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Abstract 

 

Small-scale, residential, and distributed energy resources (DER), which are 

electric vehicles (EVs), heat pumps (HPs), and photovoltaic (PV) arrays, were studied 

to evaluate their impact on the UK future residential demand and their impact on UK 

distribution networks. Centralized and decentralized controllers were planned in order 

to defer reinforcement, while connecting DER units to distribution networks. The 

centralized controller allocates EV charging durations considering network 

constraints. The decentralized controller adjusts EV and HP loads based on consumer 

satisfaction, network constraints, and electricity prices.   

Normal probability distribution and median filter were used to predict aggregated 

power of EVs, HPs, and PV arrays on a half-hourly basis over a year. Because of an 

expected surplus of PV power generation, a considerable demand reduction followed 

by a sharp demand increase will occur with these residential DER units during summer 

days in 2035. 

A low voltage section of test network was used to study the impact of uncontrolled 

EV charging loads on a three-phase four-wire system. Different combinations of EVs, 

HPs, and PV arrays were used to investigate their uncertainties in a low voltage section 

of real network. Real-world trials were used to generate the individual power of 

residential customers and DER units. Results of unbalanced power flow indicated that 

network constraints exceeded their limits with a high number of these low carbon 

technologies.                         

Using an extended section of the test network, the central controller maintains 

voltage magnitudes, voltage unbalance factors, and power flows within their limits, by 

re-allocating EV charging durations accordingly.    

The decentralized controller was designed to minimize electricity bills of EV and 

HP users. This controller adjusts EV and HP loads to maintain consumer satisfaction 

and network constraints within their specified boundaries. Consumer satisfaction was 

determined using mathematical models of EV battery state-of-charge levels and the 

indoor temperatures of HP houses. The decentralized controller was used to connect 

predicted numbers of EVs and HPs to a real distribution network, while overcoming 

the need for network reinforcement, third parties (aggregators), and extensive 

communication systems.    
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CHAPTER 1       

 

1. Introduction 

 

As long as many countries use fossil fuels to generate electricity, carbon dioxide 

emissions will increase. Alternatively, carbon-free distributed energy resources (DER) 

and renewable energy sources (RES) can be locally used to generate electricity in a 

clean renewable manner. If high numbers of DER units are connected using a “fit-and-

forget” approach, current policies will need to be adjusted [1]. Policymakers and 

network operators play an essential role in amending their current policies. These 

amendments will create opportunities and challenges, entering a new era of generating 

and distributing electricity [2].  

According to Ref. [3], DER units refer to distributed generators, energy storage 

systems, and flexible demands. The Electrical Power Research Institute (EPRI) [4] 

investigated the impact of DER units on the operation of power systems, considering 

a cost-effective investment to modernize networks. A successful integration of DER 

units relies on the existing grids, because the networks can only contain a certain 

number of DER units without exceeding their limits [4].  

Therefore, existing power networks were not designed to accommodate high 

numbers of DER units. However, network components can only tolerate certain 

numbers of these low carbon technologies without immediate reinforcement.  

This thesis poses the following main questions: 

 How the predicted numbers of electric vehicles (EVs), heat pumps (HPs), and 

photovoltaic (PV) arrays will affect the UK overall residential demand?     

 What is the impact of the integration of EVs, HPs, and PV arrays on power 

distribution networks considering voltage magnitudes, voltage unbalance factors, 

and other network constraints?   

 Is it possible to connect high numbers of EV units to power distribution networks 

without further network reinforcement?  

 How can EV and HP users adjust their demand in a decentralized manner while 

maintaining the use of EVs and HPs?   
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1.1 Thesis Objectives  

The impacts of DER integration on power distribution networks were studied to 

determine the hosting capacity of existing networks. This capacity was evaluated by 

monitoring voltage magnitudes, voltage unbalance factors, and other network 

constraints. The main objective of this thesis was the development of coordination 

algorithms, which were used to connect EVs and HPs to existing networks in order to 

defer network reinforcement. The thesis objectives are:   

1. Predicting the UK overall residential demand based on future scenarios of 

aggregated power of EVs, HPs, and PV arrays.            

2. Simulating test and real networks with EVs, HPs, and PV arrays. Residential 

and EV loads were synthesized using real trials. HP loads were modelled using 

ambient temperature, whereas PV power was modelled using solar irradiance.  

3. Coordinating high EV charging loads using a centralized controller, while 

considering network constraints. A three-phase unbalanced power flow was 

developed to achieve this aim. 

4. Adjusting EV and HP loads using a decentralized controller based on a 

modelled time-varying tariff. Consumer comforts and network constraints 

were considered with the decentralized controller. The satisfaction of EV user 

was monitored using EV battery state-of-charge (BSoC) levels. The comfort of 

HP user was monitored using the indoor temperatures of HP premises. 

 

1.2 Thesis Contributions 

Thesis contributions are summarized as follows: 

1. Prediction techniques were proposed to estimate the UK overall residential 

demand with EVs, HPs, and PV arrays.  

2. Deterministic and stochastic modelling tools were developed to assess the 

impact of EVs, HPs, and PV arrays on distribution networks.   

3. A centralized control algorithm was implemented to coordinate EV charging 

loads in distribution networks. EV charging loads were re-allocated using the 

control algorithm to defer further network reinforcement.   

4. A decentralized control algorithm was planned to adjust EV and HP loads using 

mixed integer linear programming. Current flows through cables were reduced 



CHAPTER 1  Introduction 

3 
 

using the decentralized control algorithm, while considering consumer 

satisfaction of EV and HP users.     

 

1.3 Thesis Structure 

This thesis is organized as follows:  

Chapter 2 reviews related work using a proposed classification of previous studies. 

Reviewed publications were mainly classified into deterministic and stochastic 

studies. The relevant publications were categorized based on studied EVs, HPs, and 

PV arrays. Surveyed impact studies of DER units were presented using voltage levels, 

energy losses, and reinforcement costs. Reviewed demand management schemes with 

DER units were categorized into centralized and decentralized strategies. 

Chapter 3 predicts the UK overall residential demand with residential EVs, HPs, and 

PV arrays. The power of residential DER units was firstly synthesized over a year of 

half-hourly time steps based on Customer-Led Network Revolution trials. Then, the 

UK overall residential demand was predicted over the next two decades, considering 

National Grid and GridWatch databases.      

Chapter 4 explains the impact of residential DER units on power networks using 

deterministic and stochastic methods. Deterministic outcomes were presented using 

four case studies of uncontrolled EV charging loads with a generic low voltage 

network, which was adapted from Department of Trade and Industry. Meanwhile, 

stochastic results were shown with different combinations of EVs, HPs, and PV arrays 

using a real distribution network of Electricity North West.  

Chapter 5 presents the centralized control algorithm to coordinate high EV charging 

loads considering network constraints. The central controller was developed to 

maintain existing network components within their limits, while charging high 

numbers of EVs.          

Chapter 6 describes the decentralized control algorithm to adjust EV and HP loads 

using mixed integer linear programming. EV and HP loads were modelled based on 

their operational characteristics over a day of quarter-hourly time steps. Consumer 

satisfaction and network constraints were considered while developing the proposed 

algorithm. Simulations results were presented using another real low voltage 

distribution network of Electricity North West.  

Chapter 7 gives conclusions and recommendations for further work.      
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Figure 1.1 shows the framework of the thesis chapters.   

     

 

Figure 1.1: The framework of the thesis. 
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CHAPTER 2 

 

2. A Review of Distributed Energy Recourses in Power Systems 

 

2.1 Introduction 

This review presents the literature that discussed the connection of distributed 

energy resources (DER) to electric power systems. Residential units of electric 

vehicles (EVs), heat pumps (HPs), and photovoltaic (PV) arrays are mainly considered 

in this literature survey, concentrating on some of their environmental benefits, 

technical challenges, and methodological considerations. 

The energy consumption of residential sector was reported to be responsible for a 

25% of carbon dioxide emissions in the UK [5]. Objectives were adjusted to reduce 

UK emissions below their level in 1990 as follows: a 34% cut of emissions by 2020,  

a 60% cut of emissions by 2030, and an 80% cut of emissions by 2050 [5], [6].           

The use of carbon-free DER units in residential sectors can reduce carbon dioxide 

emissions to a certain level. Renewable energy sources (RES) were estimated to supply 

a 15% of the UK demand by 2020, accommodating a 30-45% of the UK energy 

consumption by 2030 [7]. National Grid [8] identified that, a 25% of heat and transport 

sectors should be decarbonized to accomplish an economic pathway of using 

renewables by 2030. HPs are able to decarbonize UK heat networks, offering a 

potential reduction of carbon dioxide emissions [9]. EVs were suggested to support 

the UK long-term objective of reducing carbon dioxide emissions [10]. The current 

emphasis of the UK government on greening the private and commercial vehicles can 

help in decarbonizing a substantial part of the transport sector [10], [11]. 

Carbon dioxide emissions from transport sectors were rising, as compared to these 

emissions from other sectors. European countries have agreed to reduce greenhouse 

gas emissions by 20% by 2020 (i.e. relative to 1990 levels) [12]. The regulations of 

European commission can increase the number of EVs to reduce carbon dioxide 

emissions over the next years. European countries have adopted a set of mandatory 

targets to cut these emissions in accordance with legislative Acts in 2009, including 

penalties of noncompliance with these objectives for new cars [12]. The use of EVs 
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was investigated in Ref. [13] to underpin a “green energy economy” based on several 

EV studies of national and regional levels by 2030, considering barriers and drivers of 

governing the use of EVs in transport sectors.  

Currently, EVs account a small share of private cars but this share is anticipated 

to increase over the coming years. Table 2.1 illustrates a prediction of EV numbers 

across different countries by 2020.    

 

Table 2.1: A prediction of EV numbers across different countries by 2020 (UK figure from 

[6], others from [10]). 

Country  The number of electric vehicles  

China 5,000,000 

Spain  2,500,000 

United States 2,488,320 

France  2,000,000 

Germany  1,000,000 

South Korea  1,000,000 

Japan  800,000 

United Kingdom  763,944 

Canada  500,000 

Austria  250,000 

Ireland  230,000 

Portugal 200,000 

Netherlands  200,000 

 

 

2.2 Impacts of Distributed Energy Resources on Future Demand     

Office for gas and electricity market (Ofgem) [14] assessed the risk of electricity 

supply in the UK over winter seasons between 2014/15 and 2018/19 based on future 

energy scenarios by National Grid. A significant demand reduction has started since 

2013 because of the connection of distributed generators to electricity networks [14]. 

Ofgem also demonstrated that, demand reductions of non-residential customers over 

peak hours have caused further overall demand reduction.  

Future demand can follow a predictable pattern over a day if specific aspects are 

unchanged (e.g. electrification of transport and heat sectors). Future loads of Britain 
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and Germany were predicted over the year of 2050 at hourly time steps by scaling 

overall demands, considering low carbon loads of EVs and HPs [15].  

National Grid [16] has anticipated that, a considerable amount of intermittent 

renewable energy will be connected to the UK transmission system by 2020. High 

numbers of DER units will affect the UK residential demand by 2030 as follows. 

Residential loads will increase by 48% above the current value of demand, as reported 

in Ref. [11]. The average ratio of residential demand in winter days relative to summer 

days will increase by 22% by 2030, as compared to its value in 2010 [11].  

A scenario-based approach was used in Ref. [17] to integrate RES units into 

German electricity systems based on a prediction of solar and wind energies by 2050. 

The future trend of RES integration was estimated considering several RES uptakes 

and economic benefits. Thereafter, economic and technical parameters of German 

energy system were estimated by 2050 [17]. In Finland [18], nuclear power plants and 

wind energies were modelled to predict Finish future energy profiles, considering HPs 

in heating systems. The maximum share from intermittent wind energy was evaluated 

with nuclear power plants using a “wind-nuclear compromise chart”. The chart was 

used to study different scenarios, illustrating carbon dioxide emissions, power 

exchanges, and total energy costs. It was concluded that nuclear energy generation can 

limit the maximum value of variable wind energy [18]. Several methods were 

proposed in Ref. [19] to maintain reliable energy systems with intermittent renewable 

energy resources using the roles of the following elements: demands, energy markets, 

energy storages, smart grids, and institutional policies.     

 

2.2.1 Thesis Contribution to Estimate Future Demand with DER Units 

It can be seen that, distributed generators such as PV arrays were only considered 

in Ref. [14], whereas the impact of EV and HP technologies on the UK future demand 

was investigated in Ref. [15]. Although future energy scenarios by National Grid [8], 

[20] predicted the UK future demand with DER units, the shape of the UK annual 

demand was not presented over the forthcoming years.  

Therefore, a simultaneous impact of residential DER units on the UK future 

demand is required, considering a long-term interval (e.g. two decades ahead). In 

Chapter 3 of this thesis, a long-term prediction model is developed to estimate the 

impact of residential EV, HP, and PV arrays on the UK residential demand over half-
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hourly time steps. This tool can help system operators to acquire an estimate of future 

domestic demand, while connecting residential DER units to UK electricity networks.   

 

2.3 Impacts of Distributed Energy Resources on Distribution Networks  

The impacts of DER units on electric power systems were assessed in transmission 

and distribution levels [21]. Temporal attributes (e.g. EV charging durations) and 

spatial attributes (e.g. EV locational connections) were analysed using medium voltage 

(MV) networks to study uncontrolled and controlled charging of EVs [21], [22]. 

Deterministic power flows were used in Ref. [23] to evaluate the hosting capacity of 

existing networks with the integration of RES units. The power of DER units was 

estimated in Ref. [24] using stochastic methods. Deterministic and stochastic analyses 

were used in Ref. [25] to evaluate the impact of DER integration on existing networks. 

Moreover, both of stochastic and deterministic methods were presented in Ref. [26] to 

model controlled and uncontrolled charging of EVs. Uncontrolled EV charging loads 

were reported to have a remarkable impact on network components [26]. The impact 

of EV charging loads on distribution networks was studied in Ref. [27] using a three-

phase power flow, monitoring voltage magnitudes and current flows. Stochastic and 

deterministic approaches were also compared in Ref. [27] using 13-bus and 25-bus 

networks. 

 

2.3.1 Deterministic Studies    

Deterministic methods, which use non-randomized numbers of DER units, were 

presented in Refs. [28], [29] to study the impact of DER units on distribution networks. 

It was concluded in Ref. [23] that the hosting capacity of low voltage (LV) networks 

with RES units can be calculated by performing power flows.   

According to the Institute for Electrical and Electronic Engineering (IEEE) [30], 

residential customers are typically connected to main feeders via single-phase lines. 

The combination of DER power and residential demand will produce unbalanced 

loads, causing unbalanced voltages across the three phases. Consequently, three-phase 

equipment (e.g. induction motors) can be overheated due to voltage unbalance [30]. 

High residential charging loads of EVs will increase the aggregated residential 

demand. The aggregated demand can cause a violation of steady-state operational 

limits such as voltage unbalance factors and voltage magnitudes. Voltage unbalance 
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factors were evaluated in Refs. [31], [32] to study the impact of EV charging loads on 

radial distribution networks. The impact of EV charging loads on a distribution 

network was evaluated by monitoring voltage fluctuations and voltage unbalance 

factors [33]. An IEEE 13-bus network was used in Ref. [34] to study the impact of EV 

charging loads on voltage unbalance factors. A lithium-ion battery was modelled in 

Ref. [34] based on the characteristics of Tesla-Roadster EVs.   

The technical challenges of EV charging loads were reviewed in Ref. [35] with 

different LV distribution networks. The impacts of EV charging loads on electricity 

networks were quantified based on EV numbers, EV charging time durations, EV 

driving patterns, and EV charging features [35]. It was observed that, voltage 

deviations and other network constraints exceeded their limits with relatively moderate 

charging loads of uncoordinated EVs in an existing LV network [28]. The impacts of 

EV charging loads on meshed and radial networks were studied in Ref. [36] based on 

voltage fluctuations and energy losses. 

It was shown that, existing distribution networks could frequently exceed their 

limits with high numbers of EVs [37], [38]. For example, thermal ageing of 

distribution transformers can significantly deteriorate with high levels of EV charging 

loads [38]. In Ref. [39], a number of EVs were connected to real distribution networks 

to assess their effect on energy losses and reinforcement costs. It has been concluded 

that grid reinforcement may reach up to 15% of the grid cost, as compared to a case 

without EV integration [39].   

The technical issues of connecting high numbers of PV arrays to residential 

feeders were addressed in Ref. [40] using unbalanced power flows. Load flow results 

demonstrated that, voltage magnitudes with high numbers of PV arrays were slightly 

increased [40]. The impact of PV arrays on a real residential network was presented in 

Ref. [41] considering a single-phase connection of PV panels to the grid. Unbalanced 

phase voltages were observed to occur at the weak feeder (i.e. a long radial feeder of 

high impedance) [41]. Voltage issues were alleviated along LV feeders using a 

cooperative voltage control, connecting PV and EV units to the same part of distribution 

networks [42].     

The impacts of charging loads of plug-in hybrid electric vehicles (PHEVs) on 

distribution networks were also investigated in the litreture. The capacity of a PHEV 

battery was typically small, as compared to the capacity of an EV one. Consequently, 

the impacts of EV/PHEV charging loads on distribution networks have accordinagly 
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varied. In Ref. [43], several modelling tools were reviewed to study the impact of 

PHEV charging loads on  different distribution networks, considering the following 

aspects: uptakes, driving patterns, charging durations, and charging properties. PHEV 

charging loads were noticed to have an impact on distribution transformers over peak 

hours [44]. The impacts of PHEV charging loads on distribution networks were 

mitigated in Refs. [45]–[48] using different techniques such as: on-line coordination 

methods [45], centralized controllers [46], and decentralized controllers [48].   

 

2.3.2 Stochastic Studies   

Stochastic methods were used to address uncertainties of DER units in distribution 

networks (e.g. EV charging time durations). Monte Carlo Simulation (MCS) 

techniques were widely used in stochastic studies to address different scenarios using 

a proposed randomness of DER integration.   

Voltage fluctuations and energy losses were studied in an existing LV network 

considering a stochastic method to simulate uncertainties of EV charging loads [49]. 

The impact of EV charging loads on a typical LV network was investigated using a 

stochastic approach to model the uncertainties of EV charging locations and EV 

charging durations [50]. A stochastic method was used to study the impact of EV 

charging loads on UK distribution networks based on real datasets that were acquired 

using smart meters of real trials [51]. It was suggested that uncertainties of EV 

charging loads can be reduced using a cooperative framework, which incorporates 

aggregators and distribution network operators (DNOs) [51].  

The impacts of EV charging loads and PV power generations on distribution 

transformers were studied using a probabilistic approach of MCS methods with an 

IEEE, 123-bus, and modified network [52]. A number of 100 power flows were 

simulated to study the impact of EVs, HPs, PV arrays, and micro combined heat and 

power (mCHP) units on 128 residential feeders [24]. Stochastic results were suggested 

in Ref. [24] to be interpreted into lookup tables by DNOs to evaluate the hosting 

capacity of residential feeders with these low carbon technologies. The integration of 

the DER units into real LV feeders was also studied in Ref. [53] using OpenDSS over 

a day of 5 minutes time steps, considering DER operational characteristics.   

Stochastic modelling and optimization methods of future electricity networks 

were surveyed in Ref. [54], considering the contribution of DER units in micro-grids. 
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It was concluded that, stochastic modelling and optimization methods require 

additional statistics and extensive computations, as compared to deterministic methods 

[54]. 

 

2.3.3 Real-World Studies  

Real electricity networks can experience additional uncertainties with DER 

integration. For example, the aggregated load of EVs and HPs will increase peak-hour 

demand. DER integration might affect both of electricity suppliers and electricity 

consumers in different levels of electricity systems. Therefore, quality and reliability 

of electricity should be maintained within their limits, while accommodating more 

DER units [55].  

In the UK [56], [57], Customer-Led Network Revolution (CLNR) project  was 

initiated to study the impact of residential DER units on UK distribution networks 

using smart metered power data [56], [57]. The CLNR project is a cooperative 

framework between commercial and academic partners. The commercial partners are 

Northern Powergrid operator, North East and Yorkshire operator, Ofgem, British Gas, 

Electricity Network Association (ENA) Technology, and low carbon networks fund 

(LCNF). The LCNF project was replaced with Electricity Network Innovation 

Competition [8]. The academic partners of the CLNR project are Durham University 

and Newcastle University. 

