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Abstract 

Selective laser melting (SLM) has been widely used to manufacture customised 

metallic parts because it provides an integrated way to manufacture three-

dimensional (3D) parts from computer-aided design models after several sub-

processes. On the other hand, aluminium-based nanocomposites are widely 

used in the aerospace and automotive industries due to their light weight, high 

specific strength, excellent wear resistance, but their manufacturability and 

mechanical properties are not well understood when these new materials are 

employed in SLM. This is an important consideration because, compared with 

traditional manufacturing technologies, SLM offers the ability to manufacture 

engineering parts with very complex geometries by employing a layer-by-layer 

manufacturing principle. Hence, this thesis systematically studies the SLM of an 

advanced Al-Al2O3 nanocomposite that is synthesised using high-energy ball-

milling (HEBM) process.  

 The aim of this study is to use SLM to fabricate a nearly full dense Al-

Al2O3 nanocomposite composed of 96 vol.% Al and 4 vol.% Al2O3 powder. The 

synthesis and characterisation of ball-milled powder is the first contribution of this 

study, which also investigates the influence of milling and pause duration on the 

fabrication of ball-milled composite powder. The second contribution of this work 

is the development of a 3D finite element model to predict the thermal behaviour 

of the first layer’s composite powder. Both the transient temperature distribution 

and molten pool dimensions are predicted within the laser scanning, which 
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enables a more efficient selection of the process parameters (e.g. hatch spacing 

and scanning speed). 

The third contribution of this study is the optimisation of the SLM process 

parameters and microstructure investigation of the fabricated samples. The 

optimum laser energy density and scanning speed that are used to fabricate 

nearly full dense Al-Al2O3 nanocomposites are  found to be 317.5 J/mm3 and 300 

mm/s, respectively. The relative density is evaluated by quantifying the porosity 

on both the horizontal and vertical sections. The fabricated composite parts were 

observed to exhibit a very fine granular-dendrite microstructure due to the rapid 

cooling, while the thermal gradient at the molten pool region along the building 

direction was found to facilitate the formation of columnar grains.  

The final contribution of this study is the investigation of mechanical 

properties such as tensile strength, microhardness and macro and nanoscale 

wear behaviour. Compared to pure Al, the addition of 4 vol.% Al2O3 

nanoparticulates was found to contribute to a 36.3% and 17.5% increase in the 

yield strength and microhardness of the composite samples, respectively. Cold 

working was found to contribute to a 39% increase in microhardness due to grain 

deformation. The pin-on-disc wear testing and atomic force microscopy (AFM) 

nanoscratching were performed to study the macro and nanoscale wear 

behaviour of the fabricated samples, respectively.  
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Chapter I 

Introduction 

1.1 Research Motivation    

Aluminium has been widely used in aerospace and automotive industries due to 

its light weight, high specific strength and excellent corrosion resistance. 

However, compared to pure aluminium and various unreinforced aluminium 

alloys, aluminium-based metal matrix composites (AMCs) provide better 

mechanical and physical properties, including greater strength, improved high 

temperature properties, wear resistance and a controlled thermal expansion 

coefficient (Srivatsan et al. 1991; Lloyd 1994; Surappa 2003). Over the past few 

years, these attributes have found broad application in several demanding fields 

like the automotive, aerospace, defence, sports, electronics and biomedical 

industries, as well as for other industrial purposes (Koli et al. 2013). For instance, 

in the automotive industry, AMCs are typically used to fabricate pistons, cylinders, 

brakes and power transfer system elements.   

 A wide range of reinforcement particulates such as Al2O3, SiC, B4C, TiC 

and TiO2 have been used in AMCs (Mazahery et al. 2009), however, compared 

to other reinforcements, nanoscale Al2O3 particulates are capable of improving 

both their wear behaviour and high temperature properties without introducing 

any undesirable phases and are therefore widely used in AMCs (Durai et al. 



2 

 

2007). Studies have shown that the strength of Al-Al2O3 nanocomposites 

increases with the volume fraction of nano Al2O3; however, the strengthening 

effect is found to level off when the volume fraction is above 4 vol.%, which is 

attributed to the clustering of nano Al2O3 particulates (Kang and Chan 2004; 

Poirier et al. 2010). 

The application of Al-Al2O3 composites has been limited to a few very 

specific areas due to their high processing costs and the lack of a feasible 

fabrication method (Zebarjad and Sajjadi 2007). On the other hand, since the first 

technique for additive manufacturing (AM) became available in the late 1980s 

and was used to fabricate models and prototypes, AM process has experienced 

more than 30 years’ development and is acted as one of the rapidly developing 

advanced manufacturing techniques in the world (Gibson et al. 2010). In 

comparison with conventional manufacturing technologies, which generally adopt 

materials removal principle, AM employs the layer-by-layer manufacturing 

principle to build parts.  

Amongst current AM processes, Selective laser melting (SLM) is widely 

used to manufacture 3D complex-shaped metallic parts (Gu et al. 2012; Read et 

al. 2015). Therefore, the SLM of Al-Al2O3 nanocomposites is expected to show 

great potential in the fabrication of advanced engineering components to meet 

the demanding requirements of the aerospace and automotive domains. The 

research problems of this study include the synthesis of an advanced Al-Al2O3 

nanocomposite suitable for SLM and the fabrication of nearly full dense parts 

using SLM.  
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1.2 Research Aim and Objectives 

The overall aim of this study is to employ SLM to fabricate an advanced Al-Al2O3 

composite. The advanced nanocomposite powder suitable for SLM needs to be 

synthesised prior to the SLM; finite element thermal simulation should be 

conducted to provide a more efficient selection of process parameters within SLM. 

The optimum process parameters within SLM should be employed to fabricate 

nearly full dense parts to investigate the microstructure and mechanical 

properties of the composite samples. Therefore, the individual objectives towards 

achieving this aim include:   

i. To investigate high-energy ball-milling of Al-Al2O3 powder in order to 

synthesise an advanced nanocomposite suitable for SLM.  

ii. To develop a computational model in order to simulate the laser-material 

interaction. The predicted thermal information is expected to enable a 

more efficient selection of process parameters in fabricating bulk samples.  

iii. To study the SLM process parameters in order to use the optimum 

combination to fabricate full-dense parts and investigate the 

microstructure of the fabricated samples. The optimum process 

parameters (e.g. laser energy density, scanning speed) are determined by 

quantifying the relative density of the as-fabricated samples.  

iv. To investigate the mechanical properties (i.e. tensile strength, 

microhardness and macro and nanoscale wear behaviour) of the 

fabricated samples in order to explore the influences of Al2O3 
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reinforcement and microstructure change on mechanical properties 

alteration.  

1.3 Research Methodology  

The following research methodology is employed in order to achieve the above 

aim and objectives:  

• The synthesis of an advanced Al-4 vol. % Al2O3 composite powder 

suitable for SLM is the first objective of this study and can be achieved by 

employing high-energy ball-milling (HEBM) process because, HEBM is a 

simple and effective technique to refine particle grain size and disperse 

reinforcement materials homogeneously in a metal matrix. Another 

advantage of HEBM lies in its ability to produce bulk quantities of solid-

state materials using simple equipment at room temperature. The ball-

milled powder samples are taken out every 4h for analysis (e.g. particle 

size, morphology and flowability) in order to determine the optimum 

milling time. Systematic analytical techniques used to analyse the 

samples include x-ray powder diffraction (XRD), scanning electron 

microscopy (SEM), transmission electron microscopy (TEM) and energy 

dispersive X-ray spectroscopy (EDS). The optimum milling time is 

employed to produce bulk composite powder for SLM.  

• In order to provide a more efficient selection of process parameters used 

in SLM of bulk samples, a thermal simulation is conducted prior to the 

SLM experiments. A 3D finite element model is developed in the ANSYS 
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Multiphysics package platform to predict the thermal behaviour of the first 

layer’s composite powder. Furthermore, in order to reduce the 

computational time, the first layer consists of three single tracks; both the 

transient temperature distribution and molten pool dimensions are 

predicted in the thermal simulation. The simulation results are also 

compared with the SLM fabricated single tracks and single layer in order 

to validate the simulation.   

• A Renishaw AM250 SLM system is employed in this study to achieve the 

process parameters optimisation to fabricate the nearly full dense parts. 

Thus, the as-fabricated cubic samples (8x8x8 mm) under different 

conditions are both horizontally and vertically sectioned and then polished. 

The laser energy density and scanning speed are optimised by 

quantifying the relative density of the polished samples using ImageJ 

software. Due to the rapid cooling, the fine granular-dendrite 

microstructure is expected to be formed and further influence the 

mechanical properties of the fabricated samples. The polished sample 

surface is etched using Keller’s reagent for 30s in order to reveal the 

microstructure prior to the microstructure inspection using optical 

microscopy (OM) and SEM.  

• In order to explore the influences of Al2O3 reinforcement and 

microstructure change on mechanical properties alteration, the tensile 

strength, microhardness and wear behaviour of the fabricated samples 

are investigated. The tensile and microhardness tests are performed 

using a Zwick/Roell tester with a strain rate of 0.3 mm/min and Innovatest 
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with a 100g load and 10s dwell time, respectively. Pin-on-disc wear tests 

and atomic force microscopy (AFM) tip-based nanoscratching are 

conducted to investigate the macro and nano-scale friction and wear 

behaviour of the fabricated samples.  

1.4 Organisation of the Thesis  

This thesis is organised as follows: 

 Chapter 1 introduces the study by highlighting the research motivation, 

aim and objectives as well as the methodology of the research.  

 Chapter 2 reviews the related literature within the scope of this study. It 

briefly reviews the typical process parameters and defects within SLM followed 

by the aluminium matrix composites and HEBM process. After that, it discusses 

the application of finite element analysis in SLM and provides a discussion on 

AFM tip-based nanoscratching in nanoscale friction and wear investigation. The 

application of AFM in the study of nanoscale friction and wear is discussed 

afterwards. This chapter also provides a discussion on the challenges and 

opportunities in SLM of aluminium.  

 Chapter 3 addresses the first objective; it focuses on the synthesis and 

characterisation of an advanced Al-4 vol.% Al2O3 nanocomposite powder suitable 

for SLM.  

 Chapter 4 addresses the second objective; it focuses on the study of finite 

element simulation of SLM first layer’s composite and outlines the 3D finite 
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element model that is developed to predict the thermal behaviour, including 

transient temperature distribution and molten pool dimensions.   

 Chapter 5 addresses the third objective; it focuses on the optimisation of  

SLM process parameters (e.g. laser energy density and scanning speed) and 

analysis of microstructure of the fabricated samples.  

 Chapter 6 addresses the last objective; it focuses on the investigation of 

mechanical properties of the fabricated samples in order to explore the influences 

of Al2O3 reinforcement and microstructure change on mechanical properties 

alteration. Typical mechanical properties that are studied include tensile strength, 

microhardness and macro and nanoscale wear behaviour.   

 Chapter 7 highlights the contributions and conclusions of this study, and 

outlines future work.  
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Chapter II 

Literature Review   
 

This chapter reviews related work that provides key ideas that are applicable to 

achieving those objectives that are defined in chapter 1. This chapter thus is 

organised as follows: Section 2.1 reviews the SLM with a focus on typical 

process parameters and defects that are formed within SLM. Section 2.2 and 2.3 

discuss advanced aluminium matrix composites and the HEBM process 

employed to produce them. Section 2.4 discusses the finite element simulation 

used in selective laser melting. Section 2.5 discusses the application of atomic 

force microscopy in studying nanoscale friction and wear behaviour. Section 2.6 

discusses the challenges and opportunities in selective laser melting of Al-Al2O3 

nanocomposites, while Section 2.7 provides a summary of the chapter.  

2.1 Selective Laser Melting    

Compared to other metal-based AM processes (e.g. electron beam melting), SLM 

is widely used to manufacture metallic components by employing a high power-

density laser. SLM is an integrated process that involves materials, 

manufacturing and physics and thus, the working efficiency and quality of the 

fabricated parts are greatly influenced by a wide range of process parameters.  
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2.1.1 Typical Process Parameters Used in SLM    

In this subsection, the four typical process parameters used in SLM are 

discussed in detail. They are laser power, scanning speed, hatch spacing and 

powder layer thickness. It should be noted that those parameters are strongly 

interdependent.  

i. Laser power. Figure 2.1 shows the schematic illustration of SLM; a 

substrate for part creation is fixed on the building platform and levelled in 

the chamber. The laser beam scans the powder bed to create the first 

cross-sectional profile according to the CAD data of the component to be 

produced. Laser power is crucial because it determines the input energy 

density when the laser scans powder layer. During the laser-material 

interaction, a higher laser power generally results in more energy input to 

fully melt the deposited powder. Kempen et al. (2011) studied the 

influence of laser power on SLM of AlSi10Mg alloys and found that the 

relative density increased from 98.5% to 99.3% when the laser power 

increased from 170 W to 200 W. High power lasers are finding more 

applications in processing metal based composites and materials with 

high reflectivity (e.g. aluminium) (Buchbinder et al. 2008). 
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Figure 2.1: Schematic illustration of SLM. 

ii. Scanning speed. Previous studies have shown that scanning speed could 

determine the microstructure and mechanical properties of the fabricated 

components by changing the stability of molten pool (Gu et al. 2012). 

Yadroitsev et al. (2007) investigated the influence of scanning speed 

(0.06-0.24 m/s) on single tracks of the first layer of stainless steel grade 

904L, it was found that with an increase in the scanning speed while 

maintaining the laser power of 50 W, the track width and zone of powder 

consolidation decreased.  

iii. Hatch spacing. Hatch spacing is important because, it could influence the 

laser energy density and further determine the overlap area between two 

adjacent tracks. Thijs et al. (2010) investigated the influence of hatch 

spacing (50, 75 and 100 µm) on the properties of SLM manufactured bulk 

Ti-6Al-4V samples; it was found that the formed molten pool width was 

approximately 100 µm under the optimised parameters (42 W, 200 mm/s 
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and 75 µm), and neighbouring scanning tracks hardly touched each other 

when a hatch spacing of 100 µm was used. When a hatch spacing of 50 

µm was employed, however, the tracks overlapped 50% indicating that 

the molten pool width was not influenced significantly by a lowering in 

hatch spacing. Yadroitsev et al. (2007) studied the influence of hatch 

spacing on porosity of Inconel 625 alloy manufacturing by SLM; it was 

found that the porosity decreased with an increase in the hatch spacing 

from 60 to 100 µm. A further increase of the hatch spacing, however, 

resulted in a strong increase in porosity.  

 

Figure 2.2: Samples porosity with hatch spacing (powder layer thickness 

50 µm, laser power 50 W, scanning speed 0.13 m/s) (Yadroitsev et al. 

2007). 

iv. Powder layer thickness. As SLM is a layer-by-layer manufacturing 

process, the powder layer thickness is one of the determinant factors of 

this process. The appropriate selection of the layer thickness should be 

based on both the particle size and the shrinkage extent. Small layer 
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thickness enables to achieve good accuracy but does not favour 

productivity of the manufacturing process. Vandenbroucke and Kruth 

(2007) investigated the influence of layer thickness on top surface 

roughness (Ra) of SLM fabricated titanium alloy; it was found that the 

roughness increased from 8 to 20 µm with an increase in layer thickness 

from 20 to 50 µm. The top surface roughness improved strongly for 

smaller layer thickness because, higher thermal conductivity and the 

presence of less powder led to smaller and more stable molten pools.   

The typical process parameters used in SLM need to be optimised in 

order to manufacture full-dense components, otherwise it may result in the 

formation of defects during the SLM. The defects within SLM are discussed in 

next subsection.  

2.1.2 Defects in SLM  

Typical defects that are formed within SLM include balling, porosity and cracking.  

i. Balling. The term ‘balling’ refers to the formation of a large ball of molten 

material, with a fraction of this ball incorporated in the solidified layer. Li et 

al. (2012) investigated the balling behaviour of stainless steel and nickel 

powder during SLM and found that the SLM balling phenomenon can be 

divided into two types: ellipsoidal balls with dimension of about 500 μm 

and spherical balls with dimension of about 10 μm.  
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  The formation of balling is thought to be strongly dependent on   

scanning speed and laser power. Yadroitsev et al. (2012) investigated the 

SLM of stainless steel and found that balling could occur at high speeds 

when using relatively high laser power (50 W) (Yadroitsev et al. 2010). 

Kruth et al. (2014) investigated the selective laser melting of iron-based 

powder and found that high scanning speeds combined with high laser 

powers resulted in less balling. This was because the molten pool rapidly 

solidified behind the laser spot when the length of the molten track was 

short. Aboulkhair et al. (2016) found that balling formed on top of the 

AlSi10Mg layer when the scanning speed was up to 750 mm/s while 

maintaining the laser power of 100 W; Figure 2.3 shows the formed balling 

defects on the surface of SLM fabricated AlSi10Mg layers.  

 

Figure 2.3: Balling formed on AlSi10Mg layers (Aboulkhair et al. 2016). 
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ii. Porosity. Porosity refers to the fraction of pores or voids formed within the 

samples; it is generally considered to be the primary defect of SLM-

fabricated parts. Pores may be categorised as either metallurgical pores 

or keyhole pores (Aboulkhair et al. 2014; Haboudou et al. 2003). 

Metallurgical pores are spherically shaped and small in size; they are 

created from gases trapped within the molten pool or evolved from the 

powder during consolidation, which suggests that metallurgical-pore level 

is determined by the powder morphology and powder bed. Keyhole pores, 

in contrast, are irregularly shaped and large in size; they are attributable 

to the rapid solidification of the metal without the complete filling of gaps 

(with molten metal in particular) at relatively high scanning speeds.  

Pores that are induced by oxidation may be classified as keyhole 

pores, since non-melted or partially melted powders can become trapped 

when two thin oxide films meet. Another significant factor in the formation 

of keyhole pores is the interaction of recoil pressure and Marangoni 

convection within the molten pool (Khairallah et al. 2016). This 

mechanism is thought to be the dominating factor when relatively high 

laser power and low scanning speeds are employed in processing certain 

metal powders (e.g. aluminium and its alloys). 
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             Figure 2.4: Schematic diagram of laser-material interaction within 

selective laser melting (SLM) 

Figure 2.4 shows the laser-material interaction within the molten 

pool. Due to the local difference of the surface tension induced by the 

temperature gradient, the liquid in the molten pool flows from the high-

temperature regions to the relatively cool region. It has been found that 

increasing the laser power and reducing the spot size both make 

Marangoni convection stronger and move the centres of the cells closer to 

the pool edge (Limmaneevichitr and Kou 2000). When the temperature on 

the surface becomes greater than the material’s boiling point, strong 

vaporisation occurs, and the induced recoil pressure, together with the 

Marangoni convection, causes a change in the molten pool shape and 

subsequent splashing.  
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The collapse of the vapour cavity that is produced by the recoil 

pressure also results in the formation of keyhole pores; this process can 

be completed within 5 µs (Khairallah et al. 2016). The recoil pressure (𝑃𝑟) 

is determined by the strong vaporisation, which may be expressed as 

(Anisimov and Khokhlov 1995):  

𝑃𝑟 = 0.54𝑃𝑎exp(
𝜆

𝑘𝐵
(
1

𝑇𝑏
−
1

𝑇
))                                (2.1) 

where 𝑃𝑎 =1 bar is the ambient pressure, 𝜆  = 3.225 ev/atom is the 

vaporisation energy per Al atom, 𝑘𝐵= 8.617x10-5 ev/K is the Boltzmann 

constant, 𝑇 is the surface temperature and 𝑇𝑏 is the boiling point of the 

material. The 𝑇𝑏 for Al and Al2O3 is 2,743 K and 3,250 K, respectively. In 

order to push the molten material out of the cavity, the recoil pressure 

should be greater than the pressure produced by the surface tension, 

𝑃𝑟 >
𝛾

2𝑟0
, where 𝛾 is the surface tension at the boiling point and 𝑟0 is the 

laser-spot radius. King et al. (2014) have determined that, for a laser-spot 

size of tens of micrometres, the ejection of the molten material is 

independent of the spot size. The condition 𝑇 = 𝑇𝑏  can thus be 

considered to be the threshold for the generation of recoil pressure; the 

temperature (𝑇) that is reached in relation to exposure time (t) can be 

expressed as:  

𝑇 = 𝑇0 + ∆𝑇(𝑧, 𝑡)     (2.2) 
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where 𝑇0  and ∆𝑇(𝑧, 𝑡)  denote (respectively) the preheated temperature 

and the temperature increase along the 𝑧  direction with time. The 

temperature increase can be expressed as (Dahotre and Harimakar 2008)：  

∆𝑇(𝑧, 𝑡) =
𝐻′′

𝑘
(4𝛼′𝑡)

1 2⁄

𝑓(
𝑧

(4𝛼′𝑡)
1 2⁄ )            (2.3) 

where the function 𝑓(𝑥) is defined as: 

𝑓(𝑥) =
1

√𝜋
{exp(−𝑥2) − 𝑥(1 − 𝑔(𝑥))}              (2.4) 

and: 

𝑔(𝑥) =
2

√𝜋
∫ 𝑒−𝜉

2
𝑑𝜉

𝑥

0
      (2.5) 

where 𝐻′′denotes the absorbed laser energy and 𝛼′ is the thermal 

diffusivity. The latter is shown by 𝛼′ = 𝑘 𝜌𝑐⁄ , where k is the thermal 

conductivity of the powder bed, and c and 𝜌 denote the specific heat and 

powder density, respectively. The temperature increase at the surface 

under laser irradiation can thus be obtained by substituting 𝑧 = 0  and 

𝐻′′ =
2𝐴𝑃

𝜋𝑟0
2 in equation (2.3), which produces:  

∆𝑇(0, 𝑡) =
4√𝑡𝐴𝑃

𝜋
3
2𝑟0

2√𝜌𝑐𝑘
       (2.6) 

where 𝐴  and 𝑃  denote the absorptivity and employed laser power, 

respectively. The maximum surface temperature 𝑇 that is reached under 

specific exposure times can thus be determined.  
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Several recent studies have reported porosity minimisation 

strategies for selective laser melting process. For instance, Aboulkhair et 

al. (2014) investigated the windows of parameters required to produce 

high density AlSi10Mg parts using selective laser melting; their study 

found that the type of pore formed during SLM was related to the 

employed scanning speeds, metallurgical pores tended to be formed at 

lower speeds whereas keyhole pores were created with increasing 

scanning speeds, along with a reduction in metallurgical. Sun et al. (2016) 

employed SLM process to successfully fabricate high density (>99%) 

316L stainless steel parts with high build rates; it was recommended to 

find out a suitable power energy density for a material and then adjust the 

scanning strategy or scanning parameters. 

iii. Cracking. The process of selective laser melting gives rise to large 

thermal gradients during the rapid melting of metallic powders; thermal 

induced cracking may be formed in certain alloys during the solidification, 

which cannot be eliminated via process optimisation (Harrison et al. 2015). 

