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H I G H L I G H T S

• The SOP’s capability of bringing benefits on multiple objectives simultaneously was investigated.

• A multi-objective framework was developed to improve distribution network operation with SOP.

• An optimization method integrating both global and local search techniques was proposed.

• The optimization method is capable of obtaining diverse Pareto optimal solutions.
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A B S T R A C T

With the increasing amount of distributed generation (DG) integrated into electrical distribution networks,
various operational problems, such as excessive power losses, over-voltage and thermal overloading issues be-
come gradually remarkable. Innovative approaches for power flow and voltage controls are required to ensure
the power quality, as well as to accommodate large DG penetrations. Using power electronic devices is one of the
approaches. In this paper, a multi-objective optimization framework was proposed to improve the operation of a
distribution network with distributed generation and a soft open point (SOP). An SOP is a distribution-level
power electronic device with the capability of real-time and accurate active and reactive power flow control. A
novel optimization method that integrates a Multi-Objective Particle Swarm Optimization (MOPSO) algorithm
and a local search technique – the Taxi-cab method, was proposed to determine the optimal set-points of the
SOP, where power loss reduction, feeder load balancing and voltage profile improvement were taken as ob-
jectives. The local search technique is integrated to fine tune the non-dominated solutions obtained by the global
search technique, overcoming the drawback of MOPSO in local optima trapping. Therefore, the search capability
of the integrated method is enhanced compared to the conventional MOPSO algorithm. The proposed metho-
dology was applied to a 69-bus distribution network. Results demonstrated that the integrated method effec-
tively solves the multi-objective optimization problem, and obtains better and more diverse solutions than the
conventional MOPSO method. With the DG penetration increasing from 0 to 200%, on average, an SOP reduces
power losses by 58.4%, reduces the load balance index by 68.3% and reduces the voltage profile index by 62.1%,
all compared to the case without an SOP. Comparisons between SOP and network reconfiguration showed the
outperformance of SOP in operation optimization.

1. Introduction

Growing awareness of energy and environment, and the demand for
a reliable, secure, and sustainable power grid lead to the continuously
expanding deployments of Distributed Generators (DG). However, high
penetrations of DG significantly affect the operation of electrical dis-
tribution networks, where the technical challenges are mainly power
loss increments, line and transformer overloads, and voltage violations
[1–5].

The use of power electronic devices provides alternative solutions to
overcome these challenges. The application of power electronics to
High Voltage Direct Current (HVDC) transmission systems has gained
increasingly importance in the bulk power transfer. The extensive
growing demand for power electronic devices and their continuous
developments offer significant reductions in converter costs [6], which
provide a chance for their further applications in medium voltage (MV)
and low voltage (LV) distribution networks.

Power electronic devices were applied in distribution networks for
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different purposes [7–16]. A power electronic grid interconnector was
introduced to decouple the frequency and voltage from the upstream
grid [7]. A loop power flow controller and a loop balance controller
implemented with back-to-back converters to form an active meshed
distribution system were proposed in [8] and [9]. Voltage source con-
verter-based smart power router was proposed for minimizing load
shedding [10]. Specifically, the use of soft open point (SOP) in dis-
tribution networks was investigated in [11–16]. SOP is a power elec-
tronic device that can be installed in place of a normally open/closed
point in distribution networks, with the capability to accurately control
active and reactive power flows between the feeders that it is connected
to. Moreover, it has the advantages of fast response, frequent actions
and continuous control. In [11], the capability of SOP was quantified
for voltage regulation in order to increase DG penetration, and the
network with SOP showed better performance compared with other
voltage control options. A combination of SOP with energy storage was
investigated to mitigate the transient effects caused by photovoltaic
systems [12]. Two control modes for the SOP operation were developed
in [13] for the power flow control and supply restoration. The opera-
tional benefits of SOPs installed in a distribution network were quan-
tified in [14], in which an improved Powell’s Direct Set method was
used to determine the optimal SOP operation. In [15], a Jacobian ma-
trix-based sensitivity method was proposed to define the operating re-
gion of SOP considering different objectives separately. The results il-
lustrated a confliction between the objectives of voltage profile
improvement and energy loss minimization. Optimal siting and sizing
of SOPs was investigated in [16] to minimize the annual expense of the
overall distribution system under study.