The CLNR project developed cost-effective solutions to tackle high numbers of 

DER connection to distribution networks. The CLNR project focuses on residential 

EVs, HPs, PV arrays, and mCHP units [56]. Useful reports were published during the 

CLNR trials to illustrate the outcomes of this project. For example, the impact of PV 

arrays and HPs on UK distribution networks was investigated over a year of half-

hourly time steps [29]. The Irish Customer Behaviour Trials (CBT) [58] were initiated 

to provide a statistical insight of using residential smart meters. CBT results have 

shown that, the use of smart meters and time-varying tariffs could reduce residential 

demand. The Low Carbon London (LCL) project [59] was launched to study the effect 

of DER units on future low carbon networks. LCL studies have focused on the 

following topics: power quality issues with DER integration, demand response 

schemes with dynamic time-varying tariffs, and economic opportunities with demand 

response strategies.   
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In the Netherlands [60], energy losses and voltage levels were assessed using real 

power data of residential customers in connection with EV and PV integration. The 

program (Livelab) of the network operator (Al-liander) was used to perform stochastic 

three-phase power flow simulations. These simulations were recorded based on real-

world residential loads with random locations of EV and PV units using a MCS 

approach. The hosting capacity of the considered network was determined based on 

different connections of EVs and PV arrays [60].   

In Sweden [61], the impact of EV charging loads was analysed using a steady-

state power flow in a local MV/LV distribution network of Gothenburg. Commercial 

and residential areas were simulated for a worst case scenario by charging all EVs 

during peak-hour time intervals. Transformers and cables were overloaded because of 

simultaneous EV charging loads during peak hours. Voltage fluctuations were 

recorded to be within their acceptable values at EV charging locations [61].    

 

2.3.4 Thesis Contribution to Study DER Impact on Distribution Networks  

In Chapter 4 of this thesis, the impacts of EVs, HPs, and PV arrays on test and 

real networks were simultaneously studied, whereas the impacts of EV charging loads 

on distribution networks were separately studied in Refs. [28], [37], [49], [50]. 

Deterministic evaluations were implemented in Refs. [28], [37] to study the impact of 

EV charging loads on LV networks using snapshot values of load flows. Daily 

unbalanced power flows were calculated in Chapter 4 to investigate the impact of EV 

charging loads on LV networks. The impacts of EV charging loads on distribution 

networks were just considered in Refs. [49], [50] using stochastic techniques. 

Meanwhile, studies [24], [53] investigated the impact of EVs, HPs, and PV arrays on 

LV feeders based on a stochastic method, including their effect on distribution 

transformers.   

Therefore, Chapter 4 uses both of stochastic and deterministic studies to study the 

impacts of EVs, HPs, and PV arrays on test and real networks, considering real-world 

datasets of the DER units. The impacts of these low carbon units on LV networks were 

monitored by recording voltage unbalance factors, voltage magnitudes, and power 

flows through transformers and cables. Real-world mean values of the power of the 

low carbon technologies were used to synthesize their individual power over a day of 

minute-by-minute time steps. This approach presents a near real-time impact of the 
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DER units on distribution networks. Moreover, Chapter 4 of this thesis is designated 

to evaluate the number of EVs that can be accommodated in existing networks without 

exceeding network limits using unbalanced power flow. 

 

2.4 Coordination Algorithms of EV Charging Loads  

In Ref. [62], dumb charging was proposed to charge EVs considering the ability 

of EV owners to recharge their EVs whenever they need without restrictions or 

incentives. However, dumb charging can cause technical and operational issues. 

Meanwhile, smart charging was suggested to shift EV charging loads towards off-peak 

hours using time-of-use (ToU) tariffs [62]. 

Network reinforcement can be used to strengthen the existing networks; however, 

a widespread adoption of infrastructure upgrades would be very expensive. 

Alternatively, smartening the distribution networks have the potential to develop an 

efficient use of the network components. Responsive loads such as EVs can be used 

to achieve an optimal energy matching by reshaping the energy demand. Rescheduling 

strategies of charging and discharging EV batteries were presented in Refs. [63]–[66] 

based on different constraints, considering other DER units. Coordination algorithms 

were implemented using several optimization methods. Numerical optimization 

techniques have been reviewed in Refs. [67], [68] for optimal scheduling of EV 

charging loads, discussing dynamic programming, linear programming, and non-linear 

programming. Meta-heuristic methods have also been presented in Refs. [67], [68] to 

illustrate multi-objective scheduling problems while charging and discharging EVs.  

In one study [69], an adaptive controller was proposed to coordinate EV charging 

schedules. The on-line adaptive controller was used to reduce the impact of EV 

charging loads on distribution networks, considering EV charging costs, EV owner 

preferences, voltage magnitudes, and voltage unbalance factors. A direct current (DC) 

power flow was used in the optimization process, whereas an alternating current (AC) 

power flow has been performed to validate the results.  

In another study [70], a control method was developed to coordinate EV charging 

loads within a five-minute time resolution. The cost of the energy generation was 

decreased to achieve the coordination of EV charging loads considering energy losses, 

voltage fluctuations, and overloads. This cost of energy was further reduced by finding 

a better solution using fuzzy theory [71]. An on-line fuzzy coordination algorithm was 
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used for EV charging loads in a smart network with distributed wind generators. The 

control algorithm reduced the total cost of energy generation based on dynamic energy 

prices, including power losses. EV users were prioritized according to their preferred 

charging times. It was ensured that voltage profiles cannot exceed their limits when 

EVs were charged using the on-line fuzzy coordination algorithm [71].  

In yet another study [72], EVs were optimally recharged considering EV battery 

state-of-charge (BSoC) levels and network constraints. EV charging loads were 

simulated in Ref. [72] using a real unbalanced distribution network over a day of 5 

minute time steps. Meanwhile, EV charging loads were simulated in Ref. [73] over a 

day of hourly time steps to minimize the following values: transformer overloads, 

energy losses, and operational costs. A three-phase unbalanced distribution network 

was used in Ref. [73] to test the performance of the proposed framework based on an 

optimal power flow. High EV charging loads were scheduled based on heuristic 

algorithms to reduce peak loads [74], considering voltage deviations and network 

limitations. However, heuristic algorithms cannot guarantee the accuracy of optimal 

solutions, because they merely help in detecting the best possible solution of all 

feasible ones [75]. 

High numbers of EVs were controlled in a distribution network using a multi-

objective algorithm, considering distributed generators. Local network operators were 

suggested to use a genetic algorithm to mitigate the impact of EV charging loads on 

distribution networks [76]. The approach proposed in Ref. [76] was updated in another 

Ref. [77] using integer nonlinear programming. According to Ref. [78], the capacity 

of distribution transformer was used to determine the maximum number of EVs, which 

can be connected to an existing network. An optimal charging strategy was proposed 

in Ref. [78] to maximize the power of EVs accommodated. 

EV charging loads have been coordinated using agent-based strategies to mitigate 

their effect on distribution networks [79]–[81]. A multi-agent system was 

experimentally implemented in Refs. [79], [81] for a smart charging of EVs. The 

agent-based controller was tested in an LV network using a search method based on 

neural networks. EV charging loads were coordinated to follow a low electricity price, 

while maintaining grid constraints within their limits [81]. Agent-based strategies were 

reviewed in Ref. [82], while presenting a number of software packages of modelling 

EV charging loads in smart grids. A number of 125 software packages were surveyed 

in Ref. [83] to identify relevant simulation tools for modelling and controlling loads of 
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charging EVs, describing two thirds of these packages briefly. The software packages 

were related to EV impact studies, EV charging schedules, and EV traffic simulations 

[83]. Table 2.2 shows an executive summary of a number of reviewed publications.   

 

Table 2.2: An executive summary of a number of reviewed publications. 

References [24] [21] [22] [78] [51] [79] [80] [81] [82] [26] [27] [39] [83] 

Deterministic or stochastic methods of studying distributed energy resources (DER) 

Deterministic               

Stochastic               

Electric Vehicles (EVs), Heat Pumps (HPs), and Photovoltaic (PV) arrays 

EVs              

HPs              

PV arrays              

The impact of EVs, HPs, and PV arrays on 

Voltages               

Power losses               

Transformers               

Cables              

Costs              

Medium Voltage (MV) and Low Voltage (LV) levels 

MV              

LV              

Demand Side Management Strategies 

Centralized              

Decentralized               

Programming tools 

MATLAB              

OpenDSS              

MATSim              

IPSA              

PSCAD              

Others          8    125 

Publication 

date 
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0 
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Key   These cells represent the aspects considered in each publication  
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2.4.1 Thesis Contribution to Coordinate EV Charging Loads  

The use of ToU tariffs to coordinate EV charging loads may lead to a new peak 

of aggregated demand over the time intervals of low electricity prices. Therefore, a 

centralized controller, which can re-allocate charging loads of high numbers of EVs 

without exceeding the network constraints, is important. In Chapter 5 of this thesis, a 

centralized controller is implemented to re-allocate EV charging loads, considering 

network constraints over a day of minute-by-minute time steps. 

The centralized controller of Chapter 5 differs from the controllers proposed in 

Refs. [70]–[73], as it controls EV charging loads regardless electricity prices. Although 

the controllers presented in Refs. [70]–[73] maintained network constraints within 

their limits, controlling additional EV charging loads using these controllers may lead 

to another peak of demand over the hours of low electricity prices. 

 

2.5 Demand Side Management Schemes   

Similarities and differences between demand response (DR) and demand side 

management (DSM) mechanisms are presented in Table 2.3. DSM schemes were 

reviewed in Ref. [84] based on optimization methods with residential customers. The 

contrasts of defining DSM schemes were highlighted in Ref. [84] using the following 

aspects: individual versus aggregated users, deterministic versus stochastic methods, 

and day-ahead versus real-time intervals. DSM and DR schemes can be modelled 

using centralized or decentralized approaches of control, as shown in Table 2.3. 

DR strategies represent the end-user ability of modifying energy consumption by 

responding to an external signal (e.g. electricity price). DSM techniques can be 

designed based on load shedding or ToU pricing, as presented in Ref. [85]. A load 

management method can be used to connect high numbers of DER units to power 

systems, while considering economic and environmental benefits.     

A number of demand management prospects were discussed in Ref. [85] such as: 

DSM techniques (e.g. load shedding), DSM challenges (e.g. the lack of 

communication systems), and DSM advantages (e.g. the reduction of operating and 

planning costs).  
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Table 2.3: Similarities and differences between DSM and DR strategies based on a number 

of reviewed publications. 

Demand Side Management (DSM) Demand Response  (DR) 

A pre-planned action An immediate action 

With or without external signals   With external signals (e.g. electricity price) 

Load shedding or ToU pricing (i.e. examples of DSM/DR techniques) 

Centralized or decentralized control (i.e. examples of DSM/DR approaches)  

A postpone of network reinforcement or a reduction of operational cost (i.e. examples of 

DSM/DR advantages)  

Linear programming, mixed integer linear programming, nonlinear programming, dynamic 

programming, and quadratic programming (i.e. examples of DSM/DR modelling tools)  

 

According to Ref. [86], a DR strategy is used to match supply with demand, 

considering demand reduction over peak-hour time intervals. Commercial and 

industrial customers obtain a significant contribution of DR by switching their loads 

on and off. Residential customers can participate in DR schemes using the technical 

role of smart meters. The use of DR strategies has the potential to reduce generation 

costs, electricity bills, and carbon dioxide emissions [86].    

Thirty trials were reviewed in Ref. [87] to show a number of DR schemes in 

different contraries, considering different seasons. Domestic energy management 

systems were reviewed in Ref. [88] to evaluate cost reductions and efficiency 

improvements, illustrating their functional structure with mixed renewable energy 

resources. Several studies were reviewed in Ref. [89] to demonstrate the use of 

optimization methods in different geographical locations of disparate RES types.  

 Smart EV charging and DSM strategies were presented in Ref. [90] to mitigate 

the impact of DER units (e.g. EVs and mCHP units) on MV/LV network components. 

A demand management strategy was investigated in Ref. [91] to reduce EV operating 

costs using mCHP energy generation. EV charging loads were rescheduled in Ref. [91] 

based on driving patterns, considering mCHP operating intervals over different 

weather conditions. 
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2.5.1 Demand Management Schemes in Smart Grids 

The environmental challenges of using fossil fuels will encourage further 

connection of carbon-free DER units to distribution networks. Technical and 

operational issues of DER integration can be mitigated using a smart grid [92].    

The smart grid is a conceivable control of an electric network to decrease 

operating and planning costs, serving responsive customers efficiently [93]. DR 

schemes can reduce capital costs by deferring network reinforcement. Information and 

communication technologies (ICT), smart meters, and energy controllers were 

presented as important assets of the smart grid, as compared to the conventional one 

[93]. DSM and DR strategies were highlighted as essential tools in the smart grid to 

increase the level of automation in distribution networks [94].   

Smart grids were reviewed in Ref. [95] considering their economic and 

environmental benefits. It was shown that, the assessments of smart grids have varied 

across different studies. Economic and environmental advantages with smart grids 

were summarized to indicate the origin of these variations. It was concluded that, smart 

grids might achieve both of economic and environmental benefits to a certain level. 

Standardized assumptions and standardized methodologies were recommended to 

acquire a consistent assessment of smart grids [95].    

Smart meters and energy prices were demonstrated in Ref. [96] to estimate their 

roles and advantages in smart grids, while implementing DSM schemes. EV charging 

loads were controlled considering the participation of EV aggregators in the electricity 

market, and the limitation of network components. The proposed strategy was assumed 

to be managed by EV aggregators and network operators. Energy difference between 

the energy bought and the overall charging demand was minimized to solve 

operational issues with high numbers of EVs [97].  

 

2.5.2 Centralized Demand Management Schemes   

DER integration can significantly change an aggregated demand, causing 

prediction errors. Voltage deviation, voltage unbalance, and frequency fluctuation can 

occur with DER integration. In addition, variations of solar irradiance and wind speed 

require a flexible generation capacity. Therefore, DR schemes can help in bringing 

flexibility, efficiency, and reliability to power systems [98].  
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In Ref. [99], supply and demand were matched using an energy management 

system, considering an increase of PV uptakes. A short-term prediction of HP and PV 

power was used to enhance the performance of the proposed management scheme. Ten 

probability distributions were examined over a one-year time interval to increase the 

prediction accuracy. This accurate model of prediction was used to match HP load 

with PV power generation [99]. Operational challenges were investigated in Ref. [100] 

using different probability distributions of solar irradiance and wind speed. A demand 

management strategy was implemented in Ref. [100] to minimize the operational costs 

considering residential, commercial, and industrial customers. Moreover, the loads of 

smart appliances were re-scheduled in Ref. [101] based on different probability 

distributions, investigating the impact of their information delay.  

A proposed DR strategy was used to coordinate additional RES power using an 

aggregation of EV and PHEV energy, while maintaining power systems within 

acceptable levels of safety and reliability [102]. According to Ref. [103], DR strategies 

are able to cope with RES fluctuations based on incentives of real-time pricing. 

However, limited experiences of real DR schemes can cause extensive assumptions in 

DR modelling. Linear price/demand relationships and fixed constraints were noticed 

as typical DR assumptions [103]. In addition, a successful DSM scheme should be 

primarily evaluated based on utility financial incentive and regulatory support to avoid 

the overlap between present and new polices [104].  

A number of definition and classification of DR programs were reviewed in Ref. 

[105] to illustrate EV integration into smart grids. DSM strategies were presented in 

Ref. [106] to smooth electricity demand by shifting EV charging loads away from peak 

hours, considering weekly and seasonal schemes of demand managements.  

 

2.5.3 Decentralized Demand Management Schemes      

The growth of using RES units is predicted to follow a decentralized pattern, 

which may cause further challenges in distribution networks. These challenges require 

an effective use of decentralized DR schemes. A strategy of DR program can be 

managed by network operators or aggregators [107].  

In Ref. [108], EV loads were shifted using an algorithm of distributed DR method 

with other DER units based on a valley-filling method. Nonetheless, this algorithm has 

not included EV owner preferences. A decentralized algorithm was developed in Ref. 
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[109] to reschedule EV charging loads using the valley-filling method based on an 

optimal control problem. However, EV owner preferences were also not considered in 

Ref. [109], because the algorithm proposed follows a control signal that has been 

broadcasted by the utility company.   

A decentralized DSM scheme was developed in Refs. [110], [111] based on 

flexible demand participation in electricity markets, modelling the operational 

characteristics of EVs and HPs. However, distribution network limitations were not 

considered in Ref. [111] because EV and HP loads were studied at the transmission 

level. A balanced generic system was used to test the coordination of DER power using 

a two-level algorithm of another decentralized DSM scheme over a day-ahead time 

interval [112]. Moreover, non-linear pricing tariffs were developed in Ref. [113] 

considering a local randomized approach to manage the loads of EVs and other 

appliances, while excluding the uncertainties of EV owner preferences. 

 

2.5.4 Thesis Contribution to Implement Demand Management Scheme   

In Chapter 6 of this thesis, a decentralized demand management scheme is 

proposed to adjust EV and HP loads, while considering consumer satisfaction and 

network constraints. A real, three-phase, and unbalanced network is used to test the 

performance of the proposed controller. 

Consumer satisfaction was included in the decentralized algorithm of Chapter 6, 

whereas this attribute was not included in the decentralized programs of Refs. [108], 

[109]. Although operational characteristics of EVs and HPs were considered in the 

two-part study [110], [111], the level of consumer comfort (e.g. EV final BSoC level) 

was not evaluated in Ref. [111].  

Therefore, EV final BSoC levels and the indoor temperatures of HP house were 

evaluated in Chapter 6 to indicate consumer satisfaction clearly. In addition, the three-

phase structure of the most of real distribution networks was not considered in the 

decentralized algorithms of Refs. [108]–[113]. Consequently, an appropriate attention 

has been paid in Chapter 6 to the three-phase structure of real unbalanced networks, 

while developing the decentralized algorithm of demand management scheme.   
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2.6 Conclusions  

Technical challenges that appear due to the connection of DER units into 

distribution networks were reviewed. The surveyed DER units were EVs, HPs, and 

PV arrays. The impacts of low carbon technologies on distribution networks were 

presented using network constraints of voltages, power losses, and operating/planning 

costs. Real world projects (e.g. the CLNR project in the UK), which consider real 

electricity networks, were also presented in this literature survey.  

Impacts of DER units on distribution networks were highly demonstrated based 

on network constraints. Studied networks were presented using MV and LV levels, 

considering temporal (e.g. EV charging durations) and spatial (e.g. EV locational 

connections) features. Deterministic methods were modelled using non-randomized 

numbers of DER units (e.g. gradual increase of DER units). Stochastic methods were 

widely used to address uncertainties of DER units (e.g. EV charging durations) within 

electricity networks. 

Network reinforcement can be used to mitigate the technical challenges of DER 

integration into networks. Alternatively, DR/DSM schemes were proposed to alleviate 

these challenges, while connecting DER units into power systems. Network operators 

and aggregators were highly suggested to be in charge of manging DR/DSM strategies.  

It was noticed that, the impact of residential EVs, HPs, and PV arrays on future 

residential demand was not simultaneously studied. Operational characteristics of 

individual EVs, HPs, and PV arrays were separately considered using either real or 

test networks. Although several studies investigated the use of ToU tariffs to 

coordinate EV charging loads, network constraints can exceed their limits over the 

time intervals of low electricity prices. In addition, few studies have investigated a 

simultaneous adjustment of EV and HP loads using decentralized controllers. 

Therefore, this thesis studies a simultaneous impact of residential EVs, HPs, and 

PV arrays on the UK residential demand over the next two decades. It shows the impact 

of individual EV, HP, and PV integration on real and test networks based on real-world 

datasets. It proposes a centralized control algorithm to coordinate EV charging loads 

considering the constraints of MV and LV networks. It investigates a decentralized 

controller to adjust EV and HP loads considering consumer satisfaction and network 

constraints.               
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CHAPTER 3  

 

3. Impacts of Distributed Energy Resources on Future Demand   

 

3.1 Introduction  

The impact of electric vehicles (EVs), heat pumps (HPs), and photovoltaic (PV) 

arrays on the UK residential demand was predicted over the next two decades, 

highlighting the year of 2035. The UK residential demand was extracted on a yearly 

basis using the UK historic demand of GridWatch databases in 2014 [114].        

Power profiles of distributed energy resources (DER) were synthesized over a 

year of half-hourly time steps using normal probability distribution and median filter. 

Mean values of the active power of 133 EVs, 336 HPs, and 151 PV arrays were read 

from Customer-Led Network Revolution (CLNR) trials on a day of half-hourly time 

steps for each month of the year between 2012 and 2014 [115].  

Thereafter, the UK residential demand was predicted considering the power of 

residential EVs, HPs, and PV arrays based on Future Energy Scenarios by National 

Grid [20]. 

 

3.2 Methodology  

Measurement units are typically installed at the transmission level. Consequently, 

the power of DER units cannot be observed with their connections to distribution 

networks. Thus, the total demand will be more challenging to predict, while connecting 

low carbon technologies to residential feeders. Therefore, this challenging issue can 

cause a real mismatch between total demand and total generation.  

