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Abstract. Tetragonal FeSe, a prototype iron-chalcogenide superconductor, shows signatures
of a strange incoherent normal state. Motivated thereby, we use LDA+DMFT to show
how multi-band correlations generate a low-energy pseudogap in the normal state, giving an
incoherent metal in good semi-quantitative agreement with observations. Anomalous responses
in the normal state, including orbital-dependent effective mass enhancement and photoemission
lineshape, are consistently understood.

1. Introduction

High temperature superconductivity in the Iron pnictides and chalcogenides compounds [1]
is the latest surprise among a host of correlated electron materials. While unconventional
superconductivity sets in close to the border of a frustration-induced [2] striped-spin-density-
wave state with doping in the so-called 1111-pnictides, no magnetic long range order is seen
in the tetragonal phase of Iron Selenide (FeSe) [3] and FeSe1−xTex [4], labelled 11 systems, for
small x in ambient conditions. Undoped FeSe exhibits superconductivity with Tc =9 K: upon
tuning the carrier concentration of single-layer films Tc rises to 65 K [5]. Superconductivity is
sensitive to stoichiometry - minute non-stoichiometry in Fe1+ySe destroys the superconducting
state [6]. Unconventional superconductivity at Tc = 34 K is even observed in the high pressure
orthorhombic structure in FeSe [7] in contrast to the 1111-pnictides, where it is stable in the
tetragonal structure. Interestingly, a two-step increase in Tc as a function of pressure (with a
large dTc/dP beyond Pc1 = 1.5 GPa) is observed [8]. In contrast, superconductivity in FeSe
is suppressed under tensile strain [9]. Moreover, extant experiments for the normal state show
electron correlation fingerprints. Photoemission (PES) experiments [10, 11] show evidence of an
incoherent, pseudogapped metallic state [10] in FeSe, instead of a narrow Landau quasiparticle
peak at the Fermi level, EF . Ab initio band structure calculations [12] compare poorly with
PES data, as is checked by direct comparison (see below). In addition, the ultrahigh-resolution
PES spectra show a low energy kink at ≈ 8 meV [11]. Finally, an ARPES [13] study shows
appreciable, orbital-dependent effective mass enhancement (16 − 21) in the normal state of
FeSe0.42Te0.58, directly testifying sizable correlations in this system. As in 1111-compounds [14],
the kink in PES sharpens with cooling, and evolves smoothly across Tc. Depending upon x,
superconductivity in Fe(Se1−xTex) either arises from an insulator-like normal state, or from
a bad metal with ρdc(T ) ∝ T [15]. Finally, a minute amount of alloying by Cu drives FeSe
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Figure 1. Comparison between the LDA (dotted) and LDA+DMFT (solid, dot-dashed and
long-dashed) density-of-states (DOS) for the Fe d-orbitals in FeSe. Large-scale transer of spectral
weight from low energy to the Hubbard bands with increasing U is visible. Also clear is the
destruction of the low-energy Fermi liquid (FL) quasiparticle peak at U = 4 eV.

to a Mott-Anderson insulator [16]. Thus, FeSe is close to a metal-insulator transition, i.e, to
Mottness [17]. Needless to say, a proper microscopic understanding of the coupled orbital-
spin [18] correlations manifesting in such anomalous behavior in Fe(Se,Te) systems is a basic
prerequisite for understanding how superconductivity emerges from such a normal state.

In this work we undertake a systematic local-density approximation plus dynamical mean-
field theory (LDA+DMFT) [19] study of tetragonal FeSe. Sizable electronic correlations are
shown to be necessary for gaining proper insight into the anomalous normal state responses in
this system. Good semi-quantitative agreement with PES [10] supports our description.

2. Results and discussion

In our numerical simulation we start with the tetragonal (space group: P4/nmm) structure of
FeSe with lattice parameters derived by Hsu et al. [20]. One-electron band structure calculations
based on local-density-approximation (LDA) were performed for FeSe using the linear muffin-tin
orbitals (LMTO) [21] scheme. Our LDA results for the total density of states (DOS) is shown
in Fig. 1 (dotted line). Similar total DOS were also obtained by other groups [12], showing that
the electronic states relevant to Fe-superconductors are Fe d-band states. As found in previous
calculations, the Fe-d bands hybridize with Se-p bands around -3.8 eV, giving rise to a small,
separated band of d character below 3 eV binding energy. Interestingly, the resulting “gap” at
high energy is not seen in PES experiments [10, 11], which show only a broad continuum in this
energy range. As discussed below, this discrepancy is resolved by dynamical spectral weight
transfer (SWT) which originates from sizable electronic correlations in FeSe.

