fully the impact of design 

decisions on operational performance.  

Similarly, it was observed controls tended to be overcomplicated, whereas 

automation mechanisms intended to monitor energy use and intervene in 

controls failed to contribute in better management of the building. Although 

designed to comply with regulations, these mechanisms were suspected to 

have been designed with insufficient comprehension of how the operator and 

end users would use them.  

Another observation is that many studies lacked in whole building integrated 

design approaches. When designing, a low energy building both passive 

strategies and energy efficient techniques are introduced. In several cases, one 

passive strategy would antagonise another, e.g. design aiming to maximise use 

of daylight and provide views to the outside created issues with overheating 

and glare, or created new unexpected problems, e.g. natural ventilation 

strategies would contribute to the transmission of noise indoors and exposure 

to outdoors noise.  

Similar issues were observed in the implementation of energy efficiency 

measures. The application of energy efficiency measures in buildings was 
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manifested in various ways, e.g. new buildings were designed to include 

measures that have been proven successful to date such as high levels of 

insulation and low-e windows. The findings yielded by this review suggest that 

some of these measures can run the risk of creating new problems which will 

need to be managed, e.g. higher levels of insulation can result in moist indoor 

environments that might require applying additional measures after 

construction to dehumidify the indoor environment. In this respect, it can be 

argued that designers tend to fail to understand and predict the interaction of 

the strategies and techniques applied to building design.  

This example sheds more light on a simple fact usually overlooked when 

designing and constructing buildings; buildings are structured networks of 

systems comprising HVAC systems, lighting, appliances, load bearing 

components, facade systems and most importantly end users. To this end, 

when looking to improve the passive and active performance of buildings and 

increase their efficiency, one cannot also ignore the human factor either in the 

form of occupants or facility managers; they both influence the building’s 

performance through their decisions and actions. This relates yet to another 

observation on the potential factors leading to the failure of low energy 

buildings.  

In fact, the management of buildings services, the occupant behaviour, and the 

quality of the building systems and components were documented to be 

divergence sources of actual performance in the reviewed studies. 

Regarding the management of building services, a lack of clarity in the role of 

facility managers regarding the control of the BEMS, metering maintenance 

and data collection, as well as absence of skills required to understand the 

metered data, appeared to remove the benefits that continuous performance 

metering can offer to building operators. It is important to note that some of the 

issues were related to inherent deficiencies of low energy buildings which 

derive from the ineffective design of monitoring and management systems as 

well as poor commissioning and handover practices. Moreover, slow operator 

response to addressing occupant complaints were demonstrated to have a 

negative effect on occupants’ perceptions of the indoors environment.  



Chapter 2 - The operation of low energy buildings 
 

65 
 

Furthermore, erratic management of building services by facility managers 

were demonstrated to account for a large part of the total building energy 

consumption according to most PROBE case studies (Leaman et al., 1999). 

Even in automated buildings where occupants are provided with limited access 

to personal controls of their work environment, occupants appeared to have an 

important impact on the total building energy use related to the levels of comfort 

and satisfaction they experience. Unexpected outcomes occurred where 

occupants did not understand systems but have manual control. Additionally, 

equipment and appliances handled by occupants were observed to have the 

potential of leading to unregulated loads that were often difficult to manage.  

With respect to the aspects central to the operation of intelligent buildings, the 

continuous monitoring, the learning ability and performance adjustment of 

building systems, and the sensory network that could provide this data, 

appeared to face several problems.  Because of an absence of standardisation 

regarding metering methodologies, the selection, location, installation and 

configuration strategies of meters and sensors were faced with many problems 

and errors in the reviewed studies. The difficulties in the acquisition of 

comprehensive energy data with the appropriate accuracy and reliability 

currently remains a strong impediment to the full-scale exploitation of machine 

learning and data mining techniques (Knight et al., 2014a, Azar and Menassa, 

2014, Carrie-Armel et al., 2013, Babaei et al., 2015).  

Moreover, although most low energy buildings were equipped with data 

collection and analysis systems in place to signal alarms, adjust building 

performance according to external conditions, and set comfort ranges, the 

associated information and decisions were documented to be often short-

circuited through stakeholders involved in running and managing low energy 

buildings.  The findings of this review also suggest that facility management do 

not always have the education or resources to take full advantage of these 

systems, while stakeholders managing budget and expenditure tended to 

hierarchize building performance issues with a mentality aiming at practicing 

damage control with the minimum cost possible.  
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2.4 Implications for design 

This chapter presented a review of the operational problems observed in the 

performance of low energy buildings. The findings of this review demonstrate 

that these problems derive mainly from: 

• design processes which preclude the ability to treat buildings as 

integrated networks of components, systems, operators and occupants; 

• adherence to unrealistic design assumptions and simplified models of 

performance;  

• the quality of building systems, components and their commissioning;  

as well as:  

• the management of buildings services; and 

• the occupant behaviour. 

Thus, not all performance failure related issues are able to be addressed by 

architectural design, and instead are determined by the actions of the facility 

management and occupants. Therefore, in this review, findings were organised 

in three categories; performance failure issues arising from design, facility 

management and occupant behaviour.  

With regard to occupants, unexpected outcomes were observed to occur where 

design logic does not reflect reality, or where occupants do not understand 

systems but have manual control over them. According to Edwards (2006), in 

more complex and large scale buildings “major technological innovation 

depends upon good communication via the ethos of the building design 

between architect and end user”. Edwards (2006) has argued that a poor 

understanding from the perspective of users regarding the scope and methods 

used to improve environmental performance can transform the solution of a 

specific problem in one building to be a problem in another building. 

Furthermore, the findings of this review support the idea that occupants can 

rate buildings more positively when aesthetic pleasantness, sense of beauty 

and wellbeing, operational clarity or a sustainable agenda characterise the 
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overall design, a phenomenon that has been named the forgiveness factor 

(Heerwagen and Associates, 2005, Deuble and de Dear, 2012, Best and 

Purdey, 2012, Leaman, 2007, Leaman and Bordass, 2007). The impact of this 

phenomenon is observed in post occupancy studies of green buildings, where 

the difference between overall scores in the perception of indoors 

environments and the specific parameter focused scores under the same 

heading tend to be lower, as well as in the higher ratings green-intent buildings 

receive to conventional buildings with regard to general all-inclusive variables, 

e.g. for overall ventilation, comfort, design, health, image, light and perceived 

productivity. Moreover, the findings of this review demonstrated that occupants 

can be more ‘forgiving’ when features that appealed to them were installed 

(Leaman, 2007, Leaman and Bordass, 2007). In the case of green intent 

buildings, forgiveness-triggering factors include connection to the outside, 

shallow layouts, personal control of daylighting, care in briefing, design and 

management (Leaman, 2007, Leaman and Bordass, 2007). 

Past literature focusing on the behaviour of occupants is rather skewed towards  

occupant behaviour modelling and simulation (Gaetani et al., 2016, Liao et al., 

2012, Schweiker et al., 2012, Yan et al., 2015), the applicability of thermal 

comfort models (Nicol and Humphreys, 1973, Nicol and Humphreys, 2002b, 

Fanger and Jørn, 2002, Rijal et al., 2007), the effect of occupant behaviour in 

domestic environments with an aim to estimate its influence to overall domestic 

energy use (Jeong et al., 2016, Hong et al., 2016, Kyrö et al., 2011), and the 

behaviour profiles of building controls (Lindelöf and Morel, 2006, Mahdavi et 

al., 2008, Guerra Santin et al., 2009, Schakib-Ekbatan et al., 2015, Foster and 

Oreszczyn, 2001, Haldi and Robinson, 2009).  

A general estimate of the impact of human behaviour on building performance 

has been provided by the WBCSC which noted that wasteful behaviour can 

lead to the addition of a third to a building's designed energy performance 

(WBCSD, 2009, Nguyen and Aiello, 2013). Research efforts to quantify the 

influence of occupants to total non-domestic building energy use through 

monitoring has been scarce as there appear to be many challenges in 

monitoring occupant energy use in such buildings which are often multi-tenant 

and occupants are unmotivated to engage in energy saving behaviours 
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(Rafsanjani and Ahn, 2016, Rafsanjani et al., 2015, Karjalainen, 2016, 

Karjalainen and Koistinen, 2007). Estimations of this nature usually refer to the 

potential effect of occupant behaviour on the energy savings that can be 

achieved and are part of energy feedback research (Azar and Menassa, 2013, 

Hong et al., 2016). These savings can vary greatly and reach up to 30% (Wong 

et al., 2008, Hong and Lin, 2013, Bin, 2012) subject to the quantification 

methodology followed and the definition given to different user behaviours. 

Other studies in this field have demonstrated that more than half of the total 

building energy use takes place during out of hours (Webber et al., 2006, 

Masoso and Grobler, 2010, Meier, 2006, Zhang et al., 2011). The out of hours’ 

energy expenditure has been documented in these studies to be the result of 

occupant behaviour and interaction with lighting, small power devices and AC 

systems. Although Mulville et al. (2014) have claimed that significant savings 

can be achieved in this areas by behavioural changes in UK. Dubois and 

Blomsterberg (2011) have argued that extended office hours and user 

acceptance issues with regard to automated controls have been argued to 

inhibit actions implemented to counter this energy expenditure.  

Similar to the impact occupants maintain, building operators were observed to 

be related to a number of problems observed in low energy buildings. Overall, 

the ability of facility managers to improve energy efficiency in buildings through 

their actions and decisions appears to still be underestimated in practice, as 

well as in legislation where the focus remains on design and retrofit to carry 

energy efficiency forward (Finch and Zhang, 2013). In an era where energy 

performance in non-domestic buildings is rationalised and building control is 

more frequently turned over to building management systems, facility 

managers have a crucial role in energy management (Goulden and Spence, 

2015, Aune et al., 2009). Edwards (2006) has highlighted that facility managers 

do not only stand between senior management and users, but they can also 

act like a bridge between design concept and reality. Nevertheless, integrated 

building design process appears to remain unrelated to the management 

exercised by building operators (Min et al., 2016). 

The findings of this review also suggest that the shortage of knowledge and 

training in operating intelligent building metering and management systems, 
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and management deficiencies in the procurement process can lead to 

continuous problems related to inefficient operation and maintenance of 

building systems. These problems have been documented to have a negative 

impact on building energy expenditure, indoor environmental quality and user 

satisfaction (Wu et al., 2010). In addition, the speed at which they address 

complaints was observed to have the potential to particularly affect the 

forgiveness occupants show towards building performance. Furthermore, the 

absence of supervised quality control in the commissioning of building and their 

systems was documented to contribute to the building to not be operated as 

designed. Taken together, these findings suggest that operators maintain an 

important role in real world building performance, which is unaccounted for 

during design yet is called upon when buildings fail to perform in practice. 

Although past research has established that facility management can better 

building performance through appropriate commissioning, maintenance, in 

combination with proactive management and control (Aune et al., 2009, Finch 

and Zhang, 2013, Lewis et al., 2010), studies on the quantification of energy 

savings achieved in non-domestic buildings through facility management 

specific improvements have  been scarce. More studies are concerned with the 

identification of potential savings achieved as a result of a more efficient 

building operation irrespective of stakeholder involved. These studies tend to 

be case specific and take the form of either energy performance assessments 

(Masoso and Grobler, 2010, Webber et al., 2006) or research on feedback and 

user education strategies (Carrico and Riemer, 2011, Goulden and Spence, 

2015). Research in this area is increasingly focused on the savings achieved 

through continuous monitoring and commissioning, defined as processes 

which allow for the forensic review of building performance with an aim of 

identifying of problems and energy saving opportunities and therefore bringing 

together design, construction and the operation of buildings (Mills, 2011, Min 

et al., 2016).  

Continuous monitoring and monitored based commissioning have been 

documented in past research to be cost effective methods which allow 

stakeholders to fine tune their buildings’ systems based on the current 

operational requirements and identify energy saving opportunities which lead 
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to average energy savings of 11% to 30% subject to building type, activities 

housed and length of monitoring (Claridge et al., 1994, Lee, 2000, FEMP, 2002, 

Mills and Mathew, 2012, Li et al., 2014, Mulville et al., 2014). The results of the 

HARMONAC project (Knight et al., 2010) agreed with the cost efficiency of the 

monitoring schemes stated above over periodic inspections when the resulting 

energy savings are considered, and demonstrated practical energy savings of 

up to 60% in individual HVAC systems when automatic monitoring and 

feedback systems were applied in buildings. Further to the HARMONAC 

results, the iSERV project demonstrated with greater accuracy electrical 

savings deriving from the application of automatic monitoring and feedback 

systems ranging up to 33%, and 9% on average with systems under long term 

monitoring increasing their average annual electricity savings (Knight et al., 

2014b). In line with these findings, the Building EQ project (2009) demonstrated 

similar energy savings of up to 20% deriving from the combination of monitoring 

installation and user demand visualisation, with the further application of 

ongoing commissioning and continuous benchmarking allowing for up to 10% 

annual savings. 

From the perspective of architects, the findings yielded by this review indicated 

that problems can arise from the challenge of translating design intent into 

perceived indoor environmental quality as well as the difficulty architects are 

faced with when trying to design for the control of various indoor environmental 

quality factors. It was observed that solutions to control a specific IEQ variable 

may cause issues to another as shown above with the design of open plan 

spaces that allow natural ventilation but have a negative impact on acoustics. 

Similar problems were observed to arise when aesthetics collide with utility and 

performance aspects, e.g. selecting materials with no sound absorption 

qualities to cover the interior of HVAC parts (ASHRAE, 2005). In parallel, the 

review findings appear to suggest that architects are faced with the challenge 

of integrating different systems and strategies with little understanding of how 

they interact in buildings which have been observed to be highly “fragile” with 

regard to their performance (Leaman and Bordass, 2007). The absence of such 

integrated approaches can be observed in the wider industry practice (Lewis et 

al., 2010).  When these factors are combined with the use of design estimates 
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which make optimistic assumptions about patterns of use and management, 

and overcomplicated systems and metering strategies which are challenging 

to operate, low energy buildings are bound to meet significant challenges in 

their operation.  

To conclude, for low energy buildings to succeed, the implementation of 

technological advances into the design of new buildings is insufficient. Past 

studies suggest that there is gradually greater need for convergence between 

owners, managers, designers and occupants on key environmental concepts 

(Bordass, 2000). Combining this fact with the areas of operational performance 

failure documented in this chapter and the past research on the performance 

gap, discussed in the Background Chapter, one of the findings of this research 

from the literature review (Fig. 11) is that the success or failure of buildings 

aiming to be low energy lies in the level of:  

• agreement between all building stakeholders with regard to the way they 

perceive the building is or should be performing, controlled and 

operated; and 

• detail available to match predicted building performance to the actual 

metered building performance, e.g. individual meter per major 

component or lighting circuit as opposed to one meter for the building. 
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Figure 11: String Factors affecting the operational perfromance of buildings 

 

In addition, the findings of this research suggest that not all performance failure 

related issues are able to be addressed by architectural design, and instead 

are determined by the actions of the facility management and occupants. 

Irrespective of the fact that architects have only a partial influence on the non-

performance of low energy buildings presented in this Chapter, the extent of 

the operational non-performance of low energy buildings in practice is paving 

the way for architects to be rendered liable, even contractually (Mark, 2013, 

O’Connor, 2012), for buildings which do not meet their design performance 

targets. 

The driver of this research has therefore been to develop an understanding of 

the role of the Architect in the operational performance of buildings, with the 
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central aim being to understand the Architect’s actual influence on the 

operational performance of low energy buildings.  The hypothesis underpinning 

this research has been that Architects can only influence part of the operational 

performance of low energy buildings.  
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Chapter 3  

Building Performance Assessment  

3.1 Introduction 

This chapter is concerned with the state of the art in the area of building 

performance assessment based on operational data.  

The specific objectives of this chapter are to: 

• review the contemporary approaches in building performance 

assessment;  

• present an overview of the existing building performance evaluation 

methods and tools, quantitative performance indicators used in practice, 

and current performance assessment schemes and standards; 

• understand the advantages and disadvantages of the presented 

approaches, methods, indicators, schemes and standards in order to 

identify methods and designs suitable for this research. 

This chapter is divided into four sections. The first section gives a brief overview 

of the origins and definitions of building performance assessment. The second 

section looks at contemporary methods and is followed by the investigation of 

associated building performance indicators. The final section outlines 

contemporary building performance assessment schemes and standards. 

3.2 Origins and Definitions 

The earliest documented structured assessments of building performance were 

attempted as a response to issues related to occupant satisfaction and cost 

value in Manning’s work with the Pilkington Research Unit in 1965, and in 

Markus et al.’s work for the University of Strathclyde’s Building Performance 

Research Unit in 1972 (Preiser, 1995, Preiser and Schramm, 2002).  Since the 

1980s, structured assessments of building performance have been referred to
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as either Post Occupancy Evaluations (POE) or Building Performance 

Evaluations (BPE) and have mainly focused on understanding occupant 

satisfaction in buildings (Marans and Spreckelmeyer, 1982, Oldham and 

Rotchford, 1983). 

Various definitions have been published over the years. Preiser et al. (1987), 

defined building performance assessments as “the process of evaluating 

buildings in a systematic and rigorous manner after they have been built and 

occupied for some time”. Vischer (2002) articulated a broader definition 

including “any and all activities that originate out of an interest in learning how 

a building performs once it is built, including if and how well it has met 

expectations”.  From the perspective of architectural research, these 

assessments have been considered by RIBA (1991) as systematic studies of 

real working buildings, which inform their architects on the performance of their 

building design and their stakeholders on “guidelines to achieve the best out of 

what they already have”. From the perspective of facility management, these 

assessments have been described with a greater focus on their diagnostic 

utility which allows facility managers to systematically understand and assess 

all critical performance aspects (Preiser, 1997). Overall, the assessment of 

building performance has been defined as a process allowing for the acquisition 

of feedback of both objective and subjective nature to inform stakeholders on 

the full lifecycle of buildings.  

Preiser and Schramm (2002) developed an integrative framework for the 

assessment of building performance which has been at the core of this field 

since its publication. In contrast to earlier perceptions of building delivery as a 

linear end product oriented process, Preiser and Schramm’s framework viewed 

this process as a “dynamic, evolving and non-mechanical model” (Preiser and 

Schramm, 2005). Their model took into consideration the elaborate character 

of performance evaluation as a part of the building delivery process and 

lifecycle. At its centre are product-focused quantitative and qualitative 

performance criteria with the end point being also the beginning of the next 

building delivery cycle. It was divided in six phases under individual review and 

feedback loops and is illustrated in Fig. 12. 
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Figure 12: The six feedback loops of Preiser and Schramm’s framework (2002) 

LOOP 1- effectiveness review 

outcomes of strategic planning are reviewed in terms of their effectiveness, 
relating to the specific ‘big issue’ categories of a given organization that 
match its mission and goals, e.g corporate image and capital cost. 

 

LOOP 2- programme review 

allows project participants, including occupants, to reflect on the 
programme document containing performance criteria and other outcomes 
of strategic planning and for the programme to be evaluated and modified 
as part of dynamic process. 

evaluated and modified as part of dynamic process. 

LOOP 3- design review 

Includes evaluative loops in the form of design Review including all 
stakeholders. A well-written programme can serve as the basis for a more 
objective evaluation of the design. 

LOOP 4- commissioning 

at the end of the construction phase, inspections take place, which result in 
items that need to be completed prior to acceptance of the building by the 
client. This feedback loop insures that owners’ expectations and obligatory 
standards are met in the constructed building. 

LOOP 5- post-occupancy evaluation 

BPE is activated in the form of POEs that provide feedback from users on 
what works and what needs improvement. POEs test hypotheses behind 
key decisions in programming and design, and identify issues in building 
performance. POEs to be ideally carried out at regular intervals especially 
in organizations with repetitive building programmes. 

LOOP 6- market/needs analysis 

Evaluating market for building type in question in terms of the client 
organization’s needs and assessing the rehabilitation potential of 
abandoned buildings or the potential of a prospective site in terms of future 
needs. 
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By repeating building evaluations, more knowledge on building performance is 

expected to be accumulated to form large datasets, which could be further used 

in the form of building type-specific databases feeding into developing 

guidelines. To this effect, the informing nature of these assessments has been 

described as having an impact on multiple levels fulfilling both short and long-

term goals. In line with the previous definitions,  Meir et al. (2009) supported 

the view that such assessments, when performed systematically, form a 

platform which provides lessons to improve the current performance of building 

as well as inform future design. Earlier studies documented the various 

outcomes which can be achieved by performing assessments on building 

performance (Preiser and Vischer, 2005, FFC et al., 2002)  and categorised 

them according to their temporal effect, as presented in Figure 13. 

 

Figure 13: POE benefits (Preiser and Vischer, 2005 and Federal Facilities 
Council et al., 2002) 
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Past research has categorised the different assessments of building 

performance in a number of ways. According to their particular focus, Vischer 

(2002) suggested that assessments of building performance should take the 

form of one of the different following types: 

• research focusing on the relationship between building and behaviour; 

• information for building pre-design programming on which design guides 

or prototypes can be based; 

• strategic space planning to bring space use in line with strategic 

business goals; and 

• capital asset management allowing for development of performance 

measures for built space. 

With regard to the level of effort required, Preiser (1995) categorised 

assessments of building performance according to the distinct categories 

presented in Figure 14. 

 

Figure 14: Categories of building performance assessments according to level 
of effort required  (Preiser, 1995) 
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et al., 1999), or the form of in-depth studies analysing in detail all possible 

parameters for a single case study. Both in-depth and lateral survey 

approaches present specific advantages and disadvantages which are 

presented in Table 7.
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In-Depth Studies Lateral Studies 

Advantages Disadvantages Advantages Disadvantages 

• Focused measurement of 
occupant satisfaction 

• Enables owners and FM to 
address occupant 
complaints fast 

• Allows for performing 
targeted maintenance 

• Can provide better 
understanding of occupant 
satisfaction and be more 
responsive to performance 
issues when allowing for 
open ended comments to 
be recorded and additional 
interviews to take place. 
This can allow the 
association of seemingly 
unrelated factors with 
dissatisfaction. 

• Inability to compare results 
due to unique format 

• Inability to perform robust 
analysis of larger samples 

• Suitable only for a single or 
a small number of buildings 

• Have the potential of 
becoming data-challenged 
when over focusing on 
answering a specific 
question ignoring 
supporting Questions that 
can allow for greater 
understanding. 

• Tend to ignore 
consideration of individual 
factors such as gender and 
age. 

• Allow for comparison with 
large data sets of various 
buildings 

• Potential for better 
understanding of the effect 
of single IEQ variable with 
the use of ordinal 
regression models which 
can deem factors 
statistically significant 
allowing for specific 
variables to be isolated 
from other factors. 

• Allow for better 
understanding of the 
relationships between 
different IEQ variables. 

• Ability to aggregate survey 
data to assess results 
across numerous buildings. 

• Inability to acquire deeper 
understanding for a specific 
building unless a more 
focused supplement is 
added to the survey. 

• Can provide limited building 
specific feedback to owners 
and facility managers. 

Table 7: Advantages and disadvantages of in depth and lateral survey approaches (Meir et al., 2009, Choi et al., 2010, Frontczak et 
al., 2012)
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3.3 Methods  

The assessment of building performance can comprise the evaluation of a 

number of functional (subjective) and performative (objective) aspects of 

constructed buildings (Meir et al., 2009). Objective aspects include energy use, 

chemo-physical variables that constitute indoor environment quality analysis, 

indoor air quality and thermal performance. Subjective and rather interactional 

aspects include space use and user satisfaction analysis. This concurrence of 

objective and subjective aspects requires the use of a structured approach that 

draws from both qualitative and quantitative examination methods (Meir et al., 

2009).  

Past research has attempted to evaluate the qualitative and quantitative 

methods employed in published assessments of building performance with 

Meir et al.’s research (2009) classifying these methods into three large groups. 

The findings of the review conducted in this research regarding the existing 

methods of building performance assessment are presented in Table 8. 

Each method presents distinct disadvantages in its implementation.  With 

regard to measuring the physical factors of indoor environments, the review 

highlighted we are in reality  measuring thermal environment factors in isolation 

omitting the impact of their interrelations which could place thermal comfort out 

of regular boundaries assumed in current HVAC system design guidelines 

(Mallick, 1996, Faruqui Ali et al., 1998, Pati and Augenbroe, 2006, Meir et al., 

2009). Meir et al. (2009) have argued that this is the combined effect of a 

shortage in research focusing on the correlation between different 

environmental parameters and the plurality of different standards addressing 

these parameters separately.  Visual comfort could be considered an example 

of this gap in research. It is addressed by various standards such as the CIBSE 

code for interior lighting (2012), listing quantitative benchmarks for different 

tasks but includes limited information on the relation between visual comfort 

and material properties as well as  the integration of artificial lighting with 

daylighting techniques which could lead to energy savings (Meir et al., 2009). 

In parallel, the shortage of research on daylight use and its implementation in 

specific climatic regions does not help designers experiment with flexible 
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solutions, and instead increases artificial lighting dependence (Ochoa and 

Capeluto, 2006). 

Regarding methods led by energy monitoring and sampling, the review findings 

suggest that these methods can face challenges sourcing from differences in 

national legislation by state or by country. Sampling and monitoring procedures 

vary according to location, with some countries having taken greater steps 

towards energy saving measures than others, e.g. implementation of the 

PassivHaus standard or compulsory inspection and monitoring of buildings 

(Knight et al., 2014a). Such differences eventually impact on the accuracy, 

calibration, level and period of performance monitoring which can be 

detrimental to the quality of data obtained and the resulting analysis (Meir et 

al., 2009).   

Methods sourcing information from occupants regarding the subjective 

perception of indoor conditions have been documented to be able to provide 

insightful feedback on the individual adaptation interventions taken by 

occupants as well as provide evidence of complex relations between building 

design and occupant satisfaction (Gossauer and Wagner, 2007). However, 

they can be negatively affected by personal factors other than the physiology 

of occupants on parameters such as temperature (Meir et al., 2009). Occupant 

bias can be dealt in ways that are described later in this chapter. 

Regarding the last group of methods, document analysis and on-site 

observations were observed to be a rather overlooked method. The review 

findings indicated that through critical analysis of pre-construction drawing, 

briefs and specifications, these methods can allow for prevention or correction 

of typical mistakes such as architectural details leading to space loss (Marmont, 

2004) or behavioural/use alterations (Preiser, 2004). On-site surveys and 

walkthroughs can take the character of inspections to identify building and 

system problems which usually include misuse of space (Meir et al., 2009), 

malpractices in operating the buildings (Meir et al., 2009), signs of excess 

moisture, dampness and corrosion  indicating health hazards (Marmont, 2004) 

and or HVAC system plant problem arising from commissioning. A major  
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Table 8: Methods of building performance assessment 

Method Key parameters Advantages Disadvantages/ Barriers 
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-Air Temp. 
-RH 
-Air movement 
-Light Intensity 
-Noise Levels 
-Pollutants 
-Allergens and 
pathogens 
-VOC & TVOC 
-CO2 & CO 
-Electromagnetic 
fields 
-Energy/ Fuel 
consumption  

-Indisputable empirical data and results (Meir et 
al., 2009). 
- Straightforward to measure and compare to 
established standards (Meir et al., 2009). 
-In the case of a full audit, it can allow for a 
breakdown of energy use by service, components 
or consumption type to indicate the proportional 
attribute of various factors to total energy use 
(Meir et al., 2009). 
-Frequent energy audits and re-commissioning 
exercises can contribute to maximise efficiency in 
building services by diminishing energy waste 
(Way and Bordass, 2005) 
 

-Provide one sided aspect of complex building 
performance which goes beyond traditional physics 
approach (Pati and Augenbroe, 2006) 
- Measuring thermal environment factors in isolation of 
other interrelations (Mallick, 1996, Faruqui Ali et al., 
1998, Pati and Augenbroe, 2006, Meir et al., 2009). 
-International standards are sometimes questioned in 
this field e.g. ASHRAE Stand. 55: culture vs. behaviour  
(Nicol and Humphreys, 2002a). 
-Physical measurements of IEQ cannot provide us with 
a direct assessment of occupant conditions as a 
universally accepted measure for occupant well-being 
and productivity is a complex issue (Humphreys, 2005). 
-Discrepancies may arise during measurements and 
monitoring (Meir et al., 2009). 
- Absence of standardised sampling and monitoring 
procedures which can vary according to location. 
Where procedures and protocols exist but may be 
compromised due to varying local considerations and 
limitations (Meir et al., 2009). 
-Additional metering might be required to be able to 
conduct a full analysis of the building and HVAC 
system performance. However, few green buildings in 
the UK are adequately monitored to be able to assess 
their performance against environmental and user 
criteria made at the design stage (Edwards, 2003). 
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Questions on how 
indoor 
environment 
parameters are 
perceived by 
occupants asking 
interviewees to 
rank individual 
parameters and 
overall satisfaction 
using a scale, 
mimicking PMV 
semantic scale, 
and aggregating 
occupant ratings. 

-Used separately or in combination with 
quantitative measurements (Meir et al., 2009). 
-Utilised to pattern user satisfaction, give direct 
feedback to building owners on system success 
and quantify perception of indoor environment 
(Meir et al., 2009). 
-Contribute in understanding the intricate 
correlations between building performance and 
operation and user satisfactions (Meir et al., 
2009). 
- Self reported productivity has been identified as 
one of the valid methods in measuring productivity 
in the workplace (Oseland, 1996) 
-Ability to delve into the impact of indoor 
environment on productivity and user performance 
(Meir et al., 2009). 

-There is criticism that results drawn from psychological 
and social sciences are supplementary (Meir et al., 
2009). 
-Perceived results might be affected from personal 
factors and other cofounding factors that are 
independent of building design (Leaman and Bordass, 
2007, Bluyssen, 2010b, Meir et al., 2009) 
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-Allow correction of potential mistakes during 
construction (Meir et al., 2009, Marmont, 2004, 
Preiser, 2004). 
-Identify building system and component problems 
(Meir et al., 2009, Marmont, 2004). 

-Require trained personnel to perform HVAC system 
inspections (Meir et al., 2009). 
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setback of this approach has been documented to be the need for additional 

resources and trained personnel to perform these walkthroughs (Meir et al., 

2009). 

The large variety of methods available to conduct assessments of building 

performance raise the question of their particular use.  Evidently, one of the 

inherent shortages of the current development of building performance 

assessments is the absence of a universal and systematic approach, a uniform 

protocol which would allow separate studies to produce comparable results 

(Spengler et al., 2000). As a result, there is a general difficulty in gaining 

understanding from such projects as they often consist of various parameters 

and elaborate interrelations which are specific to the study at hand. 

In absence of a universal and systematic approach, various approaches have 

been proposed to address the question of selecting the appropriate methods. 

According to Meir et al. (2009), on one hand, the structure and goals of each 

assessment should be associated to the benefits that each stakeholder can 

acquire by conducting such evaluation, while the selection or correlation of 

these methods is usually dictated by the intricacy of buildings as systems and 

the synergies created between these systems and the occupants. Table 9 

presents a summary of the prospects and hazards of such assessments 

according to the standpoint of each stakeholder (Meir et al., 2009). 

Stakeholder Vested Interest Risks 

Entrepreneur Assess value for money 
invested by better design 
  

Casting light on building 
performance might bring legal 
liability issues if building proven 
to be hazardous at any level 

Building 
manager 

Reducing energy consumption 
and maintenance costs by 
understanding how the building 
is and should be operating. 

Rated low in terms of response 
time to occupants’ complaints. 

End user/ 
Occupant 

Improve wellbeing and 
productivity 

 

Architect/ 
Consultant 

Use feedback in order to create 
better buildings given 
constraints. 

Responsibility of design for 
wellbeing of occupants, energy 
bill and total investment made if 
design is proven to have 
negative effects although this is 
not usually inscribed in 
professional codes and 
legislation. 
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Commissioning liability.  

Institutional 
stakeholder 

Promotion of better design and 
building practices that address 
generic problematic practices 
e.g. sick building syndrome, 
add longevity through better 
building and systems. 
 
Better overview of the building 
related discipline and 
professional practices. 

Liability Issues arising from 
assessment results. 

Table 9: Prospects and hazards deriving from the assessment of building 
performance according to the standpoint of each stakeholder (Meir et al., 2009) 

On the same wavelength, Gordon and Stubbs (2004) supported that 

assessments of building performance must relate to the task at hand. In their 

study, they examined five case studies of buildings that were selected for 

continued long term review by the AIA building performance committee. The 

findings were of interest with respect to use of a high-performance glass curtain 

walls which were also part of the LEED silver residential specification. This 

solution although superior in energy efficiency compared to other window 

types, overall was less energy efficient with higher embodied energy than most 

types of opaque walls that could have been used. These results opened room 

for discussion regarding the balance between utility, aesthetics and sale value. 

Moreover, this case provided evidence that such an assessment can be 

cleverly constructed to acquire responses from occupant with regard to specific 

design elements and therefore agrees with researchers who have sought for a 

further expansion of such assessments content to include design parameters 

in addition to the parameters examined to date (Roaf, 2004). 

Other researchers maintain more assertive views. According to Huizenga et al. 

(2006), a comprehensive method must include assessment of occupant well-

being and productivity in combination with building operation evaluation which 

altogether close the feedback loop that is important to the success of future 

building design and practice. Incidentally, the Building Services Research and 

Information Association (BSRIA) (2012b) has proposed the concurrent use of 

forensic walkthroughs, energy surveys and occupant satisfaction surveys. It is 

suggested:  
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• walkthroughs can identify problematic operational practices such as 

lights switched on during days when daylight is adequate, wrong 

connection between systems and meters, issues with user interface of 

management systems.  

• energy surveys allow for a breakdown of building energy use according 

to consumption type. 

• occupant satisfaction surveys allow for a deeper understanding of the 

interdependency between perceived comfort factors such as speed of 

response to complaints and occupant density. 

The BSRIA approach is implemented through the Soft Landings framework 

which has been introduced in an effort to refocus energy efficiency related 

policy from design and construction and extend it to include operational 

performance and maintenance. It is based on twelve core principles aiming at 

articulating “in clear and concise terms what fundamental actions are required 

by clients and project teams to deliver consistently better buildings” (BSRIA, 

2012a). 

With regard to buildings claiming to be a manifestation of sustainability, a 

number of assessments attempted to use strictly monitoring and physiological 

approaches based on the hypothesis that they are mainly utilitarian in design 

(Meir et al., 2009). However, a series of subsequent studies provided concrete 

evidence that user satisfaction is an indispensable aspect of building 

assessment processes regardless the design scope and aims or building 

(Leaman and Bordass, 1999, Langston et al., 2008, Wagner et al., 2007). 

According to Edwards (2006), to design better buildings, designers should 

follow the double fold principle of addressing “the feelings of people who work 

in the space as well as measuring the performance of the building in strictly 

environmental terms”. The combination of energy monitoring, audits, 

walkthroughs and occupant surveys has allowed for the identification of 

significant miscellaneous electric loads which were little understood in green 

offices and near zero energy homes as they were driven by a complex mix of 

occupants and electrical loads associated with small power loads (Fowler and 

Rauch, 2008, Sherwin et al., 2010). In line with these claims, occupant 
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satisfaction has been recently integrated in BREEAM as a requirement for 

certain credits such as Man 052. 

Although the methods to be employed for the assessment at hand are 

considered to be subject to the assessment’s scope and aims, an evaluation 

framework for general applicability has been proposed by Preiser (1995) and 

Preiser and Schramm (2002), which provides a list of steps required to 

complete such an assessment (Fig. 15). 

Figure 15: The Post Occupancy Evaluation Framework (Preiser & Schramm, 
2002). 

                                                 
2 Man 05 Aftercare refers to the provision of post-handover care to building 
owners and end users during the first year of the building’s occupation in 
order to ensure its operation and adaptation is as designed BRE. 2016a. Man 
05 Aftercare [Online]. Available: 
http://www.breeam.com/BREEAMUK2014SchemeDocument/content/04_man
agement/man05.htm [Accessed 30/10/2016 2016].. 
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3.4 Quantitative Performance Indicators  

Table 10 presents a summary of the quantitative indicators for energy 

performance, indoor air quality and thermal comfort used in practice for non-

domestic buildings. 

The summary presented builds on the work of Guerra-Santin and Tweed (2015) 

which documented and classified the evaluation methods observed in the in-

use monitoring of buildings, and was enriched by a review of past literature on 

performance indicators and building performance studies of low energy non-

domestic buildings and conventional naturally ventilated or mixed-mode 

buildings (InnovateUK, 2014, Krausse et al., 2007, Wagner et al., 2014, 

Sharmin et al., 2014, Hummelgaard et al., 2007, Ncube and Riffat, 2012, Paul 

and Taylor, 2008, Liang et al., 2014, Kato and Murugan, 2010, Collinge et al., 

2014, Leavey et al., 2015, Pfafferott et al., 2007, Sartori and Hestnes, 2007, 

Pfafferott et al., 2004, Filippín and Beascochea, 2007, Kalz et al., 2009, 

Huizenga et al., 2006, Barlow and Fiala, 2007, Mahdavi and Doppelbauer, 

2010, Wagner et al., 2007, Al horr et al., 2016, Singh et al., 2010, Kim et al., 

2013b, Gul and Patidar, 2015, Saraga et al., 2011, Kim and de Dear, 2012b, 

Theodosiou and Ordoumpozanis, 2008, Babaei et al., 2015, Buchanan, 2011, 

Mathew et al., 2015, Pati et al., 2009, Javad, 2014) as well as the experience 

of the author with a number of non-domestic case studies (Knight et al., 2014a). 

The summary does not include lifecycle performance indicators. The 

quantitative performance indicators presented in the following table are 

frequently observed but are not exhaustive of what is employed in practice.  
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Table 10: Quantitative Performance Indicators 

Parameter Type Indicator Methodology Advantages Disadvantages 
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-Air temperature  
-Global 
Temperature 
-Mean Radiant 
Temperature 
-Relative Humidity 
-Air Velocity 
-Air Flow Rate 
-Air quality: CO2  
-Air Quality: VOC 
-Light Levels 
-Noise Levels 

Field measurements taken 
directly in strategic locations 
from different AHUs and/or 
spaces to account for a 
representative operational 
state of the building. 
With regard to air quality and 
ventilation, two methods can 
be followed; the ventilation 
method is based on duct air 
flow measurement or tracer 
gas measurement, while the 
air quality method is based on 
measurements of CO2 
concentration in exhaust air.   
Regarding lighting, for more in 
depth evaluating qualitative 
aspects such UGR and 
Luminaire luminance can be 
measured. 
The results are compared to 
set criteria linked to set 
categories to examine if 95% 
of the building’s volume meets 
them. 
The building indoor 
environment is then 
categorised per set standards 

Easy method to apply even 
without the ability to sub-meter 
(simulation can be used 
instead) 
Clearly defined measurement 
process 
Direct practical application 
Indices inherit the benefits of 
taking measurements in real 
environments as opposed to 
using modelled performance. 
When combined, and repeated 
over time, these indicators can 
provide an accurate picture of 
indoor conditions. 
Can be correlated with thermal 
comfort surveys. 
With regard to noise, this 
indicator can be correlated 
with natural ventilation aspects 
of building performance, 
whereas in mechanically 
ventilated and AC buildings 
the noise from HVAC 
components can be evaluated. 
 

Lacking in detail and can only 
provide a first impression. 
Do not account for all aspects 
of indoor environment and 
thermal adaptation 
Field measurements require 
appropriate measurement 
instruments that can be 
expensive to purchase and 
calibrate. 
The collection of the field 
measurement must adhere to 
several instructions with regard 
to the location and the method 
they are collected. 
Each of these categories uses 
only one environmental 
variable to address the thermal 
comfort. 
Can be time demanding to 
transfer measurements to 
electronic format for analysis if 
a data logger is not used. 
Must be repeated to account 
for longer periods of time. 
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based on the observed 
temporal and spatial 
distribution of room 
temperature. 
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-Operative 
Temperature  
-Equivalent 
Temperature  
-Effective 
Temperature 
-ET* replacing 
original concept of 
effective 
temperature 

Select representative spaces 
and measured directly.  
The results are compared to 
set criteria defined by 
standards such as EN15251 
and ISO 7730 to assess 
building performance. 

