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Summary

Since the development of vaccinia virus as a vaccine vector in 1984, the

utility of numerous viruses in vaccination strategies has been explored. In

recent years, key improvements to existing vectors such as those based on

adenovirus have led to significant improvements in immunogenicity and

efficacy. Furthermore, exciting new vectors that exploit viruses such as

cytomegalovirus (CMV) and vesicular stomatitis virus (VSV) have

emerged. Herein, we summarize these recent developments in viral vector

technologies, focusing on novel vectors based on CMV, VSV, measles and

modified adenovirus. We discuss the potential utility of these exciting

approaches in eliciting protection against infectious diseases.
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Introduction

Recombinant viral vectors represent promising vaccine

platforms due to their ability to express heterologous

antigens and induce antigen-specific cellular immune

responses in addition to robust antibody titres, without

the need for exogenous adjuvants. Vaccinia virus was the

first virus to be developed as a vaccine vector,1 and

numerous others have since been explored as delivery

vehicles for foreign immunogens. Here, we discuss a

selection of novel vaccine vectors (Table 1) that have

entered clinical trials recently and/or are forerunners for

licensure. As a number of other viral vectors have already

been comprehensively reviewed,2–7 we will not discuss

them further.

Cytomegalovirus

Human cytomegalovirus (HCMV) is a b-herpesvirus with
a large (236 kbp) DNA genome that establishes life-long,

usually asymptomatic, infection in healthy individuals.

Significant interest in harnessing HCMV in vaccine vector

development has stemmed from the observation that

HCMV induces unusually large T-cell responses (reviewed

elsewhere8). Natural infection with HCMV elicits broad

T-cell responses directed to a vast array of antigens, with

HCMV-specific responses comprising ~10% of the entire

CD4+ and CD8+ T-cell memory compartments.9

Although HCMV employs numerous immune evasion

strategies to avoid control by the host immune system

(reviewed in refs 10,11), HCMV-specific T-cell responses

are long-lived, with particularly high frequencies in

elderly individuals.12 Human CMV-specific T cells also

maintain functionality during virus chronicity and readily

produce multiple effector molecules (e.g. interferon-c,
tumour necrosis factor-a) upon stimulation13,14 and con-

trol virus replication in vitro.15 Furthermore, experiments

in the murine CMV (mCMV) model that recapitulates

the accumulation of highly functional CMV-specific T

cells over time16–18 demonstrate that CMV infection trig-

gers seeding of tissue-resident memory T cells in periph-

eral, including mucosal, tissues.19,20 Hence, although

HCMV also induces substantial antibody responses upon

infection,21 this virus represents a particularly exciting

tool for inducing potent T-cell immunity.

Human CMV exhibits several other properties attrac-

tive for viral vectors. CMV-based vectors can be engi-

neered to express multiple exogenous immunogens.22,23

Human CMV also super-infects HCMV-immune hosts.24

The immunogenicity of CMV-based vaccines was first
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investigated using recombinant mCMV-based constructs.

These induced accumulation of T cells reactive to pep-

tides derived from heterologous antigens that, impor-

tantly, conferred protection from heterologous (vaccinia)