Mercelis and Kruth (2006) found that the generation of cracking within 

SLM may be attributed to two mechanisms: thermal gradient mechanism 

and the cool-down phase of molten top layers.  

In the thermal gradient mechanism, the rapid heating of the top 

surface combined with the relatively low thermal conductivity of the 

powder, created a steep temperature gradient (Mercelis and Kruth 2006). 

The rapid cooling resulted in a shrinkage of the upper layer, inducing a 

bending angle towards the laser source and in turn generating a tensile 
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stress in the building direction. When the tensile stress exceeds the 

ultimate tensile strength (UTS) of the solid material, the solid phase could 

fracture and result in cracking. Figure 2.5 shows the formed micro-cracks 

within SLM fabricated nickel superalloys.  

 

         Figure 2.5: Optical micrograph showing the cracks in SLM fabricated nickel 

superalloys (Harrison et al. 2015).  

2.2 Aluminium-based Metal Matrix Composites  

The most commonly used reinforcements in aluminium-based metal matrix 

composites (AMCs) are SiC and Al2O3 (Ramnath et al. 2014); they both increase 

the tensile strength, hardness, density and wear resistance of AMCs. The particle 
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distribution of the reinforcements plays a significant role in the properties 

alteration of AMCs (Murty et al. 2003).  

 Early studies reported the mechanical properties of SiC reinforced AMCs. 

For instance, Ozden et al. (2007) investigated the impact behaviour of extruded 

SiC reinforced AMCs under different temperatures; it was found that the impact 

behaviour of composites was affected by clustering of particles, particle cracking 

and weak matrix-reinforcement bonding. The effect of the test temperature on the 

impact behaviour of all composites, however, were not very significant. Natarajan 

et al. (2006) compared the wear behaviour of SiC reinforced AMCs with the 

conventional grey cast iron sliding against automobile friction material. It was 

found that the wear resistance of the composite was higher than the conventional 

grey cast iron and it thereby was a very suitable material for brake drum.  

 Compared to SiC reinforcement, Al2O3 exhibits better thermal stability at 

high temperatures as undesirable phases are not produced in such materials 

(Durai et al. 2007; Rahimian et al. 2009). Rahimian et al. (2009) studied the effect 

of particle size, sintering temperature and sintering time on the properties of Al-

Al2O3 composites, made by powder metallurgy. In their study, the average 

particle sizes of Al2O3 were 3, 12 and 48μm, and the weight percentage of Al2O3 

was fixed at 10 wt. %; the Al particle size was 30 μm with a purity of 99.97%. The 

effect of Al2O3 particle size on the mechanical properties of the composites is 

shown in Table 2.1.  
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Table 2.1: Influence of Al2O3 particle size on mechanical properties (Rahimian et 

al. 2009). 

Al2O3 size 

(μm) 

Relative density 

(%) 

Hardness 

(HB)  

Yield strength 

(MPa)  

Elongation 

(%) 

Pure Al 99.23 31 93 50 

3 97.41 65 210 46 

12 98.2 58 180 26 

48 96.71 53 140 18 

 It was found that finer Al2O3 particles reinforced AMCs exhibited higher 

hardness and yield strength and this could be contributed to the larger interfacial 

area between the strengthening phase and the Al matrix. Furthermore, the 

elongation of the composite samples increased with a reduction in the Al2O3 

particle size. Kumar et al. (2013) investigated the characterisation of Al-Al2O3 

AMCs using electromagnetic stir casting method; they found that the hardness 

and tensile strength increased and electromagnetic stirring action produced 

AMCs with smaller grain size and good reinforcement-matrix interface bonding.                  

Several studies focused on the mechanical properties of AMCs reinforced with 

nanoscale Al2O3; it was shown that the strength of Al-Al2O3 nanocomposites 

increases with the volume fraction of nano Al2O3; however, the strengthening 

effect is found to level off when the volume fraction is above 4 vol.%, which is 

attributed to the clustering of nano Al2O3 particles (Kang and Chan 2004; Poirier 

et al. 2010).  

 Nonetheless, due to the significant surface energy of the nano particles, 

the dispersion of nano Al2O3 reinforcement amongst Al matrix has always been a 

challenge for researchers and practitioners. The next section discusses an 
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effective method that is used to synthesise the nanocomposite and disperse the 

nano Al2O3 reinforcement uniformly amongst Al matrix.  

2.3 High-Energy Ball-Milling 

High-energy ball-milling (also known as mechanical milling) is a simple and 

effective technique to refine particle grain size (~100 nm) and disperse 

reinforcement materials homogeneously in a metal matrix (Khan et al. 2008; Liao 

and Tan 2011). Another advantage of high-energy ball-milling (HEBM) lies in its 

ability to produce bulk quantities of solid-state materials using simple equipment 

at room temperature.  

2.3.1 Operating Principle  

The most commonly used ball mill for synthesising AMCs is planetary ball mill, 

which is generally equipped with 2 or 4 grinding bowls; the operating principle is 

shown in Figure 2.6.  
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Figure 2.6: Schematic diagram of planetary ball mill (Suryanarayana 2001). 

 The grinding bowls are arranged on a rotating supporting disc and a 

special drive mechanism causes them to rotate around their own axes. The 

centrifugal forces from the rotation of the grinding bowls around their own axes 

and from the rotating supporting disc on the contents of the grinding contents 

which consists of materials to be ground and grinding balls. Since the grinding 

bowls and the supporting disc rotate in opposite directions, the centrifugal forces 

alternately act in the same direction and opposite directions. This results in the 

grinding balls to run down the inside wall of the bowl–the friction effect, followed 

by the material being ground and grinding balls hitting the opposite wall of the 

grinding bowl as impact effect. The impact effect is amplified by the impact of the 

grinding balls against each other (Suryanarayana 2001; Zhang 2004).  

 Due to the intensive impact of grinding balls and bowls, the particle size of 

the materials is refined and the reinforcement is dispersed uniformly. Several 
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process parameters used in HEBM could affect the properties of the ball-milled 

powder, and the next subsection discusses the typical process parameters in 

HEBM.  

2.3.2 Process Parameters in HEBM 

HEBM process is a complex process and hence involves a number of parameters, 

but not all of them are completely independent. Typical process parameters 

include milling speed, milling time, grinding medium, ball-to-powder weight ratio, 

milling atmosphere and process control agent. A proper selection of those 

parameters could improve the milling efficiency and reduce the contamination 

during HEBM.  

i. Milling speed. It is easy to realize that the faster the mill rotates the higher 

would be the energy input into the powder. However, above a critical 

speed, the balls will be pinned to the inner walls of the bowl and cannot 

drop to exert any impact force. Moreover, a super high speed may result 

in a high temperature of the bowl. This may result in a decomposition of 

metastable phases formed during the milling.  

ii. Milling time. This is the most important parameter. Normally, the milling 

time depends on some other parameters to achieve a steady state. But it 

should be noted that the level of contamination increases and some 

undesirable phases may form if the milling time is longer than required.  

iii. Grinding medium. Hardened steel, tool steel, tempered steel, WC-Co and 

stainless steel are the most common types of materials used for the 

grinding medium. The density of the grinding medium should be high 
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enough so that the balls can create enough impact force on the powder. 

Moreover, it would be desirable to have the grinding bowls and the 

grinding medium made of the same material in order to avoid cross 

contamination.    

The size of the grinding medium also has an influence on the 

milling efficiency. It has been found that the highest collision energy can 

be obtained if balls with different diameters are used. In the initial stage of 

milling, the powder being milled gets coated onto the surface of the balls 

and also gets cold welded. The advantage is that it prevents excessive 

wear and avoids contamination of the powder; the disadvantage however 

is that, it is difficult to detach the powder and so the yield is low. It is 

possible that the different sized balls produce shearing forces that help to 

detach the powder from the surface of the balls.  

iv. Ball-to-powder weight ratio (BPR). In general, the higher the BPR, the 

shorter the time required is. A ratio of 10:1 is most commonly used in 

milling a small quantity of powders. 

v. Milling atmosphere. The main effect of the milling atmosphere is on the 

contamination of the powder. The presence of air in the grinding bowls 

could give rise to the formation of oxides and nitrides in the powder. High 

purity argon thus is most commonly used to prevent oxidation and 

contamination of the powders.   

vi. Process control agent (PCA). The refinement among powder particles can 

occur only when a balance is maintained between cold welding and 

fracturing of particles. A process control agent is added in order to reduce 
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the effect of cold welding because, the PCA is absorbed on the surface of 

the particles which prevents excessive cold welding and further stops 

agglomeration. A wide range of PCAs have been used in practice at a 

level of about 1-5 wt% of the total powder weight. The most commonly 

used PCAs include stearic acid, hexane, methanol and ethanol. In 

particular, stearic acid has been widely used in HEBM of aluminium 

powders (Suryanarayana 2001).  

2.3.3 HEBM of Al-Al2O3 Composites  

The main challenges in HEBM of Al-Al2O3 composites lie in: (1) enabling the 

uniform distribution of the Al2O3 reinforcement in Al matrix and (2) enabling no 

excessive cold working.  

Several studies reported the synthesis and characterisation of the ball-

milled Al-Al2O3 composites. For instance, Prabhu et al. (2006) employed a SPEX 

mill to synthesize Al-Al2O3 composite powders with volume fraction of 20% and 

found that the Al2O3 reinforcement (5 µm in diameter) were distributed 

homogeneously in the Al matrix after 20 hours of milling at a BPR of 10:1. 

Zebarjad and Sajjadi (2007) investigated the physical and mechanical properties 

of the Al-Al2O3 composites produced by the HEBM method and found that the 

milling time had a significant effect on the mechanical and physical properties of 

the composites; however, increasing the milling time was shown to have no 

significant effect on the properties when the steady state was achieved. Another 

study of the effect of milling on composite microstructures found that at the 
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beginning of the process the powders tended to absorb iron, and the trend 

gradually decreased until the steady state. Moreover, the increase of milling time 

contributed to the formation of fine Al2O3 particulates and their uniform 

distribution performance (Zebarjad and Sajjadi 2006).  

More recently, Khorshid et al. (2010) investigated the mechanical 

properties of aluminium matrix composites reinforced by two sizes of Al2O3 

particles (35 nm and 0.3 μm) by wet attrition milling, and found that the hardness 

and yield strength improved with the increased amount of Al2O3; nonetheless, 

when the fraction exceeded 4 wt.%, both the hardness and strength decreased. 

Poirier et al. (2010) studied the mechanical properties of ball-milled Al-Al2O3 

nanocomposites and established that the hardness of the composites was five 

times higher than pure unmilled Al; a decrease in the Al2O3 particle size from 400 

nm to 4 nm gave rise to an increase of 11% in the hardness of the composites. 

Su et al. (2012) investigated the processing, microstructure and tensile properties 

of Al-Al2O3 nano composites by ball milling and ultrasonic treatment. They 

determined that, compared to an aluminium alloy, the ultimate tensile strength 

and yield strength of the Al-1 wt.% Al2O3 composite increased by 37% and 81%, 

respectively; this can be explained by the grain refinement and homogeneous 

dispersion of the nano reinforcements.  

The aforementioned studies successfully applied high-energy ball-milling 

in the fabrication of Al-Al2O3 composites. However, the flowability of the 

synthesised composite powder has not been studied and the synthesised 

composite powder has not been applied in selective laser melting.  



28 

 

2.4 Finite Element Analysis in SLM  

Researchers have employed finite element analysis (FEA), one of the most 

widely used numerical methods in use today, for temperature field analysis in 

various AM processes. This section thereby reviews the application of FEA in 

SLM.  

In early papers, Childs (2005) investigated the influence of process 

parameters on the mass of melted single layers in SLM and found that an 

increase in scanning speed resulted in a larger melted mass. Matsumoto et al. 

(2002) proposed a method for calculating the distribution of temperature and 

stress in the SLM of single metallic layers; they found that the solid layer on the 

powder bed warped due to the rapid heating and cooling while the laser scanned 

the track. Dai and Shaw (2002) investigated the effect of the laser scanning 

strategy on residual stress and distortion and found that a scanning pattern with 

frequent 90° changes in the scanning direction at every turn could lead to a 

reduction of concave upwards and downwards distortions.  

More recently, Hussein et al. (2013) developed a transient finite element 

model for the analysis of temperature and stress fields in single layers built 

without support in SLM. They found that the predicted length of the molten pool 

increased at higher scanning speeds, while both the width and depth of the 

molten pool decreased. Li and Gu (2014) analysed thermal behaviour during the 

SLM of aluminium alloy powders and obtained the optimum molten pool width 

(111.4 μm) and depth (67.5 μm) for a specific combination of parameters (laser 

power 250 W and scanning speed 200 mm/s). Roberts et al. (2009) developed an 
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element birth-and-death strategy to analyse the 3D temperature field in multiple 

layers within a powder bed. Similar studies have explored the behaviour of other 

materials during SLM. For example, Kolossov et al. (2004) developed a 3D finite 

element model to predict the temperature distribution on the top surface of a 

titanium powder bed during the laser sintering process; it was found that the 

changes of thermal conductivity in powder bed determined the behaviour and 

development of thermal processes. In addition, Patil and Yadava (2007) 

investigated the temperature distribution in a single metallic powder layer during 

metal laser melting and found that temperature increased with increases in laser 

power and laser exposure time, but decreased with an increase in hatch spacing.  

  It may be concluded that the thermal behaviour within SLM can be 

predicted by FEA, which may facilitate a more efficient selection of process 

parameters during SLM of various metallic materials and further improve the 

productivity.  

2.5 AFM Tip-based Friction and Wear   

Due to its low cost and its ability to achieve atomic-level manipulation using a 

relatively simple system, atomic force microscopy (AFM) is widely used in various 

nanotechnology and nanomanufacturing applications. Due to its capability of 

applying extremely small forces and visualising surface topography with a 

resolution below 0.1 nm in vacuum condition (Cho 2009; Geng et al. 2014), AFM 

can thus be used to investigate nanoscale friction and wear behaviour. Another 

advantage of AFM is that the technique can simulate a single asperity contact 
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situation against a counter surface, which provides a way to investigate the 

friction mechanisms involved in ultra-precise components. The basic operating 

principle of an AFM involves scanning a specimen surface under a controlled 

load using a sharp tip, which is normally made of silicon, silicon nitride or a 

diamond coating; the sensors that are employed can then detect atomic-scale 

interaction forces with a nano-Newton resolution (Kim et al. 2012; Chung and Kim 

2007; F. Zhang et al. 2016).  

2.5.1 Wear Behaviour and SLM 

For the past two decades, researchers have investigated the effects of 

experimental parameters such as normal load, velocity and humidity on 

nanoscale-friction behaviour (Kim et al. 2012; Gnecco et al. 2002). Bhushan and 

Kwak (2007) examined the velocity dependence of nanoscale wear when using 

AFM and found that the wear rate increased with the logarithm of velocity and 

levelled off afterwards when the velocity varied from 0.1 to 100 mm/s. Wang et al. 

(2015) investigated the humidity dependence of the tribochemical wearing of 

monocrystalline silicon and found that the tribochemical wearing’s relative 

humidity dependence could be explained with a model involving the formation of 

Si-O-Si chemical bonds between two solid surfaces.  

Several recent studies have reported the macroscale wear performance 

of SLM-fabricated parts. For instance, Kang et al. (2016) employed dry sliding to 

investigate the wear behaviour of hypereutectic Al-Si alloys fabricated by SLM 

and found that nanosize Si particles grew to become larger particles due to 
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extended solidification times when the laser power was greater than 210 W, 

which in turn resulted in poor wear resistance of the fabricated samples. Jue et al. 

(2017) studied the microstructure and mechanical properties of SLM-fabricated 

Al-based composites and found that the microstructural features and hardness of 

the composites were the dominating factors to determine wear performance 

during pin-on-disc testing. Sun et al. (2014) investigated the sliding wear 

characteristics of SLM 316L stainless steel and found that the wear rate of SLM 

steel was dependent on the porosity and by obtaining full density it was possible 

to achieve wear resistance similar to that of standard bulk 316L steel. The 

nanoscale wear behaviour of SLM-fabricated samples has yet to be reported.  

2.5.2 Lateral-force Calibration 

A calibration of the lateral (friction) force is generally required for accurate friction 

measurements when using AFM nanoscratching, because the detected signal 

takes the form of lateral voltage output rather than direct friction force during the 

nanoscratching process; a conversion factor 𝛼 therefore is required, which may 

be obtained from the wedge calibration method, as shown in Figure 2.7.  
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Figure 2.7: Schematic diagram of (a) TGF11 calibration grating and (b) friction 

loop. 

A standard TGF11 silicon calibration grating can be scanned with a 

relatively small normal load using a diamond tip; the conversion factor between 

the lateral force and the lateral signal from the friction loops of a defined flat and 

slope can be determined by (Wang and Zhao 2007):  

𝛼 =
𝜇(𝑁+𝐴′𝑐𝑜𝑠𝜃)

(𝑐𝑜𝑠2𝜃−𝜇2𝑠𝑖𝑛2𝜃)𝑊′
𝑠𝑙𝑜𝑝𝑒

                                                               (2.7) 

where 𝑁 is the applied (and relatively small) normal load in the calibration; 𝐴′ 

and 𝜃 denote the adhesive force and slope angle of the calibration grating (Figure 

2.7a), respectively; and 𝜇  is the friction coefficient between the tip and the 

calibration grating, which can be determined by (Varenberg et al. 2003): 

𝜇2 sin 𝜃 (𝑁𝑐𝑜𝑠𝜃 + 𝐴′) −
∆𝑠𝑙𝑜𝑝𝑒−∆𝑓𝑙𝑎𝑡

𝑊′
𝑠𝑙𝑜𝑝𝑒

(𝑁 + 𝐴′ cos 𝜃) 𝜇 + 𝑁 sin𝜃 cos𝜃 = 0 (2.8) 

where ∆𝑓𝑙𝑎𝑡 and ∆𝑠𝑙𝑜𝑝𝑒 denote the friction-loop offset of the flat and slope (Figure 

2.7b), respectively; and 𝑊′
𝑠𝑙𝑜𝑝𝑒 is the friction-loop half-width of the slope. ∆ and 

𝑊′ can be expressed as: 

∆=
𝑀𝑢+𝑀𝑑

2
                   (2.9) 

and: 

𝑊′ =
𝑀𝑢−𝑀𝑑

2
       (2.10) 
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where 𝑀𝑢  and 𝑀𝑑  denote the measured frictional signal under the uphill and 

downhill motions, respectively. Based on equations (2.8)–(2.10), the conversion 

factor 𝛼 can be obtained; the friction force 𝑓 under specific normal load during the 

AFM nanoscratching can thus be determined by: 

𝑓 = 𝛼 ∙ 𝑀       (2.11) 

where 𝑀 denotes the voltage-output difference between the scratching and non-

scratching stages; this difference is recorded by the position sensitive detector 

(PSD) in the horizontal plane.  