Allow assessment using few 
parameters easily measured  
Consider combining effect of 
single parameters on heat loss 
Wider applicability compared 
to simple indices 
Easy method to apply even 
without the ability to sub-meter  
Clearly defined measurement 
process 
Direct practical application 

Lacking in detail and can only 
provide a first impression 
Do not account for all aspects 
of an indoor environment and 
thermal adaptation 
Do not fully account for the 
impact of air movement 

-Operative 
temperature ranges 
(Hourly & -Degree 
Hours criteria)  

Calculated using air 
temperature and mean radiant 
temperature 
Used to assess thermal 
comfort by calculating the 
hours that it falls out of set 
ranges to either express it as a 
percentage of time or to be 
weighted with a factor that is a 
function of how many degree 
hours the range has been 
exceeded. 

Straightforward process with 
limited input required.  
Can evaluate performance of 
buildings and/or spaces with 
different HVAC systems in 
place. 

Ignores the effect of RH, air 
speed and personal factors on 
comfort 
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-Heating & Cooling 
Degree Days/Hours 

Summation of temperature 
differences in the span of time, 
between the outdoor air 
temperature and a reference 
temperature. In the case of 
CDDs, this is the base 
temperature above which a 
building requires a cooling 
system to operate in order to 
maintain indoors comfort 
conditions (Tbase; 22˚C for 
the UK), while in the case of 
HDDs this is the base 
temperature below which a 
building requires a heating 
system to operate in order to 
maintain indoors comfort 
conditions (Tbase; 15.5˚C for 
the UK) (Hitchin, 1983) 

Simplified model of historical 
weather data which can be 
used for normalising energy 
consumption of serviced 
buildings against weather 
allowing for comparison of 
energy used between 
buildings at different locations 
or for different periods.  
Can also be used when 
comparing building energy use 
to benchmarks with a set 
reference year. 
Allows for separation of 
weather depended energy use 
to base load use deriving from 
small power, lighting and 
industrial processes. 

When using benchmarks, it is 
imperative that the reference 
year is known. 
Can be difficult to define a 
base temperature for a 
building and it can affect 
greatly the base load energy. 
Degree days account for every 
full day of the week 24/7 which 
is contradiction with building 
that are intermittently heated 
or cooled. 
Degree days demonstrates 
inaccuracies when accounting 
for efficient management of 
building in maintenance of 
constant temperature can be 
sacrificed by setting the 
cooling set point a few 
degrees greater than the 
heating set point in order to 
create a comfort zone. 
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-Standard Effective 
Temperature (SET) 
-Predicted Mean 
Vote (PMV)  
-Predicted 
Percentage 
Dissatisfied (PPD) 
 

Based on heat balance 
equations and past empirical 
studies focusing on skin 
temperature in order to 
establish a definition of 
comfort.  
The models recognise six 
factors affecting thermal 
comfort; personal factors are 
the clothing insulation, 
metabolic rate, and 
environmental factors are the 
air temperature, RH, air speed 
and MRT.  
Six factors can be either 
estimated for one point in time 
and space or measured for 
one point in time and space.  
Can be used either with spot 
measurements at specific time 
or for a set period by using 
long term monitoring of the six 
factors affecting thermal 
comfort.  

If all parameters can be 
estimated or measured, 
provide a straightforward 
simple and well established 
scientific method of calculating 
user satisfaction with the 
thermal environment. 
Can be coupled with real time 
thermal comfort surveys for 
correlation of results. 
Provide a solution in 
environments where users are 
not in place to rate their 
environment. 
Account for seasonal changes 
regarding clothing as well as 
changes in activity level. 

Application to non-temperate 
climates limited. 
Accuracy depends on 
estimation of factors if 
measurements cannot be 
taken.  
Best used in environments 
where sedentary to moderately 
elevated activities are carried 
out.  
Criticized for maintaining strict 
and possible unrealistic 
categorisation ranges of 
buildings, as well maintaining 
certain bias about the 
contribution of six factors in 
affecting comfort. 
According to Field Studies of 
Indoor Thermal Comfort and 
the Progress of the Adaptive 
Approach, these indices have 
limited success in predicting 
occupant thermal sensation 
and are inferior to air 
temperature or operative 
temperature “in their 
correlation with people’s 
sensation of warmth”. 
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-Draughts/ Draught 
Rate 
-Radiation 
Temperature 
Asymmetry 
-Vertical Air 
Temperate 
Difference 
-Floor temperature 

Parts of the human body 
exposed to local 
uncomfortable conditions can 
affect the general sense of 
comfort within an otherwise 
thermal neutral indoor space.  
Sample representative spaces 
and measured directly.  
The results are compared to 
set criteria described in 
standards such as ASHRAE 
Standard 55. 

Clearly defined measurement 
process 
Direct practical application 
accounts for local phenomena 
that might be missed when 
assessing general indoor 
environment 

Cannot provide a general 
picture of the examined 
thermal environment  
Do not account for all aspects 
of an indoor environment and 
thermal adaptation 
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Brager and de Dear 
(1998) divide 
thermal adaptation 
into behavioural 
adjustment, 
psychological 
acclimatization and 
adaptation with the 
impact of the first 
two validated 
through research. 
Nicol and 
Humphreys 
(2002b)deal with 
thermal adaptation 
as outcome of the 
relationship 
between occupant’s 
comfort and 
behaviour 
Fanger and Jørn 
(2002) argue that 
PMV model does 
not accurately 
predict the Actual 
Mean Vote and 
propose the 
concept of thermal 
expectation which 
was quantified into 
the expectancy 

Applied in free running 
building where people have at 
least some controlled of their 
environment.  
Used to estimate a 
temperature band in which 
users can feel comfortable or 
thermal neutral based on 
outdoor temperature. 
 

Models recognise that climate 
affects users who can in turn 
adapt to their environment 
according to the season, 
hence implying a dynamic 
rather than a static relationship 
between users and their 
environment.  
Also, recognise contextual 
factors related to culture, 
energy memory, and 
relationship with environment 
control affecting the adaptation 
process.   
Approaches lie upon years of 
field survey research in real 
environments unlike the PMV 
model which is based on 
experiments with controlled 
environments. 
Can be applied in building with 
mechanical ventilation if 
natural ventilation is the 
primary ventilation strategy. 
Simple method using only 
outdoor temperature as 
requirement for calculation. 

Cannot be applied in spaces 
with mechanical cooling or 
heating system in operation 
where users have no control 
over their environment. 
Cannot be used in areas 
where non-sedentary activities 
take place. 
Do not account for the effect of 
environmental parameters 
other than air temperature. 
Can be used for office 
environments only. 
Integrate simplifications and 
assumptions on metabolic rate 
and activity level. 
Limited application for winter 
and low outdoors air 
temperature. 
Gaps between theoretical and 
experimental studies in the 
field of thermal adaptation in 
built environment. 
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factor applied on 
the PMV as an 
adjustment factor. 
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-Occupant 
Satisfaction 
Surveys 
-Occupant Comfort 
field studies 

Use surveys to capture the 
subjective assessment of 
occupants about their 
environment.  
Survey can be applied for 
different time periods from 
daily to annually and ask users 
to rate the thermal comfort, 
acceptance, perceived air 
quality and effect on 
productivity of their 
living/working environment.  
Include collection of data for 
each end use for a set period 
time.  
Data collection depends on 
the set study period and the 
available collection methods 
(sub-metering, plug in meters 
etc.).  
Appropriate benchmarks can 
be applied to compare results 
against larger populations 
through standardised 
methodologies such as the 
BUS and CBE survey. 

Can account for several 
subjective factors that cannot 
be quantified by established 
comfort models.   
 

Personal and Socio-economic 
factors can affect occupants’ 
responses. 
It is often observed that similar 
surveys are usually employed 
by occupants to indirectly 
express dissatisfaction on 
work issues. 
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-Total Annual 
Building 
Consumption 
(kWh) 
-Monthly  
Building Energy 
Consumption 
(kWh) 
-Individual 
System annual 
consumption 
(kWh)  
-Individual 
System Monthly 
consumption 
(kWh) 
-Building Annual 
Consumption by 
end use (kWh) 
-Building  
Monthly 
Consumption by 
end use (kWh) 

Data collection directly through 
meter or intelligent monitoring 
system for a set period time.  
 

Straightforward method that 
can be enhanced by 
automation and fault 
detections algorithms.  
The presence of BEMS 
systems can ease up the data 
collection and analysis 
procedures if appropriate 
scientific algorithms are 
embedded. 
The data can be then 
correlated with building 
schedules, occupancy 
patterns, outdoors conditions 
and HVAC set points in order 
to detect areas if energy 
waste.  
 
 

Data availability depends on 
sub-metering level as well as 
on quality and maintenance of 
metering network. 
Depth of analysis depends of 
level of sub-metering. 
Leads to collection of big data 
that can be resource 
demanding to analyse. 
 

C
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 -Energy Use by 

Time Scale (kWh) 
Aggregate Measured Energy 
Use Indicators according to 
preferred time scale, e.g. 
season, weekend. 

Allows for identification of 
seasonal, weekly and out of 
hours’ trends. 
The data can be then 
correlated with building 
schedules and occupancy 

The selection of the time scale 
influences the depth and 
accuracy of the analysis. 
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patterns to detect areas if 
energy waste. 

-Energy Use per 
Area Type (kWh/ 
m2) 
-Energy Use 
Intensity (kBTU or 
GJ) 
 

Divide Measured Energy Use 
Indicators by preferred type of 
area. 

This process can allow the 
comparison of buildings of 
different size. 
It also allows for comparison 
against legislative and industry 
benchmarks to compare 
energy use against past 
building performance or larger 
building populations. 
The data can be then 
correlated with building 
schedules, occupancy 
patterns, and HVAC set points 
in order to detect areas if 
energy waste.  

Requires knowledge of the 
building area. 
The selection of the area type 
influences the comparability of 
the indicator to benchmarks.  
Analysis requires expertise. 
 

-Weather 
Normalisation of 
Energy Use, e.g. 
Energy Signatures 
of Air Handling 
Units (kWh) 

Normalise energy use data 
through statistical analysis 
against weather variables 
such as Outdoors Air 
Temperature and Humidity or 
Heating/ Cooling Degree Days 
to analyse weather-related 
energy use. 

This process can allow the 
comparison of buildings that 
are otherwise dissimilar with 
respect to their attributes and 
location affecting weather 
condition.  
Allows for identification of 
emerging seasonal trends, 
patterns and peaks. 
Normalisation against 
occupant behaviour and traits 
allows for assessment of 
energy use in similar buildings 

Requires knowledge of 
statistical analysis. 
The initial determination of 
factors influences the analysis. 
Analysis requires expertise. 
 

-Normalisation of 
Energy Use by 
building 
characteristics 
(kWh) 

Normalise energy use data 
through statistical analysis 
against factors affecting 
building performance including 
building and HVAC attributes, 
occupant behaviour and traits. 
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with control over occupancy 
differences. 

-Average Rolling 
Annual Energy Use 
(kWh) 

Calculate the unweighted 
mean of energy use for a 
selected number of 
consecutive months 

Allows for identification of 
emerging trends, patterns and 
peaks. 
 

Requires a set of metered data 
without large gaps 
Analysis requires expertise 
 

-Breakdown of 
energy balance per 
component type 
(kWh) 

Organise Energy use by 
different types of components 
such as systems or end uses 
and map the energy flows in 
buildings. 

Occupant driven consumption 
can be identified and analysed 
sedately. 
Provides understanding of 
where energy is used in 
buildings. 

Analysis requires expertise. 
Requires sub-metering. 
Detail and Accuracy depends 
on level of sub-metering. 

-Temporal Variation 
of Power averaged 
by floor area 
(W/m2) 

Scatter graphs of power per 
m2 for each HVAC system on 
hourly basis.  
 

Allows for identification of 
operational anomalies among 
the HVAC systems. 
 

Requires a set of metered data 
recorded at sub-hourly basis. 
Analysis requires expertise. 

-Temporal 
Distribution of 
Energy Use, e.g. 
Carpet plots (W) 

Carpet plots which split the 
highest consumption value for 
a chosen period chosen and 
split it into 10% steps 

Allow for quick visual 
identification of operational 
anomalies among the 
building’s systems as well as 
operational patterns with the 
application of the appropriate 
colour patterns. The data can 
be then correlated with 
building schedules, occupancy 
patterns, and HVAC set points 

Requires high resolution data 
without large gaps  
Analysis requires expertise 
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in order to detect areas if 
energy waste.  

Primary Energy:  
-Energy use (kWh) 
-Energy Intensity 
(kBTU or GJ)  
-CO2 emissions 
(g/unit) 

Site/delivered energy can be 
converted to primary energy 
using country/ region specific 
factors deriving from the local 
applied energy generation and 
supply methods. 

Can be used to compare large 
building populations with 
different attributes and 
embedded technologies. 
Can provide a general image 
regarding the contribution of a 
building to energy depletion 
and carbon emissions since it 
represents the energy 
consumed by a building from 
generation to consumption on 
site. 

When comparing buildings 
across wider geographical 
regions, the comparison might 
be skewed due to the weight 
of local conversion factors onto 
conversion calculations. 
Looks at a building from a 
higher level and cannot 
separate occupant drive 
consumption from the building 
energy use. 
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3.5 Performance Assessment Schemes and 

Standards 

3.5.1 Energy Performance Assessment 

Schemes 

A number of existing assessment schemes and indicators, commonly used, 

aim at either benchmarking, rating, labelling or certifying the energy 

performance of buildings. They are often defined by a wider scope which 

examines the sustainability of buildings.  

Table 11 presents a summary of these schemes indicators used in practice for 

the energy performance of non-domestic buildings. The summary presented 

builds on previous work by a number of researchers (Wang et al., 2012, 

Nikolaou et al., 2011, Lee, 2012, Lucas et al., 2015, Pérez-Lombard et al., 

2009, Haapio and Viitaniemi, 2008, Todd et al., 2001, Cole, 1998, USGBC, 

2005). The energy performance assessment schemes presented in the 

following table are the most commonly use but are not exhaustive of what is 

employed in practice.  
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Table 11: Energy Performance Assessment Schemes 

Type Method Advantages Disadvantages Buildings 
Suitability 

Indicator 
Examples 

Energy 
Quantification 

Application 
Level 

e
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y
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c
h
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g
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s
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Comparison of 
building energy 
performance with 
pre-set benchmarks 
that have derived 
either from the 
building’s past 
performance 
(baselining), peer 
building databases, 
reference 
benchmarks 
established either 
by statistical 
analysis of similar 
building stocks, 
(statistical) or 
calculation from 
hypothetical 
reference building 
(calculated) 

Effective 
identification 
and diagnosis 
of problem 
areas  
 
Proposes 
specific 
improvements 

Effectiveness of 
benchmarking 
depends on selection 
or development of 
appropriate reference 
benchmark. 
Development of 
benchmark depends 
on availability of 
database of similar 
buildings or accuracy 
of calculations 
Limited schemes 
providing multilevel 
approach. 
Can require to be 
conducted manually 
Limited ability to be 
used as design tools 
Limited capacity to 
account for regional 
variations 
Weighting systems 
tend to be 
controversial 

-Existing  
Domestic 
-Non-
domestic 

-ENERGY 
STAR (USA)  
-ECON19 
(UK) 
-ECON75 
(UK) 
-CIBSE Guide 
F (UK) 
-TM46:2008 
(UK) 
-Experimental 
Benchmarks, 
e.g. iSERV 
(UK) 

-Measured 
Energy Use 
-Adjusted 
Measured 
Energy Use 
 

-Whole 
building 
-HVAC 
system 
-HVAC 
component  
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Assign energy 
rating to building 
according to 
calculated or 
measured energy 
rating 

Well defined 
energy 
quantification 
approaches 

Rating definition 
varies according to 
standard and its rating 
calculation approach.  
Results at building 
level makes 
improvement analysis 
difficult. 

-New  
-Existing  
-Domestic 
-Non-
domestic 

-LEED (USA) 
-BREEAM 
(UK) 
-Green Star 
(AUS) 
-CASBEE 
(JPN) 
-SBTool 
(CAN) 

-Dynamic 
Simulation  
-Simplified 
Calculation 
Methods 
-Measured 
Energy Use 

-Whole 
building 

e
n

e
rg

y
 l
a

b
e
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n
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Assign energy 
performance label 
to building 
according to 
specific scale 

Display of 
assessment 
using 
distinctive 
classes and 
comparison 
with reference 
performance 

Subjective approach 
to setting a labelling 
scale depending on 
policy or technical 
analysis.  
Results at building 
level makes 
improvement analysis 
difficult. 

e
n

e
rg

y
 c

e
rt
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ic

a
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o
n
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Expert assesses 
performance and 
produces 
certificate.  
Includes 
comparison of 
performance to:  
-database of peer 
buildings  
-minimum 
requirements.  

Incorporates 
different 
classification 
processes: 
energy rating to 
quantify energy 
use and energy 
labelling to 
categorise 
performance 

Carries disadvantages 
of energy rating and 
labelling methods.  
Results at building 
level makes 
improvement analysis 
difficult. 

-New  
-Existing  
-Domestic 
-Non-
domestic 
 
 

-ASHRAE Beq 
(USA)  
-DOE energy 
asset rating 
(USA) 
-EPC new 
buildings (UK) 
-EPA Non-
Residential 
(USA) 

-Asset Rating 
(calculated) 
-Operational 
Rating 
-Hybrid 
methods  
-Dynamic 
Simulation  
-Simplified 
Calculation 
Methods 

-Whole 
building 
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3.5.2 Indoor Environmental Quality 

Assessment 

Although a large variety of energy performance assessment schemes exist in 

practice, only a few of these schemes, namely LEED, incorporate indoor 

environmental quality indicators. The scarce appearance of IEQ indicators in 

energy performance assessment schemes, such as EPCs and DECs in the 

UK, reflects the general absence of indoor environmental declarations and 

considerations from policy regarding the energy performance of buildings such 

as the EPBD. Attempts to define indoor air quality indicators focusing solely on 

the required ventilation level in the form of air changes per hour or in the form 

of outdoors air supply rate are still ongoing (Olesen, 2011) . 

A number of methods for assessing indoor environmental quality have been 

proposed with some approaches employing subjective evaluations from 

occupants, such as the BUS survey (Leaman et al., 2010, Way and Bordass, 

2005), the CBE survey (Meir et al., 2009), and the Stockholm Indoor 

Environment Questionnaire (Engvall et al., 2004). Others employ scoring 

systems for multiple indoor environmental aspects which are based on 

consultation with end user groups, namely the Green Star and CASBEE, and 

some assessing each environmental parameter individually (Fanger and Jørn, 

2002). Each approach has received criticism for either their predictive ability, 

the model employed to capture feedback or the inability to capture the impact 

of the individual environmental parameters to the overall IEQ (Ncube and Riffat, 

2012). To date, there is an absence of a single IEQ index as research on the 

co-founding factors affecting IEQ parameters is still ongoing (Ncube and Riffat, 

2012), and the examination of each individual environmental parameter against 

set standards appears to be more commonly used. 

3.5.3 Subjective evaluation 

Best and Purdey (2012) have claimed that the onset of green buildings has 

renewed the interest in energy conservation and occupant satisfaction. Fowler 

and Rauch (2008) have argued that lateral and in depth building performance 
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assessment studies of individual buildings can help pin down which design 

features and configurations contribute to occupant satisfaction, reduced energy 

use and best value as well as demonstrate differences between early design 

expectations and post construction building operation.  

The merits and risks associated with the methods sourcing information from 

occupants regarding the subjective perception of indoor conditions were 

presented earlier in this chapter. The reliability of occupant reaction is often 

challenged when taking in consideration confounding factors influencing end 

user assessments (Leaman and Bordass, 2007, Bluyssen, 2010b), such as: 

• low morale 

• job satisfaction and 

• proximity to other occupants. 

Choi et al. (2012) has highlighted that another important aspect of modern work 

environments that should be taken into consideration when conducting a POE 

is that occupants require indoor conditions to address computer-intensive 

activities as well as paper-based tasks. As computer based work becomes the 

norm in most work places, there is a need to reconsider lighting, noise and 

thermal conditions required. Computer based tasks require lower light levels 

and careful management of glare, while noise and heat can be generated from 

equipment leading to discomfort with the noise levels and thermal conditions 

within a space (Choi et al., 2012). 

Although precise measurement and assessment of the impact of personal and 

confounding factors demands additional exhaustive research (Bluyssen, 

2010b), the interrelation of these factors to comfort has been established in 

past research. According to Brown and Cole (2009), occupant bias can be dealt 

with by creating more informative and educational surveys that educate 

occupants on the concept of thermal comfort. In addition, methods of 

overcoming the influence of confounding factors on occupant responses 

include enriching surveys with questions on: 

• accessibility, 
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• usability, 

• responsiveness of environmental controls and 

• perceived expectations. 

Brown and Cole (2009) have suggested that in this way occupants become 

more engaged with the assessment of their environment, acquire better 

understanding of the concept of thermal comfort and the benefits occupant 

surveys can offer to end users, which all together can yield better results. 

Another disadvantage of the approach of subjective evaluation highlighted in 

past researched is the difficulty in finding suitable benchmarks to compare 

perceived performance and occupant satisfaction against (Best and Purdey, 

2012). Every building assessment can only be compared with a rolling data set 

of buildings with cognate design goals and further work is required to crystallise 

assessment and benchmarking methodologies (Best and Purdey, 2012, Fowler 

and Rauch, 2008). Although it appears that there is an abundance of occupant 

survey methods, few of them are coupled with reliable benchmarks and even 

fewer with public domain benchmarks. 

A notable effort to create established and credible benchmarks in the UK has 

been the work of the Usable Building Trust. The Building Use Studies 

methodology was developed and bettered during the UK government funded 

PROBE project in the 1990s. The methodology consists of two tools: 

a) An occupant questionnaire supported by  

b) An extensive database with benchmarks for useful comparison. 

The occupant questionnaire is based on past studies used to investigate the 

sick building syndrome, later developed further and adopted by BRE (Cohen et 

al., 2001). It is a two-page document which includes a series of questions 

focusing on a variety of parameters regarding the occupants’ satisfaction, 

environmental factors, general questions about the occupant perception of 

building, and operational issues such as speed of response and effectiveness, 

set up in a form that allows comments to be reported.  
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The accompanying database allows for an interpretation of the questionnaire 

results using benchmarks based on previously assessed buildings by country 

and are calculated using a mix of mean scores and midpoints so that a good 

score for any variable indicates performance well above benchmark (Best and 

Purdey, 2012). With regard to the reliability of the BUS benchmarks, it is 

recognised that accurate comparisons between buildings require “statistically 

structured samples with requisite "random" elements of choice” which are 

rather difficult to achieve given the obstacles in entering buildings and studying 

the occupants in order to set up the appropriate sample framework (Cohen et 

al., 2001). Moreover, BUS benchmarks have derived from buildings that invited 

post occupancy evaluations and are very likely to take an interest in improving 

building performance if not already committed to certain improvements which 

would render their performance far from average (Cohen et al., 2001).   

On the other side of the Atlantic, the Centre of Building Environment (CBE) has 

developed a web-based occupant indoor environment quality survey as a 

method of gathering diagnostic evidence to allow the identification of indoor 

environmental issues (Zagreus et al., 2004, Meir et al., 2009). The survey aims 

at (Meir et al., 2009): 

• evaluating the performance of office spaces 

• identifying areas in need of improvement 

• producing feedback for designers and operators. 

The collection of responses over the years has allowed the creation of a large 

database which included both conventional and green buildings. The CBE 

approach recognises subjective and objective parameters affecting the indoor 

environment. Objective parameters include gender, age group, work and office 

type, proximity to openings and controls, and the subjective parameters focus 

on occupant satisfaction and self-reported productivity divided into nine indoor 

environmental quality categories including office layout, furnishing, thermal 

comfort, air quality, lighting, acoustics, cleanliness and maintenance, general 

satisfaction, satisfaction in the workplace (Abbaszadeh et al., 2006, Kosonen 

et al., 2008, Meir et al., 2009, Zagreus et al., 2004). The survey uses a seven-

point semantic differential scale to classify satisfaction with the indoor 
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environment ranging from “very dissatisfied” to “very satisfied”, with each IEQ 

category divided to two or three questions. The survey purposefully avoids 

asking direct questions regarding the occupants’ health in fear of surfacing 

liability issues which would eventually discourage building owners from 

participating. An indirect relation is targeted instead through questions focusing 

on satisfaction with health and comfort (Zagreus et al., 2004). The CBE Survey 

benchmarking database constitutes of a  portion of assessed buildings that 

were found to meet quality control specific criteria including a high percentage 

of response rate (Zagreus et al., 2004).  

3.5.4 Indoor Environmental Quality 

Standards 

As mentioned earlier, several past building performance assessments have 

attempted to examine indoor environmental quality by monitoring and 

assessing each environmental parameter individually and by using 

physiological approaches to estimate thermal comfort. 

Past systematic research on the quantification of the parameters affecting 

thermal comfort and adaptation has allowed the creation comfort models and 

standards governing the assessment of these models and the individual 

environmental parameters affecting thermal comfort (Gossauer and Wagner, 

2007). The past studies highlight the need for additional multi-sensory studies 

to develop an integrative IEQ approach that balances the various 

environmental factors that impact on occupant satisfaction and acceptance.  

Currently there are no weights linked to individual IEQ factors and annoyance 

with one might increase sensitivity to others (Rohles et al., 1989). It has been 

argued that even if individual IEQ factors meet standards, their combined effect 

might lead to unacceptable indoor environments e.g. an odour might be 

acceptable in a cool and dry environment but unacceptable in warm and humid 

conditions (Levin, 1995). 

The international standards EN 15251 (CEN, 2007), ISO 7730 (CEN, 2005), 

ISO 7726 (CEN, 2001), EN 12599 (CEN, 2012), EN 12464-1 (CEN, 2011) 

address the environmental parameters and qualitative indicators that fall under 
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the categories of simple, integrated and local thermal discomfort indicators as 

well as static thermal comfort models. The Standards ASHRAE 55 (ASHRAE, 

2007), Adaptive Comfort Approach (ACA), Adaptive Temperature Limits (ATG), 

EN 15251 (CEN, 2007) address parameters related to adaptive thermal 

comfort models. CIBSE also has published guidance to help designers and 

facility managers achieve low energy buildings, which is harmonised with the 

EU building performance directives and UK building regulations. 

The following paragraphs present a review of the standards used for each of 

the main indoor environmental parameters affecting thermal comfort according 

to Fanger (1973).  

Air Temperature 

A review on current standards regarding indoor air temperature revealed there 

is a plethora of recommendations and regulations regarding both comfort 

temperature ranges and limits. 

The World Health Organization, in one of the older guidance published and 

aiming at ensuring health conditions for sensitive social groups, recommends 

that for sedentary activities, a temperature range of 18-24°C reduces the risk 

of negative impacts to individual health, with 20°C recommended as minimum 

air temperature in winter for individuals who are in disability, of old or young 

age (WHO, 1987). Temperatures above 26°Care declared as unacceptable. 

Reviewing contemporary standards, according to BS EN 15251:2007, which 

specifies indoor environmental parameters with an impact on energy 

performance of non-industrial buildings,  the temperature limit for winter is set 

at 20°C and for summer is set at 26°C (CEN, 2007). Further to BS EN 

15251:2007, the Canadian CSA standard CAN/CSA Z412-00 (CSA, 2007) and 

the American Society of Heating, Refrigerating, and Air Conditioning Engineers 

(ASHRAE) Standard 55 – 2010 (ASHRAE, 2010) recommends the following 

Operating Temperature ranges for offices presented in Table 12. 
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Season RH (%) Recommended Operating 
Temperatures (°C) 

Summer (0.5 clo) 30% 24.5 - 28 

60% 23 - 25.5 

Winter (1.0 clo) 30% 20.5 - 25.5 

60% 20 - 24 

 

Table 12: Recommended Operating Temperature ranges for offices by CSA 

and ASHRAE standards (CSA, 2007, ASHRAE, 2013) 

It must be noted that these recommended values have been described as 

meeting the needs of at least 80% of individuals. 

UK workplace regulations published in 1992 set a minimum temperature of 

16oC for work areas were high physical activity is not involved (1992). No 

maximum temperature for work spaces has been set in the UK legislation or 

Code of Practice, although the Trade Union Congress has made the case for 

the temperature limit above which employers would be expected to take action 

to be set at 24°C, with 30°C recommended to be the permissible temperature 

limit for workers not engaged in physically demanding work, above which 

employers are prosecutable (TUC, 2006). These limits, are in agreement with 

the Health & Safety Executive’s (HSE) guidance document, HSG194, ‘Thermal 

Comfort in the Workplace’ which describes spaces with an indoor temperature 

approximately between 13°C and 30°C (1999), as acceptable. 

Furthermore, the Chartered Institute of Building Services Engineers (CIBSE) 

Guide A recommends a set of operational temperature ranges in order to 

ensure comfortable environments according to season and space (CIBSE, 

2006). Most spaces presented in CIBSE Guide A are expected to fall between 

a range of 19oC to 23°C in winter and 21°C to 24°C in summer. 

Overall, in the UK, compliance with the presented figures is not required. 

For the CIBSE GUIDE A Recommended comfort criteria for specific 

applications (CIBSE, 2006), refer to Appendix A.  
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Relative Humidity 

A review on current standards regarding relative humidity revealed there are a 

few recommendations and no upper or lower limits set by legislation or Code 

of practice. 

Overall, humidity is considered to have small impact on the feeling of warmth 

in occupants, unless one’s skin is wet, and for occupants involved with 

sedentary work, relative humidity can become more apparent when indoor 

temperature increases above 26°C - 28°C (CIBSE, 2006). Relative humidity 

above 60% has been linked to allergic and respiratory health conditions along 

with discomfort in the form of increase perspiration (Arundel et al., 1986a, 

Arundel et al., 1986b, CIBSE, 2006). Conversely, if below the set comfort 

criteria, the resulting dry environment can lead to dry throat, itchy eyes and 

sinusitis (CSA, 2007).  

CIBSE Guide A suggests that relative humidly should be kept between 40% -

70%, whereas if below 30% can only be considered as acceptable as long as 

there are appropriate actions taken to reduce the generation of airborne irritants 

(CIBSE, 2006). Additionally, for heated buildings in the UK, CIBSE Guide A 

suggests that Relative Humidity below 40% can be tolerated during cold 

weather spells (CIBSE, 2006). 

The Canadian CSA standard CAN/CSA Z412-00 (CSA, 2007) and the 

American Society of Heating, Refrigerating, and Air Conditioning Engineers 

(ASHRAE) Standard 55 – 2010 (ASHRAE, 2010) recommend similar figures 

with 40% to 60% regarded as optimum humidity levels, 30% to 70% as 

acceptable. 

Carbon dioxide concentration (CO2) 

CO2 is the product of human expiration and can accumulate in spaces with 

many occupants where there is not appropriate ventilation. Although it is not 

toxic, it can cause suffocation in large concentrations. The recent European 

standard EN 13779 (British Standards Institution, 2008) aiming at helping 

stakeholders create comfortable and healthy indoor environments for each 
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season, classifies indoor air quality according to the difference between CO2 

concentrations observed indoors and outdoors. 

According to the American Society of Heating, Refrigerating, and Air-

Conditioning Engineers ASHRAE Standard 62.1-2013 (ASHRAE, 2013), the 

limit for this compound is 1000 ppm for continuous exposure of eight hours 

(Abdul–Wahab et al., 2015) . However, rates over 600 ppm CO2 are currently 

considered acceptable (Petty, 2013). The Health and Safety Commission in the 

UK has set the limit to 15,000 ppm as 15-minute average and 5,000 ppm as 8 

hour average (ANSI/ASHRAE, 2004). 

Volatile Organic Compounds 

measurements (TVOC’s) 

According to the European Directive 2004/42/CE, Volatile Organic Compounds 

were defined as all organic compounds having an initial boiling point less than 

or equal to 250oC, measured at atmospheric pressure 101.3 kPa (E.C., 2004).  

According to Wiglusz (2002), the concentration of VOCs indoors is due to either 

continuous background emissions at approximately constant transmission rate, 

such as chemical compounds derived mainly from construction materials and 

building equipment, or periodic emissions sourcing from human activities such 

as smoking, cooking and cleaning. Emissions of VOCs from building materials 

are a complex phenomenon that is not part of this research.  

Molhave (1992, 1991) has suggested a scale of exposure to concentration of 

volatile organic compounds which is presented in Table 13. According to 

Bluyssen (2010a), the UK has set a limit to 300 μg/m3 as 8–h average for 

TVOCs. 
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Table 13: Scale of exposure to concentrations of volatile organic compounds 
(TVOC’S) 

Lighting Illuminance 

Poor lighting is linked to eyestrain, migraines and headaches as well as with 

the sick building syndrome and low productivity (HSE, 1997). According to 

Boyce et al. (1989) lighting can impact on occupant health and productivity both 

directly and indirectly as performance depends on vision and because lighting 

has the ability of directing attention and motivation. 

A review on current standards regarding lighting illuminance reveals that there 

are legally enforced standards regarding the minimum lighting illuminance 

levels. The UK Workplace Regulations (1992) demand the provision of 

“suitable and sufficient”, with daylight more preferred if feasible. The Health and 

Safety Executive Guide (HSE, 1997) regarding lighting at work, indicates 

minimum lighting standards for health and safety. Circulation areas have been 

set a minimum of 50 lux average illuminance, areas where work requires limited 

perception of detail such as kitchens are set at a minimum of 100 lux average 

illuminance, areas were work requires perception of detail such as offices are 

Total 
concentration 

Sensor 
output (o/u) 

Discomfort and 
Irritation  

Exhibition scale 

Less than 0.2 
mg/m³ 

(Less than 0.05 
ppm) 

Up to 10 No irritation or 
discomfort 

Comfort Scale 

From 0.2 mg/m³ 
to 3.0 mg/m³ 

(from 0.05 to 0.80 
ppm) 

From 10 to 20 Possible irritation 
or discomfort 
depending on the 
interaction with the 
other factors 

Scale Exposure 
to multiple 
factors 

From 3.0 mg/m³ 
to 25 mg/m³ 

(From 0.80 to 
6.64 ppm) 

From 20 to 30 Symptoms - 
Possible 
headaches 
depending on 
other factors 

Discomfort Scale 

Over 25 mg/m³ 
(Over 6.64 ppm) 

Over 30 Additional 
neurotoxic effects 
may occur, apart 
from the headache 

Toxic Exposure 
Scale 
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set at a minimum of 200 lux average illuminance, and areas where work 

requires perception of fine detail such as drawing offices and workshops are 

set at a minimum of 500 lux average illuminance.  

The Society for Light and Lighting (SLL)’s Code of Lighting (Raynham, 2012) 

and CIBSE Guide A (CIBSE, 2006), provide guidelines for lighting in order for 

specific tasks to be carried out accurately and quickly. These guidelines include 

the minimum illuminance levels present in legislation but also recommend 

optimum figures per building type and space activity. For the CIBSE GUIDE A 

Recommended comfort criteria for specific applications (CIBSE, 2006), refer to 

Appendix A. 

The colour of light sources, spatial and temporal contrasts in light levels, and 

the ration of illuminance between adjacent areas, are not part of the focus of 

this research. 

Noise Levels 

The continuous exposure to high levels of noise can have detrimental effects 

on human hearing. In general, people do not adapt to noise disturbance over 

time (Witterseh et al., 2004). In their paper, Witterseh et al. (2004) 

demonstrated that open office noise, even at the realistic level of 55 dBA, 

increases fatigue and has a negative impact on office work performance similar 

to the effect of moderate warm air temperature. Furthermore, theoretically, 

noise distraction and heat stress have the potential of counteracting each other 

on a short-term basis “as they both increase subjective distress and fatigue” 

(Witterseh et al., 2004). Acoustic quality might have limited health impacts, but 

it can greatly affect work productivity through the psychological processes 

cultivated by noise (Evans and Johnson, 2000). Sundstrom et al. (1994) 

concluded that lack of speech privacy and intelligible noise has a significant 

impact on work environments. 

According to the Noise at Work Regulations, action must be taken when noise 

levels reach 80-85 dBA (HSE, 2005). CIBSE Guide A (CIBSE, 2006), provides 

guidelines for noise levels according to specific activities. Most activities 
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presented in CIBSE Guide A are expected to fall between the range of 30 dBA 

to 50 dBA. 

For the CIBSE GUIDE A Recommended comfort criteria for specific 

applications (CIBSE, 2006), refer to Appendix A. 

Air Velocity 

Air movement has a well-documented cooling effect on occupants. According 

to CIBSE Guide A (CIBSE, 2006), if a cooling effect is not what is required, air 

movement should be avoided, whereas occupants appear to be more tolerant 

if the direction of the air movement varies.  

Overall, indoors air movement at a speed greater than 0.1 m/s when applied 

on the back of the neck and greater than 0.15 m/s when applied at the 

remaining parts of the human body is considered a draught at an air 

temperature of 20°C. Air movements at a speed greater than 0.3 m/s are 

considered unacceptable in non-naturally ventilated buildings. Conversely, in 

buildings employing natural ventilation such a speed might be desirable to 

create a cooling effect.  

In the UK, there is no compliance legislation regarding air movement. 

3.6 Summary 

The literature presented in this chapter demonstrated no consensus on the 

establishment of a universal and systematic building performance assessment 

approach. The findings of the review presented in this chapter suggested that 

apart from depriving stakeholders of the benefits deriving from the systematic 

use and benchmarking of monitored data, the absence of a universal 

framework for building performance assessment based on operational data 

also creates a chaotic environment inside the practice; one of multiple 

definitions and building performance metrics not necessarily reflecting real 

world performance but allowing for easy top scores based on design intentions. 

Furthermore, the review findings indicate there is a growing array of 

quantitative energy performance assessment, accreditation and compliance 
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methods with an equally large variety of quantitative performance indicators 

used in practice predominately.  

The large number of methods and tools available to conduct building 

performance assessments raises questions regarding their appropriate 

selection and use. What has been proposed by researchers on this topic is for 

the structure and goals of each building performance assessment to be 

associated to acquired stakeholder benefits, while the selection or correlation 

of assessments tools could be dictated by the intricacy of buildings as systems 

and the synergies created between these systems and the end users. Building 

performance assessments are therefore expected to relate to the task at hand 

and to be cleverly constructed according to case to address specific questions 

or concerns. As presented in Chapter 2, the past literature on building 

performance assessment abounds with examples which abide by these 

characteristics.  
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Chapter 4  

Research Methodology 

4.1 Introduction 

The aim of this chapter is to introduce the methodology underpinning this 

research. The objectives of this chapter are to present: 

• the research methods employed to address the research aim and 

discuss their appropriateness; 

• the purpose and scope of the conducted comparative case study 

investigation;  

• the research sample selection process;  

• an overview of the case studies’ technical elements, with a particular 

focus on HVAC systems, metering and design features; 

• the data collection methods and tools as well as the verification 

strategies ensuring the reliability of data sources employed in the case 

study review; and 

• the interpretive framework used to assess the collected data of the case 

study review. 

This chapter is divided into three sections. The first section is concerned with 

the research design and the work that was undertaken (4.2). The following 

section presents the data collection and analysis methods (4.3). The final 

section presents an overview of the case studies selected for this research 

(4.4). 
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4.2 Research Design  

The findings of the past literature review presented in Chapter 2 suggested that 

not all performance failure related issues are able to be addressed by 

architectural design, and instead are determined by the actions of the facility 

management and occupants. Irrespective of the fact that architects have only 

a partial influence on the non-performance of low energy buildings, the extent 

of the operational non-performance of low energy buildings in practice is paving 

the way for architects to be rendered liable, even contractually (Mark, 2013, 

O’Connor, 2012), for buildings which do not meet their design performance 

targets. 

The driver of this research has been to develop an understanding of the role of 

the Architect in the operational performance of buildings, with the central aim 

being to understand the Architect’s actual influence on the operational 

performance of low energy buildings.  

The research has therefore focused on quantifying the influence architects 

exercise on the operational performance of low energy buildings in two 

contrasting operational buildings. The hypothesis underpinning this research 

has been that Architects can only influence part of the operational performance 

of low energy buildings.  