Previous research on SOP has mainly focused on the following at-
tributes: (1) development of control strategies for SOP; (2) minimiza-
tion of network energy losses considering the influence and increase of
DG; (3) analysis and quantification of benefits of SOP considering dif-
ferent objectives separately. However, in order to achieve the potential
benefits and wider applications of SOP, it is important to investigate the
device’s capability of bringing advantages on multiple objectives si-
multaneously, which makes the problem of distribution network op-
eration with SOP a multi-objective optimization problem.

Over the past few decades, multi-objective optimization problems
have attracted considerable interests from researchers motivated by the
real-world engineering problems [17]. Many multi-objective optimiza-
tion problems are solved under the concept of a priori method, in which
the decision maker defines the importance amongst objectives before
the search performs, and the multi-objective optimization problem is
transformed into a single objective one. Afterwards, a classical single
objective optimization algorithm is used to find the optimum. The key
drawback of the a priori method is the arbitrarily imposed limitation of
the search space, which does not allow findings of all solutions in a
feasible set [18]. In addition, since it is common that real-world ob-
jectives are incommensurable in nature and can be conflicting with
each other, aggregating multiple objectives into one may result in
losing significance. Pareto optimality, on the contrary, is based on a
simultaneous optimization of multiple objective functions. It provides a
set of non-dominated solutions named Pareto optimal solutions, illus-
trating the nature of trade-offs among conflicting objectives. Evolu-
tionary algorithms, e.g., the widely recognized SPEA2 [19] and NSGA-II
[20], are suitable to solve multi-objective optimization problems using
the concept of Pareto optimality, since these techniques deal with a set
of possible solutions simultaneously, which allow obtaining an entire
set of Pareto optimal solutions in a single run. Particle Swarm Opti-
mization is one of the most recently used evolutionary algorithms. It is a
global search technique with the most attractive features of simple
concept, easy implementation, fast computation and robust search
ability. Compared with other evolutionary algorithms, Particle Swarm
Optimization shows incomparable advantages in searching speed and
precision [21]. There are different Pareto-based multi-objective Particle
Swarm Optimization variants, and a state-of-the-art review was given in
[22].

Despite the global exploration capability, evolutionary algorithms
are comparatively inefficient in fine tuning solutions (the exploitation)
[23]. To overcome this deficiency and to enhance the search capability
of evolutionary algorithms, appropriate integrations of global and local
search techniques to maintain the balance between exploration and
exploitation have been proposed. In [24] an adaptive local search
method for hybrid evolutionary multi-objective algorithms was

Nomenclature

Network parameters

Ik current flow through branch k
Ik rated, rated current of branch k
Ik

max maximum current limit of branch k
LBI load balance index
Nbus total number of buses
Nbranch total number of branches
Pi, Qi active and reactive power flowing from bus i to bus +i 1
Pload i( ), Qload i( ) active and reactive power demand at bus i

+Ploss i i( , 1), +Qloss i i( , 1) active and reactive power loss of the branch
connecting buses i and +i 1

PC1, QC1 active and reactive power provided by VSC1
PC2, QC2 active and reactive power provided by VSC2
Ploss total active power loss of a network
PSOP loss power loss within an SOP
SC1 rated capacity of VSC1
SC2 rated capacity of VSC2
Vi voltage at bus i
Vk voltage drop through branch k
VC1 voltage at VSC1
VC2 voltage at VSC2
Vi ref, nominal voltage of bus i
V min, V max minimum and maximum bus voltage limits