viral challenge.25 Subsequently, induction of protective

pathogen-specific T-cell responses by mCMV-based vec-

tors has been demonstrated in Ebola virus, herpes simplex

virus and Mycobacterium tuberculosis challenge models,26–

29 although non-specific induction of natural killer cell

responses partially contributes to early anti-mycobacterial

activity of mCMV.28

Broad interest in HCMV-based vaccines was triggered

by encouraging data from rhesus CMV (RhCMV) -based

vaccines engineered to express antigens from simian

immunodeficiency virus (SIV). Using vectors expressing

SIV Gag, Env and a Rev-Tat-Nef fusion protein, Picker

and colleagues demonstrated vaccine-induced protection

from mucosal SIV challenge that was associated with the

development of effector memory T-cell responses.22,23

Whereas RhCMV-induced protection did not preclude

SIV spread from mucosal sites of entry, progressive clear-

ance of SIV in ~ 50% macaques was reported, providing

evidence that CMV-based vaccines may be exploited to

induce protective anti-HIV immunity.30,31

Analysis of RhCMV vaccine-induced T-cell immunity

revealed broad CD8+ T-cell responses with an altered epi-

tope hierarchy to responses induced by natural SIV infec-

tion. Intriguingly, RhCMV-induced CD8+ T cells were

restricted by MHC class II30 and HLA-E32 rather than

through classical MHC-Ia restriction. This unique induc-

tion of CD8+ T-cell responses was attributed to deletion

of the Rh157.5/4 genes within the fibroblast-adapted

RhCMV vector.32 Rh157.5/4 are orthologues of the

HCMV UL128/UL130 genes that encode components of

the viral pentameric complex that is required for viral

entry into non-fibroblast cells.33 How deletion of these

genes leads to the induction of unique T-cell responses is

unclear. Interestingly, in a phase I trial in humans using

chimeric HCMV that lacked the pentameric complex,

vaccine-induced CD8+ T-cell responses exhibited classical

MHC restriction.34 This may indicate key biological dif-

ferences between RhCMV and HCMV, or may reflect the

incomplete understanding of how RhCMV vectors elicit

their unusual responses. It will be important to define the

mechanisms that underpin the induction of these unusual

T-cell responses, and to identify which responses are criti-

cal for protection, to generate human CMV vectors that

are equally effective.

Cytomegalovirus-based vectors are clearly exciting.

However, HCMV is pathogenic, and attenuated vectors

are necessary for translation into humans. In mice, tem-

perature-sensitive mCMV fails to induce robust virus-spe-

cific CD8+ T-cell memory,35 eliminating this strategy

from exploration for vector attenuation. Encouragingly,

however, spread-deficient mCMV vectors lacking the

surface glycoprotein L36 or the virion protein M9437

induce robust T-cell immunity. Indeed, glycoprotein L-

deficient (DgL) mCMV induces circulating effector mem-

ory-like CD8+ T-cell responses, although the degree to

which different mCMV-specific responses are induced

varies substantially.36 Whether variation reflects the dif-

ferential dependence of mCMV-specific CD8+ T cells on

CD4+ T-cell help38–40 is unclear. Importantly, we

observed that gL deficiency substantially impairs the seed-

ing of multiple epitope-specific CD8+ T-cell responses

within peripheral tissues, and DgL mCMV-induced CD8+

T cells exhibit sub-optimal recall responsiveness (I.R.

Humphreys, unpublished observation). Hence, a greater

understanding of how to safely induce potent T-cell

responses using CMV-based vectors will inform future

strategies.

Studying CMV-induced T-cell immunity may also

inform alternative vector-based vaccine strategies. Experi-

ments with mCMV have suggested that antigen expres-

sion rather than peptide-intrinsic properties influence

mCMV-induced T-cell expansions.29 Furthermore,

C-terminal localization of peptide in viral proteins greatly

increases peptide availability for proteosomal processing

and subsequent accumulation of protective peptide-speci-

fic T-cell memory.41 Interestingly, adenovirus-based vec-

tors engineered to express peptide mini-genes can induce

effector memory T-cell accumulations indicative of CMV-

induced T-cell immunity.42,43 Hence, studies of CMV-

induced T-cell responses may inform the development of

alternative viral vector systems capable of inducing robust

effector memory T-cell responses.

Enhanced adenoviral vectors

Soon after their pioneering development as gene therapy

vectors in the early 1990s, adenoviruses were also

explored as vaccine vectors44 and have been used in

numerous clinical vaccine trials since 2003.45 Hence, they

are not considered novel vectors per se. However, in the

past few years, several groups have made innovative

improvements to adenoviral vectors that are worth

exploring here because they are already, or have the

potential to become, clinically relevant. The various

enhancements broadly address two challenges: (i) over-

coming pre-existing anti-vector immunity and (ii)

enhancing vaccine-induced antigen-specific immuno-

genicity.

Adenoviruses are non-enveloped icosahedral viruses

with 30–40 kb linear DNA genomes, which can be geneti-

cally manipulated without difficulty. The antigen expres-

sion cassette is most often inserted into the E1 genomic

locus, rendering the virus replication-deficient. Vectors in

which non-essential E3 genes are also deleted can accom-

modate expression cassettes up to a size of 7 kb. Until

recently, replication-deficient AdHu5 was the most widely
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used adenovirus vector in vaccine development, because