An overview of the research design is presented in Fig. 16. 

4.2.1 Methods 

This research was focused on non-domestic buildings claiming to be low 

energy and was based on mixed research methods combining literature 

research and a comparative case study investigation.  

Literature based research has been defined as the systematic review of past 

literature with an aim of considering and scrutinising it to gain insight into a 

research topic (Leedy and Ormrod, 2004, Machi and McEvoy, 2009).  
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Research Assumptions 

• buildings of different construction types 
present differences with regard to the 
implementation of the concept of energy 
efficiency;  

• which parts of the energy use of a design 
the architect could be considered 
responsible for. 

 

Research Objectives 

• to review the definitions of energy 
efficiency within the context of building 
design & operation; 

• to review the barriers to implementing 
energy efficiency in non-domestic 
buildings; 

• to understand whether we can suggest a 
framework for assessing the operation of 
low energy non-domestic buildings, and 
identify documented areas of operational 
failure in past literature; 

• to review the state of the art in the area of 
building performance assessment related 
to the use of operational data collected 
from buildings; and 

• to employ a comparative case study 
investigation of two well monitored 
buildings of different construction types to 
quantify the influence of architects on the 
total building energy use and test the 
research hypothesis. 

 

Figure 16: Research Design 

 

Research Problem 

Architects are at risk of being rendered liable, even 
contractually, concerning buildings which do not 

meet their design performance targets. 
 

Research Question  

What is the Architect’s actual influence on the 
operational performance of low energy buildings? 

 

Research Hypothesis 

Architects can only influence part of 
the operational performance of low 

energy buildings. 
 

Research Aim 

To understand & quantify the influence 
architects exercise on the operational 
performance of low energy buildings. 
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Mixed Research Methods combining 
literature review and case study research 
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Literature based research can serve a number of purposes including but not 

restricted to identifying gaps in past research, place the research aims into 

context, identify variables, methods and designs to be considered or adopted 

in new research (Boote and Beile, 2005, Robinson and Reed, 1998, Bless and 

Higson-Smith, 2000, Onwuegbuzie and Frels, 2014). In this research, the 

literature based research was employed to serve the following specific 

objectives:  

• to review the definitions of energy efficiency within the context of building 

design and operation with an aim of adopting them in this research; 

• to review the barriers to implementing energy efficiency in non-domestic 

buildings in order to identify factors pertinent to the topic of this research; 

• to understand whether we can suggest a framework for assessing the 

operation of low energy non-domestic buildings, and identify 

documented areas of operational failure in past literature which must be 

considered in this research; 

• to review the state of the art in the area of building performance 

assessment related to the use of operational data collected from 

buildings, in order to identify methods and designs to be used in the 

context of this research. 

Literature review addressed objectives aside, this research aimed at being to 

understand the Architect’s actual influence on the operational performance of 

low energy buildings. To meet the aim and test the hypothesis of this research, 

a comparative case study investigation focused on quantifying the influence 

architects exercise on the operational performance of low energy buildings in 

two contrasting operational buildings was employed. 

Case study research is concerned with the in depth empirical examination and 

astute appreciation of a single or small group of real world cases (Bromley, 

1986, p. 1). According to Yin (2013), case study research is particularly focused 

on contemporary phenomena where the boundaries between them and their 

context are inconspicuous, making the study of this context an important part 

in the process of appreciating the case(s).  
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Case study methods are considered to be appropriate research methods in: 

• cases of descriptive or explanatory research questions which are 

concerned with capturing a phenomenon happening and the reasons 

behind it, respectively ((Shavelson et al., 2003); 

• research concerned with the study of real world phenomena (Bromley, 

1986), p. 23) and the collection of real world data; 

• evaluation studies (Yin, 2011).  

This research was constructed upon a research question with both descriptive 

and explanatory aspects, it was concerned with what has happened in practice, 

and included the evaluation of building performance. Therefore, the use of case 

study methods was considered appropriate to address the aim of this research. 

In this research, the case study research was employed to serve the following 

specific objectives:  

• assess the performance of two well monitored buildings of different 

construction types to document what has worked, what hasn’t and why 

within the context of the research aim, and 

• to quantify the influence of architects on the total energy use of the Case 

Study buildings. 

Case study research has been categorised according to its generalisation 

potential and theory forming processes. According to Stake (1995), a case 

study can be either intrinsic, instrumental or collective. The intrinsic case study 

involves the study of a unique case from which generalisations cannot be 

made, the instrumental case study is employed in order to allow for the 

development of an existing theory, and the collective case study comprises 

multiple cases which are compared to each other to examine the effect of a set 

factor on a certain phenomenon (Adams et al., 2014). Yin’s categorisation 

(2011) divides case studies into exploratory, causal and descriptive. In 

exploratory case studies data collection precedes theory formation, causal 

case studies research cause-and-effect associations to create explanatory 

theories, and in descriptive case studies the theory formation precedes and 

defines the data collection process. This research maintained aspects of an 
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instrumental and descriptive case study, as it was employed to describe the 

real-world context in which a phenomenon occurs and provide insight into it by 

taking an in depth look at the selected cases. According to the level of effort 

required described by (Preiser, 1995), the in-depth case study investigation 

employed in this research was aimed at identifying and then investigating 

performance issues following a detailed approach. Therefore, it can be 

categorised as an investigative building performance assessment. 

Focusing on the subject of this research, this thesis was concerned with the 

assessment of building performance. The literature presented in previous 

chapters demonstrated no consensus on the establishment of a universal and 

systematic building performance assessment approach. The large number of 

methods and tools available to conduct building performance assessments 

raises questions regarding their appropriate selection and use. According to 

Meir et al. (2009), on one hand, the structure and goals of each building 

performance assessment should be associated to acquired stakeholder 

benefits, while the selection or correlation of assessments tools is usually 

dictated by the intricacy of buildings as systems and the synergies created 

between these systems and the occupants. On the same wavelength, Gordon 

and Stubbs (2004) support that building performance assessments must relate 

to the task at hand and can be cleverly constructed according to case to 

address specific questions or concerns. As presented in previous chapters, the 

literature on building performance assessment abounds with examples which 

abide by these characteristics. Therefore, building performance assessments 

are required to: 

• remain targeted to the specific characteristics of each case;  

• comprise appropriate research design; 

• comprise clear objectives and narrow scope of study;  

• identify confounding factors and their implication in the interpretation of 

results. 



Chapter 4 - Research Methodology 
 

124 
 
 

Therefore, this chapter not only presents the actual methods and tools selected 

for the case study research in question, but also the rationale behind their 

selection.  The comparative case study research design is presented in Fig. 17. 

 

 

 

Figure 17: Comparative Case Study Research Design 
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Research Planning 

Identify critical aspects to be investigated, 
data collection and analysis methods 
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appropriate case study - specific methods.  
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4.2.2 Comparative Case Study Design 

As explained in paragraph 4.2, the purpose of the comparative case study 

investigation was to test the hypothesis of this research. The comparative case 

study investigation was therefore focused on examining the operational 

performance of the selected case studies with an objective to understand how 

they perform, what has worked and what has not regarding their design and 

operation, and why, and quantify the influence architects exercise on the 

operational performance of the selected case studies. 

The comparative case study investigation was employed to address the 

following specific research questions: 

• Where was the energy used in the selected case studies? 

• Where was energy being saved in the selected case studies?  

• How was energy being saved in the selected case studies?  

• What was the influence of stakeholders on the energy performance of 

the selected case studies? 

The assessment undertaken was linked to the definition of low energy 

buildings. According to the literature review, low energy buildings aim at 

reducing their resource consumption and environmental loads while ensuring 

indoor environment quality and quality of service, by increasing building 

adaptability, utilising automated controls and technology promoting energy 

efficiency, and maintaining a positive performance.  Effectively, low energy 

buildings are expected to secure healthy and productive indoor conditions at 

possible minimum energy expenditure by optimising their systems and the 

relationships between them. This definition informed the selection of the case 

study investigation methods employed in this research. Therefore, energy use 

was considered, in this research, as the main measurable technical element of 

building performance, and it was assessed in the context of indoor 

environmental quality and self-reported occupant satisfaction.  

The key building performance aspects assessed in this research, were: 
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• Operational energy use 

• Indoor Environmental Quality 

• Self-reported Occupant Satisfaction with the Indoor Environment 

The assessment undertaken was focused on a mix of technical, functional and 

behavioural measurable elements of building performance according to Preiser 

et al.’s categorisation (1987). To perform this investigation, the following 

information was collected regarding the case studies: 

• operational data at sub meter level regarding the in-use consumption of 

all energy consuming aspects (equipment, processes, user behaviour), 

including detailed description of the location, supply and consumption of 

HVAC, Lighting and Power systems; as well as 

• operational data from sensors regarding the indoor environmental 

quality, and  

• empirical data regarding the self-reported occupants’ perception of their 

environment, 

to investigate whether their energy performance was mirrored by the Indoor 

Environmental Quality and Occupant Satisfaction with the indoor environment. 

Ahead of collecting this information, it was necessary to first proceed with 

reconnaissance actions to understand the case study buildings, as presented 

in paragraph 4.3. Adhering to findings derived from the literature review, the 

case studies in this thesis were considered as integrated networks of 

components, systems, operators and occupants. This approach was another 

factor which informed the selection of this research’s methods. 

To this end, the iSERV process (Knight et al., 2014a, Knight et al., 2016) was 

employed as the basis for data collection and collation. This process was 

developed in the context of the iSERV project (http://www.iservcmb.info).  The 

iSERV approach utilises operational data from meters and sensors, in 

combination with descriptions of building assets and activities, to produce 

bespoke benchmarks specific to the individual configurations and activities 

housed in a building. In this respect, the iSERV approach is founded on: 
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• the collection of operational data from meters and sensors; 

• the compilation of detailed descriptions regarding a building’s services 

and components, schedules, individual systems, meters, sensors, 

spaces served and activities undertaken in those spaces; and  

• the understanding of the interactions formed between the collected data 

and physical building attributes at a depth necessary to allow for the 

establishment of discrete links among them.  

Following the collection and collation of the information described above, the 

case studies were loaded to the iSERV HERO database to produce bespoke 

benchmark ranges by system, component, space and activity.  

The main advantage deriving from the iSERV process which treats buildings 

as integrated networks of systems, components, meters, sensors, spaces and 

the activities hosted in those spaces, is that it is independent of building sector 

and type. The iSERV procedure works with space types defined by area and 

primary activity rather than building use and type. Thus, it can be applied in 

principle to any building. Furthermore, an additional advantage of the iSERV 

procedure is that its benchmarks ranges are produced based on real world 

performance and can be presented by system down to the level of activity.  

Sensor data were processed using spreadsheets to calculate the time during 

which indoor environmental conditions fell under the set standards, as well 

produce graphs illustrating the fluctuation of daily, monthly and annual average 

values of the recorded environmental quality parameters. Survey data were 

processed using SPSS descriptive statistics to quantify the occupant-perceived 

satisfaction with their environment.  

An overview of the processing procedures followed for the data collected in this 

study is presented in Figure 18.  

The layers of the data analysis following data collection are presented in Figure 

19. 
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Figure 18: Overview of collected data processing  

 

4.2.3 Comparative Case Study Research 

Sample Selection  

The driver of this research embeds the assumption that recently constructed 

buildings might present differences regarding the implementation of the 

concept of energy efficiency when compared to older buildings constructed 

before the legislative focus on low energy building performance. Consequently, 

the case studies selected for this research were of different construction types 

to reflect this assumption.  

The case study buildings were required to adhere to the following criteria: 

(a) be well monitored and controlled; 

(b) be monitored for a minimum of a full year, to account for the seasonal 

variations observed throughout a year; 
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(e) at least one case study building was required to be constructed before 

energy efficiency became a focal point of building regulations and 

energy policy, yet committed to improve its performance; and 

(f) at least one case study building was required to be recently constructed 

and claiming to be low energy from the design and procurement stages. 

The selection of the case studies took place while the author of this research 

participated in the IEE-funded project “Inspection of HVAC systems through 

continuous monitoring and benchmarking” (iSERV). During this project, energy 

monitoring data from 330 buildings across 16 EU states were collected.  Part 

of the author’s duties while participating in the project was to identify well 

monitored and controlled buildings and invite their stakeholders to participate 

in the iSERV project. Foreseeing possible obstacles raised by stakeholders in 

sharing and disseminating building performance data, the author used this 

opportunity to select and invite stakeholders of buildings which adhered to this 

research’s case study criteria to participate both in the research in question and 

iSERV project. 

Despite the iSERV platform’s data security and anonymity features, most 

stakeholders refused to participate and owners were reluctant to share 

operational performance data. Thus, it was not feasible to acquire buildings of 

an identical type. Nevertheless, the case study buildings that are the subject of 

this research house similar discrete end uses and host several different 

departments with different space needs and requirements. This development 

was one of the factors which informed this research’s methods. 

After identifying the case study buildings which adhered to the criteria 

presented above and whose stakeholders were interested in making them the 

subject of this research, visits and meetings with their stakeholders were 

organised, to discuss the purpose and scope of the research and collect 

participation agreements. Following the collection of the participation 

agreement, a literature review was conducted to understand the design and 

operation of the case studies. A summary of this review is presented in the next 

paragraphs. 
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Following the reconnaissance process of the case studies presented in 

paragraph 4.4, it was possible to determine and select: 

• appropriate case study – specific methods in order to collect the required 

information on key building performance aspects;  

• performance indicators to represent these aspects; 

• specific measures for these indicators; 

• criteria to assess the measures. 
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Figure 19: Layers of Data Analysis
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fluctuations. 

Occupant 
Satisfaction
Data exported from 
Bristol Online Survey 
tool & entered in SPSS 
to create database for 
statistical analysis.

D
a
ta

 V
a
lid

a
ti
o
n Energy 

-Examine Timestamps, 
monthly consumptions, 
sub-hourly datasets.
-Consolidate meter 
readings and BEMS 
data
-Compare meter to 
sub-meter data, system 
energy use to 
estimated use/ design 
loads

IEQ
-Examine Timestamps, 
sub-hourly datasets
-Compare IEQ data to 
Outdoor Conditions

Occupant 
Satisfaction
-Survey consistency & 
stability
-Survey validity
-Survey Bias
-Outliers

D
a
ta

 P
ro

c
e
s
s
in

g
 &

 A
g
g
re

g
a
ti
o
n Energy

-Physical Scale: 
Building, HVAC system, 
HVAC  Component, 
End Use, Activity
-Time Scale: Annual, 
Monthly, Hourly, Sub-
hourly

IEQ
-Physical Scale: Level, 
Zone, Room
-Time Scale: Annual 
(Average), Monthly 
(Average), Daily, 
Hourly, Sub-hourly

Occupant 
Satisfaction
-Responses organised 
by group - staff & 
visitors
-Median Scores & 
Variance
-Non Parametric Tests

D
a
ta

 I
n
te

rp
re

ta
ti
o
n Energy

-Benchmarks: 
Legislative, Industry, 
experimental/ research
-Designed & Predicted 
Energy Use

IEQ
-Health & Safety 
Standards
-Comfort Standards & 
Criteria

Occupant 
Satisfaction:
-Comparison to results 
of similar surveys 
conducted in similar 
buildings
-Comparison of results 
regarding general 
building conditions and 
specific work area 
conditions
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4.2.4 Defining the influence of Architects 
on operational building performance  

In this research, what is referred to as the influence of the Architect was set to 

reflect the influence of the design team which, in practice, usually comprises of 

disciplines other than that of Architects.  

This approach was based on the findings of the case studies’ reconnaissance 

process presented in paragraph 4.4. Although in current practice architects do 

not always lead design teams, the reconnaissance process of the case study 

buildings demonstrated that in CS1 architects maintained that lead to deliver 

the building’s environmental and social agenda. While it was not possible to 

confirm who had the final overview of the CS2 refurbishment, due to the 

building’s age and an absence of records, the same approach was applied 

assuming that a future refurbishment of this more conventional building could 

be led by Architects.  

In the current era, design teams can design for several factors which affect 

building performance and assess their associated aspects or elements as 

illustrated in Figure 20. However, in practice, these factors are not 

necessarily addressed in their entirety by the design team alone and instead 

vary on a case to case basis.  

The influence held by the architect and the facility management were 

challenging to precisely quantify in absence of a matrix setting out who is 

responsible for designing each aspect of the case studies, such as the Design 

Responsibility Matrix and Schedule of Services documents described in the 

RIBA Plan of Work 2013. For example, in the case of the architect's influence, 

there were grey areas related to the control of lighting systems the influence of 

which could be attributed to either the architect or facility management. 

The influence exercised by the architect on the electricity use of a building was 

therefore presented in the form of an estimated range of influence. In the case 

of the facility management's influence, the achieved savings were used as a 

quantitative indicator along with the attitudes expressed regarding the 
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building's management, a measure of qualitative nature. The quantification 

process was based on total annual energy use figures. 

 

Figure 20: Factors affecting building performance and their associated aspects 
and elements that can be assessed (based on Preiser’s (1988) research) 

Considering the findings deriving from the case study reconnaissance process 

presented in paragraph 4.4, the quantification of the occupants’ influence was 
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assumed to refer to the energy used in all occupant related activities and 

systems, including small power systems, lifts, external lighting, domestic hot 

water systems, and essential systems such as extract fans as well as HVAC 

and lighting systems serving areas maintaining special environmental 

conditions.  

With regard to the influence of architects, all areas in which the design was 

assumed to affect the building’s performance aspects were considered. This 

comprised the energy used for lighting during daylight hours and the energy 

used by HVAC systems to maintain indoor conditions. This energy expenditure 

was assumed to have been affected by the design of the fabric and ventilation 

of the building, all of which are under the influence of design.  

The model according to which the energy use of each case study’s systems 

was allocated to stakeholders is presented in Table 14. Following the 

disaggregation of the building’s energy use by building system, the 

quantification of each stakeholder’s potential influence was estimated by 

aggregating the energy use of building systems allocated to each stakeholder 

according to Table 14. 

 System Type Influencing Stakeholder 

Occupant 

 

 

Essential Systems such as 
Extract Fans, HVAC and 
Lighting systems serving 
spaces of special conditions 
(e.g. Archives) 
Outside Light 
Outside Power 
Small Power 
Lifts 
Domestic Hot Water 
Undefined End Use 
Processes, e.g. UPS 

Occupants 

Lighting  Lighting Daylight Opening 
Hours 

Architect/ Facility Manager 
depending on management 

Lighting Night Opening Hours Occupants/ Facility Manager 
depending on controls 

Lighting Out of Hours Occupants/ Facility Manager 
depending on controls 

HVAC Full Air Conditioning 
Mechanical Ventilation 

Architect 
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Heating and/or Cooling of all 
areas with the exception of 
spaces of special conditions 
(e.g. Archives) 

Table 14: Allocation of System Energy Use to Stakeholder 

4.3 Data Collection and Analysis Methods 

4.3.1 Energy Use 

As presented in previous chapters, following the Directive 2010/31/EU on the 

energy performance of buildings which encouraged the installation and 

operation of intelligent energy metering systems in both new and existing 

buildings, operational data regarding energy use can now be harnessed to 

allow stakeholders to understand where the energy is used in a building. 

However, the scale of implementation of metering in buildings has varied 

according to building in the absence of detailed legislative guidelines regarding 

monitoring strategies. 

In line with current practice, both case studies presented challenges with regard 

to their monitoring. Consequently, the results of this research were highly 

dependent on the level of sub-metering in each case study building. Although 

the level of sub-metering was a criterion during the selection of the case study 

buildings, not every part of the HVAC plant and building systems was 

separately metered as required to allow the appropriate outputs for this 

research. Data collection and quality issues are presented in detail in the 

following paragraphs and in Chapter 5 under each case study. 

Data collection methods  

This research was compiled using metered energy use data sourced from the 

BEMS and STARK systems in both buildings.  

For CS1, the data refer to the period March 2012 to December 2015. 

For CS2, the data refer to the period October 2006 to December 2015. 

The data available varied between different parameters for CS1, as meters 

were gradually set up, and many of them experienced problems that were dealt 
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with in time. A full list of the parameters monitored has been presented in 

Appendices B and C. 

Multiple issues were encountered in the process of data collection from CS1. 

First, the automated collection of data was not feasible because of the setup of 

the Siemens BEMS. The data had to be collected manually through the 

Siemens Indigo system, by copying individual monthly meter and sensor data 

streams from the software’s trend viewer to excel spreadsheets.  

Furthermore, the data presented several issues impeding the analysis of the 

building’s performance. To proceed with the analysis, over 3,000 separate 

monthly data streams had to be rectified first, from approximately 100 meters 

that were setup gradually during the period being investigated. These problems 

are discussed in the next paragraphs. 

With regard to CS2, according to the HARMONAC project, issues with the data 

quality (time intervals, storing) had also presented themselves during the 

project, and had been dealt with appropriately at the time, allowing this current 

project not to have to address them anew. The data were collected directly from 

the STARK Reality software in the form of text files containing data for the full 

period this research examines. 

Data Collation 

Before proceeding to the analysis of the operational energy use data, it was 

necessary to understand the relationships and interactions of all physical 

assets of each case study, to be able to make sense of all sub metered data 

that were collected and be able to disaggregate energy use at different scales, 

from systems, to components and end uses.  

To this end, the author used an Excel-based data entry sheet which was 

created in the context of the ISERV project as a method of collection and 

collation of building asset data. It has been endorsed by CIBSE and REHVA, 

as a means of collating data needed to understand HVAC systems in buildings. 

It has recently been included in the UK’s Education Funding Agency’s process 

for new schools. 
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The spreadsheet acts as an asset register in which all HVAC systems, 

components, meter, sensors and spaces are described and attached to each 

other. In this manner, it allows for a building to be described as a virtual entity 

comprising HVAC systems and metering which are then connected to spaces 

and activities. Once completed, the spreadsheet was uploaded to the HERO 

database which was created during the iSERV project, to produce a standard 

report set presenting the building’s energy performance along with bespoke 

sets of benchmark ranges down to the level of activity. 

To complete the spreadsheet, internal technical documentation regarding the 

building’s assets and operation was studied and combined with on-site visits 

and communication with the facility managers. The BEMS system of the case 

studies was used to further understand the complex relations between the 

buildings’ assets and components. The spreadsheets were therefore 

completed to the best of knowledge and understanding of the author and facility 

managers of the case study buildings.  

A copy of the spreadsheet has been attached to Appendix D. 

Data Validation and Accuracy Checks 

Before using the collected data, data validation and accuracy checks were 

conducted in order to verify the integrity and reliability of the data and make 

appropriate amendments where required. 

Much of the metered data were cumulative sub-hourly readings, apart from a 

few meters such as water pulse meters which recorded consumption per 

interval.  

The checks that were performed are presented in the Table 15 below. 

Check Description 

Examine Data 
Timestamps  

 

By calculating the time intervals between the BEMS 
Data logs and comparing them in the span of different 
time periods (hourly, daily, monthly, annually) it was 
feasible to ascertain the existence of the following 
issues: 

a) Gaps in BEMS logged data created by the BEMS 
either not recording or not storing data for a 
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significant amount of time within the data stream, in 
the format of: 

i) Missing Months: data sets missing whole monthly 
data streams  

ii) Missing Days: monthly data streams containing 
only a few days’ worth of data 

iii) Missing Hours or Minutes: daily data sets missing 
continuous and non-continuous sub hourly BEMS 
logs  

b) Odd data entries: Data sets containing odd data logs 
outside of the set metered time interval, e.g. because 
the BEMS clock automatically synchronised to the PC 
time throughout the day or month 

c) Varying Timestamp/Log Interval: datasets presenting 
erratically logged intervals that appear to vary and 
fluctuate overtime. 

Examine 
Monthly 
Consumptions 

 

By calculating the monthly consumptions for each meter 
and comparing them to the previous and following 
months, extreme increases/ decreases or 0 
consumption could be identified that might not be 
justified by seasonal trends. Identifying such cases, 
should be followed by the examination of the actual data 
set for these problematic months in order to identify the 
root of the problem 

Examine Sub-
Hourly Datasets 

 

Having identified months for which there were extreme 
fluctuations in consumptions which might not in line with 
seasonal trends, the data of sub hourly should be 
examined at sub-hourly level to understand the reasons 
of such inconsistencies. 

Consolidate 
Meter readings 
(STARK) with 
BEMS data 

 

Integrating meter readings and BEMS data could 
contribute in understanding building performance, 
accounting for period with missing BEMS data, 
specifying exception reporting and informing one when 
the other was not available. Comparison could prove 
existence of meter multipliers, flips, or existence of 
differences between mains meters and BEMS data 

Compare data 
collected from 
meters and 
their sub-
meters  

 

Comparing the consumption of the main meter to the 
aggregated consumption of its sub-meters, missing/non-
metered HVAC components and areas, or surplus 
consumption could be identified. This might indicate 
problems in metering associations. 

Compare 
system energy 
use to 
estimated use. 

Comparing the metered consumption of sub-systems to 
their estimated loads could contribute in identifying 
errors in metering or metering associations. 

 

Table 15: Data Analysis – Energy Data Validation and Accuracy Checks 
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Data Aggregation and Processing 

The energy use data were processed using the Excel spreadsheets, the iSERV 

spreadsheet, the iSERV HERO online database, and SPSS statistical analysis 

software (http://www.ibm.com/analytics/us/en/technology/spss/) to quantify the 

impact of the building systems, spaces and activities on the final energy use, 

and identify the energy flows per system, component, space and activity. 

Operational energy and sensor data from both case studies were processed 

through the iSERV analysis framework and platform in conjunction with the 

building assets data, to breakdown the energy use by system, component and 

end use. Where sub-metering of systems, components and end uses was 

unavailable, the iSERV platform provided estimates by apportioning energy 

use based on benchmarks developed in the context of the iSERV project which 

studied over 300 non-domestic buildings across the EU. Further processing 

was conducted using Excel Spreadsheets and the SPSS statistical analysis 

software (http://www.ibm.com/analytics/us/en/technology/spss/) to quantify the 

impact of the building systems, spaces and activities on the final energy use, 

and identify the energy flows per system, component, space and activity. 

Following the review presented in Chapter 3, the following quantitative 

performance indicators and their measures were selected for this case study 

investigation (Table 16). These represent most of the measured and calculated 

performance indicators presented in Chapter 3 with indicators relating to CO2 

emissions being rejected as they did not meet the focus of this case study 

investigation which was centred on the in-use performance of the selected case 

studies and not their lifecycle performance. 

Indicator  Measure  Use 

Total Annual Building 
Consumption per m2 

KWh/m2 to be compared to legislative and 
industry benchmarks 

Average Rolling Annual 
Electricity Consumption 
per m2 

KWh/m2 to identify emerging trends, 
patterns and peaks 

 

Monthly Building Energy 
Consumption 

KWh to be used to identify season 
trends 

http://www.ibm.com/analytics/us/en/technology/spss/)
http://www.ibm.com/analytics/us/en/technology/spss/)
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Individual HVAC system 
annual consumption per 
m2 

KWh/m2 to be compared to legislative and 
industry benchmarks 

Building monthly 
Lighting and Small 
Power consumption per 
m2 

KWh/m2 to shed light on the seasonal 
performance of the individual 
Lighting and Small Power systems 

Building Monthly and 
Annual Consumption by 
end use 

KWh to shed light on the seasonal 
performance of the individual end 
uses and be compared to past 
literature findings 

Building Monthly and 
Annual Consumption by 
end use per m2 

KWh/m2 to be compared to legislative and 
industry benchmarks 

Breakdown of electricity 
balance per HVAC 
system and comparison 
per m2 

KWh 

 

KWh/m2 

to shed light on the seasonal 
performance of the individual 
systems, such as lighting and 
small power systems 

Breakdown of energy 
use per m2 by activity 

KWh/m2 to shed light on the energy flow 
within the building 

Breakdown of HVAC 
electricity use per HVAC 
system  

KWh 

 

to shed light on the performance of 
the individual HVAC systems and 
energy flows in the building 

Carpet plots which show 
the consumption values 
for a chosen period split 
into 10% bins based on 
the highest value in that 
period 

KWh 

 

to allow for identification of 
operational anomalies among the 
building’s systems 

Scatter graphs of power 
per m2 for each HVAC 
system on hourly basis 

KWh/m2 to allow for identification of 
operational anomalies among the 
HVAC systems 

Table 16: Summary of Energy Quantitative Performance Indicators 

Data Interpretation and Assessment  

The criteria used in this research to assess the performance indicators 

presented above are legislative, industry and experimental benchmarks 

deriving from research. As presented in Chapter 3, benchmarks can be used 

to assess a building’s performance in respect either to buildings with common 

traits, or to its individual potential. They are effective in identifying and 

diagnosing performance issues. Approaches related to energy rating, labelling 

and certification were rejected as they do not facilitate the identification of 
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performance issues and hence do not meet the focus of the case study 

investigation employed in this research. 

Following the review presented in Chapter 3, the following empirical 

benchmarks produced from analysis of the UK building stock were selected. 

Modelled benchmarks were rejected, as this research focuses on real world 

building performance. The selected benchmarks are presented in Table 17 

below. 

Benchmark Author Description 

ECON19 Carbon 
Trust 

Benchmarks based on research conducted 
in mid 1990s. Benchmarks address a 
discrete building occupancy types, 
categorising office buildings into four 
descriptive types according to ventilation 
approach. Energy use benchmarks for up 
to 10 end uses. ECON 19 benchmarks 
divided into ‘typical’ and ‘good practice’.  

ECON75 Carbon 
Trust 

Benchmarks with diverse building use 
classification (11), with disparate energy 
disaggregation approaches of end uses. 
Allows for normalisation of space heating 
by DD, temperature setpoints and weather 
exposure factor. Benchmarking up to 12 
energy end uses. 

Guide F 
(ECON19) 

CIBSE Energy benchmarks categorised under 
‘typical’ and ‘good practice’ for discrete 
building types, components and end-uses. 
Basis for TM46 and DEC. 

TM46:2008 CIBSE Comprehensive energy benchmarks for 
discrete building types and uses, which 
underpin the DEC process. 

PassivHaus 
Standard for 
Non-Domestic 
Buildings 

PassivHaus 

Institut  

Developed in Germany, it is a construction 
standard for buildings with a focus on 
thermally efficient envelopes minimising 
the need for space heating and cooling. 
The standard applies limitations on the 
primary energy demand by end use and 
sets strict energy requirements. 

 

iSERV 
Benchmarks 

iSERV 
project 

Experimental power and energy 
benchmarks produced from research on 
the real-world performance of 330 buildings 
across Europe. Benchmark ranges tailored 
according to building, services and 
activities. Benchmarks ranges produced for 
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whole building, system, component, space 
and activity. Benchmarks continuously 
updated as real world data is added to the 
HERO database. 

Real Estate 
Environmental 
Benchmarks 
(REEB) 

Better 
Buildings 
Partnership 

Operational benchmarks sourced from 
commercial buildings across the UK. They 
are founded on three year rolling averages 
which are updated annually.  

Table 17: Summary of Selected Energy Benchmarks 

It should be noted that the industry benchmarks listed in Table 17 are building 

sector dependent and require further adjustment to weather and occupancy. A 

significant advantage of the iSERV benchmarks in comparison to the listed 

industry benchmarks is that the iSERV benchmarks are bespoke to the 

activities, spaces, HVAC systems and components housed in a building and 

allow comparisons of similar spaces in buildings of different type or sector. 

Nevertheless, all benchmarks are subject to change and were not considered 

in this research as absolute performance metrics; instead they were employed 

to provide indications regarding the performance of the case studies selected 

in this research.  

The results of this research, with regard to energy use, were also compared 

against design targets described in the design statement, predicted energy 

use, existing certifications and ratings of building performance that the case 

studies have received such as Part L targets. 

4.3.2 Indoor Environmental Quality  

Whilst certain aspects of the indoor environment affecting the wellbeing and 

productivity of occupants (e.g. air temperature and humidity, lighting and noise 

levels) can be measured and quantified, there are other intangible aspects of 

the indoors environment such as design aesthetics that are difficult to capture 

and analyse without stepping into the fields of philosophy and sociology. 

This assessment focused on capturing and analysing physical parameters of 

the indoors environment (Air Temperature, Humidity, Air Quality, Noise levels 

and Light levels) in correlation with the monitored building energy performance, 

to ensure that the Indoor Environmental Quality can be placed in the context of 
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the energy performance of the case study. This assessment looked to highlight 

possible differences between zones and levels in the building. 

This study did not evaluate the impact of the building indoors environment on 

the health of occupants, hence data on medical conditions and symptoms were 

uncollected. Furthermore, considering: 

• the focus of this assessment on monitoring IEQ physical parameters to 

ensure that the quality of the case studies’ indoor environments is placed 

in the context of their energy performance; 

• the absence of a single IEQ index, as documented in the literature 

review; and  

• the size and large occupancy of the surveyed case study buildings, as 

well as the resources available to perform this investigation; 

• this study did not consider local thermal discomfort indicators or thermal 

comfort models to be suitable to assess the comfort in the monitored 

spaces.  

As presented in Chapter 3, local thermal discomfort indicators do not account 

for all aspects of the indoors environment and cannot provide a general picture 

of the examined thermal environment which has been part of the focus of this 

case study investigation. Thermal comfort models have been criticized for 

maintaining strict and unrealistic categorisation ranges of buildings, as well 

maintaining certain bias with regard to the contribution of six factors in affecting 

comfort. As presented in Chapter 3, they provide a solution in cases where 

users are not in place to rate their environment.  

In this research, it was feasible to ask occupants to rate their environment 

according to the procedures described in paragraph 4.3.3, therefore, 

considering the aspects described previously, simple and integrated indicators 

along with subjective evaluation methods were employed in this research to 

assess the environmental conditions and comfort in the case study buildings. 

The results of this research were dependent on the number of sensors in place 

in each case study building, their location and the area they cover. Although 
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these traits were treated as criteria during the selection of the case study 

buildings, not every part of the HVAC plant and building was covered by a 

working sensor as required to allow the appropriate outputs for this research. 

This problem was more extensive in CS2. For this purpose, two mobile Indoor 

Air Quality kits were placed in CS2, and spot field measurements were 

conducted once in each season to compensate the effect of the absence of a 

substantial sensor system. Data collection and quality issues are presented in 

detail in the following paragraphs and in Chapter 5 under each case study. 

For past studies on the assessment of indoor environmental quality in office 

and educational buildings, please refer to Chapter 2. 

Data collection methods  

This research has been compiled using IEQ data sourced from: 

• Built- in sensors through the BEMS and STARK systems in both 

buildings; 

• Indoor Air Quality mobile kits placed in CS2; 

• Spot field measurements repeated once each season in each building. 

Indoor Air Quality Sensors 

For CS1, the data refer to the period March 2012 to December 2015. 

For CS2, the data refer to the period October 2006 to December 2015. 

The data available varied between different parameters for CS1, as sensors 

were gradually set online, and several experienced problems that were dealt 

with in time. A full list of the parameters monitored has been presented in 

Appendices B and C. 

Multiple issues were encountered in the process of setting up and operating 

the data collection, in the CS1. First, the automated collection of data was not 

feasible because of the setup of the Siemens BEMS. The data had to be 

collected manually through the Siemens Indigo system, by copying individual 
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monthly sensor data streams from the software’s trend viewer to excel 

spreadsheets.  

Furthermore, the data presented several issues impeding the analysis of the 

building’s performance. To proceed with the analysis, over 4,200 separate 

monthly data streams had to be rectified first from approximately 120 sensors 

that were setup gradually during the period being investigated. These problems 

are discussed in the following chapter. 

Regarding CS2, according to the HARMONAC project, issues with the data 

quality (time intervals, storing) had also presented themselves during the 

project, and has been dealt with appropriately at the time, allowing this current 

project not to have to address them anew. The data were collected directly from 

the STARK Reality software in the form of text file containing data for the full 

period this research examines. 

Mobile Indoor Air Quality Stations  

To compensate for the small number of sensors installed in CS2, two IAQ 

stations were placed at two different levels in the building to take real time 

measurements inside key work areas. 

Originally, it was attempted placing one kit on an intermediary level and one 

inside an AHU. However, problems with powering the indoor air kit inside the 

AHU, led to change its position. After discussing this issue with the building 

stakeholders, they agreed to install the kits on Levels 5 and 11. In this manner, 

the kits would record the IEQ in an intermediate floor and on the top and more 

exposed floor to outdoors conditions compared to the remaining floors. 

The IAQ stations were designed by the National Kapodistrian University of 

Athens in the context of the project iSERV.  The IAQ kits were calibrated at the 

NKUA certified indoor air quality laboratory according to ISO 17025 

(Organization for Standardization & International Electrotechnical Commission, 

2005). The IAQ kits comprised sensors which monitor the parameters of 

Temperature, Relative Humidity, CO2, VOC and record them in data loggers by 

converting the measurement into an analogue signal.  
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The data logger was programmed to receive, interpret and store the signal at 

an interval of 60 seconds. The sensor had a one-minute response rate, and 

recorded spot values every fifteen minutes and hourly mean values for all 

parameters. 

Data from the data logger were downloaded manually with the use of a 

universal serial bus (USB) cable, once every three months. 

For details about the selection of monitoring locations, refer to Appendix E. 

For details about the measurement instruments specs, refer to Appendix F. 

Physical Spot Measurements 

Both case studies house multiple departments, and comprise an array end 

uses. Most spaces in both buildings were designed to be large open plan 

spaces. As presented previously, most the built-in sensors covered large open 

plan spaces in both buildings and could not account with accuracy for spatial 

temperature variation. For this purpose, field measurements were employed in 

the analysis of the case study’s IEQ.  

Arranged visits were organised, one for each season, during which spot 

measurements for indoor air temperature (oC) and relative humidity (%) of 

different zones, air speed (m/s), illuminance levels on work surfaces (lux) and 

sound pressure levels (dBA) were collected in order to correlate and validate 

the occupants’ responses as well as correlate the longer-term data obtained 

from the buildings sensors. The spot measurements were used as a snapshot 

of the indoor conditions of the monitored spaces, and contributed to the 

assessment of thermal comfort on the time of visitors’ survey. 

All measurements were conducted using calibrated instruments. For details 

about the measurement instruments specs, refer to Appendix F. 

With regard to CS1, during each on-site visit, indoor field measurements were 

collected for a set of 68 fixed points located in main areas across all levels. 

Additionally, indoor field measurements were collected for a set of 25-30 

random points, at the location of the visitors taking the on-site survey, in main 

areas across all levels. 
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With regard to CS2, stakeholders permitted the author to take field 

measurements only on the levels that the indoor air quality stations were 

placed. During each on-site visit, indoor field measurements were collected for 

a set of 19 fixed points located on the fifth floor and for a set of 23 fixed points 

located on the top floor.  

For details about the number and location of spot measurements, refer to 

Appendix G. 

For details about the positioning of sensors for spot measurements of Ambient 

Temperature and Relative Humidity, refer to Appendix H. 

For details about the time of sampling and guidelines for short term 

measurements, refer to Appendix I. 

For details about the positioning of sensors for spot measurements of light 

levels, refer to Appendix J. 

For details about the positioning of sensors for spot measurements of sound 

pressure levels, refer to Appendix K. 

Data Validation and Accuracy Checks 

Before using the collected data, data validation and accuracy checks were 

conducted in order to verify the integrity and reliability of the data and make 

appropriate amendments where required. 

The sensors recorded instantaneous readings at sub-hourly intervals. 

The checks that were performed are presented in Table 18 below. 

Check Description 

Examine Data 
Timestamps  

 

By calculating the time intervals between the BEMS 
Data logs and comparing them in the span of different 
time periods (hourly, daily, monthly, annually) it was 

 feasible to ascertain the existence of the following 
issues: 

a) Gaps in BEMS logged data created by the BEMS 
either not recording or not storing data for a 
significant amount of time within the data stream, in 
the format of: 
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i) Missing Months: data sets missing whole monthly 
data streams  

ii) Missing Days: monthly data streams containing 
only a few days’ worth of data 

iii) Missing Hours or Minutes: daily data sets missing 
continuous and non-continuous sub hourly BEMS 
logs  

b) Odd data entries: Data sets containing odd data logs 
outside of the set metered time interval, e.g. 
because the BEMS clock automatically synchronised 
to the PC time throughout the day or month 

c) Varying Timestamp/Log Interval: datasets presenting 
erratically logged intervals that appear to vary and 
fluctuate overtime. 

