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Abstract   

Purpose: The combination of 3D-EPI with a 2D-CAIPIRINHA undersampling scheme provides high 

flexibility in the optimisation for spatial or temporal resolution. This flexibility can be further 

increased with the addition of a cylindrical excitation pulse, which exclusively excites the brain 

regions of interest. Here, 3D-EPI was combined with a 2D-RF pulse to reduce the brain area from 

which signal is generated, and hence, allowing either the reduction of the FOV or reduction of 

parallel imaging noise amplification.  

Methods: 3D-EPI with cylindrical excitation and 4x3-fold undersampling in a 2D-CAIPIRINHA 

sampling scheme was used to generate fMRI data with 0.9mm in-plane resolution and 1.1s temporal 

resolution over a 5-cm diameter cylinder placed over both temporal lobes for an auditory fMRI 

experiment.  

Results: Significant increases in image SNR and temporal SNR were found for both 2 mm3 data and 

the high resolution protocol when using the cylindrical excitation pulse. Both protocols yielded 

highly significant BOLD responses for the presentation of natural sounds.  

Conclusion: The higher tSNR of the cylindrical excitation 3D-EPI data makes this sequence an ideal 

choice for high spatiotemporal resolution fMRI acquisitions.  
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Introduction 

The increased BOLD sensitivity available at ultra-high field is often traded for increased spatial and 

temporal resolution, usually with the aid of parallel imaging acquisition techniques [1–4].  

In functional MRI acquisitions with 3D-EPI, acceleration in both phase-encoding directions, but 

especially the slab-selection direction, leads to shorter volume TRs [5,6] and this can be highly 

beneficial in increasing BOLD sensitivity, as well as aid in the removal of physiological noise. The 

maximum parallel imaging acceleration factor generally depends on coil geometry, k-space 

trajectory and slice positioning. Unfolding data becomes increasingly difficult with higher 

acceleration factors, resulting in a g-factor penalty that is reflected in (temporal) SNR [7]. Higher 

undersampling factors and thus shorter TRs can be achieved with volumetric CAIPIRINHA 

undersampling schemes [8], which has been combined with the 3D-EPI sequence (3D-EPI-CAIPI) to 

achieve wholebrain coverage with 2 mm isotropic nominal spatial resolution and 500ms temporal 

resolution [9]. This improved detection of physiological noise has also been shown in other fast 

acquisition strategies, such as simultaneous multislice acquisitions using blipped CAIPIRINHA [10,11] 

or non-cartesian acquisitions with regularised reconstructions [12,13].  However, with any of these 

schemes, the spatial resolution is difficult to increase when the entire brain has to be imaged in a TR 

that is short enough to be compatible with BOLD fMRI. Larger matrix sizes require longer readout 

trains, leading to prohibitively long echo times.  

 

One solution to the acquisition of high temporal and high spatial resolution is the use of a 

smaller/restricted field-of-view, covering only the specific brain regions of interest. The use of 

restricted field of view acquisitions has been successfully demonstrated through a combination of 

the standard echo planar imaging sequence with outer volume suppression methods [14,15]. One 

disadvantage of such implementations is that these are SAR intensive and may thus lead to increases 

in scan time, as well as signal loss over the non-suppressed region of interest [15]. Surface coils can 

also be used to avoid signal from regions that are not of interest for the experiment, but these can 

only be used for superficial cortical regions [16,17]. Another alternative is simply reducing the field 

of view and allowing aliasing within parts of the image outside the region of interest. In 3D-EPI, a 2D-

RF pulse can provide a very low-SAR alternative to outer volume suppression [18], by replacing the 

whole brain excitation of the standard slab selection for excitation of a cylinder of freely chosen 

diameter and thus rendering the OVS pulses unnecessary. Using a 2D-rf pulse rather than surface 

coils to limit the sensitive area, the position of the excited region can be freely chosen and is thus 



not limited by hardware, i.e. the positioning of the RF-coil.  This means the cylinder excitation can 

also be used readily in difficult-to-reach areas such as the midbrain [19].  

