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Abstract— Device-to-device (D2D) communications are recog-
nized as a key enabler of future cellular networks, which will help
to drive improvements in spectral efficiency and assist with the
offload of network traffic. Relay-assisted D2D communications
will be essential when there is an extended distance between
the source and the destination or when the transmit power is
constrained below a certain level. Although a number of works
on relay-assisted D2D communications have been presented in
the literature, most of those assume that relay nodes cooperate
unequivocally. In reality, this cannot be assumed, since there
is little incentive to cooperate without a guarantee of future
reciprocal behavior. To incorporate the social behavior of D2D
nodes, we consider the decision to relay using the donation
game based on social comparison, characterize the probability
of cooperation in an evolutionary context and then evaluate
the network performance of relay-assisted D2D communications.
Through numerical evaluations, we investigate the performance
gap between the ideal case of 100% cooperation and practical
scenarios with a lower cooperation probability. It shows that
practical scenarios achieve lower transmission capacity and
higher outage probability than idealistic network views, which
assume full cooperation. After a sufficient number of generations,
however, the cooperation probability follows the natural rules
of evolution and the transmission performance of practical
scenarios approach that of the full cooperation case, indicating
that all D2D relay nodes adapt the same dominant cooperative
strategy based on social comparison, without the need for external
enforcement.
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I. INTRODUCTION

A. Related Work

DEVICE-TO-DEVICE (D2D) communications are now
regarded as a central component to the design and

commission of future cellular networks [1]. In particular,
this technology will facilitate direct communication between
user equipments (UEs) without unnecessary routing through
the network infrastructure [2]. The overall aim here is not
only to achieve shorter transmission distances (and potentially
save power) but more importantly to significantly increase the
capacity of existing cellular network infrastructure. D2D com-
munications can be utilized in the form of either a single-
hop transmission or relay assisted multi-hop transmission,
where the relay-assisted D2D communications can supple-
ment the performance of a single-hop D2D transmission
if the direct link fails to provide adequate communications
performance [3]–[6].

Due to the many reported benefits associated with the imple-
mentation of D2D communications, their performance has
been studied in many contexts. For example, in [7],
the authors have proposed a multi-hop D2D scheme, while
in [8] and [9], the authors proved that D2D communications
can significantly improve spectral efficiency and the coverage
of conventional cellular networks. Additionally, D2D has
been applied to multi-cast scenarios [10], machine-to-mach-
ine (M2M) communications [11], cellular off-loading [12],
while a game-theory based cross-layer optimization of the
D2D communications has been investigated in [13] and [14].
Nonetheless, while D2D networks offer many advantages,
they also come with numerous challenges that include
the difficulties associated with the accurate modeling of
random relay locations and the characterization of the
interference.

Recently, stochastic geometry has received considerable
attention as a useful mathematical tool for interference
modeling. Specifically, stochastic geometry assumes that the
locations of the wireless nodes can be modeled as a spatial
point process [15]. Such an approach captures the topological
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randomness in the network, offers high analytical flexibility
and achieves an accurate performance evaluation [16]–[20].
A common assumption made within this scheme is that the
nodes are distributed according to a homogeneous Poisson
point process (PPP) [17], [21]. In [22], the authors have
compared two D2D spectrum sharing schemes (overlay and
underlay) and evaluated the achievable rates for PPP distrib-
uted UEs over a Rayleigh fading channel. This was later
extended to cover more general fading channels in [23].
Flexible mode selections have also received attention. For
example, in [24] truncated channel inversion based power
control has been proposed for underlay D2D networks.

B. Motivation and Contributions
While previous works have made significant advances from

an analytical point of view, existing literature frequently
assumes that relay nodes cooperate unequivocally for the good
of others. This is obviously a condition which cannot be
guaranteed in reality - indeed, without any intervention, the
rational individual strategy is defection [25]–[29]. Centralized
control by the network operator is one way in which this can
be resolved, but this may cause other privacy issues since some
external controls may conflict with the device owner’s personal
priorities for resource usage, e.g., battery conservation.

Therefore, it is necessary to consider models of cooper-
ation that incentivize user participation. The current state-
of-the-art for relaying in opportunistic and D2D scenarios
focuses on creating virtual social networks [30]–[32], exploit-
ing logical links between those devices that may frequently
interact [33], [34] or trust each other [35], thereby identifying
pairs of devices that can potentially cooperate to provide
forwarding. While these are suited to scenarios where regular
interactions are frequent [36], the form of cooperation which
is most relevant to D2D relaying is indirect reciprocity, where
individuals are required to donate resources without the guar-
antee of future interactions with the recipient. This captures
the general cooperation issue for D2D relay scenarios because
any D2D topology is potentially highly dynamic, being open
to one-off interactions (i.e., not necessarily repeated), unlike
other scenarios such as ad-hoc networks where topologies are
stable and direct reciprocity is possible [37].

Indirect reciprocity is an established problem in biological
and social sciences - with this form of cooperation being
naturally sustained in human groups [28], [38], [39]. The
donation game [40] and the related but lesser studied mutual
aid game [41], [42] are commonly used to model indirect
reciprocity because they frame the dilemma of acting, at a
cost, for the benefit of a third party without necessarily being
able to call upon the recipient in future. The appropriateness
of indirect reciprocity based models for “one-shot” coopera-
tion scenarios has been reaffirmed by their use in resource
donation scenarios for cognitive networks [43] and dynamic
spectrum access [44]. We adopt the donation game to model
cooperation for indirect reciprocity, based on its prominence
in the literature and because it tackles the fundamental case
of donation from a single source.

