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Abstract 

Fine sediment processes in gravel beds may have significant impacts to overall river ecosystem function. In addition to gravitational deposition, 

horizontal intragravel transport has been recognized to influence fine sediment accumulation. However, the specific hydraulic mechanisms and 

origin of fine sediment movement are not clearly identified. The purpose of this study was to investigate key hydraulic drivers and patterns of 

fine sediment accumulation. Using a conceptual framework to set the scene, we implemented an experimental setup in a gravel lateral bar 

subject to irregular flow fluctuations in the Kiewa River (Australia). We installed nine sets of sediment collector pairs and piezometers into the 

gravel. Each pair included one horizontally and one horizontally-vertically perforated collector. Mid-range, rather than peak flows, covering the 

site in water drove fine sediment deposited in the collectors. We estimated horizontal contribution to final deposition as 59%. Such contribution 

resulted from shear stresses >3 N m-2 promoting streamwise near-bed turbulence at the water-sediment interface during flooded conditions. 

Despite high subsurface hydraulic gradients, intragravel transport in the lower sediment layers via Darcy flow did not show any influence to fine 
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sediment deposition. Our findings contribute to an improved understanding of fine sediment accumulation processes, key for overall river 

ecosystem functioning, particularly in regulated rivers. 

 

Running head: Hydraulic drivers and patterns of fine sediment accumulation 

Keywords: fine sediment deposition and accumulation; hydraulic drivers; horizontal transport; upper and lower sediment layers  

 

 

Highlights 

 A conceptual model of the key hydraulic drivers of fines accumulation is presented.   

 A case study in the Kiewa River (Australia) is used to assess the model parameters. 

 Horizontal sources contributed 59% to final deposition. 

 Near-bed transport in the upper sediment layers was identified as the main mechanism for deposition. 
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 Intragravel transport in the lower sediment layers was not a significant driver. 

 

Graphical Abstract 
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1. Introduction 
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Fine sediments (< 2 mm) can be deposited and accumulated within gravel and cobble streambeds via infiltration of sand and smaller sediments 

(Carling, 1984; Zimmermann and Lapointe, 2005). Transport and retention of fines into riverbeds is a natural process facilitating matrix 

development (Frostick et al., 1984; Lisle, 1989; Sear, 1993). However, anthropogenic activities - such as river regulation and land clearance - 

affect fluxes of fine suspended sediment in fluvial systems and increase local sediment deposition within gravel streambeds (Owens et al., 2005; 

Denic and Geist, 2015). This can result in adverse environmental impacts (Sear, 1993; Franssen et al., 2014) including: changed sub-surface 

flow patterns (Petticrew et al., 2007); reduced permeability and intragravel flow (Brunke, 1999; Simpson and Meixner, 2012; Stewardson et al., 

2016); decreased oxygen availability (Soulsby et al., 2001); inhibited water, pollutant and nutrient exchange across the sediment-water interface 

(Findlay et al., 1993); and potentially degraded habitats and aquatic organisms (Greig et al., 2005; Jones et al., 2012; Buendia et al., 2013; 

Mathers and Wood, 2016). Understanding the mechanisms leading to fine sediment accumulation along and across streambeds is therefore key 

for comprehending human impacts on river ecosystems. 

Models of fine sediment transport into gravels usually assume a non-slip condition at the sediment-water interface and consider gravitational 

settling alone (Biedenharn et al., 2008). Consequently, gravitational deposition from the suspended load (Fig. 1) is the most widely attributed 

mechanism to accumulation of fine sediment in the streambed (Einstein, 1968; Beschta and Jackson, 1979; Frostick et al., 1984; Lisle, 1989; 

Schälchli, 1992; Gibson et al., 2009; Hamm et al., 2011; Boano et al., 2014; Evans and Wilcox, 2014; Huston and Fox, 2015). However, 

suspended sediment may be advected into the porous matrix (Lisle, 1989; Schälchli, 1992; Brunke, 1999). Downwelling and upwelling of water 
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associated with pressure gradients at the sediment-water interface (Elliott and Brooks, 1997; Mathers and Wood, 2016) may produce both 

infiltration and exfiltration of suspended sediment by advective transport (Savant et al., 1987; Tonina and Buffington, 2009). Such pressure 

gradients are induced by geomorphological features including bedforms (Elliott and Brooks, 1997; Packman et al., 2004), local heterogeneity, 

roughness and permeability in the streambed (Boulton et al., 1998; Cardenas et al., 2004). Infiltration may then lead to settling within the pore 

spaces deeper in the streambed (Stewardson et al., 2016), or promote further transport of the fine sediment along or across the sediment matrix 

(Fig. 1). Fines may be deposited in the streambed or re-suspended in the water column via exfiltration from the sediment column (Schindler 

Wildhaber et al., 2012; Eder et al., 2014; Schindler Wildhaber et al., 2014) (Fig. 1).  