of its ability to elicit exceptionally strong CD8+ T-cell

and antibody responses, and the ability to generate high

titres of virus during manufacturing. However, pre-exist-

ing immunity against this vector, specifically neutralizing

antibody titre, was shown to correlate with a reduction in

antigen-specific immunogenicity in clinical trials.46,47

Many groups consequently explored adenoviruses with

lower seroprevalence in the human population, such as

different human adenovirus serotypes or simian aden-

oviruses. Interestingly, different serotypes were found to

elicit different immunogenicity profiles in mice with

respect to phenotype, function and longevity of the cellu-

lar immune response.48 For example, the human adenovi-

ral vectors Ad26 and Ad35 induced enhanced memory

CD8+ T cells and more polyfunctional CD8+ T cells com-

pared with Ad5.48 These two alternative vectors (Ad26

and Ad35) have also been evaluated in clinical trials, with

variable outcomes.49–52 For example, Ad26 and Ad35 vec-

tors containing the HIV-1 env antigen were used in

heterologous prime-boost combinations in a Phase I

trial.53 The authors found that the Ad26-Ad35 prime-

boost elicited significantly higher antibody titres than the

Ad35-Ad26 regimen, but T-cell responses were modest

overall. Ad26 was also used as a priming vector in Ebola

clinical trials, where together with a Modified Vaccinia

virus Ankara (MVA) boost, vaccination was able to elicit a

strong and durable antibody response to the Ebola virus

antigen.54,55 Ad35 has additionally been evaluated in several

other HIV vaccine trials,51,56–58 where it was demonstrated

to be safe and immunogenic. Furthermore, in a tuberculo-

sis vaccine trial it was found to be safe in both infants and

HIV+/� adults. However, it only elicited a cellular immune

response upon repeated high-dose vaccinations.49

In addition to human adenoviruses, many simian

adenovirus-based vaccine vectors have been tested pre-

clinically, and five have advanced to clinical studies to

date,59–61 with promising results. A prominent example is

ChAd3-EBOZ, a chimpanzee adenoviral vector encoding

the Ebola Zaire glycoprotein, which was evaluated in

Phase I and II clinical trials in response to the recent

Ebola epidemic.62–64 This vector was assessed with and

without an MVA booster dose, and was found to elicit

strong antibody and T-cell responses, which could be

increased in magnitude and durability by an MVA boost.

Another chimpanzee adenoviral vector, ChAd63, has also

been evaluated in several clinical trials (malaria,65–67 leish-

maniasis68) with results showing excellent safety and

immunogenicity, even in infants and children.

Improving transgene immunogenicity is also a signifi-

cant focus of ongoing studies. One strategy to enhance

the immune response against exogenous antigen is to

increase immunogen production from the vaccine vector.

This is difficult to achieve with replication-deficient (E1-

deleted) adenovirus vectors, as antigen expression is

restricted to the single copy of the vector genome present

in the infected target cell. Increased antigen expression

could be achieved by enabling the vector to self-amplify

in one additional round of genome replication after cell

entry (so-called single-cycle adenoviruses), or by using

replication-competent adenoviruses. The former approach

has been explored through deletion of a structural gene

(pIIIa) from a replication-competent adenovirus69 that

renders the virus unable to spread. The subsequent virus

expresses early viral genes and replicates its genome, pro-

ducing ~ 30 to 100-fold more copies of the antigen

expression cassette than replication-deficient vectors.

Impressively, a single-cycle adenovirus encoding influenza

A haemagglutinin showed a significantly higher antibody

induction than its replication-deficient equivalent, even at

a 10-fold lower dose.70,71 One drawback of this method,

however, is the requirement for a trans-complementing

cell line (in this case expressing pIIIa) for the production

of such a single-cycle adenovirus, which may represent a

bottleneck for clinical development.

To fully exploit the advantages of a self-amplifying vac-

cine, several groups have also examined the use of repli-

cation-competent adenovirus vectors, which were

administered by varying mucosal routes in permissive

species (mice are not permissive for human or simian

adenoviruses.) Unfortunately, results with regard to

induction of humoral immunity were mixed72–74 or dis-

appointing.75–77 One beneficial feature of replication-

deficient adenoviral vectors is the fact that the transgene

is typically immuno-dominant by default, as the lack of

adenoviral gene expression precludes immune competi-

tion. It is therefore likely that replication-competent vec-

tors can only be effective vaccines if the transgene

remains immuno-competent while competing with

numerous other viral gene products; achieving this has

been challenging (reviewed in ref. 78). Furthermore, repli-

cating adenoviral vectors carry higher safety risks because

Table 1. Viral vaccine vectors discussed in this review and their characteristics

Vector Type of virus Cargo capacity (kb) Predominant immune response Clinical development stage