One area for which inner-volume excitation can be particularly useful is the bilateral auditory cortex 

in the temporal lobes. The small functional units on the temporal plane specifically require the use 

of high special resolution in the fMRI acquisitions [16,20–25]. Unfortunately, placing surface coils or 

outer volume suppression bands here can be difficult because of the bilateral position of the 

auditory regions.  

One advantage of inner volume excitation, particularly in the context of segmented imaging, is that 

artefactual signal from outside the excited area will not introduce artefacts inside the region of 

interest [27]. For example, it could be advantageous to leave the eyeballs outside the excited region, 

to avoid task related eye-movement artefacts which might propagate and interfere with signal from 

functional regions of interest. Physiological noise contributions, which can contaminate even 

somewhat distant tissue if there is any Nyquist ghosting, will also be lower if those areas are placed 

outside the excited area. Regions to be excluded might include the large vessels surrounding the 

brainstem, as well as the eyes. 

Exciting only a limited brain region means that a smaller FOV and matrix size can be used to acquire 

data with the same spatial resolution, in less time per volume. However, the same time gain can also 

be achieved by increasing the parallel imaging undersampling factors in a larger matrix.  

In this study, we show that, using a 32-channel coil and 3D-EPI acquisition with a CAIPIRINHA 

undersampling scheme, a 5cm diameter cylindrical excitation can be used to achieve high (4x3) 

undersampling factors in a nominal wholebrain FOV image, while maintaining high image SNR as 

well as tSNR and hence, improved BOLD signal detection. 



 

Methods: 

All data were acquired using an actively shielded, head-only 7T MRI scanner (Siemens, Germany), 

equipped with a head gradient-insert (AC84, 80 mT/m max gradient strength; 350 mT/m/s slew rate) 

and 32-channel receive coil with tight transmit sleeve (Nova Medical, Massachusetts, USA). Eight 

healthy volunteers (4 females) participated in these experiments, all provided written informed 

consent prior to participation and the experiments were approved by the local ethics committee.  

 

The excitation pulse of the 3D-EPI sequence [9] was replaced with a 2D-RF pulse to selectively excite 

a cylinder in the small flip angle regime [18,28]. The desired RF-pulse was generated using a spiral-in 

gradient waveform working near maximum gradient slew-rate (||S||<330 mT/m/ms) in order to 

minimize RF pulse duration and profile distortions. Potential slew-rate overshoots were avoided by 

further constraining the maximum slew-rate near the k-space center as in [29]. Placing the cylinder 

along the read-out axis maximized time benefits as phase encoding steps in both other axis could be 

reduced, or, in other words, the undersampling factors could be increased in both dimensions.  

Two protocols were compared, both with a cylindrical excitation as well as with a standard slab 

selection excitation pulse, but otherwise identical acquisition parameters: 

- a 2 mm isotropic acquisition (FOV=200 × 200 × 120 mm3, TR = 55ms, TRvol = 1.1s, TE = 27ms, α = 

18o, bandwidth = 2941 Hz/pixel (echo spacing 0.44ms), GRAPPA=1x3, ΔCAIPI=2, readout gradient 

and cylinder along the left-right axis, cylinder radius 25 mm, alias 22 cm, Gaussian smoothing 2 mm, 

pulse length 3.26 ms) 

- 0.9 × 0.9 × 2.0 mm3 acquisition (FOV=200 × 200 × 120 mm3, TR = 55ms, TRvol = 1.1s, TE = 27ms, α = 

18o, bandwidth = 1877 Hz/pixel (echo spacing 0.77ms), GRAPPA = 4x3, ΔCAIPI=1; same cylinder). 

GRAPPA reference lines were acquired with the same excitation pulse profile used as the dataset 

they were acquired for. 24x48 lines were acquired for the 2 mm isotropic resolution dataset, and 

96x48 lines for the 0.9 x 0.9 x 2.0 mm3 resolution dataset. For all four datasets, the vendor-supplied 

online reconstruction pipeline part of the Work-in-Progress package for CAIPIRINHA was used. Raw 

data was additionally saved for a single subject to obtain g-factor maps.  

