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28 A simple but efficient approach is proposed in this paper to construct the isotropic ran-
39 dom field in R? (d > 2), whose univariate marginal distributions may be taken as any
40 infinitely divisible distribution with finite variance. The three building blocks in our
j; building tool box are a second-order Lévy process on the real line, a d-variate random
43 vector uniformly distributed on the unit sphere, and a positive random variable that gen-
44 erates a Pdlya-type function. The approach extends readily to the multivariate case and
45 results in a vector random field in R? with isotropic direct covariance functions and with
47 any specified infinitely divisible marginal distributions. A characterization of the turning
48 bands simulation feature is also derived for the covariance matrix function of a Gaussian
gg or elliptically contoured random field that is isotropic and mean square continuous in R
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MATHEMATICS SUBJECT CLASSIFICATION
60G60; 60G51; 60E07

1 Introduction

Spatial or spatio-temporal data are frequently modeled as realizations of random fields
in spatial statistics [11], [14], [15], [26], a fundamental characterization of which would
be the underlying finite-dimensional distributions. When a random field is assumed to
be of second-order, its correlation structure is often of crucial importance. The Gaus-
sian random field model is among the most popular choices, mostly due to the fact that
its correlation structure is one of the richest structures, in the sense that any positive
definite function could be employed as its covariance function. Including the Gaussian
one as a special case, the set of second-order elliptically contoured random fields is one
of the largest, if not the largest, sets that allow any positive definite function to be a
covariance function [36]. On the other hand, non-Gaussian models are called for and are
encountered in various natural and applied science fields, such as agriculture, astronomy;,
economics, environment, finance, geophysics, hydrology, and other areas [29]. Occasion-
ally, a positive definite function is adopted in the literature as the covariance function of a
non-Gaussian or non-elliptically-contoured random field, as is pointed out in [44], without
awareness that positive definiteness is a necessary condition for the covariance function
of a second-order random field to be satisfied but whether it is sufficient must be checked
on a case-by-case basis. The primary objectives of this paper are to connect a subset of
isotropic positive definite functions in R? to a class of non-Gaussian or non-elliptically-
contoured random fields in R? (d > 2), and to propose a simple but efficient approach
to construct isotropic random fields in R?, whose univariate marginal distributions could
be an arbitrary infinitely divisible distribution, and whose covariance functions are of the
form (4) below that is an important particular case of (1) or (3).

Given an even and continuous function C'(z) on R, C(]|x]|) is a positive definite func-
tion in RY (d > 2) if and only if it possesses an integral representation [47]

C(x) = / T QuIxlw)dF(), xR, (1)

where F'(u) is an increasing and bounded function on [0, 00), ||x|| is the usual Euclidean

norm of x € RY,
d\ 2\
Qd(w) =T (5) (—> JQ_I(LU), w € R, (2)
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and J,(x) stands for a Bessel function of order v. In other words, C'(]|x]|) is the covariance
function of an isotropic Gaussian or elliptically contoured random field in R? if and only
if (1) holds [35], [41], [54], [55]. The so-called turning bands method was introduced by
Matheron [43] to simulate an isotropic random field in R? after observing that (1) is
equivalent to

ol = A o ) S . xen Q
V(& by | |
where C(z) is a positive definite function on R. The mapping C; — C(||-||) is one-to-one
from the set of positive definite functions on R onto that in R?, in that, for every isotropic
positive definite function C(||x||) in RY, there exists a unique positive definite function
Ci(z) on R such that (3) holds. In Section 3 we restrict our attention to the cases that
C4(x) are Pdlya-type functions.

Section 3 proposes a simple but efficient approach to generate isotropic random fields
in R?, whose marginal distributions could be an arbitrary infinitely divisible distribution,
and whose covariance functions take the form

Ol = AL gl o) S, x e ()
SV (S o | |
where g(z) is a Pélya-type function on R that is even, continuous, and nonnegative, and
is convex on (0,00), with g(0) = 1 and a}l_)r& g(x) = 0. A Pdlya-type function g(x) can be
treated either as the covariance function of a stationary Gaussian or elliptically contoured
stochastic process on R by Bochner’s theorem [21], or as the characteristic function of
an absolutely continuous distribution function [12], [21], [34], whose density function
is an even function and is continuous everywhere except possibly at the point x = 0.
Properties of Gaussian processes with Pdlya-type covariance function are studied in [7] and
[31]. Probabilistic constructions are given in [21] for time series reformulations of Pélya’s
theorem on characteristic functions, with the marginal distributions of the process to be
any infinitely divisible distribution with finite variance. A class of stationary Gaussian or
elliptically contoured vector stochastic processes on R is formulated by [17], with Pélya-
type direct and cross covariance functions. Another class of stationary vector stochastic
processes on R is constructed by [23], whose marginal distributions are infinitely divisible
distributions with finite variance, and whose direct covariance functions are of Pélya type.
A stationary stochastic process on R is built in [39], of which the covariance function is
of Pdlya-type and the marginal distributions may be taken as any infinitely divisible
distribution with finite variance, just like those in [21]. A stationary random field in R¢
or Z% is constructed and characterized by [24] that can take any (univariate) infinitely

3
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divisible distribution with finite variance and has the covariance function expressed as a
product of Pélya-type functions. See also [33], which constructs classes of homogeneous
random fields on R? that take values in linear spaces of tensors of a fixed rank and are
isotropic with respect to a fixed orthogonal representation of the group of orthogonal
matrices.