To overcome this problem, the UK residential demand was predicted with the 

integration of DER units based on Future Energy Scenarios by National Grid over the 

forthcoming years at half-hourly time steps. The proposed tool was therefore able to 

predict energy consumption considering different seasons of winter, spring, summer, 

and autumn.  

The UK residential demand was read from GridWatch databases [114] based on 

the year of 2014 at 5 minute time steps. Then, the UK demand measurements were 

averaged into half-hourly time steps. Meanwhile, EV, HP, and PV power profiles were 
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synthesized over a year using normal probability distribution and median filter. 

The proposed steps generate annual power values of EVs, HPs, and PV arrays, as 

follows. Firstly, noisy annual values of power profiles were synthesized using normal 

probability distribution based on the mean values of the active power of these DER 

units. Then, a median filter was used to remove the noise. Figure 3.1 represents the 

workflow of the prediction tool proposed in this research.  

 

 
Figure 3.1: The workflow of the proposed long-term prediction tool. 

 

3.2.1 Historic Demand Measurements   

The UK demand was averaged into half-hourly time steps based on the UK 

demand of GridWatch databases [114], which was recorded over the year of 2014 at 5 

minute time steps. The UK residential demand was calculated using the percentage of 

the UK residential demand contribution relative to the UK total demand, as reported 

by National Grid in Ref. [20].    

According to National Grid [20], Figure 3.2 shows the percentage of the UK 

residential demand contribution as compared to the UK total demand at every half-

hourly time step. These percentages were used to calculate the UK residential demand 

over different seasons, as indicated in Figure 3.3 (a) to Figure 3.3 (d). Figure 3.4 

presents the UK residential demand and the UK total demand based on these 

calculations.     
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Figure 3.2: The percentages of the UK residential demand contribution relative to the UK 

demand over a day of half-hourly time steps, as reported by National Grid [20].  

 

 

Figure 3.3: The UK total demand and the UK residential demand over a day of half-hourly 

time steps in 2014 for (a) January, (b) April, (c) July, and (d) October (data from [114]). 
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Figure 3.4: The UK total demand and the UK residential demand over the year of 2014 at half-

hourly time steps (data from [114]).   

 

3.2.2 Synthesized Power of Distributed Energy Resources  

Annual EV, HP, and PV power cannot be measured due to the lack of their 

observability in distribution networks. Therefore, daily mean values of the active 

power of 133 EVs, 336 HPs, and 151 PVs were used to synthesize the complete annual 

power of these DER units.  Daily mean values of power profiles were provided on a 

half-hourly basis from CLNR trials [115]. 

Power profiles of these low carbon technologies were recorded in CLNR trials 

using smart meters, considering half-hourly time steps for each month of the year 

between 2012 and 2014. Figure 3.5 and Figure 3.6 show samples of mean values of 

the active power of 133 EVs and 151 PV arrays in different seasons, as reported by 

CLNR project [115].   
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Figure 3.5: Seasonal mean values of EV charging loads (data from [115]). 

 

 

Figure 3.6: Seasonal mean values of PV power generation (data from [115]). 
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EV charging load profiles were synthesized over each month of the year at half-

hourly time steps, as follows.  

 The mean values of EV loads for each month (e.g. January) were firstly read from 

CLNR trials [115], as illustrated in Figure 3.7 (a).  

 Then, the mean values of EV loads were disaggregated over a month of half-

hourly time steps using normal probability distribution, as shown in Figure 3.7 

(b).  

 Thereafter, the noisy mean value of EV charging load was smoothed using a 

median filter, as presented in Figure 3.7 (c). Instead of using a moving average 

filter, the fifth-order median filter was used to avoid the delay. 

 A comparison was made between actual and synthesized values of mean power 

(i.e. a diagnostic correlation), as demonstrated in Figure 3.7 (d). 

Similarly, mean values of EV loads were synthesized for the remaining months of 

the year (i.e. February to December).  

   

 

Figure 3.7: (a) Mean values of 133 EV loads (January-2014) based on CLNR trials. (b) 

Disaggregating. (c) Filtering. (d) Comparing (i.e. a diagnostic correlation). 
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Figure 3.8 (a) shows the complete mean values of EV charging loads considering 

a year of half-hourly time steps. Thus, the complete mean values of HP and PV power 

were similarly synthesized using these steps. Figure 3.8 (b) shows the synthesized 

power of annual PV generation at half-hourly time steps. 

 

Figure 3.8: The synthesized mean values of power over a half-hourly year of (a) EV charging 

loads and (b) PV generation. 
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3.3 Demand Predictions with Distributed Energy Resources     

According to National Grid ([20], p.6), the four future energy scenarios were 

defined as follows. 

“Gone Green is a world where green ambition is not restrained by financial 

limitation… Slow Progression is a world where slower economic growth restricts 

market conditions… No Progression is a world focused on achieving security of supply 

at the lowest possible cost… Consumer Power is a world of relative wealth, fast paced 

research and development and spending”.  

Table 3.1 shows the maximum values of different power profiles over the 

forthcoming  years using “Consumer Power” scenario, as predicted by National Grid 

in Ref. [20]. These different profiles represent the following quantities:  

 The total power of the UK annual demand. 

 The total power of EV annual loads.  

 The total power of HP annual loads.  

 The total power of PV annual generation. 

Other three tables were re-arranged for “Gone Green”, “Slow Progression”, and 

“No Progression” scenarios. For each scenario, these tables were used to scale the 

following annual profiles: residential demand, EV load, HP load, and PV power. 

Equation (3.1) is used to predict the UK residential consumption, considering 

synthesized power profiles of EVs, HPs, and PV arrays. 

 

Table 3.1: The maximum values of the UK total demand and other DER power over the 

forthcoming  years using “Consumer Power” scenario by National Grid [20].  

 

Year 

Total demand 

(GW) 

EV load  

(GW) 

HP load 

 (GW) 

PV power 

 (GW) 

2016 60.5 0.0 0.1 3.9 

2020 61.0 0.3 0.6 6.2 

2025 62.0 0.9 2.8 9.2 

2030 63.0 1.8 5.0 12.1 

2035 64.8 3.0 6.6 15.0 
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𝑃𝑁(𝑡) = 𝐴 × 𝑥1 × 𝑃𝐿(𝑡) + 𝐵 × 𝑥2 × 𝑃𝐸𝑉𝑠(𝑡) + 𝐶 × 𝑥3 × 𝑃𝐻𝑃𝑠(𝑡) 

−𝐷 × 𝑥4 × 𝑃𝑃𝑉𝑠(𝑡) 

(3.1) 

where 𝑃𝑁(𝑡) symbolizes the overall predicted residential demand over a year of half-

hourly time steps. 𝑃𝐿(𝑡) symbolizes the UK historic residential demand in 2014. 

𝑃𝐸𝑉𝑠(𝑡),  𝑃𝐻𝑃𝑠(𝑡), and 𝑃𝑃𝑉𝑠(𝑡) denote the annual mean values of EV, HP, and PV 

power, respectively. 𝑥1, 𝑥2, 𝑥3 and 𝑥4 denote the normalizing indices of each power 

profile, representing the maximum values of power over a year. For example, a 

1.29kW is the normalizing index for the synthesized EV charging load profile, as 

shown in Figure 3.8 (a). 𝐴, 𝐵, 𝐶, and 𝐷 symbolize the scaling factors being evaluated 

based on the maximum power predicted in Ref. [20] (see Table 3.1) for the “Consumer 

Power” scenario. Figure 3.9 illustrates the flowchart of the modelling steps to predict 

the UK residential demand of overall power consumption over the next two decades, 

considering residential EVs, HPs, and PV arrays. 

 

Figure 3.9: The flowchart of the proposed steps to predict the UK residential demand over the 

next two decades.   
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3.4 Simulation Results  

Simulation results were computed using MATLAB R2015a (see Appendix A). 

Figure 3.10 shows the UK residential demand predicted over the year of 2035 at half-

hourly time steps, considering Future Energy Scenarios by National Grid. Figure 3.10 

demonstrates the differences of the UK residential demand for each scenario, while 

considering the aggregated power of residential EVs, HPs, and PV arrays.  

    

 

Figure 3.10: A prediction of the UK residential demand with residential EVs, HPs, and PV 

arrays over a year of half-hourly time steps in 2035 for each scenario. (a) “Gone Green”. (b) 

“Slow Progression”. (c) “No Progression”. (d) “Consumer Power”. 

Figure 3.11 shows the load profiles of the UK residential demand that were 

predicted for each scenario in 2035, considering four seasonal days. Figure 3.11 (a) 

presents the UK residential demand on a winter day for these future energy scenarios. 

Figure 3.11 (b) depicts the UK residential demand on a spring day. Figure 3.11 (c) 

shows the UK residential demand on a summer day. Residential PV power generation 

will exceed the UK residential demand by an average power of 2GW during summer 

mid days in 2035, as shown in Figure 3.11 (c). Figure 3.11 (d) shows the UK residential 

demand on a day of autumn. 
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Figure 3.11 illustrates that, a demand increase by an average power of 10GW will 

occur between 16:00 and 19:00 in 2035 because of the drop in PV generation over that 

time interval.  

 

Figure 3.11: The UK seasonal residential demand with residential EVs, HPs, and PV arrays 

over a day of half-hourly time steps in 2035 of (a) January, (b) April, (c) July, and (d) October. 

The UK residential demand was also predicted over the next two decades using 

“Gone Green” and “No Progression” scenarios, as shown in Figure 3.12 and Figure 

3.13, respectively. Boxplots were used to represent the range of the UK residential 

demand that was predicted for each scenario over the next two decades. The inner 

edges of these boxplots span between the 25th and 75th percentiles, whereas the outer 

edges span between the 5th and 95th percentiles.  

It can be seen that, the minimum value of the UK residential demand will start to 

drop below 0GW by 2024 during summer days for “Gone Green” scenario. This drop 

physically means that, power generation of residential PV arrays will start to meet the 

minimum value of the UK residential demand by 2024. However, the minimum value 

of the UK residential demand will continue above 2.78GW during summer mid days 

for “No Progression” scenario. Therefore, no surplus of PV power generation will be 

expected with “No Progression” scenario. The 5th, 25th, 75th, and 95th percentiles of 
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the UK residential demand can be extracted over the next two decades based on Figure 

3.12 and Figure 3.13. 

 

Figure 3.12: A prediction range of the UK residential demand over the next two decades using 

“Gone Green” scenario.  

 

Figure 3.13: A prediction range of the UK residential demand over the next two decades using 

“No Progression” scenario. 
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The results of the proposed model are validated, considering a case study 

presented in Future Energy Scenarios [20]. The minimum value of the UK total 

demand was predicted to be 16.7GW on a typical summer day by 2020 using 

“Consumer Power” scenario [20].  

Using prediction tool proposed in this project, the minimum value of the UK total 

demand was calculated to be 16.88GW on 18-July-2020 for “Consumer Power” 

scenario. The minimum value of the UK total demand was determined using the mid-

day percentages of Figure 3.2 (i.e. the UK residential demand contribution relative to 

the UK total demand). The value of 16.88GW was calculated using Equation (3.2) as 

follows:      

𝑃𝑡𝑜𝑡𝑎𝑙 = (𝑃𝑀𝑖𝑛 × 𝐶𝑛𝑜𝑛− 𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐) + 𝑃𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐  (3.2) 

where 𝑃𝑀𝑖𝑛 denotes the minimum value of the UK total demand in 2014. 𝑃𝑡𝑜𝑡𝑎𝑙 and 

𝑃𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐 denote the minimum values of the UK total demand and residential demand. 

𝐶𝑛𝑜𝑛− 𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐 denotes the percentage of non-domestic demand contribution. The 

minimum value of the UK total demand was then calculated in 2020 as follows 

𝑃𝑡𝑜𝑡𝑎𝑙 = (21 × 0.72) + 1.76. The minimum value of the UK total demand is 

16.88GW based on the demand prediction presented in this chapter. 

The minimum value of the UK total demand was indicated to be 21GW (see 

Figure 3.4). Meanwhile, the percentage of non-domestic demand contribution is 72%, 

as shown in Figure 3.2. Table 3.2 shows that, the minimum value of the UK residential 

demand is predicted to be 1.76GW in 2020 using “Consumer Power” scenario. Non-

domestic PV generations are not considered in Equation (3.2).  

Minimum demand was predicted to occur in July-2020 using the proposed model. 

However, this minimum demand is generally predicted to occur on a typical summer 

day in 2020 [20]. Table 3.2 shows minimum and maximum values of the UK 

residential demand over the next two decades for each scenario. This table was 

generated based on the prediction tool developed in this chapter, using the results of 

four different boxplots (e.g. Figure 3.12 and Figure 3.13). 
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Table 3.2: Maximum and minimum values of the UK residential demand over the next two 

decades based on the proposed prediction calculations.  

Scenario “Gone Green” “Slow 

Progression” 

“No Progression” “Consumer 

Power” 

 

Year  

Min. 

demand 

(GW) 

Max. 

demand 

(GW) 

Min. 

demand 

(GW) 

Max. 

demand 

(GW) 

Min. 

demand 

(GW) 

Max. 

demand 

(GW) 

Min. 

demand 

(GW) 

Max. 

demand 

(GW) 

2016 3.576 27.283 3.688 27.572 3.736 27.704 3.591 27.505 

2018 2.970 27.192 3.573 27.616 3.673 27.727 3.115 27.553 

2020 1.639 27.736 3.458 27.665 3.629 27.750 1.761 27.738 

2022 0.418 29.030 2.849 27.701 3.600 27.823 0.417 28.015 

2024 -0.796 30.510 2.116 27.776 3.573 27.936 -0.975 28.109 

2026 -1.930 32.028 1.239 27.788 3.454 28.146 -2.278 28.249 

2028 -2.879 33.549 0.323 27.807 3.230 28.408 -3.382 28.479 

2030 -3.609 35.004 -0.570 27.880 3.043 28.821 -4.289 28.663 

2032 -4.184 36.291 -1.355 28.230 2.858 29.242 -5.001 28.893 

2034 -4.627 37.464 -2.130 28.495 2.711 29.811 -5.531 29.259 

2035 -3.603 37.878 -1.927 28.550 2.835 29.980 -5.002 29.567 

 

 

3.5 Conclusions 

The UK overall residential demand was predicted over the next two decades with 

the integration of residential EVs, HPs, and PV arrays. The proposed predication tool 

was implemented over the forthcoming years at half-hourly time steps, considering 

recorded historic demand measurements and synthesized DER power profiles. Normal 

probability distribution and median filter were used to synthesize annual power 

profiles of these low carbon technologies using the mean values of daily power 

profiles, which were acquired from CLNR trails.  

Future energy scenarios, which were presented by National Grid, were re-arranged 

into tables to store the maximum values of the UK total demand, the EV load, the HP 

load, and the PV power. Then, these tables were used to scale the normalized values 

of synthesized power profiles of DER units. Thereafter, these power profiles were 

combined to predict the UK residential demand over the coming years. 
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Simulation results indicated that, a surplus of PV power generation will exceed 

the UK  residential demand by an average of 2GW in 2035. The UK residential demand 

will increase by an average of 10GW between 16:00 and 19:00, because PV power 

generation will drop over that time interval on a summer day of 2035.  

The minimum value of the UK residential demand will be met by residential PV 

power generation for “Gone Green” and “Consumer Power” scenarios by 2024. 

However, simulation results of “No Progression” scenario demonstrated that, the 

minimum value of the UK residential demand would continue above 2.8GW until 

2035. 

The challenge of a considerable demand reduction followed by a sharp demand 

increase due to PV power generation, which is predicted over the time interval between 

12:00-19:00, can be partially mitigated by incentivizing EV owners to charge their 

batteries during mid-day time.     
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CHAPTER 4 

 

4. Impacts of Distributed Energy Resources on Distribution Networks  

 

4.1 Introduction   

This chapter studies the impacts of electric vehicles (EVs), heat pumps (HPs), and 

photovoltaic (PV) arrays on distribution networks based on voltage magnitudes, 

voltage unbalance factors, and other network constraints. Low voltage sections of test 

and real networks were studied using deterministic and stochastic methods.    

The purpose of the deterministic method is to evaluate the hosting capacity of the 

network under study with uncoordinated EV charging loads. The purpose of the 

stochastic method is to determine the uncertainties of different EV, HP, and PV 

combinations in the network under study.      

The low voltage section of the test network was modelled using 

MATLAB/Simulink. Four deterministic case studies were simulated to record the 

results of uncoordinated EV charging loads. The low voltage section of the real 

network was modelled using a MATLAB function of unbalanced load flow that was 

developed in this research. Results of five stochastic case studies were recorded with 

different combinations of EVs, HPs, and PV arrays.  

 

4.2 Methodology of Deterministic Studies  

The impact of uncoordinated EV charging loads on a low voltage section of the 

UK generic distribution network (UKGDN) was studied by monitoring voltage 

magnitudes, voltage unbalance factors, and other network constraints. The 

specifications of the UKGDN components were acquired from Department of Trade 

and Industry (DTI) [116]. The low voltage section of this network was modelled using 

three-phase four-wire system in MATLAB/Simulink/Simscape/SimPowerSystems.     

Different case studies were investigated by connecting 96, 192, and 288 EVs to 

the UKGDN section. Residential loads were modelled over a day of half-hourly time 

steps based on mean values of the active power of 8,000 customers. Similarly, EV 
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charging loads were considered on a half-hourly day using mean values of the active 

power of 133 EVs. The mean values of residential loads and EV loads were read from 

Customer-Led Network Revolution (CLNR) project [115], compiling data every half 

hour. Figure 4.1 illustrates the workflow of deterministic case studies.   

   

 

Figure 4.1: The workflow of deterministic case studies. 

 

4.2.1 The Network under Deterministic Studies   

Figure 4.2 shows an adapted low voltage section of the UKGDN [116]. Nodes 0, 

1, 2, 3, and 4 are allocated to measure voltage magnitudes and voltage unbalance 

factors along the feeder.  

 

 

Figure 4.2: The schematic diagram of the network under deterministic studies with EVs. 
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The modified section of the UKGDN is described as follows. A 500kVA ground-

mounted distribution transformer steps down 11kV to 0.433kV, serving 384 

customers. These customers are distributed across four feeders with 96 customers for 

each feeder. The UKGDN feeder is modelled in details with four segments of 

underground cables, as presented in Figure 4.2. 

The characteristics of network cables are [116]: 

 A 4-core underground cable (a three-phase line and a neutral line) of 150m long, 

185mm2 spans from node 0 to node 2. 

 A 4-core underground cable (a three-phase line and a neutral line) of 150m long, 

95mm2 spans from node 2 to node 4. 

 2-core cables (single-phase lines and neutral lines) of 30m long, 35mm2 

individually serve residential customers.  

The other three feeders serve 288 residential customers. Figure 4.2 shows the low 

voltage section of the UKGDN using three-phase four-wire connections, which were 

modelled in MATLAB/Simulink/Simscape/SimPowerSystems (see Appendix B).  

Figure 4.3 illustrates mean values of the active power of residential loads and EV 

loads over a day of half-hourly time steps, as recorded by the smart meters of CLNR 

customers during their trials between 2012 and 2014.  

 

Figure 4.3: Mean values of active power of 8,000 residential customers and 133 EVs (power 

data from [115]). 
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Uncoordinated single-phase EV charging loads can violate the limits of voltage 

magnitudes and voltage unbalance factors. According to Engineering Recommendation 

P28, the steady-state tolerances of voltage fluctuations were assigned at the low voltage 

level to be between -6% and +10% of the nominal voltage [117].  

The steady-state limit of voltage phase unbalance was indicated to be less than 

1.3% according to Engineering Recommendation P29 [118]. Voltage Unbalance Factor 

(𝑉𝑈𝐹%) in percentage is defined as the ratio of the negative sequence component to 

the positive sequence component of phase voltages. To avoid dealing with complex 

numbers, 𝑉𝑈𝐹% is calculated as follows [119]. 

𝑉𝑈𝐹% =
𝑀𝑎𝑥(|𝑉𝑎 − 𝑉𝑎𝑣|, |𝑉𝑏 − 𝑉𝑎𝑣|, |𝑉𝑐 − 𝑉𝑎𝑣|)

𝑉𝑎𝑣
× 100% (4.1) 

where 𝑉𝑎𝑣 = (𝑉𝑎 + 𝑉𝑏 + 𝑉𝑐)/3, and 𝑉𝑎, 𝑉𝑏, 𝑉𝑐 denote the voltage magnitude across the 

three phases “a”, “b”, and “c”. 

 

4.2.2 Deterministic Case Studies   

Four case studies were implemented in MATLAB/Simulink to assess the impacts 

of uncoordinated single-phase EV charging loads on the network under study. The case 

studies are described as follows.  