A 0.6 mm3 resolution MP2RAGE [30,31] dataset was acquired for anatomical reference and to aid 

with the placement of the cylinder centre over Heschl’s gyrus in both hemispheres. The following 

parameters were used: matrix size: 320 × 320 × 256, FOV: 192 × 192 × 154 mm3, TI1/T12 = 800/2700 

ms, α1/α2 = 4/11o. TE/TR/TRMP2RAGE = 3.03/7.1/6000 ms, GRAPPA = 3 and total acquisition time of 10 

min. The distances from isocentre to Heschl’s gyrus measured on the MP2RAGE were used as 

parameter inputs for the 3D-EPI sequence.  



 

Given the importance of physiological signal contributions in 3D-EPI based acquisitions [32,33], 

cardiac and respiratory data were collected for physiological noise removal, along with pulse trigger 

events.  

 

An auditory stimulus was used to test BOLD sensitivity in the primary auditory cortex. Presentation 

of 5s natural sounds, taken from [21], were alternated with 15s silence, for a total of 5 minutes. 

Sounds were presented using e-Prime over MR compatible headphones (Sensimetrics, Malden, MA, 

USA).   

 

Data analysis 

An approximate value for image SNR was obtained by dividing the mean signal in a large mid-

cylinder ROI (Figure 1, blue box) by the standard deviation of the noise in an extra-cerebral ROI not 

affected by image artefacts. The mid-cylinder ROI was selected automatically by placing a 10.8 × 3.4 

× 3.4 cm box around the centre of mass of the excited region. The noise ROI was of identical volume, 

placed along the image borders in the readout-direction.  

Temporal SNR was calculated by dividing the temporal mean of each voxel by the temporal standard 

deviation of the timecourse prior to any processing steps.  

G-factor maps were calculated using the general formulation for quantitative g-factor calculations in 

GRAPPA reconstructions [34]. 

fMRI data were analysed using SPM12. Standard fMRI data processing, including motion correction, 

smoothing with a Gaussian filter of 1.5 mm FWHM and General Linear Model (GLM) analysis, was 

carried out. The GLM contained a single regressor for the task-induced BOLD signal fluctuations 

(sound), modelled as a block convolved with the canonical hemodynamic response function (HRF), 

its temporal derivative, the motion parameters obtained from motion correction, physiological noise 

regressors as described below and three slow drift regressors. First to third order polynomials were 

removed from the motion parameters to reduce correlations between the two regressor sets. 10 

physiological noise regressors were included: RETROICOR regressors up to second order were 

computed following [35], and additional regressors were added for the respiratory volume per unit 

of time (RVT) [36] and the cardiac rate (CR) [37]. No temporal highpass or low-pass smoothing was 

applied to the data.  

From the activation maps, the number of voxels in the largest cluster in the primary auditory cortex 

region, thresholded at p<0.05 FWE corrected, was obtained for each hemisphere, as well as the 



maximum z-score of that cluster. Paired t-tests were used to test for differences between cylindrical 

and slab excitation runs.  



 

Results: 

Image SNR in the 2 mm isotropic data was 36±5 % (mean ± std err over subjects) higher in the 

cylindrical excitation data than in the equivalent slab selection data. This improvement was further 

emphasized on the 0.9 mm in-plane data, where the difference increased to 45±5 %. The difference 

in image SNR is clear in the representative subject data shown in Figure 1, where images with equal 

resolution are scaled to give equal appearance to the noise in the background. Contrast in the 

midbrain is clearly improved for the cylindrical excitation data; the contrast the between the third 

ventricle, which appears bright, and the thalamus, which is darker, is much larger in the left panels 

than in the right ones, where the two structures can hardly be distinguished. The contrast difference 

might, in addition to the increased image SNR, be enhanced by differences in inflow as a smaller 

brain region is excited in the cylindrical excitation data.  