A vector random field in R? is built in Section 4, whose marginal distributions could be
any infinitely divisible distribution with finite variance, and whose direct covariances are
of the form (4). For the covariance matrix function of a Gaussian or elliptically contoured
vector random field in R¢, we also obtain a matrix version of (3), which may be regarded
as a turning bands method to simulate the vector random field just as Matheron [43]
did. Some preliminary results are given in Section 2, and all the proofs are presented in
Section 5.

2 Preliminary results

This section recalls some basic properties of second-order Lévy processes, uniform distri-
bution on the unit sphere S* ! = {x € R% ||x|| = 1}, and Pélya-type functions, which
constitute the three building blocks in our tool box in Sections 3 and 4. For Lévy pro-
cesses and infinitely divisible distributions we refer the reader to [1], [9], [46], and [50], to
[19] and [20] for the uniformly distributed random vector on S, and to [21] and [34] for
the Pélya-type function on R.

An m-variate Lévy process {Y(z),z € R} is a real stochastic process that possesses
the following properties:

(i) P(Y(0)=0) =1,

(ii) (independent increments) Y (z9) — Y (1), ..., Y (x,) — Y (2,_1) are independent for
every positive integer n and any z; < z9 < ... < x,,

(iii) (stationary increments) for any z; < xa, Y (z3) — Y (x1) and Y (22 — x;) have the
same distribution,

(iv) it is stochastically continuous.

The distribution of Y () is infinitely divisible, for each € R. It may or may not have
first or second-order moments. When second-order moment exists, a general form of the
covariance matrix function is given in Lemma 1 for a second-order Lévy process.
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Lemma 1. If {Y(z),z € R} is an m-variate second-order Lévy process, then its covari-
ance matrix function is of the form

21| + [22] |21 — 2o

cov(Y(x1),Y(z2)) = ( 5 5 ) ¥, x5, €R, (5)

where X = cov(Y (1),Y(1)) is a positive definite matrix.

A d-variate random vector V = (V4,...,Vy) uniformly distributed on S%! has a
stochastic representation [19], [20],

/!

W- W,
V= — 4 (6)
d 2 d 2
(zm@) (zm@)
k=1 k=1
where W1, ..., W, are independent standard normal random variables. The joint density

of (Vi,..., Vi) is

d—k_4q
k ) 2 k 5
— = (1= ) v <1,
2 i=1 i=1
0, otherwise,

for 1 < k < d. In particular, the density function of Vj is given by

M) 1 —n)%, <1
fVl (U) = ﬁF(%) ’ ’
0, otherwise.

The function Q4(||w||) appearing in (2) is nothing but V’s characteristic function, namely,

1
Qu(||lw]|) = Eexp(w'V) = / exp(1w'v)dv, weRY (7)
Wd—1 Jgd—1
d
where wy_ 1 = 1«225) is the surface area of the unit sphere S%! and : is the imaginary
3

unit. If F(u) in (1) is assumed to be a cumulative distribution function of a nonnegative
random variable, Uy, say, that is independent of V, then (1) becomes

C(Ix|) = Bexp(x'VUp),  x € RY, (8)
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and (3) is identical to
Cllx[l) = Eexp(ulx[[Vilh),  x€R, 9)

since x'V and ||x||V; have the same distribution, according to Theorem 2.4 of [19].
Note that a Pélya-type function g(z) on R can be represented in the form

glz) = /OOO ( - %)erFU(u), v €R, (10)

where ;. = max(z,0), and Fy(u) is the distribution function of a positive random variable
U with P(U < 0) = 0. See, e.g., Theorem 4.3.3 of [34]. For this reason [39] we say that
the random variable U generates the Pélya-type function g(x). If g(z) is given, then the
density or distribution function of U could be obtained, as shown in Lemmas 2 and 3,
by solving the equation (10) when g(x) possesses a second-order derivative on (0,00) or
Fy(u) is continuous.

Lemma 2. If g(z) is a Pdlya-type function on R and is twice differentiable on (0,00),
then it can be generated by a positive random variable U having a density

fU(x) _ { Zlfg//(:)j), xr > 0, (11>

0, xz < 0.

Lemma 3. If the distribution function Fy(u) is continuous, then the Pdlya-type function
g(x) is continuously differentiable on (0,00) and Fy(u) can be recovered from g(x) with

FU(l’) _ { (1)"*‘ zg'(z) — g(z), i 2 87 (12>

| 2
Let Vi be a random variable with density function % (%) , v € R, and be

independent of U that generates g(z). Then (10) can be alternatively written as

g(x) = Eexp (z%x) , x € R, (13)

by noticing that the characteristic function of V4 is (1 — |z|);. Furthermore, g(x) may be
interpreted as the covariance function of the following stationary process,

Z(z) = cos (%an@), r € R,

where © is a random variable uniformly distributed on [0, 27| and independent of (U, V).
As a result, (4) is a special case of (1) or (3).