Case-1 has evaluated the network under study with residential loads only without 

any EV charging loads. Case-2 has evaluated the network under study with residential 

loads and uncoordinated 96 EV loads, which were evenly distributed across the three 

phases. Case-3 has evaluated the network under study with residential loads and 

uncoordinated 192 EV loads. Case-4 has evaluated the network under study with 

residential loads and 288 EVs.  

Unbalanced phase voltages can particularly occur at the end node of a long radial 

feeder with a high impedance. Therefore, node 4 was selected to record the results of 

voltage magnitudes and voltage unbalance factors. Table 4.1 shows the connected 

numbers of EVs to the low voltage section of the UKGDN for each case study.   
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Table 4.1: The considered deterministic case studies. 

Case studies The number of EVs The number of customers 

Case-1 0 384 

Case-2 96 384 

Case-3 192 384 

Case-4 288 384 

 

 

4.3 Simulation Results of Deterministic Studies   

Figure 4.4 depicts the aggregated loads of residential customers and EVs over a 

day of half-hourly time steps for each deterministic case study. These loads were 

aggregated at the distribution transformer. The peak loads of individual residential 

customers were adjusted to be 1.3kW based on the literature [116]. The individual EV 

charging load was assumed 3.3kW considering a typical, residential, single-phase, and 

slow charging mode.  

In Case-1, the peak load of distribution transformer was 1pu (i.e. 500kW), as 

shown in Figure 4.4. The peak load flow of distribution transformer gradually increases 

with the increase of the number of connected EVs for Case-2, Case-3, and Case-4, as 

shown in Figure 4.4. The direct increase of transformer overload was recorded because 

mean values of residential loads and EV loads were nearly coincident over peak-hour 

intervals, as seen in Figure 4.3.   

Figure 4.5 illustrates root mean square (RMS) current flows through the main cable 

segment (i.e. between node 0 and node 1) for each case study. RMS current values are 

recorded over a day of half-hourly time steps. There will be different levels of current 

flows through the three phases even if similar EV charging loads are equally distributed 

across the three phases. This is a result of different EV charging durations. The current 

flow of phase “c” was increased by 50% of the rated value in Case-4 over peak-hour 

time intervals, as indicated in Figure 4.5 (d).  

Figure 4.6 presents a separate observation of RMS phase voltage magnitude across 

the three phase for each case study at the end node of the low voltage feeder (i.e. node 

4). It can be seen that, voltage magnitudes did not drop below the limit for all case 

studies.  

The percentages of voltage unbalance factors were recorded to be within the limit 

(i.e. less than 1.3%) for all deterministic case studies, as demonstrated Figure 4.7.   
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Figure 4.4: The aggregated loads of residential customers and EVs over a day of half-hourly 

time steps at the distribution transformer of the UKGDN for each case study. 

 

 

Figure 4.5: RMS phase current flows of the cable segment between node 0 and node 1 for each 

case study over a day of half-hourly steps (a) Case-1, (b) Case-2, (c) Case-3, and (d) Case-4. 
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Figure 4.6: RMS voltage magnitudes over a day of half-hourly time steps at node 4 for each 

case study (a) Case-1, (b) Case-2, (c) Case-3, and (d) Case-4. 

 

 

Figure 4.7: The percentages of voltage unbalance factors over a day of half-hourly time steps, 

as recorded at node 4 for each case study. 
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4.4 Methodology of Stochastic Studies  

Uncertainties of different EV, HP, and PV combinations were determined using 

stochastic case studies. Stochastic results were recorded using a real low voltage 

network of Electricity North West, which was adapted from [120]. 

The loads of residential customers and EVs were individually generated over a day 

of minute-by-minute time steps using normal and uniform probabilistic distributions 

based on mean values and standard deviations of 8,000 residential loads and 133 EV 

loads, as reported by CLNR trails [115].    

HP individual loads were mathematically modelled over a day of minute-by-

minute time steps based on ambient temperatures [121]. PV individual power was 

mathematically modelled on a minute-by-minute basis using solar irradiance [121]. A 

one-minute time step was selected to maintain the use of real-time applications. 

Simulation results were presented using the following quantities: RMS phase voltage 

magnitudes, voltage unbalance factors, and load flows through transformer and cables. 

The results were calculated using a MATALB function of unbalanced load flow that 

was developed in this project. Figure 4.8 demonstrates the workflow of stochastic case 

studies.  

 

Figure 4.8: The workflow of stochastic case studies. 

 

4.4.1 The Network under Stochastic Studies  

An adapted low voltage network of Electricity North West was considered, as 

presented in Figure 4.9. It consists of a 500kVA ground-mounted distribution 

transformer as well as two main low voltage feeders serving 135 customers.  
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Nodes 0, 1 and 2 were allocated to measure RMS phase voltage magnitudes and 

voltage unbalance factors. Feeder 1 spans from node 0 to node 1, serving 56 customers 

as illustrated in Figure 4.9. Customers were distributed across the three phases of “a”, 

“b”, and “c” as reported in [120], as follows. Twenty-one customers were connected to 

the phase “a”, while connecting 20 and 15 customers to the phase “b”, and to the phase 

“c”, respectively. Feeder 2 spans from node 0 to node 2, serving 76 customers. Twenty-

two customers were connected to the phase “a”, whereas 37 and 20 customers were 

connected to the phase “b” and the phase “c”, respectively.  

It was assumed that, the distribution transformer serves a lumped load as twice as 

the load of these two feeders, as shown in Figure 4.9. This assumption was made 

because low voltage transformers were typically allocated to serve an average of 400 

residential customers in the UK, as reported in [116]. The sizes of main underground 

cables were 185mm2 and 95mm2. Meanwhile, the sizes of individual service cables are 

35mm2 and 25mm2.   

 

Figure 4.9: The network under stochastic studies (adapted from [120]). 
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residential customers over a day of minute-by-minute time steps. Figure 4.10 illustrates 
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Figure 4.10. In this study, only 135 individual residential loads were generated over a 

day of minute-by-minute time steps to maintain a near real-time observation.  

 

Figure 4.10: The flowchart of stochastically generating residential load profiles. 

 

Figure 4.11: Daily demand means of stochastically generated residential loads relative to the 

actual residential demand mean (real). 
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Figure 4.11 shows the mean value of 135 generated residential customers, as 

compared to the real mean value of residential loads. Mean values of generated and 

actual residential loads are relatively similar on a day, as shown in Figure 4.11. The 

mean values of the active power of 8,000 residential customers over a day of half-hourly 

time steps were acquired from CLNR project [115]. Mean values of individual loads 

have illustrated that, an acceptable correlation was achieved between synthesized and 

real loads of residential customers. 

     

4.4.3 Individual Loads of Electric Vehicles   

EVs were assumed to be recharged using uncoordinated charging patterns. A flat, 

residential, single-phase, and slow charging mode was considered with 3.3kW to 

recharge EVs. Different capacities of EV batteries were considered with less than or 

equal to 24kWh. EV charging efficiencies were assumed to be 90.9%. Hence, 8 hours 

are required to recharge a 24kWh EV battery from 0% to 100% BSoC level.  

Figure 4.12 represents the mean values of synthesized EV charging loads using a 

uniform integer probability distribution. Mean values of 133 EV charging loads were 

read from CLNR trails over a day of half-hourly time steps to guide a MATLAB 

function of uniform probability distribution. Then, EV charging loads were 

individually generated over a day of minute-by-minute time steps.  

The synthesized mean values of EV charging loads were verified based on daily 

trips of UK commuters, as reported in [122]. An 80% of EVs was assumed to be 

charged between 17:00 and midnight, whereas a 20% of EVs has been assumed to be 

recharged between midnight and 17:00 on the next day. This assumption was made 

because the majority of the daily trips of private vehicles occur between 06:00 and 

17:00  according to the literature [122].  
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Figure 4.12: The mean values of synthesized EV charging loads of 135 EVs. 

 

4.4.4 Modelled Loads of Heat Pumps  

Electrical power drawn by the indoor/outdoor units of an air source HP unit is 

mainly driven by HP coefficient of performance (𝐶𝑜𝑃). The maximum value of (𝐶𝑜𝑃) 

is evaluated as follows [123].      

𝐶𝑜𝑃𝑀𝑎𝑥 =
Τ2

Τ2 − Τ1
 (4.2) 

where 𝐶𝑜𝑃𝑀𝑎𝑥 denotes the maximum coefficient of performance. Τ1 and Τ2 denote the 

outdoor and indoor temperatures of HPs in Kelvin. Equation (4.3) is used to calculate 

HP demands, including demand by fan and compressor units [124].  

p𝐻𝑃 =
ρ × (Τ2 − Τ1)

3160 × 𝐶𝑜𝑃 
 (4.3) 

where p𝐻𝑃 denotes the total HP demand in W. ρ  denotes the HP compressed air 

density by both indoor and outdoor units in cubic feet per minute. Meantime, Τ2, Τ1 

are measured in Fahrenheit (℉). Equation (4.4) is acquired by substituting (4.2) in 

(4.3) for the maximum coefficient of performance with temperatures in centigrade 

(℃).    
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p𝐻𝑃 =
ρ × [1.8 × (𝑇2 − 𝑇1)

2 + 32 × (𝑇2 − 𝑇1)]

3160 × α × (𝑇2 + 273.15)
 (4.4) 

where 𝑇1and 𝑇2 denote HP supply and HP return temperatures in ℃. HPs were 

assumed to operate based on a parameter (α) of less than “1” to reduce the substituted 

value of 𝐶𝑜𝑃𝑀𝑎𝑥 
, as indicated in Equation (4.4).  

Figure 4.13 depicts daily profiles of HP demand over 135 days. A total capacity 

of 1000 cubic feet per minute was assumed for the compressed air by indoor and 

outdoor fans. Ambient temperatures are used to generate daily HP profiles, as recorded 

by Bristol city council over winter days in 2014 [121]. HP thermostatic load control 

devices were stochastically modelled using a uniform distribution probability by 

multiplying Equation (4.4) with generated values of “0” and “1”.  

 

 

Figure 4.13: HP loads over 135 days of minute-by-minute time steps. 

 

4.4.5 Modelled Power of Photovoltaic Arrays   

Power generations from solar panels are calculated by considering solar irradiance 

as indicated in the following equation [120]. 

p𝑃𝑉 = 𝛽 × 𝑃𝑉𝑐𝑎𝑝. × 𝑃𝑉𝑎𝑟𝑒𝑎 × 𝑃𝑉𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑐𝑦 × 𝐼𝑁𝑉𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑐𝑦 (4.5) 
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where p𝑃𝑉 denotes the output power of PV array in W. 𝛽 denotes the solar irradiance 

in W/m2.  𝑃𝑉𝑐𝑎𝑝. denotes the installed capacity of PV panel in W (i.e. 2000 W). 𝑃𝑉𝑎𝑟𝑒𝑎 

denotes the area of each 1000 W of installed PV in m2 (i.e. 2 m2). 𝑃𝑉𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑐𝑦 denotes 

the efficiency of the solar panel (i.e. randomly generated between 10% and 19%). 

𝐼𝑁𝑉𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑐𝑦 denotes the efficiency of the inverter (i.e. randomly generated between 

88% and 96%). Solar irradiance in Bristol is used to create daily PV power generation 

profiles over 135 days over April, May, June, July, and August 2014 [121]. These 

readings have been interpolated into datasets of a one-minute time resolution. Figure 

4.14 shows diurnal profiles of the installed PV array during 135 days. 

 

 

Figure 4.14: PV generations over 135 days of minute-by-minute time steps. 

 

4.4.6 Stochastic Case Studies  

The case studies were structured as follows:  

 Case 1 evaluated the network using the unbalanced power flow without EV, HP, 

and PV connections. Therefore, only stochastic residential loads were considered.  

 Case 2 evaluated the network using the unbalanced power flow with PV 

connections only. Hence, residential customers and PV arrays were considered.  
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 Case 3 evaluated the network using the unbalanced power flow with EV 

connections only. Therefore, residential loads and EV loads were considered.  

 Case 4 evaluated the network using the unbalanced power flow by considering 

residential loads and HP loads. 

 Case 5 evaluated the network using the unbalanced power flow by considering 

residential loads with EVs, HPs, and PV arrays together.    

 

4.5 Simulation Results of Stochastic Studies 

Simulation results were computed using MATLAB R2015a (see Appendix C), 

considering the individual power of residential customers, EVs, HPs, and PV arrays, 

as follows.   

Figure 4.15 represents the histograms of Case 1 with the real network of 

Electricity North West. Figure 4.15 (a) illustrates the histogram of RMS voltage 

magnitudes at node 1 and node 2 for Case 1. Recorded voltage magnitudes are within 

the limits in Case 1 (i.e. 1pu =230V). Figure 4.15 (b) demonstrates voltage unbalance 

factors of these nodes, which are within their limits. The power flow through the 

transformer did not exceed 0.7pu, as shown in Figure 4.15 (c). RMS current flow 

through the underground cables of the feeder did not exceed 0.5pu, as presented in 

Figure 4.15 (d).    

Figure 4.16 shows the histograms of Case 2. Figure 4.16 (a) shows an increase of 

RMS voltage magnitudes due to the reversed power flow of PV power, but this 

increase is still within the accepted limit. Figure 4.16 (b) shows an increase of voltage 

unbalance factors. The power flow through the distribution transformer is decreased 

due to the injected power of PV arrays over the mid-day interval, as presented in Figure 

4.16 (c). The reversed power flow of PV generation has also led to a decrease in RMS 

current flow through underground cables of residential feeders, as depicted in Figure 

4.16 (d).  

In Case 3, Figure 4.17 (a) shows a decrease of RMS voltage magnitude due to the 

additional charging demand of EVs. Voltage unbalance factors are significantly 

increased with EV charging loads, as seen in Figure 4.17 (b). The power flow through 

the distribution transformer is recorded to be 140% of the rated value, as shown in 

Figure 4.17 (c). RMS current flow through feeders is recorded to reach the rated value, 

as presented in Figure 4.17 (d). 
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Figure 4.15: In Case 1, histograms of the network under study. (a) Voltage magnitudes. (b) 

Voltage unbalance factors. (c) Transfrormer’s loading. (d) Current flow through cables.  

 

 

 

Figure 4.16: In Case 2, histograms of the network under study. (a) Voltage magnitudes. (b) 

Voltage unbalance factors. (c) Transfrormer’s loading. (d) Current flow through cables. 
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Figure 4.17: In Case 3, histograms of the network under study. (a) Voltage magnitudes. (b) 

Voltage unbalance factors. (c) Transfrormer’s loading. (d) Current flow through cables. 

 

In Case 4, Figure 4.18 (a) demonstrates the reduction of RMS voltage magnitudes 

when HPs were connected to the real network of Electricity North West. Voltage 

unbalance factors exceeded the limit due to high numbers of HP connections, as shown 

in Figure 4.18 (b). The power flow through the distribution transformer exceeded 

110% with HP connections, as depicted in Figure 4.18 (c). RMS current flow through 

feeders reach a 75% with HP loads, as shown in Figure 4.18 (d).  

In Case 5, Figure 4.19 (a) shows a further decrease of voltage magnitudes. Figure 

4.19 (b) illustrates a remarkable increase of voltage unbalance factors. Figure 4.19 (c) 

presents that, the power flow through the distribution transformer has increased to less 

than a 200% of the rated power of the transformer. RMS current flow through 

residential feeder reach a 150% of the rated current of underground cables. 
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Figure 4.18: In Case 4, histograms of the network under study. (a) Voltage magnitudes. (b) 

Voltage unbalance factors. (c) Transfrormer’s loading. (d) Current flow through cables. 

 

 

Figure 4.19: In Case 5, histograms of the network under study. (a) Voltage magnitudes. (b) 

Voltage unbalance factors. (c) Transfrormer’s loading. (d) Current flow through cables. 

 

 



CHAPTER 4                    Impacts of Distributed Energy Resources on Distribution Networks  

55 
 

4.6 Conclusions   

The impact of uncoordinated EV charging loads on a low voltage section of the 

UKGDN was studied using MATLAB/Simulink/Simscape/SimPowerSystems with 

three-phase four-wire connections. Different deterministic case studies were evaluated 

based on 96, 192, and 288 EVs, respectively. Residential loads and EV loads were 

dynamically modelled considering half-hourly time steps. Mean values of the active 

power of 8,000 residential customers and 133 EVs were acquired from real trials. 

Four case studies illustrated that, power flows through network components have 

increased due to uncoordinated EV charging loads. Single-phase EV charging loads 

caused unbalanced phase voltages. Simulation results showed that, high numbers of 

EVs could increase voltage unbalance factors during peak-hour intervals. Different 

charging durations of EVs can cause unbalanced demand even if EVs are equally 

distributed across the three phases. Voltage magnitudes did not exceed their tolerances 

with charging 288 EVs.      

The impacts of different EV, HP, and PV combinations on the real low voltage 

network was evaluated using the MATLAB function of unbalanced power flow.  

Individual residential loads were synthesized using a normal probability 

distribution, whereas individual EV loads were synthesized using a uniform 

probability distribution. The individual loads were generated over a day of minute-by-

minute time steps based on mean values of their active power, which were acquired at 

half-hourly time steps from a real-world project.  

Individual PV power generation was modelled considering minute-by-minute 

time steps using the solar irradiance of a typical summer season in the UK. HP loads 

were modelled using readings of ambient temperatures over UK winter days. 

Five case studies showed that, the considered network could tolerate high separate 

numbers of PV, EV, or HP connections in term of voltage magnitudes. However, 

voltage unbalance factors will increase with the connection of additional DER units. 

Unbalanced single-phase HP loads have less impact on the network under study, as 

compared to EV loads. This is because HPs are switched on and off over a day using 

thermostatic load control devices. 

Therefore, EV/PV or HP/PV combinations have less impact on distribution 

networks, because EV and HP loads can be partially compensated using the generation 

of PV arrays.  
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CHAPTER 5 

 

5. Centralized Load Allocation of Electric Vehicles in Distribution Networks  

 

5.1 Introduction 

In Chapter 4, it was shown that network constraints exceeded their limits with 

uncontrolled charging loads of electric vehicles (EVs). Therefore, this chapter presents 

a centralized control algorithm to re-allocate EV charging loads over a day-ahead of 

minute-by-minute time steps. Voltage magnitudes, voltage unbalance factors, and 

power flows were considered, while coordinating EV charging loads. 

The UK generic distribution network (UKGDN) [116] was extended to include its 

medium voltage section. The centralized control algorithm was implemented based on 

non-iterative unbalanced power flow equations, which were developed in this chapter 

for monitoring network constraints. 

The centralized control algorithm re-allocates EV charging loads in advance based 

on a short-term load forecasting. It is assumed that the proposed control algorithm 

receives the short-term load forecasting from distribution network operators (DNOs). 

However, the performance of the proposed control algorithm is tested based on real 

mean values of EV charging loads, which were acquired from the smart meters of 

Customer-Led Network Revolution (CLNR) trials [115].  

Minute-by-minute time steps were used to synthesize individual loads, because 

this time resolution provides a near real-time observation using the proposed 

algorithm, as reported in Ref. [125]. Two-way communications in smart grids are 

important to coordinate EV charging loads using the proposed centralized controller. 

Distribution networks will evolve into smart grids with two-way communication 

technologies using smart meters and measuring sensors [126], [127].   

 

5.2 Methodology  

Mean values of residential and EV loads at half-hourly time steps were acquired 

from the CLNR trials [115]. Individual residential loads were synthesized using 

normal probability distribution over a day of minute-by-minute time steps, as 

presented in Chapter 4. Meanwhile, EV charging durations were individually 
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synthesized in Subsection 5.4.3 at minute-by-minute time steps, considering 

unbalanced allocation of EV charging loads across the three phases.  

The central controller is capable to coordinate high EV charging loads without 

upgrading the network components. Figure 5.1 shows the workflow of the proposed 

centralized algorithm for re-allocating EV charging loads.  

 

 

Figure 5.1: The workflow of re-allocating EV charging loads. 

 

5.2.1 The Proposed Objective Function 

One contribution of this work is related to the re-allocation of EV charging 

durations to avoid violating network limits using non-linear programming algorithms. 

The aggregated EV charging power was maximized across the three phases using 

Equation (5.1), considering the dynamic model of aggregated residential loads in every 

minute.  