Considerable research has been undertaken to establish
the conditions where indirect reciprocity is sustained, which

have generally used reputation as the currency through which
individuals become motivated to engage in socially bene-
ficial activities [28], [38]. In this work we implement a
reputation scoring system based on social comparison [45]
and adopt a fundamental model for the evolution of indirect
reciprocity [46], where individual users compare the reputation
of each other and use this to determine their donation strategy.
This method has been found to unite a range of alternative
explanations for the evolution of indirect reciprocity [46] and
therefore it is a valuable approach through which to explore
the emergence of cooperation in D2D scenarios.

We consider a relay assisted D2D network where each
relay node has an associated cooperation probability that is
determined by its reputation score. Based on the obtained
cooperation probability, we evaluate the transmission capacity
and outage probability of relay assisted D2D networks. We
also compare the effects of the evolution of the probability of
cooperation using the model developed in [46].

The main contributions of this paper may be summarized
as follows.

1) Firstly, we implement a reputation scoring system based
on social comparison that capitalizes on human behavior
as seen in real world scenarios. Based on the social
reputation score, we model the probability of coopera-
tion as a donation game and characterize the cooperation
probability in an evolutionary context.

2) Secondly, we incorporate the probability of coopera-
tion into a relay selection scheme, evaluate the outage
probability and transmission capacity of relay assisted
D2D networks and provide the results in closed form.
Based on the analytic results, we optimize the relay
search range to maximize the transmission capacity of
a relay assisted D2D transmission.

3) Finally, we present numerical simulation results which
provide useful insights into the performance of relay
assisted D2D communications for different system para-
meters. In particular, we observe the trade-off relation
between the transmission capacity and signal-to-noise-
plus-interference ratio (SINR) threshold based on the
channel fading parameters. This information, especially
the human behavior aspect which is often unaccounted
for in network design, will be critical for designing and
optimizing future D2D communications.

The remainder of this paper is organized as follows.
In Section II, we describe the system and channel models
that will be used in this study. In Section III, we model
the cooperation probability by using the social comparison
model. Based on this model, we evaluate the outage probability
and transmission capacity of relay assisted D2D networks
in Section IV and present numerical results in Section V.
Section VI concludes the paper.

II. SYSTEM AND CHANNEL MODELS

A. Network Model

We consider a D2D network overlaid on a cellular network
where D2D UEs can directly communicate with each other
without routing through the cellular infrastructure. As illus-
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Fig. 1. System model for an overlaid D2D network.

trated in Fig. 1, the overlaid scheme divides the licensed spec-
trum into two non-overlapping portions where the cellular and
D2D transmitters utilize orthogonal resource without cross-
mode interference. We assume that β portion of the spectrum
is assigned for D2D communications and the remaining 1 −β
is allocated to cellular communications, where 0 ≤ β ≤ 1.

The locations of the nodes in the overlaid D2D network
are modeled as spatial point process in R

2. Specifically, the
UEs are randomly deployed according to a homogeneous
PPP � = {Xi }1 with intensity λ and each UE {Xi } has an
associated parameter {�i } to indicate the node type: Xi may
be a potential D2D UE with probability q = P(�i = 1), or
a cellular UE with probability 1 − q , where q ∈ [0, 1]. The
cellular BSs and D2D relay nodes are respectively distributed
as PPP � with intensity λb and �r with intensity λr that are
independent to each other. For the D2D UE, we assume that
there is a dedicated receiver at a fixed distance d . Without loss
of generality, we consider the typical receiver located at the
origin that is associated to the D2D transmitter X0.

In our model, we assume that the cellular BS is resp-
onsible for collating the connection information, posi-
tion information, and performing resource management.
Consequently, D2D mode can avail of either a single-hop or
a dual-hop transmission, which is centrally managed by the
cellular BS. Before data transmission, each D2D UE com-
municates with the BS through an access link and the base
stations search for a relay that is located within the relay
search range R. If there are a number of potential relays within
the search range, the BS notifies the D2D UE to use a dual-
hop transmission. Otherwise, single-hop transmission will be
selected and the source will transmit the data packet directly to
the receiver. For two-hop transmission, the source transmits its
data packet to the receiver during the first time slot and closely
located relay nodes overhear this packet. If the received SINR
at the i -th relay is larger than a predefined SINR threshold T ,
the i -th relay becomes a potential relay and the D2D receiver
chooses the best relay from the potential relay set. The selected
relay uses decode and forward cooperation and sends the orig-
inal source packet to the D2D receiver during the second time

1 Xi denotes both the node and the coordinates of the i-th UE.

slot. The source communicates directly with the receiver in
a single-hop transmission, whereas for dual-hop transmission,
the link between the source and destination is assumed to be
unreliable and the transmission occurs only through the relay.
The notations used in this paper are summarized in Table I.

B. D2D and Cellular Mode

Each UE Xi ∈ � chooses the operating mode based on
two factors; 1) the node type parameter (�i ) and 2) the mode
selection scheme. If �i = 0, then Xi chooses the cellular
mode and associates to the closest cellular BS. If �i = 1, then
Xi becomes a potential D2D UE that may use either cellular
or D2D mode based on the adopted mode selection policy. In
this paper, we assume a distance-based mode selection [22],
where a potential D2D UE chooses D2D mode if D2D link
length is not greater than a predefined threshold θ . Otherwise,
cellular mode will be utilized. Therefore, the UEs � can be
divided into two non-overlapping spatial point processes as
follows

• UEs operating in cellular mode:

�c with intensity λc = [(1 − q) + q (1 − PD2D)] λ, (1)

• UEs operating in D2D mode:

�d with intensity λd = q PD2Dλ, (2)

where PD2D = P(Ld ≤ θ) represents the probability that the
D2D link length Ld is less than or equal to the threshold θ .
Interested readers are advised to refer to [22] and [23] for
more detailed discussion on the point processes in (1) and (2).