6
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3 Isotropic random fields with infinitely divisible marginal

OCoONOOOPR~WN =

10 distributions

13 This section introduces a new class of isotropic random fields in R? (d > 2) with infinitely
14 divisible marginal distributions and their covariance functions take the form (4). Our
15 three building blocks are a second-order Lévy process on R, a random variable U that
generates a Polya-type function on R, and a random vector V uniformly distributed on

18 Sd_l.

20 Theorem 1. Suppose that g(z) is a Pdlya-type function on R and U is a positive random
21 variable generating g(x), and that V is a d-variate random vector uniformly distributed
on S If {Y(z),z € R} is a second-order Lévy process with covariance

B Y el o2 B O B 2
2 2 ’

25 cov(Y(xy1),Y (x2)) x1, T2 € R,

28 and {Y(x),x € R}, U, and V are independent of each other, then

30 / /
a1 2(x) =Y (XUV + 1) Yy (Xg) , x € RY, (14)

34 1s an isotropic random field. Moreover,

36 (i) for each fized x € R?, Z(x) follows the same infinitely divisible distribution as Y (1);
38 (ii) the covariance function of {Z(x),x € R4} is
40 cov(Z(x1), Z(x2)) = Eg([lx1 —xa[[V1)

42 = A ot -l — ey P,

or, equivalently,
47 cov(Z(x1), Z(x2)) = fooo Qa(||x1 — x2||u)dF(u), X1, X, € RY, (16)
49 where

50 {2P(%§u), u>0,

0, otherwise,

53 and Vy is a random variable with characteristic function (1—|z|); and is independent
55 of U;
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(iii) The spectral distribution function of (14) is identical to the distribution function
of a d-variate isotropic random vector %V, where Vy is a random wvariable with
characteristic function (1 — |z|)4+ and is independent of U and V; and, whenever it
exists, the density function of %V is the spectral density function of (14).

As a remark, the covariance function of the isotropic random field {Z(x),x € R4}
gets the random variable VU1 involved through either the characteristic function g(z)
as in (15) or half its distribution function F(u) as in (16). Interestingly, the isotropic
covariance function (4) or (15) enjoys a Pdlya-type property similar to that of g(x), as is
described below.

Corollary 1. The isotropic covariance function (15) possesses the following properties:
(i) C(||x]]) is a decreasing function of ||x||, and takes nonnegative values;
(i) C(||x|) is a convex function in RY, in the sense that the inequality
Caxr + (1 = A)x2]l) < AC(lIxi]l) + (1 = MO(Ix2l),  x1,%x2 € R,
holds for every A € [0, 1].

Indeed, these properties follow directly from (15), in view of the fact that g(z) is
decreasing, nonnegative, and convex on [0,00), and ||Ax; + (1 — A)x2||) < A||xq|| + (1 —
A)|[x2]|. The condition lim g(z) = 0 in a Pdlya-type function may be substituted [12],

Tr—r00

[21] by lim g(x) = ap > 0. Theorem 1 can be modified appropriately to cover this case
T—r00

as well.

The set of second-order Lévy processes is rich. Familiar special cases include Brownian
motion, Poisson process, negative binomial process, gamma process, inverse Gaussian pro-
cess, normal inverse Gaussian process [3], inverse Gamma process [25], variance Gamma
process [40], [22], and second-order Student process [30].

To simulate the isotropic random field (14), we need the simulators of the second-order
Lévy process {Y (x),z € R}, the uniformly distributed random vector V on S, and
the random variable U that generates g(x). Methods for simulating Lévy processes are
available in the literature [48], [49], [53]. Simulation of V can be made through that
of d independent standard normal random variables and the stochastic representation
(6). What remains is to simulate the random variable U, which would be simple if its
distribution is known. For a given g(x), the distribution function of U may be found by
solving the equation (10), to which solutions are given in Lemmas 2 and 3. The former
deals with the scenario when g(z) possesses a second-order derivative on (0, c0), while the
latter requires only g(z) to be continuously differentiable on (0, 00).

8
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Corollary 2. In the particular case d = 3, the isotropic covariance function (15) reduces
to

OCoONOOOPR~WN =

[|x1—x2]|
g(u)du
1 Ol — xal]) = 2

. X1,Xy € R, (17)
[[x1 — xa|

14 and, conversely, g(x) can be recovered from (17),

16 d

16 or) = = (@C), >0

19 Examples of Pélya-type functions are given next, with which we will explain how to
find the associated generator U and the resulting isotropic covariance functions.

23 Example 1. For 7 > 1, g(z) = (1 — |z])7. is a Pdlya-type function on R generated from
a beta random variable U, and (17) becomes
B e Gt .1 i

27 7 7 — R?)
o8 cov(Z(x1), Z(x3)) T D =] X1, X2 € R”,

30 which is an isotropic and compactly supported covariance function in R3. In (17) taking
another Pélya-type function

34 eelel, lz] <1,
35 glz) =q e 2 —[z]), L1<[z[ <2,
3 0 2] > 2,

where o > 0, we obtain an isotropic and power-law decaying covariance function

1—exp(—al|x; —xa|)
41 alxi—xall

e cov(Z(x1), Z(xa) = (2=l ) e (= (B4 4) ) kg 1<l <2

2 [lx1—x2]|’

1 1 1 -
jg allx1 —x2l| + (5 o E) " ||X1 - XQ” > 2,

[x1 —xaf <1,

47 for x;,xo € R3.