𝑀𝑎𝑥 𝐹 = ∑ (∑[𝐹(𝑡)a,b,c]  + ∑ 𝑝(𝑡)a,b,cCust.nl

𝑁

𝑙=1

)

1440

t=0

 ∀ 𝑁 ∈ ℤ+, 𝐹 = 𝐹0  (5.1) 

where  

 ∑[𝐹(𝑡)a,b,c] = ( ∑ 𝑃(𝑡)aEVk𝑎

𝑀𝑎

𝑘𝑎=1

+ ∑ 𝑃(𝑡)bEVk𝑏

𝑀𝑏

𝑘𝑏=1

+ ∑ 𝑃(𝑡)cEVk𝑐

𝑀𝑐

𝑘𝑐=1

) ∀ 𝑀𝑎,𝑏,𝑐 ∈ ℤ+  

(5.2) 
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where  𝐹 is the objective function representing the aggregated charging power of EV 

loads in kW during a day (i.e. 1440 min), 𝐹0 is the initial value of 𝐹, 𝑡 is the current 

time step, and  a, b, c are the three phases of the considered system. [𝐹(𝑡)a,b,c]  

represents the requested aggregated EV charging loads across the three phases (i.e. 

3 × 1 decision variables). 𝑃(𝑡)aEV, 𝑃(𝑡)bEV and 𝑃(𝑡)cEV  represent the charging 

power of each EV per minute per phase in kW. 𝑝(𝑡)a,b,cCust.n   is the dynamic 

residential load for each customer per minute across the three phases in kW. 𝑁 is the 

total number of customers, while 𝑀𝑎 , 𝑀𝑏 , 𝑀𝑐 representing the numbers of EVs across 

the three phases. ℤ+  is the real integer positive number. 

The hosting capacity of the network components is calculated with the objective 

function  𝐹 in every minute across the three phases. Further, high time-step resolution 

means a fast-queuing process of re-allocating EV charging loads. Therefore, the 

convenience of deferred EV can be maintained using these minute-by-minute time 

steps.   

The main advantage of the proposed centralized control algorithm is that EV 

charging loads are regularly shifted toward new charging time intervals, maintaining 

the distribution network within its limits. If EV charging loads violate the network 

constraints, the centralized control algorithm will evaluate the number of EVs that 

should be deferred. 

The total loading power was determined using Equation (5.3) for each low voltage 

(LV) distribution transformer. 

𝑆(𝑡)Tr.loading = ∑ 𝑆(𝑡)L

𝑁f

𝑗=1

 ∀ 𝑁f ∈ ℤ+  (5.3) 

where  𝑆(𝑡)Tr.loading  is the apparent power of the distribution transformer in kVA at 

the time step  𝑡, 𝑁f is the total number of radial feeders that are served by the 

distribution transformer, and  𝑆(𝑡)L is the aggregated apparent power per LV feeder in 

kVA at the time step 𝑡. The predefined constraints are assigned as follows: 

𝑉𝑚𝑖𝑛  ≤  𝑉(𝑡)a,b,cn  ≤  𝑉max (5.4) 

𝑉𝑈𝐹(𝑡)n% ≤  𝑉𝑈𝐹% max (5.5) 

𝐼(𝑡)a,b,cL ≤ 𝐼a,b,cLrating
 (5.6) 
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𝑆(𝑡)Tr.loading  ≤  𝑆Tr.rating (5.7) 

where  𝑉min , 𝑉max  are the lower and the upper limits of steady-state voltages 

(𝑉(𝑡)a,b,cn ) per phase in V, 𝑉𝑈𝐹% max  is the maximum percentage of the voltage 

unbalance factor (𝑉𝑈𝐹(𝑡)n) that can be allowed, 𝐼a,b,cLrating
  is the rated current of 

steady-state currents (𝐼(𝑡)a,b,cL) per phase at the main distribution lines in Amps, and 

 𝑆Tr.rating is the rated power of the distribution transformer in kVA.   

 

5.2.2 The Centralized Control Algorithm  

Aggregated EV charging loads are considered to be the decision variables. These 

aggregated EV charging loads are optimally re-allocated across the three phases to 

maintain the network constraints within their limits. The flowchart of the proposed 

control algorithm (see Figure 5.2) is systematically described as follows.  

Decision variables are evaluated using the generalized reduced gradient “GRG 

Nonlinear” solver with Microsoft Excel. However, this solver is limited in terms of 

assigning the number of decision variables and constraints. Therefore, these decision 

variables are evaluated with hourly time resolution (i.e. 3 ×  24 values) across the 

three phases during a day. Accordingly, the evaluated decision variables are 

interpolated into a lookup table of (3 ×  1440 elements) using MATLAB R2015a, as 

shown in the next step.  

This lookup table represents the hosting capacity of the network components (i.e. 

 [𝐹(𝑡)a,b,c]3×1440
) during a day of minute-by-minute time steps across the three 

phases. The fluctuations of unbalanced residential loads and unbalanced EV charging 

loads are considered based on real daily load profiles from CLNR trials. The hosting 

capacity for each minute (i.e. 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 [𝐹(𝑡)a,b,c]3×1
) is then compared to the 

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 [𝐹(𝑡)a,b,c]3×1
 , as shown in Figure 5.2. The 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 [𝐹(𝑡)a,b,c]3×1

  is 

directly calculated in this step using Equation (5.2) based on the charging power of 

each EV per minute per phase (𝑃(𝑡)aEV, 𝑃(𝑡)bEV, 𝑃(𝑡)cEV). 

If 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 [𝐹(𝑡)a,b,c]3×1
≥ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 [𝐹(𝑡)a,b,c]3×1

  is true, all requested 

EV charging loads can occur at this minute considering randomized delays (i.e. less 

than 60 s) among them. Otherwise, a number of EVs with the amount of power of 

(𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 [𝐹(𝑡)a,b,c]3×1
− 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 [𝐹(𝑡)a,b,c]3×1

)  will be re-allocated to 
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charge at other time steps, whenever the pre-defined constraints can be maintained. 

Then, EV users can accordingly reschedule their charging loads.  

If the aggregated EV charging power is not achieved during that day, the controller 

allows the remaining EVs to complete their charging demand on the next day 

depending on Boolean signals from “AND” gate (see Figure 5.2).  

 

 

Figure 5.2: The flowchart of the centralized control algorithm. 

 

5.3 Non-iterative Unbalanced Power Flow Calculations 

A non-iterative unbalanced power flow solver is developed to calculate voltage 

magnitudes, voltage unbalance factors, and power flows of network components. The 
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developed solver was implemented based on the forward and backward sweep method 

[128]. 

The main advantage of the developed solver is the non-iterative method compared 

to the forward and backward sweep method, which is iterative. Unbalanced power 

flow results were compared using these two methods. Very close results were observed 

using both methods, while significantly reducing the number of calculation steps.  

Phase voltage matrices were represented with complex quantities using Euler’s 

method. The unbalanced power flow requires phase impedance matrices between any 

two adjacent nodes along radial feeders. Equation (5.8) represents the phase 

impendence matrix between adjacent nodes, including impedances due to self and 

mutual inductances [128]. 

[𝑍a,b,c]3×3
= [

𝑍aa 𝑍ab 𝑍ac

𝑍ba 𝑍bb 𝑍bc

𝑍ca 𝑍cb 𝑍cc

] (5.8) 

where  [𝑍a,b,c]3×3
  is the phase impedance matrix of the feeder in Ω. The diagonal 

elements of this matrix are the impedances due to the self-inductance (e.g. 𝑍aa). The 

off diagonal elements are the impedances due to the mutual-inductance (e.g. 𝑍ab). If 

only positive ( 𝑍1 ) and zero ( 𝑍0 ) sequence impedances are available, the impedance 

matrix is approximated as follows [128]: 

[𝑍a,b,c]3×3
=

1

3
[

(2𝑍1 + 𝑍0) (𝑍0 − 𝑍1) (𝑍0 − 𝑍1)

(𝑍0 − 𝑍1) (2𝑍1 + 𝑍0) (𝑍0 − 𝑍1)

(𝑍0 − 𝑍1) (𝑍0 − 𝑍1) (2𝑍1 + 𝑍0)
] (5.9) 

Then, the phase voltage matrix is calculated using Equation (5.10).  

[𝑉(𝑡)a,b,cn exp(𝑖∅(t)a,b,cn)]3×1

= [𝑉(𝑡)a,b,c1 exp(𝑖∅(t)a,b,c1)]3×1

− [𝑍a,b,c]3×3
[𝐼(𝑡)a,b,cLn  exp(𝑖𝜃(𝑡)a,b,cn)]3×1

  

(5.10) 

where [𝑉(𝑡)a,b,c1 exp(𝑖∅(t)a,b,c1)]3×1
 is the phase voltage matrix at the swing bus in 

V, [𝑉(𝑡)a,b,cn exp(𝑖∅(t)𝑎,𝑏,𝑐𝑛)]
3×1

 is the phase voltage matrix at the adjacent node 𝑛 

in V, [𝐼(𝑡)a,b,cLn exp (𝑖𝜃(𝑡)a,b,cn)]3×1
 is the phase current matrix consumed by all 

groups of customers at node 𝑛 in Amps,  ∅(t)a,b,cn is the angle between phase voltage 

and reference axis at the end node 𝑛 in degree, 𝜃(𝑡)a,b,cn is the angle between phase 
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current and reference axis at the specified node 𝑛 in degree, and 𝑖 = √−1. The phase 

current matrix at node 𝑛 is calculated using the following equation: 

[𝐼(𝑡)a,b,cLn  exp(𝑖𝜃(𝑡)a,b,cn)]3×1
=

[
 
 
 
 
 
 

𝑆(𝑡)aLn
∗

 

𝑉(𝑡)an exp(𝑖∅(t)an)

𝑆(𝑡)bLnt
∗

 

𝑉(𝑡)bn exp(𝑖∅(t)bn)

𝑆(𝑡)cLnt
∗

 

𝑉(𝑡)cn exp(𝑖∅(t)cn)]
 
 
 
 
 
 

  (5.11) 

where 𝑆(𝑡)a,b,cLn  is the apparent power of aggregated customers at node 𝑛 in kVA per 

phase at the time step  𝑡. ∗ is the conjugated value. Equation (5.10) is modified into 

Equation (5.12) by substituting Equation (5.11) in Equation (5.10) for a unity power 

factor.  

 [𝑉(𝑡)a,b,cn exp(𝑖∅(t)a,b,cn)]3×1

= [𝑉(𝑡)a,b,c1 exp(𝑖∅(t)a,b,c1)]  − [𝑍a,b,c]3×3
[

𝑃(𝑡)a,b,cLn

𝑉(𝑡)a,b,cn exp (𝑖∅(t)a,b,cn)
]
 

 
(5.12) 

where  𝑃(𝑡)a,b,cLn  is the aggregated power consumed by all groups of customers at 

the specified node  𝑛  in kW per phase at the time step  𝑡. The power term (i.e. 

𝑃(𝑡)a,b,cLn) in Equation (5.12) is determined by the following equations:  

 𝑃(𝑡)a,b,cLn = 𝑃(𝑡)a,b,cln + 𝑃(𝑡)a,b,cEVsn (5.13) 

where 

 

𝑃(𝑡)a,b,cln = ∑𝑝(𝑡)a,b,cCust.nl

𝑁

𝑙=1

 

𝑃(𝑡)a,b,cEVsn = ∑ 𝑦a,b,ck𝑎,𝑏,𝑐
 × 𝑝(𝑡)a,b,cEVnk𝑎,𝑏,𝑐

 

𝑀𝑎,𝑏,𝑐

𝑘𝑎,𝑏,𝑐=1

 ∀ 𝑀𝑎,𝑏,𝑐, 𝑁 ∈  ℤ+ (5.14) 

where  𝑝(𝑡)a,b,cCust.n 
and 𝑃(𝑡)a,b,cln are the power consumed by individual and 

aggregated customers, respectively, at node 𝑛 in kW without EVs per phase at the time 

step  𝑡, and 𝑝(𝑡)a,b,cEVn and 𝑃(𝑡)a,b,cEVsnt are the power consumed by individual and 

aggregated EV chargers, respectively, at node 𝑛 in kW per phase at the time step  𝑡.  

  𝑦a,b,ck = {
1, 𝑓𝑜𝑟 𝐸𝑉 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒𝑠
0, 𝑓𝑜𝑟 𝐸𝑉 𝑖𝑑𝑙𝑒 𝑠𝑡𝑎𝑡𝑒𝑠

 (5.15) 
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Equation (5.12) is rewritten considering EV fleet aggregated power and customers 

from Equation (5.13) as shown below:  

[𝑉(𝑡)a,b,cn exp(𝑖∅(t)a,b,cn)]3×1

= [𝑉(𝑡)a,b,c1 exp(𝑖∅(t)a,b,c1)]3×1
− [𝐵(𝑡)a,b,cn]3×1

 
(5.16) 

where 

[𝐵(𝑡)a,b,cn]3×1
=  [𝑍a,b,c]3×3

×

[
 
 
 
 

(
exp (−𝑖∅(t)a,b,cn)

𝑉(𝑡)a,b,cn
)

(

 
 ∑𝑝(𝑡)a,b,cCust.nl

𝑁

𝑙=1

+
𝑃(𝑡)a,b,cEVsn )

 
 

]
 
 
 
 

3×1

 ∀ 𝑁

∈ ℤ+  

(5.17) 

where  [𝐵(𝑡)a,b,cn] is the matrix resulted from multiplying (3 × 3) impedance matrix 

by (3 × 1) phase current matrix at the time step  𝑡. Across all phases, the objective 

function is derived from Equations (5.16) and (5.17) by discriminating the aggregated 

charging power of EVs (𝑃(𝑡)a,b,cEVsn) as follows: 

 [𝐹(𝑡)a,b,c] = {[𝑍a,b,c]3×3

−1

 
× [𝐵(𝑡)a,b,cn]3×1

× 𝑉(𝑡)a,b,cn × exp (−𝑖∅(t)a,b,cn)}

− ∑𝑝(𝑡)a,b,cCust.nl

𝑁

𝑙=1

 ∀ 𝑁 ∈ ℤ+  

(5.18) 

where  [𝐹(𝑡)a,b,c]  is the aggregated charging power of EVs to be maximized per phase, 

excluding all residential loads. By adding residential loads to the both sides of 

Equation (5.18), the objective function  𝐹 across the three phases during a day of 

minute-by-minute time steps was rewritten as follows:  

 𝐹 = ∑ (∑[𝐹(𝑡)a,b,c] + ∑𝑝(𝑡)a,b,cCust.nl

𝑁

𝑙=1

)

1440

𝑡=0

 ∀ 𝑁 ∈ ℤ+ (5.19) 

It can be observed that Equations (5.1) and (5.19) are identical. The 𝑉𝑈𝐹(𝑡)n%  

is calculated in percentage using Equation (5.20) for each time step  𝑡. 
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𝑉𝑈𝐹(𝑡)n

=
𝑀𝐴𝑋(|𝑉(𝑡)A − 𝑉(𝑡)an|, |𝑉(𝑡)A − 𝑉(𝑡)bn|, |𝑉(𝑡)A − 𝑉(𝑡)cn|)

𝑉(𝑡)A

× 100%  

(5.20) 

where  𝑉(𝑡)A =
(𝑉(𝑡)an + 𝑉(𝑡)bn+𝑉(𝑡)cn)

3
  at each time step  𝑡. 

 

5.4 Configurations of the System under Study 

The performance of the centralized controller was tested using the UKGDN that 

includes medium voltage (MV) and LV feeders. Residential loads and EV loads were 

individually synthesized.  

 

5.4.1 The Network under Study  

Figure 5.3 illustrates the proposed architecture of the centralized controller. An 

adapted UKGDN [116] was used to test the performance of the centralized control 

algorithm for the smart charging of EVs.   

Six radial feeders are emanating from the MV side of the two parallel on-load tap 

changing transformers. The capacity of each transformer is 15 MVA 33/11 kV. The 

MV feeders serve 18,432 customers in total with 3,072 customers for each feeder. 

Each MV feeder is divided into 8 segments, serving 8 ground-mounted distribution 

transformer. Each one (i.e. 500 kVA 11 kV/0.4 kV ground-mounted distribution 

transformer) serves 384 customers distributed across four LV feeders. Ninety-six 

customers were distributed along each LV feeder (see Figure 5.3). More details about 

the original UKGDN can be found in the literature [116].  

Meter points were allocated at the emanating point of each LV feeder. These 

meters are used to upload readings of measured phase currents using two-way 

communication systems (see Figure 5.3). When these readings are received by the 

centralized control algorithm, unbalanced power flow calculations are performed to 

re-allocate EV charging loads. The unbalanced power flow updates voltage 

magnitudes, voltage unbalance factors and power flows of network components. If EV 

users upload their unscheduled EV charging loads via these two-way communication 

systems, EV users can accordingly reschedule their charging loads based on the 

charging duration received from the control algorithm. EV charging loads will be 
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accordingly re-allocated using the centralized control algorithm as illustrated in 

Section 5.2.2.  

 

 

Figure 5.3: The proposed architecture of the centralized controller. 

 

To solve the power flow for the UKGDN (Figure 5.3) using the solver developed, 

the following steps are followed:  

 Calculation of the total power at node 1 using Equations (5.13) and (5.14). 

 Calculation of the total current at node 1 using Equation (5.11). 

 Calculation of the phase voltages at node 2 using Equation (5.12). 

 Sequentially repeat the above calculations to determine the phase voltages at 

nodes 2, 4, 6, 8, 10, 12, 14, and 16. 

 

The centralized control algorithm is

 Performing unbalanced power flow 

calculations.

 Reallocating EV charging durations.
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5.4.2 Synthesizing loads of Residential Customers  

Figure 5.4 (a) shows aggregated daily load profiles of 384 customers for each 

distribution transformer over a day of minute-by-minute time steps. Loads can be 

modelled as a constant active/reactive power (PQ), a constant current (I), a constant 

impedance (Z) or a combination of PQ, I and Z [128].  

 

Figure 5.4: Profiles of, (a) the aggregated load of 384 customers for each low voltage (LV) 

transformer, (b) the daily mean of real and generated loads. 
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In this work, residential loads were modelled as a dynamic PQ changing their 

values in every minute. Daily load profiles were synthesized using means and standard 

deviations recorded in CLNR project during real trials [115]. Daily profiles of the 

standard deviations and means were obtained from CLNR trials [115]. Figure 5.4 (b) 

shows the minute-by-minute mean profile (i.e. stochastically synthesized with 3072 

customers), as compared to the half-hourly mean profile (i.e. recorded in CLNR 

project).  

 

5.4.3 Synthesizing Loads of Electric Vehicles 

EV charging loads were modelled as a dynamic PQ capturing their aggregated 

demand in every minute. Daily profiles of EV charging loads were synthesized based 

on real datasets. A real diurnal mean profile was selected as a reference from the CLNR 

project (i.e. the daily mean profile of charging power for 133 EVs) [115].  

EV charging profiles were individually generated in MATLAB using the “randi” 

function to produce the diversity across EV charging profiles. This function generates 

integer random numbers. Matrices of “0” and “1” were generated using the “randi” 

function (“1” for charging state and “0” for idle state). Departure and arrival times 

were assigned per EV based on the National Travel Survey (NTS) of the UK from the 

Department for Transport [122] during working days.  

At transformer T8 (see Figure 5.3), all residential customers were assumed to have 

a single phase charger of 3.3 kW per hour at slow charging mode. Therefore, 384 EV 

connections were considered across residential customers at transformer T8, as shown 

in Figure 5.3. EV load profiles were synthesized as follows:  

 Generate the requested minutes for charging each EV (less than or equal 480 

minutes a day) using the “randi” function.  

 Synthesize the daily load profile of each EV by assigning “0” for idle state and 

“1” for charging state.  

 Concatenate the minute-by-minute charging profiles of 384 EVs in one matrix 

(384 ×  1440).   

 Shift the charging loads of the produced matrix according to arrival and departure 

times of the daily trips to match the daily mean profile of the CLNR project [115]. 

Figure 5.5 represents the comparison between the daily mean of the synthesized 

EV charging loads and the daily mean of the real EV charging loads. It can be seen 
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that the synthesized daily mean of 384 EVs is greater than the daily mean of 133 EVs 

obtained from CLNR datasets. However, their daily patterns are approximately 

similar. Figure 5.6 illustrates the charging durations of 384 EVs over a day of minute-

by-minute time steps.  

 

Figure 5.5: The daily mean profiles of the real/synthesized electric vehicle (EV) charging 

loads. 

 

 

Figure 5.6: The pattern of the synthesized 384 EV charging loads during a day. 
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5.5 Simulation Results 

To monitor the performance of the centralized control algorithm, steady-state 

profiles of the UKGDN were calculated over a day of minute-by-minute time steps for 

two scenarios: 

 Scenario I (without smart allocation): 384 EVs at the distribution transformer T8 

were charged, as modelled in Section 5.4.3.  

 Scenario II (with smart allocation): 384 EVs at T8 were charged with the 

centralized control algorithm.  