For the cellular uplink, we utilize orthogonal multiple access
where only one active transmitter can access the resource
block at a given time. Due to the orthogonal multiple access,
�c becomes a Poisson-Voronoi perturbed lattice, not a PPP,
which is generally intractable [47]. In [23], we used a
non-homogeneous PPP �̂c with distance dependent intensity
function to approximate �c and provide an accurate represen-
tation of the interference in the cellular uplink. We adopt the
same approach for the cellular mode in this paper.

For the D2D mode, we utilize ALOHA with transmit
probability ε on each time slot, where 0 ≤ ε ≤ 1. In general,
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TABLE I

COMMON SYSTEM PARAMETERS

the D2D link length Ld is a random variable. However,
to focus on the effect of the relay, we fix the distance
between the D2D source and receiver to Ld = d and assume
the mode selection threshold to be larger than θ > d ,
i.e., PD2D = P(Ld ≤ θ) = 1.2 Since the potential D2D UEs
in D2D mode follow an independent thinning process [22],
the set of UEs operating in the D2D mode are distributed
according to a homogeneous PPP �d with intensity λd =
qλ that is independent to the set of UEs in the cellular
mode.

C. Channel Model

The channel model used in this study is composed of long-
term path-loss and small scale fading, so that the received
power between node i and j is given by W = P hi j d−α

i j , where
P , α, hi j and di j respectively denote the transmit power, path-
loss exponent (α > 2), fading coefficient and distance between
node i and j . We denote the transmit power of the cellular
mode as P = Pc and that of the D2D mode by P = Pd .
Without loss of generality, we assumed unit power for both
the D2D and cellular UEs.

To incorporate the small scale fading, we consider the
widely accepted Nakagami-m fading model. This extremely
versatile model includes Rayleigh fading (m = 1) and One-
sided Gaussian (m = 0.5) fading as special cases and it can
also be used to approximate Rician fading. It is well known
that the squared signal envelope (i.e., signal power) of a
Nakagami-m faded channel follows a Gamma distribution [48].

2We considered the effect of random D2D link length Ld on the mode
selection probability PD2D = P(Ld ≤ θ) and the network performance
metrics in [23]. The interested reader is directed to this work and the references
presented therein.

Following from this, the PDF, complementary CDF, and j -th
moment of the fading coefficient h are respectively given as
follows

fh(x) = mm xm−1


(m)
e−mx , P (h ≥ x) =

m−1∑

n=0

(mx)n

n! e−mx ,

E

[
h j
]

= 
(m + j)/
(m), (3)

where we assumed a unit spread factor, i.e., � = E [h] = 1,
m is the shape factor, j is a positive real valued constant,

(t) = ∫∞

0 xt−1e−xdx is the Gamma function, and 
(a, b) =∫∞
b xa−1e−x dx is the upper incomplete Gamma function.

Since the transmission capacity of the cellular mode is
evaluated in [23] over generalized fading channels, in this
contribution we will focus on the capacity of the D2D mode
with realistic cooperation assumptions, which is extensively
explained in Section III. Under these assumptions, the received
SINR from D2D node i to j is given by

SINRi j = hi j d−α
i j∑

k∈�d\{Xi } hkj d−α
kj + N0

, (4)

where N0 is the noise power spectral density.

III. MODELING THE COOPERATION PROBABILITY

Most of the existing work in relay assisted D2D net-
works has assumed that relay nodes cooperate spontaneously
and unreservedly. In practice, there is no direct incentive for
a user (or device) to volunteer resources to help another
when there is no guarantee of a future reciprocal donation.
As such, cooperation is a social behavior that depends on
various factors, e.g., personal priorities for resource usage,
peer comparison, and the cost to donate relative to the benefit
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to the recipient. In other words, user cooperation cannot
always be guaranteed and the probability of cooperation needs
to be considered while evaluating the performance of relay
networks. In this section, we consider an evolutionary dona-
tion game [46] which models the distribution of cooperation
amongst users, and determines the emergence (or not) of
cooperative behavior at different stages of evolution.

A. Fundamental Evolutionary Principles

We address the sharing of resources by modeling the
donation game, a generalization of the mutual aid game [41],
where each user has to decide whether to cooperate to relay
the other user’s transmission without the guarantee of a
future interaction [29], [39]. The evolutionary framework is
defined by a population of N nodes which each start with
a randomly assigned donation strategy. The game is played
over a series of generations, each consisting of a number
of rounds. In each round, two nodes are randomly selected
and arbitrarily assigned the role of donor and recipient.
Donation decisions are made in accordance with the donor’s
pre-assigned strategy, which is expressed in terms of self-
comparison by the donor with the recipient.3 By sharing
their resources, i.e., cooperation, the donor incurs a cost c,
while the recipient receives a benefit b. Note that the cost
is an abstract representation of the physical and temporal
resources provided by a donor (e.g., energy, bandwidth). The
costs incurred do not influence the reputation of the donor -
it is the choice of cooperative strategy through which this is
affected.

After m games have been played, the system evolves to
the next generation. Nodes select their strategy for the next
generation of games in proportion to their fitness value,
which is defined as the utility accumulated over all games
within the previous generation, namely

∑
(bi − ci ) for node i .

Mutation is applied to the strategy at this stage, with a small
probability μ of randomly changing the strategy assigned to
a node in the new population. During simulation, we set the
fitness level of each node to zero at the beginning of each
generation.