In addition, turbulence generated by large-scale flow structures and smaller scale local obstructions on the bed may promote shear instability in 

the boundary layer above the sediment-water interface. It may generate turbulent mixing into the upper layers of the sediment bed (Brayshaw et 

al., 1983; White and Nepf, 2007; Manes et al., 2009; Boano et al., 2011; Grant et al., 2012), to depths up to 2-10 times the mean diameters of the 

bed material (Tonina and Buffington, 2009). The upper sediment layer influenced by the water column is known as the Brinkman layer 

(Boudreau, 1997; Boudreau and Jorgensen, 2001), in which the velocity of fluid particles decreases with depth until it reaches an averaged 

constant velocity that is predicted by the Darcy equation. In this study, we refer to Brinkman load as the area in the upper sediment layers where 

transport occurs due to the influence of the water column (Fig. 1).  
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Below the Brinkman layer, Darcian flow driven by hydraulic gradients (Fetter, 2001; Hassan et al., 2015) may produce transport through the 

interstitial spaces of the sediment matrix. We refer to the transport in these lower sediment layers as Interstitial load (Fig. 1). Such horizontal 

transport is almost certainly very small relative to total stream load and may only occur if pore velocities exceed the threshold for initiation of 

motion (Franssen et al., 2014).  

Horizontal intragravel transport of fine sediments has been considered in several recent studies (Sear, 1993; Soulsby et al., 2001; Greig et al., 

2005; Petticrew et al., 2007; Sear et al., 2008; Franssen et al., 2014; Mathers and Wood, 2016), but few have attempted to quantify its relative 

contribution to total deposition. Sear (1993) attributed 20-25% of infiltrated sediments to intragravel motion through the gravels. Carling (1984) 

and Seydell et al. (2009) found  ̴ 30% difference in trapping efficiency from permeable to impermeable walled pots in flumes. In contrast, 

Petticrew et al. (2007) found 24% less fine sediments in permeable walled compared to impermeable walled collectors, attributing sediment loss 

owing to vertical resuspension during controlled reservoir releases. Finally, Franssen et al. (2014) made indirect estimations, concluding that 

intragravel flows could not transport fine sediment. Although comparisons between studies are difficult to generalize because of different 

measurement methodologies and use of terms (Sear et al., 2008; Schindler Wildhaber et al., 2012), such differing results highlight that our 

knowledge of the relative contribution of horizontal mechanisms and hydraulic-related drivers of fine sediment deposition is limited. Moreover, 

there is no comprehensive clear framework defining the origin and the hydraulic mechanisms driving fine sediment accumulation (e.g., upper or 

lower sediment layers and surface or subsurface mechanisms dominance). 
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Considering fine sediments as those that accumulate within the coarse gravel matrix and may include sand-sized sediments, we used a literature-

based conceptual model (Fig. 1) and a case study in the regulated Kiewa River (SE Australia) to address three specific questions: 

(i) What are the overall patterns of fine sediment accumulation? 

(ii) What are the key hydraulic drivers influencing fine sediment deposition? 

(iii) What is the relative contribution of horizontal vs. vertical sources to fine sediment accumulation? 

 

2. Methods 

2.1.  Study site 

The Kiewa River is a regulated tributary of the Murray River (North Victoria, Australia, Fig. 2) with a total catchment area of 1750 km2, 109 km 

in length, and elevation range between 156 and 681 m.a.s.l.. Lower temperatures and higher precipitation promote some snow between April and 

October at the southern end of the basin (Newall et al., 2006). The regulated Kiewa River system includes the Rocky Valley Reservoir (Fig. 2), 

which releases water for hydroelectric power generation at several stations. Changes of flow caused by such storage releases can be large and 

rapid, with several fluctuations each day. The West Kiewa Power station discharges to a regulating pondage at Mount Beauty (Fig. 2) that serves 

to smooth out the fluctuations in the flow before the water is released back into the West Kiewa River (Lawrence, 2001). We implemented a 
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field program in a 50 m x 30 m homogenous lateral gravel bar located 600 m below the regulating pondage in the West Kiewa River, in a 0.004 

sloped reach (Fig. 2). The natural Kiewa sediment consists of a non-homogenous matrix ranging from coarse to very coarse gravel. 