49 Example 2. For a positive constant «, g(z) = exp(—alz|) is a Pdlya-type function on
R, which serves as the covariance function of the Ornstein-Uhlenbeck process. From (11)
52 we obtain that U is a Gamma random variable with density

54 [ a*zexp(—ax), x>0,
95 fulz) = { 0, elsewhere.
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Using (14) one may build many non-Gaussian random fields of Ornstein-Uhlenbeck type
[4]. We next derive the covariance function of the resulting isotropic random field.
Noticing that (see, for example, formula (3.621.5) of [28])

: L)
ki1 _ . 2\52 1 _ 2 2
/0 u(l—u®) 2 du 21_\(@) ,

the isotropic covariance function (15) becomes

ke N, (18)

C(llxl) =

For an odd d, d = 2dy + 1 (dy € N), say, C(||x||) can be expressed as a linear combi-
nation of Mittag-Leffler functions E, g(x) = > F(#T;B),x eR, fora>0and > 0. To
k=0

see this, we write C'(]|x]|) as

clix = 1 (5)

by virtue of the following property

p(ﬂ) - 2_(151(]{;—|—d—2)(]€+d—4)---(k—i—l)P(%)7

i1 o (=IIxl)*
2 ;(k+d—2)(k;+d—4)---(k+1)k!’

N[

2
if d is odd.
Note that (k+d—2)(k+;—4)..-(k+1)k! can be expressed as a linear combination of m,
m, ey m. In other words,
1 S D (19)
(k+d—2)(k+d—4)---(k+1)k! = (k+2dy —1—7)!

for some constants a; that can be fully determined and their values are pertinent to d. The
proof of (19) is deferred to Subsection 5.4. As a result, the covariance function becomes

(d—3)/2

d\ _1, 41
Clllh =1 (§) 7527 3 asBra-rsy (Il

J=0

10
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In particular, when d = 3,

OCoONOOOPR~WN =

10 00

11 x
1 Clix) = - =

k:O

HXH’“ Eia(—lxl),  xeR?

14 and, when d = 5,

= (1
I Cllxll) - = 3;(k‘+ o

20 1
21 32 —lII* < i+ 2) (k+3)!)
23  S(Bral—lxl) = Pral—lxl),  x€R"

26 See also [5] for a stationary process on R of Ornstein-Uhlenbeck type with covariance
27 Eop(—|z|), and [37] for Mittag-Leffler vector random fields in R¢ with Mittag-Leffler
28 direct and cross covariance functions.

31 Example 3. For 7 € (0,1], g(z) = (1 + |z|7) ! is a Pélya-type function on R. From (11)
32 we obtain U’s density

34 T (1—7+(1+7)z”
35 fulz) = e S
0, z < 0.

38 The covariance function (15) is

ph C(llxl) =

51 When d is odd, d = 2d, + 1, say, we have

53 F<7k+d

2 ):2T(Tk+d—2)(7k+d—4)...(7k+1)F (Tk:+1)’

2

59 11
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and

d\ _1_d-
il =1 (3 ) w2

It reduces to, when d =3 and 7 =1,

(=D"x]* .
hrd—2h+d—1 (ht1y <K

1M

= (~D¥x)F _ In(1 + [x]) )
= € R%.
c(lxll) Z L M

Example 4. For a positive constant 7, g(z) = (1 + |z|)~7 is a Pdlya-type function on R
generated from a positive random variable with density function

fo@)=7(r+Da(l+2)"2 x>0

In this case, the covariance function of the isotropic random field (14) decays in a power
law and

2l (4) 1 43
C(lx]) = 2 /l—l—szl—UQde
(lII[) T (L) o2 0( lzlv) =" ( )
Note that
i T[k]
(14+2)7" = Z ~———aF |zl <1
=0
where 71 is the rising factorial, i.e., 7¥ = % In view of (18), we have
() & (—1)kr kl I(1/2+4k/2)
Ry A2+ k2)
When 7 =1, 7¥ = k! and thus
d 00
g (1/2+k/2)
C(lx[) = f Z ||km
map C(d/2+ k/2)

Example 5. The function

12
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is a Pélya-type function on R and is generated by the distribution function

1— = r>1
F — 227 =
v(z) { 0, z < 3.
The isotropic covariance function (17) becomes
1- @’ “XH S %7

C(llx|) =
(el 34+21n ||x[+21n 2

s x> 5, x € R

2
If its domain is restricted on S?!, (14) becomes an isotropic random field on the
sphere, on which the spherical (angular, or geodesic) distance of two points x; and X is
the distance between x; and X, on the largest circle on S~! that passes through them;
more precisely,
J(x1,Xy) = arccos(x)Xp), Xi,Xp € ST,

or

1
(X1, X2) = arccos (1 - §||X1 = x2||2) . X1, Xy € ST

where X)Xz is the inner product between x; and x,. Evidently, 0 < ¥(x;,%s) < 7, and
the Euclidean and spherical distances are closely connected on S?!, with

¥
= 2sin <—(X127 XQ)) , Xi1,X9 c Sd_l.