Indirect reciprocity captures scenarios where nodes can not
track or exploit the history of their interaction with other
nodes within the given network. To account for this, indicators
of public reputation are conventionally used to judge others.
Updating reputation in response to donation decisions affects
evolution because reputation informs decision making [46].
In [29], a basic image scoring assessment was introduced in
which reputation is proportional to the number of donations
given, thus a user’s image is incremented by one unit when a
donation is made and decremented by one otherwise, while the
reputation of the recipient remains unaffected. The potential
problem with this approach is that defection may be legitimate
and desirable, such as in response to a free-rider who chooses
to receive but never donate. Therefore more sophisticated
reputation assessments are desirable.

One important approach that has been shown to provide
greater evolutionary stability is known as standing [39], [49].

3Social comparison strategies are described in more details in Section III-B.

This justifies a donor defecting when the recipient has a
lower reputation, and in these cases, the donor does not
face a reduction in their own reputation. This was originally
conceived in [41] using a binary representation of reputation.

B. Social Comparison Strategies

In the context of indirect reciprocity, a strategy represents
the conditions under which an individual will choose to
cooperate. Social comparison is a crucial element that affects
this decision making process and provides a basis for the
strategy. It originates from human evolution, as a means
through which individuals learn about their social world by
using self-comparison as a natural and persistent frame of
reference to assess others [45]. It is known that for donation
scenarios, social comparison presents a natural unifying con-
cept to characterize the evolution of indirect reciprocity [46].

Beyond humans, the simplicity of self-comparison in
a quantitative setting lends itself to node-based behavior
(where we consider a node to be equivalent to a D2D user).
In particular, self-comparison translates to a small number of
possible strategies that a node can adopt when comparing their
reputation with a potential donor. Given a donor i and recipi-
ent j with reputations ri and r j respectively, donor i assesses
the reputation r j of j , relative to their own reputation, ri , with
three possible outcomes, establishing either:

outcome =

⎧
⎪⎨

⎪⎩

r j > ri , upward self-comparison

ri = r j , similarity

r j < ri , downward self-comparison.

The strategy for a node i is represented as a triple of binary
variables (si , ui , di ) indicating whether or not i donates when
similarity (si ), upward comparison (ui ) or downward compar-
ison (di ) is observed by i in respect of j ’s reputation. This
leads to eight possible strategies.

C. Experimental Scenarios

To determine the probability of cooperation for relay selec-
tion, we adopt this model for 100 relay nodes. The number of
generations is varied between 10 and 1000, with 5000 games
per generation, resulting in each node participating in an
average of 50 games per generation. Mutation is applied at
a rate μ = 0.1.

We restrict our attention to cases where b > c. This models
the scenario where donations are made at a smaller cost to the
donor relative to a larger benefit for the recipient. Cooperation
diminishes as c/b tends to 1 [39], [50] and we experiment
with a range of c/b values in [0.1, 0.9] and otherwise assume
a default ratio of c/b = 0.5.

These settings are consistent with those derived for pre-
vious experimentation [46]. To assess reputation based on
an action, we have adapted the original standing assessment
for a non-binary representation, employing a discrete range
of {−5,−4, . . . , 4, 5} for reputation, with integer increment
for donation and an integer decrement for an unjustified
defection (where the recipient is a “node with equal or higher
reputation than the donor”). We assume that the reputation
levels are reset to zero at the beginning of each generation.
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Fig. 2. (a) Distribution of the cooperation probability produced by evolutionary simulation, (b) Capacity based on the cooperation probability from (a) with
large outage probability constraints, (c) Capacity based on (a) with low outage probability constraints.

In Fig. 2(a), the distribution of the cooperation probabil-
ity is plotted for different generations that are empirically
retrieved from a number of simulation runs with different
random seeds. Here the abscissa represents the probability ξi

that the i -th relay node cooperates in a given round of
generation.

At the beginning of the simulation all relay nodes act
according to randomly assigned strategies, including full coop-
eration and defection. After around one hundred generations
(but often requiring less), relay nodes converge to a configura-
tion with all nodes adopting a dominant strategy of ‘upward or
similar comparison’ (si = 1, ui = 1, di = 0), i.e., ‘donating in
light of a request from nodes of higher or similar reputation
while defecting otherwise’. This has been identified in [46]
as a fundamental strategy that is embedded in a wide-range of
existing models. Nodes playing this type of strategy are often
known as ‘discriminators’ [51], which characterizes how they
make it harder for those with low reputation to prosper. This
strategy promotes nearly full cooperation and remains stable
in future generations.

IV. OUTAGE PROBABILITY AND CAPACITY EVALUATION

In this section, in order to evaluate D2D network perfor-
mance while taking into considering the important aspect of
social behavior, we incorporate the distribution of cooperation
probability obtained in Section III. We use this to evaluate the
outage probability and transmission capacity of the proposed
system model using a stochastic geometric framework.

A. Main Results

First, let us review the notion of outage probability and
capacity for the single-hop D2D transmissions. As defined
in [17], an outage event occurs when the received SINR in (3)
is less than or equal to a predefined threshold T , whereas
the achievable transmission capacity is defined in [52] as
the density of successful transmissions at the target spectrum
utilization. Then, the outage probability and capacity of a
single-hop D2D can be respectively expressed as below,

P
1-hop
o � P (SINR ≤ T ) ,

C1-hop � λq log(1 + T )
(

1 − P
1-hop
o

)
. (5)

Next, in a two-hop D2D transmission, the transmission occurs
over two time slots and each hop is assumed to be independent
to each other. Since the transmission occurs only through
the relay, an end-to-end outage event occurs if either the
transmission over the first or second hop suffers an outage.
Then, the outage probability and capacity of a two-hop
D2D transmission can be expressed as follows [52]

P
2-hop
o � 1 − P (SINR1 > T ) P (SINR2 > T ) ,

C2-hop(r) � 1

2
· λq log (1 + T )

(
1 − P

2-hop
o

)
, (6)

where the term 1
2 indicates that a single packet is transmit-

ted over two time slots. For a Nakagami-m fading channel,
(5) and (6) can be evaluated as the following Theorem.