Approximately 40-45% of sediments are smaller than 9.5 mm and 20% of sediments are smaller than 2 mm, with grains between 0.85 and 0.35 

mm dominating the lower fractions of bed material (see section 2.2 for additional details). 

 

Upstream vs. site hydrographs (Fig. 3) illustrate that hydropower releases from the pondage in the West Kiewa River occurred only during the 

early part of the study period, from mid-February until mid-March. Maximum water levels at the study site during these conditions were below 

346.1 m.a.s.l. (approximately 10.6 m3 s-1), leaving the drawdown zone (area subject to fluctuating water levels) almost entirely dewatered at the 

gravel surface. After mid-March, as a result of major refurbishment works at the West Kiewa Power Station (Fig. 2), regulated flows were 

replaced by a natural regime. These higher base flows promoted flooded conditions (water levels at or above the gravel surface) in parts of the 

study site. However, only three major natural flood events (>346.3 m.a.s.l., >16.42 m3 s-1) in March, April and June 2013, covered the entire 

drawdown zone in water. High amounts of total suspended solids (TSS) were delivered during these peak events, when discharges reached 19.5 

m3 s-1 and water levels reached 346.4 m.a.s.l. (Fig. 3).  
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2.2.  Data collection  

Twenty-four sediment collectors were initially installed at the site to assess rates of fine sediment deposition. The collectors’ design was based 

on the one presented in Lachance and Dubé (2004), specially purposed to use in gravel beds for avoiding loss of fines during collection and 

retrieval. Each collector was composed of two impermeable walled cylinders (dimensions: 0.11 m radius, 0.2 m height) positioned one inside the 

other. Several 9.5 mm holes were perforated in each cylinder. The holes of the inside and outside cylinders were aligned, so a small turn in the 

inside container could open or close the holes (Fig. 4). The perforated walls allowed horizontal infiltration in all 24 collectors. Half of the 

collectors had closed lids and were impermeable in the bottom to prevent vertical sediment influx filling in the pore space (H collectors). The 

other 12 collectors were perforated in the bottom and had perforated lids to allow vertical sediment infiltration (HV collectors). Before field 

installation, each collector was pre-filled with non-homogenous graded sediment obtained from the Kiewa riverbed and truncated at the >9.5 mm 

fraction. We used the natural bed granulometry curves as a reference to calculate the percentage of coarser fractions needed to pre-fill each 

initial collector. We constructed the curves from three sediment samples previously obtained from the study site. They were each approximately 

0.2 m in depth and 0.008 m3 in volume. Each sample was dried (100°C for 24 h) and passed through a set of standard nested sieves (128, 90, 60, 

45, 32, 22.5, 16, 9.5, 4.75, 2.36, 0.85, 0.35 mm). The resulting range of granulometry curves provided information on the relative weight of the 

coarser fractions (Fig. 5), so we distributed the truncated material as evenly as possibly across all collectors before field installation. 
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Nine pairs of collectors (one each of H and HV) were inserted into the gravel bed, each inside a 0.008 m3 hole with the collector’s top at the 

surface gravel level (Fig. 4). We filled the small gap between the sediment matrix and the collector’s wall with coarse (>9.5 mm) sediment 

fractions to avoid immediate contact with unstable fines falling into the collectors by artificially created mechanisms. 

A set of six collectors (two pairs of H and HV) was distributed along each of three transects within the drawdown zone (Fig. 2). As references, 

two additional collector pairs (W1 and W3) were placed in the permanently wet area, and one pair (D) in the permanently dry bank (Fig. 2). 

Collectors were installed on 24 January and their positions were recorded using a Leica Geosystems® Viva (Switzerland) differential Global 

Positioning System. Nine 0.032 m inside diameter and 0.5-0.7 m length Durapipe® (UK) piezometers were installed into the river bed (at ca. 0.4 

m depth) next to each collector pair (Fig. 2). Each piezometer contained an Eijkelkamp® (The Netherlands) Diver water pressure transducer 

providing continuous 5-min resolution data of surface or subsurface water levels (±0.005 m accuracy). The perforated holes in each collector 

were closed during installation and opened in situ immediately afterwards to allow sediment collection (Fig. 4). 