 

Higher image SNR translated also into increases in tSNR values, of 29±5 % in the 2 mm3 data and 

25±1 % in the 0.9 mm in-plane data, measured again over the area indicated in Figure 1. Again, the 

tSNR is visibly improved in the tSNR maps for the example subject presented in Figure 2, both for the 

high resolution data and for the 2 mm3 resolution data. tSNR increases were significantly higher for 

the medial half of the ROI than for the lateral quarters at (increases were respectively 33±5 % and 

26±5 % for the 2 mm3 data and 27±2 %  and 23±1 %  for the 0.9 mm in-plane data, paired t-tests 

p<0.05). 

 

Example slices from the g-factor maps are shown in Figure 3. G-factor values within the ROI were 

lower, at 1.28 ± 0.16 (mean ± standard deviation), for the cylindrical excitation data than for the slab 

selection dataset, for which an average g-factor of 1.70±0.28 across the ROI was found.  

 

The high tSNR led to highly significant BOLD responses in the cylindrical EPI data, an example of 

which is shown in Figure 4, alongside the slab selection equivalents. Across subjects, significantly 

(p<0.05) more activated voxels and a higher maximum t-score were found for the 2 mm3 data. For 

the high resolution data, the differences were not significant (Table 1). The percent signal change did 

not differ between cylindrical excitation and slab selection data. Generally, activation was limited to 

the gray matter band in the 0.9 mm in-plane data, but spread somewhat across the sulci for the 2 

mm3 data. For the example subject data shown in Figure 4, positioning of the slice led to the 

apparent lateralisation of the BOLD responses in this example dataset, though there was no 

significant difference between hemispheres across subjects. Activation patterns were reproducible 



between subjects and acquisition methods, although large inter-run and intersubject variability was 

found for the BOLD responses to this task (Table 1).  

 

Discussion 

The large tSNR gains in the cylindrical excitation data translated to gains in the number of 

significantly active voxels and in the maximum z-score achieved in the cylindrical excitation data 

(Table 1), though this difference was only significant for the 2 mm isotropic data. The percent signal 

change within the same region did not differ between the acquisition types, as might be expected 

given that the BOLD responses are expected to be identical, hence these differences in number of 

active voxels and maximum z-score can be attributed fully to the difference in (temporal) SNR. In the 

high resolution data, a similar effect size was found for the number of active voxels as for the 2 mm 

isotropic data (Table 1), but this difference did not reach significance (p=0.09). Hence, the cylindrical 

excitation method may not work as well with the high resolution protocol. 

 

One of the main advantages of the 3D-EPI sequence is its flexibility in optimising the acquisition for 

maximum spatial or temporal resolution [5,6,9]. The cylindrical excitation pattern can add to this 

flexibility in two ways: A smaller excited region means a smaller imaging FOV can be used without 

incurring wrap-around of the peripheral brain regions. Thus, at a constant matrix size, the acquisition 

time per volume will be reduced, or, alternatively, provided the necessary maximum gradient 

strength is available, with a similar matrix size and readout time, a significantly higher spatial 

resolution might be achieved. However, the cylindrical excitation pattern is probably more 

advantageous in situations where the FOV remains unchanged, increasing the spatial or temporal 

resolution by an increase in the parallel imaging undersampling factor. This also leads to significantly 

shorter volume acquisition times and/or smaller voxel sizes and, as large parts of the imaging FOV do 

not contribute with any signal that needs to be unwrapped, fewer undersampling artefacts (g-factor 

noise amplification and residual unfolding artefacts [27]). The higher (t)SNR in the 0.9 mm in-plane 

cylindrical acquisition data is a direct result from this improved unfolding, as all parameters apart 

from the excitation profile of the pulse remained the same between cylindrical and slab selection 

acquisitions (Figures 1 and 2), and the g-factors were reduced (Figure 3). 