N

X1 — Xo|| = (2 — 2x,%2)2 = (2 — 2 cos I(x1, X2))

For properties of isotropic random fields on spheres see [38] and the references therein.

Corollary 3. Suppose that g(z) is a Polya-type function on R and U is a positive random
variable generating g(x), and that 'V is a d-variate random vector uniformly distributed
on ST If {Y(x),x € R} is a second-order Lévy process with covariance

ol Jza| o~

cov(Y (r1), Y (2)) 9 2

x1,To € R,

and {Y(z),x € R}, U, and V are independent of each other, then

Z(x) =Y (ngv + 1) Yy (X;]V) , x € §4°1, (20)

s an isotropic random field, and

13
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(i) for each fived x € S¥1, Z(x) follows the same infinitely divisible distribution as
Y(1);

(i) the covariance function of {Z(x),x € STt} is
cov(Z(x1), Z(x3))
— Eg (2Visin (205221

QF(Q) 1 . 9(x1,%2) d=3 d—
= Wzl)fog@usm(%))(l—u?) 2 du, X1,Xg € S

It is of interest to compare the subclass of isotropic covariance functions of the form

(15) with others constructed earlier in the literature, for instance, those in [2], [8], [27],
[45]. To this end, define

i) = A gty S ez
i(r) = ——=—=—~ | g(zu)(1—u u, x>0.
val (52) Jo
Then Cy(||x|),x € RY, is identical to the covariance function (15). For d > 3, it can be
verified the following recursive relationship between Cy(x) and Cy_o(x),
xCl(x
Cd,Q(l’) = Cd<SL’) + d( ),
d—2
For d > 4, equation (21) differs from equation (25) in [27], or equation (3.9) in [45],
and thus the subclass of isotropic covariance functions of the form (15) differs from that
constructed in [8], [27], [45].
For d = 2, we have

x> 0. (21)

and

1
zCy(x) = —%/ (1—u?) " 2g(zu)du, x> 0.
0

Since xC%(z) doesn’t converge to 0 when x — 0, condition (b) in Theorem 2 of [45] is not
fulfilled, and, consequently, Cy(]|x]|) differs from that constructed in [45].

Interestingly, for d = 3, Cs(z) satisfies conditions (a), (b), and (c) of Theorem 1 of
[45], if g(x) is twice differentiable on (0,00) and 2~'¢" () is non-increasing in = > 0. In
fact, condition (a) is satisfied since
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is continuous, convex, C3(0) = 1, and Cs(z) = o(1) for z — oo (due to the properties of
g(x) and Corollary 1). Condition (b) is fulfilled, because

zCi(x) = g(x) — C3(x), x>0,

C(z) is absolutely continuous on [e, 00) for every € > 0, and lim, o 2C%(x) = lim, o xC}(z)

0. Moreover, for z > 0,

1, 1t )
—C5(x) =— [ ¢ (zu)udu,
x 0

X

is non-negative and non-increasing in z, in that g(z) is convex and z~'¢”(z) is non-
increasing in «, and thus condition (c) of [45] is also satisfied. More precisely, Cs(||x]|) is
an isotropic covariance function in R? given by (1.2) of [45] for the density function

1(5)=2ci@=2 [ foupian

where the second equality is due to Lemma 2. The covariance function considered in
Example 2, i.e., C(||x]|) = E12(—]|x]|), fulfills these conditions.

As another comparison, consider Askey’s isotropic covariance functions [2]. For an
odd integer d > 3, let

~ dt1
Co(z)=(1—-2),>, x>0.

As is shown in [2], Cy(||x||) is an isotropic covariance function in R%. In such a case, the
recursive relationship between Cy(z) and Cy_o(x) is

d—?— 1:rdif60d(x),
but differs from (21). It implies that the subclass of isotropic covariance functions of the
form (15) differs from that constructed in [2].

For further investigation, a question of interest would be to construct the isotropic
random field in R¢ (d > 2) with infinitely divisible marginals, whose covariance function
is of the form in [2], [8], [27], [45]. Another question would be to characterize the isotropic

covariance function (15), just as the subclass in [45] is generated as the scale mixture of
Euclid’s hat [27].