Each set of collector pairs (H and HV at A, B, C locations) were retrieved and re-installed every 4-8 weeks from one of the upstream, middle or 

downstream transects (Fig. 2). Each collector was closed immediately before retrieval to avoid fine sediment loss (Fig. 4). A new pre-filled 

collector was installed immediately at the same location after each retrieval. All collectors were finally retrieved from the site on 2 July. Thirty 

out of the thirty-eight samples were retrieved successfully (Table 1) and were taken to the lab for particle size distribution analysis. Eight 
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collectors were lost owing to unknown reasons (potentially vandalism given the proximity to a camping site). Five sets of data corresponding to 

five different periods were obtained (Table 1). 

 

2.3. Data analysis  

2.3.1. Sediment accumulation patterns 

After field retrieval, sediment samples from the collectors were first dried (100°C for 24 h) and put through a set of standard nested fine sieves 

(2.36, 0.85, 0.35 mm), with 2.36 mm being the coarser size of the sediments infiltrated and deposited into the collectors. Each fraction was then 

recovered and weighed and used to construct granulometry curves. Organic matter ratios (%) were estimated for each collector using the 

combustion method of Bretschko and Leichtfried (1987), and deducted from the total fine sediment fraction. 

The total accumulation in each of the collectors was computed for each fine sediment fraction and for the total fines. Accumulation rates were 

expressed in kg d-1 to allow comparable units between H and HV collectors. Rates in the drawdown area were compared with the rates in the wet 

and dry reference areas for each collector type and sampling period. Location-averaged accumulation rates provided information on trends of 

deposition along and across the gravel.  
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We carried out a non-parametric Wilcoxon Signed Rank test to assess differences between individual H and HV collector pairs in the drawdown 

area (n=30). The relative contribution of horizontal and vertical sediment sources was then calculated for individual collector pairs. By deducting 

the proportional mass of accumulated sediment between H and HV individual collector pairs, the proportion of vertical and horizontal 

accumulation was obtained for each location and period.  

In addition, to provide a context for comparison, we converted the accumulation rates in this study to kg m-2 d-1 (dividing it by the correspondent 

H and HV collectors’ area). We then selected several similar field studies in the literature for which their accumulation rates were expressed or 

could be converted to the same units, and hence compared to our study.  

 

2.3.2. Antecedent sediment conditions 

Grain and pore size distributions in the matrix may have a strong influence on fine sediment infiltration and accumulation (Frostick et al., 1984; 

Brunke, 1999). Mean grain size (represented by the diameter of the 50th percentile (D50) of a sample) and sediment sorting coefficients (So) were 

calculated for each individual collector before and after installation to assess the influence of antecedent sediment conditions to fine sediment 

accumulation. The sorting coefficient (So) can be expressed as: 
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 𝑆𝑜 = (𝐷75𝐷25)0.5  (1) 

where D75 and D25 represent the diameter of the 75th and 25th percentiles of the sample, respectively (Lotspeich and Everest, 1981; Petticrew et 

al., 2007).  

 

2.3.3. Key hydraulic-related parameters  

A total of eight hydraulic-related variables and variations in their values (maximum, minimum, cumulative sum, range, 25th percentile, 75th 

percentile) were the chosen parameters to represent the various transport mechanisms, load and media described in our conceptual model (Fig. 

1). They could be estimated from field data and included surface and subsurface water levels, total suspended solids (TSS), bed shear stress, 

vertical hydraulic gradients and Darcy velocity.  The list of parameters and variables are presented in Table 2 and the justification for their 

choice is explained below. 

Maximum surface water levels and high suspended sediments are expected to promote high fine sediment accumulation through gravitational 

deposition (Acornley and Sear, 1999; Soulsby et al., 2001; Greig et al., 2005; Zimmermann and Lapointe, 2005), and could also potentially 
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encourage resuspension (Schindler Wildhaber et al., 2014). Continuous water levels and TSS data were therefore used to compute the 

magnitude, duration and range values during flooded conditions to assess such potential influence (Table 2).  

Along and across riverbed subsurface transport or infiltration may be controlled by surface hydraulics, forcing fine sediments deeper into the bed 

or potentially flushing them from the surface gravel layers (Sear, 1993; Boano et al., 2011; Grant et al., 2012). These processes may be 

associated with turbulent mass and momentum transfer that will be dependent on shear stresses near the streambed (Schälchli, 1992). In order to 

assess such links, we calculated cross-sectionally averaged, steady, uniform channel bed shear stress (𝜏𝑏) as a representative parameter 

promoting infiltration into the bed or near-bed transport (Brinkman load, Table 2): 

𝜏𝑏 =  𝜌𝑔ℎ𝑆 (2) 

where 𝜏𝑏 (N m-2) is bed shear stress, 𝜌 (kg m-3) is the density of water, 𝑔 (m s-2) is the acceleration due to gravity, ℎ (m) is the water depth, and 𝑆
(m m-1) is the slope of the riverbed (Leopold et al., 1964).  