Cytomegalovirus DNA >6 CD4+, CD8+ and antibodies Phase I

Novel adenoviruses DNA 7 CD8+ and antibodies Phase II

Vesicular stomatitis virus -ssRNA 6 Antibodies and some CD4+, CD8+ Phase III

Measles virus -ssRNA >6 CD4+ and antibodies Phase I
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of their ability to cause systemic infection in certain sus-

ceptible populations.79 However, although they are indeed

not suitable for use in the severely immunocompromised,

a live (oral) adenovirus vaccine used to protect against

respiratory disease caused by Ad4 and Ad7 has neverthe-

less long been used in the United States army, with a very

good safety profile.80

In addition to exploiting vector amplification to increase

antigen expression, several other methods have been

described that aim to enhance the immunogenicity of ade-

noviral vectors. One of these approaches, antigen capsid

incorporation, has been particularly successful in preclini-

cal studies (reviewed in ref. 81). Here, antigenic epitopes

are incorporated into viral structural proteins in such a

way that they are exposed on the virus surface and are

therefore able to elicit robust antibody responses. Epitopes

from a variety of different pathogens have been tested (e.g.

HIV-1,82 influenza A,83 Plasmodium falciparum84). One

group, for example, demonstrated that a multivalent HIV-

1 vector based on AdHu5 elicited antibody responses to an

externally presented HIV-1 B-cell epitope, in addition to

cellular response to the virally encoded HIV-1 gag anti-

gen.85 One clear disadvantage of this method is that only

short heterologous sequences can be inserted into viral

structural genes without affecting virus assembly or stabil-

ity. As an exception, the adenoviral capsid protein pIX can

accommodate C-terminal fusions with larger antigens.

However, these fusions can have a destabilizing effect on

the virion.86 Overall, considering the large numbers of pub-

lications reporting encouraging results, it is surprising that

(to our knowledge) the capsid-display approach has not yet

been evaluated in the clinic.

Vesicular stomatitis virus

The use of vesicular stomatitis virus (VSV) as a vaccine vec-

tor was pioneered by Rose and colleagues in the late 1990s,87

and the vector has since been employed in numerous pre-

clinical studies. However, due to the challenges encountered

in developing a sufficiently attenuated, safe VSV backbone, a

first-in-human evaluation of an recombinant VSV (rVSV)

vaccine did not take place until 2011.88 This was soon fol-

lowed by clinical trials of an rVSV-vectored Ebola vaccine

(2014), which was the most advanced vaccine candidate in

the recent Ebola virus epidemic in West Africa. Buoyed by

this success, the VSV vector has been the subject of much

interest by numerous investigators.