VII Brazilian Meeting on Simulational Physics IOP Publishing
Journal of Physics: Conference Series 487 (2014) 012017 doi:10.1088/1742-6596/487/1/012017

2



−0.8 −0.6 −0.4 −0.2 0.0 0.2
ω(eV)

0

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

LDA
n=5.8
n=6.0
n=6.1
Exp.

−6 −4 −2 0 2 4
0

1

2

3

ρ to
ta

l(ω
)

Figure 2. Comparison between the LDA+DMFT result for FeSe and angle-integrated
photoemission (PES, triangles) [10]. Good semiquantitative agreement is seen for n = 5.8.
In particular, the low-energy energy spectrum (up to 0.1 eV binding energy) and the peak at
−0.17 eV in PES is resolved in the DMFT spectrum with U = 4.0 eV and JH = 0.7 eV. (The
inset shows the total LDA+DMFT spectral functions. LDA result is shown for comparison.)

Though LDA provides reliable structural information on a one-electron level, it generically
fails to capture the ubiquitous dynamical correlations in d-band compounds, and so cannot access
normal state incoherence in d-band systems. Combining LDA with dynamical-mean-field-theory
(DMFT) is the state-of-the-art prescription for remedying this deficiency [19]. Within LDA, the

one-electron part for tetragonal FeSe is H0 =
∑

k,a,σ ǫa(k)c
†
k,a,σck,a,σ , where a = x2 − y2, 3z2 −

r2, xz, yz, xy label the diagonalized, five d bands. In light of the correlation signatures cited
above full, multi-orbital (MO) Coulomb interactions must be included. These constitute the
interaction term, which reads Hint = U

∑
i,a nia↑nia↓ + U ′

∑
i,a 6=b nianib − JH

∑
i,a 6=b Sia.Sib. To

pinpoint the relevance of MO electronic interactions in the system, we present LDA+DMFT
results for U = 2, 3, 4 eV, U ′ = U − 2JH , and fixed JH = 0.7 eV. In this sense, our study is not
ab initio, but should be looked upon as a realistic correlated model and numerical simulation
for FeSe. To solve the MO-DMFT equations, we use the MO iterated-perturbation-theory as an
impurity solver [22].

Fig. 1 shows how LDA+DMFT modifies the LDA band structure. MO dynamical correlations
arising from U,U ′ and JH lead to spectral weight redistribution over large energy scales and
the formation of lower- (LHB) and upper-Hubbard (UHB) bands. As seen, the UHB at 2.4 eV
for U = 2 eV (and, U ′ = 0.6 eV) moves to higher energies with increasing U . The LHB is
not clearly resolved for U ≤ 2 eV. Indeed, we observe a relatively sharp and quasi-coherent
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Figure 3. Orbital-resolved LDA (dotted) and LDA+DMFT (with U = 4.0 eV, U ′ = 2.6 eV and
JH = 0.7 eV) DOS for the Fe d-orbitals in FeSe for three doping values. Large-scale dynamical
spectral weight transfer occouring hand-in-hand with orbital selective incoherence is visible.

low-energy peak, with a prominent shoulder feature instead of the LHB at ω ≃ −1.0 eV. Similar
features are visible in other results [23] for similar U values. Correlation effects, however, become
more visible at U ≥ 3 eV. In contrast to the U = 2 eV result, a LHB at 2.8 eV binding energy is
clearly resolved with U = 3 eV. With increasing U , the LHB is shifted toward energies where the
Se-p bands occur in the LDA: this superposition of the pd-band and LHB for U = 4 eV makes
difficult to observe the LHB experimentally. Fig. 1 also shows that the DOS at EF is pinned
to its LDA value for U ≤ 3 eV. This is the expected behavior for a Fermi liquid (FL) metal.
With increasing U , however, our LDA+DMFT results show drastic modification of the spectral
functions near EF . Revealingly, in addition to large-scale SWT, we find that the FL-like pinning
of the LDA+DMFT DOS to its LDA value, found for small U , is lost for U = 4 eV. Instead,
the metallic state shows a clear pseudogap at EF , with no Landau FL quasiparticles.