Transport in the Brinkman layer may also be driven by hyporheic upwelling and downwelling caused by localized pressure gradients forcing the 

water to flow across the streambed (Savant et al., 1987). We calculated vertical hydraulic gradients (VHG) as a common parameter to assess the 

upwelling and downwelling potential (Baxter et al., 2003). VHG were computed for each pair of collectors (from piezometers data) during 
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flooded conditions (Table 2). We used the difference in hydraulic head divided by the vertical distance between W and A/B/C piezometers (as in 

Hucks Sawyer et al., 2009; Casas‐Mulet et al., 2015).  

Following Franssen et al. (2014), we used the Darcy velocity to determine the advective rate of horizontal flowing water through the pore spaces 

in the Interstitial load transport zone. We calculated Darcy velocity during both flooded and dewatered conditions (Table 2) as: 

 𝑉 = 𝐾 𝑑ℎ𝑛 𝑑𝑙    (3)  

where V is Darcy velocity in the pore spaces (m s-1), n is the effective substrate porosity, K (m s-1) is the hydraulic conductivity and dh/dl 

(hydraulic gradient) is the hydraulic head divided by the horizontal distance between two piezometers (Fetter, 2001). Porosity and hydraulic 

conductivity were estimated from the grain size distribution of three 0.008 m3 river bed samples. Porosity (n) was estimated using the method of 

Frings et al. (2008), which is an empirical predictor based on the entire grain size distribution of a sample. Hydraulic conductivity (K) was also 

derived from the grain size distribution using the Hazen method: 

 𝐾 = 100 (𝐷10)2  (4)  
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where D10 represents the diameter of the 10th percentiles of the sample and 100 is the constant used (in Franssen et al., 2014) for gravel beds. 

Hydraulic gradients were calculated in the lateral direction (using the A and C piezometers) for each of the continuous water level (surface and 

subsurface) measurements.  

 

2.3.4. Drivers of fine sediment accumulation 

Both antecedent sediment conditions (2.3.2) and hydraulic-related parameters calculated above were compared with fine sediment accumulation 

rates (kg d-1) for each individual collector using regression to assess their role in driving accumulation. Resulting R2 values were used to 

determine the strength of the relationship, considering R2 = 0.7 to be the lower threshold of a strong relationship. A relationship was considered 

significant when p < 0.05. 

 

2.3.5. Entrainment functions 

To determine whether entrainment occurs in the Brinkman or upper sediment layers, we calculated critical shear stress (𝜏𝑐) for the finer sediment 

factions in the Kiewa River, represented by the diameter of the 10th percentiles of the sample (D10). We then compared 𝜏𝑐 to bed shear stress (𝜏𝑏) 
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calculated in Eq. (2). Critical shear stress was found by undertaking dimensionless analysis  𝜏𝑐∗ = 𝑓(𝐷∗) with the modified Shields diagram 

(Shields, 1936; Vanoni, 1975), where 𝜏𝑐∗ is the dimensionless critical shear stress and 𝐷∗ the dimensionless diameter: 

 𝜏𝑐∗ = 𝜏𝑐𝐷(𝜌𝑠−𝜌𝑤)𝑔 (5a)  

 𝐷∗ = 𝐷𝑣 √𝑔𝐷 𝜌𝑠−𝜌𝑤𝜌𝑤  (5b)  

where 𝜌𝑠  is the density of sediment material (kg m-3) and 𝑣 is the kinematic viscosity of water (m2 s-1). 

Shear stress is assumed to be greatest at the sediment-water interface and to decline with an exponential decay of the velocity with depth in the 

Brinkman layer (Nagaoka and Ohgaki, 1990). We compared Darcy velocities to shear velocities as an indication of the significance of transport 

in the lower sediment layers (Interstitial load). Shear velocities 𝑢∗ (m s-1) at the sediment-water interface were calculated as: 

 𝑢∗ = √ 𝜏𝑏𝜌𝑤 (6) 

This comparison only provided a qualitative assessment, as we did not calculate subsurface sediment transport rates, nor take into account 

stresses produced by inter-porous flows. 
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3. Results 

3.1. Patterns of fine sediment accumulation 

Fine sediment accumulated in the drawdown area weighed 1.2±0.8 (av.±std) kg, and accumulations rates were 0.01 kg d-1 on average, ranging 

between 0.0005 and 0.06 kg d-1 (Table 3). There was no significant (p=0.1) difference in accumulation rates between the drawdown and the 

permanently wet areas in the Kiewa River. But they were significantly (p<0.05) higher (10.2 times) in the drawdown area than in the dry zones. 