Vesicular stomatitis virus is an enveloped bullet-shaped

virus that belongs to the Rhabdovirus family and contains

an 11-kb negative-sense RNA genome. Apart from its

ability to induce robust cellular and humoral immunity

against encoded transgenes, its high titre growth in vali-

dated cell lines (e.g. Vero) and the lack of a DNA inter-

mediate during viral replication add to its attractiveness

as a vaccine vector. However, owing to its negative-sense

RNA genome, rescue of recombinant virus from plasmid

DNA is more challenging than rescue of DNA viruses, as

it involves co-transfection of five plasmids into a permis-

sive cell line.89 The cargo capacity of rVSV vectors was

found to be at least 4�5 kb,90 and its genomic structure

conveniently allows insertion of transgenes at multiple

sites, which will result in transgene expression at varying

levels. Unlike adenoviral vectors (which are typically

replication-deficient), most VSV vaccine vectors are repli-

cation-competent, albeit attenuated. Attenuation repre-

sents an important safety feature, as wild-type VSV is

neurovirulent upon intracranial inoculation.91 Attenua-

tion of VSV can be achieved in several ways; the most

prominent example combines down-regulation of N pro-

tein expression with truncation of the VSV-G cytoplasmic

tail, resulting in the attenuated vector rVSVN4CT1, which

has been approved for clinical studies.92

In the past 20 years, VSV vaccine vectors have been

demonstrated to induce robust cellular and humoral

immune responses in numerous preclinical studies, lead-

ing to protection in many animal models of pathogen

challenge, frequently after a single vector administration

(reviewed in ref. 93). Durability of a protective immune

response (up to 1 year, so far) has also been demon-

strated.94 Since 2011, rVSV vectors have been evaluated

in four completed or ongoing clinical trials for HIV-

1,88,95–97 and in Phase I, II and III trials for Ebola (re-

viewed in ref. 98). Of note, the Phase III trial that took

place during the 2014/15 outbreak in Guinea showed

promising efficacy in a ring-vaccination strategy.99 Analy-

sis of immunogenicity in these studies revealed a robust

induction of neutralizing antibodies and a modest CD8+

response for all participants in the Ebola virus clinical tri-

als,100 whereas the only report of an HIV-1 trial was more

disappointing, with modest CD4+ levels in two-thirds of

participants and low antigen-specific antibody levels in

one-third of participants.88 Significant differences existed

in the vector backbones used in these trials: rVSV-HIV-1

vectors were attenuated by genetic engineering as men-

tioned above (containing the rVSVN4CT1 backbone) and

the HIV-1 antigen coding sequence was placed in posi-

tion 1 of the genome. In contrast, the rVSV-EBOV clini-

cal vector was simply based on the cell culture adapted

VSV Indiana strain lacking VSV-G (rVSVDG), with the

Ebola glycoprotein (EBOV-GP) placed in position 4. In

the absence of the native glycoprotein, EBOV-GP acted as

the vaccine antigen in addition to the viral entry protein.

As the VSV glycoprotein is the main determinant of viral

tropism, safety considerations for the rVSV-EBOV vector

are different from those for the rVSV-HIV vectors. In ini-

tial Phase I trials, replication of the rVSV-EBOV vector

was detected in synovial fluid and skin lesions, most

probably due to EBOV-GP-specific tissue tropism.101

In an effort to address safety concerns, more attenu-

ated, second-generation rVSV-EBOV vectors were recently
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developed.102 Attenuation was achieved by employing the

rVSVN4CT1 backbone, and reduced virus growth was

demonstrated in cell culture.102 The vaccine was still pro-

tective in a non-human primate Ebola virus challenge

model after a single administration and, reassuringly, vac-

cination resulted in a 10-fold to 50-fold reduction in vac-

cine-associated viraemia in the blood compared with

first-generation vectors in previous studies. Unfortunately,

this study did not include a direct comparison with first-

generation rVSV-ZEBOV. However, a Phase I trial of this

vaccine (rVSVN4CT1-EBOVGP1) was recently com-

pleted,103 and so insight into the safety profile of this vec-

tor will soon be available. In addition, GemEvac-Combi,

an Ebola virus vaccine containing an rVSV expressing the

Ebola glycoprotein, has also been developed.104 This vac-

cine was evaluated for safety and immunogenicity in a

2015 Phase I trial and subsequently licensed by the Min-

istry of Health of the Russian Federation. However, it is

difficult to assess the potential impact of this vaccine,

considering the paucity of published preclinical data and

the lack of information regarding vector construction. A

Phase 4 study of this vaccine involving 2000 volunteers in

Russia and Guinea is planned for 2017–2019.105

In parallel with ongoing clinical studies, VSV vectors

have been modified to further improve utility to create

multivalent vectors. Mire et al. generated trivalent rVSV

encoding glycoproteins from Zaire Ebola virus, Sudan

Ebola virus and Marburg virus, and demonstrated protec-

tion against all three virus strains in a guinea pig challenge

model after a single immunization, even though antibody

responses to each antigen differed in magnitude.106

Encouragingly, vectors containing ~ 6 kb transgenic cargo

were generated, suggesting that multiple or large inserts

can be incorporated into rVSV vectors. Another recent

valuable observation regarding rVSV vector development is

their ability to provide protection even after exposure to

the pathogen. For example, full protection was shown when

rhesus monkeys were vaccinated with an rVSV-MARV vec-

tor 30 min after receiving a lethal dose of Marburg virus,107

and five of six animals were still protected when vaccinated

24 hr after challenge.108 T-cell depletion had no impact on

vaccine-induced protection,109 suggesting that rapid induc-

tion of antibodies may underlie vaccine efficacy. Taken

together, both preclinical and clinical studies suggest that

the strengths of the VSV vector lie in its attenuated replica-

tive capacity and its ability to elicit high and durable anti-

body levels to surface-displayed antigens; characteristics

that make it a promising vaccine vector for emerging or

outbreak-prone viral diseases.

Measles virus

Despite its pathogenicity, the development of measles

virus (MV) as a vaccine vector was initiated in the late

1990s. This was based on the large success of the live

attenuated measles vaccine itself. Measles vaccines were

developed in the early 1960s by cell culture adaptation of

wild-type virus isolates, leading to attenuation through an

accumulation of mutations. The most attenuated strains,

still used today, have excellent safety profiles while still

inducing extremely durable, protective antibody- and

T-cell-mediated immunity in 95% of recipients after a

single vaccination.110–112 Interestingly, T-cell-mediated

responses to MV are predominantly of the CD4+ pheno-

type,113 unlike the CD8+ dominated response to adenovi-

ral vectors,114 which may have important implications

when considering these vector platforms for vaccine

development.