2.6 Challenges and Opportunities in SLM of Al-Al2O3 Nanocomposites  

Several studies have successfully applied SLM in the fabrication of full-dense Fe, 

Ti and Ni alloys (Guan et al. 2013; Gu et al. 2011; Harrison et al. 2015). However, 

several challenges and opportunities remain in SLM of Al-Al2O3 nanocomposites. 

2.6.1 Challenges  

The main challenges within SLM of Al-Al2O3 nanocomposites include oxidation, 

high thermal conductivity and reflectivity as well as poor flowability of the powder.  

i. Oxidation. Oxidation is considered to the most significant problem in SLM 

of Al. First, the formed oxide film on the powder surface can be 

incorporated into the molten pool, which affects the wetting to the 

surrounding powders. Second, any previously built solid tracks on the side 

and below the molten pool are also covered by the oxide films (Louvis et 
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al. 2011). Previous studies have shown that the oxide film on the upper 

surface of the pool is vaporized under the high temperatures of a laser 

beam (Limmaneevichitr and Kou 2000). The oxides at the sides of the 

pool, however, remain intact and the oxides stirred into the molten pool 

generate regions of weakness and porosity within the part. Figure 2.8 

shows the schematic of the pores induced by oxide films.  

 

Figure 2.8: (a) Marangoni convection in molten pool (b) oxide disruption 

and solidification (Louvis et al. 2011). 

As it is likely that the formation of oxide films during the SLM 

process cannot be avoided completely, new methods need to be devised 
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to minimise the influence of oxide films if the component produced is to be 

100% dense (Louvis et al. 2011). Furthermore, it is important that the 

underlying and surrounding solid regions partially remelt so that the 

regions can wet and fuse within the molten pool. On the other hand, the 

added Al2O3 reinforcements exhibit poor wetting ability, a high laser 

powder thus is required to fully melt the Al2O3 particles, and prevents the 

formation of porosity and microcracks within the produced parts. 

ii. High thermal conductivity. The thermal conductivity of Al is around 9 times 

higher than Ti and 13 times higher than stainless steel. This indicates that 

a higher laser power is required to fully melt Al and the Al2O3 powders 

(Steen et al. 2010).  

iii. High reflectivity. The measured reflectivity of Al is 91% higher than Ti 

(70%), which indicates higher power lasers are needed to accumulate 

sufficient heat energy to fully melt the powders (Fischer et al. 2003).  

iv. Poor flowability. Due to the light weight of Al, it is a challenge to deposit a 

thin powder layer uniformly on powder bed; a nonuniform powder layer 

may result in a poor dimensional accuracy and mechanical properties of 

the fabricated components.   

The aforementioned challenges suggest the SLM of Al-Al2O3 

nanocomposites is fairly difficult to produce nearly full-dense components. On the 

other hand, several studies have examined the SLM of Al alloys and provided 

insight and useful research methodologies which may be employed in the 

investigation of SLM of Al-Al2O3 nanocomposites.  



36 

 

2.6.2 Opportunities  

The opportunities for SLM of Al-Al2O3 nanocomposites include:  

i. Various Al alloys have been successfully processed using SLM. For 

instance, Rao et al. (2016) investigated the influence of process 

parameters on SLM manufactured aluminium alloy A357; it was found that 

the anisotropy of SLM-fabricated samples was caused by the 

directionality of the microstructure due to differences in the deformation 

response in both horizontal and vertical tensile samples. Prashanth et al. 

(2014) studied the effect of heat treatment on the microstructural and 

tensile behaviour of Al-12Si components produced by SLM; their study 

found that the annealing temperature that is employed is a major factor in 

affecting the microstructure and mechanical properties of the components.  

Kimura et al. (2017) investigated the effect of Si content on the 

mechanical and thermal conductivity of Al-xSi alloys fabricated by SLM; it 

was found that, with an increase in Si content, both yield strength and 

ultimate tensile strength increased, while elongation and thermal 

conductivity decreased. Li et al. (2016) employed a 200 W laser power to 

investigate the influence of low temperature powder drying on the relative 

density of SLM manufactured Al-12Si alloys; they found that the 

fabricated components using dried powder exhibited higher relative 

density because, the surface moisture was removed and thus prevented 

the formation of oxides during the SLM.  
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ii. Relative high-power lasers have been successfully applied to 

manufacture ceramic reinforced AMCs using SLM. A high laser power is 

required because, more heat energy input is needed to fully melt the 

ceramic reinforcement materials which normally have much higher 

melting temperature than aluminium.  

Gu et al. (2012) employed a ytterbium fibre laser with a power of 

200 W to fabricate AlSi10Mg-TiC nanocomposites and found that a ring-

structured nanoscale TiC reinforcement was uniformly distributed along 

the Al boundaries, resulting in a remarkable improvement in both tensile 

strength and microhardness. Dadbakhsh et al. (2012) also examined the 

role of Fe2O3 additives in the development of the SLM processing window 

of pure aluminium powder. They reported that in-situ material reaction 

between Al and Fe2O3 powder released extra heat and energy which 

promoted the formation of a molten pool and improved the SLM 

processability over a wide range of SLM parameters. The released energy 

(which is proportional to the Fe2O3 content) is capable of manipulating the 

visual surface profile and roughness. However, the hardness of the 

fabricated composite samples was found to increase with an increase in 

the content of Fe2O3, which was attributed to the superior microstructure 

features of the particle reinforced matrix.   
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2.7 Summary  

This chapter discussed the related work in the area of selective laser melting and 

synthesis of Al-Al2O3 composites, however, process knowledge is still lacking for 

the SLM of Al-Al2O3 nanocomposites. The typical process parameters used in 

selective laser melting include laser power, scanning speed, hatch spacing and 

powder layer thickness; unsuitable selection of them may lead to the formation of 

defects during the process. High-energy ball-milling is a simple and effective 

method to refine Al grain size and disperse Al2O3 nanoparticles homogeneously 

amongst Al matrix to synthesise an advanced Al-Al2O3 nanocomposites. Finite 

element analysis has been widely used for thermal behaviour prediction in 

selective laser melting so that a more efficient selection of process parameters 

could be offered in fabricating bulk samples. Although several challenges are 

remaining in selective laser melting of Al-Al2O3 nanocomposites such as 

oxidation, high reflectively and thermal conductivity and poor flowability, several 

studies have successfully applied in fabricating some types of Al alloys and Al-

based composites, which provided insight and useful research methodologies 

which may be employed in the investigation of SLM of Al-Al2O3 nanocomposites. 
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Chapter III 

Synthesis and Characterisation of 
Advanced Composite Powder 

 

This chapter addresses the first research objective of this thesis. It focuses on the 

synthesis and characterisation of advanced Al-Al2O3 composite powder using 

high-energy ball-milling process and systematic analytical techniques. The 

hypothesis is that a short milling and long pause combination provides a higher 

yield and narrower particle size distribution range than long milling and a short 

pause. The chapter is organised as follows: Section 3.1 introduces the research 

methodology, including the research hypotheses, experimental techniques and 

theory. Section 3.2 provides the experimental study, including the materials used 

and procedures. Section 3.3 details the experimental results and discussion and 

Section 3.4 summarises this chapter afterwards. 

3.1 Research Methodology    

High-energy ball-milling (HEBM) is used in this study because, it is a simple and 

effective technique to refine particle grain size (~100 nm) and disperse 

reinforcement materials homogeneously in a metal matrix (Khan et al. 2008; Liao 

and Tan 2011; Razavi Tousi et al. 2009). Another advantage of HEBM lies in its 

ability to produce bulk quantities of solid-state materials using simple equipment 

at room temperature.  
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3.1.1 Research Hypotheses   

The milling time is the most significant parameter during HEBM, the optimum 

milling time can be determined by evaluating the characteristics of ball-milled 

powder up to 24 hours of milling. The research hypotheses within HEBM of Al-4 

vol.% Al2O3 nanocomposite powder include:  

i. The HEBM contributes to Al grain refinement. The longer the milling 

time, the smaller the grain size is.  

ii. The Al2O3 reinforcement could function as the grinding media and 

accelerate the Al powder refinement; the Al2O3 may be dispersed 

homogenously amongst Al matrix after about 20 hours of milling.  

iii. A short milling and long pause combination may provide a higher yield 

and narrower particle size distribution range than long milling and a 

short pause.  

3.1.2 Experimental Techniques and Theory   

A standard 170 mesh sieve (90 μm) was employed to sieve the ball-milled 

composite powder in order to obtain a powder suitable for the SLM. The weight 

loss (𝑊∆) and yield (𝜑) can be expressed as:  

𝑊∆ = 𝑊𝑖 −𝑊𝑜                       (3.1) 

𝜑 =
𝑊90

𝑊𝑖
× 100%                     (3.2) 
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where 𝑊𝑖  and 𝑊𝑜denote the weight of input and output, respectively, and 𝑊90 

represents the weight of the powders that passed through the sieve with a 

particle size of less than 90 μm.  

To measure the flow behaviour of the sieved ball-milled powders, the Carr 

index (CI) was used. The Carr index is the ratio of the difference between the 

apparent volume and the tapped volume to the apparent volume, and can be 

expressed as (Cain 2002; Carr 1965): 

𝐶𝐼 =
𝑉𝐴−𝑉𝑇

𝑉𝐴
× 100%                  (3.3) 

where 𝑉𝐴 denotes the apparent volume that results from pouring the powder into 

a heap or container in the absence of any applied compression, and 𝑉𝑇 

represents the tapped volume resulting from the application of compression, for 

example, impact or vibration. Generally, a Carr index of less than 15% is 

considered to be an indicator of good flowability while greater than 20% indicates 

poor flowability (Yadroitsev 2009). The apparent and tapped volumes of the 

sieved ball-milled powders were measured in terms of ASTM D7481-09 to 

calculate the Carr index using a 100 mL standard graduated cylinder.  

Other metrology and analytical techniques were employed for phase 

identification, grain size and uniformity evaluation and micro-hardness 

measurement for microstructure changes. More specifically, scanning electron 

microscopy (SEM) was used to observe the powders’ morphology evolution. In 

addition to phase identification, X-ray powder diffraction (XRD) was also used to 

evaluate the average grain size when the grain size was less than 100 nm. The 
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average grain size 𝑑′ can be expressed using the Scherrer equation (Choi et al. 

2008): 

𝑑′ =
0.9𝜆

𝛽 𝑐𝑜𝑠 𝜃′
                           (3.4) 

where𝛽 and 𝜃′ denote the full width at half maximum (FWHM) and Bragg angle, 

respectively, and 𝜆 is the wavelength of the X-radiation. Transmission electron 

microscopy (TEM) together with energy-dispersive X-ray spectroscopy (EDS) 

was used to evaluate the uniformity of the nano Al2O3 in the Al matrix by 

measuring the atomic and weight percentages of the constituent elements. On 

the other hand, the weight percentage of the Al elements in the Al-Al2O3 

nanocomposite was determined by  

𝑊% =
𝑊1+

9

17
∙𝑊2

𝑊1+𝑊2
× 100%          (3.5) 

where 𝑊1 and 𝑊2 denote the weight of Al and Al2O3 powders, respectively. This 

indicator can be used to validate the results from the TEM and EDS results.  

To investigate the effect of both ball milling and nano Al2O3 

reinforcements on the powders’ mechanical properties, the Al and Al-Al2O3 

composite as well as the raw Al powders were separately mounted in carbon-

filled phenolic resins. The specimens were polished before microhardness testing. 

The Micro-Vickers Hardness Testing Machine HM-101 (Mitutoyo UK Ltd) was 

employed to measure the specimens’ microhardness. The average Vickers 

hardness of each specimen was determined by measuring four different 

indentations with an applied load of 50 g.   



43 

 

3.2 Experimental Study  

3.2.1 Raw Materials and Apparatus  

Raw Al and Al2O3 powders were obtained from commercial vendors. Raw Al 

powder (-325 mesh, 99.5%) was acquired from the Alfa Aesar Corporation (Ward 

Hill, MA), and Al2O3 powder (50 nm particle size, TEM) was obtained from Sigma-

Aldrich Ltd. (Dorset, UK). Figure 3.1a and b show the irregular shape of the raw 

Al and high surface energy-induced Al2O3 clusters. More details on the 

morphology of Al2O3 powder may be found in appendix A (Figure A-1). The 

particle size distribution of the Al was measured using the Malvern 

Mastersizer3000 (Malvern, U.K.). Figure 3.1c shows the average particle size of 

raw Al was 17.1 μm. A laboratory planetary mill with four working stations 

(PULVERISETTE 5 classic line, Fritsch GmbH, Idar-Oberstein, Germany) was 

employed to conduct the ball-milling experiments (Figure 3.1d) in this study. 
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Figure 3.1: Raw materials and apparatus (a) raw Al, (b) raw Al2O3 powder, (c) 

particle size distribution of raw Al and (d) the employed ball mill machine. 

3.2.2 Experimental Procedures 

A stainless steel bowl was loaded with 200 g Al and 4 vol.% of Al2O3 powders 

with a ball-to-powder weight ratio of 5:1; meanwhile, to identify the effect of the 

nanoscale Al2O3 reinforcements on the ball-milled composite powders, 200 g of Al 

without Al2O3 was loaded into another stainless steel bowl (Han et al. 2017a). To 

prevent excessive cold-welding, 3 wt.% of stearic acid was widely used in 

previous studies when ball milling of Al powders, this is because 3 wt.% is not 

only sufficient to prevent excessive cold welding of the milled Al but also 

minimising the contamination of the ball-milled powders (Cintas et al. 2005; 
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Suryanarayana 2001); therefore, the suggested 3 wt.% of stearic acid is 

employed and 200 g Al powder without stearic acid was milled followed by 200 g 

Al powder with 3 wt.% stearic acid. 3 wt.% stearic acid was also added to the 

bowl loaded with 200 g Al and 4 vol.% of Al2O3 powders.  

Further, to prevent oxidation during the HEBM process, the grinding bowls 

were filled with argon gas, and a lock device was used to gas-tight seal the bowls 

in the glove box. The milling speed was set at 350 rpm, and the samples were 

taken out every four hours for analysis until 24 hours of milling had been 

completed. To investigate the influence of the milling and pause time on the yield 

and powder characteristics, two sets of experiments were conducted separately; 

the first set of experiments employed a 15-minute milling and 5-minute pause 

combination (further referred to in this thesis as method 1) while the second 

experiment involved a 10-minute milling and 15-minute pause combination 

(method 2) (Han et al. 2016). The samples that were taken out were subject to 

systematic analysis for powder characterisation, which is discussed in the next 

section.  

3.3 Results and Discussion  

Powder characterisation is considered to crucial, because the ball-milled powders 

under different conditions generally offer different characteristics and properties; 

systematic analytical methods thus are required to evaluate the characteristics of 

the ball-milled powders suitable for selective laser melting.   
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3.3.1 Particle Size Distribution and Yield Evaluation 

The milled Al powder without a PCA is shown in Figure 3.2 up to 6 hours of 

milling. It can be seen that the Al particles welded together to form a spherical 

shape with an average particle size of 2.5 mm (Figure 3.2c). It should be noted 

that some of the particles stuck to the surface of the stainless steel balls and 

some were flattened due to the intensive impact. This can be attributed to the 

ductile and soft nature of Al. Unfortunately, the stuck ductile Al hindered further 

grain refinement due to a lack of sufficient collision energy.  

 

Figure 3.2: The milled Al powders without a PCA (a) the bowl with lock system (b) 

the ball-milled pure Al without PCA up to 6 h (c) particle size of the ball-milled Al 

and (d) the stearic acid powder. 

Figure 3.3 shows the Al particle size variation following up to 6 hours of 

milling without a PCA. The average particle size remained approximately 2.5 mm 

after 6 hours of milling, which confirmed the fact that the stuck Al hindered further 
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grain refinement and confirmed the necessity for the usage of a lubricant. 

Therefore, 3 wt.% stearic acid (Figure 3.2d) was added to refine the Al grain size 

and avoid any unwarranted and excessive cold welding of the Al particles 

amongst themselves, onto the internal surface of the bowl and to the surfaces of 

the grinding balls. 

 

Figure 3.3: Al particle size variation following up to 6 hours of milling. 

Figure 3.4a and b show two types of Al-4 vol.% Al2O3 composite powder 

ball-milled for 20 hours when employing two different combinations of milling and 

pause duration. More specifically, when the milling and pause time were set at 15 

and 5 minutes, respectively (method 1), some large and plate-like particles 

formed in the ball-milled composite powder (Figure 3.4a), which can be attributed 

to the agglomeration of the very fine composite powder. Nevertheless, very few 

plate-like particles were found in the composite powder when employing the 10-

minute milling and 15-minute pause combination (method 2, Figure 3.4b).   
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Figure 3.4: Two types of composite powder ball-milled for 20 hours. 

To produce advanced Al-Al2O3 nanocomposite powders suitable for the 

SLM, both types of composite powder were subject to sieving. The particles that 

passed through the 170 mesh sieve (≤90 μm) are shown in Figure 3.4c and d, 

that is, Figure 3.4c shows the sieved composite powder fabricated by method 1 

(15+5 minutes) while Figure 3.4d shows the sieved composite powder produced 

by method 2 (10+15 minutes). Compared to the method 1-produced composite 

powder, the composite powder produced by method 2 offered a much smaller 

particle size and more spherical particle shape.  
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Figure 3.5: The particle size distribution and yield of the sieved nanocomposite 

powders. 

Further, the particle size distribution of the two sieved composite powders 

was obtained using the Malvern Mastersizer3000 (Figure 3.5a). Following ball 

milling for 20 hours, the composite powder from method 1 provided an average 

particle size of 45 μm with a broad range of particle sizes between 5 and 90 μm 

while method 2 produced a composite powder exhibiting an average particle size 

of 25 μm with a much narrower particle size range between 2 and 55 μm. 

Therefore, from a particle size distribution point of view, the sieved composite 



50 

 

powder ball-milled for 20 hours from method 2 would be more suitable than the 

method 1-produced composite powder for the SLM for two reasons. First, small 

particles tend to provide larger surface areas and thus contribute to a higher laser 

energy absorption rate during the laser melting stage than large particles, and 

second, the particles with a narrow range of particle sizes could ensure high 

dimensional accuracy in each powder layer during the powder deposition stage 

and further ensure the dimensional accuracy of the final parts.   

In addition to particle size distribution, yield was another key factor 

employed to evaluate the two methods used to produce advanced SLM suitable 

Al-Al2O3 nanocomposites. In both experiments, the weight of the input (𝑊𝑖) was 

218 g, which consisted of 200 g Al, 4 vol.% of Al2O3 (12 g) and around 3 wt.% of 

stearic acid (6 g). When method 1 was employed, the weight of the output (𝑊𝑜) 

was approximately 214.5 g compared to 216 g from method 2. Due to the 

presence of sufficient lubricant, almost no powder was found sticking to the 

surface of the grinding bowls and balls after 20 hours of milling. In terms of 

equation (3.1), the weight loss (𝑊∆) in the two experiments was 3.5 g and 2 g for 

methods 1 and 2, respectively. Moreover, after sieving, the weights of the 

particles with a particle size of less than 90 μm (𝑊90) were 98 g and 144 g, 

respectively. Yields (𝜑) of 45% (method 1) and 66% (method 2) can thereby be 

determined using equation (3.2). It should be noted that, for both the methods, 

there was no apparent change in particle size distribution and yield of the ball-

milled powder between 20 and 24 hours of milling.  
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It should be noted that method 1 provided a high weight loss and low yield 

while method 2 offered a low weight loss and relatively high yield, which can be 

attributed to the different weights of the stearic acid that remained in the 

composite powders after 20 hours of milling. Indeed, due to the intensive impacts 

of the grinding balls during HEBM, the temperature in the bowls increased 

gradually, and when the temperature was over 90°C, the lubricant (stearic acid) 

started to volatilise, which led to the welding and agglomeration of the refined 

composite powder. Generally, a short milling and long pause time combination 

together with built-in fans could cool the grinding bowls better than a long milling 

and short pause time combination. Therefore, the weight loss (𝑊∆) of 3.5 g and 2 

g for methods 1 and 2, respectively, can be primarily attributed to the 

volatilisation of the stearic acid.  