Longitudinally, the middle transect (A2-C2) showed higher accumulation rates in both H and HV collectors, tied to the accumulation that 

occurred during periods P2 and P5. Secondary lateral patterns of fine sediment accumulation were also observed in both collector types, with 

higher accumulation rates closer to the thalweg (Fig. 6).  

By periods, the lowest fine sediment accumulations occurred during P1, with similar rates to those in the dry areas. The highest rates were found 

in period P5, considerably higher than the other periods P2, P3 and P4, which presented mid-range accumulation rates (Fig. 7). The proportion of 

sediment fractions remained similar for all periods, with dominance of the middle (<0.8 mm) fractions (Fig. 7). 
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Outcomes of the Wilcoxon Signed-Rank Test showed that H collectors elicited a statistically significant decrease in fine sediment accumulation 

compared to HV collectors (Z= –2.81, p=0.005). Fine sediment in HV collectors was higher in 10 out of 13 samples (Table 4). The negative 

ranks and ties illustrated in Table 4 refer to the sediment accumulated during period P1, when only dewatered conditions prevailed. For periods 

P2 to P5, therefore, differences in accumulation rates were 41% higher (in mean) in HV compared to H collectors (Table 5), inferring that the 

relative rate of horizontal infiltration during flooded or semi-flooded conditions in the gravel was a mean of 59% (Table 5).  

 

3.2. Drivers of fine sediment accumulation 

3.2.1. Antecedent sediment conditions 

Values of D50 and So in the pre-filled collectors before field installation (Table 3) did not show significant relationships to accumulation rates 

according to Pearson correlation tests (p=0.143 for D50 and p=0.88 for So). As expected, retrieved sediment samples with trapped fines showed a 

decrease in D50 (2% in P1, and 63% in P5), and an increase in So (between 6%, in period P1 and 389%, in P5). The content of organic matter in 

the collected samples ranged from 2-16% (Table 3) and it was not correlated to sediment accumulation rates (p=0.48). 
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3.2.2. Flooded vs. dewatered conditions in the gravel 

On average, water levels were below the top of the collectors 93.3% of the time (Fig. 7), as a result of dominantly dewatered conditions in the 

gravel. As expected, collectors A (located closer to the thalweg, Fig. 2) were exposed to flooded conditions for longer durations than collectors C 

(located closer to the bank). By periods, collectors in P5 were exposed to flooded conditions the longest (water levels >346.1 m.a.s.l.), whilst 

collectors in P1 were mostly exposed to dewatered conditions, with water levels ≤346.1 m.a.s.l. (Fig. 8). 

Hydraulic gradients were very steep in the lateral direction during dewatered conditions, particularly in the middle transect (up to 0.04 m m-1). 

Subsurface water tended to flow towards the bank and no signs of return flow from the bank to the thalweg were found. During flooded 

conditions, hydraulic gradients were milder and oriented downstream along the channel (Fig. 9).  

3.2.3. Key hydraulic-related parameters 

Strong and significant correlations were found between fine sediment accumulation rates and surface water levels, TSS and bed shear stress 

during flooded conditions (Table 6). However, accumulation rates did not show any significant or strong relationship with any of the tested 

parameters during dewatered conditions.  
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The strongest and most significant correlations are illustrated in Fig. 10. TSS values varied between 12.6 mg L-1 (in the first period, P1), and 

72.1 mg L-1 in P5. Mean bed shear stress values ranged from 0 to 4.1 N m-2, with highest values found in P4 and P5. Given low accumulation 

rates in P1, the graph (Fig. 10, left) suggests that little sediment is accumulated during periods when bed shear stress is less than 1.5 N m-2. 

Mean VHG ranged between -0.25 and 0.08 m m-1 with a dominance of negative values. VHGs generally decreased with distance to the thalweg 

(Table 7), but they did not show any relationship with fines accumulation (Table 6). Darcy velocities varied between 0 and 0.004 m s-1 with 

average values of 0.0015 m s-1. During dewatered conditions, because of steeper hydraulic gradients (Fig. 9), Darcy velocities reached higher 

values (0.001 m s-1) than during flooded conditions. However, no relationships were found with fine sediment accumulation (Table 6). 