Examine Sub-
Hourly Datasets 

 

Perform data accuracy check by checking value 
differences between consecutive timestamps. If the 
differences were extreme or negative logged values 
were found, this might indicate errors in the sensors. 

Compare IEQ 
Data to Outdoor 
Conditions 

 

Comparing the IEQ Data to Outdoor Conditions in 
naturally ventilated or mixed-mode buildings could 
contribute in identifying and outliers and profiles that 
might not be in line with seasonal trends. 

Table 18: Data Analysis – IEQ Data Validation and Accuracy Checks 

Data Aggregation and Processing 

The sensor data were processed using spreadsheets to calculate the time 

during which indoor environmental conditions fell under the set standards, as 

well produce graphs illustrating the fluctuation of daily, monthly and annual 

average values of the recorded environmental and air quality parameters. 

Results regarding working indoor conditions presented in this research, refer 

to the opening hours of each building extended by an additional hour at the 

start and end of each working day.  

According to the review presented in Chapter 3, to date, there is an absence of 

a single IEQ index as research on the co-founding factors affecting IEQ 

parameters is still ongoing. The research has therefore followed the 

examination of each individual environmental parameter against set standards, 

which is commonly used in past research in this field.  
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Following the review presented in Chapter 3, the following quantitative 

performance indicators and their measures were selected for this case study 

investigation (Table 19).  

Indicator  Measure  Use 

Heating and Cooling 
Degree days 

Degree 
Days 

as comparison indicators of the 
heating and cooling energy 
demand for each year the case 
studies were monitored. 

Percentage of time Air 
Temperature falls under 
separate temperature 
bands during each month 

oC to be compared against set health 
and comfort standards  

Percentage of time 
Relative Humidity (%) falls 
under separate 
temperature bands during 
each month 

% to be compared against set health 
and comfort standards  

Percentage of time CO2 
concertation falls under 
separate temperature 
bands during each month 

ppm to be compared against set health 
and comfort standards  

Percentage of time VOCs 
fall under separate 
temperature bands during 
each month  

ppm to be compared against set health 
and comfort standards  

Scatter Plots of field 
measurements of Air 
Temperature clustered 
according to level and 
compliance to set 
standards 

oC to be compared against level and 
set health and comfort standards 

Scatter Plots of field 
measurements of Relative 
Humidity clustered 
according to level and 
compliance to set 
standards 

% to be compared against level and 
set health and comfort standards 

Scatter Plots of field 
measurements of 
Illuminance clustered 
according to level and 
compliance to set 
standards 

lux to be compared against level and 
set health and comfort standards 

Scatter Plots of field 
measurements of Sound 
Pressure Levels clustered 

dB to be compared against level and 
set health and comfort standards 
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according to level and 
compliance to set 
standards 

Scatter Plots of field 
measurements of Air 
Speed clustered according 
to level and compliance to 
set standards 

m/s to be compared against level and 
set health and comfort standards 

Table 19: Summary of IAQ Quantitative Performance Indicators 

Data Interpretation and Assessment  

Similarly, to the selection of the IAQ performance indicators, the criteria used 

to assess the performance indicators were sourced from the review completed 

in Chapter 3. The monitored IEQ parameters were assessed against both 

Health & Safety as well as Comfort Criteria presented in Table 20 below.  

Criteria 

Type 

Source Description 

H
e
a

lt
h

 &
 S

a
fe

ty
   

World Health 
Organisation 3 

Guidance aiming at ensuring health 
conditions for sensitive social groups. The 
proposed temperature ranges reduce the 
risk of negative impacts on individual 
health. 

ASHRAE Standard 
62.1-2013 4 

Recommends CO2 limit in indoor spaces 

The UK Workplace 
Regulations 5 6 7 

 

Indicates minimum temperature and 
lighting standards (average illuminance) 
and maximum noise levels for health and 
safety. 

BS5454:2000 Recommendations for the storage and 
exhibition of archival documents. The 
BEMS has been set to comply with it. 

                                                 
3  World Health Organisation 1987. Health Impact of Low Indoor 
Temperatures. 
4  American Society of Heating, Refrigerating and Air-Conditioning Engineers  
2013. Ventilation for Acceptable Indoor  Air Quality. ASHRAE Standard 62.1-
2013. Atlanta: ASHRAE 
5  The Health and Safety Executive 1992. Workplace health, safety and 
welfare. Workplace (Health, Safety and Welfare) Regulations 1992. Approved 
Code of Practice, HSE Books 
6  The Health and Safety Executive 2005. Control of Noise at Work Regulations 

2005, HSE Books. 
7  The Health and Safety Executive 1997. Lighting at work, HSE Books. 
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te

ri
a

 

ASHRAE Standard 
55 – 2010 
(ASHRAE, 2010)8 

Recommends Operative Temperature and 
Relative Humidity Ranges described as 
meeting the needs of at least 80% of 
individuals. Not specific to activity, 
therefore more generic. 

CIBSE Guide A 9 Recommends sets of Operative 
temperature ranges in order to ensure 
comfortable environments according to 
season and activity as well as provides 
guidelines regarding acceptable ranges of 
relative humidity, lighting and noise levels 
according to specific spaces. 

SLL Code of 
Lighting 10 

Provides guidelines for lighting in order for 
specific tasks to be carried out accurately 
and quickly and recommendations of 
optimum figures according to building type 
and space activity. 

Table 20: Indoor Environment Quality Assessment Criteria 

4.3.3 Occupant-perceived satisfaction with 

the indoor environment 

As presented in chapter 3, a series of studies have provided concrete evidence 

that self-reported user satisfaction is an indispensable aspect of building 

evaluation processes, regardless the design scope and aims. This research 

therefore included the subjective evaluation of the indoors environment by 

occupants in its methods.  

The behaviour and needs of building users are dynamic in nature and in 

continuous interaction with discrete subjective and objective factors that can be 

difficult to capture and quantify. Whilst certain aspects of the indoors 

environment affecting the wellbeing and productivity of occupants can be 

measured and quantified, there are other intangible aspects of the indoors 

                                                 
8 American Society of Heating, Refrigerating and Air-Conditioning Engineers  
2010. Thermal environment conditions for human occupancy. ASHRAE 
Standard 55-2010. Atlanta: ASHRAE 
9 Chartered Institute of Building Services Engineers 2015. CIBSE Guide A: 

Environmental design, London, 8th Ed., CIBSE Publications. 
10 Raynham, P. 2012. The SLL Code for Lighting, London, The Society of Light 

and Lighting. 
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environment such as design aesthetics that are difficult to capture and analyse 

without stepping into the fields of philosophy and sociology. 

This research focused on capturing the occupant-perceived satisfaction with 

the case studies’ indoor environment. The research was particularly concerned 

with the occupant-perceived satisfaction with: 

• the building overall with regard to security & cleanliness, accessibility, 

indoor conditions, wellbeing, productivity, overall image, and overall 

satisfaction; 

• their specific work area with regard to air quality, ventilation, air 

temperature, noise, lighting, and controls. 

The following were not part of the scope of this research:  

• assessment of building design; hence it didn’t collect information from 

occupants regarding aspects pertinent to the architectural design of the 

building, such as user reaction to building design, materials, and 

furniture. 

• evaluation of the impact of the building indoors environment on the 

health of occupants; hence, data on medical conditions and symptoms 

were not collected.  

• in depth evaluation of the impact the building had on work productivity; 

therefore, it did not collect data. 

• factor analysis to investigate the effects of different factors on occupant 

satisfaction. 

Data collection and quality issues are presented in detail in the following 

paragraphs and in Chapter 5 under each case study. 

Data collection methods  

In order to capture the occupant-perceived satisfaction with their indoor 

environment, a survey was required to be designed and distributed to 

occupants in both case study buildings.  
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According to the literature review, the main concerns one is required to address 

when designing a survey of this nature, are in: 

• minimising occupant bias by making surveys more informative and 

including questions on confounding factors that could affect the 

occupants’ responses with regard to their perceived comfort.  

• addressing the concept of forgiveness that might be leading the 

occupants’ responses, by including questions about the building as a 

whole and for its individual aspects 

• addressing the effect environmental controls have of occupants’ 

satisfaction and work productivity. 

• addressing recurrent issues observed in similar buildings through 

specific questions, e.g. lighting – glare and acoustics – speech privacy.  

Survey Design  

The survey had the form of a two-page document which includes approximately 

forty questions depending on the surveyed group.  

In accordance to the aims of the survey, the survey was divided into two 

sections. The first section of the survey aimed to collect background information 

on controlled variables as well as asks occupants to assess the building overall. 

The second section allowed occupants to provide feedback regarding their 

specific work area. The questionnaire also allowed for anonymous narrative 

comments at the end.  

Background information was collected related to confounding factors 

documented in past literature to address occupant bias.  

The format and content of the survey followed the results of literature review 

which focused on:  

(a) past research on post occupancy studies of green buildings which were 

not necessarily particular to the case study’s building type. Since this 

survey was focused on documenting the occupant’s satisfaction with 

general aspects of their working environment (lighting, noise, and 
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thermal comfort) and not attributes particular to a library design, it was 

considered appropriate to review past studies conducted in offices and 

other educational buildings. 

(b) The toolkit on good practice guidance for use by the Higher Education 

sector developed by HEFCE, AUDE and the University of Westminster 

in 2006 (HEFCE, 2006) . The sample occupant survey presented in their 

report was adapted to fit the needs of this survey and address the issues 

raised by past research. 

The survey collected information on the following categories presented in Table 

21. 

Category Collected information Justification 

General • Background information (Age, 

gender, employment type/ 

visit purpose) 

controlled variables 

• Time spent in the building and 

activities performed 

controlled variables 

The building 
overall 

• Security & cleanliness  confounding factors 

• Accessibility confounding factors 

• Indoor conditions  Indoor comfort 

• Wellbeing & productivity  forgiveness factors 

• Overall image forgiveness factors 

Your specific 
work area 

• Location in the building controlled variables 

• Air Quality   Indoor comfort 

• Ventilation Indoor comfort 

• Air temperature  Indoor comfort 

• Noise Indoor comfort 

• Lighting Indoor comfort 

• Controls confounding factors 

• Overall Satisfaction forgiveness factors 

Comments Open field  

Table 21: Categories of information collected by occupant survey 
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After determining the questions to be asked emanating from the defined 

objectives of this research, the types of questions were selected and the 

wording was specified. The wording and phrasing were specified in a manner 

that: 

• Uses short, simple and clear sentences; 

• Allows for precise questions to be asked; 

• Avoids double, negative, leading or hypothetical questions; 

• Avoids positive or negative connotations.  

To make the survey easy to take, it was designed with the use of a five point 

Likert scale11 for each question. 

Two versions of the survey were created; one to address the staff and one to 

address the visitors. The difference between the two versions was that 

occupants were asked to assess the building’s environment for different 

periods of time; the staff were asked to provide feedback based on the past 

two weeks of working in the building, and the visitors were asked to provide 

feedback about their visit day. 

To assess the reliability of the surveys before their use in the building, the 

surveys’ consistency and stability were estimated as well as both surveys were 

tested with regard to their validity.  The surveys’ consistency and stability was 

estimated as high since no bias was observed in their design and both surveys 

could be reused in other buildings. The surveys’ validity in the context of sample 

representativeness was ensured through the random sampling followed and 

the participation exclusion criteria imposed which disqualified visitor survey 

respondents who have not visited the building and respondents who did not 

                                                 
11  Likert (1932) developed ordinal scales using fixed choice response formats 

that can be used to capture and measure opinions or attitudes in the form of 

agreement/disagreement levels (Bowling, 1997; Burns, & Grove, 1997).  In 

Likert scales, it is assumed that the intensity of agreement/disagreement to a 

specific statement is linear.   
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sign the consent form. To ensure that the survey approach of simple random 

sampling was unbiased, responses were sought for from a large population as 

allowed for by the available resources in this research. The internal validity of 

the survey was not assessed as it was unrelated to the research aims12. 

Similarly, the survey’s external validity was not assessed as it was recognised 

that they survey’s results could not be generalised in the wider building 

population. The surveys’ consistency was tested by having a group of four 

respondents of diverse backgrounds complete the surveys and completing 

them again after ten minutes to examine the correlation of their answers at the 

ten-minute interval. The Pearson correlation test scores varying approximately 

between 0.86 and 0.94 according to question were proof of the surveys’ 

consistency.  

To ensure a significant response rate, the survey was designed with the 

following factors of influence in mind (Table 22). 

Factor Description 

Rapport  The survey included an information sheet introducing 
the survey, explaining its design, and answering a 
number of questions on confidentiality and the use of 
data in this research. 

Explanation of 
purpose  

this information sheet also explained the purpose of the 
study. 

Number of 
contacts made 
with 
respondents  

pre-notification and reminders regarding the staff survey 

were distributed by the building management to all staff, 

whereas a link to the visitors’ survey was uploaded to 

the library’s online website and reminders were 

advertised through its official Twitter account. 

Title the survey comprised a title that referred to the name of 
the building and was accompanied by a short 
introduction to the survey. 

Length of the 
questionnaire 

The time required to complete the survey was 5-7 
minutes. In accordance to past research, this length of 
time did not discourage occupants from taking the 

                                                 
12 Internal Validity concerns studies that try to establish a causal relationship 

usually between variables, and is not relative to observational or descriptive 

studies RUBIN, A. & BABBIE, E. R. 2009. Essential Research Methods for 

Social Work Cengage Learning.. 
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survey or creating problems in building evaluated in the 
past. 

Apparent 
relevance 
importance and 
interest 

the information sheet accompanying the survey 
explained to respondents that they had been invited 
because as occupants working in the building, they 
were in a position to provide the researcher with 
valuable feedback regarding their perception of the 
indoor environment of the building. The information 
sheet also explained the benefits of taking part in the 
survey by focusing on the use of insights deriving from 
occupant responses in addressing ongoing problems, in 
contributing to improve the buildings future performance 
and influencing the aspects that matter to occupants. 

Use of 
incentives 

Apart from the opportunity to have ongoing problems, 
regarding the indoor environment, addressed, no 
rewards were sent upon receipt of the questionnaire. 

Table 22: Survey Design – Factors affecting response rate 

The survey was approved by the Welsh School of Architecture’s Ethics 

Committee, Cardiff University. All information collected about the respondents 

was kept strictly confidential, subject to legal limitations. Responses were 

anonymous, and anyone taking this survey was unidentified. Personal data of 

respondents were unrevealed in the study, keeping privacy and anonymity 

ensured in the storage and publication of the research material. Data generated 

by the study were retained in accordance with the University’s policy on 

Academic Integrity. All information stored on any device was encrypted with a 

security code and securely stored when not in-use to comply with the Data 

Protection Act. 

Individual responses were not used where they could identify the author, to 

preserve anonymity.  

To participate in the study, respondents were asked to complete the consent 

form and the questionnaire they were provided. 

A copy of the questionnaire and its supporting documents can be found in the 

Appendix N. 
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Survey Execution 

The survey was distributed in both paper and online versions. The online 

versions were designed using the web based survey platform Bristol Online 

Survey tool.  

In the case of the paper version, two surveyors were placed in the building 

distributing the survey on agreed dates, once each season.  

In the case of the online visitors’ version, a link to the online survey was placed 

on the building’s public website over the survey period. The online survey 

included an additional question to distinguish between respondents located in 

the building at the time of the survey, and those that were not.  The online staff 

survey was distributed to the staff through email from the personnel manager, 

asking them to fill it out.  

Data Collation 

The survey responses were exported from the BOS tool and entered in SPSS 

(http://www.ibm.com/analytics/us/en/technology/spss/) to create a database 

that would allow for statistical analysis and be analysed using descriptive 

statistics.  

Each survey question was described in SPSS as a variable of set type, label 

values, missing values, and measure.  

Data Validation and Accuracy Checks 

Apart from the actions taken during design to ensure the surveys’ consistency, 

stability and validity, additional actions were taken once the survey responses 

were collected. Before using the collected answers, all surveys for which a 

consent form was unsigned were removed from the sample. Furthermore, the 

collected data was checked for outliers outside the five point Likert scale used.   

Data Aggregation and Processing 

The survey data were processed using SPSS descriptive statistics to quantify 

the occupant-perceived satisfaction with their environment. 
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Most of the data collected in this research were ordinal as most survey answers 

were based on a five-point Likert Scale. Therefore, the data were in the shape 

of a skewed distribution. Thus, non-parametric tests were used along with 

median scores as a measure of central tendency and variance as a measure 

of dispersion. 

The staff and visitors’ answers were presented separately, as they were treated 

as two distinct occupant groups. 

The following specific performance indicators and their measures were used in 

this research: 

a) Survey demographics to examine the representativeness and the drop-

out rate of the survey sample that participated in the research. 

b) Overall median and variance of the occupant satisfaction scores with the 

building overall, the building conditions, and specific work area 

conditions, in the form of radar charts. 

c) Satisfaction with Work Area Conditions per season, in the form of stock 

charts. 

d) Satisfaction with Work Area Conditions per level, in the form of stock 

charts. 

e) Difference of median scores of satisfaction between the building and 

specific work area conditions, in the form of tables.  

Data Interpretation and Assessment  

Because of the case specific nature of occupant surveys and the individualised 

approaches used in practice, there is a shortage of common measures of 

occupant wellbeing and satisfaction. As a result, sets of benchmarks that can 

be applied to any building, remain absent, unless one uses either the BUS or 

CBE survey described in Chapter 3. Instead, in the scope of this research, the 

occupant survey results were compared to the results of similar surveys 

conducted in buildings of the same use, to verify and contradict the findings of 

past evaluations presented in the literature review. 



Chapter 4 - Research Methodology 
 

160 
 
 

Furthermore, the survey results were reviewed in order to examine whether 

there was an association between cofounding factors, collected as background 

info, and occupant satisfaction with the indoors environment. This review was 

conducted by using: 

• Chi Square Tests to establish whether there was an association 

between cofounding factors, collected as background info, and occupant 

satisfaction with the indoors environment.  

• Chi Square Tests to establish whether there was an association 

between level/orientation of work areas and occupant satisfaction with 

the indoors environment.  

• Mann – Whitney and Kruskal Wallis tests to analyse the relationship 

between the medians for the confounding factor variables. 

4.4 Case Study Reconnaissance  

Following the establishment of a research plan which ensured credible results 

were obtained, a literature review regarding the case studies was conducted 

as part of a reconnaissance process of the buildings to be assessed. 

To this end, document analysis of published material and internal 

documentation regarding the buildings’ components and operation were 

employed, in order to: 

• describe all building systems, fabric and layout characteristics, and 

• identify the design aims and legislative performance targets of each 

building. 

This information was essential in also understanding the context in which these 

buildings were designed and operated. 

Case Study 1 Profile 

The information presented below was sourced from published literature, 

commissioning and facility management documents provided by the building’s 
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management as well as the technical inspection report which was conducted 

in the context of iSERV project (Knight et al., 2014b) 

CS1 is a newly designed and architecturally awarded multi use building, 

claiming to be low energy through building design procurement and committed 

to abide by strict energy targets set during procurement. It is a five-storey 

mixed-mode multi-use library building with a total conditioned gross internal 

area of 12,762 m², located in England. The building was procured via a Private 

Finance Initiative project partnership and was completed in 2012.  

A set of key principles were envisaged to underpin the building’s design, 

including connection, learning, integration, inclusivity, well-being and 

sustainability. CS1 was therefore designed as an innovative and sustainable 

social landscape which would provide connections in every direction, promote 

curiosity and exploration, and allow free user movement around the building, 

while meeting a set of utility performance targets and a mix of social and 

environmental aims. 

The building is a reinforced concrete construction with cross laminated timber 

roof, with an exterior cladding comprising a copper aluminium alloy principal 

wall and roof finish, and double glazed windows. Its design incorporates 

additional environmental design features and system presented in Appendix B.  

The building houses an integrated public and university library, a council 

customer service centre, a historic archive, and an archaeological service. The 

building also comprises a café, eight meeting rooms, a crèche, a business 

centre, a small shop and staff only areas. Library spaces were designed to be 

open-plan and naturally ventilated, while staff, Archives and archaeology 

service areas were off limits to the public with most of them served by AHUs. 

The building therefore accommodates 26 separate activities. These are shown, 

ranked by total area occupied by each activity, in Table 23. It can be seen that 

the predominant activities housed by CS1 are the library and circulation areas, 

which occupy 62.5% of the total floor area.  
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Activity Area % 

Library – reading room  4,650  37.0% 

Library – stacks and storeroom  1,633  13.0% 

Circulation area (corridors and stairways)  1,565  12.5% 

Light Plant Room  712  5.7% 

Open Plan Office Area  676  5.4% 

Storage Area/Cupboard  624  5.0% 

Meeting Room  493  3.9% 

Cellular Office Area  363  2.9% 

Reception  288  2.3% 

Heavy Plant Room  250  2.0% 

Laboratory  237  1.9% 

Toilet  198  1.6% 

Waiting Rooms  196  1.6% 

Lounges  152  1.2% 

Multi-storey car parks (office and private use)  122  1.0% 

Lifts  100  0.8% 

Catering: Full Kitchen Preparing Hot Meals  75  0.6% 

IT: High Density IT Suite  60  0.5% 

IT: Server Room  53  0.4% 

Teaching Areas  51  0.4% 

Catering: Kitchenette (small appliances, fridge and 
sink) 

 18  0.1% 

IT: LAN Rooms  16  0.1% 

Recreational: Changing facilities with showers  12  0.1% 

Cellular Office Area – multiple occupation  12  0.1% 

Workshop  7  0.1% 

Table 23: CS1 activities 

Except for the top floor, each level contains three separate cores containing a 

lift, a staircase, toilets and services risers. A public external lift has also been 

installed. The building was occupied between 08:30 to 22:00, Monday to 

Sunday.   

CS1 comprises an elaborate set of systems that serve the building’s end uses. 

To meet the case study’s ventilation, heating and cooling demands, the case 

study’s HVAC Systems comprise eight Air Handling Units (AHU) serving 

activities of a special nature, such as the archives and workshops, nine Fan 

Units, a Domestic Hot Water System, multiple FCUs serving IT and meeting 

rooms, Radiators, Trench Heaters, an Underfloor Heating/Cooling system, 

Chilled Beams and a Door Heater.  
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Cooling was provided mainly through its river water cooling system, comprising 

two river water cooled chillers located in the plantroom, operating as Run and 

Standby, which feed chilled water to the buildings AHU’s, FCU’s, Chilled 

Beams and Underfloor Cooling. Heating was provided by one biomass (wood 

chip) boiler and three natural gas fired condensing boilers, which feed hot water 

into a low temperature hot water system serving the building’s underfloor 

heating system, perimeter trench heaters, radiators, heating coils within the 

AHU’s, HWS calorifier and earth duct heater battery. CS1 was also served by 

a rainwater harvesting system collecting rainwater from the roof and feeding it 

to the urinals and WC cisterns. Low energy electric lighting with high-frequency 

fluorescent fittings has been installed in the building’s main areas and was 

expected to reduce electricity use by 30% as well as eliminate glare and flicker.  

CS1 was monitored and managed in its entirety through a Building Energy 

Management System manufactured by Siemens, apart from the chillers which 

were enabled locally. It was equipped with 99 meters and 175 sensors which 

were connected to building management system at the time of this research. A 

small portion of the meters and a larger number of sensors were not operational 

at the time of the study, therefore diminishing the capacity to review the energy 

and indoor environmental quality in some areas. Overall, it should be noted that 

most of the case study’s sensors cover large areas and couldn’t account with 

accuracy for spatial temperature variation, the existence of which has been 

described by staff and visitors as “pockets of hot and cold air” during the 

occupant survey. For this purpose, field measurements were employed in the 

analysis of the case study’s Indoor Environmental Quality.  

The project was procured according to strict environmental targets. In its design 

statement, a list of evaluation criteria regarding its environmental performance 

and energy use were set, including achieving a target carbon performance 

asset rating up to 50% improvement of the minimum standard necessary to 

meet the 2006 Part L building standard. According to the design statement, to 

achieve these goals, energy demand was expected to be minimised through 

building design and later management. With regard to building design, the 

building’s form and fabric were designed in order to temper indoor 

environmental conditions and reduce the need to operate mechanical systems. 
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Where use of mechanical systems was required, it was expected these would 

have minimal impact on the environment and would make use of renewable 

energy sources.  

The building’s design statement also made special mention to the open sharing 

of the building performance information. This data is expected to be openly 

published and made available to the community through a suitable open access 

arrangement, as the building is expected to act a valuable source information 

regarding building energy and carbon performance. Furthermore, the design 

statement dictated that this information could be used to determine 

management and operation actions that have improved or reduced the energy 

performance of each housed department as well as to educate both users and 

managers.  

According to Oldfield et al.’s (2009) categorization of energy generations of 

large commercial buildings in USA, CS1 draws characteristics from the fifth 

energy generation. The fifth energy generation characteristics that define it are 

that it is a building aiming to go beyond the norm in reducing its primary energy 

use by moving away from total reliance on AC and towards mixed-mode 

strategies, using large atria to reduce the depth of levels and motion sensors 

to control lighting, and integrating energy reducing design strategies and 

technologies. Buildings from this energy generation present problems of 

maintaining comfort conditions using natural and mixed-mode ventilation 

strategies.  

Please refer to Appendix B for CS1’s fact sheet and detailed description. 

Case Study 2 Profile 

The information presented below was sourced from the published work 

conducted within the scope of the E.C. funded HARMONAC and ISERV 

projects, to the latter of which the author of this research participated (Knight 

et al., 2010, Knight et al., 2014a, Knight et al., 2014c). 

CS2 is a building designed before energy efficiency was a priority, with a 

commitment to improve its performance since 2005 through participation in 

schemes and research projects focusing on energy efficiency of HVAC 
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systems. It is an eleven-storey air-conditioned office block with a total 

conditioned gross internal area of 9,186 m², located in Cardiff, Wales. The 

building was constructed in 1923, and was refitted in 1989. The refit comprised 

a new façade and new services installed. The building was acquired by Cardiff 

University in 2003. Although there have not been any building fabric changes 

made since its acquisition, interventions have been made with regard to the 

buildings services. 

Its exterior cladding comprises predominantly of smoked glazing, which is 

insulated to form opaque surface elements, with less than a fifth of façade 

covered by metal ribs used as air conditioning ducting. Its windows are double 

glazed with tinted film applied. The fully air-conditioned building was occupied 

between 08:00 and 17:30, Monday to Friday. 

The case study’s HVAC Systems comprise 11 Air Handling Units (AHU), a 

Domestic Hot Water System and a separate ventilation system for the 

basements spaces. All systems were served by centralised chillers and boilers. 

The AHUs supply tempered air to space terminal units via external uninsulated 

ducts. Cooling was provided by two packaged chillers, located on the roof, 

which feed chilled water to the buildings AHU’s, and FCU’s at the lower levels 

only. Heating was provided by three gas fired cast iron sectional boilers located 

at the basement, which feed hot water to the building’s AHU’s, to the re-heat 

FCU’s and the Domestic Hot Water System. Humidifiers were installed and 

dehumidification was feasible through the cooling coils in the AHUs but the 

humidification systems were not used. In most spaces, fluorescent tube 

recessed luminaires have been installed in the suspended ceiling.  

The case study’s systems were managed through a Building Management 

System, comprising the ‘Doorway’ software, Trend networking gear and 

Socomec Electricity meters. The building comprises 91 installed meters and 80 

installed sensors in operation at the time of the study. Data was stored for only 

a part of the installed meters and sensors at the time of this study, therefore 

diminishing the capacity to review the building performance of case study in full 

detail. Furthermore, the sensors installed in the building cover large open plan 

areas and could not account with accuracy for spatial temperature variation.  
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CS2 is occupied by ten different University departments, including the 

university’s Estates Division and Human Resources department which 

regularly holds training sessions on the top floor. The building also comprises 

a kitchen, refectory and coffee shop with a large seating area, as well as 

meeting rooms on the third floor, and is served by three lifts. The majority of 

spaces were designed to be open-plan, and there were certain partitioned 

areas which vary according to level. At centre of each level, a central core 

containing the lifts, staircase, toilets and services risers, exists. The building 

accommodates 22 separate activities with the open plan office and circulation 

areas being the predominant activities occupying 64.4% of the total floor area 

(Table 24).  

Activity Area/m2 % 

Open Plan Office Area 4920 53.6% 

Circulation area (corridors and stairways) 992.55 10.8% 

Library – open stacks 629.68 6.9% 

Meeting Room 454.23 5.0% 

Toilet 341.48 3.7% 

Light Plant Room 270.82 3.0% 

Catering: Eating/drinking area 232.8 2.5% 

Library – stacks and storeroom 214.51 2.3% 

Storage Area/Cupboard 208.66 2.3% 

Lifts 138.96 1.5% 

Assembly areas / halls 136.29 1.5% 

Cellular Office Area – multiple occupation 119.39 1.3% 

Catering: Snack Bar with Chilled Cabinets 115.42 1.3% 

Cellular Office Area 93.07 1.0% 

External Space 76.33 0.8% 

IT: Server Room 50.63 0.6% 

IT: High Density IT Suite 45.59 0.5% 

Recreational: Sports ground changing rooms 31.02 0.3% 

Catering: Vending Machines 29.16 0.3% 

Catering: Limited Hot Food Preparation Area 27.7 0.3% 

IT: LAN Rooms 23.75 0.3% 

Reception 23.54 0.3% 

Table 24: CS2 activities 

According to Oldfield et al.’s (2009) categorisation of energy generations of 

large commercial buildings in USA, CS2, following its refit, draws 

characteristics from both the third and fourth energy generations. The third 

energy generation characteristics that define it are that it is a fully glazed black 
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tall building, a sealed rectilinear glass box reliant on air-conditioning 

incorporating dark-tinted glazing. Yet, it does not comprise of deep office floor 

plans, and having been refitted following the 70s energy crises, it has 

incorporated double glazing and insulated exterior cladding as energy 

efficiency measures applied to fourth energy generation buildings. Buildings 

from both energy generations present problems of increased internal heat 

gains due to office equipment, vast heat losses in winter, and overheating from 

excess solar gain in summer.  

Please refer to Appendix C for CS2’s fact sheet and detailed description. 

4.5  Summary 

In this chapter, the methods developed to address the aim and objectives of 

this research were presented.  

As discussed, building performance assessments were expected to relate to 

the task at hand and be constructed on a case specific basis. Therefore, in this 

chapter, apart from discussing the actual methods and tools selected for this 

research, the rationale behind their selection was also developed. 

In the context of the aims of this chapter, the following actions were performed 

in sequence: 

• established the assumptions underpinning this research; 

• justified the methods employed to address the research aims and 

objectives 

• established purpose and scope of the conducted comparative case 

study investigation;  

• presented the research sample selection process;  

• presented a detailed description of the case studies’ technical elements, 

with a particular focus on HVAC systems, sensors and design features; 
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• established the critical aspects to be investigated in this research, the 

performance indicators to represent these aspects and their specific 

measures, and the criteria selected to assess these measures; 

• identified the limitations of the research design. 

Issues which derived in practice during the execution of the research design 

described in this Chapter are presented along with the Results in Chapter 5. 

Table 25 presents an overview of the Performance Indicators, Performance 

Measures and Assessment Criteria employed in the Data Collection and 

Analysis process of this research’s case study investigation.  
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Table 25: Data Collection and Analysis – Performance Indicators, Performance Measures and Assessment Criteria 

Aspects 
investigated 

Performance indicators and their 
measures 

Assessment criteria  Key data to be collected 

Energy  ➢ Meter Data Summary, presenting the 

date range of the collected data and the 

percentage of the data missing.  

➢ Total Annual Building Consumption 

(KWh) per m2, to be compared to 

legislative and industry benchmarks. 

➢ Average Rolling Annual Electricity 

Consumption (KWh) per m2, to be 

compared to legislative and industry 

benchmarks. 

➢ Monthly Building Energy 

Consumption (KWh), to be used to 

identify season trends 

➢ Individual HVAC system annual 

consumption (KWh) per m2, to be 

compared to legislative and industry 

benchmarks. 

➢ Individual HVAC system monthly 

consumption (KWh), to be used to 

identify season trends  

➢ Breakdown of HVAC electricity use 

per HVAC system (KWh/ m2), to shed 

light on the performance of the individual 

HVAC systems and energy flows in the 

building 

➢ Design Targets, 

Certifications & 

awards: Design 

Statement Targets, 

Part L, EPC, DECC, 

BREAAM 

➢ Industry and 

Research empirical 

benchmarks: 

ECON19, ECON75, 

CIBSE Guide F, 

TM46:2008, 

PassivHaus Standard 

➢ Experimental 

empirical 

benchmarks: ISERV 

benchmarks 

 

➢ HVAC system structure: HVAC 

system description, HVAC Type, 

HVAC System Classification, 

Control of Flow Temperature, 

HVAC components, Spaces 

Served 

➢ HVAC Component Description: 

Component Description (Model, 

Manufacturer, Range, Serial, 

Year), Type, Location, Nominal 

Electrical Power Input, 

Associated Sensors & Meters, 

Nominal Heat Rejection 

Capacity, COP, EER, Seasonal 

Energy Efficiency Rating, 

ESEER, Nominal Cooling 

Capacity, Nominal Heating 

Capacity, Nominal Cooling 

Power Input 

➢ Other Systems Description: 

Other System Type, Other 

System Meter 

➢ Operational strategy: Operation 

Schedules for HVAC systems/ 

Lighting/ Small power/ other 

systems, heating and Cooling 
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Aspects 
investigated 

Performance indicators and their 
measures 

Assessment criteria  Key data to be collected 

➢ Breakdown of electricity balance per 

system (KWh) and comparison per m2 

to shed light on the performance of the 

individual systems, such as lighting and 

small power systems; 

➢ Breakdown of energy use (KWh) per 

m2 by activity to shed light on the 

energy flow within the building. 

➢ Carpet plots which split the highest 

consumption value for a chosen period 

chosen and split it into 10% steps to 

allow for identification of operational 

anomalies among the building’s 

systems. 

➢ Scatter graphs of power per m2 for 

each HVAC system on hourly basis, 

steps to allow for identification of 

operational anomalies among the HVAC 

systems 

➢ Energy Signatures of Air Handling 

Units (plot energy consumption against 

weather variable) to analyse weather-

related energy use. 

Set points, Maintenance 

Strategy, Control of HVAC 

Temperature 

➢ Metering Strategy: Meter type, 

Meter Unit Type, Meter 

Multiplier, Parent Meter, Meter 

Location, Sensor type, Sensor 

Unit Type, Sensor Location 

➢ Space description: Floor Area, 

Height, Activity, Schedule, 

Occupancy (daily basis?), 

Controls, Orientation, Window 

Type, HVAC Strategy, Access to 

Views outside, Level, 

Accessibility, Proximity to Other 

Spaces. 

➢ Fabric composition: Construction 

Year, Structure type, Window 

type, Total Façade area, 

Window area, Opaque area. 

➢ Energy consumption: Electrical 

Meter data, Gas Meter Data, 

Water Meter Data, Heat Meter 

Data 

 Environmental 
and Air Quality  

➢ Sensor Data Summary, presenting the 

date range of the collected data and the 

percentage of the data missing.  

➢ Heating and Cooling 

Degree Days 

➢ Air Temperature 

Standards: WHO, BS 

➢ Climatic Data: Location, Koppen 

Climate Classification code, 

Outside Temperature, Outside 
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Aspects 
investigated 

Performance indicators and their 
measures 

Assessment criteria  Key data to be collected 

➢ Heating and Cooling Degree days, as 

comparison indicators of the heating 

and cooling energy demand for each 

year the case studies were monitored. 

➢ % of the time Air Temperature (oC), 

Relative Humidity (%), CO2 (ppm), 

VOC (ppm) fall under separate 

temperature bands during each 

month, to be compared to set 

standards, in the form of Stacked 

Columns  

➢ % of the time Air Temperature (oC), 

Relative Humidity (%), CO2 (ppm), 

VOC (ppm) are within the set 

standards during each month, in the 

form of Doughnut Charts  

➢ Field measurements of Air 

Temperature (oC), Relative Humidity 

(%), Illuminance (lux), Sound 

Pressure Levels (Db), Air movement 

(m/s) in the form of Scatter Plots 

clustered according to level and 

compliance to set standards 

 

EN 15251:2007, 

CAN/CSA Z412-00, 

ASHRAE Standard 55 

– 2010, HSE 

HSG194, UK 

Workplace 

regulations, CIBSE 

Guide A, EN 15251 

class 

➢ Relative Humidity 

Standards: CAN/CSA 

Z412-00, ASHRAE 

Standard 55 – 2010, 

CIBSE Guide A 

➢ CO2 Standards: 

ASHRAE Standard 

62.1-2013, Research 

Standards 

➢ VOC Standards: 

European Directive 

2004/42/CE, 

Research Standards 

➢ Lighting Standards: 

HSE, UK Workplace 

regulations, CIBSE 

Guide A, Society for 

Light and Lighting 

(SLL)’s Code 

Relative Humidity, Outside Wind 

Speed, Solar Radiation 

➢ Operational Temperature, RH 

and speed internal to HVAC 

components (if available): 

Supply and Return Air Velocity, 

Supply and Return Flow 

Temperature, Pump Speed, Hot 

water return temperature, Hot 

water flow temperature, Chilled 

water return temperature, 

Chilled water flow temperature, 

Flow velocity, Supply & Return 

RH, Supply & Return Air 

Temperature, Inlet Air 

temperature, Supply pressure 

➢ Indoor Air and Environment 

Quality parameters: Air 

Temperature, Relative Humidity, 

C02, VOC 

➢ Noise levels: Ambient noise 

level 

➢ Lighting Levels: Light Intensity 



Chapter 4 - Research Methodology 
 

172 
 
 

Aspects 
investigated 

Performance indicators and their 
measures 

Assessment criteria  Key data to be collected 

➢ Noise Standards: 

HSE, UK Workplace 

regulations, CIBSE 

Guide A 

➢ Indoor Air Speed 

Standards: CIBSE 

Guide A 

 

Occupant-
perceived 

satisfaction 
with indoor 

environment 

➢ Survey demographics to examine the 

representativeness and the drop-out 

rate of the survey sample that 

participated in the research 

➢ Overall median and variance of the 

occupant satisfaction scores with the 

building overall, the building 

conditions, and specific work area 

conditions, in the form of radar charts. 

➢ Satisfaction with Work Area 

Conditions per season, in the form of 

stock charts. 

➢ Satisfaction with Work Area 

Conditions per level, in the form of 

stock charts. 

➢ Difference of median scores of 

satisfaction between the building and 

specific work area conditions, in the 

form of tables.  

➢ Past surveys of 

similar scope and 

buildings. 

➢ Association between 

cofounding factors, 

collected as 

background info, and 

occupant satisfaction 

with the indoors 

environment.  

➢ Background Occupant 

Information: Age, gender, 

employment type/ visit purpose), 

Time spent in the building and 

activities performed 

➢ Occupant satisfaction with 

building overall: Security, 

cleanliness, Accessibility, Indoor 

conditions, Wellbeing & 

productivity, Overall image 

➢ Occupant satisfaction with 

workplace are: location in the 

building, Air Quality, Ventilation, 

Air temperature, Noise, Lighting, 

Controls, Overall Satisfaction 
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Chapter 5  

Results 

5.1 Introduction 

In this thesis, the role of the Architect in the operational performance of 

buildings was studied by examining real word case studies.  The study used 

mixed research methods to understand and quantify the influence architects 

exercise on the operational performance of low energy buildings. 

To this end, a comparative case study investigation of two well monitored and 

controlled low energy buildings was conducted; one constructed before (CS2) 

and one after (CS1) energy efficiency became a focal point of building 

regulations and energy policy. The later building promoted its low energy 

design aspirations. The comparative case study investigation was employed to 

address the aims of this research by: 

• tracing the energy flows in the selected case study buildings; 

• examining whether the energy performance of the case study buildings 

was reflected by indoor environmental quality and occupant-perceived 

satisfaction with the indoor environment;  

• documenting and analysing how energy efficiency was achieved in the 

case studies; and 

• quantifying the influence of stakeholders on the energy performance of 

the case studies. 