3.3.2 Morphological Evolution  

The morphology of the composite powder was considered to be important to 

determine whether it would be suitable for SLM as this would affect the powder’s 

flow behaviour in the powder layer deposition stage. Figure 3.6 shows the 

morphological evolution of the Al-Al2O3 nanocomposites and Al powders following 

up to 20 hours of milling when method 2 was used.   
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Figure 3.6: The morphological evolution of the Al-Al2O3 nanocomposites and Al 

powders ball-milled for up to 20 hours. 

More specifically, Figure 3.6a shows the morphology of the composite 

powder ball milled for 4 hours; it can be seen that the welded particles had 

irregular shapes and had particle sizes of more than 100 μm, which can be 

explained by the ductile nature of Al. With the continued milling process, the 

fracture mechanism was activated, and some large particles were crushed due to 

intensive impacts, which resulted in morphological changes and particle size 

reduction (Figure 3.6b). When the milling time was increased to 16 hours, the 

fracture phenomenon was more prominent and a considerable number of small 

particles (particle size around 20 μm) were formed. Meanwhile, some particles 

exhibited nearly spherical shapes whilst a few large particles remained (Figure 

3.6c).  

When the milling time was extended to 20 hours (Figure 3.6d), the 

composite powder offered a much narrower particle size range and more nearly 
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spherical particles were formed. In fact, there was no apparent change in the 

particle size and morphology when the milling time was over 20 hours, and this 

can be attributed to the achieved steady state between the cold-welding and 

fracture mechanisms. However, Tousi et al. (2009) found that the Al-Al2O3 

composite powder could reach steady state when the milling time was up to 15 

hours. This can be explained by the employment of process parameters, that is, 

in the present work, the employed ball-to-powder weight ratio was 5:1 compared 

to the 15:1 in literature. A higher ball-to-powder weight ratio could generate more 

intensive impacts of the grinding balls and thereby shorten the milling time. On 

the other hand, the higher weight ratio tended to produce a smaller quantity of 

milled powder in one milling.   

To investigate the effect of the added nano Al2O3 on the powders’ 

morphological evolution, the morphologies of the Al powder subjected to 8 and 

20 hours of milling were also examined and are shown in Figure 3.6e and f. It can 

be seen that, compared to the composite powder ball-milled for 8 hours, the Al 

powder ball-milled for 8 hours was still in the plastic deformation stage, and cold-

welding was the prominent mechanism as most of the particles were plate-like in 

shape. This can be explained by the fact that the added 4 vol.% of nano Al2O3 

reinforcement functioned as the grinding media in the composite powder ball-

milled for 8 hours. Together with the loaded grinding balls, this stimulated and 

shortened the plastic deformation duration, and the fracture mechanism was 

activated ahead of 8 hours of milling. When both the nanocomposite and Al 

powders ball-milled for 20 hours were compared, the former exhibited more 

spherical shapes and a narrower range of particle size distribution than the latter, 
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which suggested that the former would be more suitable for the SLM process and 

would offer better flowability. More details on the morphological evolution of the 

pure Al and nanocomposite powder may be found in appendix A (Figure A-4, 5).  

3.3.3 Flowability Analysis 

Composite powders’ flowability is considered crucial for the SLM process as it 

determines the powder’s deposition performance. Generally, good-flowing 

powders generate powder layers with continuous and uniform thickness while 

poor-flowing powders lead to non-uniform layers, which are detrimental to the 

dimensional accuracy and mechanical properties of the final parts. The CI can be 

used to evaluate the flow behaviour of advanced ball-milled Al-Al2O3 

nanocomposite powders. As mentioned previously, powders with a CI of less 

than 15% are considered to have good flowability while a CI greater than 20% 

implies poor flowability. 

 

Figure 3.7: Flowability measurements and the Carr index (CI). 
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Figure 3.7 shows the measurement results for 55 g of raw Al and the 

same mass of Al and Al-Al2O3 nanocomposite powders ball-milled for 20 hours. 

The measured apparent and tapped volumes for the raw Al were 51 mL and 38 

mL, respectively. The tapped volume was obtained by tapping the 100 mL 

cylinder 500 times and measuring the tapped volume to the nearest graduated 

unit. Using equation (3.3), the CI was determined to be 25.5%. Likewise, the 

measurements of the Al and Al-Al2O3 nanocomposite powders ball-milled for 20 

hours were taken, and further, the CI values were determined to be 17.5% and 

13.2%, respectively.  

The results indicated that amongst the three powders, the Al-Al2O3 

nanocomposite powder ball-milled for 20 hours exhibited the best flowability 

followed by the Al ball-milled for 20 hours, while the raw Al offered poor flowability 

with a CI of 25.5%. This can be explained by two factors, the first of which is the 

powder’s morphological evolution. Generally, spherical powders tend to have 

better flowability than non-spherical powders. The morphologies of the raw Al and 

the Al and Al-Al2O3 nanocomposite powders ball-milled for 20 hours are shown in 

Figures 3.1 and 3.4, respectively. As shown, some of the composite particles 

have a nearly spherical shape while most of the Al powder ball-milled for 20 

hours is equiaxed in shape; the raw Al however exhibits an irregular shape. The 

second factor is the addition of the stearic acid, which functioned as a lubricant 

and further improved the flow behaviour of the ball-milled powders by reducing 

the friction between adjacent particles.    
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Therefore, it can be concluded that the raw Al powder was likely to be 

unsuitable for the SLM process because, during the powder layer deposition, a 

non-uniform layer could be generated, resulting in poor dimensional accuracy of 

the final parts. Notwithstanding, when employing a combination of 10-minute 

milling and a 15-minute pause, the produced advanced Al-Al2O3 nanocomposite 

powder ball-milled for 20 hours not only provided an ideal particle size distribution, 

but also offered good flowability and was therefore considered to be suitable for 

the SLM process.  

3.3.4 Phase Identification and Uniformity Evaluation  

To investigate contamination and the phases formed during the ball-milling 

process, the XRD patterns of the composites and Al powders following up to 20 

hours of milling were measured and are shown in Figure 3.8. More specifically, 

after 20 hours of milling, the diffraction patterns of the milled Al still exhibited 

typical Al peaks, but these were broadened, which could be attributed to 

refinement of the Al grains. It also indicated that the iron elements from the 

grinding bowl and balls were not present or were below the levels of detection. 

This finding was in agreement with (Choi et al. 2008), in which the observed XRD 

patterns of Al broadened and mean grain size reduced until the milling time was 

up to 24 hours. This phenomenon validated the hypothesis that the ball milling 

significantly contributed to the grain refinement. Nonetheless, the peaks of the 

composite powder ball-milled for 20 hours exhibited a slightly horizontal offset 

and relatively weak intensity compared to the 20 hours-milled Al. This can be 
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explained by the fact that the nano Al2O3 reinforcements were embedded in the 

Al matrix, which also broadened the peaks of the composite powder.  

 

Figure 3.8: The XRD patterns of the Al-Al2O3 composite and Al powders ball-

milled for up to 20 hours. 

It should also be noted that the patterns of the Al2O3 powder were not 

detected in the XRD spectrum, this however was different from the observation 

elsewhere (Prabhu et al. 2006). In literature, the spectrum of nano Al2O3 powder 

was detected in the composite powder’s XRD diffraction patterns. This can be 

attributed to the fact that the employed volume fraction of Al2O3 powder in 

(Prabhu et al. 2006) ranged from 20% to 50%, which was much higher than the 

volume fraction used in the present work (4 vol.%). It can be seen that the 

measured FWHM of the 20 hours-milled composite powder was larger than that 

of 20 hours-milled Al, which validated the hypothesis that the added nano Al2O3 
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reinforcement would serve as the grinding media and accelerate the Al powder 

grain refinement. The average grain size of the Al and Al-Al2O3 composite 

powders ball-milled for 20 hours were determined using equation (3.4) and were 

48 nm and 42 nm, respectively. The patterns of the Al-Al2O3 nanocomposite 

powder after 4 and 12 hours of milling are also shown in Figure 3.8, which 

illustrates that the peaks broadened with the continued milling process.   

The uniformity of the nano Al2O3 reinforcements in the Al matrix was 

crucial for the mechanical property improvement of the composite, but the XRD 

spectrum could not provide more information on this. TEM inspections however 

did offer a visual and qualitative evaluation. Figure 3.9a shows a typical TEM 

image of Al powder milled for 20 hours, and some individual Al grains can be 

clearly observed. Meanwhile, Figure 3.9b shows the TEM image of the composite 

powder ball-milled for 20 hours in which the dispersed nano Al2O3 particles were 

embedded in Al and the original Al grains were split into new grains. This 

behaviour finally contributed to the improvement in the mechanical properties of 

the Al-Al2O3 nanocomposite. Other study (Kang and Chan 2004) also found that 

the nano Al2O3 particles tended to fill in the gaps between Al powders during 

powder mixing process. The nano Al2O3 could pin grain boundaries and give rise 

to grain-refinement to improve the mechanical properties. It was also reported 

that when the volume fraction of Al2O3 was over 4%, the nano particles on the 

grain boundaries would reach saturation and the effect of the nano particles on 

grain boundary pinning could diminish and thereby reduce the mechanical 

properties of the composite.     
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Indeed, when subjected to external load, the Al matrix bears the major 

portion of the applied load while the small dispersed particles (Al2O3) hinder the 

motion of the dislocations; plastic deformation is thereby restricted such that yield 

and tensile strength, as well as hardness, are improved. Even at high 

temperatures, the strengthening remains and for extended time periods because 

the dispersed Al2O3 particulates are unreactive with the Al matrix.  

 

Figure 3.9: TEM images of the Al and Al-Al2O3 nanocomposite powders ball-

milled for 20 hours. 

Nonetheless, it was not easy to quantitatively measure the uniformity of 

the dispersed nano Al2O3 reinforcements in the Al matrix. Compared to the other 

analytical techniques (e.g. TEM), EDS mapping provided a relatively accurate 

method to evaluate the uniformity. Figure 3.10a shows the measured area of a 

composite particle while Figure 3.10b shows the distribution of the two elements 

Al and O in the measured image field. It can be seen that the oxygen was 
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uniformly distributed in the measured image field, and only Al and O were 

detected in the EDS spectrum (Figure 3.10c).  

 

Figure 3.10: EDS patterns of the Al-Al2O3 nanocomposite powder ball-milled for 

20 hours. 
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The atomic and weight fractions of the Al and O elements are shown in 

Table 3.1. The weight percentages of the Al and O elements determined using 

EDS were 97.64% and 2.36%, respectively. As the Al weight percentage 

determined using equation (3.5) was 97.34%, the weight percentage of the O 

element was 2.66%. On the other hand, due to oxidation, a very thin oxide film 

had formed on the surfaces of the composite particles, and Figure 3.11 shows at 

TEM image of the formed oxide films with a thickness of 3 nm.  

Due to the fact that the thickness of the oxide film was ultrathin, the 

weight of the O element from the film was relatively low and could be neglected 

when calculating the weight percentage of the O element. Thus, the results 

obtained from EDS mapping and equation (3.5) were considered to be consistent. 

Therefore, it can be concluded that the hypothesis was validated that the nano 

Al2O3 particles were dispersed relatively uniformly in the Al matrix after 20 hours 

of milling.   

Table 3.1: Atomic and weight fractions of the elements of the nanocomposite 

powder ball-milled for 20 hours 

Element Atomic % Weight % 

Al 96.08 97.64 

O 3.92 2.36 

Total 100 100 
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Figure 3.11: Formed oxide films on the surface of the Al-Al2O3 nanocomposite 

powder. 

3.3.5 Microhardness Analysis 

Figure 3.12a shows a prepared microhardness testing specimen of the Al-Al2O3 

nanocomposite powder ball-milled for 20 hours. Optical microscopy inspections 

indicated that the composite powders were uniformly mounted in the phenolic 

resins. The obtained Vickers microhardness results are shown in Figure 3.12b. It 

can be seen that the measured microhardness values of the raw Al varied from 

49 HV0.05 to 58 HV0.05, and an average microhardness of 52.2 HV0.05 was 

thereby obtained.  
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Figure 3.12: Microhardness testing results. 

Compared to the raw Al, the obtained average Vickers hardness of the Al 

powder ball-milled for 20 hours was 74.5 HV0.05. The significant increase in 

microhardness was closely correlated to the observed powder’s microstructure 

evolution. More specifically, the broadened peaks in Figure 3.8 indicated the Al 

grain refinement induced by HEBM and the TEM image in Figure 3.9a validated 

that the Al grain size was refined after 20 hours of milling. The Al grain refinement 

resulted in the increase in the grain boundaries, which thereby restricted 

dislocation motion and plastic deformation.   
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As for the Al-Al2O3 nanocomposite powder ball-milled for 20 hours, the 

measured average microhardness increased by 26% in comparison with the Al 

powder ball-milled for 20 hours. Likewise, this can also be explained by the 

powder’s microstructure changes. In the first place, the observed FWHM of the 

20 hours-milled composite powder was larger than that of 20 hours-milled Al 

powder (Figure 3.8), which indicated the average grain size of the nanocomposite 

powder was smaller than the Al powder.  

In addition, the addition of the 4 vol.% nano Al2O3 reinforcement was 

another factor that resulted in the increase in hardness. The TEM image (Figure 

3.9b) and EDS spectrum (Figure 3.10) indicated that the Al2O3 reinforcement was 

distributed uniformly amongst the Al matrix up to 20 hours of milling. Therefore, 

both the effect of the ball milling on the Al matrix and the effect of the Al2O3 

reinforcement contributed to the increase in the microhardness of the milled 

composite powder.  

3.4 Summary  

This chapter addresses the synthesis and characterisation of ball-milled Al-Al2O3 

nanocomposite powder for selective laser melting. It focused on the study of the 

effect of milling and pause duration on the yield of Al-Al2O3 nanocomposite 

powder and employed advanced nano-metrology methods and analytical 

techniques to study the characteristics of the composite powder. The composite 

powder ball-milled for 20 h was considered to be suitable for selective laser 

melting due to its nearly spherical morphology, good flowability and high 
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mechanical property. It was found that the Al2O3 reinforcement functioned as the 

grinding media and accelerated the Al powder refinement; the Al2O3 was 

dispersed fairly homogeneously amongst Al matrix after about 20 hours of milling. 

Furthermore, a short milling and long pause combination provided a higher yield 

and narrower particle size distribution range than long milling and a short pause. 

In addition, the employed analytical techniques and advanced metrology 

methods in this chapter can also be used to explore the synthesis of other new 

materials used for selective laser melting.  
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Chapter IV 

Finite Element Simulation of First Layer 
in SLM 

 

This chapter addresses the second research objective of this thesis. It 

investigates the simulation of selective laser melting the first layer’s Al-Al2O3 

powder in order to provide a more efficient combination of process parameters 

used in fabricating bulk samples. A 3D finite element model is developed to 

predict the transient temperature distribution and molten pool dimensions during 

the laser scanning. Further, in order to validate the simulation results, the 

selective laser melting of first layer’s Al-Al2O3 powder is performed prior to the 

SLM of bulk specimens. This chapter is organised as follow: Section 4.1 offers 

details of the 3D finite element modelling. Section 4.2 provides the results of 

thermal behaviour prediction, including transient temperature distribution and 

molten pool dimensions. Section 4.3 discusses the experimental validation and 

Section 4.4 summarises this chapter afterwards.  

4.1 Finite Element Modelling  

The quality of the parts produced via SLM generally depends on the thermal 

behaviour of the molten pool under various operating parameters, such as laser 

power, scanning speed, hatch spacing and scanning strategy (Mercelis and Kruth 

2006). In order to obtain the desired SLM components, further research is thus 
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required to explore the correlation between the process parameters and the 

thermal behaviour during SLM (Childs et al. 2004). It is difficult to measure the 

thermal behaviour during practical SLM applications, however, due to the 

extremely rapid melting and cooling rate; numerical simulation is thereby 

considered to be a suitable approach for exploring these issues.  

4.1.1 Assumptions  

The following assumptions are made in this simulation in order to create a 

mathematically tractable model:  

• The composite powder bed was assumed to be homogeneous and 

continuous. 

• The heat flux from the laser beam was modelled as Gaussian-distributed 

heat flux in space and was given directly on the top of the composite 

powder bed.  

• The convective heat transfer coefficient between the environment and the 

powder bed was assumed to be a constant.  

• Radiation was ignored.  

• The laser is assumed to be running continuously.  

4.1.2 Modelling and Simulation Setup 

A basic heat transfer model consists primarily of a heat source module and a 

thermal physics module. The thermal equilibrium equation follows the classical 

3D heat conduction equation given by (Hussein et al. 2013): 



68 

 

𝜌𝑐
𝛿𝑇

𝛿𝑡
=

𝛿

𝛿𝑥
(𝑘

𝛿𝑇

𝛿𝑥
) +

𝛿

𝛿𝑦
(𝑘

𝛿𝑇

𝛿𝑦
) +

𝛿

𝛿𝑧
(𝑘

𝛿𝑇

𝛿𝑧
) + 𝑄             (4.1) 

where 𝜌  is the material density; 𝑐  is the specific heat capacity; 𝑇  is the 

temperature; 𝑡  is the interaction time and 𝑄 = (𝑥, 𝑦, 𝑧, 𝑡)  is the volumetric heat 

generation. The heat flux 𝐼(𝑟)  follows a Gaussian distribution and can be 

expressed as (Hussein et al. 2013): 

𝐼(𝑟) =
2𝐴𝑃

𝜋𝑟0
2 exp(−

2𝑟2

𝑟0
2)                                  (4.2) 

where 𝐴  is absorptivity, 𝑃  and 𝑟  are laser power and radial distance from the 

laser centre, respectively, and 𝑟0 denotes the laser spot radius.   

The absorptivity of a composite powder containing n components can be 

calculated using the following equation (Tolochko et al. 2000): 

𝐴 = ∑ 𝐴𝑖𝛾𝑖
𝑛
𝑖=1                                               (4.3) 

where 𝐴𝑖  and 𝛾𝑖denote the absorptivity and volume fraction of a component, 

respectively. Tolochko et al. (2000) measured the absorptivity of Al2O3 powder to 

be 3% under a pulsed Nd-YAG laser (λ=1.06μm pulse duration of 5ms, repetition 

rate up to 20Hz, energy content per pulse up to 20J). In the present work, the 

nanocomposite powder was composed of 96 vol.% Al and 4 vol.% Al2O3 powder. 

The absorptivity of Al is normally considered 9% (Li and Gu 2014); the 

absorptivity of Al-Al2O3 composite powder may then be determined using 

equation (4.3), yielding an absorptivity of 8.76%.  

 The porosity of the powder bed is crucial in SLM, as it affects both the 

thermal conductivity of the powder in the laser melting stage and the porosity of 
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the final parts; the powder bed porosity 𝜑′ can be expressed as (Li and Gu 

2014):  

𝜑′ = 1 −
𝜌𝑝

𝜌𝑏
                                                   (4.4) 

where 𝜌𝑝 and 𝜌𝑏 represent the density of powder and bulk materials, respectively. 

The density of the bulk composite material can be calculated using the following 

equation: 

𝜌𝑏 = ∑ 𝜌𝑖𝛾𝑖
𝑛
𝑖=1                                               (4.5) 

where 𝜌𝑖 and 𝛾𝑖 denote the density and volume of component 𝑖, respectively. The 

density 𝜌𝑏 of 2.75 g/cm3 is found when the composite powder comprises 96 vol.% 

Al and 4 vol.% Al2O3. The density of the powder 𝜌𝑝  can be evaluated by the 

apparent density, which is roughly 1.65 g/cm3. Thus, the porosity of the powder 

bed is calculated to be 40%, which is in agreement with the findings of Dong et al. 

(2009), who suggested that the porosity can evolve from 50% (initial powder bed) 

to the minimum value of 0 (fully dense material) during the laser sintering process.   