VPI voltage profile index
xk, rk reactance and resistance of branch k

Optimization parameters

A archive that stores Pareto optimal solutions in each
iteration

c1, c2 cognitive learning and social learning factors
em set of standard base vectors
Fn value of the nth objective function
gbest global best position
gm optimal step size generated by the golden section search

technique
M total number of decision variables
m the mth decision variable
Nobj total number of objective functions
OBJ set of objective functions
objn the nth objective function
pbest individual/personal best position
r1, r2 random numbers ∈ [0,1]
vi velocity vector of the ith particle
ω inertia weight
xi position vector of the ith particle
X position of a particle selected from the archive and used in

the local search process
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developed. In [25] a biogeography-based optimization technique that
combines the periodic re-initialization with local search operators to
search for global optimal solution was proposed. A memetic algorithm
with a local search operator to improve accuracy and convergence
speed simultaneously was proposed in [26]. The impact of various local
search methodologies on the multi-objective memetic algorithm was
investigated in [27].

In this paper, a multi-objective optimization framework was pro-
posed to find a compromise among incommensurable objectives of
distribution network operation. In order to determine the optimal SOP
set-points, a novel optimization method that integrates both global and
local search techniques was proposed. In this method, a Multi-Objective
Particle Swarm Optimization (MOPSO) method is used as a global
search technique to ensure the search capability of the entire solution
space, while the Taxi-cab method is used as a local search technique to
improve the solution quality and avoid stagnation. The framework was
applied to a 69-bus network. Results showed great benefits of SOP in
power loss reduction, load balancing and voltage profile improvement,
as well as its capability to accommodate high DG penetrations. Results
also showed the effectiveness of the proposed integrated method in
solving the multi-objective optimization problem.

The new contributions of this work include: (1) investigating the
SOP’s capability of bringing benefits to the distribution networks on
multiple objectives simultaneously; (2) providing a multi-objective
optimization framework to improve the distribution network operation
with an SOP; and (3) proposing a novel optimization method in-
tegrating both global and local search techniques, which has the cap-
ability of obtaining better and more diverse Pareto optimal solutions
than the conventional MOPSO method.

2. Mathematical model of SOP in distribution networks

An SOP can be implemented in different topologies. In this study a
Back-To-Back Voltage Source Converter (B2B VSC) topology was used.
The schematic diagram of a simple distribution network installed with
an SOP is shown in Fig. 1.

The B2B VSCs can operate in four quadrants. The reactive power at
both AC terminals of the SOP is independent and can be assigned as
required. This makes the device able to provide flexible reactive power
to the network. In addition, the active power flow of the SOP can be
controlled rapidly and accurately.

To fully evaluate the potential effects of the SOP on steady-state
network operations, a mathematic power injection model of the device
was developed. Using this model, active and reactive power injections
at the SOP terminals are integrated into the load flow algorithm
without considering the detailed design of converter controllers. The
backward forward sweep method was used for load flow calculations.
Taking Feeder 1 in Fig. 1 as an example, the load flow was calculated by

the following recursive equations [28]:
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V
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where Pi and Qi are the active and reactive power flowing from bus i to
bus +i 1. Pload i( ) and Qload i( ) are the active and reactive power demand
at bus i. +Ploss i i( , 1) and +Qloss i i( , 1) are the power losses within the branch
connecting busses i and +i 1, and ri and xi are the resistance and re-
actance of that branch. Vi is the voltage at bus i. Nbus is the total number
of busses in a network.

The operational boundaries of the SOP are:

= −P P PC p loss p C1 ( , 1) (4)

= −P P PC q loss q C2 ( , 2) (5)

where PC1 and PC2 are the active power flows of each VSC of the SOP.
Ploss p C( , 1) is the power loss between bus p and VSC 1, and Ploss q C( , 2) is the
power loss between bus q and VSC 2.