Following the previous chapter presenting the data theory underpinning this 

research, this chapter presents the main findings of the comparative case study 

investigation undertaken in this research in order to address the research aim. 

The main findings are organised according to case study and performance 

parameter, as demonstrated in the Methods Chapter.   
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Part of the results of this study have been published in the CIBSE journal 

(Konidari and Knight, 2017). 

5.2 Case Study 1 (CS1) 

5.2.1 Energy Flows 

At the time of this study, CS1 was well sub-metered regarding its electricity use 

comprising 89 electricity meters collecting data from various zones and 

components in the building. In contrast, sub-metering for gas, biomass and 

water use was more limited and many meters did not work well. Thus, energy 

flows at the level of component and space could only be traced for the electric 

use in the building. As demonstrated in Figure 21, the meters were connected 

to the BEMS system gradually from the building’s opening onwards. 

 

Figure 21: Number of CS1 meters storing data during the period March 2012 
to December 2015. 
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The collected energy data presented large gaps and quality issues deriving 

from the BEMS system operation, which had to be addressed as they were 

impeding the analysis of the building’s performance. To proceed with the 

analysis, 5,600 separate meter and sensor monthly data streams were 

rectified.  After the amendment of the collected data, 12% of the total electricity 

meters, the sole gas meter and heat meters, and one third of the water meters 

still presented moderate to large gaps in their data streams (Figure 22). 

 

Figure 22: CS1 Meters Data Summary after the amendment of the collected 
data to the end of 2015. 

As presented in Fig. 19, the lighting and small power systems accounted for 

most of CS1’s electricity use, followed by HVAC systems. During 2014 and 

2015, 60% to 62% of the total electricity use in CS1 was used in occupant-

related activities and systems, including small power systems, lifts, external 

lighting, DHW and essential systems such as Extract fans as well as HVAC 

and lighting systems serving the archives, IT, and catering. The remaining 

electricity use was consumed by the building and was split between lighting 

systems (28% to 30%) and HVAC systems serving the remaining areas (8% to 

12%). 
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Amongst the HVAC systems, the highest intensity electricity consumers were 

the AHUs and FCUs, most of which serve the Archives and IT rooms, followed 

by the Underfloor Heating and Cooling (Figure 23).  

The highest intensity electricity consumers among the AHUs were those 

serving the main Archives (AHUs 1&12), and AHU3 providing general 

background ventilation with a tempered fresh air supply to the history centre, 

archaeology offices, hub interview rooms and staff spaces, some of which were 

naturally ventilated spaces (Figure 24).  
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Figure 23: CS1 Monthly electricity consumption (kWh) by end use (left) and Breakdown of CS1 HVAC electricity use per HVAC 
system (kWh) (right) 
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Figure 24: CS1 AHU monthly electricity use (kWh) 

Among activities, the highest intensity electricity consumers per floor area were 
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remains open during the same hours on Saturday and Sunday (Figure 26).  
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Figure 25: Breakdown of CS1 annual electricity use (KWh/m2) by activity for 2014 (inner) and 2015 (outer) (left) & Breakdown of 
activities floor area (right) 
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Figure 26: CS1’s Electricity Use (kWh) by time band since official opening 
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Figure 27: Electricity Flows in CS1 per year starting from 2013 (left) to 2014 (right).  
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Figure 28: Electricity Flows in CS1 per year starting from 2014 (left) to 2015 (right) 
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5.2.2 Energy Savings 

Since opening, CS1, a contemporary low energy mixed-mode building, 

bettered its electricity, fossil fuel and water use over time to the end of 2015, 

as presented in Table 26.   

Energy End of Use Savings to previous 

year 

Electricity 2013 73.6 kWh/m²·a - 

2014 57.5 kWh/m²·a ~ 16.1 kWh/m²·a (~ 22%) 

2015 50 kWh/m²·a ~ 7.5 kWh/m²·a (~ 13%) 

Fossil Fuel 2013 22 kWh/m²·a - 

2014 9.35 kWh/m²·a ~ 12.7 kWh/m²·a (~ 58%) 

2015 3.8 kWh/m²·a ~ 5.5 kWh/m²·a (~ 59%) 

Delivered 
Biomass Heat 
into building 

2014 30.6 kWh/m²·a - 

2015 31.8 kWh/m²·a ~ -1.2 kWh/m²·a (~ 4%) 

Combined 
Biomass and 
Gas Heat Use 

2014 40 kWh/m²·a - 

2015 35.6 kWh/m²·a ~ 4.4 kWh/m²·a (~ 11%) 

Water 2013 0.84 m3/m²·a - 

2014 1.1 m3/m²·a ~ -0.26 m3/m²·a (~ 31%) 

2015 1.06 m3/m²·a ~ 0.04 m3/m²·a (~ 4%) 

Table 26: Energy Savings per annum in CS1 

CS1’s annual electricity consumption reduced noticeably since its opening 

through to the end of 2015. Despite an initial increase in consumption at the 

opening of the building, from May13 the rolling annual electricity use started 

reducing from a peak of 86 kWh/m²·a to approximately 50 kWh/m²·a in Dec15 

following a linear trend (Figure 30). These electricity savings represented a 

reduction of 42% (36 kWh/m²·a) from the electricity use peak.   

CS1‘s annual Gas use also reduced. Following an initial increase in 

consumption, from Jan14 the rolling annual natural gas use started reducing 

from a peak of 23.5 kWh/m²·a to approximately 3.8 kWh/m²·a in Dec15 

following a less linear trend (Figure 30). These gas savings represented a 

reduction of 84% (19.7 kWh/m²·a) from the natural gas use peak and a final 

consumption of only 76% of the 5 kWh/m²·a design target. 

In contrast, CS1’s rolling annual biomass heat generation increased from the 

start of the available data. There was uncertainty over the exact scale of this 
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increase as the data recorded by the BEMS did not tally with the total biomass-

generated heat supply calculated using manual readings from the meter off the 

Biomass Buffer Vessel (BV1). According to the BEMS data, between May14 

and to the end of Dec15 this increase amounted to 72% (10.9 kWh/m²·a), 

whereas according to the manual readings off the Biomass Buffer Vessel, this 

increase amounted to 20% (5.4 kWh/m²·a). These two ranges of the biomass 

use are compared in Figure 29.   

 

Figure 29: CS1 Average Rolling Annual Biomass Consumption (kWh/m2) 

To the end of Dec15, the rolling annual biomass heat supplied amounted to 

approximately 25.8 kWh/m²·a according to the BEMS data, and to 32.8 

kWh/m²·a according to the manual readings from the Biomass Buffer Vessel. 

These two figures respectively represented 68% and 84% of the 38 kWh/m²·a 

design target. Thus, whichever measure is used the target was achieved.
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Figure 30: CS1 Average Rolling Annual Electricity (top left), Gas (top right), Heat (bottom left) and Water (bottom right) Consumption  
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When it comes to energy consumption, according to the Local County Council 

data, the energy content of the wood delivered to CS1 from Apr14 to Mar15 

amounted to approximately 43 kWh/m²·a. The Biomass consumption figures 

are compared in Table 27. It can be seen that the overall conversion efficiency 

of the Biomass heat production process appears to be somewhere between 53 

– 74% depending on which figures are used. These figures should be treated 

with caution as there can be significant uncertainties in estimating the energy 

content of delivered biomass, even before the discrepancies in the metering 

are considered. 

Period BEMS Delivered 
Biomass Heat 
Consumption 
into the 
Building 

Manual 
readings off the 
Biomass Buffer 
Vessel 

County Council 
Billing Wood 
Energy 
Delivered 

Jan15 – 
Dec15 

25.8 kWh/m²·a   31.8 kWh/m²·a    

Apr14 – 
Mar15 

23 kWh/m²·a   32.2 kWh/m²·a   43.4 kWh/m²·a   

 

Table 27: CS1 Annual Biomass Heat Consumption 

With regard to its Heat use, the absence of a heat meter measuring the total 

heat delivered into the building required this to be manually calculated using 

the data from the available meters. The results of the combined gas and 

biomass heat use, according to different calculation methodologies are 

illustrated in Table 28. The difference in the calculations lies in the different 

sources of Biomass data discussed above. To the end of Dec15, the rolling 

annual combined gas and biomass heat consumption amounted to 

approximately 28.8 kWh/m²·a according to the BEMS Biomass data, and to 

35.6 kWh/m²·a according to manual readings off the Biomass Buffer Vessel. 

From Feb14 the rolling annual combined gas and biomass heat consumption 

have reduced from a peak of approximately 46.8 kWh/m²·a to approximately 

36 kWh/m²·a in Dec15 following a nonlinear trend according to manual 

readings off the Biomass Buffer Vessel. This represented a reduction of 24% 

(~11 kWh/m²·a) since Feb14.  Heat energy savings representing a reduction of 

16% (~5.4 kWh/m²·a) according to the BEMS data, and of 22% (~10.1 
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kWh/m²·a) according to manual readings off the Biomass Buffer Vessel, were 

observed since May14 to the end of Dec15.  

According to the local County Council data of the Wood Delivered to CS1, the 

annual combined gas and biomass heat amounted to 48.5 kWh/m²·a. However, 

this last figure did not account for the heat loss in the fuel conversion and the 

biomass boiler’s efficiency, and was therefore higher than the actual heat 

delivered into the building (Table 28).  

Period BEMS Delivered 
Biomass Heat 
Consumption 
into the 
Building 

Manual 
readings off the 
Biomass Buffer 
Vessel 

County Council 
Billing Wood 
Delivered 

Jan15 – 
Dec15 

28.8 kWh/m²·a   35.6 kWh/m²·a    

Apr14 – 
Mar15 

28.2 kWh/m²·a   37.3 kWh/m²·a   48.5 kWh/m²·a   

 

Table 28: CS1 Annual Combined Gas and Biomass Heat Consumption 

An increase of approximately 16% was observed between 2013 and 2014, 

whereas between 2014 and 2015, the total water use increased by 

approximately 10%. The rolling annual water consumption is illustrated in 

Figure 30. 

During the period 2013 to 2015, savings relating to lighting accounted for 

approximately 37% of the total electricity savings achieved. Half of the savings 

were achieved by reducing small power use (50%), with the final savings 

relating to HVAC (12%) and external lighting use (1%). Altogether, savings 

achieved in lighting and small power systems accounted for approximately 

87%. 

Electricity use in small power systems reduced by approximately 9%. 

Conversely, electricity use in Lighting, AHUs, Cold Generators, 

Dehumidification, and Terminal Units reduced by approximately 17% to 24% 

during 2014 and 2015. However, the electricity use of pumps increased by 

approximately 80% between 2014 and 2015 (Figure 31).  
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Figure 31: Annual Electricity Use (kWh) by End Use for 2014 and 2015 

5.2.3 Indoor Environment Quality 

The Indoor Environmental Quality assessments checked the environmental 

conditions provided throughout CS1, and gave confidence that energy 

efficiency was not being achieved at the expense of IEQ.  

The results of this report refer to the IEQ data collected for the period Mar12 to 

Dec15. Data for this period were collected from the building’s sensors and from 

field measurements repeated once each season. There were a few sensors for 

which data was not collected or stored by the BEMS, so the small number of 

spaces with these could not be fully commented on. Data for Outdoor Wind, 

Light and Rain Detection were also not stored, so no comment could be made 

on their influence. In addition, the original planning for the collection of field 

measurements in CS1 underestimated the size of the building in the context of 

the resources available to collect these measurements twice within the same 

day and capture their trends during the morning and afternoon. As a result, only 

one set of measurements were collected for the same day providing a single 

time snapshot at each measurement point. 
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The monitored IEQ parameters were assessed against both Health & Safety 

as well as Comfort Criteria presented in the Methods Chapter.  

The figures presented in this paragraph show the monthly breakdown of the 

indoor temperature in selected spaces. The y axis represents the count of 10’ 

intervals recorded by the selected sensor. 

With regard to the Health and Safety criteria, a few spaces faced challenges in 

maintaining temperature conditions meeting the WHO standards during 

opening hours, each for different reasons. These spaces included the areas 

adjacent to the entrance at Level 1 which were prone to cold conditions during 

the winter, the children’s zone at Level 1 which presented short periods of either 

overheating or experiencing colder conditions during each month as well as the 

staff areas, café and HER spaces at Level 1, the meeting rooms at Level 2 and 

the Quiet Zone at Level 4 (Figure 32) which tended to overheat. However, 

temperature conditions in these spaces improved over the period of the study 

indicating better control and operation for these spaces. The Archives met the 

requirements of standard BS5454 for most of the monitored time with the 

exception of Archives A to C, which experienced higher temperatures than the 

ones required according to standard BS5454 during summer months. All 

Archives met standard BS5454 in terms of Relative Humidity and CO2 

concentration. 

Regarding the Comfort criteria, during warm months, the clear majority of the 

monitored spaces maintained cooler conditions compared to the operational 

temperatures recommended by ASHRAE Standard 55 – 2010, as presented in 

Figure 33 and Figure 34. These observations were confirmed by field 

measurements, according to which the majority of indoor dry bulb temperature 

measurements, taken after noon, were below the lowest boundary of the 

ASHRAE Recommended Operating Temperature range for summer.  
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Figure 32: CS1 L4 Quiet Zone – monthly breakdown of temperature 

During opening hours, monitored library areas on Level 3 were within the 

CIBSE temperature comfort criteria on average 24% to 40% of the monitored 

time in 2014, and 16% to 27% of the monitored time in 2015. On Level 4, the 

monitored area in the Quiet Zone was within the CIBSE temperature comfort 

criteria on average 22% to 24% of the monitored time during the period 2014 – 

2015. Figure 35 and Figure 36 present the percentage of time for each month 

during which the temperature of the monitored spaces on each level was within 

the recommended CIBSE temperature comfort criteria.  

West facing naturally ventilated spaces, as well as a few small sized South/East 

facing spaces, such as offices and meeting rooms, on the bottom three levels, 

and spaces adjacent to the entrance at Level 1 including the HUB, did not meet 

the CIBSE temperature comfort criteria for more than 50% of the monitored 

time during winter months. Comparing the indoor conditions in these naturally 

ventilated areas of the building to the winter design criteria, confirmed they 

maintained an air temperature lower than the design criteria for more than 20% 

of the monitoring time during opening hours in colder months. 

It must be noted that CIBSE comfort temperature standards comprise lower 

temperature ranges compared to ASHRAE standards for both winter and 

summer. Therefore, the building appears to abide more by the ASHRAE winter 

comfort standards as it maintains higher temperature conditions than CIBSE 
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standards during that period, with the opposite phenomenon observed in 

summer when the building maintains cooler conditions that those indicated by 

ASHRAE standards. 

Furthermore, spaces adjacent to the entrance were transient spaces which 

were not obstructed or protected by the automatic entrance sliding doors 

communicating with the shaded entrance courtyard and therefore were 

affected by the outdoors climatic conditions. Conversely, some meeting rooms, 

staff areas and offices appeared to overheat as a result of their small size, 

internal heat loads emitted by small power devices situated in these rooms, 

and solar heat gains. Comparing the indoor conditions in these naturally 

ventilated areas of the building to the winter design criteria confirmed that they 

also maintained an air temperature lower than the design criteria for more than 

20% of the monitoring time during opening hours in colder months (Figure 37 

and Figure 38). 

These findings were confirmed by the several on-site surveys and 

walkthroughs performed in the building during different seasons as well as by 

the field measurements taken in the building. The field measurements were 

used to complement the sensor data which were collected by built-in sensors 

covering large open plan spaces and not accounting with accuracy for spatial 

variation.  
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Figure 33: CS1 Level 0 & 1 – Percentage of Time space temperature was within ASHRAE temperature comfort criteria during opening 
hours. 
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Figure 34: CS1 Levels 2 to 4 – Percentage of Time space temperature was within ASHRAE temperature comfort criteria during 
opening hours. 
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Figure 35: CS1 Level 0 & 1 – Percentage of Time space temperature was within CIBSE temperature comfort criteria during opening 
hours. 
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Figure 36: CS1 Levels 2 to 4 – Percentage of Time space temperature was within CIBSE temperature comfort criteria during opening 
hours. 
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Field measurements generally showed increasing Dry Bulb Temperature 

values as the day progressed and on higher levels other than Level 4, 

overheating concerns becoming more frequent in winter and autumn. 

Moreover, non-uniform temperature conditions were observed across Level 2 

and Level 3.  Apart from autumn, Relative Humidity conditions were below the 

optimum levels set by CIBSE and ASHRAE. Furthermore, air movement 

greater than 0.15m/s, considered a draught according to CIBSE Guide A, was 

observed in a small number of specific locations in close proximity to vents, the 

entrance doors and circulation spaces around the entrance, reach on average 

up to 0.2m/s. 

Lighting conditions were mixed, with each floor presenting varying lighting 

conditions. Most measurements in winter, spring and autumn were below the 

optimum SLL Code of Lighting comfort range in library areas, while the opposite 

was observed during summer. During the several on-site surveys and 

walkthroughs performed in the building during different seasons, it was 

observed that these variations could have been the result of materials with high 

absorption properties used inside the roof cones which admit daylight.  

The clear majority of spaces were above optimum noise levels set by CIBSE, 

as well as design criteria applied to all library areas, which set a limit of 45 dBA, 

varying on average between 40 dBA and 60 dBA across all seasons. Fig. 35 

presents the minimum and maximum field measurements collected for the 

sound pressure levels during the summer survey, clustered by level and 

adherence to CIBSE comfort criteria (Figure 39).  

Overall, following the initial two-year occupation adjustment period, most of the 

spaces assessed maintained indoor conditions that met the Health and Safety 

criteria, during opening hours.  However, spaces on higher levels were 

challenged to maintain conditions within the Comfort criteria for more than 50% 

of the monitored time during opening hours. In addition, field measurements 

also provided evidence which support findings regarding the existence of some 

local operational issues including non-uniform temperature conditions across 

higher level open-plan spaces; overheating occurring more frequently on these 

levels; cold conditions observed in north facing areas in the lower levels during 
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winter; relative humidity below optimum levels across the building from winter 

to summer; varying lighting conditions; and noise levels exceeding comfort 

standards throughout the year.  
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Figure 37: CS1 Level 0 & 1 – Percentage of Time space temperature was under Winter Design Air Temperature (21oC). 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L
0

 4
5

/A
 S

tu
d

y
 S

o
c
ia

l L
e

a
rn

in
g

 
Z

o
n

e
 N

W

L
0

 4
5

/A
 S

tu
d

y
 S

o
c
ia

l L
e

a
rn

in
g

 
Z

o
n

e
 W

L
0

 4
5

/A
 S

tu
d

y
 S

o
c
ia

l L
e

a
rn

in
g

 
Z

o
n

e
 S

W

L
0

 6
7

 C
a

ta
lo

g
u

in
g

 S

L
0

 8
5

 P
ro

je
c
t W

o
rk

ro
o

m
s
 S

L
0

 8
6

 F
in

d
s
 A

n
a

ly
s
is

 S

L
0

 F
in

d
s
 P

ro
c
e

s
s
 S

%
 o

f 
O

p
e
n

in
g

 H
o

u
rs

Space

Percentage (%) of time Tair < 21oC during opening 
hours - CS1 Level 0

Jan-15 Feb-15 Mar-15 Oct-15 Nov-15 Dec-15

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L
1

 2
3

 C
h

ild
re

n
s
 Z

o
n

e
 N

W

L
1

 1
W

2
 2

3
 C

h
ild

re
n

s
 Z

o
n

e
 W

L
1

 1
W

3
 2

3
 C

h
ild

re
n

s
 Z

o
n

e
 S

W

L
1

 T
e

a
c
h

in
g

 L
ib

ra
ry

 S
W

L
1

 M
a

n
a

g
e

m
e

n
t O

ffic
e

 S

L
1

 1
5

1
 S

ta
ff R

o
o

m
 S

L
1

 T
h

e
 H

u
b

 E

L
1

 H
u
b

 O
ffic

e
 E

L
1

 2
3

0
 C

a
fé

 N

L
1

 4
 Q

u
ic

k
 A

c
c
e

s
s
 C

%
 o

f 
O

p
e
n

in
g

 H
o

u
rs

Space

Percentage (%) of time tair < 21oc during opening 
hours - CS1 Level 1

Jan-15 Feb-15 Mar-15 Oct-15 Nov-15 Dec-15



Chapter 5 - Results 

199 
 

 

 

Figure 38: CS1 Levels 2 to 4 – Percentage of Time space temperature was under Winter Design Air Temperature (21oC). 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L
1

 2
3

0
 C

a
fé

 N

L
1

 4
 Q

u
ic

k
 A

c
c
e

s
s
 C

L
2

 9
3

 H
E

R
 w

o
rk

ro
o

m
 S

W

L
2

 9
2

 H
E

R
 P

ro
c
e

s
s
in

g
 S

W

L
2

 9
1

 A
d

v
is

o
ry

 S
e

c
tio

n
 S

L
2

 6
8

 G
e

n
e

ra
l W

o
rk

ro
o
m

 S

L
2

 7
0

 S
e

lf S
e

rv
ic

e
 A

re
a

 S
E

L
2

 7
1

 O
rig

in
a

l D
o
c
u

m
e

n
ta

tio
n

 E

L
2

 5
 B

u
s
in

e
s
s
 L

o
u

n
g

e
 N

E

%
 o

f 
O

p
e
n

in
g

 H
o

u
rs

Space

Percentage (%) of time Tair < 21oC during opening 
hours - CS1 Level 2  

Jan-15 Feb-15 Mar-15 Oct-15 Nov-15 Dec-15

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L
2

 1
2

0
/C

 M
e

e
tin

g
 R

o
o

m
 N

L
2

 1
2

0
/A

 M
e

e
tin

g
 R

o
o

m
 N

L
3

 4
5

/F
 A

d
u

lt L
ib

ra
ry

 N
W

L
3

 4
5

/F
 A

d
u

lt L
ib

ra
ry

 W

L
3

 1
2

0
/F

 M
e

e
tin

g
 R

o
o

m
 S

L
3

 4
5

/F
 A

d
u

lt L
ib

ra
ry

 S

L
3

 4
5

/F
 A

d
u

lt L
ib

ra
ry

 S
E

%
 o

f 
O

p
e
n

in
g

 H
o

u
rs

Space

Percentage (%) of time Tair < 21oC during opening 
hours - CS1 Level 3&4

Jan-15 Feb-15 Mar-15 Oct-15 Nov-15 Dec-15



Chapter 5 - Results 

200 
 
 

 

Figure 39: CS1 Summer Field Measurements – Sound Pressure Levels Min (dBA)  
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5.2.4 Occupant-Perceived Satisfaction with 

the Indoor Environment 

A number of Occupant Surveys were undertaken to see if Occupant 

Satisfaction reflected the IEQ and energy performance of CS1.  

The findings refer to the responses collected during the period February 2015 

to October 2015 from staff and visitors. During this period, the survey was taken 

by 57 to 77 staff members per season, and by 233 visitors (Figure 40). 

Responses were not collected from children at the building’s Children zone. 

Comparing the demographics of the surveyed staff to demographic information 

regarding the library, management and administration, caretaking, local 

Council and Archaeology staff, the staff survey generated response rates of 

more than 50% for each season with the demographic factors and distribution 

across levels reflecting the actual distribution of staff in the building. The staff 

sample was therefore considered representative. Conversely, the visitor survey 

generated response rates of 0.05% to 1.05% depending on the day the survey 

was taken. The small visitors sample size, in combination with an absence of 

demographic figures to compare it to, renders the representativeness of the 

visitors’ sample inconclusive. Nevertheless, it presented a good distribution of 

respondents across gender, age and work area level. 

 

Figure 40: CS1 Occupant Survey – Respondents by Season 
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Overall, both visitors and staff expressed satisfaction with all general Building 

aspects and indoor conditions, in addition to reviews for most of the aspects of 

the specific work area conditions scoring on positively.  

Figures 41 to 43 and Tables 29 to 31 show the mean satisfaction of 

respondents with the general building aspects, the building indoor conditions 

and the specific work area conditions respectively. These figures use a traffic 

light system which is explained in each table under the “Scale” column. The 

tables also present the median ( ), response sample size (N), variance (VAR) 

and percentage of negative reviews (NR) for each aspect. 

In general, visitors were more positive than staff in their reviews of most 

aspects of the building and its conditions, potentially reflecting a positive view 

of the design of the building as well as just the internal conditions provided. 

However, according to the negative reviews submitted by staff, there was room 

for improvement with regard to the ventilation, air temperature and moisture 

and building controls at specific work areas. Furthermore, indoor noise was a 

concern for both staff and visitors, whereas outdoors noise was a growing 

concern for staff members especially in the period from spring to autumn for 

staff, and in winter for visitors. Air freshness and ventilation were rated 

negatively at Level 1 by staff, and visitors provided Level 4 the most positive 

reviews regarding noise.  

 

Figure 41: CS1 Mean Satisfaction Ratings with the Building Overall 
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Aspect Scale Staff Visitors 

Safety   -2  = very unsafe 
  0  = average 
 +2 = very safe 

= 1.00, N = 285, 
VAR = 1.03, 8% NR 

= 2.00, N = 229, 
VAR = 0.57, 3.5% NR 

Cleanliness  -2  = very dirty 
  0  = average 
 +2 = very clean 

= 1.00, N = 285, 
VAR = 0.82, 6.3% NR 

= 2.00, N = 228, 
VAR = 0.41, 2.6% NR 

Street 
Access 

 -2  = very difficult 
  0  = average 
 +2 = very easy 

= 1.00, N = 284, 
VAR = 1.23, 12.5% NR 

= 2.00, N = 229, 
VAR = 0.43, 4.8% NR 

Layout  -2  = very difficult 
  0  = average 
 +2 = very easy 

= 1.00, N = 280, 
VAR = 1.10, 22.6% NR 

= 1.00, N = 228, 
VAR = 0.55, 5.7% NR 

Vertical 
Circulation 

 -2  = very difficult 
  0  = average 
 +2 = very easy 

= 1.00, N = 283, 
VAR = 0.86, 7% NR 

= 1.00, N = 229, 
VAR = 0.57, 3.5% NR 

Horizontal 
Circulation 

 -2  = very difficult 
  0  = average 
 +2 = very easy 

= 1.00, N = 284, 
VAR = 0.80, 6.6% NR 

= 1.00, N = 229, 
VAR = 0.53, 3.5% NR 

Image  -2  = very poor 
  0  = neutral 
 +2 = very good 

= 1.00, N = 282, 
VAR = 0.89, 8.7% NR 

= 2.00, N = 229, 
VAR = 0.71, 6.1% NR 

Energy 
Efficiency 

 -2  = not very energy 
efficient 
  0  = efficient 
 +2 = very energy 
efficient 

= 1.00, N = 284, 
VAR = 0.92, 12.2% NR 

= 1.00, N = 229, 
VAR = 0.67, 8.3% NR 

Table 29: CS1 Mean Satisfaction Ratings with the Building Overall 

 

Figure 42: CS1 Mean Satisfaction with General Building Indoor Conditions 
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Aspect Scale Staff Visitors 

Overall 
Thermal 
Comfort 

 -2  = very 
unsatisfactory 
  0  = neither 
satisfactory or 
unsatisfactory 
 +2 = very satisfactory 

= 0.00, N = 282, 
VAR = 1.50,  
34.5% NR 

= 1.00, N = 229, 
VAR = 0.86, 8.3% 
NR 

Overall Air 
Freshness 

-2  = very 
unsatisfactory 
  0  = neither 
satisfactory or 
unsatisfactory 
 +2 = very satisfactory 

= 0.00, N = 285, 
VAR = 1.42,  
25.4% NR 

= 1.00, N = 229, 
VAR = 0.75, 9.2% 
NR 

Over 
Lighting 

-2  = very 
unsatisfactory 
  0  = neither 
satisfactory or 
unsatisfactory 
 +2 = very satisfactory 

= 1.00, N = 281, 
VAR = 1.42,  
22.6% NR 

= 2.00, N = 229, 
VAR = 0.55, 3.1% 
NR 

Overall 
Noise 

 -2  = very 
unsatisfactory 
  0  = neither 
satisfactory or 
unsatisfactory 
 +2 = very satisfactory 

= 0.00, N = 282, 
VAR = 1.43,  
30% NR 

= 1.00, N = 229, 
VAR = 1.31, 22.3% 
NR 

Well being  -2  = decreases 
significantly 
  0  = neutral 
 +2 = increases 
significantly 

= 0.00, N = 282, 
VAR = 1.09,  
27.2% NR 

= 1.00, N = 229, 
VAR = 0.71, 10.9% 
NR 

Productivity   -2  = decreases 
significantly 
  0  = neutral 
 +2 = increases 
significantly 

= 0.00, N = 282, 
VAR = 1.05,  
24.7% NR 

= 1.00, N = 228, 
VAR = 0.67, 11.8% 
NR 

Satisfaction 
– Meet 
Working 
needs 

 -2  = very 
unsatisfactory 
  0  = neither 
satisfactory or 
unsatisfactory 
 +2 = very satisfactory 

= 1.00, N = 286, 
VAR = 1.50,  
17.4% NR 

= 1.00, N = 229, 
VAR = 0.59, 8.3% 
NR 

Satisfaction 
– Overall 
Rating 

 -2  = very 
unsatisfactory 
  0  = neither 
satisfactory or 
unsatisfactory 
 +2 = very satisfactory 

= 1.00, N = 286, 
VAR = 1.42,  
13.2% NR 

= 2.00, N = 229, 
VAR = 0.49, 7.9% 
NR 

Table 30: CS1 Mean Satisfaction with General Building Indoor Conditions 
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Figure 43: CS1 Mean Satisfaction with Specific Work Area Conditions 

 

Aspect Scale Staff Visitors 

Air Quality – 
Air Freshness 

 -2  = very stale 
  0  = neutral 
 +2 = very fresh 

= 0.00,  
N = 284, 
VAR = 1.44, 23% 
NR 

= 1.00, N = 229, 
VAR = 0.55, 8.3% 
NR 

Air Quality – 
Air Moisture 

 -2  = too humid 
  0  = neutral 
 +2 = too dry 

= 0.00, N = 283, 
VAR = 0.99, 41.8% 
NR 

= 0.00, N = 229, 
VAR = 0.51, 35.8% 
NR 

Ventilation  -2  = very draughty 
  0  = neutral 
 +2 = very stagnant 

 = 0.00, N = 284, 
VAR = 1.39, 51.2% 
NR 

= 0.00, N = 228, 
VAR = 0.56, 38.4% 
NR 

Air 
Temperature 

 -2  = too cold 
  0  = neutral 
 +2 = too hot 

= 0.00, N = 285, 
VAR = 1.38, 55.1% 
NR 

= 0.00, N = 229, 
VAR = 0.48, 33.6% 
NR 

Outdoors 
Noise 

 -2  = very 
significantly 
  0  = somewhat 
significantly 
 +2 = no 

= 0.00, N = 285, 
VAR = 2.02, 54% 
NR 

= 2.00, N = 229, 
VAR = 2.09, 33.6% 
NR 

Indoors Noise  -2  = very 
significantly 
  0  = somewhat 
significantly 
 +2 = no 

= 0.00, N = 286, 
VAR = 2.01, 57.1% 
NR 

= 0.00, N = 228, 
VAR = 1.39, 55.5% 
NR 

Natural Light  -2  = too low 
  0  = satisfactory 
 +2 = too high 

= 0.00, N = 285, 
VAR = 0.79, 31.4% 
NR 

= 0.00, N = 229, 
VAR = 0.45, 27.9% 
NR 

Artificial Light  -2  = too dim 
  0  = satisfactory 
 +2 = too bright 

= 0.00, N = 287, 
VAR = 0.89, 39.4% 
NR 

= 0.00, N = 229, 
VAR = 0.42, 28.4% 
NR 

Table 31: CS1 Mean Satisfaction with Specific Work Area Conditions 
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Finally, most of the open-ended comments submitted by staff referred to local 

issues regarding the noise and the air temperature in the building, which were 

confirmed by the field measurement findings. Staff members expressed 

dissatisfaction with the transfer of noise in the building as well as with the effect 

of natural ventilation in winter indoor temperature conditions. It was also 

suggested that zones next to windows were found to overheat by midday 

throughout the year. Furthermore, several complaints were submitted 

regarding the PIR lighting controls in office areas and the automated window 

controls on Level 4. 

In contrast to staff members, many of the visitors praised, in their comments, 

CS1 overall as a space they enjoy visiting. Most visitors’ comments focused on 

problems with the indoors noise. Level 4 was considered unanimously the only 

area in the building suitable for quiet study by those respondents who took care 

to refer to the issue, although it was expressed there was still room for 

improvement regarding the noise levels in this space. Finally, a limited number 

of visitors suggested that CS1 tended to be too warm and stuffy at times all 

year round, with glare problems observed in the perimeter areas.  

5.2.5 Discussion 

Reviewing the performance of CS1, it was observed that it met most of its 

designed utility performance targets other than its water use related targets, 

although this was attributed to the large actual visit figures which greatly 

surpassed the design occupancy of the building (Table 32). If taken pro-rata, 

then the water use per actual occupant met the design target. 

TARGET ACTUAL to the end of 2015 

E
n

e
rg

y
 a

n
d
 W

a
te

r 
U

s
e
 

A carbon performance asset 
rating improvement of 50% on 
the minimum standard for Part 
L 2006 

Achieved ✓ 

Electricity use of 105 kWh/m²·a ~50 kWh/m²·a ✓ 

Biomass generated heat of 38 
kWh/m²·a 

~32 kWh/m²·a delivered biomass 
heat into the building 

✓ 
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Fossil Fuel Consumption of  

5 kWh/m²·a 13 

~3.8 kWh/m²·a  ✓ 

Water use of 
2.5m3/occupant*·a 

~4 m3/occupant*·a (~2 m3/m2·a) 2   x 

Potable water use of 
1.5m3/occupant*·a  

~2.25 m3/occupant*·a (~1.15 
m3/m2·a) 14 

x 

Harvested Rainwater use of 
1m3/ occupant*·a or 40% of 
total water use 

~1.73 m3/occupant*·a (~0.9 
m3/m2·a) 2 estimated harvested 
rainwater  

~43% of total water use 

x  

 

✓ 

In
d
o

o
r 

E
n

v
ir
o

n
m

e
n
ta

l 
Q

u
a

lit
y
 

Archives should meet BS5454 Archives conform to BS5454, with 
challenges during summer months. 

✓ 

Healthy environment Maintained healthy conditions for 
sensitive social groups according to 
WHO standards during majority of 
opening hours. 

✓ 

Maximum use of daylight to 
minimise electric lighting to 
<30% of total building 
electricity use 

~28% of total electricity use by mixed 
lighting conditions according to 
space. 

✓ 

Maintain quietness levels in 
extensive study areas. 

Noise levels above comfort standards 
with indoors and outdoors noise a 
concern according to occupants. 

X 

O
c
c
u

p
a

n
ts

 

Building designed to be a 
didactic building, educating 
staff, users and visitors. 

~52% staff and ~63% visitors stated 
CS1 increases their wellbeing. 

~55% staff and ~72% visitors stated 
CS1 supports their productivity. 

~60% staff and ~81% visitors stated 
CS1 meets their work needs 
satisfactorily 

~67% staff and ~84% of visitors rated 
CS1 as satisfactory. 

✓ 

M
a

n
a

g
e

m
e

n
t Linking of the fine tuning of the 

services and user energy 
management will allow areas 
of unnecessary energy 
consumption to be targeted in 
conjunction with user support. 

~42% reduction in electricity 
consumption since May13 

~84% reduction in natural gas 
consumption since Jan14 

~24% reduction in consumption heat 
energy since Feb14 (biomass & gas). 

✓ 

Occupant* was the design occupancy of 1457 persons. 

Table 32: CS1 performance against targets to the end of 2015 

                                                 
13 Not including biomass fuel and assuming gas usage for peak loads and 
backup only 
14 Calculated considering the design occupancy amounts to 1457 occupants, 
which amounts to approximately 450,000 visits per annum. Actual visits are 
double this at approximately 900,000. 
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In Figure 44, the total annual building electricity consumption (kWh) per floor 

area for every year from 2012 to 2015 was projected and compared to the 

estimated consumption according to Part L, the initial predicted electricity 

consumption estimated by the design team, which builds on the Part L estimate 

taking in consideration the small power, IT and long opening hours as well as 

to the CIBSE TM46, CIBSE Guide F and bespoke iSERV benchmarks. The 

industry benchmarks against which CS1 was compared are building sector 

dependent and thus not designed to account for CS1’s extended opening hours 

and multiuse nature of the building. In addition, they require further adjustment 

to weather and occupancy. A significant advantage of the iSERV benchmarks 

in comparison to the listed industry benchmarks is that the iSERV benchmarks 

are bespoke to the activities, spaces, HVAC systems and components housed 

in a building and allow comparisons of similar spaces in buildings of different 

type or sector. Nevertheless, all benchmarks are subject to change and were 

not considered in this research as absolute performance metrics; instead they 

were employed to provide indications regarding the performance of the case 

studies selected in this research.  

It was observed that CS1 bettered its electricity design target, improving over 

time, and consuming approximately half of the design target in 2015. The 

annual consumption of CS1 was found to be have been lower than the CIBSE 

TM46: 2008 benchmark for cultural activities including libraries by 

approximately 18 kWh/m2 in 2015. However, this benchmark was not adjusted 

according to weather and occupancy.  In contrast, CS1 performance was found 

to have been above Part L estimates and the CIBSE Guide F electricity 

benchmarks for public libraries. Its performance was though better compared 

to the CIBSE Guide F benchmarks for naturally ventilated open plan offices. 

Compared to the experimental iSERV benchmarks, since its opening and 

following a short and expected period of adjustment, CS1’s electricity 

operational performance fell into iSERV’s “Good” benchmark in late 2015. It 

was identified that 73% of the CS1’s internal area was naturally ventilated with 

the remaining being mechanically ventilated. This allowed to understand that 

CS1’s annual electricity use for 2015 was better than the pro-rata CIBSE Guide 
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F Office benchmarks for naturally ventilated and mechanically ventilated offices 

respectively. 

The data suggest that the small power and lighting had initially consumed 

proportionally and actually much larger amounts. Therefore, it was logical for 

the facility management to target small power and lighting use first. During the 

period 2013 to 2015, savings relating to lighting accounted for approximately 

37% of the total electricity savings achieved. The results of this investigation 

suggest that half of the savings were achieved by reducing small power use 

(50%) through better control of idle PC stations, with the final savings relating 

to improvements in the chiller, AHU fan inverters and pumps control (12%) as 

well as better management of external lighting (1%) (Figure 45). 
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Figure 44: Comparison of CS1 Total Annual Building Electricity Consumption 
(KWh/m2) to existing benchmarks 

50.04 

32 
46 52 54 

68 70 74.3 
85 

95 98.4 
105 

123.6 128 
139 

170.2 
179 

226 

253 

0

50

100

150

200

250

300

E
le

c
tr

ic
it
y
 U

s
e

 (
k
W

h
 /
 m

2
a
)

Annual Building Electricity Use (KWh/m2) - 2015 

Hive Measured Electricity Use

CIBSE Guide F Public Libraries Benchmark - Good Practice

CIBSE Guide F Public Libraries - Typical Practice

iSERV Electrcity bespoke "Good" performance benchmark

CIBSE Guide F (ECON 19) Naturally Ventilated Open Plan Offices Benchmark - Good 
Practice
BBP 2015 REAL Estate Environmental Benchmarks - NV Offices - Good Practice

CIBSE TM46: 2008 - Cultural Activities 

CIBSE Guide F Offices Benchmark - Good Practice (73% NV & 27% MV)

CIBSE Guide F (ECON 19) Naturally Ventilated Open Plan Offices Benchmark - Typical 
Practice
CIBSE TM46: 2008 - General Offices 

BBP 2015 REAL Estate Environmental Benchmarks - Offices - Good Practice (73% NV & 
27% MV)
Design Electricity Use Target

CIBSE Guide F Offices Benchmark - Typical Practice (73% NV & 27% MV)

CIBSE Guide F (ECON 19) Offices - AC standard - Good Practice

BBP 2015 REAL Estate Environmental Benchmarks - NV Offices - Typical Practice

BBP 2015 REAL Estate Environmental Benchmarks - Offices - Typical Practice  (73% NV 
& 27% MV)
BBP 2015 REAL Estate Environmental Benchmarks - AC Offices - Good Practice

CIBSE Guide F  (ECON 19) Offices - AC standard - Typical Practice

BBP 2015 REAL Estate Environmental Benchmarks - AC Offices - Typical Practice



Chapter 5 - Results 

211 
 

 

 

Figure 45: CS1 Electricity Reductions by End Use for the periods 2013 – 2014 
and 2014 – 2015. 