Using a thermal physics module is necessary because SLM involves a 

phase-change process; this type of thermal analysis is thus a nonlinear transient 

analysis and a number of thermophysical properties should be determined for the 

simulation. In order to analyse the phase transformation, the latent heat should 

be considered: this represents the heat energy that the system stores or releases 

during a phase change. To account for latent heat, the enthalpy of the material 
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𝐻′ as a function of the temperature is defined: it is the integral of material 

density 𝑝 times specific heat 𝑐(𝑇) with respect to temperature 𝑇: 

                𝐻′ = ∫𝑝𝑐(𝑇)𝑑𝑇                      (4.6) 

Other thermophysical properties to consider include the density and 

thermal conductivity of the powder bed, which can be expressed as (Thummler 

and Oberacker 1993): 

                   𝑘𝑝 = 𝑘𝑏(1 − 𝜑′)                    (4.7) 

where 𝑘𝑝  and 𝑘𝑏  denote the thermal conductivity of the powder bed and bulk 

materials, respectively; φ′  is the porosity of the powder bed. Typical solid 

thermophysical properties of Al and Al2O3 are shown in Figure 4.1.  
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Figure 4.1: Thermophysical properties of Al and Al2O3 with temperature (Hatch  

1984).  

This study used the ANSYS Multiphysics finite element package to build 

the first layer’s scanning model and to conduct the heat transfer simulation. The 

3D finite element model that was developed does not rely on 2D assumptions. 

Figure 4.2 shows the model and the scanning strategy used in scanning the first 

layer. A rectangular composite powder layer of 5 x 1 x 0.03 mm was built on a 5 x 

1 x 0.12 mm Al substrate. The nearly spherical ball-milled composite powder 

offered around 40% porosity, which was considered when defining the 

thermophysical properties during the modelling.  

The composite powder layer was meshed with 0.015 x 0.015 x 0.015 mm 

SOLID70 hexahedron element to improve calculation accuracy; coarse mesh, in 

contrast, was used for the substrate. In order to reduce the simulation time, track 

1 was selected to conduct the single track scanning and the first layer that was 

scanned was composed of three single tracks; a bidirectional scanning strategy 

was employed to conduct the simulation in the present work. 
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Figure 4.2: 3D finite element model and scanning strategy 

The heat flux I(r) followed a Gaussian distribution (equation (4.2)); the 

laser radial distance r can be expressed as:  
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                      𝑟 = √(𝑋 − 𝑎)2 + (𝑌 − 𝑏)2(0 ≤ 𝑟 ≤ 𝑟0 )                (4.8) 

where variables a and b can be determined as:          

(𝑎, 𝑏) = {
(𝑣𝑡 − (𝑛 − 1)𝑙, (𝑛 − 1)ℎ)(𝑛 = 1, 3, 5, . . . )

(𝑛𝑙 − 𝑣𝑡, (𝑛 − 1)ℎ)(𝑛 = 2, 4, 6, . . . )
                     (4.9) 

where v and t denote the scanning speed and scanning time, respectively; 𝑛 and 

𝑙  represent track number and track length, respectively, and ℎ  is the hatch 

spacing. When three tracks are simulated, the variables 𝑎  and 𝑏 can then be 

determined as:  

   (𝑎, 𝑏) =

{
 
 

 
 (𝑣𝑡, 0)(0 ≤ 𝑡 ≤

𝑙

𝑣
)

(2𝑙 − 𝑣𝑡, ℎ)(
𝑙

𝑣
< 𝑡 ≤

2𝑙

𝑣
)

(𝑣𝑡 − 2𝑙, 2ℎ)(
2𝑙

𝑣
< 𝑡 ≤

3𝑙

𝑣
)

                                          (4.10) 

 In terms of equation (4.2), the heat-flux magnitude strongly depends on 

the laser power and powder absorptivity. More specifically, the heat-flux 

magnitude is linearly correlated with employed laser power and absorptivity; 

Figure 4.3 shows the heat flux magnitude as a function of laser power when the 

absorptivity was fixed at 8.76%, the heat-flux magnitude was around 4.6 GW/m2 

when the laser power was relatively low, at 100 W; the heat flux magnitude 

increased to 6.9 GW/m2 when the laser power increased to 150 W; a 9.2 GW/m2 

heat-flux magnitude was reached when the laser power was increased to 200 W.  
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Figure 4.3: Heat-flux magnitude with laser power  

Due to the laser scanning-induced temperature gradient in the powder 

bed, heat transfer occurred via convection between the powder bed and the 

ambient environment. The ambient temperature was maintained at 20°C; the 

convective heat transfer coefficient (H) can be expressed in Z direction, as 

follows:  

−𝑘𝑝
𝜕𝑇

𝜕𝑍
= 𝐻(𝑇𝑠 − 𝑇𝑎)                       (4.11) 

where 𝑘𝑝 is thermal conductivity and 𝑇𝑠𝑎𝑛𝑑𝑇𝑎  denote the powder bed surface 

temperature and ambient temperature, respectively. In general, H is set as 10 

W/m2°C in finite element simulation (Hussein et al. 2013). Both the heat flux and 

thermal-convection loads should be applied on the top surface of the composite 

powder layer; in order to prevent heat flux from overriding the applied convection 
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load, it is necessary to create surface effect elements. Thermal convection was 

thus applied on the surface effect elements, and the heat flux was applied on the 

powder layer surface. The simulation parameters that are chosen to simulate the 

scanning of the first layer’s composite powders are shown in Table 4.1.  

Table 4.1: Finite element simulation parameters. 

Parameters Value Parameters Value 

Absorptivity, A 8.76% Convective heat 

transfer coefficient, H 

10 W/m2°C 

Powder bed thickness, d 30 μm Laser power, P 100, 150, 200 W 

Laser spot radius, ro 35 μm Scanning speed, v 100–1000 mm/s 

Ambient temperature, Ta 20°C Track length, l  4 mm 

Number of tracks  3 Hatch spacing, h 70,100 and 130 μm 

4.2 Thermal Behaviour Prediction  

It is important to scan the first layer, as doing so not only determines the 

subsequent layers’ coating behaviour but also affects the dimensional accuracy 

and mechanical properties of the final parts. The properties of a part produced by 

this process therefore depend strongly on the quality of the first layer, because 

that layer determines the nature and shape of the molten pool. Gaining an 

understanding of the thermal behaviour during the scanning of the first layer is 

crucial for engineers in order to optimise the laser strategy and to improve 

component quality using SLM.   
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4.2.1 Maximum Temperature Distribution   

The transient temperature distribution changes rapidly with time during the 

scanning of first layer. When the powder layer is fixed, the laser power and 

scanning speed are two main parameters that determine the temperature 

distribution during the scanning. Combinations of different levels of laser power 

(100, 150 and 200 W) and scanning speeds (100-1000 mm/s) were employed to 

study the maximum temperature variation of every recorded points on the three 

tracks. Figure 4.4 shows the temperature variation of the three tracks with 

respect to scanning speed under a fixed 200 W laser power and 70 µm hatch 

spacing.   

 

Figure 4.4: Maximum temperature distribution of the first layer using 200 W laser 

power with different scanning speeds: (a) 100 mm/s, (b) 200 mm/s, (c) 400 mm/s 

and (d) maximum temperature on three tracks in relation to scanning speed. 
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 More specifically, Figure 4.4a shows the maximum temperature 

distribution under a 100 mm/s scanning speed; the temperature demonstrated a 

gradual increase along the scanning route due to the high thermal conductivity of 

Al and heat accumulation. The relatively long laser irradiation time induced by the 

slow scanning speed gave rise to around 600 ºC increase in temperature 

between two adjacent tracks. The maximum temperature that is induced by the 

laser irradiation should be greater than the melting point of the composite powder 

in order to fully melt the deposited powder and minimise the defects. When the 

maximum temperature was greater than the boiling point (2470 ºC for Al), 

however, the strong evaporation would be associated with recoil pressure that 

was applied on the molten pool surface. The recoil pressure, together with 

Marangoni convection could result in the spatter and porosity within the solidified 

parts.  

Figure 4.4b-c, in contrast, shows the maximum temperature distribution 

when the scanning speed was increased to 200 mm/s and 400 mm/s, 

respectively. The predicted temperature variation shows similar trend to that of 

100 mm/s scanning speed; however, the predicted maximum temperature at 

each track tended to be stable when it reached the peak along the scanning 

route under the 200 mm/s and 400 mm/s scanning speed; this can also be 

explained by the high thermal conductivity of Al powder bed. Figure 4.4d shows 

the correlation between maximum temperature at each track and employed 

scanning speed. One can see that when the scanning speed was fixed, the 

maximum temperature at track 3 was greater than that of track 2 and 1; this trend 

tended to be more obvious when relatively low scanning speed was used. As for 
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each track, the reached maximum temperature decreased with an increase in 

scanning speed because of the reduction in heat energy input.  

 In order to investigate the influence of laser power on maximum 

temperature, Figure 4.5a shows the maximum temperature at track 1 with respect 

to laser power, while the scanning speed was fixed at 200 mm/s. Track 1 was 

chosen because track 2 and 3 demonstrated much higher maximum temperature 

due to the heat accumulation and thermal conductivity (see Figure 4.4). In order 

to produce full dense parts and ensure the dimensional accuracy, the employed 

process parameters that can fully melt track 1, are considered to fully melt the 

rest of the tracks.  
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Figure 4.5: Maximum temperature at the scanning track 1 with (a) fixed scanning 

speed 200 mm/s and (b) fixed laser power 200 W. 

It can be seen that the maximum temperature increased slightly with the 

continued scanning along the tack because of the heat accumulation and thermal 

conductivity; a maximum temperature at the end of the track reached around 

1150 ºC when the laser power was 100 W. The overall maximum temperature 
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increased by 500 ºC as the laser power increased by 50 W, this is because within 

the same exposure time, a higher laser power generates more heat energy input. 

It should be noted that the predicted maximum temperatures under the laser 

power of 100 W and 150 W were less than 2040 ºC during the single-track 

scanning, which means the added nano Al2O3 particles cannot be fully melted 

and surface porosity and microcracks could be further generated.  

 Figure 4.5b, in contrast, shows the maximum temperature distribution at 

track 1 when laser power was maintained at 200 W. When a relatively low 

scanning speed (100 mm/s) was used, the predicted maximum temperature at all 

scanning points were greater than 2040 ºC (except the first recorded point) due 

to a relatively strong laser energy input induced by long exposure time. 

Furthermore, the maximum temperature increased with the continued scanning 

because of the heat accumulation. When the scanning speed increased to 200 

mm/s, the predicted maximum temperature showed a slight increase along the 

scanning route, however, the increase rate was much slower compared to the 

100 mm/s scanning speed. It can thus be concluded that, due to the heat 

accumulation, the predicted maximum temperature showed an increase along the 

scanning route and the trend become more obvious at low scanning speed. The 

simulation results also show that the generated temperature on powder bed was 

less than 2040 ºC when the scanning speed was greater than 400 mm/s, 

implying partial melting and porosity defects within the fabricated parts. The 

maximum temperature induced by the laser irradiation needs to be higher than 

melting point of powder bed in order to fully melt both Al matrix and Al2O3 

reinforcement and further produce full dense part. Therefore, the range of 
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scanning speed for laser energy density and scanning speed optimisation was 

chosen to be 100–600 mm/s when fabricating bulk composite samples in order to 

save experimental cost.  

 In addition to the maximum temperature distribution, temperature variation 

of every point with respect to scanning time is another factor that affects the 

quality of the solidified track, because the cooling rate determines the level of 

microstructure refinement and further influences the mechanical properties of the 

final parts. The midpoint at track 1 was chosen to analyse the temperature 

variation in relation to different levels of laser power and scanning speed.  

 

Figure 4.6: The temperature variation with time at the midpoint of the track 1: (a) 

with fixed scanning speed at 200 mm/s, (b) with fixed laser power at 200 W.  

 The scanning speed in Figure 4.6a was fixed at 200 mm/s and all 

temperature peaks occurred at 0.01 s but reached different values because of 

different heat energy inputs induced by different laser power. The curve slope 

presents the cooling rate, which rises from 7.4 x105 ºC/s to 1.54 x106 ºC/s when 

the laser power increased from 100 W to 200 W. Furthermore, the predicted 

maximum temperature increased from 1046 ºC to 2050 ºC. Figure 4.6b, in 

contrast, shows the temperature variation at the midpoint when laser power was 
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fixed at 200 W, where scanning speed varied from 100 mm/s to 400 mm/s. Three 

peaks occur at different times, and the maximum temperature decreased from 

2267 ºC to 1899 ºC as the scanning speed increased from 100 mm/s to 400 

mm/s. With an increase in scanning speed, the composite powder liquid lifetime 

decreased, which resulted in an obvious increase in cooling rate from 7.5 x 105 

ºC/s to 3 x 106 ºC/s. This is because a relatively higher scanning speed leads to 

shorter laser exposure time and insufficient laser energy input to the powder layer; 

they both could give rise to a low temperature and extremely short liquid lifetime.  

 It can thus be concluded that both the scanning speed and laser power 

play a crucial role in determining the thermal behaviour within SLM of Al-Al2O3 

nanocomposite material. In terms of the simulation results, the cooling rate of 

molten material rises with the increase in both the laser power and scanning 

speed. Moreover, it implies that the cooling rate is more sensitive to the scanning 

speed than the laser power. On one hand, extremely short liquid lifetime and high 

cooling rate induced by relatively high scanning speed are in favour of the grain 

refinement, but on the other hand, it tends to increase the residual thermal stress 

and further facilitate the formation of micro cracks.  

4.2.2 Molten Pool Dimensions  

When the layer thickness is taken into account in the finite element simulation, 

the temperature distribution of the powder layer top surface is not sufficient to 

provide the thermal performance during the scanning of first layer in SLM. It 

would therefore be necessary to analyse the molten pool dimensions, which also 
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plays a crucial role in determining the layer thickness during the multi layers laser 

melting process. Therefore, Figure 4.7 shows the predicted molten pool 

temperature contours at the midpoint of the track 1, where the laser power was 

maintained at 200 W, while the scanning speed varied from 200 mm/s to 400 

mm/s.  

The dimensions of the molten pool were measured through the 

temperature distribution plots recorded at the instant when the laser travelled 

along its path of scanning. The molten pool length represents the distance along 

the X axis and parallel to the scanning direction, while the width is the distance 

along the Y axis and perpendicular the scanning direction, the molten pool depth 

is taken as the distance from the powder layer surface to the molten depth inside 

the powder bed along the Z axis.   

 

Figure 4.7: Predicted molten pool dimensions at the midpoint of the track 1 with a 

fixed laser power 200 W: (a) scanning speed at 200 mm/s, (b) scanning speed at 

400 mm/s.  

 Figure 4.7a shows the temperature contours under the 200 mm/s 

scanning speed, from which three dimensions of the molten pool were measured 
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from both the top surface and the cross-sectional profile. The predicted molten 

length is very close to the width, with the size of 155 µm and 150 µm, 

respectively. The solid line in the cross-sectional profile denotes the interface 

between composite powder layer and aluminium substrate, while the dash line 

represents the isotherm at 660 ºC in the temperature contours. It should be noted 

that the measured molten pool depth is greater than the layer thickness (30 µm), 

which is 59.5 µm; a strong metallurgical bonding may generate between the 

solidified layer and the underneath plate. The temperature contours and molten 

pool dimensions of the midpoint under the 400 mm/s scanning speed are shown 

in Figure 4.7b. One can see that, very similar molten pool shapes were formed, 

but the dimensions are much smaller compared to that of 200 mm/s.  

It may be concluded that a 200 mm/s increase in scanning speed resulted 

in a roughly 45 µm decrease in both molten pool length and width; the predicted 

molten pool length and width were 110 µm and 106 µm, respectively. The 

predicted 106 µm molten pool width, however, implied no metallurgical bonding 

between two adjacent hatches when the employed hatch spacing was greater 

than 100 µm. It should also be noted that the heat-affected zone under 200 mm/s 

scanning speed was much larger than that of 400 mm/s; this is thought to be 

induced by different laser energy input under different exposure times.  

4.3 Experimental Validation  

The simulation results from Section 4.2 indicate that the optimum laser power 

that can be employed amongst 100, 150 and 200 W to fully melt the composite 
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powder is 200 W, where the predicted maximum temperature is greater than the 

melting point of the nanocomposite powder. In this section, the employed laser 

power used in experiments is thus maintained at 200 W in order to save the 

experimental cost. The employed scanning speeds were less than 1000 mm/s, 

while the hatch spacing varied from 70 µm to 130 µm.  

 

Figure 4.8: OM images showing selective laser melted tracks under the 200 W 

laser power: (a) top view and (b) cross section view.  

Figure 4.8a shows the top view of the selective laser melted tracks with 

different scanning speeds from 200 mm/s to 1000 mm/s, while the layer thickness 

was fixed at 30 µm. One can see that the solidified track width decreased with an 

increase in scanning speed and this trend was more obvious when the scanning 

speed was greater than 600 mm/s. This situation may be induced by the laser 

exposure time; a relatively high scanning speed generally gives rise to a short 

laser exposure time and less laser energy input, which further leads to the 
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formation of small molten pools. It can be anticipated that the penetration depth 

also decreases with an increase in scanning speed. Figure 4.8b thus shows the 

cross section view of the scanned tracks with the scanning speeds varying from 

200 mm/s to 600 mm/s. The cross sections of 800 mm/s and 1000 mm/s 

scanning speeds produced tracks are not shown in this figure, because the 

measured molten pool depth of the two tracks were very small. One can see that, 

with an increase in scanning speed from 200 to 400 mm/s, the measured 

penetration depth decreased from around 38.2 µm to 19.4 µm. These 

experimental values are considered to be consistent with the predicted depth, 

shown in Figure 4.7, which was found to be 29.5 and 13 µm, respectively.   

This finding shows agreement with the simulation in Section 4.2 that the 

dimensions of predicted molten pool decrease with an increase in scanning 

speed when laser power, hatch spacing and layer thickness were constant. It 

should be noted that the melt track height is less than the height of the deposited 

layer thickness (30 µm), and it can be explained by the following two factors: first, 

when the powder is irradiated by the laser beam, it spreads out during the melting, 

so the height of the scan track will decrease alongside an increase in the width. 

This phenomenon is also known as wetting ability. It is believed that good wetting 

behaviour promotes the creation of good metallurgical bonding with the substrate 

and adjacent layers. With an increase in the laser power and decrease in the 

scanning speed, the wetting ability tends to improve. Second, due to the porosity 

of the powder bed, the trapped gas between the powder particles could escape 

the molten pool during the melting stage, implying the volume occupied will 

decrease after the solidification.   
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Figure 4.9: Single layer fabrication under hatch spacing of (a) 70 µm, (b) 100 µm 

and (c) 130 µm. 

In order to investigate the effect of hatch spacing on single layer 

fabrication, Figure 4.9 shows the single layer fabrication under 200 W laser 

power and 400 mm/s scanning speed with hatch spacing varying from 70 µm to 

130 µm. One can see that a hatch gap formed between two adjacent hatches 

when the hatch spacing was increased to 130 µm, suggesting no metallurgical 

bonding between the two hatches (Figure 4.9c). Therefore, in order to reduce the 

experimental cost, the 70 µm and 100 µm hatch spacing values would be 

employed to optimise the laser energy density and scanning speed when 

fabricating bulk composite samples using SLM.   

4.4 Summary  

A 3D finite element model has been developed to predict the thermal behaviour 

within selective laser melting of the first layer’s composite; the single layer 

consisted of three single tracks in order to save computation time. Different 

combinations of process parameters such as laser power, scanning speed and 

hatch spacing have been employed to predict the maximum temperature 

distribution and molten pool dimensions.    
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 A set of experiments on scanning of single layer have been conducted 

and the results indicated that the dimensions of molten pool decreased with an 

increase in scanning speed and this trend was more obvious when the scanning 

speed was greater than 600 mm/s. It has also been found that no metallurgical 

bonding could be built between two adjacent hatches when the hatch spacing 

was increased to 130 µm. In order to save experimental cost in optimising laser 

density and scanning speed, the range of scanning speeds used in SLM of bulk 

composite sample was thus limited to 100–600 mm/s; the hatch spacing was 

chosen to be 70 µm and 100 µm. More detail on process parameters optimisation 

is provided in chapter V.  
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Chapter V 

Process Parameters Optimisation and 
Microstructure 

 

This chapter addresses the third research objective of this thesis. The process 

parameters that are suggested by the finite element simulation in chapter IV are 

chosen to fabricate bulk composite samples. The optimum laser energy density 

and scanning speed are determined by quantifying the relative density of the as-

fabricated samples in both horizontal and vertical sections. The microstructure of 

the sections is analysed afterwards. The chapter is organised as follows: Section 

5.1 introduces the research methodology, including the material characterisation 

techniques and research hypotheses; Section 5.2 provides the experimental 

study; Section 5.3 details the results and discussion and Section 5.4 provides a 

summary of the chapter.  