The active power exchange of the two VSCs is constrained by:

+ + =P P P 0C C SOP loss1 2 (6)

where PSOP loss is the power losses at the SOP. These power losses are
relatively low compared to the power losses of the entire network and
thus can be neglected. Therefore, Eq. (6) is simplified as:

= −P PC C1 2 (7)

The constraints on the SOP capacity and terminal voltages are:

+ ⩽P Q SC C C1
2

1
2

1 (8)

+ ⩽P Q SC C C2
2

2
2

2 (9)

⩽ ⩽V V V| |min
C

max
1 (10.1)

⩽ ⩽V V V| |min
C

max
2 (10.2)

where QC1 and QC2 are the reactive power injections of each VSC of the
SOP. SC1 and SC2 are the rated capacity of each VSC. V min and V max are
the minimum and maximum allowed voltages of the network. VC1 and
VC2 are voltages at each of the SOP terminals.

Generally, the ac side of the VSC can be controlled in either PV
mode or PQ mode. In this study the latter was considered. By choosing
optimal SOP set-points, power flows within a network can be controlled
actively. Therefore, specific operational objectives can be achieved.

Feeder 1

Feeder 2 AC
DC

AC
DC

SOP

Fig. 1. A distribution network installed with an SOP.
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3. Problem formulation

A schematic overview of this work is presented in Fig. 2. To de-
termine the optimal set-points of an SOP in a distribution network, a
novel optimization method that integrates both global (the MOPSO
method) and local (the Taxi-cab method) search techniques was de-
veloped. The performance metrics were compared with those of the
conventional MOPSO method from the aspects of network power losses,
the feeder load balancing, and the voltage profile improvement.

3.1. Objective functions

Objectives considered in the proposed multi-objective optimization
framework were power loss reduction, load balancing and voltage
profile improvement. They are described in the mathematical expres-
sions as follows:

=OBJ min obj obj obj[ , , ]1 2 3 (11)

3.1.1. Power loss reduction

∑ ∑= = × =
+

×
= =

obj P I r
P Q

V
r

| |loss
k

N

k k
k

N
k k

k
k1

1

2

1

2 2

2

branch branch

(12)

where Ik, Vk, Pk and Qk are the current flow, voltage drop, active and
reactive power flow through branch k. rk is the resistance of branch k.
Nbranch is the total number of branches.

3.1.2. Load balancing
Load balancing is achieved by minimizing the Load Balance Index

(LBI ), which is defined as

∑ ⎜ ⎟= = ⎛
⎝

⎞
⎠= −

obj LBI I
Ik

N
k

k rated
2

1

2branch

(13)

where −Ik rated is the rated current of branch k

3.1.3. Voltage profile improvement
The improvement in voltage profiles is achieved by minimizing the

Voltage Profile Index (VPI ), which is defined as:

∑= = −
=

obj VPI V V| |
i

N

i i ref3
1

,

bus

(14)

where Vi ref, is the nominal voltage of bus i, i.e. 1 p.u. was taken as Vi ref,
for all busses.

3.2. Constraints

In addition to the constraints as illustrated in Eqs. (1)–(10), the
following limits were also considered:

3.2.1. Bus voltage limits

⩽ ⩽ ∈ …V V V i N| | {1,2, , }min
i

max
bus (15)

3.2.2. Branch capacity limits

⩽ ∈ …I I k N| | {1,2, , }k k
max

branch (16)

where Ik
max is the maximum allowed current of branch k.

3.3. DG penetration

In order to evaluate the impact of DG penetrations on distribution
network operation, a range of DG penetrations was considered. DG
penetration is defined as the ratio of the active power injection from DG
to the minimum active power demand of the network [29]. This case is
recognized as the worst-case scenario [30,31] and provides vulnerable
network operation conditions.

4. Optimization framework

4.1. Pareto optimality and dominance

Under the concept of Pareto optimality, candidate solutions which
satisfy the imposed constraints are compared according to their dom-
inances, and thereby a set of non-dominated solutions that are of equal
interests amongst different objectives can be obtained. Assuming a
collection of objective functions are to be minimized, solution ‘A’
dominates solution ‘B’ if:

∀ ∈ … ⩽ ∩ ∃ ∈ … <n N F A F B n N F A F B[1,2, , ]: ( ) ( ) [1,2, , ]: ( ) ( )obj n n obj n n

(17)

where Fn is the nth objective function value of a solution, and Nobj is the
total number of the objective functions. The set of all Pareto optimal
solutions is called the Pareto set, and the mapping of the Pareto set in
the solution space is called the Pareto frontier, on which alternative
solutions bringing out the flexible operation of the network are pre-
sented. For instance, some solutions may lead to lower power losses
while some others may cause branch loadings more balanced. The
availability of the Pareto frontier provides a set of feasible solutions for
the distribution network operators (DNOs), and allows them to choose
based on their priority or the network condition.