Theorem 1: Given a Nakagami-m fading channel, the out-
age probability and capacity of a single-hop D2D transmission
are respectively given by

P
1-hop
o = 1 −

m−1∑

n=0

(−1)n

n!
∂n

∂sn
e−sc0 N0 LI (sc0)

∣∣∣
s=1

,

C1-hop = λq log(1 + T )

m−1∑

n=0

(−1)n

n!
∂n

∂sn
e−sc0 N0 LI (sc0)

∣∣∣
s=1

,

(7)

whereas the outage probability and capacity of a two-hop
D2D transmission are given by

P
2-hop
o = 1 −

m−1∑

n1=0

m−1∑

n2=0

(−1)n1+n2

n1!n2!
× K (n1)(sc1)

∣∣∣
s=1

· K (n2)(sc2)
∣∣∣
s=1

,

C2-hop = λq

2
log(1 + T )

m−1∑

n1=0

m−1∑

n2=0

(−1)n1+n2

n1!n2!
× K (n1)(sc1)

∣∣∣
s=1

· K (n2)(sc2)
∣∣∣
s=1

, (8)

where m is the fading parameter, N0 is the noise power
spectral density, T is the SINR threshold, d is the distance
between source and receiver, di is the link length of the i-th hop
(i = 1, 2), c0 � mdαT , ci � mdα

i T , δ � 2
α , K (n)(s) denotes
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the n-th order derivative of the following expression

K (n)(sci ) = ∂n

∂sn (exp (−sci N0) LI (sci )) , (9)

and the Laplace transform LI (s) is given by

LI (s) = exp
(−λqεcαsδ

)
, cα � π
(1 − δ)
(m + δ)


(m)
. (10)

Proof: See Appendix I. �
Theorem 1 is the general result that evaluates outage prob-

ability and capacity considering both noise and interference.
Theorem 1 can be further simplified for some special cases,
such as an interference-limited scenario or low outage or high
outage conditions as described below.

Corollary 1: Interference-limited scenario: If I � N0,
Theorem 1 can be simplified as follows

P
1-hop
o = 1 − exp

(
−λK d2

)
ϕ(d),

C1-hop = λq log(1 + T ) exp
(
−λK d2

)
ϕ(d), (11)

for a single-hop D2D transmission and

P
2-hop
o = 1 − exp

(
−λK

(
d2

2
+ 2r2
))

ϕ(d1)ϕ(d2),

C2-hop(r) = 1

2
λq log(1 + T ) exp

(
−λK

(
d2

2
+ 2r2
))

×ϕ(d1)ϕ(d2), (12)

for a two-hop D2D transmission, where K � qεcα (mT )δ,
r is the distance from the relay to the midpoint between the
source and the receiver, ϕ(l) and βn,r denote the following
expressions

ϕ(l) � 1 +
m−1∑

n=1

n∑

r=1

(−1)n

n!
(
λKl2
)r

r ! βn,r ,

βn,r �
r∑

l=1

(−1)l
(

r

l

)
(δl)n , (δl)n � 
(δl + 1)


(δl − n + 1)
. (13)

Proof: See Appendix II. �
The asymptotic behavior of Corollary 1 can be expressed

in a succinct form based on the magnitude of the
term λKl2. Two cases are considered in the following
corollary: 1) Low outage; λKl2 � 1 and 2) Large outage;
λKl2 � 1.

Corollary 2: Asymptotic behavior of the interference-
limited scenario: The outage probability and capacity of (11)
can be simplified as follows

P
1-hop
o = 1 − G1 exp

(
−λK d2

)
,

C1-hop = λq log (1 + T ) G1 exp
(
−λK d2

)
, (14)

f or

⎧
⎪⎪⎨

⎪⎪⎩

low outage case; G1 = 1,

high outage case; G1 = 1 +
m−1∑

n=1

n∑

r=1

(−1)n

n! βn,r ,

whereas (12) can be expressed as below

P
2-hop
o = 1 − G2 exp

(
−λK

(
d2

2
+ 2r2
))

,

C2-hop(r) = λq

2
log (1+T ) G2 exp

(
−λK

(
d2

2
+2r2
))

, (15)

f or

⎧
⎪⎪⎨

⎪⎪⎩

low outage case; G2 = 1,

high outage case; G2 =
[

1 +
m−1∑

n=1

n∑

r=1

(−1)n

n! βn,r

]2

.

Proof: Given a low outage condition, i.e., λKl2 � 1,
ϕ(l) can be approximated as

lim
λK l2→0

ϕ(l) = 1, (16)

by omitting the higher order terms of λKl2 in (13). For a large
outage condition, i.e., λKl2 � 1, the following approximation
holds due to the L’Hôpital’s rule [53]

lim
x→∞ exp(−x)

[
1 +

m−1∑

n=1

n∑

r=1

(−1)n

n!
xr

r ! βn,r

]

= x exp(−x)

[
1 +

m−1∑

n=1

n∑

r=1

(−1)n

n! βn,r

]
. (17)

By substituting (16) and (17) into Corollary 1, (14) and (15)
can be readily obtained. �

Theorem 2 evaluated the conditional performance measures
for a given relay location r . Thereby, the performance of the
dual-hop D2D link depends on the utilized relay selection
scheme and the probability of cooperation, which are described
in the following subsection.