To the end of 2015, the electricity use of the cold generators and air handling 

units was observed to be better than the associated ECON 19 benchmarks for 

AC offices (Figure 46). However, the cooling electricity use was significantly 

higher than the ECON 19 benchmarks for NV open plan offices. In contrast, 

the pumps electricity use was observed to be slightly lower than the typical 

practice ECON 19 benchmark for NV open plan offices. Comparing the Small 

Power and Lighting Electricity use to the associated ECON 19 benchmarks, it 
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for NV open plan buildings, whereas its small power use was between the good 

and typical practice for NV open plan buildings (Figure 47).  

 

Figure 46: Comparison of CS1 Total Annual HVAC Electricity Consumption 
(KWh/m2) to existing benchmarks 
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Figure 47: Comparison of CS1 Total Annual Lighting & Small Power Electricity 
Consumption (kWh/m2) to existing benchmarks 

To the end of 2015, the performance of almost two-thirds of the electricity 

powered systems met the iSERV “Good” standard, with most of the electricity 

powered systems that needed checking being Small power systems, signifying 

some potential for additional reductions among small power systems (Figure 

48). Considering that a number of these systems either represented essential 

building systems or were under the control of occupants, the potential for 

additional savings was assumed to be rather miniscule. A traffic light system 

was used to compare system performance to the iSERV experimental 

benchmarks. According to this traffic light system red represents performance 
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needing checking, amber represents average and green represents good 

performance. 

 

Figure 48: CS1 Individual Electrical Systems performance summary to the end 
of 2015.  

During the period 2013 to 2015, it was reported that continuous work on 

improving artificial lighting use and control was performed. This work included 

the deactivation of presence controls during opening hours in library and office 

spaces, the addition of user control in the Archives, the removal of personal 

controls in the office and staff areas, the installation of LED lights on book 

shelfs, the installation of daylight dimmers in all lighting systems serving the 

library and office spaces and the increase of their efficiency. The results of this 

investigations suggest that these improvements allowed for the correlation of 

lighting use in day lighted areas to the sunshine hours to increase from 

approximately 0.55 to 0.85 during the period 2014 to 2015 (Figure 49). 

However, the total lighting use in all areas of the building followed a similar 

improvement in its correlation to the sunshine hours increasing from 

approximately 0.50 to 0.80 during the period 2014 and 2015, which would 

suggest a better daylighting management overall. 
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Figure 49: Comparison of CS1 Lighting Electricity Use (kWh) to Sunshine 
Hours. 

Furthermore, it was observed that during 2015 more than half of lighting 

electricity use took place during opening daylight hours (56%), with less than a 

third used during opening night hours (26%), and the remaining used during 

out of hours (18%). On that year, the vast majority of lighting systems were 

reported to have been centrally switched on during opening hours (08:00-

22:00) and were under automatic daylight dimming control. Comparing the 

average rate of lighting electricity use per hour during daylight and night 

opening hours, it was observed that following a reduction of the lighting 

electricity use during night time opening hours during 2014 which was the result 

of better management, approximately 15% more electricity was used for 

lighting per hour during night opening hours when compared to daylight 

opening hours during 2015.  

Although lighting systems also fell under the control of the facility manager, as 

they were centrally controlled and left on during daylight opening hours, the use 

of daylight dimmers in most spaces created expectations that the effect of 

daylight should have been reflected on Figure 50. However, examining the data 

on a monthly basis, it was also revealed that lighting electricity use increased 
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during the summer months. Combining these findings with field observations 

according to which there was a high contrast between outdoors and indoors 

lighting conditions, it was understood that controlling lighting contrast and glare 

was a major issue in CS1. Although CS1 met its design aim for its lighting 

electricity use to account for less than 30% of its total electricity use, these 

findings suggest that the building was led to unexpectedly high levels of artificial 

lighting being consumed during the summer months in order to counter lighting 

contrast and provide comfortable indoor conditions. These findings were also 

supported by the fact that the perimeter lighting in the building was observed 

to have been on during daytime opening hours in the summer months.  

 

Figure 50: CS1 average rate of lighting electricity use per hour (KW) for 2014 
and 2015. 

The findings of this investigation suggest that savings observed in the annual 

electricity use of cold generators during the period 2014 to 2015 are the result 

of the free cooling activated once the River Water system was reinstated in Nov 

14. Owing to operational problems related to the system’s filters clogging at the 

point of abstraction, the system was reported to have been inoperative the first 

two years of the building’s life. Following its reinstatement, an increase was 

observed in the pumps’ annual electricity consumption by approximately 80%, 

which was offset by a reduction in cooling electricity use (cold generators) 

equivalent of 1.1% of the total electricity use in 2015 which was saved from 
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enabling the River Water Cooling Pumps, and the Main Chillers they supported, 

compared to the energy consumed by the temporary chillers installed during 

the first two years (Figure 51). 

 

Figure 51: Change in CS1 Electricity Use per component between 2014 and 
2015 

Savings observed in AHU annual use between 2014 and 2015 suggest the 

existence of better control. The results of this investigation suggest that the 

large increase in-use observed in 2014 compared to the remaining years was 

the result of the AHUs used to increase the heating in the building to counter 

the very cold conditions experienced that year. Similarly, it was suggested that 

the large increase observed in the underfloor heating and cooling in 2015 was 

the result of the use of this system in countering extreme weather conditions 

which occurred that year. In 2015, periods of very high temperatures were 

preceded by periods of very low temperatures which challenged the adaptation 

capacity of the building. The underfloor heating and cooling system was 

reported to have been employed by the management to balance the variations 

of the indoor conditions in a rather energy intensive manner, which was though 

successful in maintaining healthy and comfort conditions in the building. 
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Furthermore, the chilled beams were reported to have been operated by the 

management at a minimum level throughout the year having been given a 

secondary role in the process of maintaining indoor conditions. Similarly, the 

trench heaters were operated throughout the year in the perimeter of the 

building to counter heat losses from the building’s fabric. 

On average, 30% of the building’s electricity use was found to have taken place 

during out of hours (22:00-08:00, Mon-Sun). The results of this investigation 

suggest that this was the result of the continuous operation of essential 

systems including but not limited to the external lighting, Archives and Server 

systems and Extract Fans. In line with these findings, a number of systems, 

mainly small power and lighting systems, recorded consumptions during out-

of-hours periods as well as during bank holidays. Figure 52 presents the carpet 

plots of the O/PBC-0 Landlords lighting and power systems, as an example.  
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Figure 52: Carpet Plot of CS1 Landlords lighting and power systems for Dec15. 

Although there was limited potential for savings among essential systems, 

these results provided evidence of the potential for additional savings through 

better control of PIR controlled emergency lighting systems which were noted 

to be activated by months in the building. The regularity of the plots also 

indicated late night occupancy until about 22:00 – 23:00 most nights. It could 

also be seen that the lights could be fully turned off, as evidenced by the zero 

usage over the Christmas period. 
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Figure 53 presents the carpet plots of the main electricity incomer which 

demonstrated the out of hours use. To produce carpet plots the highest 

consumption value for the period chosen is identified and split into 10% steps 

with purple being 0-10% and white being 90-100%. 

 

Figure 53: Carpet Plot of CS1 Main Electricity Incomer for Dec15. 

By the end of 2015, the facility management was preparing for changes in the 

building use and occupancy, as higher education staff would move into the 

building to occupy part of the Archaeology’s department offices, which was 

expected to have an impact on small power, lighting, heating and cooling 

energy use. 

The actual gas and Biomass annual use were 76% and 68% of their respective 

targets, again comfortably meeting their design targets. Figure 54 presents the 

total annual building gas consumption (kWh/m2) for every year from 2012 to 

2015, compared to the CIBSE TM46, ECON19, BBP 2015 and CIBSE Guide F 

benchmarks. What could be observed was there was a significant reduction in 

gas consumption of approximately 57% between 2013 and 2014, and a 

reduction of approximately 68% from 2014 to 2015. The change in heat source 

from gas to Biomass coincided with a reduction in the overall heat demand in 

the building over the same period by approximately 11% which accompanied 
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the gas use reduction from 2014 to 2015. It is not believed the fuel type used 

has had much impact on this change, though this has not been feasible to 

verify. 

Compared to the experimental iSERV benchmarks, since its opening CS1’s 

gas operational performance fell into iSERV’s “Good” benchmark. 

Despite the facility management’s claim that the building’s large thermal mass 

capacity led to minimal use of heating throughout the year, the analysis of the 

heat use data painted a different picture. The heating, in particular the 

perimeter trench heaters, was operated throughout the year even during 

summer months although at approximately 25% capacity compared to winter 

months. It was understood that the biomass ran throughout the year as an 

underline baseload to top up the internal gains and keep the building’s thermal 

mass up to temperature. This allowed the building to cope for most days of the 

year with the exception of extreme conditions. In the case of spells of very cold 

or very hot weather, the underfloor heating and cooling system was employed 

to balance any variations to the indoor conditions, leading to a large energy 

drain. Furthermore, examining the correlation between the Combined Gas and 

Biomass Heat Use to the Outdoor Air Temperature, presented in Figure 55, it 

was observed that although the biomass always ran as an underline baseload, 

the gas ran after outdoor air temperature reached approximately 4oC or higher. 

This unusual usage pattern was suspected to be the result the operator’s 

preferred control strategy. 
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Figure 54: Comparison of CS1 Total Annual Building Energy Consumption 
(kWh/m2) to existing benchmarks 
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Figure 55: Correlation of CS1 Combined Gas and Biomass Heat Consumption 
to Outdoor Air Temperature for 2015. 

Regarding its heat use, representing the sum of the combined Biomass and 

Gas Heat, CS1 also met the iSERV ‘Good’ standard. However, the collected 

data for the gas presented large gaps, and the biomass consumption was not 

easy to assess, therefore overall projected heating needs were less accurate 
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than electricity use. Comparing CS1’s annual heat use per floor area to the 

PassivHaus Standard for non-domestic buildings (Figure 56), it was observed 

that the building’s heat use, predominately used for space heating, was 

approximately double the standard’s criterion for space heating.   

 

Figure 56: Comparison of CS1 Total Annual Heat Consumption (kWh/m2) to 
PassivHaus Standard for non-domestic buildings15. 

Comparing the Standard’s remaining energy demand criteria to CS1’s 

measured energy performance averaged by the net floor area inside the 

thermal envelope16 (Figure 57), it was observed that CS1’s performance for 

                                                 
15 According the PassivHaus Standard the primary energy demand includes 
the total energy demand for heating, cooling, DHW, ventilation, auxiliary 
electricity, lighting and electrical appliances. In this graph, CS1’s heat use 
was also averaged per specific floor area served by the heating systems. 
16 according to DIN 277 
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2015 met only the PassivHaus Standard’s cooling requirement for certification 

of non-domestic buildings17.  

 

Figure 57: Comparison of CS1 Performance to the PassivHaus Standard’s 
Energy Requirements for non-domestic buildings 18 19 20. 

In addition, although in gradual increase during the period 2013-2015, CS1’s 

water use was observed to have remained lower compared to its design target, 

                                                 
17 The remaining energy requirement for PassivHaus Non-Domestic Building 
certification is to achieve a pressurization test result n50 below 0.6 h-1 
18 CS1’s cooling demand refers to the building’s cold generators electricity 
use. 
19 According the PassivHaus Standard the primary energy demand includes 
the total energy demand for heating, cooling, DHW, ventilation, auxiliary 
electricity, lighting and electrical appliances In this graph, CS1’s heat use was 
also averaged per specific floor area served by each end use. The Standard’s 
reference value (treated floor area) is the net floor area inside the thermal 
envelope according to DIN 277.  

20  Primary Energy Factors were sourced from BRE, B. R. E. 2016b. 
Consultation Paper: CONSP:07 - CO2 AND PRIMARY ENERGY FACTORS 
FOR SAP 2016. 
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regarding the ratio of rainwater to total water use (40%), because of the 

increased use of Harvested Rainwater which accounted for 43% of the total 

water use at the end of 2015. This improvement could have possibly been 

greater in the absence of facility management actions which required the 

release of stored potable supply if the stored water temperature fell under 20°C, 

to control legionella bacteria in water systems. CS1’s performance with regard 

to Water use met the ‘Good standard according to the less developed iSERV 

Water benchmarks, as a result of its rainwater use. Furthermore, it is worth 

noting that due to a ruptured pipe, a sudden increase of 225% in water 

consumption was recorded in April 2015. 

The actual water consumption per design occupant was as shown in Table 33. 

Here it exceeded the design targets, but if the actual numbers of visitors are 

considered (double the design occupancy) then all the targets were 

comfortably met. 

Design Target Actual 

Water use of 2.5m3/occupant*·a ~4 m3/occupant*·a (~2 m3/m2·a) 21  

Potable water use 1.5m3/occupant*·a  ~2.25 m3/occupant*·a (~1.15 
m3/m2·a) 5  

Harvested Rainwater use of 1m3/ 
occupant*·a or 40% of total water 
use 

~1.73 m3/occupant*·a (~0.9 m3/m2·a) 
5 estimated harvested rainwater  

~43% of total water use 

Table 33: CS1 water performance against targets to the end of 2015 

On a general note, the energy and water use performance of CS1 was 

considered to have reached its lowest level since opening, following an 

expected adjustment period, and that in the months following the end of this 

research a reverse course would be followed, during which the facility 

management would look to improve indoor conditions, leading potentially to a 

larger energy and water expenditure. This was supported by the fact that a 

number of issues related to indoor comfort conditions could have been 

                                                 
21 Calculated considering the design occupancy amounts to 1457 occupants, 
which amounts to approximately 450,000 visits per annum. Actual visits are 
double this at approximately 900,000. 
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addressed by setting the temperature set points at a higher or lower value 

depending on the season. 

CS1 also met most of its social and environmental aims it was envisaged to 

achieve, whilst achieving its utilities targets, as presented in Table 32.    

Indoor Environmental Quality assessments conducted in the building showed 

that the good energy efficiency being obtained was not at the expense of 

healthy indoor conditions, although some spaces were challenged to maintain 

comfort conditions for more than 50% of the monitored time during opening 

hours. For instance, most monitored areas were observed to have experienced 

cooler conditions compared to the operational temperatures recommended by 

CIBSE. This meant that on the whole it would be expected that there would be 

complaints in these areas for more than 50% of the time. However, this did not 

appear to negatively impact visitors’ perceptions or enjoyment of the facilities 

provided.  

The Occupant Surveys provided evidence of the occupants’ satisfaction with 

all general building aspects and indoor conditions, as well as with most aspects 

of their specific work area conditions, indicating a degree of ‘forgiveness’ of the 

comfort conditions due to the recorded satisfaction of the occupants with the 

building’s general aspects including layout, image and energy efficiency (Fig. 

36). Staff, however, were slightly more critical possibly due to a reduction of the 

perceived control they had, combined with the conditions being provided. 

According to the negative reviews submitted by staff, there was room for 

improvement with regard to the ventilation, air temperature, moisture and 

building controls at specific work areas. 

The Indoor Environmental Quality field measurements also highlighted: 

• Slightly low RH conditions across the building from winter to summer,  

• Varying lighting conditions, and  

• Noise levels exceeding CIBSE comfort standards throughout the year. 

Nevertheless, the Occupant Surveys provided clear evidence of the occupants’ 

satisfaction with all general building aspects and indoor conditions as well as 
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with most aspects of their specific work area conditions (Figure 58). 

Furthermore, in comments recorded during the surveys, many of the visitors 

praised CS1 overall as a space they enjoyed visiting. 

In agreement with the IEQ field measurements, the local issues with ventilation, 

RH, air temperature, and lack of personal controls in specific work areas were 

also noted by the Post Occupancy Evaluation surveys. Furthermore, indoor 

noise was reported to be a concern for both staff and visitors, whereas outdoors 

noise was a growing concern for staff members especially in the period from 

spring to autumn, and in winter for visitors. The concerns were supported by 

the field measurements undertaken which showed noise levels varying on 

average between 40 dBA and 60 dBA across all seasons, surpassing both 

contemporary standards and design criteria. According to  Witterseh et al. 

(2004), open plan office noise at the level of 55 dBA increases fatigue, hence 

justifying CS1’s occupants dissatisfaction with noise. Nevertheless, as claimed 

by its facility management, the building had passed all its technical evaluations 

with regard to sound reverberation and absorptivity following its handover. 

Taking in consideration the presented findings, one could argue that the 

negatively rated aspects of the building derived from the design of the building, 

as it was observed in many past studies presented in Chapter 2. Issues 

regarding the uniformity of indoor conditions and the transfer of noise are 

common in modern open plan natural ventilated buildings where there is a 

trade-off between design values, such as the values of connection, integration, 

and inclusivity manifested in CS1’s design agenda and the performance of 

passive strategies. These inevitable design trade-offs can often lead the design 

of a building to compromise some aspects, including passive strategies.  

The setting of the values of inspiration, connection, integration, inclusivity, 

visibility, well-being and sustainability at the top of the design agenda, and their 

materialisation through an open plan design and a natural ventilation strategy, 

in combination with the large and diverse visitor groups occupying the library 

daily, has unavoidably led to issues regarding noise levels and noise transfer  
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Figure 58: CS1 Staff and Visitors Satisfaction with General Building and Specific Work Areas Indoor Conditions. 
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Within some of the open-plan spaces. These were not considered design 

performance failures, but rather exemplify the inevitable design trade-offs in 

open plan mixed-mode buildings, which require the design of a building to 

compromise some performance aspects to achieve other design aims which 

have a higher priority. 

At the point of writing this thesis, CS1 management was fully in control of the 

building performance and were addressing how to manage the trade-offs 

between consumption and comfort. As other buildings before it have followed 

a cyclical route in adjusting their performance, it is likely that its energy use 

might rise slightly in the near future in parts of the building to achieve the correct 

balance between the design conditions for the activities housed and the need 

for the building to meet its low carbon ambitions. The data suggests the building 

had reasonable headroom in this consumption to still comfortably exceed its 

design targets. 

Overall, the results of this investigation demonstrated that CS1 presented many 

of the challenges observed in open-plan naturally ventilated buildings with 

regard to the control and uniformity of comfort conditions, as well as challenges 

with regard to activities housed, and the implementation of low energy 

technologies. Notwithstanding these challenges, the building’s design, in 

combination with proactive building management, allowed CS1 to meet and 

exceed its design intents in many areas.  

The final objective of this research was to quantify the influence of the case 

studies’ stakeholders in building energy performance. Although it was not 

feasible to quantify the influence of architects on the water use due to the lack 

of sub metering which would allow for the collection of appropriate data, this 

objective was completed for the electricity and heat use of the selected case 

studies.  

The influence held by the architect and the facility management were 

challenging to precisely quantify in absence of a matrix setting out who is 

responsible for designing each aspect of the case studies, such as the Design 

Responsibility Matrix and Schedule of Services documents described in the 

RIBA Plan of Work 2013. For example, in the case of the architect's influence, 
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there were grey areas related to the control of lighting systems the influence of 

which could be attributed to either the architect or facility management. In 

paragraph 4.4.1, this study suggested which parts of the energy use of a design 

the architect could be considered responsible for. The influence exercised by 

the architect on the energy use of a building was presented in the form of a 

range of potential influence. In the case of the facility management’s influence, 

the achieved savings were used as a quantitative indicator along with the 

attitudes expressed regarding the building’s management, a measure of 

qualitative nature.  

The results of this investigation suggest that informed and proactive facility 

management resulted in electricity savings of approximately 40% since the last 

peak observed in May 2013 to the end of 2015, and heat savings of 

approximately 24% since February 2014 to the end of 2015 (Figure 30). The 

respective year to year savings ranged between 13% and 22% for electricity 

use during the period 2013 to the end of 2015, and amounted to approximately 

11% for heat use during the period 2014 to the end of 2015 (Table 26).  

Considering an architect’s design decisions can influence what CS1 consumed 

to maintain indoor conditions, including all lighting during daylight opening 

hours, the results of this investigation suggest that the architect had the 

potential of influencing approximately between 23% and 28% of the total annual 

electricity use (Figure 59). Occupants were observed to influence 

approximately between 67% and 72% of the total annual electricity use. 

In the absence of dedicated metering attached to the DHW system, this 

investigation made use of the metered data sourced from a water meter 

dedicated to monitor the water supplied to basins and drinking fountains to 

estimate the DHW heating load. This metered data indicated that the annual 

water use of the taps and water fountains was 88 m3 per annum which would 

require approximately between 4,000 kWh to 6,000 kWh per annum to be 

heated depending on the temperature difference between the mains cold water 
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and the outlet temperature22. Despite the application of technology to reduce 

the hot water used in the building23, the metered data regarding the water 

supplied to basins and drinking fountains appeared to be too low compared to 

the annual mains incomer water use which amounted to approximately 3,140 

m3 in 2014 and 3,290 m3 in 2015. However, in absence of other data sources, 

this data was used to estimate the DHW load.  As a result, it was estimated that 

the architect’s design decisions influenced nearly the total heat energy use in 

CS1, with the DHW load under the influence of occupants estimated to be 

minuscule and ranging approximately between 0.01% and 0.04% of the total 

annual heating energy use. 

 

Figure 59: CS1 Annual Electricity Use Breakdown By Stakeholder for 2014 and 
2015. 

                                                 
22 Assuming the specific heat capacity of water to be at 1.166Wh/KgK and the 
temperature difference between the mains cold water and the outlet 
temperature to be between 40K and 50K. 
23 The hot water supplied to basins is heated to a temperature of up to 60°C 
in a calorifier and then it is blended with cold water to reduce the outlet 
temperature to 43°C. In addition, two-port valves have been installed in each 
toilet area and are linked to passive infra-red movement detectors in order to 
shut off the water supply whenever these areas are unoccupied. These have 
been complemented with passive infrared sensor taps to minimise DHW 
usage. Furthermore, because of the overall low water use in the building, the 
facility manager quoted that the building suffers from high incoming mains 
temperatures especially during the summer months which would decrease 
the heating load required to heat the mains incoming water in the calorifier. 
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Examining the electricity use breakdown by metered system and stakeholder 

at a monthly resolution, the extent of the Architect’s influence on the total 

energy use of CS1 was observed to be subject to varying factors comprising 

climatic conditions and changes that have been enforced by the facility 

management on building system performance and management. As 

demonstrated in Figure 60, this investigation suggests that the architect’s 

design decisions influenced approximately 20% to 33% of the monthly 

electricity use according to month.  

Table 34 presents the potential influence of an architect’s design decisions on 

CS1’s total lighting electricity use, total HVAC electricity and heat use during 

the period 2014 to 2015. It was observed that the architect’s design decisions 

influenced approximately 34% to 67% of the CS1’s lighting electricity use, and 

approximately 23% to 52% of the HVAC electricity use. Furthermore, 

considering that the DHW heat load was miniscule, the architect’s design 

decisions were estimated to influence nearly the total heat use of CS1. 

Although the total energy use of the building reduced during warmer months, 

the architect’s influence on the lighting electricity use was observed to increase 

during the same period. This observation followed the general trend, discussed 

earlier in this section, according to which unexpectedly high levels of artificial 

lighting were consumed during the summer months in order to counter the high 

contrast between indoor and outdoor lighting conditions. Furthermore, in line 

with the general trend of HVAC electricity use, the architect’s influence on the 

HVAC electricity use was observed to increase during warmer months. This 

was recognised to be the combining effect of the cooling systems running along 

with the heating which was kept in operation during the summer months.
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Potential influence of architect’s design decisions (%) on various aspects of 
CS1 energy 

 Lighting Electricity 
Use 

HVAC Electricity 
Use 

HVAC Heat Use24 

Jan-14 37.4% 22.6% 99.99% 

Feb-14 39.1% 24.6% 99.99% 

Mar-14 42.9% 27.5% 99.99% 

Apr-14 48.6% 27.8% 99.98% 

May-14 50.7% 24.3% 99.98% 

Jun-14 60.6% 27.3% 99.96% 

Jul-14 57.3% 38.5% 99.96% 

Aug-14 49.3% 41.5% 99.99% 

Sep-14 44.9% 40.7% 99.97% 

Oct-14 41.2% 41.0% 99.97% 

Nov-14 34.3% 45.4% 99.99% 

Dec-14 35.0% 46.6% 99.99% 

Jan-15 37.2% 43.5% 99.99% 

Feb-15 45.4% 44.8% 99.99% 

Mar-15 46.3% 50.3% 99.99% 

Apr-15 59.7% 51.7% 99.99% 

May-15 66.8% 48.8% 99.98% 

Jun-15 63.3% 48.3% 99.98% 

Jul-15 67.1% 51.3% 99.97% 

Aug-15 56.9% 48.1% 99.97% 

Sep-15 49.5% 49.4% 99.98% 

Oct-15 46.3% 51.0% 99.99% 

Nov-15 35.6% 50.7% 99.99% 

Dec-15 38.5% 51.5% 99.99% 

min 34.3% 22.6% 99.96% 

max 67.1% 51.7% 99.99% 

Table 34: Potential influence of architect’s design decisions (%) on various 
aspects of CS1 energy for the period 2014 to the end of 2015. 

                                                 
24 As discussed previously in this section, the metered data regarding the water 
supplied to basins and drinking fountains appeared to be too low compared to 
the annual mains incomer water use. However, in absence of other data 
sources, this data was used to estimate the DHW load. As a result, it was 
estimated that the architect’s design decisions influenced nearly the total heat 
energy use in CS1, with the DHW load under the influence of occupants 
estimated to be minuscule and ranging approximately between 0.01% and 
0.04% of the total annual heating energy use. 
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Figure 60: CS1 Monthly Energy Use Breakdown By Metered System and Stakeholder for the years 2014 to 2015 compared to 
Varying Climatic Conditions and Occupancy.
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5.3 Case Study 2 (CS2) 

5.3.1 Energy Flows 

At the time of this study, CS2 was sub-metered at a satisfactory level regarding 

its electricity and gas use, comprising 43 electricity meters and 5 gas meters 

collecting data from various zones and components in the building, as 

presented in Figure 61. In contrast, sub-metering for water use was limited. 

 

Figure 61: Number of CS2 meters storing data during the period March 2012 
to December 2015. 

The collected energy data presented moderate gaps with the vast majority of 

the electricity (98%) and gas (86%) meters presenting gaps representing 20% 

to 40% of their respective data streams. Figure 62 shows the summary of the 

CS2 metered data to the end of 2015 and presents the percentage of meters 

with gaps in their data for which estimates were used. 
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Figure 62: CS2 Meters Data Summary after the amendment of the collected 
data to the end of 2015. 

Due to the small scale of sub-metering in CS2, the resolution of the electricity 

use breakdown was of a lower resolution compared to CS1. During 2012-2015, 

20% to 25% of CS2 electricity use was observed to be attributed to occupant-

related activities and systems, including small power systems, catering, IT, lifts 

and DHW. The remaining electricity use was observed to be consumed by the 

building and was split between lighting systems (28% to 30%) and HVAC 

systems (16% to 19%).  

An unidentified load accounting for 27% to 32% of the total electricity 

consumption was observed and reflected primarily small power use as well as 

lighting of the first two levels’ spaces including the communal areas of these 

levels and the LAN room. Figure 63 provides a graphical view of the variation 

of the electricity use of these end uses by month and includes estimates of 

where this unidentified load was likely to have gone.  

The highest intensity electricity consumers per m2 per annum were observed 

to be occupant related activities, and were the Catering: Limited Hot Food 

Preparation Areas, Storage Area/Cupboards, IT: LAN Rooms, Toilets, 

Circulation areas and Lifts. Comparison of the years 2012 to 2015 showed only 

small differences in the ranking of electricity use according to activity with the 
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Figure 63: CS2 Monthly electricity consumption (kWh) by end use (left) and Breakdown of HVAC electricity use per HVAC system 
(kWh)(right) 
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Figure 64: Breakdown of CS2 annual electricity use (kWh/m2) by activity for 2014 and 2015 (left) and Breakdown of activities floor 
area (right)
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Figure 65: CS2 AHU monthly electricity use (kWh) 

exception of 2013 when the meeting rooms exceeded the catering areas 

(Figure 64). 

Amongst the HVAC systems, the highest intensity electricity consumers were 

observed to be the AHUs accounting for approximately 75% to 85% of the 

HVAC total electricity consumption with the cold generators (12% to 16%) and 

the pumps following (3% to 12%), as presented in Figure 63.  

The main AHUs (1&2), as well as the AHUs serving the first, second and top 

floors (AHUs 6,3,8) were observed to be the highest intensity electricity 

consumers among the AHUs. The lowest intensity electricity consumer was 

observed to be AHU9, as presented in Figure 65. 

The third floor was found to be the highest intensity electricity consumer per 

floor area accounting for a fifth of the total annual electricity consumption per 

m2 in 2014 and increasing its merit to 50% in 2015, followed in descending 

order by the circulation spaces, lifts, L0, L11, L4 and L2. 
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On average 36% of the building’s electricity use appeared to take place during 

out of hours (17:00-07:00 Mon-Fri & weekends), with a third of this out of hours 

use occurring during weekends (Figure 66).  

 

Figure 66: CS2’s Electricity Use (kWh) by time band  

The energy flows of CS2 are illustrated using Sankey diagrams in  

Figure 67 and  

Figure 68. 
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Figure 67: Energy Flows in CS2 per year starting from 2012 (left) to 2014 (right) 
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Figure 68: Energy Flows in CS2 per year starting from 2013 (left) to 2015 (right)  
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5.3.2 Energy Savings 

According to the results of this investigation, CS2, a retrofitted building, 

improved its electricity and gas use overtime to demonstrate good or typical to 

good performance according to industry and experimental benchmarks, 

starting three years following the implementation of a metering strategy (end of 

2006), as presented in Table 35.   

Energy End 
of 

Use Savings to previous year 

Electricity 2006 173.5 kWh/m²·a - 

2007 156.5 kWh/m²·a ~ 17 kWh/m²·a (~ 10%) 

2008 163.5 kWh/m²·a ~ -7 kWh/m²·a (~ 5%) 

2009 151.5 kWh/m²·a ~ 12 kWh/m²·a (~ 7%) 

2010 144.1 kWh/m²·a ~ 7.4 kWh/m²·a (~ 5%) 

2011 119 kWh/m²·a ~ 25.1 kWh/m²·a (~ 17%) 

2012 119.4 kWh/m²·a ~ -0.4 kWh/m²·a (~ 0%) 

2013 117.6 kWh/m²·a ~ 2 kWh/m²·a (~ 2%) 

2014 109.3 kWh/m²·a ~ 8 kWh/m²·a (~ 7%) 

2015 104.6 kWh/m²·a ~ 5 kWh/m²·a (~ 4%) 

Fossil 
Fuel 

2012 109.2 kWh/m²·a - 

2013 87.2 kWh/m²·a ~ 22 kWh/m²·a (~ 20%) 

2014 81.7 kWh/m²·a ~ 6 kWh/m²·a (~ 6%) 

2015 106.6 kWh/m²·a ~ -25 kWh/m²·a (~ 30%) 

Water 2012 8.8 m3/m²·a - 

2013 8.6 m3/m²·a ~ 0.3 m3/m²·a (~ 3%) 

2014 8.7 m3/m²·a ~ -0.2 m3/m²·a (~ 2%) 

2015 5.9 m3/m²·a ~ 2.9 m3/m²·a (~ 33%) 
 

Table 35: Energy Savings per annum in CS2 

CS2’s annual Electricity consumption was observed to have reduced 

noticeably since the implementation of its metering strategy. Since Nov06, the 

rolling annual electricity use was observed to have reduced from a peak of 175 

kWh/ m²·a to approximately 99.5 kWh/m²·a in Dec15 following a less linear 

trend, as presented in Figure 69 which shows one year’s data summed up to 

the end of the month shown. This represented a reduction of 43% (75.5 

kWh/m²·a) from the peak.  

CS2’s annual Gas use presented reductions to the end of 2014 followed by a 

noticeable increase in 2015. From Dec12 the rolling annual natural gas use 

was observed to have reduced from a peak of 109 kWh/m²·a to approximately 
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78 kWh/m²·a in Nov14 following a less linear trend. This represented a 

reduction of 29% (31 kWh/m²·a) from the initial peak. Following this steep 

decrease, the results of this investigation suggest that an increase of 

approximately 37% (29 kWh/m²·a) took place between Nov14 and Dec15 as a 

result of colder conditions recorded during the winter period of 2014-2015, as 

presented in Figure 70 below. 

 

Figure 69: CS2 Average Rolling Annual Electricity Consumption (kWh/m2) 

 

Figure 70: CS2 Average Rolling Annual Gas Consumption (kWh/m2) 
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CS2’s performance with regard to Water use was observed to have remained 

fairly the same between Dec12 to Dec14 when it started to increase gradually 

to the end of 2015 by approximately 58 m3/m²·a. The results of the water use 

are illustrated in Figure 71. 

 

Figure 71: CS2 Average Rolling Annual Water Consumption (m3/m2) 

The results of this investigation for the period 2012 to 2015 suggest that out of 

the total electricity savings achieved, improvements on lighting accounted for 

approximately a third (32.7%) and on small power for approximately fifth 

(20.3%) in addition to reductions on the remaining balance linked to the small 

power and lighting loads of the first two floors which accounted for 23.4% of 

the total savings. Overall, reductions in lighting and small power loads were 

observed to account for more than two-thirds (76.4%) of the total savings 

achieved. The remaining improvement was found to have been achieved in 

HVAC systems (23.6%), mainly by reducing AHU electricity use which 

accounted for 18.4% of the total savings during the same period (Figure 72). 
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Figure 72: CS2 Annual Electricity Use (kWh) by End Use for the period 2012 
to 2015 

5.3.3 Indoor Environment Quality 

The Indoor Environmental Quality assessments checked the environmental 

conditions provided throughout CS2, and gave confidence that energy 

efficiency was not being achieved at the expense of IEQ.  

The results of this report refer to the IEQ data collected for the period Jun11 to 

Dec15. Data for this period were collected from two mobile Indoor Air Quality 

kits and from field measurements repeated once from spring to autumn. Very 

few room temperature sensors actually stored data, and where they did, they 

stored the averaged dry bulb temperature of all levels which could not be used 
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within the context of this research. Therefore, only the spaces on the 5th and 

11th floors in which the mobile Indoor Air Quality kits were installed could be 

fully commented on.  

The monitored IEQ parameters were assessed against both Health & Safety 

as well as Comfort Criteria presented in the Chapter 4.  

The figures presented in this paragraph show the monthly breakdown of the 

indoor temperature in selected spaces. The y axis represents the count of 10’ 

intervals recorded by the selected sensor. 

In general, the IEQ in the building was acceptable over the year. The main 

findings relating to areas which may be improved. 

With regard to the Health and Safety criteria, 5th floor spaces for which data 

was collected were observed to have faced challenges in maintaining 

temperature conditions meeting the WHO standards during the summer 

months as they remained outside these standards for 65% to 85% of the 

monitored period during working hours (Figure 73). Spaces on the 11th floor 

were observed to have faced a similar problem but at a smaller scale. 

 

Figure 73: CS2 5th Floor, Area 5.10 SW - monthly breakdown of temperature 

The monitored spaces on the 5th and 11th floors (Figure 74) were found to 

have maintained conditions under the optimum humidity levels set by CIBSE 
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and ASHRAE (40% to 60%), for most of the working hours during the period 

Dec14 to May 15, with Relative Humidity conditions improving following this 

period, yet remaining on the lower side of the CIBSE optimum Relative 

Humidity band. 

 

 

Figure 74: CS2 5th Floor, Area 5.10 SW (top), 11th Floor, Area 11.13 (bottom) 
- monthly breakdown of relative humidity (%).  

With regard to the CO2 concentrations, the monitored spaces were observed 
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standards throughout the working hours (<1000ppm). The same spaces also 

maintained healthy indoors conditions with regard to VOC concentrations, 

which abide by Mølhave scale.  

With regard to the Comfort criteria, monitored spaces on the 5th floor were 

observed to have maintained conditions within the operational temperatures 

recommended by ASHRAE Standard 55 – 2010 for approximately 60% to 

100% of the monitored time throughout the year, with the exception of Jun15 

and Oct15 when this percentage dropped 50% approximately to. The seminar 

room on the 11th floor was observed to have maintained conditions within the 

operational temperatures recommended by ASHRAE Standard 55 – 2010 for 

approximately 55% to 90% of the monitored time throughout the year, apart 

from warmer months when cooler temperatures were recorded for the clear 

majority of the monitored time (Figure 75). 

 

Figure 75: CS2 5th & 11th Floors – Percentage of Time space temperature was 
within ASHRAE temperature comfort criteria during opening hours. 

From Oct14 to Nov15, during work hours, the SW area of the open plan office 

on the 5th Floor and the Seminar room on the 11th floor were observed to be 

within the CIBSE temperature comfort criteria on average 30% to 40% of the 

monitored time with this percentage increasing during some of the spring and 

the summer months. The Southern area of the open-plan office on the 5th Floor 
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showed a similar trend and remained within the CIBSE temperature comfort 

criteria for approximately 40%-50% of the monitored time increasing to 

approximately 85% in Jun15. It must be noted that CIBSE comfort temperature 

standards comprise lower temperature ranges compared to ASHRAE 

standards for both winter and summer. Therefore, the building appeared to 

abide more by the ASHRAE winter comfort standards as it maintains higher 

temperature conditions than CIBSE standards during that period, with the 

opposite phenomenon observed in summer when the building maintains cooler 

conditions that those indicated by ASHRAE standards. Figure 76 compares the 

percentage of time for each month during which the temperature of the 

monitored were within the recommended CIBSE temperature comfort criteria. 

These findings were supported by the field measurements taken for spring, 

summer and autumn. It must be noted it was not feasible to gather field 

measurements during the winter period (November to February 2015), as a 

result of miscommunication with the management. Therefore, there was an 

absence of data regarding the light and noise levels during winter. However, 

taking in consideration that the building relied entirely on mechanical ventilation 

and artificial lighting, and that no changes in occupancy took place during that 

season, it was assumed the performance of these environmental parameters 

would not present any significant changes compared to the remaining seasons. 

Most of the field measurements taken across the 5th and 11th floors were 

observed to be within the CIBSE temperature comfort criteria during spring and 

summer, with a small number exceeding the WHO Temperature Limit. 

Conversely, during autumn, most measurements were observed to be above 

the CIBSE comfort range throughout the day.  
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Figure 76: CS2 5th & 11th Floors – Percentage of Time space temperature was 
within CIBSE temperature comfort criteria during opening hours. 

Relative humidity field measurements also showed that indoor conditions in 

monitored spaces were within the optimum humidity levels set by CIBSE and 

ASHRAE comfort standards during summer and autumn work hours, apart from 

measurements recorded after 3pm on the 5th floor during the summer field 

measurement. Conversely, measurements taken during spring were found to 

be below the optimum humidity levels set by CIBSE and ASHRAE comfort 

standards (Figure 77). Furthermore, air movement greater than 0.15m/s, 

considered a draught according to CIBSE Guide A, was observed during warm 

days in specific locations under air vents. The phenomenon was observed to 

have been less frequent on the 5th floor and during morning hours, increasing 

in intensity after noon, with field measurements in small sized meeting rooms 

and 11th floor work spaces located under vents reaching on average up to 

1.8m/s on sampled warm days. 