4.2. Overall optimization framework

The schematic of the proposed method, which integrates the global
search technique (i.e. the MOPSO method) and the local search tech-
nique (i.e. the Taxi-cab method [32]), is shown in Fig. 3. The MOPSO is
used for global search so as to obtain a set of Pareto optimal solutions.
Then in order to avoid local optima trapping, the Taxi-cab method is
used to fine tune the obtained Pareto solutions. The search space
around each Pareto optimal solution is exploited further by the Taxi-cab
method.

To illustrate the process of applying the Taxi-cab method to the
Pareto solutions, a two-objective minimization problem is taken as an
example. In Fig. 3(a), the point at the center of the dashed lines re-
presents one Pareto solution. The Taxi-cab method can only optimize
one objective function at a time. Therefore, the local search is carried

Determination 
of the optimal 
SOP set-points

Methodology

The integrated method

Power loss reduction
Feeder load balancing
Voltage profile improvement

erapmocesu
Performance metricsThe conventional MOPSO

MOPSO Taxi-cab+

Fig. 2. Schematic overview of the proposed approach in this paper.
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out along the two objective functions separately, i.e. for one Pareto
solution, a number of Nobj local searches are carried out and Nobj new
solutions are generated. The possible area where new solutions might
be located is shown in yellow. The possible area can be further divided
into dominated area and non-dominated area. The dominated area re-
fers to that both objective function values of the new solution are better
than those values of the initial solution. The non-dominated area refers
to that the new solution has a smaller value along one objective while
sacrificing the value of another objective. The Taxi-cab method is then
applied to all the Pareto solution points and an improved Pareto fron-
tier is therefore obtained, as shown in Fig. 3(b). The Pareto solution
points obtained by the MOPSO method are shown in blue, and the new
Pareto frontier is shown in black. It can be seen clearly that with the
integrated method (i.e. MOPSO + Taxi-cab), the Pareto frontier is pu-
shed to lower values for both objectives, and better and more diverse
Pareto solutions are generated.

4.3. Multi-Objective Particle Swarm Optimization (MOPSO)

4.3.1. Particle Swarm optimization (PSO)
PSO algorithm is a population-based multi-point search technique

developed by Eberhart and Kennedy in 1995 [33]. The search starts
with a population of random search points named particles. Each par-
ticle is encoded by a position vector (x) containing M -dimensional in-
formation (i.e. M is the number of decision variables). In this study, the
active and reactive power injections of the SOP: P Q Q[ , , ]C C C1 1 2 (PC2 is not
included since it is determined by PC1) are considered as the decision
variables. The position vector (x) is updated using the particle’s velocity
in successive iterations. In each iteration, the velocity vector (v) of a
particle is updated using two best values. The first one is the individual/
personal best position (pbest) achieved by each particle itself. The other
one is the global best position (gbest) obtained by any particle in the
population, which is used as a guide leading the population toward
optimum. The velocity and position update equations for the ith particle
are:

= + − + −+v ωv c r p x c r g x( ) ( )i
iter

i
iter

best i
iter

i
iter

best i
iter

i
iter1

1 1 , 2 2 , (18)

= ++ +x x vi
iter

i
iter

i
iter1 1 (19)

where ω is the inertia weight controlling the effect of the particle’s
previous velocity on the current one, i.e. the tendency of a particle to
continue in the same direction it has been traveling. c1 is the cognitive
learning factor representing the attraction that a particle has toward its
own best. c2 is the social learning factor representing the attraction that
a particle has toward the best among its neighbors. c1 and c2 are usually
defined as positive constants [34]. r1 and r2 are two random numbers
∈ [0,1], which are used to keep away from entrapment on local op-
timum as well as to permit the diversity of particles in the search space.
The updating process of Particle Swarm Optimization algorithm is il-
lustrated in Fig. 4.