Cy_s(z) = Cy(x) — x>0,

4 Vector random fields with isotropic direct covari-
ance functions

This section contains two results: a vector version of (14) where the vector random field
has infinitely divisible marginal distributions and isotropic direct covariance functions,

15
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and a characterization of the covariance matrix function of a Gaussian or elliptically
contoured vector random field that is isotropic and mean square continuous in R?. The
latter may be used as the turning bands method to simulate an isotropic random field in
R

Theorem 2. Suppose that the Pdlya-type functions gi(x),...,gm(x) are generated by
positive random variables Uy, ..., U,,, respectively, and V is a d-variate random wvector
uniformly distributed on S*1. Let {Y(x),x € R} be an m-variate second-order Léuvy
process with covariance matriz function (5) and write X as (0i;)mxm- If {Y (z),z € R},
V,and Uy, ..., U, are independent, then

x'V x'V x'V Y AARY
7Z(x) = | V; 1) -Y, LY 1) -Y, R¢
(X) (1(Ul _I_) 1(U1)7 7m(Um+) m(Um)>7 X € 3

(22)

1s an m-variate random field with direct covariance functions
cov(Zi(x1), Zi(x2)) = 0uiEgi(|[x1 — x2[[V1),  x1,%x2 € RY,

and cross covariance functions

cov(Zi(x1), Zj(X2)) = 03 / / (

Furthermore, Z(x) follows the same infinitely divisible distribution as Y (1) for each fized
x € R<.

X2

Uj +

In the particular case m = 1, (22) reduces to (14). The vector random field (22) is
nonstationary, but each of its components is stationary and isotropic in R?. Random
variables Uy, ..., U, in Theorem 2 may be relaxed to be dependent, provided that each
individually is the generator of a Pdlya-type function.

The covariance matrix function of an isotropic Gaussian or second-order elliptically
contoured vector random field in R is characterized in [52], with a matrix version of (1)
derived there. The following theorem gives a matrix version of (3).

Theorem 3. Let C(x),z € R, be an m x m matriz function whose entries are even and
continuous on R.

(i) If C(||x||) is the covariance matriz function of an m-variate isotropic random field
in R?, then it can be expressed as

C(x]) = WEL 5 Clxm - P xew oy

16
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where Cy(x) is the covariance matriz function of an m-variate stationary process
on R.

12 (ii) Conwversely, if C(||x||) adopts the representation (23), then it is the covariance ma-
13 triz function of an m-variate isotropic elliptically contoured random field in R.

15 The relationship (23) enables one to use the turning bands method to simulate an
16 isotropic vector random field in R¢, with scalar examples in [10], [16], [18], [32], [42], [51].
17 Examples of stationary covariance matrix functions on R may be found in, for instance,

[17] and [39].

21 Remark. It would be of interest to construct a non-Gaussian or non-elliptically-
contoured random field with the covariance matrix function of the form (23), while we
24 have worked out a part of them in Theorems 1 and 2. Note that the vector random field
25 defined in (22) is not isotropic, though it enjoys an isotropic direct covariance function.
26 Thus, how to construct a vector isotropic random field is left for future research.

29 Example 6. For distinct positive constants ay, ..., a,,, the m x m matrix functions

o o
31 2041 eXp <—g> , 1= j’
32 Cija(r) = e 2] oy
33 (o + o) exp (—aimj) — | — ajfexp <—|ai,aj|) , i F

35 fori,5 =1,...,m and = € R, form a stationary covariance function on R, as Example
36 2 of [17] illustrates. In (23) taking d = 3 yields an isotropic covariance matrix function
with direct/cross covariances

39 102B;, (- 11), i=J

20
Cis([Ix]) =
42 Y] x x . .
43 (i + aj)2E1,2 <—al‘+lj> — (i — 04]')2E12 <—|al|_|(|xj|> ) i#j, x € R,

44 ij=1,...,m.

47 5 Proofs

50 5.1 Proof of Lemma 1

52 Denote by X(x) the variance-covariance matrix of Y(z) for each = € R, i.e., 3(z) =
53 cov(Y(z),Y(z)). It is an even function, since, by the stationary increment property,
54 Y(0)-Y(—z) ==Y(—z) and Y(0 — (—z)) = Y (x) have the same distribution, so that

56 3(—z)=cov(Y(—2),Y(—x)) =cov(Y(z),Y(z)), x>0.
59 17
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In terms of ¥ (), the covariance matrix function of {Y (z),z € R} is given by, for zy,xo >
0,
cov(Y(z1), Y (z2)) = Z(min(xy, 22)) = min(zy, x9)%,
as is shown by [39], where ¥ = cov(Y(1),Y(1)) is a positive definite matrix. For z; and
To having opposite signs, we have
cov(Y (z1),Y(22))
= —cov(Y(max(zy,29)) — Y(0),Y(0) — Y(min(zy,z2)))
0,
since Y (max(z1,x9)) — Y(0) and Y (0) — Y (min(zy,x2)) are independent of each other,
by noticing that min(z,z5) < 0 < max(xy,z3). For z1,25 < 0, Y(0) — Y(max(zq,x2))
and Y (max(x1,22)) — Y (min(zy, z9)) are independent of each other, so that
cov(Y(xy1), Y(z2))
= cov(Y(min(z,x9)), Y (max(zq,x2))
= cov{(Y(0) — Y(max(xy,z2))) + (Y(max(xy,z2)) — Y (min(zy,25))), Y(0) — Y (max(zy,xs))}
= cov(Y(max(zy,x2)), Y (max(xy,zs)))
+ cov(Y (max(z1,xs)) — Y(min(zq, x2)), Y(0) — Y (max(z1, x2)))

= Y(max(x1, 7))

3 (— max(xy, z9))
= Y(min(—z, —z3))

= min(—xz1, —22)X%,

where the fifth equality is due to the even property of 3(z). Finally, (5) is confirmed.