Equations (5.1)–(5.3), (5.12), (5.16)–(5.18), and (5.20) were used to model the 

considered network in a spreadsheet using Microsoft Excel. Equations (5.4)–(5.7) 

were used to assign the constraints of the solver used in Excel. Then, the objective 

function was solved using “GRG Nonlinear” in a matter of seconds. Simulation results 

were performed using an Intel® Core™ i7-4500U CPU, 1.80 GHz, 8.00 GB installed 

RAM laptop, operating with Microsoft Windows 10 Pro. of 64-bit operating system 

(see Appendix D). MATLAB R2015a was used to write the code for solving 

unbalanced power flow equations, as shown in Appendix D. Results were computed 

and visualized with a single MATLAB-script file in less than one minute. The 

constraints of the studied system were assigned according to the policy regulation for 

UK distribution networks as presented in the following subsections. 

 

5.5.1 Voltage Magnitudes and Voltage Unbalances 

Steady-state phase voltages and voltage unbalances were normally maintained 

within the limits. The upper and the lower limits of the voltage magnitudes were 

assigned between 1.06 pu and 0.94 pu, respectively, for the MV level. Meanwhile, 

these limits were allocated between 1.1 pu and 0.94 pu, respectively, for the LV level 

[116], [117]. The base voltage was assumed the nominal voltage (230 V). The 

𝑉𝑈𝐹(𝑡)n%  did not to exceed 1.3% according to the Engineering Recommendations 

P29 [116]. Uncontrolled charging loads of EVs were clustered at the transformer T8 

(see Figure 5.3), in which 384 EVs are connected to node 16. However, daily profiles 

of RMS voltages did not drop below the limit at the MV level, as shown in Figure 5.7 

(a) for Scenario I. In addition, voltage unbalances did not exceed the limit, as presented 

in Figure 5.7 (b). On the other hand, voltage magnitudes and voltage unbalances did 

exceed the limits at the LV side, as shown in Figures 4.7 (a) and Figure 5.8 (b), 
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respectively. These undesired impacts of EV charging loads were minimized using the 

centralized control algorithm as demonstrated in Figures 4.8 (a) and Figure 5.9 (b), 

respectively. 

 

Figure 5.7: UKGDN daily profiles of Scenario I with (a) RMS voltages at each node of the 

MV feeder; (b) voltage unbalance at each node of the MV feeder. 
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Figure 5.8: UKGDN daily profiles of Scenario I with (a) phase voltages at node 18; (b) voltage 

unbalance at node 18. 
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Figure 5.9: UKGDN daily profiles of Scenario II with (a) phase voltage at node 18; (b) voltage 

unbalance at node 18. 

 

5.5.2 Limitations of Network Components 

Using the centralized controller, the daily profiles of phase currents have not 

exceeded the rated current of the distribution lines. Additionally, the distribution 

transformer was not overloaded beyond the rated apparent power.  
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Base values of power and current were assigned using the rated power and the 

rated current of LV network components. These components were: 500 kVA 

distribution transformer and 185 mm2 underground cable [129]. Therefore, the limits 

of network components are  𝐼(𝑡)a,b,cL ≤ 1 pu and 𝑆(𝑡)Tr.loading ≤ 1 pu for the 

underground cable and distribution transformer, respectively.  

Figure 5.10 presents the daily profiles of the loading power at the main substations 

(i.e. the 15 MVA transformers) for Scenario I and Scenario II. The considered EV 

charging loads had a small effect on the capacity of the MV transformers. However, 

these EV charging loads at the peak intervals were re-allocated at suitable intervals 

(Scenario II), as shown in Figure 5.10. In addition, Figure 5.10 shows how the fast-

queuing time process can lead to the consistent re-allocation of EV charging loads. 

Distribution transformer T8 and distribution line were significantly overloaded with 

uncontrolled EV charging loads (Scenario I), as depicted in Figure 5.11 (a) and Figure 

5.11 (b).  

 

Figure 5.10: UKGDN daily load profiles at the main substations (the MV transformers) for 

Scenario I and II, respectively. 
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Figure 5.11: Scenario I UKGDN daily profiles (a) phase currents of the underground cable 

between nodes 17 and 18; (b) loading power of the transformer T8. 

 

By the use of the centralized control algorithm, loading power of the underground 

cable and distribution transformer was maintained within the desired limits as shown in 

Figure 5.12 (a) and Figure 5.12 (b), respectively. 
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Figure 5.12: Scenario II UKGDN daily profiles (a) phase currents of the underground cable 

between node 17 and node 18; (b) loading power of the transformer T8. 
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5.6 Conclusions 

EV charging loads were coordinated via the proposed centralized control 

algorithm using unbalanced power flow calculations. The non-iterative unbalanced 

power flow calculations were implemented to formulate the proposed objective 

function. EV charging loads were re-allocated according to the hosting capacity of the 

electricity network, while maintaining voltage magnitudes, voltage unbalance factors, 

and power flows within their limits.    

Daily profiles of EV charging loads were modelled based on real datasets acquired 

from trials of the real project. Two scenarios were investigated to monitor the 

performance of the centralized control algorithm with uncontrolled and controlled EV 

charging loads. The results showed that network components at the MV level can cope 

with uncontrolled EV charging loads. However, high uncontrolled EV charging loads 

can lead to the following issues at the LV level: 

 Deviating from the normal value of the voltage magnitude and voltage unbalance. 

 Overloading the main distribution line and the distribution transformer.  

These issues were mitigated by re-allocating EV charging loads via the centralized 

control algorithm (see Scenario II).  

The centralized control algorithm can be adopted by network operators to defer 

upgrading needs for network infrastructure (underground cables and distribution 

transformers) as can be easily integrated into existing power system control paradigms.  
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CHAPTER 6   

 

6. Decentralized Load Adjustment of Electric Vehicles and Heat Pumps 

 

6.1 Introduction 

In Chapter 5, the centralized controller is proposed to re-allocate charging loads 

of electric vehicles, overcoming their impacts on distribution networks. However, the 

centralized controller requires two-way communication systems to be implemented. 

To overcome the need for extensive communication technologies, Chapter 6 proposes 

a decentralized controller to adjust EV and HP loads, considering consumer 

satisfaction and network constraints. The levels of satisfaction of EV and HP users 

were evaluated using mathematical models of EV battery state-of-charge (BSoC) 

levels and the indoor temperatures of HP houses.    

The decentralized control algorithm was proposed for minimizing electricity bills 

of EV and HP users based on mixed integer linear programming. Time-varying tariffs 

were modelled over a day of quarter-hourly time steps considering a real flat-rate tariff. 

This consideration ensures equivalent revenues of electricity suppliers using time-

varying and flat-rate tariffs to protect consumers from being overcharged. 

RMS voltage magnitudes, voltage unbalance factors, and RMS current flows were 

determined in this study using unbalanced power flow, while adjusting EV and HP 

loads. Current flows through network components can be monitored using smart 

meters to implement the proposed decentralized controller in real-world applications.       

 

6.2 Methodology  

A real, three-phase, and unbalanced distribution network of Electricity North 

West, which is different from the one modelled in Chapter 4, was used in this chapter 

to test the performance of the controller. This different network serves a high number 

of residential customers, as compared to the network of Chapter 4. The network under 

study of this chapter supports the scalability of the control algorithm into the real 

world, because it emulates the complexity of high numbers of customers in real 

networks. The decentralized control algorithm was modelled based on the following 

considerations.  
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 The numbers of EVs and HPs, which were connected to the network under study, 

were evaluated using the prediction model of Chapter 3. 

 Typical residential loads were modelled using the method that was developed in 

Chapter 4.   

 Unbalanced power flow, which was presented in Chapter 5, was used to monitor 

RMS voltage magnitudes, voltage unbalance factors, and RMS current flows of 

the network under study.  

 The final BSoC level of EVs and the indoor temperature of HP houses were used 

to monitor consumer satisfaction over a day.  

 Residential EV charging loads were only considered based on arrival and 

departures statistics of the daily trips of UK commuters.  

 Discharging EV batteries were excluded in the decentralized controller, because 

an increase in the number of charging and discharging cycles degrades the life 

span of EV batteries.  

 Residential HP heating loads were modelled using the operational characteristics 

of air source heat pumps.  

Figure 6.1 represents the workflow of the decentralized control algorithm.  

 

Figure 6.1: The workflow of the decentralized control algorithm of EVs and HPs. 
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6.2.1 Mathematical Model of Electric Vehicles  

EV charging loads were modelled as a discrete rectangular demand of slow 

charging mode of 3.3kW charging capacity [130]. EV charging durations were 

synthesized based on the arrival/departure times of the UK commuters, as presented 

in Ref. [122]. According to these statistics, nearly a quarter of daily trips occurred 

between 17:00 and midnight. Other trips appeared between midnight and 17:00 on the 

next day. EV charging loads were accordingly modelled over a day of quarter-hourly 

time steps, as illustrated in detail in Chapter 5. Thus, EV daily BSoC level is calculated 

as follows.                                    

𝒮(𝑡) = 𝒮0 + ∆𝑡 ∑𝒫𝑖

ℕ

𝑖=1

 (6.1) 

where 𝒮(𝑡) symbolizes EV final BSoC level in kWh at time step 𝑡 relative to EV initial 

BSoC level (𝒮0) in kWh. ∆𝑡 symbolizes the width of each time step in a fraction of an 

hour (ℎ). ℕ symbolizes the total number of EV charging time intervals to increase 

BSoC level from 𝒮0 to 𝒮(𝑡). 𝒫 symbolizes the rated power of EV charger in kW (i.e. 

3.3kW). 

 

6.2.2 Mathematical Model of Heat Pumps 

Air source HPs were only considered for space heating (i.e. without water 

heating). The coefficient of performance (CoP) measures HP efficiency, as follows.         

𝐶𝑜𝑃 =
ℚ𝑜𝑢𝑡

ℚ𝑖𝑛
 (6.2) 

where 𝐶𝑜𝑃 symbolizes the CoP value of HP. ℚ𝑜𝑢𝑡, ℚ𝑖𝑛 symbolize the output and input 

HP power in kW. Equation (6.3) calculates HP electrical power consumption [124].   

ℚ𝑖𝑛 =
ρ × 𝑐𝑠𝑝 × Φ × (Τs − Τr)

𝐶𝑜𝑃 
 (6.3) 

where ρ symbolizes the air density in kg/m3. 𝑐𝑠𝑝 symbolizes the specific heat of air in 

kJ/kg°C. Φ  symbolizes the volume of air that is compressed by the HP unit into space 

in m3/s. Τs and Τr symbolize the supply and return temperatures of the HP unit in °C. 

According to Carnot’s cycle, the difference of temperatures across a heating engine is 
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used to calculate the efficiency of that engine. Carnot’s equation is modified into (6.4), 

because HPs can achieve a 10% of the calculated value using Carnot’s cycle [131], 

[132].   

𝐶𝑜𝑃 =
0.1

1 − [
(273 + Τ𝑜𝑢𝑡)
(273 + Τs)

]
 

(6.4) 

where Τ𝑜𝑢𝑡 symbolizes variable outdoor temperatures in °C. Therefore, HP power 

consumption is calculated using Equation (6.5), as follows.       

ℚ𝑖𝑛(𝑡)  
=

1

0.1
× ρ × 𝑐𝑠𝑝 × Φ × (Τs − Τr) × (1 − [

(273 + Τ𝑜𝑢𝑡)

(273 + Τs)
]) (6.5) 

where ℚ𝑖𝑛(𝑡) symbolizes the rate of HP power consumption in kW at time step 𝑡 

relative to variable outdoor temperatures (Τ𝑜𝑢𝑡). Equation (6.6) determines the rate of 

heat losses from indoor environments toward outdoor environments through walls and 

windows [133].  

ℚ𝑙𝑜𝑠𝑠(𝑡) =
Τ𝑜 − Τ𝑜𝑢𝑡

ℜ𝑒𝑞
 (6.6) 

where ℚ𝑙𝑜𝑠𝑠(𝑡) symbolizes the rate of heat losses in kW at the time step 𝑡 relative to 

variable outdoor temperatures. Τ𝑜 symbolizes the off-state temperature of thermostatic 

control devices in °C. ℜ𝑒𝑞 symbolizes the equivalent thermal resistivity of wall 

(ℜ𝑤𝑎𝑙𝑙) and windows (ℜ𝑤𝑖𝑛𝑑𝑜𝑤𝑠) in °C/kW. The indoor temperatures of HP houses 

are updated as shown below.   

Τ𝑖𝑛(𝑡) = Τ𝑜 + ∆(
𝐶𝑜𝑃 × ℚ𝑖𝑛(𝑡) − ℚ𝑙𝑜𝑠𝑠(𝑡)

𝑀𝑎 × 𝑐𝑠𝑝
) (6.7) 

where Τ𝑖𝑛(𝑡) symbolizes the updated indoor temperature of HP houses in °C at the 

time step 𝑡. 𝑀𝑎 symbolizes the mass of air compressed in kg/s. In this study, the value 

of ℜ𝑒𝑞 is considered to be 1.56 °C/kW, whereas the value of 𝑀𝑎 is 1 kg/s [133].   

HPs are inherently equipped with thermostatic load control devices. The off-state 

temperature of thermostatic control equipment is adjusted to be 20°C. Therefore, the 

model of HP demand is completed by considering HP thermostatic operational cycles, 

as follows.    
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ℚ𝐻𝑃(𝑡)  
= {

0                   𝑖𝑓     Τ𝑖𝑛(𝑡) ≥ Τ𝑜 

ℚ𝑖𝑛(𝑡)        𝑖𝑓      Τ𝑖𝑛(𝑡) < Τ𝑜
 (6.8) 

where ℚ𝐻𝑃(𝑡) symbolizes HP demand in kW at time step 𝑡 considering thermostat 

operations. Table 6.1 shows the numerical values of considered HP parameters. These 

parameters are evaluated based on the HP presented in Ref. [124], considering a 

residential heating performance. 

Table 6.1: The numerical values of considered HP parameters. 

 

 

 

 

 

 

 

 

6.2.3 Synthesized Time-varying Tariffs  

In this study, time-varying tariffs were synthesized based on the predicted demand 

over a one-day-ahead time interval. Electricity suppliers can use smart meters to design 

more tariffs, incentivizing customers to use less energy over peak-hour time intervals 

[134]. Two-level time-varying tariffs were used to charge consumers with expensive 

and cheap tariffs considering fixed time intervals. For example, “Economy 7” tariff 

has been used in the UK since 1970s to charge customers with a cheap tariff overnight 

[134]. Dynamic time-varying tariffs charge variable tariffs over time intervals 

depending on specific factors (e.g. the availability of predicted wind energy) [134]. In 

another study [135], a model was developed to compare annual bills using flat-rate and 

time-varying tariffs.   

In Ref. [136], time-varying tariffs were adjusted to ensure that, the average of 

electricity bills is equivalent with time-varying and flat-rate tariffs for unchanged 

energy consumption. These tariffs were £0.672/kWh, £0.118/kWh, and £0.04/kWh for 

high, mid, and low electricity prices, respectively. Meanwhile, the value of 

£0.142/kWh was the standard flat-rate tariff in 2014, as presented in Ref. [136].    

Parameters Values Units 

ρ 1.275 kg/m3 

𝑐𝑠𝑝 1.005 kJ/kg°C 

Φ 0.613 m3/s 

Τs 28 °C 

Τr 20 °C 

Rated 𝐶𝑜𝑃 3.5 - 
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In this work, Equations (6.9) and (6.10) are used to synthesize time-varying tariffs 

considering the stability of supplying revenues and consuming bills. A good pricing 

model should consider this stability, as demonstrated in Ref. [137]. Time-varying 

tariffs are synthesized over a day of quarter-hourly time steps based on the demand 

predicted, as shown in Equation (6.9).   

𝐶𝐹𝑅𝑇 ∑ 𝑃(𝑡)

𝑡=24ℎ

𝑡=0  

= ∑ 𝐶𝐷𝑇𝑜𝑈(𝑡)𝑃(𝑡)

𝑡=24ℎ

𝑡=0

 (6.9) 

subject to the following constraints  

𝐶𝐷𝑇𝑜𝑈(𝑡) = {

𝕪 𝑖𝑓              𝑃(𝑡) ≥ 𝑃𝑀𝑥 
𝕫 𝑖𝑓              𝑃(𝑡) ≤ 𝑃𝑀𝑛

𝕫 < 𝕩 < 𝕪 𝑖𝑓 𝑃𝑀𝑛 < 𝑃(𝑡) < 𝑃𝑀𝑥  
 (6.10) 

where 𝐶𝐹𝑅𝑇 denotes the standard flat-rate tariff. 𝐶𝐷𝑇𝑜𝑈(𝑡) is the synthesized time-

varying tariff in £/kWh. 𝕪 and 𝕫 denote high and low tariffs. 𝕩 denotes a changeable 

tariff between 𝕪 and 𝕫 values. 𝑃(𝑡) denotes the predicted overall network demand at 

each time step. 𝑃𝑀𝑥 and 𝑃𝑀𝑛 denote maximum and minimum values of network 

demand over a day-ahead time interval. Residential network demands are dynamically 

modelled as presented in detail in Chapter 4. The values of 𝐶𝐷𝑇𝑜𝑈(𝑡) are synthesized 

over a day of quarter-hourly time steps by solving Equation (6.9) using the generalized 

reduced gradient solver [138].   

Equation (6.9) includes the real flat-rate tariff to ensure that, the total revenues of 

electricity suppliers are equivalent with time-varying and flat-rate tariffs over a 24 

hour time interval (24ℎ). The model of time-varying tariff is constrained by Equations 

(6.9) and (6.10) to protect customers from being overcharged, while keeping the 

interest of electricity suppliers.   

 

6.2.4 Objective Functions  

Both of EV and HP loads are considered to be the decision variables during the 

optimization process. The flexibility of EV/HP demand is restricted depending on 

consumer satisfaction and network constraints.  
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Equation (6.11) is the first objective function, which is used to minimize the 

electricity bill of each EV user over a day of quarter-hourly time steps.  

min
∀ℓ∈𝕝

Δt ∑ 𝐶𝐷𝑇𝑜𝑈(𝑡)𝒫ℓ(𝑡)

𝑡=24ℎ

𝑡=0

                                   

subject to    [∑ 𝒫ℓ(𝑡)
𝑡=24ℎ
𝑡=0  

] ≥ ℱ𝑒𝑣ℓ × 𝒮ℓ  
    ∀ ℱ𝑒𝑣ℓ ∈ ℱ:ℱ𝑀𝑛 ≤ ℱ < 1 

(6.11) 

where 𝕝 denotes the number of EVs that is considered while adjusting their charging 

loads. 𝒮ℓ  denotes the complete BSoC level of an EV. ℱ𝑒𝑣ℓ denotes a numerical 

parameter that is determined based on the driving pattern of each EV. ℱ𝑀𝑛 denotes the 

minimum value of all numerical parameters of ℱ𝑒𝑣ℓ that can satisfy the expectation of 

EV users. The value of ℱ𝑀𝑛 is calculated using initial EV charging loads.  

Equation (6.12) is the second objective function, which minimizes the electricity 

bill of each HP user over a day of quarter-hourly time steps.  

min
∀𝑗∈𝕛

∆𝑡 ∑ 𝐶𝐷𝑇𝑜𝑈(𝑡)ℚ𝐻𝑃𝑗(𝑡)

𝑡=24ℎ

𝑡=0

                                      

subject to  [∑ ℚ𝐻𝑃𝑗(𝑡)
𝑡=24ℎ
𝑡=0 ] ≥ 𝐹ℎ𝑝𝑗 × ℮𝑗 

     ∀ 𝐹ℎ𝑝𝑗 ∈ 𝐹: 𝐹𝑀𝑛 ≤ 𝐹 < 1 

(6.12) 

where 𝕛 denotes the number of HPs that is counted while adjusting their heating 

loads. ℮𝑗 
 denotes the non-optimized heating energy of each HP over a day in kWh. 

𝐹ℎ𝑝𝑗 denotes an empirical parameter that is evaluated based on the comfortable 

temperatures of each HP premise. 𝐹𝑀𝑛 denotes the minimum value of all empirical 

parameters of 𝐹ℎ𝑝𝑗. The value of 𝐹𝑀𝑛 is iteratively calculated by solving Equation 

(6.12), while monitoring the indoor temperatures of HP houses using Equation (6.7). 

In other words, the empirical threshold of 𝐹𝑀𝑛 is determined using Equations (6.12) 

and (6.7) to maintain the indoor temperatures of HP houses between 18-21.5°C.        