A member of the Paramyxovirus family, MV is an

enveloped spherical virus and contains a 16-kb negative-

sense RNA genome. The development of reverse genetics

tools and rescue of MV from cDNA in 1995115 acceler-

ated both basic MV virology research and exploration of

MV as a vaccine vector. Studies demonstrated a cargo

capacity in excess of 6 kb and an excellent induction of

humoral and cellular immune responses against encoded

transgenes.116 In addition, MV was easily adaptable to

large-scale bio-manufacture at low production cost.

Recombinant MVs expressing one or more genes from

heterologous pathogens have now been used in numerous

preclinical vaccine studies (reviewed in ref. 117). One

group, for example, generated an rMV expressing HIV-1

Gag, RT and Nef as a fusion protein (MV1-F4) and

assessed immunogenicity of the vector in prime or

prime-boost regimens in cynomolgus macaques.118 Vacci-

nation induced robust antigen-specific CD4+ and modest

CD8+ T-cell responses, and high levels of antibody reac-

tive to exogenous antigens and MV-encoded proteins that

were further amplified after boosting.118

CD8+

Vector
immunogenicity

CD8+

CD4+

T

Adenovirus

adenovirus
VSV

CMV

adenovirus

CMV

CMV

CMV

Measles

TCM

Antibody

TEM

Figure 1. Viral vector-induced immune responses. Schematic of rela-

tive induction of adaptive immune responses by different viral-based

vaccine vectors. Text size represents relative induction of adaptive

immunity. CMV, cytomegalovirus; VSV, vesicular stomatitis virus.
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During preclinical development, concerns arose regard-

ing the impact of pre-existing immunity against the MV

vector, as the live attenuated measles vaccine is part of

routine childhood immunization programmes in many

countries. However, higher doses or alternative adminis-

tration routes of the vector can overcome existing anti-

measles antibody levels in mice.119 Of note, in this study

pre-existing immunity was artificially modelled using

intravenous administration of anti-measles antibodies.

However, another study that examined previous exposure

to attenuated measles vaccine found no influence of exist-

ing anti-MV immunity on transgene immunogenicity in

mice or macaques.120 Another important consideration

for the possible paediatric use of MV vectors is the

requirement for the vector to retain vaccine competence

against MV itself. This was demonstrated in a macaque

model using an MV-based hepatitis B vaccine candi-

date.121

After almost two decades of preclinical development,

MV vaccine vectors have recently been advanced into

clinical trials, with two Phase I studies completed (HIV-

1,122 Chikungunya virus (CHIKV)123) and two Phase II

CHIKV trials ongoing or planned in Europe and Puerto

Rico, respectively.124,125 In the Phase I CHIKV study, vol-

unteers received escalating priming doses followed by a

booster dose of an rMV encoding the structural genes (C,

E3, E2, 6K and E1) of CHIKV, a mosquito-borne alpha-

virus of the tropics and sub-tropics that is threatening to

become a global public health burden. Protective immu-

nity against CHIKV is antibody-mediated in a mouse

model.126 Encouragingly, seroconversion was demon-

strated for 90% of participants in the high-dose group

after one immunization, and for all participants after the

second vaccination. In addition, immunogenicity was not

affected by pre-existing anti-measles immunity, an impor-

tant finding that will hopefully be confirmed in larger

ongoing studies.

Conclusions and future perspective

Viral vectors hold much promise for vaccine vector devel-

opment to counter infectious diseases. Significant

advances have been made regarding the production of

immunogenic vectors that can be used in individuals with

previous immunity to the viruses on which vectors are

based. More detailed understanding of which immune

responses are preferentially induced by vectors and how

they are triggered will inform decisions as to which vec-

tors are most relevant for vaccination against a specific

infectious disease (Fig. 1). Safety considerations remain a

significant challenge in the development of certain viral

vectors. This is relevant not only for vaccination against

infectious diseases, but also for the potential exploitation

of virus-based vectors in cancer vaccination strategies

where individuals are often immune compromised.

Hence, understanding better how to balance safety and

immunogenicity will have broad implications for the

management of infectious diseases and beyond.
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