B. Relay Selection Scheme

In [52] and [54], the authors choose the relay that is closest
to the middle point between the transmitter and the receiver.
This method maximizes the capacity of a dual-hop transmis-
sion when the D2D relay nodes cooperate unconditionally and
on demand, i.e., 100% of the time. However, in reality, the
relay in a practical D2D network will cooperate with a finite
probability ξi (0 ≤ ξi ≤ 1). We use a relay selection scheme
that incorporates these realistic considerations into the optimal
relay selection, which is expressed as below

• D2D Relay node X∗
r cooperates during the second hop

↔ X∗
r = arg max

Xi∈�r

ξi‖Xi − Xc‖−α = arg max
Yi∈�

(e)
r

‖Yi‖−α,

(18)

where Xc indicates the midpoint between the source and

receiver and a change of variable, i.e., y = ξ
− 1

α
i (x − Xc),

is applied to the second equality. Due to the displacement the-
orem [55, Lemma 1], the mapping between x and y converts
a PPP �r with density λr into a new homogeneous PPP �

(e)
r

with density λ
(e)
r = λr E

[
ξδ
]
. Conceptually, the cooperation

probability ξ can be interpreted as a random fluctuation around
each D2D relay and the combined effect of relay location
and cooperation probability are incorporated into the relay
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selection policy in (18). The fractional moment E
[
ξδ
]

can be
empirically calculated based on the probability of cooperation
that we produced in Section III, Section V and Fig. 2.

C. Optimization of the Relay-Assisted D2D
Dual-hop D2D is utilized if there is a relay within the

range R. Otherwise, single-hop D2D will be utilized. Hence,
the average transmission capacity of relay assisted D2D is

CRelay = (1 − PN (R)
) ∫ R

0
C2-hop(r) f||Yri ||(r)dr

+ PN (R)C1-hop, (19)

where the PDF and CDF of Yi ∈ �
(e)
r are given by [15]

f||Yri ||(r) = 2πrλr E
[
ξδ
]

e−πr2λr E
[
ξδ
]
,

PN (R) � P (||Yri || > R) = e−π R2λr E
[
ξδ
]
, (20)

PN (R) is the probability that a relay node does not exist within
a range R, C1-hop and C2-hop(r) are evaluated in Theorem 1.
Given a low (or high) outage condition, (19) can be expressed
in closed form by using Corollary 2 as follows

CRelay = λq log (1 + T )

2
exp

(
−λK d2

2

)

×
[
2G1 exp

(
−λK d2

2
− λ(e)

r π R2
)

+ G2
(
1− PN (R)

)

1 + �λ

]
, (21)

where � = 2K
πλ

(e)
r

, λ
(e)
r = λr E

[
ξδ
]

and G1, G2, K are defined

in Corollary 1 and 2.
The relay search range R is a design parameter that

determines the average transmission capacity. Specifically, for
closely located D2D nodes, single-hop transmission achieves
higher capacity than a two-hop transmission, which reduces
the spectral efficiency by half. On the contrary, for remotely
separated D2D nodes, two-hop transmission provides a higher
capacity than a single-hop transmission due to the improved
per link reliability. In the following Lemma, the optimum
range R that maximizes the average capacity is derived.

Lemma 1: The optimum relay search range R = R∗ that
maximizes (21) is given by

R∗ =
√

1

G1πλr E
[
ξδ
] exp

(
−λK d2

2

)
. (22)

Proof: As the relay search range R increases, the null
probability PN (R) = exp

(
−π R2λ

(e)
r

)
decreases and more

D2D nodes will utilize the dual-hop transmission than a single-
hop transmission. In this case, the transmission capacity in (19)
has a concave form which can be maximized by evaluating
∂CRelay

∂ R = 0 and ∂2CRelay

∂ R2 < 0. By assuming R2λr E
[
ξδ
] � 1

and using the Taylor series, i.e., e−π R2λ
(e)
r � 1−π R2λ

(e)
r , with

some algebraic manipulations, the following expression holds

∂CRelay

∂ R
= 0 ⇔ π R2λ(e)

r G2 = G1 exp

(
−λK d2

2

)
. (23)

Since G2 = G2
1, the optimal R = R∗ that achieves (23) is (22).

This completes the proof. �

V. NUMERICAL RESULTS

In this section, we numerically evaluated the transmission
capacity of a relay assisted D2D network with Monte-Carlo
simulation. We used Matlab and Python to generate the
numerical results with the following parameters: λr = 10−2,
T = 3, α = 4, m = 4, d = 10, R = 20, q = 0.5, ε = 1,
where the common system parameters used in this paper are
summarized in Table I.

A. Effect of Generations
In Fig. 2(a), we obtained the distribution of cooperation

probability ξi using evolutionary simulation at different
generations. The moment E

[
ξδ

i

]
for generation [0, 10, 100,

1000] is calculated as E
[
ξδ

i

] = [0.5834, 0.7946, 0.9795,
0.9816], respectively. Then, we applied these moments into
the relay selection procedure and evaluated the transmission
capacity of a single-hop and dual-hop D2D mode over a range
of UE intensity λ in Figs. 2(b)-(c). Particularly, we assumed
a large outage probability (i.e., λK d2 � 1) in Fig. 2(b) and a
low outage probability condition (i.e., λK d2 � 1) in Fig. 2(c).
We observed that the relay assisted D2D transmission achieves
a higher rate than the single hop D2D if the channel has large
outage probability. If the channel is reliable with low outage
probability, than there is no benefit in using dual-hop D2D over
a single-hop transmission since it requires an additional time
slot to transmit a source packet. We also note that the capacity
increases for a small UE intensity λ, then decreases after a
certain threshold. This effect is analogous to the asymptotic
behavior of ultra-dense networks under a dual-slope path loss
model, which have been investigated in [56] and [57]. Both
works conclude that the SINR vanishes as the BS density
grows asymptotically due to the severer mutual interference,
which is similar to Figs. 2(b)-(c).