Lighting conditions, on average, were found to be within the optimum SLL Code 

of Lighting comfort range in monitored areas, while the opposite was observed 

during summer.  
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During spring and summer, monitored spaces presented a mix of noise level 

measurements which were either within or above the comfort criteria set by 

CIBSE. Conversely, in Autumn, all measurements were observed to be above 

the CIBSE Comfort Criteria, yet remaining significantly lower than the UK Work 

Regulations Upper limit. Figure 78 presents the minimum field measurements 

collected for the sound pressure levels during the autumn survey, clustered by 

level and adherence to CIBSE comfort criteria.  

 

 

Figure 77: CS2 Spring Field Measurements – Relative Humidity (%) 
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Figure 78: CS2 Autumn Field Measurements – Sound Pressure Levels (dBA)  

5.3.4 Occupant-Perceived Satisfaction with 

the Indoor Environment 

The Occupant Survey was undertaken to see if Occupant Satisfaction reflected 

the IEQ and energy performance of CS2.  

The findings refer to the responses collected during the period Mar15 to Nov15 

from staff and visitors. During this period, the survey was taken by 15 to 27 staff 

members per season, and by a total 30 visitors (Figure 79). The distribution of 

respondents across the 5th floor and the demographic factors mirrored the 

actual distribution well of the total CS2 staff at the 5th floor for each season the 

survey was taken. Thus, the sample was adequately representative for this 

level. This was the case for the 11th floor staff, except for the winter survey, 

which a small number of staff members working on this floor took. Furthermore, 
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no data was available to make this judgement regarding the visitor’s survey. 

However, based on the personal experience accumulated while surveying the 

building and attending training sessions in it, the sample was too small 

compared to the number of visitors attending seminars on the 11th floor.  

 

Figure 79: CS2 Occupant Survey – Respondents by Season 

Overall, both visitors and staff expressed satisfaction with all general Building 

aspects apart from the aspects of image and energy efficiency. However, 

according to the negative reviews submitted by staff and visitors, there was 

room for improvement with regard to many aspects of the General Building and 

Work Area conditions. 

Figures 80 to 82 and Tables 36 to 38 show the mean satisfaction of 

respondents with the general building aspects, the building indoor conditions 

and the specific work area conditions respectively. These figures use a traffic 

light system which is explained in each table under the “Scale” column. The 

tables also present the median ( ), response sample size (N), variance (VAR) 

and percentage of negative reviews (NR) for each aspect. 

In general, visitors were more positive than staff in their reviews of most 

aspects of the building and its conditions, potentially reflecting the visitors’ more 

positive view of the building’s design as well as just the internal conditions 

provided. With regard to the General Building conditions, the overall thermal 
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comfort, air freshness, well-being and productivity were rated negatively by 

staff. Regarding the specific work area conditions, both groups expressed 

neutral views with regard to the air freshness, air moisture and negative reviews 

with regard to outdoors noise. On average, staff respondents rated more 

negatively to the ventilation, the air temperature, and the noise, whereas 

visitors rated more negatively to the artificial light, compared to staff. 

 

Figure 80: CS2 Mean Satisfaction Ratings with the Building Overall 

 

Aspect Scale Staff Visitors 

Safety  -2  = very unsafe 
  0 = average 
+2 = very safe 

= 2.00, N = 79, 

SD = 0.71,  

1.3% NR 

= 2.00, N = 28, 

SD = 0.64,  

0% NR 

Cleanliness -2  = very dirty 
  0 = average 
+2 = very clean 

= 1.00, N = 79, 

SD = 1.12,  

21.3% NR 

= 1.00, N = 30, 

SD = 0.61,  

0% NR 

Street 
Access 

-2  = very difficult 
  0 = average 
+2 = very easy 

= 2.00, N = 79, 

SD = 0.70,  

0% NR 

= 1.00, N = 29, 

SD = 0.87,  

3.3% NR 

Layout -2  = very difficult 
  0 = average 
+2 = very easy 

= 1.00, N = 79, 

SD = 0.89,  

5% NR 

= 0.00, N = 29, 

SD = 0.99,  

13.3% NR 

Vertical 
Circulation 

-2  = very difficult 
  0 = average 
+2 = very easy 

= 1.00, N = 79, 

SD = 0.89,  

7.5% NR 

= 1.00, N = 30, 

SD = 0.84,  

6.7% NR 

Horizontal 
Circulation 

-2  = very difficult 
  0 = average 
+2 = very easy 

= 1.00, N = 79, 

SD = 0.81,  

3.8% NR 

= 1.00, N = 30, 

SD = 0.79,  

3.3% NR 
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Aspect Scale Staff Visitors 

Image -2  = very poor 
  0 = neutral 
+2 = very good 

= 0.00, N = 79, 

SD = 1.16,  

41.3% NR 

= 0.00, N = 29, 

SD = 1.04,  

36.7% NR 

Energy 
Efficiency 

-2  = not very energy 
efficient 
  0 = efficient 
+2 = very energy 
efficient 

= 0.00, N = 79, 

SD = 1.13,  

48.8% NR 

= 0.00, N = 30, 

SD = 0.98,  

40% NR 

Table 36: CS2 Mean Satisfaction Ratings with the Building Overall 

 

 

Figure 81: CS2 Mean Satisfaction with General Building Indoor Conditions 

 

Aspect Scale Staff Visitors 

Overall 
Thermal 
Comfort 

-2  = very 
unsatisfactory 
0 = neither satisfactory 
or unsatisfactory 
+2 = very satisfactory 

= -1.00, N = 79, 
SD = 1.27,  

53.8% NR 

= 1.00, N = 29, 
SD = 0.99,  

13.3% NR 

Overall Air 
Freshness 

-2  = very 
unsatisfactory 
0 = neither satisfactory 
or unsatisfactory 
+2 = very satisfactory 

= -1.00, N = 79, 
SD = 1.27,  

51.3% NR 

= 0.00, N = 30, 
SD = 1.2,  

33.3% NR 

Over 
Lighting 

-2  = very 
unsatisfactory 
0 = neither satisfactory 
or unsatisfactory 
+2 = very satisfactory 

= 1.00, N = 79, 
SD = 1.01,  

17.5% NR 

= 1.00, N = 29, 
SD = 1.1,  

16.7% NR 
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Aspect Scale Staff Visitors 

Overall 
Noise 

-2  = very 
unsatisfactory 
0 = neither satisfactory 
or unsatisfactory 
+2 = very satisfactory 

= 1.00, N = 79, 
SD = 1.13,  

17.5% NR 

= 1.00, N = 30, 
SD = 0.9,  

10% NR 

Well being -2  = decreases 
significantly 
0 = neutral 
+2 = increases 
significantly 

= -1.00, N = 79, 
SD = 0.88,  

51.3% NR 

= 0.00, N = 29, 
SD = 0.97,  

13.3% NR 

Productivity -2  = decreases 
significantly 
0 = neutral 
+2 = increases 
significantly 

= 0.00, N = 79, 
SD = 0.96,  

37.5% NR 

= 0.00, N = 30, 
SD = 0.91,  

16.7% NR 

Satisfaction 
– Meet 
Working 
needs 

-2  = very 
unsatisfactory 
0 = neither satisfactory 
or unsatisfactory 
+2 = very satisfactory 

= 0.00, N = 79, 
SD = 1.05,  

37.5% NR 

= 1.00, N = 30, 
SD = 0.98,  

6.7% NR 

Satisfaction 
– Overall 
Rating 

-2  = very 
unsatisfactory 
0 = neither satisfactory 
or unsatisfactory 
+2 = very satisfactory 

= 0.00, N = 79, 
SD = 1.07, 42.5% 
NR 

= 1.00, N = 30, 
SD = 1.09, 10% 
NR 

Table 37: CS2 Mean Satisfaction with General Building Indoor Conditions 

 

 

Figure 82: CS2 Mean Satisfaction with Specific Work Area Conditions 
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Aspect Scale Staff Visitors 

Air Quality – 
Air Freshness 

-2  = very stale 
0 = neutral 
+2 = very fresh 

= 0.00, N = 79, 
SD = 1.05,  

38.8% NR 

= 0.00, N = 29, 
SD = 1.05,  

30% NR 

Air Quality – 
Air Moisture 

-2  = too humid 
0 = neutral 
+2 = too dry 

= 0.00, N = 79, 
SD = 0.97,  

52.5% NR 

= 0.00, N = 30, 
SD = 0.79,  

50% NR 

Ventilation -2  = very draughty 
0 = neutral 
+2 = very stagnant 

 = -1.00, N = 79, 
SD = 1.14,  

68.8% NR 

= 0.00, N = 30, 
SD = 0.91,  

56.7% NR 

Air 
Temperature 

-2  = too cold 
0 = neutral 
+2 = too hot 

= -1.00, N = 79, 
SD = 1.1,  

70% NR 

= 0.00, N = 30, 
SD = 0.92,  

53.3% NR 

Outdoors 
Noise 

-2  = very 
significantly 
0 = somewhat 
significantly 
+2 = no 

= 2.00, N = 79, 
SD = 0.89,  

25% NR 

= 1.00, N = 30, 
SD = 1.14,  

30% NR 

Indoors Noise -2  = very 
significantly 
0 = somewhat 
significantly 
+2 = no 

= 0.00, N = 79, 
SD = 1.32,  

62.5% NR 

= 1.00, N = 30, 
SD = 1.23,  

43.3% NR 

Natural Light -2  = too low 
0 = satisfactory 
+2 = too high 

= 0.00, N = 79, 
SD = 0.66,  

27.5% NR 

= 0.00, N = 30, 
SD = 0.96,  

53.3% NR 

Artificial Light -2  = too dim 
 0= satisfactory 
+2 = too bright 

= 0.00, N = 79, 
SD = 0.56,  

18.8% NR 

= 0.00, N = 30, 
SD = 0.73,  

50% NR 

Table 38: CS2 Mean Satisfaction with Specific Work Area Conditions 

Finally, staff respondents submitted several comments regarding the 

environmental conditions at CS2, highlighting specific issues that appeared to 

affect them.  

Most comments from staff on the 5th floor focused on temperature differences 

across the level. They noted that during cold months the offices at this level 

could be very cold and draughty at the beginning of the week progressing to 

stuffy during the afternoon and developing into warm and humid by the end of 

the week. During warm weather, it was communicated that the same areas 
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could be too hot. Overall, most respondents from the fifth-floor reported 

temperature variations across levels and zones creating discomfort. 

With regard to the ventilation and air quality, a few comments noted the lack of 

fresh air especially on hot days, which also contributed to a feeling of insanitary 

work conditions which allow easier transmission of illness among staff 

members on the fifth floor. More comments focused on the ventilation being 

draughty and the air becoming dry on the same floor. 

Most comments from staff members on the 11th floor expressed struggles with 

the shortcomings of an air-conditioned building. All comments refer to the 

perceived negative effect that temperature variations and poor air quality have 

on their productivity and health.  

Respondents also expressed the view that the temperature was either high with 

the air being stale creating a dry and stuffy environment, or too cold and 

draughty especially for those sat under air vents. A few respondents expressed 

their wish to be able to open windows in order enjoy some fresh air and improve 

their environment.  

Respondents also mentioned that the temperature could be too high in the 

training rooms leading them to request the Estates to modify the AC operation. 

One respondent stated the Bay and Board training rooms were the most 

challenging spaces as they tend to overheat during summer with the HVAC 

system not being able to address these challenges.   

A few comments also referred to the lack of individual controls for the 11th floor 

and the lack of responsiveness to complaints which added to their 

dissatisfaction with the environmental conditions in the building. Other factors 

that appear to add to the general dissatisfaction was that the building was 

viewed as old, dated and “bland”, with occasional water leaks and flies’ 

infestation. 

“Quite frankly, the building does not feel 'healthy' and I feel that my 

health suffers from the lack of fresh air and the fluctuating 

temperature.” 
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Only three open ended comments were submitted by visitors. The comments 

included dissatisfaction with the building’s cleanliness by a visitor who stated 

was working as a staff member at CS2, dissatisfaction with the air at the stairs 

area which was characterised as stale, dissatisfaction with the air freshness 

and level of daylight, and observations on the variable conditions in the building 

which appear to be dependent on location and independent of outside climate 

conditions. 

“No day is the same temperature-wise so hard to predict - appears to 

be no correlation with outside temperature.” 

5.3.5 Discussion 

The results of this investigation suggest that since 2006, CS2 continuously 

improved its electricity use over time to now demonstrate “Good” performance 

according to the iSERV benchmarks. In Figure 83, the total annual building 

electricity consumption (kWh/m2) for every year from 2006 to 2015 was 

projected and compared to the CIBSE TM46, CIBSE Guide F and Better 

Building Partnership 2015 real estate environmental benchmarks. It was 

observed that the overall annual performance of CS2 improved significantly 

from 2006 to 2015 by approximately 40% (69 kWh/m2), an improvement 

observed every year compared to the previous, apart from 2008 and 2012. 

Interestingly, although the annual electricity use of CS2 decreased over time, 

it remained over the CIBSE TM46: 2008 benchmark for general offices. 

However, this benchmark was not adjusted according to weather and 

occupancy.  In contrast, the annual electricity consumption remained lower 

than the better building partnership 2015 real estate environmental 

benchmarks. Similarly, it was lower compared to the CIBSE Guide F electricity 

benchmarks.  Since 2010, approximately three years after the implementation 

of its metering strategy, CS2’s electricity operational performance improved 

into the iSERV’s “Good” benchmark. 
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Figure 83: CS2 Comparison of Total Annual Building Electricity Consumption 
(kWh/m2) to existing benchmarks 

The results of this investigation suggest that the building’s total improvement 

was the result of a number of targeted actions comprising during earlier years 

the implementation of an Eco-champions network to reduce out-of-hours small 

power electricity use, the gradual removal of CRT screens which contributed to 

internal gains, the replacement of chillers, inverter drives and motors to the 

main AHU, and improvements to the chiller and ventilation control. The 

replacement of CRT screens and installation of LED lighting allowed for a 

reduction of cooling loads and subsequent optimisation in the cooling plant. 

Later changes comprised the adjustment of the HVAC plant, the ongoing 
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replacement of CRT screens with LED screens, the additional improvement in 

the lighting as well as the continuation of the ECO champions program. 

As presented in Figure 84, during the period 2012 to 2015, out of the total 

electricity savings achieved, improvements on lighting accounted for 

approximately a third (32.7%) and on small power for approximately a fifth 

(20.3%), in addition to reductions on the remaining balance linked to the small 

power and lighting loads of the first two floors which accounted for 23.4% of 

the total savings. Overall, reductions in lighting and small power loads were 

observed to have accounted for more than two-thirds (76.4%) of the total 

savings achieved. The remaining improvement was observed to have been 

achieved in HVAC systems (23.6%), mainly by reducing AHU electricity use 

which accounted for 18.4% of the total savings during the same period.  
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Figure 84: CS2 Electricity Reductions by End Use for each year during the 
period 2012-2015. 
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To the end of 2015, the electricity use of the cold generators, air handling units 

and pumps was observed to be better than the associated ECON 19 

benchmarks for AC offices (Figure 85). Comparing the Small Power and 

Lighting Electricity use to the associated ECON 19 benchmarks, it was 

observed that its small power use was better than the good practice for AC 

office buildings, whereas its lighting use was between the good and typical 

practice for AC office buildings (Figure 86).  

 

Figure 85: Comparison of CS2 Total Annual HVAC Electricity Consumption 
(kWh/m2) to existing benchmarks 
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Figure 86: Comparison of CS2 Total Annual Lighting & Small Power Electricity 
Consumption (kWh/m2) to existing benchmarks 
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reductions in approximately a quarter of these systems. All HVAC system were 

either performing “Good” (75%) or “Average” (25%) signifying efficient 

management. 

 

Figure 87: Individual CS2 HVAC system performance summary to the end of 
2015 

Overall, since 2012, reductions were observed to have been achieved in the 

electricity use of Air Handling Units and Lighting systems by 23% and 9% 

respectively to end of 2015, as a result of better control and scheduling. Further 

savings in lighting electricity use were limited as the building does not make 

use of daylighting and was completely reliant of artificial lighting, despite 

daylight availability. Therefore, its lighting electricity use was found to be 

uninfluenced by the local sunshine hours, as demonstrated in Figure 88. 
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Figure 88: Comparison of CS2 Lighting Electricity Use (kWh) to Sunshine 
Hours. 

The results of this investigation suggest that the electricity use of Pumps 

doubled during the period 2012 to 2015 as a result of the increase in heating. 

Similarly, the annual consumption of Cold Generators was found to have 

increased by approximately 34% between 2012 and 2014, to decrease by an 

equal amount (33%) the year after owing to cooler conditions observed during 

the summer period of 2015, as demonstrated in Figure 89.   

 

Figure 89: Comparison of CS2 Cooling Electricity Use (kWh) to Cooling Degree 
Days. 
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By the end of 2015, the facility managers were reported to have been 

countering an ongoing increase in occupancy which reached 50% in 2016, 

compared to figures from the start of 2010. The results of this investigation 

suggest that this occupancy increase had an immediate effect in catering 

electricity use, which in turn increased dramatically during the period 2013 to 

2015. In 2015, the comms25 room was equipped with an additional server and 

back up supply which was expected to impact the building’s electricity use in 

2016. In parallel, improvements on lighting systems were reported to have 

continued past the end of 2015, with the completion of the installation of LED 

lighting on 5F and the implementation of stricter time controls in lighting 

systems and catering boilers. 

The electricity use of the catering areas on the first three floors was observed 

to have decreased by 66% between 2012 and 2013, only to increase by 162% 

in 2013-2014 and by 318% in 2014-2015. According to interviews with the 

facility management, these increases were suspected to be the result of the 

installation of a new Air Conditioning unit in the main kitchen on the third floor 

as well as the result of the gradual increase in occupancy in the building. The 

comms room was observed to have decreased its electricity use by 51% in 

2013-2014 and by 44% in 2014-2015, owing to the turning off of the air-

conditioning (dry coolers) in the room. 

On average 36% of the building’s electricity use was found to have taken place 

during out of hours (17:00-07:00 Mon-Fri & weekends), with a third of this out 

of hours use occurring during weekends, indicating potential further 

opportunities for energy reductions during this period. The building systems’ 

carpet plots provided evidence of CS2’s structured and strict management 

(Figure 90). 

                                                 
25 A comms room is a shared space which houses communication and 
network small devices for a building, such as servers and routers. 
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Figure 90: Carpet Plots for CS2 Main Incomer.  

Figure 91 presents the total annual building gas consumption (kWh/m2) for 

every year from 2011 to 2015, compared to the CIBSE TM46, ECON19, BBP 

2015 and CIBSE Guide F benchmarks. What was observed was there was a 

significant reduction in gas consumption of approximately 20% and 25% in 

2013 and 2014 respectively, and a smaller reduction of approximately 2% in 

2015 compared to 2012. Overall, the gas consumption was found to have 

reduced from 2012 to 2014, and increased in 2015 by approximately 30% 

compared to the previous year. It was observed that the 2013 and 2014 annual 

gas consumptions of CS2 were lower than all benchmarks except for BBP 2015 

Good Practice benchmarks for AC offices. In 2012 and 2015, its gas use was 

higher than the ECON 19, BBP 2015 and CIBSE Guide F good practice 

benchmarks for AC offices.  CS2’s gas operational performance varied 

between iSERV’s “Good” and “Average” benchmarks to the end of the data 

used in this report.  
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Figure 91: Total CS2 Annual Building Gas Consumption (kWh/m2) 
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Figure 92: Comparison of CS2 Gas Use (kWh/m2) to Heating Degree Days. 
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ended comments from staff on the 5th floor focused on colder conditions 

observed at the start of the week during winter, overheating during summer 

months, draughty ventilation and dry conditions creating discomfort. Open-

ended comments from staff on the 11th floor focused on overheating, especially 

in meeting rooms, stale and dry conditions as well as chill and draughty 

conditions for those located under the air vents. 

 

Figure 93: CS2 Staff Satisfaction with General Building and Specific Work 
Areas Indoor Conditions. 

However, Occupant Surveys also provided evidence of the occupants’ 

dissatisfaction with the building’s design, image and energy efficiency. 

According to the survey responses and separate interviews with staff members 

from both levels, occupants expressed struggles with the shortcomings of an 

air conditioned open plan office building, which they felt had a negative effect 
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to their productivity and wellbeing. The results of this investigation suggest that 

these perceptions were further aggravated by additional factors noted by staff 

members, mainly the lack of individual controls, the perceived absence of 

management responsiveness to complaints, and the general perception of the 

building being outdated and “bland”. These findings indicated an overall lack of 

tolerance towards the building’s performance. 

Overall, the results of this investigation demonstrated how a refitted building 

that was not designed to be low energy, could also achieve acceptable energy 

efficiency through targeted actions. Notwithstanding its old age and refit, the 

targeted HVAC, lighting and small power improvements along with the tight 

control exercised by the management team in combination with university led 

actions to reduce out-of-hours small power electricity use, allowed the building 

to improve its performance to reach levels better than those of typical practice.  

The final objective of this research was to quantify the influence of the case 

studies’ stakeholders in building energy performance. Although it was not 

feasible to quantify the influence of the architect’s design decisions on the water 

use due to the lack of sub metering which would allow for the collection of 

appropriate data, this objective was completed for the electricity and heat use 

of the selected case studies.  

The influence held by the architect and the facility management were 

challenging to precisely quantify in absence of a matrix setting out who is 

responsible for designing each aspect of the case studies, such as the Design 

Responsibility Matrix and Schedule of Services documents described in the 

RIBA Plan of Work 2013. For example, in the case of the architect's influence, 

there were grey areas related to the control of lighting systems the influence of 

which could be attributed to either the architect or facility management. In 

paragraph 4.2, this study suggested which parts of the energy use of a design 

the architect could be considered responsible for. The influence exercised by 

the architect on the energy use of a building was presented in the form of a 

range of potential influence. In the case of the facility management's influence, 

the achieved savings were used as a quantitative indicator along with the 
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attitudes expressed regarding the building's management, a measure of 

qualitative nature.  

The results of this investigation suggest that targeted management actions and 

tight control resulted to electricity savings of approximately 40% since the last 

peak observed in November 2006 to the end of 2015 (Figure 69), and gas 

savings of up to 26% observed between January 2013 to the end of 2014 

(Figure 70). The respective year to year savings ranged between 2% and 17% 

for electricity use during the period 2006 to the end of 2015, and between 6% 

and 20% for gas heat use during the period 2013 to the end of 2014 (Table 35).  

Considering an architect’s design decisions can influence what CS2 consumed 

to maintain indoor conditions including all lighting during daylight opening 

hours, the results of this investigation suggest that the architect’s design 

decisions influenced approximately 43% to 47% of the total annual electricity 

use (Figure 94) and approximately between 94% to 97% of the heat energy 

use in CS2 ( 

Figure 95). Occupants were observed to influence approximately between 39% 

and 43% of the total electricity use and approximately between 3% and 6% of 

the heat energy use in CS2. 

 

Figure 94: CS2 Annual Energy Use Breakdown By Stakeholder for the years 
2012 to 2015. 
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Figure 95: CS2 Annual Heat Energy Use Breakdown By Stakeholder for the 
years 2012 to 2015. 
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Table 39 presents the potential influence of an architect’s design decisions on 

CS2’s total lighting electricity use, total HVAC electricity and heat use during 

the period 2012 to the end of 2015. It was observed that the architect’s design 

decisions influenced approximately two thirds of the CS2’s lighting electricity 

use, and approximately 55% to 87% of the HVAC electricity use. Furthermore, 

the architect’s monthly influence on the total heat use of CS2 during non-

Summer months was observed to vary from around 70% to approximately 99%. 

Although the total energy use of the building reduced during warmer months, 

the architect’s influence on the lighting electricity use was observed to remain 

the same throughout the year. This is the result of CS2 not designed to make 

use of daylight hence maintaining the same artificial lighting needs throughout 

the year. In contrast, the architect’s influence on the building’s heat use was 

observed to follow the building’s total heat energy use trends as heat loads 

reduced to almost 0 during the summer. With regard to the architect’s influence 

on the HVAC electricity use, it was observed that this influence slightly reduced 

during warmer months and a significant increase of this influence occurred on 

September 2014 and between December 2014 and March 2015 as a result of 

a parallel increase in AHU electricity use during the same months. 

 

Potential influence of architect’s design decisions (%) on various aspects of 
CS2 energy  

 Lighting 
Electricity Use 

HVAC Electricity 
Use 

Heat Use 

Jan-12 66.5% 65.4% 97.7% 

Feb-12 66.5% 66.2% 98.5% 

Mar-12 66.6% 68.5% 97.8% 

Apr-12 66.6% 67.1% 98.1% 

May-12 66.6% 63.4% 96.3% 

Jun-12 66.6% 54.8% 0.6% 

Jul-12 66.6% 65.3% 0.0% 

Aug-12 66.6% 64.1% 14.3% 

Sep-12 66.6% 57.2% 75.1% 

Oct-12 66.6% 63.9% 96.7% 

Nov-12 66.6% 69.2% 97.9% 

Dec-12 66.5% 69.7% 98.9% 

Jan-13 66.5% 72.4% 98.0% 

Feb-13 66.6% 73.6% 98.0% 

Mar-13 66.6% 67.7% 96.9% 

Apr-13 66.6% 65.7% 97.2% 
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May-13 66.6% 60.8% 90.9% 

Jun-13 66.6% 54.6% 0.0% 

Jul-13 66.6% 62.6% 0.0% 

Aug-13 66.6% 60.7% 16.5% 

Sep-13 66.6% 56.7% 86.4% 

Oct-13 66.6% 58.8% 93.3% 

Nov-13 66.6% 61.6% 97.2% 

Dec-13 66.6% 63.1% 95.3% 

Jan-14 66.6% 63.9% 98.8% 

Feb-14 66.6% 64.5% 97.1% 

Mar-14 66.6% 63.0% 96.8% 

Apr-14 66.6% 55.0% 95.5% 

May-14 66.6% 64.5% 71.0% 

Jun-14 66.6% 67.6% 73.2% 

Jul-14 66.6% 68.2% 6.3% 

Aug-14 66.7% 66.7% 0.0% 

Sep-14 66.6% 86.7% 2.3% 

Oct-14 66.6% 70.7% 91.5% 

Nov-14 66.6% 76.8% 95.1% 

Dec-14 66.6% 83.2% 96.1% 

Jan-15 66.5% 85.7% 98.5% 

Feb-15 66.5% 81.9% 97.9% 

Mar-15 66.5% 80.6% 97.6% 

Apr-15 66.5% 73.5% 95.5% 

May-15 66.5% 77.6% 93.3% 

Jun-15 66.5% 68.2% 69.2% 

Jul-15 66.5% 72.7% 11.6% 

Aug-15 66.5% 69.6% 0.0% 

Sep-15 66.5% 61.3% 79.7% 

Oct-15 66.5% 75.9% 93.6% 

Nov-15 66.5% 75.5% 95.0% 

Dec-15 66.5% 72.7% 93.5% 

min 66.5% 54.6% 0.0% 

max 66.7% 86.7% 98.9% 

Table 39: Potential influence of architect’s design decisions (%) on various 
aspects of CS2 energy for the period 2012 to the end of 2015. 
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Figure 96: CS2 Monthly Energy Use Breakdown By Metered System and Stakeholder for the years 2012 to 2015 compared to 
Varying Climatic Condition.
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Chapter 6  

Discussion 

6.1 Introduction 

The purpose of this chapter is to discuss the principal findings of the conducted 

comparative case study investigation presented in Chapter 6. The specific 

objectives of this chapter are to: 

• present the principal case study investigation findings; and 

• interpret the principle case study investigation findings within the context 

of the research aim as well as within the context of past research. 

This chapter begins with the presentation of the principle case study 

investigation findings organised according to emerging themes and continues 

with reflection on the relation between these findings to the prevailing literature.  

6.2 Principal Case Study Research 

Findings 

6.2.1 Energy Efficiency Opportunities  

The results from this study indicated that both buildings achieved significant 

savings and managed to restrain the growth in their energy consumption while 

healthy indoor conditions were maintained. It would therefore seem that both 

buildings can be declared as energy efficient according to the International 

Energy Agency’s definition of the terms energy efficiency and energy efficient 

(IEA, 2014b). 

As discussed in Chapter 6, the significant savings since opening (Figure 97) 

were observed to have been achieved in CS1 primarily through better control 

of the most energy intensive end uses, and taking full advantage of the 

building’s design and innovative systems. In the case of CS1, savings were 

achieved by: 
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• Reducing small power electricity use - through reducing the power 

demand of idle PC stations. This accounted for 50% of the total 

electricity savings achieved; 

• Reducing lighting electricity use - through improving the control of 

lighting systems, installing LED lights on bookshelves, daylight-linked 

dimming controls in the library and office areas, removing personal 

controls, reverting lighting control to central management, and optimised 

control of external lighting. In total, these actions accounted for 

approximately 38% of the total electricity savings achieved; 

• Reducing HVAC electricity use - through improvements in the chiller, 

AHU fan inverters and pumps’ control, which accounted in total for 

approximately 12% of the total electricity savings achieved; 

• Increasing the use of Biomass – over the period this occurred the overall 

heat demand reduced by approximately 11%, accompanied by a gas 

use reduction of approximately 68% from 2014 to 2015. It is unclear that 

this heat demand reduction was influenced by the change of fuel type. 

• Harvesting rainwater when available to meet the building’s water use, 

which allowed the harvested rainwater to account for 43% of the total 

water use by the end of 2015. 
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Figure 97: CS1 Electricity Saving by end use during the period 2013 to 2015 

Additional savings were identified to have been achieved through the building’s 

innovative river water cooling system which uses the nearby river as a heat 

sink. Once operational initial problems related to river water abstraction were 

overcome, the system was detected to have saved the equivalent of 1.1% of 

the building’s total electricity use in 2015 compared to the energy consumed by 

the building cooling system during the first two years. This saving was observed 

to have been accompanied by a reduction in the chillers’ energy use of 

approximately 21% between the years 2014 and 2015. 

Notwithstanding improvements, to the end of 2015, the performance of 15% of 

electricity powered systems were detected to have needed checking according 

to the iSERV benchmarks, with the vast majority of these systems (77%) being 

Small Power systems and Lifts and the remaining being lighting systems. 

However, taking in consideration that a number of these systems either 

represent necessary essential systems left on out of hours or are under the 

control of occupants, the potential for additional savings among small power 
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systems was assumed to have been rather miniscule. Furthermore, despite the 

evidenced streamlined management exercised in the building, on average, 

30% of the building’s electricity use was revealed to have been taking place 

during out of hours, mainly as a result of this large array of essential systems 

left on.  

The IEQ assessments undertaken over a year showed that although the good 

energy efficiency being obtained was not at the expense of healthy indoor 

conditions, maintaining comfort conditions according to CIBSE guidance for the 

activities contained did present a challenge for some spaces due to the nature 

of their design. However, this did not seem to negatively impact visitors’ 

perceptions or enjoyment of the facilities provided. Notwithstanding the specific 

issues highlighted above, the POE surveys provided clear evidence of the 

occupants’ overall satisfaction with all building aspects and indoor conditions, 

although staff were slightly more critical compared to visitors possibly due to a 

reduction of the perceived control they had, combined with the conditions being 

provided. Consistent with the IEQ field measurements undertaken, local issues 

with ventilation, relative humidity, air temperature, and lack of personal controls 

in specific work areas were noted in the POE surveys. Indoor noise levels were 

identified as an issue by all occupants. However, issues regarding the 

uniformity of indoor conditions and the transfer of noise are common in the 

modern open plan natural ventilated buildings are believed to exemplify in this 

research the inevitable design trade-offs found in open plan mixed-mode 

buildings when occupied by real people.  

At the point of writing this thesis, CS1’s management fully understood how to 

control their building performance and was addressing how to manage the 

trade-offs between consumption and comfort. In the author’s opinion, it is likely 

that its energy use might rise slightly in the near future in parts of the building 

to achieve the correct balance between the design environmental conditions 

for the activities housed and the need for the building to meet its low carbon 

ambitions.  

Facility managers in CS2 were identified to have achieved savings by targeting 

the most energy intensive end uses, making strategic changes in the HVAC 
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systems and exercising tight control to the buildings systems, all the while 

countering an ongoing increase in occupancy. In the case of CS2, savings were 

achieved by (Figure 98): 

• reducing internal gains and small power loads through the gradual 

removal of CRT screens, the latter of which in combination with the 

reduction of out-of-hours small power electricity accounted in total for 

approximately 20% of the electricity savings achieved during the period 

2012-2015; 

• reducing HVAC electricity use through improvements to the main AHU, 

chiller and ventilation control which accounted in total for approximately 

23.6% of the electricity savings achieved during the period 2012-2015; 

and 

• reducing cooling loads and lighting use through the installation and 

better control of LED lighting, which accounted in total for approximately 

37.3% of the electricity savings achieved during the period 2012-2015. 

 

Figure 98: CS2 Electricity Saving by end use during the period 2013 to 2015 
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During the period 2012 to 2015, improvements on lighting and small power 

loads were revealed to have accounted for more than four-fifths (87%) of the 

total savings achieved, with the remaining achieved mainly in HVAC systems 

by reducing AHU and Cold Generator electricity use. Notwithstanding these 

improvements, according to the iSERV benchmarks, there was room for 

improvement in approximately a quarter of Small Power and Lighting systems 

to the end of 2015. Furthermore, despite the evidenced structured and strict 

management exercised in the building, on average 36% of the building’s 

electricity use was detected to have been taking place during out of hours, with 

a third of this use occurring during weekends, which was the result of essential 

HVAC systems operating along with small power equipment in the LAN room, 

kitchen and the offices remaining one. 

Indoor Environmental Quality assessments conducted in the building showed 

that the good energy efficiency being obtained was not at the expense of 

healthy indoor conditions, although some spaces were challenged to maintain 

comfort conditions with regard air temperature, relative humidity and noise 

levels, yet maintained excellent conditions with regard to CO2 and VOC 

concentrations. The Occupant Surveys provided evidence of the occupants’ 

dissatisfaction with many aspects of both general building and specific work 

area conditions, as well as the building’s image and energy efficiency, owing to 

the occupant dissatisfaction with the building’s open plan design, mechanical 

ventilation, image and energy efficiency which led to an overall lack of tolerance 

towards the building’s performance.  

Although not a high HVAC energy consumer, the building’s design was 

observed to be exemplary of an older construction type of fully glazed tall black 

buildings which present a number of shortcomings with a negative impact on 

building energy performance such as the limitation of passive design features 

which could contribute in reducing lighting and HVAC loads. However, the 

building’s design was observed to have also presented a number of traits which 

could possibly facilitate future performance improvement. Typical office blocks 

of this type are organised around a shelled core which could allow for easy 

redesign of their layout and façade at small resource expenditure. A change of 

the building’s façade to one with better insulation properties facilitating mixed-
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mode ventilation, allowing for more daylight, incorporating shading and 

providing users some control of their environment would potentially contribute 

in energy use and indoor environmental quality improvements. Furthermore, 

such changes have the potential of improving the staff’s perceived image of 

CS2, thus increasing their tolerance towards their environment. 

In brief, the comparative case study investigation employed in this research 

provided insights on how energy efficiency can be achieved in respect of 

healthy indoor conditions and occupant satisfaction while driven by proactive 

building management supported by metering and fitted to the specific traits of 

each building. In this respect, both buildings were treated as being successful, 

at different scales, in creating a positive compromise between building 

performance and indoor environmental conditions by optimising the operation 

of their systems and the relationships between them. Thus, they were 

considered in this research as having achieved operational success in 

becoming low energy performers according to the definition presented in 

paragraph 2.2. 

6.2.2 Energy Efficiency Drivers and 

Enablers 

The comparative case study investigation conducted in this research provided 

insights with regard to what drives energy efficiency in operational buildings 

today. 

CS1 provided insights into the progress achieved during recent years in the 

design of low energy buildings. While challenged by the trade-off between 

design values and the performance of passive strategies, as well as issues 

sourcing from the commissioning of innovative systems, CS1 was able to 

achieve its utility performance targets while meeting its social and 

environmental aims. CS1 is believed in this research to have therefore 

demonstrated what is feasible to be achieved in a contemporary low energy 

building housing a variety of activities and occupants, when good design, 

monitoring and control co-exist. 
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In contrast, CS2 is believed to have demonstrated how a refitted building which 

was not designed to be low energy can also achieve acceptable energy 

efficiency through targeted actions. Notwithstanding its old age, refit and 

construction type which imposed limitations in harnessing passive design 

strategies, the targeted HVAC, lighting and small power improvements along 

with the tight control exercised by the management team and the university-led 

actions to reduce out-of-hours small power electricity use allowed the building 

to improve its performance to reach levels better than those of typical practice. 

Considering CS1, contractual obligations relating to the achievement of a set 

of utility, environmental and social aims agreed during its procurement were 

observed to have led the stakeholders to maintain an interest in CS1’s 

operational performance which went beyond a typical interest in energy 

efficient management. To this end, stakeholders organised frequent meetings 

following the building’s hand-over to ensure that its performance stayed in line 

with its contractual goals and in particular with its energy use targets which 

were stricter than legislative requirements. In similar fashion, the estates 

department in CS2 was reported to have been monitoring the building’s 

performance closely and introduced targeted actions to meet industry 

standards of excellence as part of its organisation’s wider sustainability 

program. These findings suggest that the existence of either contractual 

obligations or set goals linked to tangible metrics can be an important driver in 

achieving energy efficiency in similar buildings. 

In addition, both buildings were observed to have been engaged in continuous 

monitoring and commissioning processes. These processes were identified to 

have facilitated the proactive and strict management documented in both case 

studies, which ensured that systems were adapted to varying weather 

conditions and occupant needs. According to this research’s findings, what 

appeared to have been introduced in recent years and is still being developed 

was the focus on building performance monitoring and the use of operational 

data to inform building management.  

Both buildings comprised a minimum level of sub-metering which allowed 

stakeholders to be aware of where the energy goes and be in a position to 
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make informed decisions. Where sub-metering was of small scale or facing 

operational problems, the energy use breakdown was found to have been of 

lower resolution therefore obscuring energy saving opportunities in affected 

areas. In parallel, the use of sub-hourly energy and sensor data was observed 

to have been key for stakeholders to understand whether each case study was 

meeting its utility goals in respect of heathy and comfortable indoor conditions 

as well as identify additional energy saving opportunities.  

In sum, further to the proactive management and control presented by the 

facility managers in both buildings, it was observed that monitoring driven 

management approaches founded on comprehensive metering strategies and 

operational performance data analysis were central to the success of both case 

studies. However, the absence of a universal and robust contextual framework 

into which the operational data could be fed to enable targeted actions to be 

taken, such as the iSERV platform used in this study, meant that the 

stakeholders in each case study relied on either standard reports embedded in 

building management software systems or on external contractors to produce 

bespoke analysis and reporting. 

The research findings provided further evidence to arguments made in past 

studies regarding the merits of continuous monitoring and commissioning, and 

most crucially regarding the pivotal role of facility managers play in helping low 

energy buildings equipped with intelligent monitoring and management 

systems to achieve the full potential of their low energy design following their 

handover. Where post-handover fine tuning processes involved members of 

the design team in CS1, necessary improvements were observed to have been 

made in accordance with each building’s design aspirations and the designers 

involved were provided with the opportunity to learn from practice and inform 

future design.  

In conclusion, the energy efficiency drivers and enablers presented in this 

paragraph allowed all actively participating stakeholders to maintain an 

agreement with regard to the way the building was and should have been 

performing, controlled and operated as well as to match predicted to actual 

metered building performance. The research findings therefore appear to agree 
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with the findings deriving from the literature review (Fig. 12) which suggested 

that the success or failure of buildings aiming to be low energy lies in the level 

of:  

• agreement between all building stakeholders with regard to the way they 

perceive the building is or should be performing, controlled and 

operated; and 

• detail available to match predicted building performance to the actual 

metered building performance, e.g. individual meter per major 

component or lighting circuit as opposed to one meter for the building. 

6.2.3 Stakeholder Influence on Building 

Energy Use 

The final objective of this research was to quantify the influence of the case 

studies’ stakeholders on building energy use and test the hypothesis 

underpinning this research. 

As presented in paragraph 4.2, in this research, what is referred to as the 

influence of the Architect was set to reflect the influence of the design decisions 

of the design team which, in practice, usually comprises of disciplines other 

than that of Architects. This approach was based on the findings of the case 

studies’ reconnaissance process presented in paragraph 4.4. 