Non-iterative unbalanced power flow evaluates network constraints, as illustrated 

in Chapter 4. The network constraints are monitored during the optimization process 

by recording RMS voltages, RMS current flows, and voltage unbalance factors, as 

follows. 
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{

𝐼𝑖  (𝑡) ≤ 𝐼𝑚𝑎𝑥 

𝑉𝑚𝑖𝑛  ≤   |𝑉 𝑖
(𝑡)|  ≤  𝑉𝑚𝑎𝑥

𝑉𝑈𝐹𝑖 
(𝑡)  ≤ 𝑉𝑈𝐹𝑚𝑎𝑥

}    ∀𝑖 ∈ 𝕂 (6.13) 

where 𝐼𝑖  (𝑡) denotes RMS current flows through the cables of feeder segments across 

adjacent connection points at time step 𝑡. 𝑉 𝑖
(𝑡) denotes RMS voltages at each 

connection point at time step 𝑡. 𝑉𝑈𝐹𝑖 
(𝑡) denotes the voltage unbalance factor (𝑉𝑈𝐹) 

at each connection point in percentage at time step 𝑡. 𝐼𝑚𝑎𝑥 denotes the cut-out value 

of fuse current for each main feeder. 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 denote the lower and upper 

tolerances of voltage magnitudes. 𝑉𝑈𝐹𝑚𝑎𝑥 denotes the maximum value of allowed 

𝑉𝑈𝐹 in percentage. 𝕂 denotes the number of EV/HP connection points.    

The constraints of Equations (6.11) and (6.12) are re-arranged into the following 

linear form to solve them using MATLAB.     

−1 × 𝐴 × 𝑋 ≥ −1 × 𝑏 

𝐿𝐵 ≤ 𝑋 ≤ 𝑈𝐵 

(6.14) 

where 𝐴 denotes a (1 × 𝑛) matrix. 𝑛 denotes the total number of daily time steps, which 

is 96 by considering ∆𝑡 = (1 4⁄ )ℎ. Therefore, 𝐴 is a (1 × 96) matrix of “1”. 𝑋 denotes 

the matrix of decision variables with (96 × 1) elements per each EV/HP user. Each 

element of 𝑋 represents an integer value of operational state variables (i.e. 1 ∨ 0) 

multiplied by another value of power consumption. 𝑏 denotes either the minimal BSoC 

level of each EV (i.e. ℱ𝑒𝑣𝑙 × 𝒮ℓ 
), or 𝑏 denotes the empirical HP threshold (i.e. 𝐹ℎ𝑝𝑗 ×

℮𝑗 
). 𝐿𝐵 denotes the lower limit of decision variables, which is a (1 × 96) matrix of 

“0”. 𝑈𝐵 denotes the upper limits of decision variables. 𝑈𝐵 is a (1 × 96) matrix of 

initial EV charging loads, whereas 𝑈𝐵 is calculated using Equation (6.8) for HPs.  

Equations (6.11) and (6.12) are then locally solved for EVs and HPs using mixed 

integer linear programming. MATLAB R2015a is used to solve Equations (6.11) and 

(6.12) with “intlinprog” function.   

Figure 6.2 shows the proposed steps to solve these objective functions. The three-

phase unbalanced network constraints of Equation (6.13) are considered using a 

recursive approach, as shown in Figure 6.2. This recursion calls “intlinprog” function 

with updated values of the 𝑈𝐵 matrix until network constraints are maintained within 
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their limits. The 𝑈𝐵 matrix is updated by substituting the last feasible solutions of 

Equations (6.11) and (6.12) in the pre-assigned 𝑈𝐵 matrix (i.e. the upper limits of 

decision variables). Equation (6.9) is used to synthesize time-varying tariffs over a 

one-day-ahead time interval based on the pre-loaded overall demand of the network 

under study. Afterwards, EV/HP objective functions are solved over a day of quarter-

hourly time steps (see Figure 6.2).     

 

Figure 6.2: The proposed steps of the decentralized control algorithm. 

Although mixed integer algorithms have a non-deterministic polynomial (NP) 

hardness, the proposed “intlinprog” function uses heuristic techniques to cope with NP 

hardness. This function tightens the feasible area using cutting planes. Further, the 

“intlinprog” function solves a series of linear programming relaxation problems to 

transform integer programming into linear programming. Therefore, this 

transformation is later used to ensure a near optimality of the results achieved [139].       

Pre-load the overall network demand 

over a day   

Synthesize day-ahead time-varying 

tariffs using Equation (6.9) 

Evaluate the objective functions of 

electric vehicles or heat pumps using 

Equations (6.11) and (6.12)

Re-arrange the constraints of the 

objective functions into the linear form 

using Equation (6.14)

Solve the objective functions using 

mixed integer linear programming  

Is Equation (6.13) satisfied?
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Adjust the demand of electric vehicles 

or heat pumps accordingly  
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YES
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6.3 The Network under Study 

A real low voltage (LV) network (see Figure 6.3) is adapted from [120], [140] to 

test the performance of the decentralized control algorithm. This real network consists 

of a 500kVA distribution transformer, which steps down the voltage from 11kV to 

0.416kV. This transformer serves 330 consumers as shown in Figure 6.3. Feeders are 

constructed using underground cables of the following sizes: 300mm2, 185mm2, and 

95mm2. Meantime, consumers are served using 35mm2 and 25mm2 cables.  

In Refs. [120], [140], network users are distributed across feeders considering 90 

users along one feeder, while distributing other 157 and 83 users across the remaining 

feeders. Meanwhile, 108 users are connected to one phase, while connecting other 109 

and 113 users to the remaining phases.          

 

Figure 6.3: The real LV distribution network under study (adapted from [120], [140]). The 

thicknesses of network feeders and service cables are not to scale. 

According to the prediction model of Chapter 3, EV and HP connections to UK 

electricity networks will not exceed a 32.47% (10.15% for EVs, and 22.32% for HPs) 

by 2035. These percentages are calculated using EV and HP demands in Table 3.1 

relative to the maximum value of residential demand in Table 3.2. Consequently, the 

deployments of EVs and HPs are considered a 25% of EVs and another 25% of HPs. 

These percentages are evaluated by dividing the number of EV and HP users to the 
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number of all network users. Therefore, 82 EVs and 82 HPs are deployed across the 

network under study, as shown in Figure 6.3. 

Figure 6.4 (a) shows the individual loads of 82 HPs alongside their average 

heating demand over a day. Figure 6.4 (b) illustrates the individual CoP values of these 

82 HPs, as calculated using Equation (6.4). 

 

 

Figure 6.4: (a) Daily 82 HP heating demands. (b) Daily CoP values of these 82 HPs.  
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HP heating loads were diversified by considering different initial conditions per 

each HP user. These HPs were modelled based on UK ambient temperatures over 

winter days in 2014 [121]. Quarter-hourly time steps were considered while modelling 

individual loads of 82 HPs. Figure 6.5 (a) indicates the indoor temperatures of the 82 

HP houses over a day of quarter-hourly time steps along with their histogram.  

 

Figure 6.5: (a) Daily indoor temperatures of 82 HP houses and their histogram. (b) A sample 

of 1 HP house daily heating demand along with its daily CoP value and its daily temperature. 
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With a single HP, Figure 6.5 (b) presents daily samples of the following 

characteristics: heating loads, CoP values, and indoor temperatures. Figure 6.6 (a) 

shows individual 82 EV charging loads over a day of quarter-hourly time steps, 

including their daily average charging demand. Individual EV loads were predicted 

based on the method presented in Chapter 5. 

 

 

 

Figure 6.6: (a) Daily 82 EV charging loads. (b) BSoC levels of 82 EVs.   
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Daily BSoC levels of 82 EVs are calculated using Equation (6.1) based on 

individual EV loads, as shown in Figure 6.6 (b). Figure 6.7 shows samples of two EV 

charging loads over a day of quarter-hourly time steps along with their BSoC levels. 

 

 

Figure 6.7: A sample of two EV charging loads along with their BSoC levels. 

 

6.4 Simulation Results 

In this work, the decentralized control algorithm is presented using two case 

studies, as described below.  

Case 1 evaluates the network under study considering the modelled 82 EVs and 

82 HPs without using the decentralized control algorithm. Case 2 evaluates this 

network considering optimized EV/HP uses with the decentralized control algorithm.  

The two case studies are presented using daily RMS voltages and daily voltage 

unbalance factors per each connection point of the network under study. In addition, 

daily RMS current flows are recorded across feeder segments.  

Consumer satisfaction is monitored by presenting EV daily BSoC levels and daily 

indoor temperatures of HP houses. Figure 6.8 shows daily RMS voltages at each 

connection point of the network under study. RMS voltages are per-unitized with a 

base voltage of 230V per phase.  
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It can be seen that, these voltages are within their fluctuation tolerances, as 

assigned by Engineering Recommendations P28 in LV networks [117]. Figure 6.9 

illustrates RMS current flows through feeder segments across adjacent connection 

points. RMS current flows are per-unitized using the rated currents of each 

underground cable (i.e. 300mm2, 185mm2, and 95mm2). The rated values of cable 

current, and the cut-out values of fuse current were extracted from another study [129]. 

Figure 6.9 shows that, with the considered connections of EVs and HPs, main 

feeder segments will be overloaded to 1.2pu during peak hours. Figure 6.10 

demonstrates daily voltage unbalance fluctuations per each connection point. These 

fluctuations are within the limit according to Engineering Recommendations P29 

[118].  

For Case 1, Figure 6.5 (a) shows daily indoor temperatures of 82 HP houses. These 

indoor temperatures are calculated based on outdoor temperatures, thermostatic 

operational cycles, and other factors, as modelled in Section 6.2.2. Figure 6.6 (b) 

indicates 82 EV daily BSoC levels without using the decentralized control algorithm 

(Case 1). It can be seen that, all EVs have achieved the 100% BSoC level in different 

timings based on their initial BSoC levels and their initial charging times.    

 

Figure 6.8: Daily 330 RMS voltages at each connection point of the network under study along 

with their histogram (Case 1). 
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Figure 6.9: Heat map of daily 330 RMS current flows through feeder segments across adjacent 

connection points (Case 1).  

 

 

Figure 6.10: Daily 330 voltage unbalance factors at each connection point of the network under 

study along with their histogram (Case 1). 
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In Case 2, the decentralized control algorithm is used to optimize the use of EVs 

and HPs. The day-ahead time-varying tariff is firstly synthesized using Equations (6.9) 

and (6.10). Then, all the objective functions of EVs and HPs are solved in a matter of 

seconds (3.783s) using MATLAB R2015a (see Appendix E).  

Simulation results of Case 2 are presented as follows. Figure 6.11 demonstrates 

RMS voltages at each connection point of the network under study over a day of 

quarter-hourly time steps. RMS current through feeders was reduced from 1.2pu to 

1.028pu using the decentralized control algorithm, as shown in Figure 6.12. The cut-

out value of fuse current is 1.047pu for the main feeder, as presented in Ref. [129]. 

Voltage unbalance factors were maintained within their limit, while using the 

decentralized control algorithm (see Figure 6.13). 

Figure 6.14 demonstrates the optimized EV charging loads and their average 

charging loads over a day. The decentralized control algorithm interrupts EVs from 

being charged only if they reach ℱ𝑀𝑛 × 100% of their complete BSoC level or more, 

as shown in Equations (6.11) and (6.14). Figure 6.15 shows that, all EVs achieve more 

than 87% of the complete BSoC levels using the proposed algorithm. This percentage 

means that the value of ℱ𝑀𝑛 is 0.87 for these 82 EVs. 

 

Figure 6.11: Daily 330 RMS voltages at each connection point of the network under study 

along with their histogram (Case 2). 
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Figure 6.12: Heat map of daily 330 RMS current flows through feeder segments across 

adjacent connection points (Case 2). 

 

 

Figure 6.13: Daily 330 voltage unbalance factors at each connection point of the network under 

study along with their histogram (Case 2). 
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Figure 6.14: Optimized 82 EV daily charging loads and their average charging loads (Case 2).  

 

 

Figure 6.15: The daily BSoC levels of the optimized 82 EVs (Case 2). 
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Figure 6.16 presents the adjusted HP heating loads and their average heating 

demand over a day of quarter-hourly time steps. Percentages of adjusted energy 

relative to typical energy were calculated over a day for each individual HP load using 

Figure 6.16 (Case 2) and Figure 6.4 (a) (Case 1). The minimum percentage was 

determined to be 78%. Therefore, the value of 𝐹𝑀𝑛 was 0.78 for these 82 HPs. Figure 

6.17 shows that the decentralized control algorithm is able to maintain the daily indoor 

temperatures of HP houses between 18°C and 21.5°C.    

Figure 6.18 compares between Case 1 and Case 2 in terms of daily electricity bills 

considering quarter-hourly time steps for 82 EV users. Electricity bills of EV users 

were reduced by an average of 10% (i.e. from £2.18 in Case 1 to just £1.96 in Case 2), 

as shown in Figure 6.18. Electricity bills of HP users were decreased by an average of 

12% (i.e. from £7.18 in Case 1 to £6.32 in Case 2), as illustrated in Figure 6.19. 

Therefore, the decentralized control algorithm reduced the electricity bills of EV/HP 

users by an average of 11% over a day.   

The decentralized controller enables network operators to serve these EVs and 

HPs using existing infrastructure. Consequently, additional network reinforcement can 

be deferred without extensive requirement for communication systems. 

 

Figure 6.16: Optimized 82 HP daily heating loads and their average heating demands (Case 

2). 
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Figure 6.17: The indoor temperatures of 82 HP houses optimized along with their histogram 

(Case 2). 

 

 

 

Figure 6.18: The electricity bill reduction of EV users in Case 2 relative to Case 1.  
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Figure 6.19: The electricity bill reduction of HP users in Case 2 relative to Case 1. 

 

6.5 Conclusions 

The decentralized control algorithm was developed to adjust EV and HP loads 

using a synthesized time-varying tariff based on mixed integer linear programming. 

The levels of consumer satisfaction were evaluated using mathematical models of the 

BSoC levels of EVs and the indoor temperatures of HP houses. 

A convenient use of an EV was considered by achieving at least 87% of its 

complete BSoC level. A comfortable use of an HP was considered by keeping the 

indoor temperature of its house between 18-21.5°C.  

Without the decentralized control algorithm, the RMS current exceeded their rated 

value by 20%, serving 82 EVs and other 82 HPs using a real network of 330 residential 

customers. With the control algorithm, the RMS current exceeded their rated value by 

just 2.8% while serving these EVs and HPs. Moreover, the controller decreased 

electricity bills of EV and HP users by an average of 11% over a day.    

Therefore, the decentralized control algorithm is able to accommodate additional 

EV and HP loads without network reinforcement using an automated load shedding, 

while overcoming the need for third parties (e.g. aggregators) and extensive 

communication systems.  
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CHAPTER 7 

 

7. Conclusions and Recommendations for Further Work 

 

7.1 Conclusions  

Small-scale, residential, and distributed energy resources (DER) were studied to 

investigate their impact on electric power systems. The considered DER units were 

electric vehicles (EVs), heat pumps (HPs), and photovoltaic (PV) arrays. The 

objectives of this study were outlined as follows: predicting the UK residential demand 

considering DER power, evaluating distribution network parameters with the DER 

units, coordinating EV charging loads, and controlling EV and HP loads together.  

To meet these objectives, a prediction technique was developed to incorporate 

DER power into the UK residential demand. Two modelling tools were implemented 

in MATLAB to simulate real and test networks considering different case studies of 

DER integration. A centralized control algorithm was designed to coordinate EV 

charging loads according to network constraints. A decentralized control algorithm 

was planned to control EV and HP loads based on consumer satisfaction, network 

constraints, and electricity prices. The results of the studies are summarized as follows. 

 

7.1.1 Impacts of Distributed Energy Resources on Future Demand    

In Chapter 3, the UK residential demand in 2035 was predicted considering 

residential EVs, HPs, and PV arrays.     

The UK overall demand of 2014, which was collected at 5-minute time steps, was 

read from GridWatch databases. The demand was then averaged into half-hourly time 

steps. The UK residential demand was calculated using its percentage of contribution 

relative to the UK overall demand, as reported by National Grid.   

Customer-Led Network Revolution (CLNR) trials were used to provide daily 

mean values of power for each month of the year between 2012 and 2014. Mean values 

of the active power of 133 EVs, 336 HPs, and 151 PV arrays were gathered over a day 

of half-hourly time steps.   
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The annual power of DER units was synthesized using a normal probability 

distribution and median filter. The annual power was scaled and combined using 

Future Energy Scenarios by National Grid, predicting the UK residential demand at 

half-hourly time steps in 2035.    

Residential PV generation was predicted to exceed the UK residential demand by 

an average of 2GW over summer mid days. An average increase of 10GW in the UK 

residential demand was expected between 4:00-7:00 pm, because of the decrease in 

PV power generation during that time interval.   

Therefore, National Grid should incentivise the use of residential energy storage 

systems (ESS) to store the surplus of PV power generation. In this way, demand 

increase can be managed using the energy stored in local ESS units. Further, fast 

flexible generation plants can accommodate demand increase.       

 

7.1.2 Impacts of Distributed Energy Resources on Distribution Networks           

In Chapter 3, the impact of residential EVs, HPs and PV arrays upon the future 

residential demand was studied. In Chapter 4, the impact of DER units on distribution 

networks was assessed based on voltage magnitudes, voltage unbalance factors, and 

power flows. Two networks, a low voltage section of the UK generic distribution 

network (UKGDN) and a real low voltage network of Electricity North West, were 

used in this chapter.  

A low voltage section of the UKGDN was modelled using three-phase four-wire 

connections in MATLAB/Simulink/Simscape/SimPowerSystems. The mean values of 

the active power of 8,000 residential customers and 133 EVs over a day of half-hourly 

time steps were read from CLNR trials. The daily mean values were used to model 

384 residential customers, while connecting 96, 192, and 288 EVs.    

A real network of Electricity North West was studied using a MATLAB function 

of unbalanced load flow that was developed in this research. This network serves 135 

residential customers. The network was studied by connecting different combinations 

of EVs, HPs, and PV arrays to existing residential customers.     

Over a day of minute-by-minute time steps, individual residential loads were 

synthesized using normal probability distribution, while individual EV charging loads 
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were generated using uniform probability distribution. Mean values of residential and 

EV loads, which were read from CLNR trials, were used.   

Using mathematical models over a day of minute-by-minute time steps, individual 

HP loads were modelled based on ambient temperature, whereas individual PV 

generation was modelled using solar irradiance.     

In the UKGDN case study, unbalanced voltages were detected even if the numbers 

of similar EVs were equally distributed across the three phases. This is a result of 

different EV charging time durations. Transformers and cables exceeded their rated 

values with EV connections. It was noticed that, the low voltage section of the 

UKGDN can tolerate a maximum connection of 96 EVs without further reinforcement.         

In the real network case study, a bi-directional unbalanced power flow was 

observed with PV arrays, causing an increase in voltage magnitude. With separate and 

simultaneous connections of EVs, HPs, and PV arrays, voltage unbalance factors 

exceeded their limits.  

A conclusion is therefore made that a combination of EV/PV or HP/PV mitigates 

the impact of these low carbon loads, because PV generation partially compensates the 

consumption of EVs and HPs.    

 

7.1.3 Centralized Load Allocation of Electric Vehicles in Distribution Networks       

The results of Chapter 4 showed that uncoordinated EV charging loads lead to the 

violation of network constraints. In Chapter 5, a central controller was introduced to 

coordinate high EV charging loads using nonlinear optimization considering voltage 

magnitudes, voltage unbalance factors, and other network constraints.    

The controller, which was installed at the secondary side of 11/0.4kV distribution 

transformer, employs two-way communications to collect and send information from 

and to residential and EV loads.  

The UKGDN was extended to include the medium voltage section of 19-bus 

network. Voltage magnitudes, voltage unbalance factors, and other network 

constraints were calculated using unbalanced load flow over a day of minute-by-

minute time steps.  
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Without the controller, the medium voltage section of the UKGDN tolerated the 

uncoordinated charging loads of 384 EVs. However, the low voltage section of the 

UKGDN requires further reinforcement, because voltage magnitudes, voltage 

unbalance factors, and network components exceeded their limits.  

With the controller, voltage magnitudes, voltage unbalance factors, and network 

components were maintained within their limits, while providing all EVs with enough 

energy to be fully charged. The limits of voltage magnitudes were -6/+10% at the low 

voltage level and -6/+6% at the medium voltage level. The limit of maximum voltage 

unbalance factor was 1.3%.  

A conclusion is made that the centralized controller has the ability to assist the 

network operator to coordinate high EV charging loads without the need for additional 

network reinforcement. However, the costs of information and communication 

technologies need to be considered when a centralized controller is used.    

 

7.1.4 Decentralized Load Adjustment of Electric Vehicles and Heat Pumps   

It was shown in Chapter 5 that a centralized controller requires two-way 

communications between the controller and EV premises. To overcome this 

requirement, a decentralized controller was implemented in Chapter 6.  

The decentralized controller was tested using a real low voltage distribution 

network of Electricity North West. The network, which serves 330 residential 

customers, is different from the one used in Chapter 4.  