5.1 Research Methodology   

In order to investigate the influences of process parameters on relative density, 

cubic samples (8x8x8 mm) under different conditions (scanning speed and hatch 

spacing) were fabricated and then both horizontally and vertically sectioned. The 

8x8x8 mm sample size was chosen because this size is widely used in literature. 

The sectioned samples were then polished using standard techniques prior to 

optical microscopy (OM) observation; the relative density was evaluated by 
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image analysis using ImageJ software to determine the optimum process 

parameters.  

Laser energy density (𝜀), which is used to quantify the laser-energy input, 

may be expressed as (Simchi 2006):  

𝜀 =
𝑃

𝑣𝑑ℎ
             (5.1) 

where 𝑃 and 𝑣 denote laser power and scanning speed, respectively, and 𝑑 and 

ℎ represent layer thickness and hatch spacing, respectively. 

For the microstructure analysis, the samples were etched using Keller’s 

reagent for 30 s (190 ml distilled water, 5 ml HNO3, 3 ml HCL, 2 ml HF) prior to 

the OM and SEM inspection. Phase identification of the samples was performed 

using X-ray powder diffraction (XRD) with Co kα (λ = 1.789 Å) radiation at 35 kV 

and 40 mA in continuous-scan mode. Cold-working was performed because it is 

capable of improving the components’ strength; the cold-working process was 

performed on both horizontally and vertically sectioned samples at room 

temperature using a universal testing machine (Autograph AG-1 20 KN, 

Shimadzu, Kyoto, Japan) with a compressive strain rate of 0.5 mm/min until the 

strain reached 40%.  

 The research hypotheses of the study include:  

i. The relative density may increase with an increase in the scanning 

speed and laser-energy density until the optimum values; the relative 
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density then decreases when the scanning speed and laser-energy 

density exceed the optimum values.  

ii. Due to the rapid cooling, a fine microstructure is expected to be 

formed in the as-fabricated samples. The cold-working may result in 

grain deformation and elongation by plastic deformation, and further 

change the microstructure of the samples.  

5.2 Experimental Study   

A Renishaw AM250 (Renishaw Plc, Wotton-under-Edge, Gloucestershire, UK) 

SLM system that employs a modulated ytterbium fibre laser with a wavelength of 

1,071 nm was used to fabricate tensile and cubic samples; the nominal diameter 

of the focussed laser spot is 70 µm. The as-fabricated 8 x 8 x 8 mm cubic 

samples were vertically and horizontally sectioned using the YZ and XY planes to 

investigate the effect of process parameters on the porosity distribution and to 

determine the optimum process parameters (Figure 5.1).  

Because the laser that was employed uses discrete point exposures 

instead of running continuously, the equivalent scanning speed may be 

determined by:  

𝑣 =
𝑙𝑝∙𝑣𝑙

𝑙𝑝+𝑣𝑙∙𝑡𝑒
        (5.2) 

where 𝑙𝑝  and 𝑡𝑒  denote the point distance and exposure time, respectively; 𝑣𝑙 

represents the laser’s moving speed between two adjacent points; it remains 

fixed at 5,000 mm/s (Figure 5.1b). As shown in Figure 5.1c, a bidirectional 
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scanning strategy with a striped fill-hatch-type scanning was employed for this 

study; the rotation angle between each adjacent layer was set to 67° to eliminate 

the chance of scan lines repeating themselves directly on top of one another, 

thus creating poor material properties.  

 

Figure 5.1: Schematic diagram of (a) section strategy for cubic sample; (b) laser 

working mode; (c) laser scanning strategy for multiple layers. 

The synthesised composite powder was placed to dry in a furnace set at 100°C 

for 24 h under argon atmosphere. The process parameters used in the study are 

shown in Table 5.1.  
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Table 5.1: Process parameters 

Parameters Value 

Laser power, 𝑃 200 W 

Layer thickness, 𝑑 30 µm 

Substrate temperature, 𝑇𝑜 170°C 

Point distance, 𝑙𝑝 80 µm 

Hatch spacing, ℎ 70, 100 µm 

Scanning speed, 𝑣 100, 150, 200, 300, 400, 600 mm/s 

5.3 Results and Discussion   

This section details the results and discussion, including the process parameters 

optimisation by evaluating the relative density, phase identification and 

microstructure as well as relevant discussion.  

5.3.1 Process Parameters Optimisation  

Figure 5.2 shows the relative density of the as-fabricated samples in relation to 

laser energy density and scanning speed when laser power and layer thickness 

were maintained at 200 W and 30 µm, respectively.  
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Figure 5.2: Relative density in relation to (a) laser-energy density and (b) 

scanning speed. 

Figure 5.2a shows the correlation between the laser energy density and 

the relative density of the as-fabricated vertically sectioned composite samples. 

The relative density increases with an increase in the laser-energy density up to 

317.5 J/mm3, at which point the calculated relative density reached 99.49%; the 

relative density decreased with an increase in the energy density afterwards. 

Variations in the laser energy density are generally caused by the scanning 

speed; as Figure 5.2b shows, the relative density thus varied as a function of the 

scanning speed in both the vertically and horizontally sectioned samples when 

the hatch spacing was maintained at 70 µm. The relative density of both the 

vertically and horizontally sectioned samples reached their maximums (99.49% 

and 99.85%, respectively) at a scanning speed of 300 mm/s (Han et al. 2017b).  

When the scanning speed was greater than this threshold, however, the 

relative density decreased with an increase in scanning speed. This situation 

could be explained by the fact that more heat energy was dispersed to the 

powder bed due to the high thermal conductivity of Al. In addition, because less 
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heat energy accumulated at high scanning speeds, the accumulated heat energy 

was insufficient to fully melt the composite powder.  

The decrease in the relative density also may have been caused by the 

reduction of the scanning speed when the scanning speed that was employed 

was lower than the threshold. This situation may be explained by the laser’s 

working-mode transition from conduction to keyhole mode, because a decrease 

in the scanning speed generally resulted in a dramatic increase in laser energy 

density when the scanning speed was below the threshold. It should be noted 

that the overall relative density of the horizontally sectioned samples was higher 

than that of the vertically sectioned samples at each of the scanning speeds that 

were employed; this is thought to have been caused by the building direction 

(see Figure 5.1).  
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Figure 5.3: Optical microscopy (OM) images showing porosity development with 

scanning speeds of (a) elongated sample at 300 mm/s; (b) 100 mm/s; (c) 200 

mm/s; (d) 300 mm/s; (e) 400 mm/s. 

The microstructure and porosity distribution of the vertically sectioned 

samples under different scanning speeds are shown in Figure 5.3. Figure 5.3a 

shows the porosity distribution of the elongated sample fabricated at 300 mm/s; a 

very small number of metallurgical pores and keyhole pores were formed under 

this process condition. Figure 5.3b–e show typical microstructure and porosity 
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distribution when the scanning speed varied from 100 mm/s to 400 mm/s. Both 

cracks and keyhole pores were generated in the samples fabricated at 100 mm/s 

and 400 mm/s, but only keyhole pores were observed in the sample under 200 

mm/s; this situation may be attributable to the laser energy density variation and 

the poor wettability of the Al2O3 particles under different scanning speeds. 

5.3.2 Phase Identification and Microstructure  

Figure 5.4 shows the XRD patterns of the composite powder ball-milled for 20 h 

and the as-fabricated composite sample fabricated at 300 mm/s. The diffraction 

patterns exhibit typical Al peaks, which suggests that contamination elements 

(e.g. iron) were not present or were below detectable levels in both the high-

energy ball milling and SLM processes. It should be noted that the patterns of the 

Al2O3 powder were not detected in the XRD patterns, which is thought to have 

been induced by the relatively low-volume percentage of Al2O3 (4 vol.%) that was 

added in the Al matrix. Compared to the standard patterns of commercial pure Al, 

however, the peaks of the two composite samples exhibited a slightly horizontal 

offset. This can be explained by the fact that the Al2O3 reinforcements were 

embedded in the Al matrix, which also broadened the peaks of the composite 

samples.  

Furthermore, in terms of the Scherrer equation, the term ‘full width at half 

maximum’ (FWHM) refers to the grain size of the measured samples (Choi et al. 

2008). In general, a larger FWHM value indicates a smaller grain size. The 

measured FWHM of the as-fabricated composite sample was found to be 0.4723, 
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which was a greater value than that of the composite powder (0.3149). This 

indicates that fine grains were formed in the as-fabricated composite samples 

because of the very high cooling rate that occurs with the SLM process. 

 

Figure 5.4: X-ray diffraction (XRD) patterns of the composite powder and as-

fabricated composite sample fabricated at 300 mm/s. 

 Figure 5.5 shows the microstructure of the as-fabricated and cold-worked 

composite samples fabricated at 300 mm/s. Figure 5.5a (1–3) shows the 

microstructure of the as-fabricated horizontally sectioned sample with three 

different magnifications. The molten pool tracks after solidification were clear and 

intact without obvious porosity present, thus implying that Al2O3 particles showed 

good wetting ability and that dense parts could be produced under the process 

parameters that were employed. The as-fabricated sample showed a granular 

microstructure; the microstructure was considered to be that of Al caused by the 

rapid solidification due to the laser irradiation, as reported in literature (Kimura et 

al. 2017). Furthermore, the microstructure at the molten pool region showed 



99 

 

different development; in that case, a relatively fine microstructure was observed 

within the molten pool as compared to the coarse microstructure found at the 

boundary regions of the molten pool (Figure 5.5a-2, 3).  

 
Figure 5.5: OM images showing the microstructure of composite samples 

fabricated at 300 mm/s: (a1–a3) as-fabricated horizontal section; (b1–b3) 

horizontal section after cold working (loading direction indicated); (c1–c3) as-

fabricated vertical section; (d1–d3) vertical section after cold working (loading 

direction indicated). 
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The microstructure of the cold-worked horizontal section is shown in 

Figure 5.5 b(1–3). Compared to the as-fabricated sample, cold working tended to 

close the porosity by deforming the solidified molten pool profile. Furthermore, 

the grains became deformed and elongated due to the plastic deformation; this 

contributed to an improvement in strength because of the entanglement of 

dislocations with grain boundaries and with one another. Both relatively fine and 

coarse microstructures were also observed at the molten pool region.  

It should be noted that a heat-affected zone (HAZ) around the molten pool 

in the previously deposited layers was also clearly visible. This finding shows 

agreement with the work of Thijs et al. (2013); their study found that a transition 

from a fine to a coarse cell structure formed during the SLM of an Al alloy. 

Figure 5.5c (1–3) shows the microstructure of an as-fabricated vertically 

sectioned composite sample. The formation of semi-circular molten pools was 

attributable to the Gaussian-distributed heat flux. Molten pools were present at a 

certain angle, which is thought to have been induced by the rotation angle (67°C) 

between each adjacent layer; the layering was done to eliminate the chance of 

scan lines repeating themselves directly on top of one another. A good 

metallurgical bonding between two adjacent layers was thus formed under this 

condition, though some open pores and oxides still remained (Figure 5.5c–1).  

It should be noted that columnar grains were formed and grew along the 

building direction – or rather they grew along the positive temperature gradient 

(Figure 5.5c 2–3). The microstructure of the cold-worked vertical section is shown 

in Figure 5.5d (1–3), which shows the effect of cold working on the microstructure 
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change. This was similar to the microstructure at the horizontal section: that is, 

the semi-circular molten pools at the vertical section tended to be deformed and 

close porosity due to severe plastic deformation. The columnar and dendrite 

microstructures, however, were observed to be reduced greatly compared to the 

microstructure at the as-fabricated vertical section (Figure 5.5c 2–3). This is 

thought to have been induced by the cold-working process: since the direction of 

the compression force that was employed was perpendicular to the vertical 

section, the grains tended to become deformed and elongated when subjected to 

plastic deformation. The columnar and dendrite microstructures were thus broken, 

which contributed to the entanglement of dislocations with grain boundaries and 

with one another (Figure 5.5d 2–3). 

Figure 5.6 shows the back-scattered SEM micrographs of as-fabricated 

and cold-worked samples; these images are useful for further investigation of the 

microstructure change. The distribution of Al2O3 particles is shown in Figure 5.6a-

1. The energy-dispersive X-ray spectroscopy (EDS) mapping indicates that the Al 

and O contents at the measured surfaces were 98.4 wt.% and 1.6 wt.%, 

respectively (Figure 5.6a 2–3). The measured O content was lower than the 

theoretical weight percentage of O 2.66 wt.% (Han et al. 2016), which may be 

explained by two factors. First, the EDS element analysis is a semi-quantitative 

analysis, which means that it can only measure the element content at the 

sample surface rather than the bulk sample; second, due to the oxidation that 

occurs, a very thin oxide film (roughly 3 nm) was formed on the sample surface.  
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Figure 5.6: Back-scattered SEM micrographs showing (a) uniform distribution of 

Al2O3 reinforcement in Al matrix (via energy-dispersive X-ray spectroscopy [EDS]); 

(b) as-fabricated horizontally sectioned sample; (c) cold-worked horizontally 

sectioned sample. 

The back-scattered SEM micrograph, together with the EDS mapping, 

confirmed that the Al2O3 particles were distributed relatively uniformly amongst 

the Al matrix, though a few agglomerates did remain. The microstructure shown 

in Figure 5.6b shows agreement with the observation shown in Figure 5.5a that 

both granular grains and dendrite microstructures were formed because of the 

rapid solidification and thermal gradient. The microstructure subjected to plastic 

deformation is clearly shown in Figure 5.6c; the deformed and elongated grains 

became entangled with one another, which contributed to strength alteration.  
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5.3.3 Discussion  

This investigation demonstrated that the microstructure formed was non-uniform 

at the molten pool region (Figure 5.5). This microstructure is thought to have 

been induced by the temperature gradient during the laser irradiation. The 

temperature at the boundary regions was much lower than that inside the molten 

pool, because the heat flux that was employed followed a Gaussian distribution. 

During the solidification process, the cooling rate inside the molten pool was thus 

more rapid than in the boundary regions. A previous study has shown that rapid 

cooling produces smaller grains, whereas slow cooling produces larger grains 

(Kalpakjian and Schmid 2014); in the current study, both fine and coarse 

microstructures formed at the molten pool regions. Within single-layer processing, 

another factor that can contribute to the formation of non-uniform microstructure 

is the remelting process, which occurs between any two adjacent discrete point 

exposures when the laser beam is in motion. In addition, due to the hatch overlap, 

the boundary regions of the molten pools also melted twice, and the grain grew 

along the positive temperature gradient to form a non-uniform microstructure.  

Generally, during the SLM process, the powder layer is irradiated and the 

induced heat energy is transferred from the surface of a deposited powder layer 

to the solidified layers underneath; columnar grains form during the solidification 

process due to the temperature gradient within the molten pool. In the present 

study, the grains that formed in the solidified layers underneath also grew along 

the temperature gradient and further formed columnar grains because of the heat 

conduction and remelting process; dendrite microstructures were thus formed 
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(Figure 5.5c 2–3). This finding shows agreement with the literature (H. Zhang et 

al. 2016; Song et al. 2014), in which columnar grains have also been observed 

when SLM is used to process Fe and Al alloys.  

5.4 Summary  

The optimum laser energy density and scanning speed have been determined by 

evaluating the relative density of the as-fabricated composite samples. The 

transition of laser working mode from conductive to keyhole-mode is thought to 

be the primary factor that causes the formation of pores when relative slow 

scanning speeds were employed.  

 The phase of Al2O3 has not been detected in the as-fabricated composite 

samples due to the relatively low volume percentage (4 vol.%). The hypothesis 

was validated that a fine granular-dendrite microstructure of the as-fabricated 

composite samples was formed due to the rapid cooling within SLM; the 

columnar microstructure along the building direction is attributed to the thermal 

gradient at the molten pool region. Further, the influence of cold working on 

microstructure change was also examined; the grains were found to be deformed 

and elongated due to plastic deformation, which may contribute to the alteration 

of mechanical properties of the fabricated samples. The cold-worked parts are 

expected to find applications in which improved hardness and strength are 

required. More detail on the investigation of mechanical properties are discussed 

in next chapter.   
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Chapter VI 

Mechanical Properties Investigation  
 

This chapter addresses the fourth research objective of this thesis. It studies the 

tensile behaviour, microhardness, macro and nanoscale friction and wear 

behaviour of the fabricated samples. The chapter is organised as follows: Section 

6.1 offers the research methodology, including the employed techniques and 

research hypotheses. Section 6.2 provides the experimental study; Section 6.3 

and Section 6.4 detail the results and discussion, respectively. Section 6.5 

summaries this chapter.  

6.1 Research Methodology  

In order to investigate the mechanical properties of the fabricated samples, 

several advanced testing and analytical techniques are employed. The tensile 

specimens were fabricated horizontally and their dimensions were determined 

according to ASTM-E8 / E8M-13a (Anon n.d.). The cubic samples (8x8x8 mm) 

that were used for microstructure analysis in chapter 5 were also used for 

microhardness investigation to explore the influences of microstructure change 

on mechanical property alteration.  

The pin-on-disc dry sliding test was performed to study the macro wear 

behaviour of the fabricated samples to explore the influences of Al2O3 
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reinforcement on friction and wear behaviour. The indicator that is used to 

evaluate material’s wear behaviour is material wear rate (𝜔), which may be 

expressed as:  

𝜔 =
𝑉∆

𝑁∙𝐿
                                                   (6.1) 

where 𝑉∆  denotes the volume loss of the specimen; 𝑁  and 𝐿  represent the 

applied normal load and sliding distance, respectively. 𝑉∆ may be determined by:  

𝑉∆ =
𝑊∆

𝜌
                                                  (6.2) 

where 𝑊∆ denotes the weight loss of specimen after the wear test, while 𝜌 is the 

density of the specimen.  

The development of SLM has led to composite materials finding more 

applications in aerospace and automotive industries. Recently, interest has 

emerged with regard to using SLM to manufacture micro-electromechanical 

systems (MEMS) (Clare et al. 2008) such as MEMS gyroscopes that are widely 

used in modern cars and planes. The wear behaviour may be a significant 

determiner of their life and performance; due to the length scale limitation, the 

macro wear test (e.g. pin-on-disc testing) is inapplicable to study the wear 

behaviour however, the nanoscale wear test (e.g. AFM nanoscratching) is 

thereby employed to study the nanoscale wear behaviour in order to predict and 

improve the life and performance of the MEMS gyroscopes. AFM tip-based 

nanoscratching was also used to examine the influences of pores that were 
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formed within SLM on the nanoscale friction and wear behaviour under different 

loads.   

 The research hypotheses within the study of mechanical properties 

include:  

i. Both tensile strength and microhardness of the nearly full-dense 

composite samples are higher than the pure Al samples because of 

the added reinforcement. 

ii. Cold working induced grain deformation and elongation (observed in 

chapter 5) may contribute to the microhardness alteration.  

iii. Due to the addition of Al2O3 reinforcement, the macro wear 

performance of the composite samples is expected to be better than 

pure Al.  

iv. The pores that are formed within SLM could influence the friction 

coefficient distribution during the AFM nanoscratching.  

6.2 Experimental Study 

The tensile tests were carried out at room temperature using a Zwick/Roell tester 

with a strain rate of 0.3 mm/min. Vickers microhardness tests were performed 

using Innovatest (Maastricht, Netherlands) with a 100 g load and 10 s dwell time. 

An in-house developed pin-on-disc tribometer was used to conduct the macro 

wear test at room temperature. The applied normal load was set to be 1N for the 

as-fabricated composite and pure Al samples. The rotation diameter, sliding 

speed and sliding time were set at 7 mm, 25 rpm and 30 min, respectively.  
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A commercial AFM instrument (Park Systems XE-100, Suwon, South 

Korea) equipped with a pyramidal diamond tip (DNISP, Veeco Inc., USA; tip 

radius < 40 nm) was used to scratch the polished composite sample at room 

temperature. The ambient environment was temperature controlled, which was 

21±0.5 ºC, and the humidity was measured using the rotronic HYGROLOG 

hygrometer (Crawley, West Sussex, UK), which was 43.2±1.3%. The spring 

constant of the cantilever as specified by the manufacturer was 221 N/m. The 

scratching speed was fixed at 2 µm/s, using different normal loads (ranging from 

10 µN to 40 µN) in order to investigate the influence of the keyhole pores and 

nano Al2O3 reinforcement on the friction coefficient and material-wear rate of the 

as-fabricated SLM components.  