As the generation evolves, the probability of cooperation
in Fig. 2(a) shifts toward ξi = 1 and E

[
ξδ

i

]
approaches 1,

indicating that after a sufficient number of generations, each
node converges to a configuration in which cooperation is
sustained in the population (and all nodes adopt the same
dominant cooperative strategy based on social comparison)
without the need to enforce any external mechanisms. The
red curves in Figs. 2(b)-(c) represent the ideal case of
100% full cooperation, whereas the dotted curves correspond
to the practical scenarios with a lower cooperation probability.
Figs. 2(b)-(c) show that a notable performance gap exists
between the ideal and practical relay assisted D2D networks,
though the transmission capacity with social comparison
approaches the ideal case of 100% full cooperation as the
generation increases.

Fig. 3 shows the outage probability of the two-hop D2D ver-
sus the threshold T for various UE densities λ, where the solid
curves are analytically evaluated using (11) and the marked
curves are obtained through Monte-Carlo simulation. We note
that the analytical results perfectly match the simulated results,
validating the analysis performed in this paper.

B. Impact of Errors
The probability of cooperation worsens when different

types of errors are introduced, both in the execution of the
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Fig. 3. Outage probability of two-hop D2D transmission versus the
SIR threshold T for various UE density λ.

strategies and in the representation of the reputation of
others [40], [51], [58]. We considered the following types of
errors:

• execution errors in the action performed by the donor,
for example representing dropped connections due to
interference. These assume that the execution of either a
cooperative or defective action is subjected to error with
a certain probability e, and then replaced by the opposing
action [39], [51]

• perception errors in the representation of other D2D
nodes reputation, while the consequent actions are
assumed to be performed correctly [38], [40]. These
are implemented as in [39] by a small probability p
of misrepresenting the reputation of the recipient with
another one randomly chosen among all those available.

Fig. 4(a) shows the distribution of cooperation probabil-
ity at generation 100 for two different types of error and
Fig. 4(d) plots the corresponding capacities for the given dis-
tribution. With the perception of reputation error, cooperation
is achieved and sustained after a maximum of 100 generations,
as in the case without any error. For execution errors, however,
we need more generations (1000 in the example) to converge
to high cooperation levels. While perception errors marginally
affect the transmission capacity, the execution error signifi-
cantly degrades the overall performance. Note that, in earlier
stages with generations less than 100, the network can tem-
porarily present intermediate configurations of low cooperation
that could drop the capacity below the initial values. However,
these low cooperation states are not stable and the D2D relay
nodes are able to promptly recover towards the dominant
strategy until this final configuration eventually stabilizes the
performance towards high capacity levels, remaining close to
the case of 100% cooperation.

C. Influence of the Cost to Benefit Ratio
The numerical results presented so far indicate that the

cooperation can be achieved when the cost-to-benefit ratio
is lower than one. Furthermore cooperation is successfully
established and persists even without assuming direct recip-
rocation during an interaction.

When donating resources becomes too costly for the donor
relative to the benefit that is created for the recipient, the

act of giving becomes diminished in value and provides
reduced social benefit for the wider population. This occurs
as the cost-to-benefit ratio increases, and it impacts upon the
evolution of cooperative strategies, which are less likely to
emerge as their benefit is questionable. Fig. 4(b) shows the
distribution of cooperation probability at generation 100 for a
wide range of c/b ratios and Fig. 4(e) plots the corresponding
capacities for the given distribution. We observe that as the
c/b ratio grows above a certain threshold (e.g., c/b ≥ 0.8),
the likelihood of cooperation falls to much lower values. This
implies that the D2D relay nodes in the network are no
longer adopting the discriminative (1, 1, 0) strategy but switch
to intermediate configurations representing lower cooperation.
For example, the (0, 1, 0) strategy is dominant for c/b = 0.8
and fully uncooperative strategies are evident for c/b = 0.9.
In terms of capacity, the c/b ratio within the range of 0 <
c/b ≤ 0.5 achieves similar performance. As the c/b ratio
increases to a higher value, a notable performance degradation
occurs. We note that for c/b > 0.9, most of the relay
nodes will not collaborate, so that the transmission capacity
of a dual-hop D2D becomes even worse than a single-hop
D2D mode. Fig. 4(c) shows the distribution of cooperation
probability for both 5% execution and perception error and
Fig. 4(d) plots the corresponding capacities for the given
distribution. We note that with execution errors, cooperation
levels further decrease and are compounded by increases
of the c/b ratio. In fact, high c/b ratios combined with
errors cause cooperation to fail, at least for the first hundred
generations.

D. Evolution of Strategy Configurations

Fig. 5(a) shows the relative frequency of different strategies
over a number of generations, when there are no errors in the
reputation system with c/b = 0.5. We observe that cooper-
ative strategies successfully occur and persist for generations
larger than 20. For generations less than 20, configurations
representing less cooperation can appear, such as the full
defection strategy of (0, 0, 0). Nevertheless, these states appear
to remain only on a temporary basis. Subsequently, the system
recovers and after a relative low number of generations the
dominant strategy (1, 1, 0) of discriminators emerges.

Fig. 5(b) shows the proportion of different strategies over a
longer period of time. We can observe that the (1, 1, 0) strategy
appears dominant and resilient to the invasion of the less
cooperative or totally uncooperative strategies. However partial
state transitions can occur between the (1, 1, 0) and (1, 1, 1)
strategy, which represents a full cooperator. This occurs
because when all the D2D relay nodes are cooperative and
settled on the highest possible reputational score (+5), these
two strategies become indistinguishable, since there are no
relay nodes with low reputation in the population any more.
Fully cooperative strategies can temporarily increase the
degree of cooperation in the system but they are vulnerable
to attacks from defectors. This allows discriminators who
apply the (1, 1, 0) strategy to increase in popularity again.
More generally, the (1, 1, 0) strategy is important because
it prevents exploitation from those who are less cooperative
based on self-comparison, preventing potential exploitation.
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Fig. 4. Distribution of the cooperation probability produced by evolutionary simulation at generation 100 (a) for fixed c/b = 0.5 with 10% execution and
perception errors, (b) for different c/b ratios without execution errors, (c) for different c/b ratios with 10% execution errors; (d) Transmission capacity based
on the cooperation probability on (a), (e) Capacity based on (b), (f) Capacity based on (c).