Although in current practice architects do not always lead design teams, the 

reconnaissance process of the case study buildings demonstrated that in CS1 

architects maintained that lead to deliver the building’s environmental and 

social agenda. While it was not possible to confirm who had the final overview 

of the CS2 refurbishment, due to the building’s age and an absence of records, 

the same approach was applied assuming that a future refurbishment of this 

more conventional building could be led by Architects. 

The influence held by the architect and the facility management were 

challenging to precisely quantify in absence of a matrix setting out who is 

responsible for designing each aspect of the case studies, such as the Design 

Responsibility Matrix and Schedule of Services documents described in the 
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RIBA Plan of Work 2013. For example, in the case of the architect's influence, 

there were grey areas related to the control of lighting systems the influence of 

which could be attributed to either the architect or facility management.  

To address this issue, this study suggested which parts of the energy use of a 

design the architect could be considered responsible for (paragraph 4.2.4) and 

proposed a framework for allocating system energy use to building stakeholder 

in the specific case studies investigated in this research. The influence 

exercised by the architect on the energy use of a building was therefore 

presented in the form of a range of potential influence. In the case of the facility 

management's influence, the achieved savings were used as a quantitative 

indicator along with the attitudes expressed regarding the building's 

management, a measure of qualitative nature.  

It is recognised that the findings presented in this thesis are explicitly 

dependent on this research’s methodological framework suggesting which 

parts of the energy use of a design the Architect could be considered 

responsible for and allocating system energy use to stakeholder in the specific 

case studies investigated. Therefore, the quantification of the stakeholder’s 

influence presented in this research is case study specific.  

The data sourced from the comparative case study investigation suggested that 

occupants influenced a significant portion of the total energy consumption in 

both case studies. The data sourced from the comparative study investigation 

employed in this research suggest that in the case of CS1 approximately 

between 67% and 72% of the annual electricity use was used by occupants 

and was specific to the nature of this multi-use building, whereas approximately 

between 0.01% and 0.04% of the annual heat energy use was used by 

occupants. In contrast, in the case of CS2 approximately between 39% and 

43% of the annual electricity use and approximately between 3% and 6% of the 

annual heat energy use was used by occupants. With regard to the electricity 

use, the difference between the two case studies was observed to have derived 

as a result of CS1 housing multiple energy intensive activities of special interest 

under the occupants’ influence, mainly the Archives which consumed in total 

approximately 7% of the annual electricity use reaching up to 9% when the 
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small power and lighting of the linked Archaeology offices and workshops are 

also accounted for. With regard to the heat use, although CS1’s DHW use 

appeared to be too low, as described in paragraph 5.2.5, and might have been 

larger than estimated, only a small part of the total annual heat energy use in 

both buildings was used by occupants.  

These research findings regarding occupant-related loads demonstrate the 

importance of informing energy efficiency policy for the energy consumed by 

the building services to be separated from the occupancy energy consumption 

when evaluating the performance of buildings in the nZEB era. 

Proactive facility management and tight control based on continuous 

monitoring and commissioning was conducted in both buildings and was 

observed to have resulted on average to electricity savings of up to 

approximately 40% and heat savings of up to approximately 25% in both 

buildings. The produced figures highlighted the significant influence the facility 

management had on the operational performance of both buildings discussed 

in paragraph 6.2.2. 

Considering the findings regarding the influence of occupants and facility 

management on the operational performance of the selected case studies, it 

was observed that although design indirectly affected the way the case study 

buildings were used, occupant behaviour and facility management were 

identified to influence a significant portion of the total energy consumption 

incurred. In addition, the crucial role facility managers maintained in the case 

studies assessed in this research supports calls regarding the extension of 

integrated building design processes and energy efficiency policy to include the 

operational performance of buildings and the management exercised by 

building operators.  

Considering an architect’s design decisions can influence what both buildings 

consumed to maintain indoor comfort conditions, including all lighting during 

daylight opening hours, the data sourced from the comparative case study 

investigation suggested that the Architect could have influenced approximately 

between 23% and 28% of the total annual electricity use and nearly the total 

heat energy use in the recent low energy building studied. For the conventional 
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existing building studied, these proportions became approximately 43% to 47% 

of the total annual electricity use and 94% to 97% of the annual heat energy 

use. 

The difference in the scale of influence on the two case studies employed in 

this research provided indications that the influence of an architect on the 

energy use of a building is also subject to the design intent, use and 

construction type of a building. CS1 is a mixed-mode building designed to take 

advantage of its surrounding environment and resources to reduce its electricity 

consumption and is open during extensive hours daily, whereas CS2 is typical 

of a construction type of tall black box office buildings which are fully reliant on 

HVAC systems and artificial lighting whereas it is open during typical office 

hours. Furthermore, examining this influence at a monthly resolution, it was 

also observed that the scale of influence an architect could have exercised to 

the total energy use of a building was subject to varying factors comprising 

climatic conditions, occupancy as well as the changes that have been enforced 

by the facility management on building system performance. In the case of 

CS1, it was observed that the architect could have influenced approximately 

between 20% and 33% of the monthly electricity use and nearly the total of the 

monthly heat use according to month. In the case of CS2, it was observed that 

the architect could have influenced approximately between 40% and 56% of 

the monthly electricity use and approximately between 69% and 99% of the 

monthly heat energy use according to month during the non-summer months. 

In brief, these findings appear to support the hypothesis underpinning this 

research that Architects can only influence part of the operational performance 

of low energy buildings. The findings indicate the architect’s design decisions 

influenced approximately 23% to 28% of the total annual electricity use and 

nearly the total heat energy use in the recent low energy building studied. For 

the conventional existing building studied, these proportions become 

approximately 43% to 47% of the total annual electricity use and 94% to 97% 

of the annual heat energy use. Reviewing these results, it was concluded that 

architects are not in control of the total energy use of their buildings.  Although 

design can indirectly affect the way the building is used, occupant behaviour 

and facility management influence the major portion of the total electricity 
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consumption. Furthermore, the research findings suggested that the extent of 

the Architect’s influence was subject to design intent, construction type and 

building use as well as to varying factors comprising climatic conditions and 

occupancy.  

6.3 Reflection on the relation between the 

case study findings and the prevailing 

literature 

6.3.1 Operational Performance Success 

and the Performance Gap 

Both case study buildings employed in this research were documented to have 

been energy efficient during the monitored period and achieved a low energy 

performance in many areas. CS1 in particular was found to have performed 

better than predicted with regard to electricity, gas, heat and water use if taken 

pro-rata, therefore not becoming another case demonstrating the existence of 

the performance gap.  

CS1’s success was identified to have been achieved through gradual fine 

tuning of the building’s systems which took place during the first three years 

since its opening, and was founded on two pillars.  

The first being the building’s low energy design which took advantage of 

passive design strategies in order to reduce the energy demand of the building 

while healthy and comfortable indoor conditions were maintained. This was 

supplemented by realistic predictions of its operational use during its design. In 

this manner, CS1 was able to avoid many of the performance gap’s 

documented divergence sources related to predicted performance. 

The second pillar, which also applied to CS2, referred to the continuous 

monitoring and commissioning processes observed in both buildings. The 

application of these processes, which were in line with the wider sustainability 

goals of both organisations to which these buildings belong, were observed to 

have led to the integration of monitoring, control as well as good design in the 

case of CS1 which allowed for identification of problems and energy saving 
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opportunities.  Furthermore, although the management exercised by building 

operators was not taken in consideration during the design of both buildings, 

the role of facility managers in practice was observed to have been central to 

their energy management. Facility managers in both buildings maintained 

central control and consciously stood between senior management and users 

in order to improve the energy efficiency of the buildings while maintaining 

healthy conditions. In addition, through monitoring they were able to identify 

and address unregulated loads and poor performing building components. Both 

case studies, therefore, avoided most of the performance gap’s divergence 

sources related to actual performance. 

6.3.2 Stakeholder Influence on Operational 

Performance 

Proactive facility management and tight control based on performance 

monitoring was conducted in both buildings and was found to have resulted on 

average to electricity savings of up to approximately 40% and heat savings of 

up to approximately 25% in both buildings. The findings of this research 

suggest that in both buildings, these savings were the result of continuous 

monitoring and commissioning. Comparing these savings to previous studies 

on continuous monitoring and commissioning, it was observed that they were 

slightly higher than the average range of annual electrical savings documented 

in previous studies which ranged between 9% and 33% subject to building type, 

activities housed and length of monitoring (Knight et al., 2014a, Claridge et al., 

1994, Lee, 2000, FEMP, 2002, Mills and Mathew, 2012, Mulville et al., 2014, 

BuildingEQ, 2009). However, when examining the year to year savings 

achieved in CS1 (13% - 22%) and CS2 (2% - 17%), it was observed that they 

fell within the average range of annual electrical savings documented in these 

same past studies. 

In the absence of past literature on the quantification of the occupants’ 

influence on building performance, the out-of-hours energy use of the case 

studies was compared to the existing literature on this topic instead. CS1 was 

observed on average to use 30% of its electricity use during out-of-hours, which 

was the result of the continuous operation of essential systems including but 
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not limited to the external lighting, Archives and Server systems and Extract 

Fans. Approximately 12% to 24% of this out-of-hours’ use was attributed to 

lighting systems during the last two years of monitoring. In the case of CS2, on 

average 36% of the building’s electricity use was observed to have taken place 

during out-of-hours, with a third of this out of hours use occurring during 

weekends, which was the result of essential HVAC systems operating along 

with small power equipment in the LAN room, kitchen and the offices remaining 

on.  

These figures are significantly lower than those documented in past literature, 

according to which more than half of the annual building energy use takes place 

during out-of-hours (Webber et al., 2006, Masoso and Grobler, 2010, Meier, 

2006, Zhang et al., 2011). This divergence is believed in this research to be 

attributed to the difference in building type and climatic conditions of the 

referenced case studies which led them to larger small power and AC loads to 

be recorded during out-of-hours. In contrast to the reference case studies, the 

documented out-of-hours electricity use of the case study buildings in this 

research was related mainly to essential systems remaining on and less to 

occupant behaviour.  

The absence of previous studies regarding the quantification of the architect’s 

influence on building performance did not allow for the comparison of this 

research’s findings to existing literature on this topic. 

6.3.3 Operational Performance Issues 

Pertinent to Design 

Most observations presented in this paragraph have derived from CS1 which 

was designed to be a low energy building unlike CS2 which was refitted and 

aimed to be low energy through management and control. 

With regard to passive design strategies, issues related to the inevitable trade-

offs between design values, such as the values manifested in CS1’s design 

agenda, and the performance of passive strategies were observed. These 

inevitable design trade-offs can often lead the design of a building to 
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compromise some design and performance aspects to achieve other design 

aims which have a higher priority.  

In line with findings of past studies, CS1’s design values and natural ventilation 

strategy materialised by large open volumes promoting connections at every 

direction, free movement in the building and natural displacement of air led to 

the transmission of noise from one part of the building to another as well as 

exposure to outdoors noise. The effect of noise transmission was recognised 

by the building’s management following the building’s occupation and was 

gradually dealt with by adding sound absorbing elements such as acoustic tiles 

to affected spaces. In CS2, although the building was completely reliant on air 

conditioning and was fully covered with tinted glass, the open-plan design on 

each floor led to the transmission of chatter and equipment noise across the 

work spaces. 

Regarding the HVAC systems, a few CS1 systems were detected to have not 

operated as originally envisioned during the design of the building, another 

frequently observed issue in past studies of low energy buildings. For example, 

CS1 was observed to run its biomass throughout the summer and in parallel 

with the running cooling systems. Although, originally, this use was considered 

unexpected, comparing CS1 to documented case studies of heavy weight, high 

thermal mass buildings located in the UK, it was understood that that CS1 

required some overnight heating, even during warmer months, to keep its 

thermal mass up to temperature in order to take advantage of its effect the 

following day. Furthermore, the chilled beams were found to have been 

operated by the management at a minimum level throughout the year and given 

a secondary role in the process of maintaining indoor conditions. In addition, 

perimeter overheating was reported in specific areas by users in both buildings. 

In addition, CS1’s river cooling system faced operational problems shortly after 

it was operated for the first time as its filters located at the intake of the river 

water were clogged. As a result, the free cooling expected to be achieved 

through the use of this system was rendered unachievable during the first two 

years of the building’s operation and added to the cooling loads served by the 

cold generators. This issue was largely due to the system’s problematic 
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commissioning and therefore adds to arguments regarding the importance of 

good commissioning in buildings as well as the stakeholders’ mistrust towards 

innovative energy efficient technologies.  

With regard to lighting, according to some of the surveyed staff, CS1 daylight 

strategies created discomfort in certain spaces due to glare experienced during 

certain times of the year. Furthermore, it was observed that even following 

improvements in lighting management, artificial lighting systems stayed on 

during daylight opening hours especially in the summer. Combining these 

findings with field observations according to which there was a high contrast 

between outdoors and indoors lighting conditions, it was understood that 

controlling lighting contrast and glare was a major issue in CS1. Although CS1 

met its design aim for its lighting electricity use to account for less than 30% of 

its total electricity use, these findings suggested that the building was led to 

unexpectedly high levels of artificial lighting being consumed during the 

summer months in order to balance this high contrast between outdoors and 

indoors lighting conditions and provide comfortable indoor conditions.  

Furthermore, as observed in past studies, occupants expressed concerns 

regarding ineffective controls. Lighting control issues were reported in CS1 

office and circulation areas which were later addressed by deactivating PIR 

lighting controls in some of these spaces.  In addition, window design and 

control rendered windows in offices the subject of complaints; for instance, 

windows on level four were reported to have been opened according to CO2 

concentration sensor limits during rainfall and windy conditions, thus 

introducing rain and cold currents indoors.  

An area in which CS1 presented to have improved in contrast to past studies 

was that of unrealistic design estimates and targets. The design team was 

observed to have been able to set realistic design targets which were met 

following the building’s initial adjustment period. Furthermore, with regard to 

the adaptation capacity of low energy buildings to address changes in 

occupancy and climatic conditions, an area of documented operational failure 

in past studies, the analysis of CS1’s performance provided evidence of robust 

design when it was challenged by extreme weather conditions in 2015. 
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Although forced to a larger energy expenditure, the building was observed to 

have maintained healthy and comfort conditions by making efficient use of its 

large thermal mass capacity and low energy systems.  

In the case of CS2, although the building was not in a position to exploit passive 

strategies due to its design, its refit and gradual operational performance 

improvement through targeted actions evidenced its successful conversion and 

adaptation from a call centre housing 1400 occupants to a higher education 

office building housing multiple departments and approximately 600 occupants.  

To conclude, the observations regarding operational performance issues 

pertinent to design listed in this paragraph have not been considered as design 

performance failures in this research. They rather exemplify how architects 

have not yet fully mastered the ability to harness a building’s surrounding 

environment and resources to provide comfortable conditions indoors at 

minimum energy expenditure. Nevertheless, it should be highlighted that a 

common trait which had a positive impact in both case studies and was shown 

to have been vital in their achieved energy performance, was their robust 

architectural and services design. This provided the potential to adapt to the 

varying factors affecting their performance, or to facilitate future changes which 

can improve their performance at small expenditure while securing healthy and 

productive indoor conditions at minimum possible energy expenditure.  

6.3.4 Operational Performance Issues 

Pertinent to Facility Management and 

Metering 

Despite being challenged by problems frequently observed in low energy 

buildings, namely metering issues, commissioning problems of building 

systems, lost documentation of the building’s assets or manuals containing too 

much irrelevant information, facility managers of both case studies were 

identified to have played a decisive role in achieving energy savings through 

tight control and streamlined management. As a result, the investigated case 

studies did not present issues documented by the PROBE case studies 

(Leaman et al., 1999) according to which erratic management of building 
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services by facility managers accounted for a large part of the total building 

energy consumption. However, the occupants’ dissatisfaction in CS2 which 

was partly related to what was perceived to be a delay or disregard in the 

response of facility managers to occupant complaints was in line with the 

relevant phenomenon observed in past documented studies and negatively 

affected the occupants’ perception of their indoor environment.  

Furthermore, both case studies demonstrated problems with their metering, a 

common issue observed in past case studies of intelligent buildings. Despite a 

significant investment in an extensive meter and sensor network in CS1, erratic 

reading intervals of the metered sub-hourly data were recorded because of the 

setup of the Modbus metering network and required constant work post-

collection to turn this data into fixed time intervals. Moreover, because of the 

nature of the installed BEMS system which did not allow for automated data 

export to machine learning programs, the facility manager could only print daily 

profiles of systems’ energy use to help himself manage the building and identify 

energy saving opportunities. In addition, several meters and sensors, although 

connected to the metering network, were found to either be not collecting, not 

storing data or presenting gaps in the stored data, referring to a well-

documented problem of meters and sensors often not calibrated or installed 

properly. In addition, sub-metering for the gas, biomass, heat and water use 

was limited. These observations highlighted how crucial it is for energy 

management systems to be set to record data at precise time intervals so that 

control issues can be identified.  

Finally, the central role facility managers had in the operational success of both 

case study buildings further highlighted their importance in the operational 

performance of low energy buildings and supported past literature which has 

suggested that this importance is not accounted for appropriately during the 

design phase of a building or in policy. 
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6.3.5 Operational Performance Issues 

Pertinent to Occupants  

The findings of this research appear to confirm past research indicating that 

occupant awareness of a building’s intent, strengths and weaknesses as well 

as provision of personal controls can positively affect occupant satisfaction with 

the indoor environment (Meir et al., 2009, Leaman and Bordass, 2007, 

Bluyssen, 2010b).  

Comparing the survey results regarding the Occupants’ Perception of the 

Indoor Environment from both buildings, CS1 occupants rated the building’s 

Image and Energy efficiency positively in contrast to CS2 occupants who on 

average rated their building image and energy efficiency as neutral with 

approximately half of the reports rating both aspects negatively. In the case of 

CS1, although the building was challenged to maintain comfort conditions 

according to contemporary comfort standards for more than 50% of the 

monitored time during opening hours, occupant complaints and dissatisfaction 

were limited and did not negatively affect the overall satisfaction of occupants 

with these areas indicating a degree of ‘forgiveness’ of the indoor conditions 

due to the visually appealing nature of the spaces. However, staff were found 

to be slightly more critical possibly due to a gradual reduction of the control they 

maintained in combination with the conditions being provided. Conversely, 

open ended comments collected on-site and through the structured surveys at 

CS2, provided insights related to occupants’ struggles with the shortcomings of 

an open plan AC office building which they felt had a negative effect to their 

productivity and wellbeing. These struggles were observed to have links to an 

overall lack of tolerance towards the building’s performance, a trend opposite 

to the forgiveness factor discussed in Chapter 2. 

Consistent with past research on the differences observed between genders 

and on the effect of personal controls on occupant satisfaction, the examination 

of cofounding factors influencing satisfaction in both case studies provided 

evidence that gender, age, employment type, time employed, work hours, time 

spent using a PC, workspace floor and orientation, window proximity, work 

space adequacy, and personal ventilation controls affected the perceived 
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satisfaction of occupants with specific aspects of their indoor environment. 

Moreover, in the case of CS1 occupants, comparing their satisfaction regarding 

the overall indoor conditions to that of their specific work area conditions, it was 

observed the overall indoor conditions were rated more positively than the work 

area conditions as exemplified in past research documenting the forgiveness 

factor. However, that was not the case with CS2 staff members. In this case, it 

was observed that overall indoor conditions regarding air freshness and 

thermal comfort were rated more negatively than the same parameters of 

specific work area conditions. This is suspected to be the result of CS2 staff’s 

dissatisfaction with the building’s design, image, energy efficiency and controls 

which they felt had a negative effect to their productivity and wellbeing.
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Chapter 7  

Conclusions 

7.1 Introduction 

Following the focus given on low energy buildings since the 1990s, and the 

research and policy actions promoting energy efficiency that have derived as a 

result, we appear to still be struggling to achieve energy efficiency and predict 

in-use and future building performance. The extent of the operational non-

performance of low energy buildings in practice is paving the way for architects 

to be rendered liable, even contractually, concerning buildings which do not 

meet their design performance targets  (Mark, 2013, O’Connor, 2012).  

The driver of this research has been to develop an understanding of the role of 

the Architect in the operational performance of buildings, with the central aim 

being to understand the Architect’s actual influence on the operational 

performance of low energy buildings.  

The research has therefore focused on quantifying the influence architects 

exercise on the operational performance of low energy buildings in two 

contrasting operational buildings. The hypothesis underpinning this research 

has been that Architects can only influence part of the operational performance 

of low energy buildings.  

It should be noted that in this research, what is referred to as the influence of 

the Architect was set to reflect the influence of the design team which, in 

practice, usually comprises of disciplines other than that of Architects. This 

approach was based on the findings of the case studies’ reconnaissance 

process presented in paragraph 4.4. Although in current practice architects do 

not always lead design teams, the reconnaissance process of the case study 

buildings demonstrated that in CS1 architects maintained that lead to deliver 

the building’s environmental and social agenda. While it was not possible to 

confirm who had the final overview of the CS2 refurbishment, due to the 
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building’s age and an absence of records, the same approach was applied 

assuming that a future refurbishment of this more conventional building could 

be led by Architects. 

As a further conclusion from this study, the study suggested which parts of the 

energy use of a design the architect could be considered responsible for in the 

specific case studies investigated (paragraph 4.2.4).  

The study used mixed research methods to understand and quantify the 

influence architects exercise on the operational performance of low energy 

buildings.  

The overall findings of this research support the hypothesis that Architects can 

only influence part of the operational performance of low energy buildings, as 

occupant behaviour and facility management influence a significant portion of 

the total energy consumption. An overview of this thesis’ conclusions and 

implications are presented in Fig. 99. 

The purpose of this chapter is to show whether the objectives set at the start of 

this research were achieved, to present the implications of the research 

findings and the limitations of the study, and to highlight areas of further 

investigation needed. 
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Figure 99: Overview of Conclusions and Implications  
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7.2 Achievement of Research Objectives 

Objective: To review the definitions of energy efficiency within the 

context of building design and operation with an aim of adopting them in 

this research. 

This literature review conducted in this research outlined that the various 

articulations of the concept of energy efficiency across different fields are 

founded on an imperative to make the most out of every energy unit. 

Furthermore, it was noted that the definition of energy efficiency strongly 

depends on the definition of the resulting energy output. Considering the 

absence of a definition for energy efficiency deriving from the discipline of 

architecture, this research adopted the International Energy Agency’s definition 

of the terms energy efficiency as “a way of managing and restraining the growth 

in energy consumption”, and energy efficient as something that “delivers more 

services for the same energy input, or the same services for less energy input.”  

For a summary of the literature review pertinent to this objective, please refer 

to section 1.6. 

Objective: To review the barriers to implementing energy efficiency in 

non-domestic buildings in order to identify factors pertinent to the topic 

of this research. 

Reviewing the barriers impeding the implementation of energy efficiency in 

buildings, it was highlighted that aside from public policy’s share in not 

facilitating this implementation, several barriers arise from the building sector 

itself and in particular from architects. Notably, an outdated education, the 

energy literacy and the absence of an investigative attitude from architects into 

the performance of completed and occupied buildings were identified as 

fundamental issues to be addressed within the discipline of architecture. 

Furthermore, the overall fragmentation of the building sector into competing 

sections and the absence of integration between them, as well as the 

ineffective coordination arising from functional gaps and management 

discontinuities in the sector, were identified as adding to the diverse barriers 
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deriving from market and policy actions. Despite ongoing efforts to produce 

better energy policies and regulation which would encourage the adoption of 

energy efficient measures, the discipline of architecture appears to remain far 

from integrating energy efficiency into the architectural dialogue and 

implementing routine performance evaluation in its core education. 

For a summary of the literature review pertinent to this objective, please refer 

to section 1.6. 

Objective: To understand whether we can suggest a framework for 

assessing the operation of low energy non-domestic buildings, and 

identify documented areas of operational failure in past literature. 

Reviewing past literature, it was revealed that when the operational 

performance of low energy buildings does not meet design targets that this 

result is led by the existence of a multifaceted failure inherent to the building 

sector, and reflects upon the entire lifecycle of a building with only parts of this 

failure pertinent to the discipline of architecture. According to the findings of this 

review, low energy buildings which secure healthy and productive indoor 

conditions at possible minimum energy expenditure were considered in this 

research as having achieved operational success in becoming low energy 

performers. 

The findings of the literature review conducted in this research demonstrated 

that operational problems observed in the performance of low energy buildings 

derive mainly from: 

• design processes which preclude the ability to treat buildings as 

integrated networks of components, systems, operators and occupants; 

• adherence to unrealistic design assumptions and simplified models of 

in-use performance;  

• the quality of building systems, components and their commissioning;  

as well as: 

• the management of buildings services; and 
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• occupant behaviour. 

Thus, not all performance failure related issues are able to be addressed by 

architectural design, and instead are determined by the actions of building 

operators and occupants.  

For a summary of the literature review pertinent to this objective, please refer 

to section 2.4. 

Objective: To review the state of the art in the area of building 

performance assessment related to the use of operational data collected 

from buildings. 

The literature review demonstrated no consensus on the establishment of 

a universal and systematic building performance assessment approach. The 

large number of methods and tools available to conduct building performance 

assessments raises questions regarding their appropriate selection and use. 

What has been proposed by researchers on this topic is for the structure and 

goals of each building performance assessment to be associated to acquired 

stakeholder benefits, while the selection or correlation of assessments tools 

could be dictated by the intricacy of buildings as systems and the synergies 

created between these systems and the occupants. Building performance 

assessments are therefore expected to relate to the task at hand and to be 

cleverly constructed according to case to address specific questions or 

concerns.  

For a summary of the literature review pertinent to this objective, please refer 

to section 3.6. 

Objective: To quantify the influence of architects on the total energy use 

of the selected case studies and test the hypothesis underpinning this 

research. 

The findings of this research supported the hypothesis that Architects can only 

influence part of the operational performance of low energy buildings, as 

occupant behaviour and facility management influence a significant portion of 

the total energy consumption. 
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The findings suggested that the architect’s design decisions influenced 

approximately between 23% and 28% of the total annual electricity use, and 

nearly the total heat energy use in the recent low energy building studied (Fig. 

59). For the conventional existing building studied, these proportions become 

approximately 43% to 47% of the total annual electricity use and 94% to 97% 

of the annual heat energy use (Fig. 94, Fig. 95).  

The framework employed in this research to allocate system energy to building 

stakeholders is presented in paragraph 4.2.4. 

For the discussion regarding stakeholder influence on building energy use, 

please refer to paragraph 6.2.3 and section 6.3. 

 

Figure 59: CS1 Annual Electricity Use Breakdown By Stakeholder for 2014 and 
2015. 
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Figure 94: CS2 Annual Electricity Use Breakdown By Stakeholder for the years 
2012 to 2015. 

 

 

Figure 95: CS2 Annual Heat Energy Use Breakdown By Stakeholder for the 
years 2012 to 2015. 
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which highlight the architect’s influence on building performance, can 

contribute to the argument that architects have only a partial influence on the 

non-performance of low energy buildings. 

The originality of this research lies in compiling a fresh approach to the central 

aim. Unlike previous work undertaken in this field, this research addressed the 

question of the architect’s actual influence on the operational performance of 

low energy buildings, by: 

• collecting, correlating and synthesising information from multiple 

sources regarding the case studies’ measurable energy and indoor 

environmental quality performance as well as the occupant-perceived 

satisfaction with their environment, not currently consolidated by 

architects in practice; 

• applying cross-disciplinary methods pertinent to the physical, social and 

data sciences; 

• tracing the energy flows in the case studies at the detail of building 

systems, components, spaces and activities, currently overlooked in the 

discipline of architecture; 

• comparing the measured energy efficiency to research and 

experimental benchmarks of HVAC systems, components and end 

uses; 

• comparing two case studies from different construction types, one 

designed and constructed before and one after energy efficiency 

became a focal point in building legislation;  

• suggesting which parts of the energy use of a design the Architect could 

be considered responsible for and proposing a framework for allocating 

system energy use to building stakeholder; and 

• quantifying the influence of building stakeholders on the operational 

energy performance of the selected case studies. 

This thesis focused on quantifying the influence of the Architect on the 

operational performance of low energy buildings and provide insights into 
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understanding why the discipline of architecture alone cannot always produce 

low energy buildings which perform as expected.  

The findings of this research are aimed at informing relationships between 

existing concepts and practices and contributing to the debate about how to 

achieve operationally low energy buildings fit for a low carbon future. 

The literature review conducted in this research has suggested that not all 

performance failure related issues are able to be addressed by architectural 

design, and instead are determined by the actions of the facility management 

and occupants (section 2.4). 

The comparative case study investigation employed in this research supported 

the hypothesis that Architects can only influence part of the operational 

performance of low energy buildings. Although design indirectly affected the 

way the case study buildings were used, occupant behaviour and facility 

management were identified to influence a significant portion of the total energy 

consumption incurred.  

Research findings regarding occupant-related loads demonstrate the 

importance of informing energy efficiency policy for the energy consumed by 

the building services to be separated from the occupancy energy consumption 

when evaluating the performance of buildings in the nZEB era (paragraph 

6.2.3). Research findings regarding the pivotal role of facility managers played 

in helping the case studies to achieve the full potential of their low energy 

design following their handover, support calls regarding the extension of 

integrated building design processes and energy efficiency policy to include the 

operational performance of buildings and the management exercised by 

building operators (paragraph 6.2.2).  

Overall, the research findings highlight the importance of establishing early in 

the lifecycle of a building the responsibility of occupants, operators and 

architects, as well as how building performance can be evaluated in the 

knowledge of the influence of these stakeholders. The introduction of these 

concepts should be extended to renew the methods according to which building 

energy use is assessed and benchmarked in order to empower architects to 



Chapter 7 - Conclusions 
 

312 
 
 

identify if a building can perform better or whether it is performing close to its 

best according to its design and the specific activities it houses.  

Although what makes a good low energy building cannot fully be described by 

this research, a common trait in both case studies, that was shown to have 

been vital in their achieved energy performance, was their robust architectural 

and services design (paragraph 6.3.3). This provides the potential to adapt to 

the varying factors affecting their performance, or to facilitate future changes 

which can improve their performance at small expenditure. Therefore, what 

was observed within this research’s aim to inform relationships between 

existing concepts and practices, is that architects should be aiming at the 

design, passive strategies and systems employed in low energy buildings to be 

flexible and adaptive enough to serve the ever-changing use and needs of 

buildings and the people who occupy them. This includes securing healthy and 

productive indoor conditions at minimum possible energy expenditure. In light 

of this finding, this study suggests the liability of the discipline of architecture 

possibly lies in designing for robustness rather than specificity and in 

accommodating the changing use of the building over time; to accentuate the 

adaptation capacity of low energy buildings considered to be embedded in their 

definition as presented in Chapter 3.  

7.4 Limitations of Research Approach 

In the process of developing the research design, a number of limitations were 

identified which need to be considered. 

With regard to the documentation process for the selected case studies, the 

complexity of modern building systems and monitoring strategies, the lack of 

enforced legislation regarding the maintenance of detailed building asset 

registers, and the continuous changes taking place in the life span of a building, 

result in many aspects of modern buildings remaining undocumented and 

obscure to building stakeholders. The selected case studies have been no 

exception to this trend. However, by combining a variety of information sources, 

this research has attempted to minimise these areas of uncertainty. 

Nevertheless, it must be noted that while the description of the case studies 
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was completed to the best of knowledge and understanding of the author and 

respective facility managers, it is still likely to contain some errors. 

Furthermore, in line with current practice, both case studies presented 

challenges regarding their monitoring. Consequently, the results of this 

research were highly dependent on the level of sub-metering in each case 

study building. Although the level of sub-metering was a criterion during the 

selection of the case study buildings, not every part of the HVAC plant and 

building systems was separately metered to the detail required to allow the 

appropriate outputs for this research. Although alternative data sources and 

iSERV estimates were employed where available to compensate for the 

shortage of data in some areas, the depth of the analysis was not equal for all 

examined parameters. However, the detail available was sufficient to meet the 

aims of this research. 

Considering the quality of the data sourced from the case study buildings, it 

should be noted that the operational data used in this research were not 

laboratory data but real world data from real buildings which can have issues 

that affect the data quality. Thus, a large proportion of the time spent on 

collecting data for this thesis was consumed in dealing with these issues and 

understanding the data to ensure it was clear which data were reliable and 

which were not, before proceeding with the analysis of the case studies. The 

data validation techniques employed in this research are described in section 

4.3. 

Regarding the methods and tools used in this assessment, the building 

performance assessments are developed on a case specific basis. Therefore, 

the structure and methods employed in this research are not exhaustive but 

rather associated to: 

• the explicit goals of the task at hand,  

• the intricacy of buildings as systems,  

• the synergies created between these systems and their occupants, 

• the available monitoring systems in place in each case study building, 

and 
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• the available time and labour resources.  

The most important limitations of this research lie in the selection of the case 

studies. With regard to the selection of the case studies, concerns regarding 

the sharing and publication of operational performance data reduced the 

possible candidates significantly. Consequently, it was not feasible to acquire 

data from a larger sample, and from buildings of an identical type. Furthermore, 

one can argue the data collected in this research were sourced from buildings 

where the promise of low energy performance is more likely to have been 

fulfilled, given the stakeholders’ confidence in sharing operational performance 

data.  

The consequent selection bias introduced in this research was partly alleviated 

by the fact that the selected case study buildings house similar discrete end 

uses and each hosts several different departments with different space needs 

and requirements. Moreover, the acquisition of historical energy data from both 

buildings allowed for an in-depth look in the performance of both buildings 

comprising periods of adjustment26 as well as periods preceding the building 

stakeholders’ decisions to engage in improving building performance, which 

has met the focus of the case study investigation employed this research. The 

focus of the case study investigation was on the challenges faced over time by 

the case studies and the manner in which these challenges were dealt with, 

rather than the buildings’ final performance and comparison. 

To counter the occupant bias, typically observed in occupant satisfaction 

surveys, a number of actions suggested in past literature were taken in order 

to minimise it. Those actions comprised designing the relevant surveys to:  

• include questions on confounding factors that could affect the 

occupants’ responses with regard to their perceived comfort;  

                                                 
26 This research recognised that every new building experiences a two-year 

adjustment period, as described in the Soft Landings approach. Therefore, with 

regard to case study building 1, the analysis presented in this research focuses 

predominantly on the period 2014-2015. 
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• include questions about the building as a whole and its individual 

aspects; 

• address recurrent issues observed in similar buildings through specific 

questions, e.g. lighting, glare and acoustics, privacy; 

• include questions on accessibility, usability and cleanliness. 

Where a small number of occupant survey responses was collected or where 

the demographic characteristics of the collected sample did not mirror the 

actual distribution, a note regarding the inadequate representativeness of the 

collected responses was made and the associated responses were considered 

to only provide indications and not definite results. 

Furthermore, although the case specific nature of the undertaken occupant 

surveys did not allow for their comparison to benchmarks accessible when 

using the BUS or CBE methods described in Chapter 4, the occupant survey 

results were compared to the results of similar surveys conducted in buildings 

of similar use, to verify and/or contradict the findings of past evaluations 

presented in the literature review. 

Finally, it is recognised that the employment of case study methods does not 

allow for the statistical generalisation to the general building population (Yin, 

2011). Notably, the findings presented in this thesis are explicitly dependent on 

this research’s methodological framework suggesting which parts of the energy 

use of a design the Architect could be considered responsible for and allocating 

system energy use to stakeholder in the specific case studies investigated 

(paragraph 4.2.4). Therefore, the quantification of the stakeholder’s influence 

presented in this research was case study specific.  

Instead, this research was committed to an analytic generalisation according 

to which it was assessed how this research’s findings could inform relationships 

between existing concepts and practices. What is presented is what is 

considered to be important for stakeholders to take into consideration when 

designing, erecting, and operating low energy buildings.  
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7.5 Final Remarks 

The findings of this thesis would suggest it is important that architects should 

learn to revisit their buildings and evaluate building performance data now 

available from metering installed in buildings. In the absence of a culture of 

systematic evaluation of occupied buildings in the discipline of architecture, and 

of an education that would allow architects to understand operational data from 

real buildings, the author of this research hopes for the findings presented in 

this research to contribute to a new architectural agenda. An agenda which 

would see architects harness and interpret operational high-resolution data 

sources in order to inform aspects of future low energy design and allow for 

building performance assessment to move away from litigation of non-

performance towards celebration of achievement. 

Unlike the discipline of product design, the discipline of architecture has a long 

tradition of rarely revisiting its buildings to assess their function and user 

satisfaction when erected and occupied. Many of the designed and 

manufactured products undergo regulated assessments to examine their 

operation and performance. Buildings have remained lone creations that are 

infrequently assessed post occupation. Going beyond arguments regarding the 

nature of contemporary architecture and the hard to measure qualitative 

aspects it embraces, the reality is that under an approach where every building 

is considered a sui generis exhibit, design misconceptions and mistakes will be 

repeated preventing the discipline from advancing. In spite of buildings being 

considered a sui generis product, the routine acquisition and comparison of 

constructive feedback from occupied buildings of similar scope, function, cost 

and climatic context, has the potential of informing and improving future 

building design.   

Following a decade of research and policy actions promoting energy efficiency 

as well as metering in buildings, as presented in the Background Chapter, 

architectural practice appears to now be at the start of a learning curve with 

more practices taking up energy modelling software and some practicing post 

occupancy evaluations in constructed buildings. The discipline is starting to 

comprehend that building performance is methodologically pertinent to what is 
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common in the field of metrics. Still, the discipline appears to be far from 

reaching a consensus of how to approach sustainability and relate it to design, 

unlike other building professionals who are looking at sustainability from a 

much more quantitative view point. Although the European Commission's 2050 

Low Carbon Roadmap concepts have influenced practices and allowed for 

debates to surface in theory, the discipline as a whole does not appear to have 

a leading role in advancing both quantitative and qualitative aspects of building 

performance in an interdisciplinary manner. 

As noted in Chapters 1 and 2, the absence of an education that would make 

architects energy literate might be leading them to not fully understand the aims 

they should be achieving, the metrics they are using, the data they should be 

collecting and the outputs they should be producing. Delving into the core of 

design, architects should be expected to comprehend early in a project the 

opportunities and constraints presented in order to appraise how their design 

decisions at different levels affect building performance and users, from 

orientating a building, to selection of finishes and integrating controls. Such a 

generation of architects might never arise if today’s architects do not learn to 

interpret new classes of information to feed lessons from practice back to 

education and new design.  

Currently, architects appear to be losing the lead on the wider sustainability 

agenda and leaving the initiative in the hands of energy specialists and service 

engineers. According to the discipline’s current status quo, there is a tendency 

to give away more and more aspects of architectural services and technology 

to non-architects, and therefore take away more power from the discipline’s 

hands. At this rate, it might not be too long before architects are classified as 

another problem in the performance gap equation instead of leading the way 

to finding the solution. Therefore, if architects are to maintain any position of 

influence on the building sector’s pyramid, they ought to seek a better 

understanding of the buildings they design. 
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7.6 Further Work 

This research has advanced the knowledge and provided an insight into the 

influence of architects on building energy performance. The following areas of 

further research are recommended: 

• Development of universal framework and metrics to reflect the influence 

of architects on building performance over the life of a building, and 

investigation of the integration of these metrics into associated policy 

and the architects’ code of ethics. These metrics should acknowledge 

the state of the art regarding building performance at the design phase 

of a building, and evolve overtime along with the advancement of 

knowledge in this area. 

• Exploration of how the management exercised by building operators can 

be related to building design processes, and 

• Exploration of the integration methods which will allow for the role of 

building operators to be accounted for during the design phase of a 

building. 

• Development of a universal building performance assessment standard 

to facilitate the systematic use and benchmarking of monitored data 

from buildings. 

• Study on governance to inform policy on separating the energy 

consumed by building services from occupancy related energy 

consumption when evaluating the performance of buildings. 

• Exploration of how architects can harness and interpret new classes of 

information sourced from continuous monitoring systems in order to feed 

lessons from practice back to architectural education and new design. 
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