 

Flexibility is also offered by the free placement of the cylinder, meaning that also areas difficult to 

reach with, for example surface coils, such as the brainstem and midbrain, can be imaged 

successfully as we have demonstrated in pilot studies leading to this manuscript [19]. In this study 

we have opted to use a general rf-pulse [28] design that excites a cylinder and whose aliasing 



artifacts could be conveniently positioned outside the regions with water signal. The low tip angle 

needed and strong head gradients available allowed playing such an RF pulse in ~3 ms.  The design 

of the RF pulse could be made subject specific using simple rf pulse design (thanks to the low flip 

angles used throughout [38]) and shortened using parallel transmit technology [39,40]. More subject 

specific designs using parallel transmission could ensure, for example, excitation of the hippocampus 

while avoiding nuisance signal coming from pulsating arteries and brain stem [41] or excitation of 

multiple brain regions [42]. Yet, this would come at the cost of needing to perform a transmit B1 

field calibration, drawing the region of interest and designing the RF pulse while the subject is lying 

in the scanner.  

 

The standard fMRI data analysis is affected in two steps by the difference between cylindrical and 

slab excitation: First, the cylindrical excitation could influence the amount of respiration-induced 

motion corrected for by the motion parameter step. Respiration induced motion does not behave as 

a rigid body motion (larger frequency fluctuations are found in lower slices) and by restricting the 

imaging volume the motion correction procedure is less driven by the brain borders and more by 

anatomical features of the ROI. On the other hand, severe motion could result in a change in the 

excited brain tissue. For none of the subjects here such motion was observed and the excited tissue 

contained sufficient spatial features that the quality of the motion correction was not affected by 

the excitation profile; as confirmed by the high tSNR values observed in the cylindrical excitation 

data.  

And second, as any partial brain functional scan, if the brain region being scanned is small, it is highly 

recommended to acquire a single EPI volume with equal contrast and distortions to the functional 

dataset to match the partial brain to before coregistration of the anatomical scan to the functional 

data or vice versa. Such an extra EPI volume can be acquired in seconds and can greatly simplify the 

coregistration between a, distorted, T2*-weighted fMRI train with partial brain coverage and the 

undistorted, T1-weighted wholebrain anatomical [15].  

 

One of the characteristics of 3D-EPI in general is the longer sampling window compared to an 

equivalent 2D-EPI acquisition. This leads to both higher image SNR and higher physiological noise 

contributions in the 3D-EPI timeseries [43,44]. While physiological noise correction can be used to 

remove cardiac and respiratory contributions and thus regain the SNR and BOLD sensitivity benefits 

of 3D-EPI [32], it might be beneficial to limit the number of segments acquired during a 3D-EPI 

acquisition [6]. As the use of long readout trains increases susceptibility induced distortions, the use 

of high parallel imaging factors to limit the length of the acquisition is expected to be more 



beneficial than acquiring the same number of lines in fewer segments [9]. Here, the cylindrical 

excitation pulse is used to obtain a complete 3D volume in 1.1 s, with a 12-fold undersampling (4 

fold in the slab direction, 3 fold in the phase-encode direction). For the 32-channel coil used, these 

are very high acceleration factors [45]; nevertheless excellent image quality is obtained within the 

cylinder at relatively low g-factors, similar to what was found by Mooiweer et al [27]. Also, the use of 

small, even submillimetre voxel sizes means the thermal noise component is usually much larger 

than the physiological noise component [46], which in turn means that physiological noise 

corrections at small voxel sizes only yield minimal improvements [47]. The combination of a small 

voxel size and relatively low number of segments afforded by the high undersampling factors yields 

a 3D-EPI dataset which is thus mainly thermal noise dominated.  