5.2 Proof of Lemma 2

Assuming that U has a density function fy(z), (10) becomes

[ (-2 htwdu =g, 20

/:O fo(u)du — x/zoo fUT(u)du = g(z), x> 0.

Both sides taking derivatives yields

_/:o fU(U)du = ¢'(2),

u

or

18

URL: http://mc.manuscriptcentral.com/lsaa Email: gladde@usf.edu



Page 19 of 28

OCoONOOOPR~WN =

Stochastic Analysis and Applications

from which (11) is established. It can verified that fy(x) is a solution of the equation
(10).

5.3 Proof of Lemma 3

Note that
o) = [ (1= 51 amw)

<1
=1— |z EFU(u)du. (24)

|z

Therefore, g(z) is continuously differentiable on (0, c0) and
, 2] 1
g(x)=— EFU(u)du + EFU(ZL‘), x> 0.
In view of (24), we have

Fy(z) =14 x¢'(z) —g(x), z>0. (25)

Moreover, note that g(z) has the right-hand derivative at * = 0 and we write it as ¢’(0).
Thus the Fy(x) determined in (25) is continuous at x = 0.

5.4 Derivation of (19)

Note that when d = 3 or dy = 1, the left-hand side of (19) is m Assume (19) holds
when dy =n > 1, i.e.,

[y

n—
1 aw-

(k+2n—10)(k+2n—3) - (k+ D)kl & (k+2n—1—j)

<
I
o

for some constants a,,_j. We next show the following holds

n

1 An+1,5
= : 26
(k+2n+1)(k+2n—1)---(k+ 1)k! Z(l<;+2n+1—j)!’ (26)

J=0

for some constants a,1;.

19
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Note that
1
(k+2n+1)(k+2n— 1)-~~(k:—|—3)(k+1)'
1

R N - inj B nzi g
(k+2n) &= (k+2n —1—j)! (k—i—2n+ J(k +2n) 2 (k+2n — 1 — j)!

<

n—1

an Qp, k+2n—1)---(k+2n—7 pj
! A .
n—1 )
k—|—2n—1 (k—|—2n—j>an’j‘
o (k+2n+1)!
For j =1,
(k+2n—-1) 1 N 1
(k+2n)! —  (k+2n)!  (k+2n— 1)
(k+2n—1) B ) N 1
k+2n+1)! (k+2n+ 1!  (k+2n)
When j > 1,
(k+2n—1)---(k+2n—7j)
(k +2n)!
_ 1 (k420 —1) - (B+2n—j+1)
“kr2m—g) 7 (k +2n)! '
Thus (k+2n—(;2’-—~2~g§?2n—j) can be written as a linear combination of (k+21l_j)!, (k+2n1_j+1)!’ .
m. Moreover, note that

(k+2n—1)---(k+2n—7)

(k+2n+1)!
Ck+2n—1)--(k+2n—j+1)(k+2n+1—(5+1))
B (k+2n+1)!
(k+2n—1)---(k+2n—j+1) . (k+2n—1)---(k+2n—j+1)
- (k + 2n)! —+D (k+2n+1) '
We have (H%kgn(jﬁ)% ) can be expressed as a linear combination of m, e

1
(k+2n)1" (kt2n+1)!"

20
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1 (b2n—1)-(k+2
As a result, Y377 (kt2n— gk J£2:)n D%ni can be written as a linear combination of

1 1 1 n—1 (k+2n—1)---(k+2n—j5)ayn,; - . . .
10 (1) sy , (k+2 - while > in Frant) is a linear combination
1

]; of —— k+n+2),, s Tl (k+2n+1), Thus (26) holds. In other words, (19) holds true.

OCoONOOOPR~WN =

14 5.5 Proof of Theorem 1

16 (i) Since U, V, and {Y (z), z € R} are independent and, for each fixed x € R4, Y (XIT" +1)—
18 Y (XIT") and Y (1) or Y(—1) have the same distribution, we obtain the characteristic func-
19 tion of Z(x),

2t Eexp(1Z(x)w) = Eexp {M (Y (XUV + 1) —Y (XUV))}
;g L[l () (o

27 - /S/ Eexp (wY (1)) dFy (u)dv

28 Wd—1
29 = Eexp(wY(1 x € RY,

31 that is, the distribution of Z (x) is identical to that of Y(1), and is thus an infinitely
33 divisible distribution. As a consequence, EZ(x) = EY(1).
34 (ii) It is easy to check that

36 o+ 1+ = 1] =2fz[ =2(1 = [z[)y, =R, (27)
38 from which we obtain the the covariance function of {Z(x),x € R},

jﬁ) COV(Z(Xl),IZ\(IXQ)) . . .

g (G ) () G ) (7))
L e T
j; _ 2wd/§d/ { xl—xz @_1 _9 w}dFU(u)dv

50 X1 — Xg) V|
= — 1————=—=—] dF d
51 Wy /Sd/ov ( u >+ U(u) M

53 = Eg((x; —x2)'V), X1, Xs € RY,

T+

u

55 where the last equality is due to the formula (10). Since V is uniformly distributed on
56 S4=1 it follows from Theorem 2.4 of [19] that (x; —x3)'V and ||x; — X»||V; have the same