 

Figure 6.1: Images showing (a) cubic samples for microhardness and wear test, 

(b) porosity of the sample on the top surface and (c) distribution of Al2O3 in Al.  
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Figure 6.1a shows the cubic samples fabricated under the optimum 

condition of 200 W laser power and an exposure time of 250 µs, which is 

equivalent to a 300 mm/s scanning speed (chapter 5). Figure 6.1b shows the top 

surface of a polished sample in which a few keyhole pores and microcracks have 

formed. The porosity on the composite specimen surface (Figure 6.1b) was 

evaluated using ImageJ software, and was found to be 0.168%. The average 

circularity of the keyhole pores was 0.812 and the measured pore size varied 

from 10 to 38 µm with an average value of 22.4 µm. Furthermore, the as-

fabricated cubic samples were both horizontally and vertically sectioned to 

investigate the spatial distribution of Al2O3 particulates; the Al2O3 particulates 

were found to distribute fairly uniformly amongst the Al matrix. Figure 6.1c shows 

the distribution of Al2O3 particulates in the vertically sectioned cubic sample. The 

distribution density of Al2O3 was also evaluated using ImageJ software, and was 

found to be 13.9%; the circularity of the measured Al2O3 particulates was 0.81 

with an average size of 350 nm; a few clusters were still formed though (Han et al. 

2017c).    

6.3 Results  

This section details the results of tensile test, microhardness test, macro and 

nanoscale wear test.  

6.3.1 Tensile Behaviour of As-fabricated Samples  

Figure 6.2 shows the tensile results of pure Al samples and composite samples 

under different conditions. The composite sample under optimum process 
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parameters exhibited a 36.3% improvement in yield strength (𝜎0.2) as compared 

to the pure Al sample fabricated under the same conditions: 109 MPa and 80 

MPa, respectively. The ultimate tensile strengths (UTSs) of the composite and 

pure Al samples were found to be 160 MPa and 110 MPa, respectively, indicating 

a 45.5% improvement in UTS. Figure 6.2a also shows the tensile behaviour of 

the as-fabricated composite sample fabricated at 100 mm/s; a 106 MPa UTS and 

2.4% elongation were noted. The tensile samples used in this study are shown in 

Figure 6.2b.  

 

Figure 6.2: (a) Tensile stress-strain curves of as-fabricated pure Al and 

composite samples; (b) photograph of the samples after the tensile testing. 

Figure 6.3 shows the fractures of the as-fabricated composite samples 

fabricated at 100 mm/s (Figure 6.3a–c) and 300 mm/s (Figure 6.3d–e), 

respectively. A few obvious cracks (A1-A5) were present in the fracture surface of 

the sample fabricated at 100 mm/s; these cracks contributed to a brittle fracture 

associated with a low elongation, which was consistent with the tensile 

performance shown in Figure 6.2.  
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EDS analysis (Figure 6.3b) confirmed that the present cracks were 

attributable to oxides that were from the original feedstock and/or were generated 

during the SLM process. Figure 6.3d–f shows the fracture surface of the 

composite sample fabricated at 300 mm/s. The fracture surface shows a higher 

number of fine dimple structures and fewer cracks compared to the tensile 

samples fabricated at 100 mm/s, which suggests a ductile fracture rather than a 

brittle fracture. One can see that a few deep holes were formed and surrounded 

by very fine dimple structures at the fracture surface; this implies that the 

microstructure at the vertical section (along the building direction) was not 

particularly uniform because of the grain growth.  

 

Figure 6.3: SEM micrographs showing the fracture surfaces of as-fabricated 

composite samples fabricated at (a–c) 100 mm/s and (d–f) 300 mm/s (A1-A5 

presenting the observed cracks under the scanning speed of 100 mm/s). 

The pure Al samples were also fabricated and tested to investigate the 

influence of added Al2O3 reinforcement on tensile behaviour. The tensile 

behaviour of pure Al fabricated at 300 mm/s showed agreement with Kimura et al. 
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(2017) and exhibited much stronger strength than the pure wrought-aluminium 

values described in the literature (Kalpakjian and Schmid 2014), which were 35 

MPa and 90 MPa for yield strength and UTS, respectively. This is believed to 

have been induced by the rapid cooling within the SLM process. The elongation 

of pure Al (2%), however, was lower than that of the composite sample (5%); this 

elongation is thought to have been induced by the scanning speed.  

Compared to the composite powder, the pure Al powder exhibited higher 

thermal conductivity; the optimum scanning speed (300 mm/s) for the composite 

powder may not have been optimum for accumulating sufficient heat to fully melt 

the powder. Porosity as well as partially melted powders were found to have 

formed, which was confirmed by the microstructure observation. The composite 

sample fabricated at 100 mm/s scanning speed exhibited poorer mechanical 

strength than that of the 300 mm/s scanning speed; this poorer tensile behaviour 

is thought to have been induced by the interaction between recoil pressure and 

Marangoni convection under super-slow scanning speeds, which contributed to 

the formation of keyhole pores and microcracks (oxides) (King et al. 2014; 

Khairallah et al. 2016).  

The fracture surface of the tensile sample fabricated at 100 mm/s showed 

a few cracks, and EDS analysis confirmed that these cracks had been caused by 

oxidation (Figure 6.3a–b). Similar fracture surfaces were also observed in the 

SLM of Al alloys by others (Louvis et al. 2011; Read et al. 2015). The thin oxide 

films in the present study failed to wet the surrounding powders properly, thus 

contributing to poor metallurgical bonding due to the formation of pores and 
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microcracks. It is likely that some of the powder could have be trapped in the 

poor-bonding regions (e.g. pores) when depositing the subsequent powder layer. 

These defects led to the formation of large cracks in the failed samples, as shown 

in Figure 6.3c. 

6.3.2 Microhardness Behaviour  

Figure 6.4 shows the microhardness of the composite samples and pure Al 

samples fabricated at 300 mm/s. Figure 6.4a shows the microhardness of the as-

fabricated horizontal section (8 x 8 mm) as measured in three directions (a, b and 

c). It is clear that the average hardness values in the three directions were very 

close (49.48, 47.57 and 48.35 HV/0.1, respectively), which suggests that 

microhardness is directionally independent. Overlapping regions are generally 

thought to be weaker than other regions within one layer. In this work, however, 

the uniformity of the measured microhardness showed that the microhardness 

was independent of direction at the horizontal plane.  

The microhardness of the pure Al sample in three directions was also 

measured; these results are shown in Figure 6.4b. An average microhardness of 

41.3 HV/0.1 was obtained from the three directions, compared to a 48.5 HV/0.1 

microhardness for the composite sample. The 17.5% increase in the 

microhardness is thought to have been caused by the addition of the Al2O3 

reinforcement, which tends to improve strength by increasing the dislocation 

density in the composite sample because of the pinning effect of Al2O3 nano 

powder on grain boundaries.  
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Figure 6.4: Microhardness of the samples fabricated at 300 mm/s: (a) composite 

and (b) pure Al; (c) stress-strain curve of the composite samples under cold 

working; (d) microhardness of the samples subjected to cold working. 

Figure 6.4c shows the stress-strain curves of the horizontally and 

vertically composite samples induced by cold working. One can see that the 

compressive behaviour of the two samples were consistent at the elastic-

deformation stage, while the horizontal sample exhibited a higher yield stress 

than the vertical sample; this is believed to have been induced by the building 

direction. After the yield points, the samples were subjected to plastic 

deformation, at which point the compressive behaviour tended to be consistent 

when the strain was greater than 20%.  

Figure 6.4d shows the microhardness of the two cold-worked samples 

with a 40% strain. Because this study has shown that the microhardness of 
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samples fabricated using SLM is directionally independent at the horizontal plane, 

the hardness of the two cold-worked samples was only measured in one direction 

(the ‘a’ direction). The horizontal and vertical samples exhibited very close 

average microhardness values of 67.24 and 67.66 HV/0.1, respectively. Further, 

the hardness behaviour of the two samples showed consistency with their 

compressive behaviour within the cold-working process: a 40% strain was 

associated with a roughly 280 MPa stress for both the horizontal and vertical 

samples (Figure 6.4c).  

The experimental results demonstrated that cold working played a 

significant role in microhardness alteration. The marked observed increase in 

microhardness (about 39%) compared to the as-fabricated composite samples is 

attributable to the plastic deformation that occurs within the cold-working process. 

During the cold working, the grains become deformed and elongated. The 

deformed samples exhibit high strength and hardness because of the 

entanglement of the dislocations with grain boundaries and with one another. 

This finding validates the hypothesis in section 6.1 and the microstructure 

observation shown in chapter 5, in which both molten pool tracks and grains were 

shown to be deformed and elongated after the cold-working process. The 

increase in strength depends on the degree of plastic deformation that occurs: in 

general, the higher the deformation, the stronger the part becomes. Cold working, 

however, results in a product with anisotropic properties due to the preferred 

orientation (e.g. reduction in ductility).  



116 

 

6.3.3 Pin-on-disc Friction and Wear Performance  

Figure 6.5 shows the friction and wear performance of the composite and pure Al 

samples after the pin-on-disc tests. Figure 6.5a shows the friction coefficient 

variation of the composite specimen fabricated at 300 mm/s. At the beginning of 

sliding, the friction coefficient offered a large fluctuation due to the vibration and it 

tended to be relatively stable afterwards. The average friction coefficient of the 

composite specimen was determined to 0.83 after 30 minutes’ sliding. The friction 

performance of pure Al exhibited similar vibration trend at the beginning of sliding, 

while a smaller average friction coefficient was determined, which was 0.74 

(Figure 6.5b) (Han et al. 2017c).   

 

Figure 6.5: Friction and wear behaviour: friction coefficient variation of (a) 

composite, (b) pure Al, (c) AFM 3D topography and (d) wear rate. 
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By comparison with pure Al, the composite specimen offered a slight 

improvement in average friction coefficient, and this situation may be explained 

by the uniform distribution of Al2O3 reinforcement amongst Al matrix. Due to the 

significant hardness difference between the Al2O3 and Al phases, part of the 

Al2O3 particulates were exposed outside the Al matrix after the polishing process, 

which in turn resulted in a rougher surface topography than pure Al specimen. 

This situation was confirmed by the 3D AFM topography image (Figure 6.5c). In 

addition to the friction coefficient distribution, another indicator is wear rate.   

Figure 6.5d shows the wear rate of the composite and pure Al specimens 

after wear tests, which were 7 and 11.5 x 10-4 mm3/Nm, respectively. Compared 

to the pure Al specimen, the composite exhibited better wear behaviour with a 

smaller wear rate, which may be attributed to the addition of Al2O3 reinforcement.  

In order to further investigate the wear mechanism of SLM produced 

composites during the wear tests, the SEM images of both composite and pure Al 

specimens after wear tests are shown in Figure 6.6. Figure 6.6a (1–3) show the 

wear trace of the composite specimen with different magnifications. It is clear that 

several microchips were produced and narrow grooves left on the specimen 

surface (Figure 6.6a–3), which implies the dominating wear mechanism was 

abrasive wear. It should be noted that the delamination took place on the 

composite surface; with a continued sliding, the upper layer would delaminate 

from the specimen surface and formed microchips and wear particles 

subsequently.  
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Figure 6.6: SEM images showing the worn region of the composite and pure Al 

samples. 

Compared to the composite specimen, the pure Al specimen tended to 

offer worse wear behaviour and flake spalling was observed on the worn surface 

(Figure 6.6b-2). A larger number of parallel and narrow grooves were formed on 

the worn specimen surface due to the generation of microchips and wear 

particles (Figure 6.6b-3). Since the Al specimen exhibited higher porosity than the 

composite specimen, a relatively huge pore was also observed on the worn 

surface of the pure Al specimen.  

6.3.4 Nanoscale Friction Behaviour 

Figure 6.7 shows typical AFM images of the polished vertical section from the as-

built cube sample. Figure 6.7a and b show the two-dimensional (2D) surface 

profile, which indicated a uniform distribution of Al2O3 (the white and yellow 

features in Figure 6.7a and b, respectively).  
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To further help to understand the details of Al2O3 reinforcement in the 

sample, Figure 6.7c shows the 3D topography of the sample. Due to the 

significant hardness difference between the Al2O3 and Al phases, part of the 

Al2O3 particulates were exposed outside the Al matrix after the polishing process, 

which then resulted in the observed roughness at the sample surface. Figure 

6.7d shows the topography details when the surface was horizontally and 

perpendicularly sectioned using straight lines a and b (Figure 6.7a).  

Several special positions are indicated in Figure 6.7d, which shows the rough 

dimensions and distribution of the Al2O3 reinforcement. It should be noted that 

this sample showed a slight slope in the perpendicular direction, which is thought 

to be induced by the placement of the testing sample; this may be observed from 

the perpendicular surface topography shown in Figure 6.7d.  
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Figure 6.7: Atomic force microscopy (AFM) image of the polished vertical section. 

2D profile images (a) and (b) that imply a uniform distribution of Al2O3 particulates 

(white and yellow dots); (c) 3D image of the sample surface; (d) surface-

topography distribution, indicating a slight slope of the sample. (For interpretation 

of the colour references, the reader is referred to the electronic version.) 

Figure 6.8a shows a schematic of AFM nanoscratching and the pyramidal 

diamond tip that was used in this study, with a nominal radius of less than 40 nm, 

as indicated in the SEM image. Figure 6.8b shows a 3D AFM image of the 

sample that was scratched under the normal load of 30 µN. As the figure shows, 

a clear groove through a keyhole pore was generated, along with produced pile-

up. The lateral voltage output difference and Z signal were then captured (Figure 

6.8c). The lateral signal was used to determine the friction force during the 

scratching and the conversion factor 𝛼  was calculated using a standard 
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calibration grating, which was 23.75 µN/V. The Z signal output is the 

displacement of piezoelectric actuator that defines the motion of the AFM probe 

in the Z direction and as a result, indicates the surface roughness of the 

scratched path. A hole in the sample surface is generally indicated by a convex 

shape; a surface hill, in contrast, would be indicated by a concave shape in the 

captured Z signal graph.  

 

Figure 6.8: Scratched sample surface with a pore and detected signals: (a) 

schematic of the scratching and SEM image of the diamond tip; (b) 3D image of 

the scratched sample surface; (c) detected lateral voltage output (red line) and z 

signal (blue line) during the scratching. 

A clear convex profile was captured in the Z signal graph, which indicates 

that the marked keyhole was scratched and recorded. It should be noted that the 

lateral signal fluctuated after the beginning of the scratching and continued until 

the end; this may be explained by the uniform distribution of Al2O3 particulates, 

which were exposed outside the Al matrix after the polishing and thus resulted in 



122 

 

a rough sample surface; this shows agreement with the observation in Figure 6.7.  

Another phenomenon that should be mentioned is that the lateral signal 

experienced relatively dramatic fluctuations at the pore position, which suggests 

that the pore surface could have an important effect on the friction-force 

distribution during the AFM nanoscratching.  

It should be reminded that keyholes are actually defects that occur during 

the SLM process and that, ideally, parts should be produced without them, as 

they could influence the friction and wear behaviour, in particular at nanoscale. 

To further understand the influence of the keyhole pore on friction force during 

the scratching, Figure 6.9a shows a magnification of the lateral signal at the pore 

position. The figure shows details of the lateral and Z signal’s fluctuation within 2 

s of scratching; the fluctuation of the lateral-voltage output from roughly 2.8 V to 

0.8 V implies an irregularity in the scratched pore surface. Figure 6.9b shows the 

magnification of the pore surface with several marked specific positions (from A 

to F) in order to clarify the effect of the pore surface on the lateral signal output; 

the corresponding positions are from 𝐴′  to 𝐹′  in the lateral signal graph. 

Specifically, the scratching starts from position A to position F under a normal 

load (30 µN) and scratching speed (2 µm/s). Position A is the front edge of this 

keyhole pore, with a lateral voltage output of roughly 2.8 V; when the tip moves 

from position A to the bottom of the pore (illustrated as position B), the direction 

of the induced friction force is upwards along the slope.  

Due to the deformation of the cantilever, however, a horizontal force and 

torsion moment are exerted on the tip to balance the contact load, friction force 



123 

 

and applied normal load; the lateral force is thus reduced when the tip 

experiences a downhill motion. According to Figure 6.9a, the Z signal shows an 

uphill motion between points Bʹ and Fʹ, however, the lateral force increased and 

decreased considerably despite the Z gradient being fairly regular. The variation 

in lateral force can be explained by the fact that the tip was trying to follow the 

path of least resistance and some lateral movements were thus detected.  

 

Figure 6.9: Influence of pore surface on lateral-force distribution: (a) magnification 

of the detected lateral-force signals at a pore; (b) magnification of the contact 

relation between the tip and pore surface. 

It should be noted that when the tip reached the bottom position B, the 

lateral voltage output was not the minimum value; instead, it was greater than the 

minimum value, which suggests that the minimum lateral force was reached 

before it reached the bottom position, while the tip scratched the keyhole pore. 

This is thought to be induced by the pile-up accumulation; that is, while the tip 

experiences a downhill motion, the generated pile-up may accumulate in front of 

the tip and settle at the bottom position. When the tip arrives at the bottom 

position, the accumulated pile-up can exert a force on the tip that increases the 

lateral force. It can be determined that the difference in the lateral voltage output 
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between position A and the minimum (0.8 V) is roughly 2 V, and the friction-force 

difference induced by the downhill motion can also be determined; the difference 

is roughly up to 47.5 µN. When considering the applied normal force of 30 µN, we 

can conclude that the marked pore significantly influences the friction-force 

distribution during the AFM nanoscratching.  

After reaching the bottom position B, the tip experiences an uphill 

movement along the slope. Due to the irregularity of the pore surface, the lateral 

voltage output fluctuates with the continued scratching. More specifically, an 

internal hill is located in position C; the direction of the induced friction force is 

thus downwards along the slope when the tip moves from position B to C. Further, 

due to the exerted horizontal force and the torsion moment by the deformed 

cantilever, the friction force increases with the continued scratching; the lateral 

voltage output thus reaches a peak at position C. A downhill motion then follows, 

which contributes to a decrease in the lateral output until the tip reaches position 

D. Between positions D and F, the irregular slope surface results in fluctuation of 

the lateral voltage output. The position F is another edge of the keyhole; the tip 

moves out of the keyhole pore afterwards.  

It can thus be concluded that the keyhole pore plays an important role in 

lateral-force distribution, which implies that the friction-coefficient distribution 

would also be affected during AFM nanoscratching. The friction coefficient is the 

division of friction force by applied normal load; Figure 6.10 shows the friction 

coefficient distribution with respect to scratching time under different normal loads, 

varying from 10 µN to 40 µN. Figure 6.10a shows the friction coefficient 
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distribution under a normal force of 10 µN; the friction coefficient fluctuated from 

0.3 to 2.1, with an average value of 1.12.  

It should be noted, however, that apart from very limited positions with 

friction coefficient values of less than 0.5, the remainder of the scratched 

positions had a minimum friction coefficient of around 0.8. This can be explained 

by the pores that formed on the sample surface, which resulted in the jump of the 

friction coefficient; two typical pores are marked in the graph. The figure shows a 

magnified image of the friction coefficient distribution that was affected by the 

pore; the figure also includes a trend line. A friction-coefficient fluctuation from 2 

to 0.3 is thought to be induced by the marked keyhole pore; the irregularity of the 

pore surface is also implied by the trend line.  

 

Figure 6.10: Friction coefficient distribution under normal loads of (a) 10 µN, (b) 

20 µN, (c) 30 µN and (d) 40 µN. 
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The uniform distribution of the added nano Al2O3 reinforcement could be 

another significant factor to contribute to the fluctuation of the friction coefficient 

distribution. Al2O3 particulates were exposed outside Al matrix after polishing and 

contributed to a rough sample surface; a rough surface tends to increase the 

friction coefficient and an average friction coefficient of 1.12 was then determined. 

Figure 6.10b shows the friction coefficient distribution under the normal load of 20 

µN; the figure indicates a friction coefficient distribution zone that was affected by 

a pore. Compared to Figure 6.10a, a slight overall increase in the calculated 

friction coefficient was observed, and an average value of 1.26 was determined. 