The decentralized control algorithm was used to control 82 EVs and 82 HPs in 

different premises considering consumer satisfaction. Consumer satisfaction was 

monitored using mathematical models of EV battery state-of-charge (BSoC) levels and 

the indoor temperatures of HP premises.     

The objective of the decentralized control algorithm is to minimize electricity bills 

over a day, achieving at least 87% of EV complete BSoC level, and maintaining the 

indoor temperatures of HP premises between 18-21.5℃. Mixed integer linear 

programming is used to adjust EV and HP loads based on a synthesized time-varying 

tariff.   
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The uncontrolled loads of EVs and HPs and the individual loads of residential 

customers were combined to monitor voltage magnitudes, voltage unbalance factors, 

and current flows using unbalanced load flow over a day of quarter-hourly time steps. 

Current flows through the cables exceeded their rated values by 20% without the 

decentralized controller. 

With the controlled EV and HP loads, current flows through the cables exceeded 

their rated values by only 2.8%, while maintaining EV final BSoC levels and the 

indoor temperatures of HP premises within their boundaries. Electricity bills of 

residential premises with EVs and HPs were reduced by an average of 11% over a day. 

The network constraints of voltage magnitudes and voltage unbalance factors did not 

exceed their limits.     

Therefore, the decentralized controller is capable to control EV and HP loads, so 

that, consumer electricity bills are reduced, consumer satisfaction is guaranteed, and 

network constraints are not violated. At the same time, the decentralized controller can 

defer distribution network reinforcement, overcoming the need for extensive 

communications between the controller and residential premises.  

 

7.2 Recommendations for Further Work 

The following recommendations were distinguished to extend the work of this 

thesis. 

 

7.2.1 Demand Predictions  

In Chapter 3, a surplus of residential PV power generation was predicted over 

residential demand. Prediction results showed that the generation of PV arrays will 

exceed the residential demand over summer mid-days. Therefore, it is recommended 

that the size of residential ESS units is investigated to store the surplus of residential 

PV power generation. Moreover, it is suggested that trials of more than 133 EVs, 336 

HPs, and 151 PVs are included in the prediction model to acquire a diverse 

representation of these DER units. Weather data can be embedded in the prediction 

model to increase the accuracy of prediction results. 
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7.2.2 Impact Assessments  

In Chapter 4, the impact of residential EVs, HPs, and PV arrays on distribution 

networks was studied. Voltage magnitudes, voltage unbalance factors, and power 

flows were considered. Therefore, a suggestion is made that harmonics and flicker 

should be studied to evaluate other power quality aspects.  A risk assessment of various 

uneven distributions of residential customers across the three phases of distribution 

networks is recommended. This impact assessment on distribution networks can be 

investigated using Monte Carlo Simulation of sequential unbalanced power flow.  

 

7.2.3 Centralized Controller  

In Chapter 5, a centralized controller was implemented to mitigate the impact of 

EV charging loads on distribution networks. Residential loads, EV loads, and network 

constraints were considered with the central controller. To evaluate the feasibility of 

the central controller, a revised control algorithm should include BSoC levels and 

battery degradation costs.  In addition, it is recommended that the central controller is 

extended to control some other smart appliances. 

 

7.2.4 Decentralized Controller  

In Chapter 6, a decentralized controller was used to adjust EV and HP loads 

considering electricity prices, consumer satisfaction, and network constraints. It is 

recommended that the performance of the decentralized control algorithm is evaluated 

in the laboratory. Thereafter, the algorithm can be scaled into a real-world application 

using smart switches, which control the EV and HP loads autonomously.
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Appendix A: The Top-Level Code of Future Demand Predictions   

The prediction tool of the UK residential demand, which considers the power of 

electric vehicles (EVs), heat pumps (HPs), and photovoltaic (PV) arrays, was written 

using MATLAB, as shown below. The UK future residential demand was predicted 

between the years of 2016 to 2035 at half-hourly time steps.     

% Load the prepared data of the matrix [fes1] into the workspace 

load fes1 

% Create power means of EV, HP, and PV units over a year of half-hourly time steps 

[yhp, yev, ypv]=disagg(hp,ev,pv); 

% Concatenate these yearly data into a one matrix called [norm] 

norm=[ntyd nwyg medfilt1(yev,5)./max(medfilt1(yev,5)) 

medfilt1(yhp,5)./max(medfilt1(yhp,5)) medfilt1(yhp,5)./max(medfilt1(yhp,5)) 

medfilt1(ypv,5)./max(medfilt1(ypv,5)) ntyd.*rpc ntyd.*(1-rpc)]; 

createfigure(linspace(0,365,17520),[52*norm(:,1) 52*norm(:,7)]); 

createfigure1(linspace(0,24,48),100*pers(:,1:2)); 

createfigure2(linspace(0,24,48),[52*norm(14*48:(14*48)+47,1) 

52*norm(14*48:(14*48)+47,7)],[52*norm(104*48:(104*48)+47,1) 

52*norm(104*48:(104*48)+47,7)],[52*norm(193*48:(193*48)+47,1) 

52*norm(193*48:(193*48)+47,7)],[52*norm(299*48:(299*48)+47,1) 

52*norm(299*48:(299*48)+47,7)]); 

createfigure3(linspace(0,24,48), ev(:,[1 4 7 10])); 

createfigure4(linspace(0,24,48), pv(:,[1 4 7 10])); 

createfigure5(linspace(0,24,48),ev(:,1),linspace(0,31,31*48), 

yev(1:31*48),medfilt1(yev(1:31*48),5),[ev(:,1) 

mean(reshape(medfilt1(yev(1:31*48),5),48,31),2)]); 

createfigure6(linspace(0,24,48),[ev(:,1) 

mean(reshape(medfilt1(yev(1:31*48),5),48,31),2)]); 

createfigure7(linspace(0,365,365*48), medfilt1(yev,5)); 

figure 

plot(linspace(0,365,365*48), medfilt1(yev,5)); 

figure 

plot(linspace(0,365,365*48), medfilt1(ypv,5)); 

[x16,~]=evalution1(16,fes1,norm); 

[x18,~]=evalution1(18,fes1,norm); 

[x20,~]=evalution1(20,fes1,norm); 

[x22,~]=evalution1(22,fes1,norm); 

[x24,~]=evalution1(24,fes1,norm); 

[x26,~]=evalution1(26,fes1,norm); 

[x28,~]=evalution1(28,fes1,norm); 

[x30,~]=evalution1(30,fes1,norm); 

[x32,~]=evalution1(32,fes1,norm); 

[x34,~]=evalution1(34,fes1,norm); 

[x35,~]=evalution1(35,fes1,norm); 

createfigure8(linspace(0,365,365*48),x35(:,1),x35(:,2),x35(:,3),x35(:,4)); 

createfigure9(linspace(0,24,48),x35(14*48:(14*48)+47,:),x35(104*48:(104*48)+47,:),x35

(193*48:(193*48)+47,:),x35(299*48:(299*48)+47,:)); 

figure 

boxplot([x16(:,1) x18(:,1) x20(:,1) x22(:,1) x24(:,1) x26(:,1) x28(:,1) x30(:,1) 

x32(:,1) x34(:,1) 

x35(:,1)],'notch','on','labels',{'2016','2018','2020','2022','2024','2026','2028', 

'2030','2032','2034','2035'}); 

figure 
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boxplot([x16(:,3) x18(:,3) x20(:,3) x22(:,3) x24(:,3) x26(:,3) x28(:,3) x30(:,3) 

x32(:,3) x34(:,3) 

x35(:,3)],'notch','on','labels',{'2016','2018','2020','2022','2024','2026','2028', 

'2030','2032','2034','2035'}); 

Tx=[min(x16) max(x16); min(x18) max(x18); min(x20) max(x20); min(x22) max(x22); 

min(x24) max(x24); min(x26) max(x26); min(x28) max(x28); min(x30) max(x30); min(x32) 

max(x32); min(x34) max(x34); min(x35) max(x35)]; 

xlswrite('Table.xlsx',Tx); 

 

Appendix B: The Model of the UK Generic Distribution Network  

Figure B.1 shows the model of the low voltage section of the UK generic 

distribution network (UKGDN) in MATLAB/Simulink/Simscape/SimPowerSystems. 

The “SimPowerSystems” components of “Simscape” libraries are used to construct 

the UKGDN in MATLAB/Simulink environment as follows. A “Three-Phase Source” 

is adjusted to model the power source of 100MVA. A “Three-Phase Transformer” is 

modified to model the Delta/Star, 500kVA, 11/0.433kV distribution transformer. A 

“Three-Phase PI Section Line” and “Single-Phase Series RLC Branch” are used to 

model 4-core underground cables (i.e. a three-phase line and neutral line), whereas a 

“PI Section Line” is used to model other 2-core cables. Residential loads and EV loads 

are modelled as data driven objects using “Controlled Voltage Source” and 

“Controlled Current Source”. 

 

 

Figure B.1: The high level of the UK generic distribution network (UKGDN) model (i.e. low 

voltage section) using Matlab/Simulink/SimPowerSystem. 
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Figure B.2 shows the components of each feeder with 96 residential customers, 

which were distributed across four segments of main underground cables. 

 

Figure B.2: The components of the UKGDN Subsystems. 

 

Appendix C: The Top-Level Code of Stochastic Studies  

The real network of Electricity North West, which was used to demonstrate 

stochastic studies, was modelled in MATLAB R2015a, as shown in the following M-

file.  

clear 

close all 

clc 

load p1x 

load phps 

p=gepl(px,135); 

pevs=getev(135,1); 

S=p; 

S1=S-pvs; 

S2=S+pevs; 

S3=S+phps; 

S5=S-pvs+pevs+phps; 

[V, VUF, Tl, Il]=call(S); 

% Histogram figures are visualized for the first case study, as illustrated below 

figure 

subplot(2,2,1); 

hist(V); 

xlabel({'Voltage, pu','(a)'},'FontWeight','bold','FontName','Times New Roman'); 

ylabel('Occurrences','FontWeight','bold','FontName', 'Times New Roman'); 

subplot(2,2,2); 

hist(VUF); 

xlabel({'Voltage Unbalance Factor, %','(b)'},'FontWeight','bold','FontName', 'Times 
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New Roman'); 

ylabel('Occurrences','FontWeight','bold','FontName', 'Times New Roman'); 

subplot(2,2,3); 

hist(abs(Tl)); 

xlabel({'Power, pu','(c)'},'FontWeight','bold','FontName','Times New Roman'); 

ylabel('Occurrences','FontWeight','bold','FontName', 'Times New Roman'); 

subplot(2,2,4); 

hist(abs(Il)); 

xlabel({'Current, pu','(d)'},'FontWeight','bold','FontName','Times New Roman'); 

ylabel('Occurrences','FontWeight','bold','FontName', 'Times New Roman'); 

% S1, S2, S3, S4, and S5 are then analysed using the fucnction developed of call().  

% Meanwhile, histogram figures are visualized for other case studies, as illustrated 

previously. 

% Comparing figure of real and synthesized loads (residential loads) is visualized, 

as illustrated below 

figure 

plot(linspace(0,1440,1440), [mean(p); interp1(linspace(0,24,48), px(:,1), 

linspace(0,24,1440))]); 

xlabel('Time, minute','FontWeight','bold','FontName','Times New Roman'); 

ylabel('Power, kW','FontWeight','bold','FontName','Times New Roman'); 

legend('Modelled', 'Real'); 

% Comparing figure of real and synthesized loads (EV charging loads) is visualized, 

as illustrated below 

figure 

plot(linspace(0,1440,1440), mean(pevs)); 

xlabel('Time, minute','FontWeight','bold','FontName', 'Times New Roman'); 

ylabel('Power, kW','FontWeight','bold','FontName', 'Times New Roman'); 

% 3D figure of HP loads 

[x,y]=meshgrid(linspace(0,1440,1440),linspace(1,135,135)); 

figure 

mesh(x,y,phps); 

xlabel('Time, minute', 'FontWeight', 'bold', 'FontName', 'Times New Roman'); 

ylabel('Days','FontWeight','bold','FontName','Times New Roman'); 

zlabel('Power,kW','FontWeight','bold','FontName','Times New Roman'); 

% 3D figure of PV power generation 

figure 

mesh(x,y,pvs); 

xlabel('Time, minute','FontWeight','bold','FontName','Times New Roman'); 

ylabel('Days','FontWeight','bold', 'FontName','Times New Roman'); 

zlabel('Power,kW','FontWeight','bold','FontName','Times New Roman'); 

 

Appendix D: The Top-Level Codes of the Centralized Controller  

EV charging loads were re-allocated using a Macro in Visual Basic Application 

(VBA) based on Generalised Reduced Gradient (GRG) solver in Microsoft Excel. 

Meanwhile, power flows and simulation results of low voltage and medium voltage 

sections of the UKGDN was visualized using MATLAB.  
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D.1 Optimization Code  

Sub Centrallized_Controller() 

    ActiveWindow.SmallScroll Down:=12 

    Range("H28:J30").Select 

    Selection.Copy 

    Sheets("Sheet1").Select 

    ActiveWindow.SmallScroll Down:=15 

    Range("H28").Select 

    SolverOk SetCell:="$J$30", MaxMinVal:=3, ValueOf:=1913, ByChange:="$H$2:$J$25" _ 

        , Engine:=1, EngineDesc:="GRG Nonlinear" 

    SolverAdd CellRef:="$AH$2:$AH$25", Relation:=3, FormulaText:="216.2" 

    SolverAdd CellRef:="$AJ$2:$AJ$25", Relation:=1, FormulaText:="1.3" 

    SolverAdd CellRef:="$AL$2:$AL$25", Relation:=1, FormulaText:="292" 

    SolverAdd CellRef:="$AP$2:$AP$25", Relation:=1, FormulaText:="1" 

    SolverOk SetCell:="$J$30", MaxMinVal:=3, ValueOf:=1913, ByChange:="$H$2:$J$25" _ 

        , Engine:=1, EngineDesc:="GRG Nonlinear" 

    SolverOk SetCell:="$J$30", MaxMinVal:=3, ValueOf:=1913, ByChange:="$H$2:$J$25" _ 

        , Engine:=1, EngineDesc:="GRG Nonlinear" 

    SolverSolve 

    Sheets ("Answer Report").Select 

    ActiveWindow.SmallScroll Down:=3 

End Sub 

 

Table D.1: Answer report of centralized controller using generalized reduced gradient. 

Answer Report 
    

Result: Solver found a solution.  All Constraints and optimality 

conditions are satisfied. 

  

 
Cell Name Original 

Value 

Final Value 
  

 
$J$30 PcEV 1913.882604 1913 

  

       

Variable Cells 
    

 
Cell Name Original 

Value 

Final Value Integer 
 

 
$H$2:$J$25 

    

       

Constraints 
    

 
Cell Name Cell Value Formula Status Slack  

$AH$2:$AH$25 >= 216.2 
    

 
$AJ$2:$AJ$25 <= 1.3          
$AL$2:$AL$25 <= 292          
$AP$2:$AP$25 <= 1          
$J$30 PEVs 1913 $J$30=1913 Binding 
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D.2 Visualization Code  

load pxcs 

createfigure1([mean(pev); 

interp1(linspace(0,1440,48),M93eJ14,linspace(0,1440,1440))]'); 

createfigure1([mean(p); 

interp1(linspace(0,1440,48),must(:,1)',linspace(0,1440,1440))]'); 

createfigure2(R1.VoltageUnbalance'); 

createfigure2([R1.VoltageUnbalance(:,1) R1.VoltageUnbalance(:,1) 

R1.VoltageUnbalance(:,2) R1.VoltageUnbalance(:,2) R1.VoltageUnbalance(:,3) 

R1.VoltageUnbalance(:,3) R1.VoltageUnbalance(:,4) R1.VoltageUnbalance(:,4) 

R1.VoltageUnbalance(:,5) R1.VoltageUnbalance(:,5) R1.VoltageUnbalance(:,6) 

R1.VoltageUnbalance(:,6) R1.VoltageUnbalance(:,7) R1.VoltageUnbalance(:,7) 

R1.VoltageUnbalance(:,8) R1.VoltageUnbalance(:,8)]'); 

createfigure2([rms(abs(R1.PhaseVoltages(:,1:3)),2) 

rms(abs(R1.PhaseVoltages(:,1:3)),2) rms(abs(R1.PhaseVoltages(:,4:6)),2) 

rms(abs(R1.PhaseVoltages(:,4:6)),2) rms(abs(R1.PhaseVoltages(:,7:9)),2) 

rms(abs(R1.PhaseVoltages(:,7:9)),2) rms(abs(R1.PhaseVoltages(:,10:12)),2) 

rms(abs(R1.PhaseVoltages(:,10:12)),2) rms(abs(R1.PhaseVoltages(:,13:15)),2) 

rms(abs(R1.PhaseVoltages(:,13:15)),2) rms(abs(R1.PhaseVoltages(:,16:18)),2) 

rms(abs(R1.PhaseVoltages(:,16:18)),2) rms(abs(R1.PhaseVoltages(:,19:21)),2) 

rms(abs(R1.PhaseVoltages(:,19:21)),2) rms(abs(R1.PhaseVoltages(:,22:24)),2) 

rms(abs(R1.PhaseVoltages(:,22:24)),2)]'./(11000/sqrt(3))); 

createfigure7(pxcs); 

figure 

contour(pev); 

createfigure3(linspace(0,1440,1440), abs(R2.PhaseVoltages)./230); 

createfigure4(linspace(0,1440,1440), R3.VoltageUnbalance); 

createfigure4(linspace(0,1440,1440), R2.VoltageUnbalance); 

createfigure3(linspace(0,1440,1440), abs(R3.PhaseVoltages)./ 230); 

createfigure8(30*[R1.TransformerLoading1 R5.TransformerLoading1]); 

createfigure3(linspace(0,1440,1440), abs(R2.PhaseCurrents)./292); 

createfigure4(linspace(0,1440,1440), R2.TransformerLoading2); 

createfigure4(linspace(0,1440,1440), R3.TransformerLoading2); 

createfigure3(linspace(0,1440,1440), abs(R3.PhaseCurrents)./292); 

 

Appendix E: The Top-Level Code of the Decentralized Controller   

The decentralized control algorithm was written in MATLAB for adjusting the 

EV and HP loads, as shown below.  

% EV charging loads are modelled based on the TS 

% where TS is the arrival/departure time of daily trips 

load TS 

pev1=PEVs(82, TS); 

% Their initial Battery State-of-Charge (BSoC) levels are calculated using the 

following function 

soc1=BSOC(pev1); 

% HP heating loads are generated based on ambient tempratures 

load temp 

[php1,T,cop]=PHPs(82,temp,0.613,28,20,20,1.57); 

% where temp is ambinet temprature 
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% 0.613 is the air denisty 

% 28 is the HP supply temprature 

% 20 is the HP return temprature 

% 1.57 is the value of thermal resistivty  

% T is the updated indoor tempratures of HP houses 

% php is the HP heating demand over a day 

% cop is the coffeicient of performance for each HP 

 

% Time-varying tariffs are generated using a nonlinear mathmatical, which 

% was solved using generalised reduced gradinet solver and stored in f 

load f 

 

% Optimization using mixed integer linear programming 

% 82 EV charging loads are adjusted using the following script 

tic 

ph=sum(pev1,2); 

intcon=96; 

pevs=pev1; 

[n1,n2]=size(pevs); 

pes1=sum(pevs,2); 

pev2=zeros(n1,96); 

lb=zeros(1,96); 

for i=1:n1 

    pev2(i,:)=optmfun(intcon,lb,pevs(i,:)); 

end 

toc 

soc2=BSOC(pev2); 

% HP heating loads are also adjusted using mixed integer linear 

% programming and the results of optimization were saved in php2 and T2 

load php2 

load T2 

% Unbalnced Power Flows are evaluted with and without optimization 

% p is the residential loads of 330 customers 

% z is the impedence matrix of the network under study 

load p 

load z 

[vrt1, vuf1, Itx1]=NetConst(z,p,pev1,php1); 

[vrt2, vuf2, Itx2]=NetConst(z,p,pev2,php2); 

 

% Figures 

figure 

[hAx,~,~]=plotyy(linspace(0,24,96), pev1([15 46],:),linspace(0,24,96), soc1([15 

46],:)); 

ylabel(hAx(2),'Battery State-of-Charge (BSoC), %'); 

figure 

[hAx1,~,~]=plotyy(linspace(0,24,96), [php1(:,15) cop(:,15)],linspace(0,24,96), 

T(:,15)); 

ylabel(hAx1(2),'Temperature, °C'); 

figure 

[hAx2,~,~]=plotyy(linspace(0,24,96),php2,linspace(0,24,96),f); 

createfigure1(linspace(0,24,96),[pev2; mean(pev2)], f); 

 

 