59 21
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distribution. Consequently,

cov(Z(x1), Z(x2)) = Eg((x1 —x2)'V)
= Eg(|lx1 — x2[[V1)

_ (5) [ 2452 a
_ \/_F(dT)/ g(Ix1 = xallw)(1 — w?)Fdu,  x1,% € RY,

and {Z(x),x € R%} is an isotropic random field with covariance function (4).
To derive an alternative form of (15), from (13) we obtain

cov(Z(x1), Z(x2)) = Eg((x1 —x2)'V)

= Eexp (z(xl — XQ)/V%)

_ / " Bexp (16 - x2)'Va) dP (% = u)

oo

_ / Qs — xollu)dF (1), x1,% € RY,
0

where F'(u) = 2P (KUl < u) Ju > 0.
(iii) By Bochner’s theorem, C'(||x||) can be expressed as

C(||x]]) = / exp(1X'w)dF(w) = Eexp(x'W), x € R%
R4

where W is a d-variate random vector with distribution function F(w). On the other
hand, it follows from (13) that

C(|Ix|l) = Eg(x'V) = Eexp (zx'%V) ,  xcR%

By the unique theorem, W and %V have the same distribution, so that the latter’s
distribution function is the spectral distribution function of (14) and the latter’s density
function, if it exists, is the spectral density function of (14).

5.6 Proof of Theorem 2

The distribution of Z(x) is infinitely divisible, because it can be verified to be identical to
that of Y(1), in a way analogous to the proof of Theorem 1. Also, the direct covariance
function cov(Z;(x1), Z;(x2)) can be derived in the same way as the proof of Theorem 1.

22
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1
2

3

4

5

6

7

8 For i # j, we obtain the cross covariance function cov(Z;(x1), Z;(x2)) from identity (27)
?O as follows,

11

12 cov(Zi(x1), Zj(x2))

13 x,V x,V x,V x,V
= PN 1) -V, (222, v (=2 1) — v (22X
]g COV( ( +> (Uz‘>’ ](UaJr) ](Uj
/
1? = / / / cov( ( > Y-(le),
Wd—1 Jgd-1 U

18

X
2 Yi < ) Y; ( ” )) dFy, (u))dFy, (ug)dv

J

21
22 _ T 1_ X1 x2v dF IF o~
23 Wi—1 /Sd 1/ / ( u; v, (u;)dFy, (uj)dv
24

25 _ Uij/ / E(l_'l__XQV
26 7
27
2 = [0
29

/
where the last equality follows from the fact that (% — ’;—j)
[19]

) dFini)dFUj(uj)
.

X9

vl) dFy, (w;)dEFy, (u;), X1, Xy € RY
+

U

have the

33 same distribution, according to Theorem 2.4 of [1

36 5.7 Proof of Theorem 3

38 (i) Since C(||x]||),x € R, is an isotropic covariance matrix function, it adopts an integral
expression, by Theorem 3.1 of [52],

42 C(lx]]) :/ Qa(l|x[|lw)dF(w),  x€RY,
0
45 where F(w),w € [0,00), is an m X m right-continuous, bounded matrix function with
46 F(0) = 0, and F(ws) — F(w;) is positive definite for every pair of w; and ws with 0 <
47 wi < wy. It can be rewritten as, via the identity (7) and Theorem 2.4 of [19],
50 cllx|) = / B exp(ix' Vo) dF ()
0

5 ~ [ Bexatlx|Vie)aF )
55 2T (5) / > / 1 2 i

= —2r exp(2||x||uw)(1 — u”) 2 dudF(w
56 A )y, (e[| |uw)( ) (w)
59 23
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= —QF(g) /1 (H || )(1_ Q)d_sd € a
C X||u U 2 du, X R,

\/%F(—dgl) 0 !

where

Ci(x) = /000 exp(1zw)dF(w), r € R,

is an m X m stationary covariance matrix function on R, as is shown in Section 8.1 of [13].
(ii) For C(||x||) being of the form (23), since C;(x) is an m x m stationary covariance
matrix function on R, it follows from Section 8.1 of [13] that

Ci(x) = /000 exp(1zw)dF(w), r € R,

where F(w),w € [0,00), is an m X m right-continuous, bounded matrix function with
F(0) = 0, and F(ws) — F(wy) is positive definite for every pair of w; and ws with 0 <
w1 < wsy. In terms of the identity (7), (23) can be rewritten as

gl 1 d—3
Cllx) = iy [ Gt - )P
_ 2r (g) e 2\ 453
= m/ﬂ /Oexp(z||x||uw)(1—u) dudF(w)
_ /0 B exp(t]|x||Viw) dF ()
= /OooEeXp(zx’Vw)dF(w)
_ /OOOQd(Hwa)dF(w), x € R

By Theorem 3.1 of [52], there exists an m-variate elliptically contoured random field with
C(||x||) as its covariance matrix function.
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