With a continuous increase in applied normal load (from 30 µN to 40 µN), the 

average friction coefficient increased from 1.31 to 1.41, respectively (Figure 6.10c 

and d).  

6.3.5 Material Wear Rate 

In addition to the friction coefficient, another significant indicator that is often used 

to characterise nanoscale-wear behaviour during AFM nanoscratching is the 

material wear rate, which is attained by dividing the grooved cross-sectional area 

by the applied normal load. The wearing of the pyramidal diamond tip during the 

scratching was assumed to be zero in this work in order to calculate the material 

wear rate. Figure 6.11 shows the measurements of the groove depth and width 

under an applied normal load of 30 µN. Figure 6.11a shows a typical AFM image 

of a groove; three different positions (a, b and c) on the groove were chosen to 

determine the groove dimensions by averaging the three measurements.  
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The cross-sectional profiles of the three marked positions are shown in 

Figure 6.11b; the groove profile was assumed to be triangular when calculating 

the section area. As the figure shows, the three different positions shared nearly 

the same measured width (𝑑′) of 313 nm; the measured depth (ℎ′), however, 

varied from 104 nm to 114 nm. This situation may be explained by the addition of 

nano Al2O3 particles, which offer higher hardness when the tip touches these 

particulates at the groove bottom; a relatively shallower depth could thus be 

obtained, such as the chosen position ‘a’ shown in Figure 6.11a.  

 

Figure 6.11: Groove-dimension measurement: (a) typical AFM image of groove; 

(b) groove depth and width variation at three different positions under 30 µN. (For 

interpretation of the colour references, the reader is referred to the electronic 

version.) 

The averaged groove depth and width under normal loads from 10 µN to 

40 µN are shown in Figure 6.12a; the measured groove depth increased from 52 

nm to 135.6 nm, while the groove width increased from 204 nm to 337 nm. 

Further, it can be determined that both groove depth and width offer a nearly 

linear correlation with applied normal load. The calculated material wear rate and 

friction coefficient variation in relation to applied normal load are shown in Figure 
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6.12b. The figure shows that the wear rate increased from 5.3 x10-4 to 5.7 x 10-4 

mm2/N as the normal load varied from 10 µN to 40 µN. 

  

Figure 6.12: Material wear rate calculation with (a) measured groove dimensions 

and (b) calculated wear rate and friction coefficient in relation to normal load. 

6.4 Discussion 

6.4.1 Wear Rate and Microhardness  

The wear rate of composite and pure Al specimens were determined to be 7 and 

11.5x10-4 mm3/Nm, respectively (Figure 6.5d). Kang et al. (2016) reported that 

the wear rate of Al-12Si alloy fabricated by SLM was 9x10-4 mm3/Nm (Kang et al. 

2016). One can see that the nearly full-dense composite samples exhibit better 

wear behaviour than the widely used Al alloy; this may be explained by the 

addition of Al2O3 reinforcement. It has been found that the abrasive-wear 

resistance is proportional to the part’s hardness; abrasive wear can thus be 

reduced by increasing the hardness of materials (e.g. heat treatment) or by 

reducing the normal load (Kang et al. 2016; Kalpakjian and Schmid 2014). Figure 

6.13 shows the measured microhardness of the composite and pure Al samples 
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as measuring 20 discrete locations. The averaged microhardness of composite 

and pure Al were 48.35 and 40.75 HV/0.1, respectively. The 18.6% increase in 

microhardness of the composite sample is thought to be induced by the addition 

of 4 vol.% Al2O3 reinforcement. This finding confirms the harder composite 

specimen tended to exhibit better abrasive wear behaviour than unreinforced Al 

specimen.  

 

Figure 6.13: Microhardness of the composite and pure Al samples fabricated at 

300 mm/s. 

6.4.2 Nanoscale Wear Behaviour with Normal Load 

The AFM nanoscratching results indicated the friction coefficient increased with 

an increase in applied normal load (Figure 6.10); this situation may be explained 

by a change of the contact condition and adhesion force between the AFM tip 

and the specimen. Specifically, an increase in the normal load generally results in 

an increase in groove depth; when the groove depth is greater than the height of 
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the diamond tip’s spherical apex (with a tip radius of less than 40 nm), the 

dominant contact condition between the tip and the specimen becomes pyramidal 

rather than spherical. A pyramidal contact offers a larger contact area and further 

increases the adhesion force; an increase in adhesion force between tip and 

specimen thus leads to an increase in the friction force and friction coefficient. 

This finding is in agreement with (Chung et al. 2003), in which an AFM was used 

to investigate the fundamental micro-wear rate; that study found that the increase 

in adhesion force due to an increased contact area caused the contact pressure 

to increase during the scratching when a Si3N4 tip was employed to scratch a Si 

specimen surface with an applied load from 10 to 800 nN. 

According to the wear behaviour that the composite exhibited (Figure 

6.12), the average groove depth (52 nm) under a 10 µN normal load was slightly 

larger than the height of the diamond tip’s spherical apex, with a tip radius of less 

than 40 nm (Figure 6.12a); this situation implies that the contact condition 

included a spherical contact that was induced by the tip radius and pyramidal 

contact, which in turn was induced by the pyramidal shape of the tip. With an 

increase in the normal load to 40 µN, the groove depth increased and the 

pyramidal contact became the dominating contact condition. The increased 

contact area led to an increase in adhesion force and further contributed to an 

increase in the friction coefficient. The variation trend of the wear rate showed 

agreement with the friction coefficient trend; both can be explained by the change 

in contact condition within the AFM nanoscratching. 
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6.5  Summary  

Advanced testing and analytical techniques were employed to investigate 

the mechanical properties of the SLM fabricated samples in this chapter and the 

experimental results validated the hypotheses. That is, the uniform-distributed 

Al2O3 reinforcement contributed to the alteration of mechanical properties. 

Compared to pure Al, 36.3% and 17.5% increases in yield strength and 

microhardness (respectively) for the composite samples were achieved. Cold 

working played a significant role in enhancing mechanical strength via changes to 

the material microstructure. Compared to the as-fabricated composite sample, 

the cold-worked composite sample showed a 39% increase in microhardness. 

This increase is thought to have been caused by the plastic deformation, in which 

grains were deformed and elongated. A higher shear stress was thus required to 

cause further slippage.  

The added Al2O3 reinforcement contributed to the alteration of macroscale 

wear behaviour. Compared to pure Al, a smaller wear rate for the composite 

specimen was achieved. Irregular pore surfaces may result in dramatic 

fluctuations in the frictional coefficient at the pore position during the AFM 

nanoscratching process. The measurements of single point contacts demonstrate 

that the presence of the pores can significantly increase friction if asperities 

contacting the surface engage with them. 

The size effect and working principle difference contributed to the 

difference in friction coefficient at macro and nano scales. That is, the recorded 

average friction coefficient of the composite specimen under 1 N normal load was 
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0.83 during the pin-on-disc sliding, while the average friction coefficient during the 

atomic force microscopy nanoscratching increased from 1.12 to 1.41 as the 

applied normal load varied from 10 µN to 40 µN. Third, during the atomic force 

microscopy nanoscratching, both average friction coefficient and wear rate 

showed nearly linear correlation with applied normal load. This was thought to 

have been induced by the change of adhesion force and contact condition 

between the diamond tip and the tested specimen. 

The experimental findings of this work will help to achieve an improved 

understanding of mechanical properties alteration that are affected by the 

reinforcements of the Al-Al2O3 nanocomposites often used in aerospace and 

automotive industries. This study also seeks to expand the potential applications 

of the combination of selective laser melting and atomic force microscopy in 

researching nanoscale wear behaviour.  
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Chapter VII 

Contributions, Conclusions and Future 
Work 

 

This chapter concludes the work presented in this thesis. Section 7.1 lists the 

main contributions of this research. Section 7.2 provides the conclusions, while 

the directions of future work are presented in Section 7.3.  

7.1 Contributions   

 The contributions of this study are as follows:  

i. A method is developed for synthesising and characterising 

nanocomposite powder suitable for selective laser melting. An advanced 

Al-4 vol.% Al2O3 nanocomposite powder suitable for selective laser 

melting is synthesised using high-energy ball-milling and characterised 

using systematic analytical techniques. The influences of milling and 

pause duration on the fabrication of ball-milled powder for selective laser 

melting are studied and found that the short milling (10 min) and long 

pause (15 min) combination provided a higher yield and narrower particle 

size distribution range than long milling (15 min) and a short pause (5 

min).  
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ii. A simulation model is developed for predicting thermal behaviour within 

selective laser melting the first layer. A 3D finite element model is 

developed in the ANSYS platform to predict the thermal behaviour (e.g. 

transient temperature distribution and molten pool dimensions. The 

thermal simulation enables a more efficient selection of process 

parameters used in manufacturing bulk samples; the range of scanning 

speeds is thus limited to 100-600 mm/s and the hatch spacing is chosen 

to be 70 and 100 µm.  

iii. A methodology is developed for selective laser melting process 

parameters optimisation. The SLM process parameters used to 

manufacture nearly full-dense composite samples are optimised and the 

microstructure of the fabricated samples is analysed. The optimum laser 

energy density and scanning speed are determined to be 317.5 J/mm3 

and 300 mm/s, respectively. The fabricated composite samples are 

observed to exhibit fine granular-dendrite microstructure due to the rapid 

cooling, while the thermal gradient at the molten pool region along the 

building direction is found to facilitate the formation of columnar grains. 

Due to the plastic deformation, cold working results in grain deformation 

and elongation.  

iv. A method is developed for studying the influence of reinforcement on 

composites’ mechanical properties. The studied mechanical properties of 

the fabricated composites samples include tensile strength, 

microhardness and wear behaviour. It examines the influences of nano 

Al2O3 reinforcement and cold working on mechanical property alteration. 
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The pin-on-disc wear testing and AFM nanoscratching are performed to 

study the macro and nanoscale wear behaviour, which will help to achieve 

an improved understanding of macro and nanoscale friction and wear 

mechanisms that are affected by the reinforcement and porosity of the Al-

Al2O3 nanocomposites.  

7.2 Conclusions  

The main aim of this study is to manufacture an advanced Al-4 vol.% Al2O3 

nanocomposites using the selective laser melting. In this thesis, the main aim 

together with individual research objectives have been achieved.  

 High-energy ball-milling was employed to synthesise the advanced Al-

Al2O3 nanocomposite powder suitable for selective laser melting. It investigated 

the effect of milling and pause duration on the yield of Al-Al2O3 nanocomposite 

powder and employed advanced nano-metrology methods and analytical 

techniques to study the characteristics of the composite powder. The composite 

powder ball-milled for 20 h was considered to be suitable for selective laser 

melting due to its nearly spherical morphology, good flowability and high 

mechanical property. It also found that that the short milling (10 min) and long 

pause (15 min) combination provided a higher yield and narrower particle size 

distribution range than long milling (15 min) and a short pause (5 min). In addition, 

the employed analytical techniques and advanced metrology can also be used to 

explore the synthesis of other new materials used for selective laser melting.  
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 A 3D finite element model has been developed to predict the thermal 

behaviour within selective laser melting of the first layer’s composite powder; the 

single layer consisted of three single tracks in order to reduce computation time. 

A range of combinations of process parameters such as laser power, scanning 

speed and hatch spacing have been employed to predict the transient 

temperature distribution and molten pool dimensions. A set of experiments on 

scanning of single layer have been conducted and the results indicated that, the 

dimensions of molten pool decreased with an increase in scanning speed and 

this trend was more obvious when the scanning speed was greater than 600 

mm/s. It has also been found that no metallurgical bonding could be built 

between two adjacent hatches when the hatch spacing was increased to 130 µm. 

In order to save experimental cost in optimising laser energy density and 

scanning speed, the range of scanning speeds used in SLM of bulk composite 

samples was thus limited to 100–600 mm/s; the hatch spacing was chosen to be 

70 µm and 100 µm. 

 The optimum laser energy density and scanning speed have been 

determined by evaluating the relative density of the as-fabricated composite 

samples. The mechanism of pore formation within SLM was discussed. The 

transition of laser working mode from conductive to keyhole-mode was thought to 

be the primary factor that causes the formation of pores when relatively low 

scanning speeds are employed. The phase of Al2O3 has not been detected in the 

as-fabricated composite samples due to the relatively low volume percentage (4 

vol.%). The OM and SEM images show the fine granular-dendrite microstructure 

of the as-fabricated composite samples due to the rapid cooling within SLM; the 
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columnar microstructure along the building direction was attributed to the thermal 

gradient at the molten pool region. The influence of cold working on 

microstructure change was also examined; the grains were found to be deformed 

and elongated due to plastic deformation, which contributed to the alteration of 

mechanical properties of the fabricated samples. 

Advanced testing and analytical techniques were employed to investigate 

the mechanical properties of the SLM fabricated samples. The results indicated 

that the fairly uniform-distributed Al2O3 reinforcement contributed to the alteration 

of mechanical properties. Compared to pure Al, 36.3% and 17.5% increases in 

yield strength and microhardness (respectively) for the composite samples were 

achieved. Cold working played a significant role in enhancing mechanical 

strength via changes to the material microstructure. Compared to the as-

fabricated composite sample, the cold-worked composite sample showed a 39% 

increase in microhardness. This increase is thought to have been caused by the 

plastic deformation, in which grains were deformed and elongated.  

The added Al2O3 reinforcement contributed to the alteration of macroscale 

wear behaviour. Compared to pure Al, a smaller wear rate for the composite 

specimen was achieved. Irregular pore surfaces resulted in dramatic fluctuations 

in the frictional coefficient at the pore position during the AFM nanoscratching 

process. The measurements of single point contacts demonstrate that the 

presence of the pores can significantly increase friction if asperities contacting 

the surface engage with them. The size effect and working principle difference 

contributed to the difference in friction coefficient at macro and nano scales. That 
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is, the recorded average friction coefficient of the composite specimen under 1 N 

normal load was 0.83 during the pin-on-disc sliding, while the average friction 

coefficient during the atomic force microscopy nanoscratching increased from 

1.12 to 1.41 as the applied normal load varied from 10 µN to 40 µN. Third, during 

the atomic force microscopy nanoscratching, both average friction coefficient and 

wear rate showed nearly linear correlation with applied normal load. This was 

thought to have been induced by the change of adhesion force and contact 

condition between the diamond tip and the tested specimen. 

The experimental findings on wear behaviour will help to achieve an 

improved understanding of mechanical properties alteration that are affected by 

the reinforcements of the Al-Al2O3 nanocomposites often used in aerospace and 

automotive industries. This study also seeks to expand the potential applications 

of the combination of selective laser melting and atomic force microscopy in 

researching nanoscale wear behaviour.   

7.3 Future Work  

The following is a list of potential work that can be considered in the future:  

• The composite powder used in this study was ball-milled for 20 hours by 

employing a short milling (10 min) and long pause (15 min) combination. 

Whilst a short milling a long pause combination generates a relative high 

yield for SLM, it consumes more working time. An optimum milling and 

pause combination should be determined to balance the yield and 

working efficiency in the future work.  
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• The ball-milled composite powder comprises 96 vol.% Al and 4 vol.% 

Al2O3 powders. The Al2O3 reinforcement is found to distribute uniformly 

amongst Al matrix after 20 hours of milling, and the SLM fabricated 

composite samples exhibit better mechanical properties than pure Al (e.g. 

tensile strength, microhardness and wear resistance). The future work 

may explore the ball-milling of composite powder with higher volume 

percentage of Al2O3 reinforcement such as 8 vol.% and 12 vol.%.  

• A 3D finite element model is developed in this study in order to investigate 

the thermal behaviour of the powder bed during the laser scanning. The 

modelling scale, however, is at macroscale which means the powder bed 

is assumed to be a solid block. The future work may build a microscale 

finite element model, where the powder bed should consist of discrete 

spherical balls. 

• The microstructure and mechanical properties of as-fabricated composite 

samples are studied in this work, the future work may investigate the 

influence of post process (e.g. heat treatment) on microstructure and 

mechanical properties change of the SLM fabricated parts. The addition of 

Al2O3 reinforcement is thought to enhance the mechanical properties of 

the composites at high temperature; the future work may also need to 

study the tensile behaviour of the SLM fabricated samples at high 

temperature.  
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Appendix A 

 

This appendix includes additional information to illustrate the composite powder 

synthesis and characterisation presented in the thesis.  

 

 

Figure A-1: SEM image showing the morphology of raw Al2O3 powder. 
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Figure A-2: Ball-milled pure Al for 6 hours without PCA.   

 

 

Figure A-3: The employed shaker and produced flake-like powders.  
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Figure A-4: The morphology of Al powder after milling for (a) 0 h, (b) 4 h, (c) 8 h, 

(d) 12 h, (e) 16 h and (f) 20 h. 

 

Figure A-5: SEM images showing the morphology of ball-milled composite 

powder for (a) 14 h and (b) 20 h. 
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Figure A-6: Particle size distribution of ball-milled composite powder for 20 h.   
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Appendix B 

 

This appendix includes additional information to illustrate the samples fabricated 

by the selective laser melting presented in the thesis.  

Table B-1: Parameters used in selective laser melting of single track and single 

layer. 

Layer thickness (μm) 30 

Point distance (μm) 60 80 100 

Track 

No. 

Laser 

power 

(W) 

Scanning 

speed (mm/s) 

Exposure 

time (μs) 

Exposure 

time(μs) 

Exposure 

time(μs) 

1 100 200 288 384 480 

2 100 400 138 184 230 

3 100 600 88 117 147 

4 100 800 63 84 105 

5 100 1000 48 64 80 

6 150 200 288 384 480 

7 150 400 138 184 230 

8 150 600 88 117 147 

9 150 800 63 84 105 

10 150 1000 48 64 80 

11 200 200 288 384 480 

12 200 400 138 184 230 

13 200 600 88 117 147 

14 200 800 63 84 105 

15 200 1000 48 64 80 
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Table B-2: Parameters used in selective laser melting bulk samples. 

P=200W 

d=30 µm 

speed 

(v, 

mm/s) 

Point 

distance 

(lp, µm) 

Hatch 

spacing 

(h, um) 

Exposure 

time (te, 

µs) 

Rotati

on 

angle 

(◦) 

Energy 

density 

(E, 

J/mm3) 

1 100 80 70 784 67 952.4 

2 150 80 70 517 67 634.9 

3 200 80 70 384 67 476.2 

4 300 80 70 250 67 317.5 

5 400 80 70 184 67 238 

6 600 80 70 117 67 158.7 

7 200 80 100 384 67 333.3 

8 400 80 100 184 67 166.7 

9 600 80 100 117 67 111.1 

 

 

Figure B-1: Fusion lines on substrate with an exposure point distance 60 µm (a) 

P=100 W and (b) P=150 W 
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Figure B-2: Fusion lines with laser power 200 W (a) point distance of 60 µm, (b) 

point distance of 80 µm and (c) point distance of 100 µm  
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Figure B-3: Single tracks with exposure point distance of 60 µm for (a) and (b), 

80 µm for (c) and (d) and 100 µm for (e) and (f)  

 



148 

 

 

Figure B-4: Single layers with different process parameters combination.  
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Figure B-5: Cross sections of single layers under 200 W laser power with (a) 

h=70 µm, (b) h=100 µm and (c) h=130 µm.  
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Figure B-6: Photograph showing the selective laser melting process.   

 

 

Figure B-7: The fabricated composite samples.   



151 

 

 

Figure B-8: The grinding composite samples after wire electrical discharge 

machining (WEDM).   

 

Figure B-9: Samples used in microstructure analysis. 
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Figure B-10: Fracture surface of the composite sample fabricated at 300 mm/s. 

 

Figure B-11: SEM image showing vertical section of the composite sample 

fabricated at 300 mm/s. 
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Figure B-12: EDS mapping showing the distribution of Al and O elements of the 

composite sample fabricated at 300 mm/s. 

 

Figure B-13: EDS mapping showing fracture surface oxidation of the composite 

sample fabricated at 100 mm/s. 
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Figure B-14: OM image showing microstructure of the horizontal section of 

composite sample fabricated at 400 mm/s. 

 

Figure B-15: OM image showing porosity of the vertical section of composite 

sample fabricated at 100 mm/s 
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Figure B-16: OM image showing porosity of the vertical section of composite 

sample fabricated at 200 mm/s 

 

Figure B-17: OM image showing porosity of the vertical section of composite 

sample fabricated at 300 mm/s 
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