Fig. 5. Relative frequency of different strategies for c/b = 0.5 (a) up to generations 100 and (b) up to generations 1000, (c) Transmission capacity versus
SIR threshold for different parameters m.

E. Effect of SIR Threshold and Fading Parameter
Fig. 5(c) plots the transmission capacity of dual-hop D2D

mode versus SIR threshold T for different m parameters. Note
that the range with a low SIR threshold T � 1 achieves
a low outage probability (i.e., λK d2 � 1) and vice versa.
We observed that the fading parameter m affects the transmis-
sion capacity differently depending on the outage condition.
Specifically, the transmission capacity increases as m increases
given a low outage probability condition. As the m parameter
increases, a Nakagami-m fading channel becomes increasingly
deterministic.4 If the channels are reliable with low outage

4As m → ∞, the fading coefficient becomes a constant and the fading
channel reduces to an AWGN channel.

probability, than the received signal power increases, which
increases the SIR and the transmission capacity. If the channels
are unreliable with large outage probability, than the aggregate
interference increases with larger m, which decreases the SIR
as well as the transmission capacity.

VI. CONCLUSION

In this paper, we have considered a relay assisted D2D net-
work, where the spatial locations of the D2D UEs are modeled
as homogeneous PPP. We proposed a social comparison model
in an evolutionary context to characterize the D2D relay
cooperation probability. Using the proposed comparison model
with stochastic geometry, we evaluated the outage probability
and transmission capacity of a relay assisted D2D network.
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Specifically, we observed that after a sufficient number of
generations, the cooperation probability follows the natural
rules of evolution and all D2D relay nodes adopt the same
dominant cooperative strategy based on social comparison.
This has consequences for the practical operation of networks
with D2D capability, demonstrating that there are scenarios
where cooperation naturally evolves without the need for
enforcement by a central, trusted authority. Also, we observed
that the benefit of relaying stands out in a dense network with
unreliable channel conditions, i.e. large outage probability.
Finally, we provided numerical results to demonstrate the
performance gains of relay assisted D2D networks compared
to single hop D2D networks taking into account cooperation.

APPENDIX I
In this Appendix, we provide a proof of Theorem 1.

By substituting (4) into (5), the outage probability of a single-
hop D2D transmission can be evaluated as follows

P
1-hop
0 � P

(
h ≤ dαT (I + N0)

)

= 1 − E

[
m−1∑

n=0

tn

n! exp(−t)

]
, (24)

where I = ∑k∈�d\{X0} hkj d−α
kj , the distribution in (3) and a

change of variable, i.e., t = c0(I + N0), are applied to the last
equality. The tern E[tne−t ] in (24) can be evaluated as follows

Et
[
tne−t] = (−1)n ∂nLt (s)

∂sn

∣∣∣∣
s=1

,

Lt (s) = E

[
e−sc0(I+N0)

]
= e−sc0 N0 LI (sc0), (25)

where LI (s) is derived as below

LI (s) = E�d ,h

[
e−s I
]

= E

⎡

⎣exp

⎛

⎝−s
∑

k∈�d \{X0}
hkj d−α

kj

⎞

⎠

⎤

⎦

= exp

(
−2πλqε

∫ ∞

0

(
1 − Eh

[
e−shr−α

])
rdr

)

= exp
(−λqεcαsδ

)
, δ � 2

α
, (26)

by applying the well-known probability generating func-
tional (PGFL) of a PPP [15] in the third equality and using a
change of variable, i.e., shr−α = t , and integration by parts
in the last equality. The term cα is determined by using (3) as
follows

cα � π
(1 − δ)E
[
hδ
] = π
(1 − δ)
(m + δ)


(m)
. (27)

The outage probability of a two-hop D2D transmission in (6)
can be easily evaluated by using the following relation
P(SINRi > T ) = 1 − P

1-hop
o , replacing d to di in (24), and

substituting (7) to (6). This completes the proof.

APPENDIX II
In this Appendix, we provide a proof of Corollary 1. Given

an interference-limited condition, (7) reduces to

P
1-hop
0 � 1 −

m−1∑

n=0

(−1)n

n!
∂n

∂sn
LI (sc0)

∣∣∣∣
s=1

, (28)

where the n-th derivative term in (28) can be evaluated by
using [59, 0.430.1, p. 22] as follows

∂n

∂sn
LI (s) = s−n exp

(−λqεcαsδ
) n∑

r=1

(
λqεcαsδ

)r

r ! βn,r . (29)

By substituting (29) into (28) and (5), the outage probability
and capacity of a single-hop D2D can be simplified as (11).
For two-hop D2D, the outage probability can be written as

P
2-hop
0

N0→0= 1 − P (SIR1 > T ) P (SIR2 > T )

= 1 −
2∏

i=1

exp
(
−λK d2

i

)
ϕ(di )

= 1 − exp

(
−λK

(
d2

2
+ 2r2
)) 2∏

i=1

ϕ(di ), (30)

where we applied (11) in the second equality and utilized the
cosine rule between the link distance [52], i.e., d2

2 + 2r2 =
d2

1 + d2
2 , in the last equality. This completes the proof.
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