Entrainment functions demonstrated that mean shear stress values (𝜏𝑏) exceeded critical stress (𝜏𝑐 = 0.31 𝑁  𝑚−2) for the smallest sediment 

fractions (D10) in all locations for all periods (Table 7), suggesting shear velocities were more than sufficient to transport fine sediments within 

the upper sediment-water interface layers (Brinkman load). However, Darcy velocities were several orders of magnitude less than the calculated 

shear velocities at the sediment-water interface (Table 7) in all locations, periods and conditions (flooded and dewatered). These indicate no 

motion and supported the above results in suggesting Darcy fluxes are unlikely to promote sediment transport in the lower sediment layers 

(Interstitial load).  
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4. Discussion 

Patterns of sediment accumulation indicate the importance of sediment processes operating at the bar-scale. Higher accumulation in the middle 

transect may indicate local differences in sediment coarseness and roughness (Sear, 1993; Acornley and Sear, 1999; Schindler Wildhaber et al., 

2012) rather than a strong longitudinal pattern. Secondary lateral patterns with higher accumulation rates closer to the thalweg could be 

explained by longer durations of water covering such locations and promoting fine sediment exchange. These link to periods of longer exposure 

to flooded or semi-flooded conditions having higher accumulation rates than periods of dominantly dewatered conditions (e.g., P1). 

When compared with other studies on fine sediment accumulation in the literature, the overall rates in the Kiewa River fall into the lower range 

of accumulation rates (Table 8) both regarding vertical and horizontal infiltration. Despite low accumulation rates in the study site, presumably 

caused by dominantly dewatered conditions, our estimate of 59% contribution from horizontal sources is rather high. This is particularly the case 

compared to other examples in the literature (~ 20-30% in Carling, 1984; Sear, 1993; Seydell et al., 2009). However, site-specific differences 

between studies suggest comparisons of fine sediment accumulation need to be made with care (Schindler Wildhaber et al., 2012; Franssen et al., 

2014). 

Dewatered conditions indeed dominated in the site during the experiments and subsurface flows were the only possible transport mechanisms 

during P1, as surface water levels did cover the collectors. In such conditions, both the upper and lower sediment layers (Brinkman and 
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Interstitial load) would most likely have a similar behavior given there was no influence of surface hydraulics. Therefore, the very small 

accumulation of fines during the first period (~ 0.01 kg d-1) could have only occurred horizontally through the sediment layer. However, no 

relationship was found between Darcy flow and fine sediment accumulation, and Darcy fluxes were significantly lower than the threshold of 

motion in all cases. These could suggest that interstitial movement has no effect on sediment accumulation, or that any potential influence of 

horizontal processes in the lower sediment layers could not be captured through our setup or estimation approach. Experiments with an adequate 

setup for such observations should be used for this purpose (see Casas-Mulet et al., submitted). 

Flooded conditions resulted from a combination of natural peak flows and mid-range flows covering the study site (water levels >346.1 m.a.s.l.). 

They drove most of the fine sediment accumulation in both H and HV collectors. Given the strong relationship found between fine sediment 

accumulation rates and TSS, it could be assumed that the majority of fine sediment accumulation in the collectors was driven by gravitational 

deposition derived from one of the three peak events in March, April and June, providing high amounts of sediment in suspension. However, the 

dominant fractions accumulated in the collectors were mid-sized (around 0.8 mm) in all samples, indicating that the infiltrated sediment 

originated from a fine fraction of bedload rather than much finer settled suspended load (Lisle, 1989; Petticrew et al., 2007; Schindler Wildhaber 

et al., 2014). In addition, the strong relationship between fine sediment and 𝜏𝑏 suggests that the infiltration occurred when 𝜏𝑏> 3 N m-2. Then, 

surface hydraulics induced mixing (Packman et al., 2004; Tonina and Buffington, 2009) into the Brinkman load zone and the finer fractions of 

the Kiewa River could be entrained in the bed.  
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Since the strongest correlations were found with mean rather than maximum shear stress, we deduced that reaching and maintaining mid-range 

flows (water levels >346.1 m.a.s.l.) was a stronger driver of infiltration than reaching the peak maximum (346.4 m.a.s.l.). This assumption is 

supported by the high accumulation rates found in periods P2 and P5, in which bed shear stress did not reach the highest values. However, 

changes in supply during the study period should also be considered to explain such variations. 

Resuspension was not considered to have any influence on fine sediment accumulation given the consistent higher amounts of fine sediment in 

HV collectors compared to H indicating vertical loss of sediments was unlikely. Exfiltration and infiltration mechanisms promoted through 

vertical upwelling and downwelling were considered to play a limited role in fine sediment accumulation in the Kiewa River, as no significant 

relationships were found between accumulation rates and VHG values.  