 

3D-EPI CAIPI and SMS 2D-EPI blipped CAIPI sequences have various similarities both in terms of their 

gradient waveforms, the associated g-factor maps as has been recently shown [48] and the temporal 

accelerations achievable. Such inner volume excitations approaches to obtain improvements on the 

achievable spatial resolution will, in simultaneous multi-slice acquisitions, be limited to outer volume 

suppression along the phase encoding direction which is SAR prohibitive at ultrahigh fields. In the 

current implementation the substitution of the slab selection by the cylindrical pulse only resulted in 

an average increase of SAR of 17%, which remained below 3% of the SAR limit for these low-flip 

angle protocols. 

 

Conclusion 

In this study, we successfully used 3D-EPI with a cylindrical excitation and CAIPIRINHA 

undersampling scheme to acquire fMRI data with high spatio-temporal resolution and very high 

BOLD sensitivity. The use of a cylindrical excitation profile led to significantly higher image and 

temporal SNR in the target area of the functional MRI experiment, as well as improved BOLD signal 

detection within the cylinder for a 2-mm resolution fMRI protocol.  
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Table 1 

Cluster sizes, maximum z-scores and % signal change for the largest cluster located in the primary 

auditory cortex for cylindrical and slab selection data.  

 Number voxels within 
the largest cluster in AI  

Maximum z-score % signal change 

Slab selection, 2 mm 
isotropic 

320 ± 100 16 ± 2 8 ± 1 

Cylinder excitation, 2 
mm isotropic 

600 ± 100 * 21 ± 2 * 8 ± 1 

Slab selection, 
0.9*0.9*2 mm  

390 ± 90 17 ± 1 10 ± 1 

Cylinder excitation, 
0.9*0.9*2 mm 

630 ± 190 † 16 ± 1 10 ± 1 

All data are presented as the mean ± stderr over hemispheres (16). A * indicates significant 

differences between the slab selection and cylindrical excitation data at p<0.05 (paired t-test).  † 

indicates a tendency to difference between slab selection and cylindrical excitation data (p<0.10). 



 

Figure captions 

Figure 1. Example slices from a single subject. All examples are taken from a volume acquired 45s 

after the start of the run, from axial slices through the middle of the cylinder and sagittal slice 

crossing Heschl’s gyrus. a): 2 mm3 resolution, cylindrical excitation, axial slice. b) 2 mm3 resolution, 

cylindrical excitation, sagittal slice. c/d): 0.9 mm in-plane data with cylindrical excitation, 

axial/sagittal slices. e/f) 2 mm3 resolution, slab excitation, axial/sagittal slices. g/h) 0.9 mm in-plane 

with slab selection, axial/sagittal slices. The images have been scaled to give equal appearance to the 

noise for equal resolution. The higher signal intensity in the cylindrical excitation data is evident, for 

both resolutions and both in the midbrain and in the cortex. Note that also the contrast between the 

third ventricle around the midplain and the thalamus, which is positioned posterior and lateral to it, 

is improved in the cylindrical excitation volume compared to the slab selection volume, again in both 

the 2 mm3 and 0.9 mm in-plane data, although it is easier to locate in the latter. The blue box in 

panel c indicates the region over which image SNR and temporal SNR values were obtained.  

Figure 2. tSNR maps for the slices also shown in Figure 1. Maps were generated from data prior to 

pre-processing. Maps are scaled equally for images with the same resolution. Increases in tSNR for 

cylindrical excitation data are especially prominent in the central brain regions, though the cortex 

also shows tSNR increases.  

Figure 3. Example slices from the g-factor maps for the 0.9*0.9*2 mm3 data. The maps are scaled 

equally. The black square indicates the location of the ROI, centred in the cylinder. The data is from a 

different subject than those shown in previous Figures.  

Figure 4. Activation maps from a single subject overlaid on the example slices also used in figures 1 

and 2. The top row shows the 2 mm isotropic data, the bottom row the 0.9*0.9*2 mm3 data. All 

activation maps are thresholded at T=5, corresponding to p<0.05 FWE for the 0.9 mm in-plane data.  

Although the 2 mm3 data show a much larger BOLD signal change for the cylindrical excitation data, 

BOLD responses in the 0.9 mm in-plane data do not differ much between excitation types for this 

specific subject.  
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