In Fig. 2, we compare our U = 4 eV (and, U ′ = 2.6 eV) results with PES for doped
FeSe1−x [10]. Good semiquantitative agreement with experiment is visible for n = 5.8, where n
is the total band filling of the iron d shell. In particular, the broad peak at ≈ −0.17 eV as well
as the detailed form of the lineshape in PES is well reproduced by LDA+DMFT results for the
hole doped case. This may suggest that the experiment could have been done on a tetragonal
sample with small Selenium excess (we recall that exact stoichiometry is a sensitive issue in
the FeSeTe alloys) [24]. For comparison, the computed LDA+DMFT spectra for the undoped
(n = 6.0) and electron doped (n = 6.1) cases show progressively more disagreement with PES
at low energies. However, the overall lineshapes, along with the peak around −0.2 eV and the
low-energy pseudogap remain robust features in the DMFT calculation. In contrast to this, the
correlated spectral functions close to EF are insensitive to small changes in the electron (hole)
concentration: we predict that combined PES/XAS on doped samples might show this in future.

We now focus on orbital resolved spectral functions of FeSe. Clear orbital-selective (OS)

VII Brazilian Meeting on Simulational Physics IOP Publishing
Journal of Physics: Conference Series 487 (2014) 012017 doi:10.1088/1742-6596/487/1/012017

4



−4.0 −2.0 0.0 2.0 4.0 6.0
ω (eV)

−8.0

−4.0

Im
Σ(

ω
)

3z
2
−r

2

xz,yz
x

2
−y

2

xy

−8.0

−4.0

0.0

4.0

R
eΣ

(ω
)

 

−0.3 0.0 0.3
ω(eV)

0

11

22

1/
Z

(ω
)

Figure 4. Orbital-resolved LDA+DMFT self-energies for electron-doped FeSe. Upper panel:
Real parts showing a low-energy kink feature, at about 15 meV below EF , in ReΣa(ω) with
a = xy, xz, yz, x2 − y2. In the inset, we show the computed orbital-dependent effective
masses. These are sizably enhanced relative to LDA values, in good quantitative accord with
ARPES data [13]. Lower panel: The corresponding imaginary parts, showing clear sub-linear
(xy, xz, yz, x2 − y2) and almost quadratic (3z2 − r2) in-ω dependence for ω ≤ EF .

incoherence is visible in Fig. 3: a low-energy pseudogap is visible in the xz, yz, x2−y2 DOS, and
only the xy, 3z2− r2 DOS show very narrow FL-like resonances at EF . Examination of the self-
energies in Fig. 4 shows that, for n = 5.8, only ImΣ3z2−r2(ω) ≃ −aω2 for ω < EF (= 0). Using
the Kramers-Krönig relation, it follows that the Landau FL quasiparticle residue, Z vanishes
near-identically for the xz, yz, x2−y2 band carriers [from ReΣ(EF )], direct numerical evaluation
gives Zxz,yz = 0.046, Zx2−y2 = 0.059). This translates into an effective mass enhancement

[m
∗

m
≡ 1

Z
= 1− d

dω
ReΣ(ω)|ω=0] of 21.5 for the xz, yz carriers and 17.0 for the x2 − y2 carriers, as

shown in the inset of Fig. 4. This is in good accord with values estimated by an ARPES study
on FeSe0.42Te0.58 superconductor [13], confirming the hypothesis about electronic correlations in
FeSe made in that work. In our LDA+DMFT, these orbital-selective mass enhancements point
toward the relevance of sizable MO electronic correlations in FeSe. However, we also notice
that dΣ/dω has appreciable frequency dependence at low energy: for a Landau FL metal, this
quantity should be constant. Our finding of a frequency dependence in dΣ/dω is thus fully
consistent with a pseudogapped, incoherent metallic state as found above.

Finally, we shall point out that recent studies seem to be converging toward an intermediate-
to-strong correlation scenario for the 122-Fe arsenides and chalcogenides [25, 26] as well as the
11-Fe selenides [27]. Semiquantitative agreement with the details of the PES lineshape along
with specific description of transport [17] lends further credence to our view, which places the
FeSe(Te) in the incoherent, bad-metallic regime of a sizably correlated MO Hubbard model. In
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earlier LDA+DMFT studies for the 1111-Fe pnictides [14] and 122-selenides [26], we found an
incoherent metal normal state similar in many respects to the one shown here. Our study thus
shows that sizable d-band electronic correlations are generic to the Fe-based superconductive
materials.

3. Conclusion

To conclude, based on a five-orbital LDA+DMFT study, we have shown that orbital-selective
incoherence characterizes the normal metallic phase in tetragonal FeSe. Good semiquantitative
agreement with photoemission spectra and rationalization of a variety of unusual observations
in a single picture lend support for our proposal. Sizable multi-orbital correlations are shown to
be necessary to derive this orbital-selective incoherent metal. Emergence of superconductivity
at low T , along with extreme sensitivity of the ground state(s) to minute perturbations in
FeSe1−xTex compounds should thus be considered as manifestations of the myriad possible
instabilities of such an incoherent non-Fermi liquid metal in close proximity to Mottness.
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