Despite its broad use, we recognize limitations in the field method applied for fine sediment collection as artificial conditions could be promoted 

in the collectors. The limitation of the method is most relevant during the studied dewatered conditions, where intragravel movement in the 

lower sediment layers was potentially the only source of infiltration. Given the scale and scope of the present work, we were unable to directly 

observe the specific relative contribution of Interstitial vs. Brinkman load to horizontal fine sediment accumulation. Very low accumulation rates 

during P1 suggest interstitial transport could be considered negligible but could not be directly quantified here. Interstitial transport may play a 

key role in redistributing fine sediment in gravel beds (Petticrew et al., 2007) and its estimation may be relevant in high gradient streams; in 

areas with sudden changes in sediment porosity; in reaches subject to extreme floods; and/or in newly restored reaches where new clean gravel 
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may be filled in with fines. Such estimation should be investigated further with studies at the adequate spatial and temporal scales and currently 

remains and interesting area for further research.  

 

5. Conclusions 

Based on a conceptual model illustrated with a case study in the Kiewa River (Australia), we provide a framework to distinguish key hydraulics 

drivers of fine sediment accumulation during dewatered and flooded conditions in gravel beds. With local hydraulics driving patterns of 

accumulation, most deposition occurred during flooded conditions was caused by near-bed turbulence occurring in the top sediment-water 

interface. Contrary to what we expected, peak flows promoting high suspension of fines did not drive accumulation. Instead, shear velocities 

occurring during long-lasting mid-range flows were highly correlated with accumulated fines. Horizontal sources of fine sediment accounted for 

more than half of the accumulation in the collectors, suggesting the dominance of lateral/streamwise transport during flooded conditions. The 

few fines that accumulated in the collectors during dewatered conditions were presumably transported through interstitial processes in the lower 

sediment layers. However, because these could not be quantified or analytically verified via entrainment functions, this remains a gap in 

knowledge. Overall, our work provides a framework to distinguish between the origin (upper vs. lower sediment layers) and direction (horizontal 
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vs. vertical) of fine sediment accumulation in gravel beds. It also highlights the importance of fully understanding such driving mechanisms to 

inform river management practices, key for overall river ecosystem functioning, particularly in regulated rivers. 
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Figures 

Figure 1. Conceptual model of fine sediment transport (black arrows) and deposition (grey arrows) processes in gravel beds including three load 

regions (Suspended load, Brinkman load and Interstitial load) within the water and sediment columns in which such processes occur (left). The 

model proposes distinct modes of sediment transport in these three regions identified by transitions in the velocity profile V(y) (right).  

Figure 2. Location of the West Kiewa River and the site (right map, modified from Lawrence, 2001) and location of collectors and piezometers 

within the study site (left).  

Figure 3. Unregulated water levels 5 km upstream from the West Kiewa Power Station (upper graph, source: Department of Environment Water 

Land and Planning) and; regulated water levels and total suspended solids (TSS) at the study site 2 km downstream from the regulating pondage 

(bottom graph, TSS data source: AGL Hydro). Note: see Fig. 2 (left) for geographical location. 
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Figure 4. Pre-filling, installation, retrieval and sample extraction for the analysis of fine sediment accumulation in the collectors Note: Depicted 

for H collectors only. 

Figure 5. Areas illustrating the range of grain size distribution curves for the natural river bed (n=3) and all pre-filled collectors (n=30) truncated 

at 9.5 mm before installation. Single lines depict the average grain size distribution of the final H (n=13) and HV (n=13) collectors.  

Figure 6. Spatial distribution of fine sediment accumulation rates in the field site (Note that the upstream and middle transects are averages of 

two periods (P1 and P4 and P2 and P5, respectively), whilst the downstream transect is one period (P3). 

Figure 7. Fine sediment accumulation rates for each period and location in the Kiewa River for H and HV collectors (top), and cumulative 

percentage of sediment fractions in each case (bottom).  

Figure 8. Water levels relative to the collectors for each period and site.  Dark grey indicates water levels above the top of the collector (surface 

water level) and light grey levels inside the collector (between the bottom and the top). Note: Illustration for HV collectors only. 

Figure 9. Subsurface hydraulic gradients during dewatered and flooded hydraulic conditions in the study site. 

Figure 10. Correlations between accumulated fine sediment rates at each location and mean bed shear stress (𝜏𝑏) and 75% of total suspended 

solids (TSS) for each relevant period. Note: the shaded areas in the left graph illustrated collectors grouped into periods.  
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