4.3.2. Multi-Objective Particle Swarm Optimization (MOPSO)
4.3.2.1. Selection of pbest and gbest . In Particle Swarm Optimization
algorithm, the selection of pbest and gbest relies on the fitness value of

(a) Applying Taxi-cab to one point of the Pareto frontier           (b) Applying Taxi-cab to all points of the Pareto frontier

Local search 
along 

Local search along 

Dominated 
area

Non-dominated 
area

Non-dominated 
area

The MOPSO method
The Integrated method

Fig. 3. Overall schematic of the integrated method (MOPSO + Taxi-cab).

Fig. 4. The updating process of a particle’s position and velocity in Particle Swarm
Optimization.
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particles, which is determined by the objective function. However, in a
multi-objective problem, the concept of the best position is substituted
with a set of non-dominated solutions and each of the non-dominated
solutions is a potential guide for particles.

The selection of pbest is straightforward: if the current position of the
ith particle dominates its personal best position, pbest is replaced by the
current position. If the current and personal best positions non-dom-
inate each other, pbest is replaced by either of them with equal prob-
ability. Otherwise, pbest remains unchanged.

Regarding the selection of gbest , research work has been carried out
to avoid defining a new concept of the guide by adopting approaches
that aggregate all the objectives into a single function [35,36], or ap-
proaches that assign the objectives in order of importance. The solution
is then obtained from optimizing the most important one and pro-
ceeding according to the assigned order of importance [37,38]. How-
ever, it is important to indicate that the majority of the currently pro-
posed MOPSO approaches select guides based on the Pareto dominance.
Several variations of the guide selection scheme are feasible and the
MOPSO algorithm in this study is similar to the ones in [39–41], in
which an archive is used to store the non-dominated solutions.

In the proposed MOPSO, the archive is updated iteratively using
Pareto optimality. A random method is then used to select a guide for a
particle from the archived solutions. Let a be the solutions in the ar-
chive A and xi a particle’s position. According to this method, if

= ∈ ≺A a A a x{ | }x ii (where the sign ≺ means ‘dominate’) is the set of
archived solutions that dominate xi, then the gbest for xi is randomly
chosen from Axi with equal probability. If ∈x Ai , clearly Axi is empty.
In this case the gbest for xi is selected from the entire archive A [41].
Thus:

= ⎧
⎨⎩

∈ ∈
∈

−

−g
a A with probability A if x A

a A with probability A otherwise
| |
| |best i

i

x x
,

1

1
i i (20)

4.3.2.2. Retaining and spreading solutions in the archive. It is important
to restrict the size of the archive. Since the archive has to be updated in
each iteration, the update may become computationally expensive if
the size of the archive grows too large.

In the research of evolutionary multi-objective optimization pro-
blems, different techniques have been adopted by researchers to bind
the archive size while maintaining the diversity of solutions in the ar-
chive, e.g., niche technique [42], crowding distance sorting [20] and
clustering [43]. More recently, the use of relaxed forms of dominance
has been proposed. The main one adopted in Particle Swarm Optimi-
zation is the ε-dominance method [44], which is used to filter solutions
in the archive [22]. Moreover, it is found in [45] that when comparing
it against the existing clustering techniques for fixing the archive size,
the ε-dominance method obtains solutions with much faster speed.
Therefore this method is adopted in the proposed MOPSO for retaining
and spreading the non-dominated solutions in the archive. An example
of using the ε-dominance method to filter solutions in an archive is
illustrated in Fig. 5.

4.3.2.3. Mutation operation. The appropriate promotion of diversity in
Particle Swarm Optimization is an important issue in order to control its
normally fast convergence [22]. Cauchy and Gaussian are two popular
methods of mutation operations. An important difference between them
is that the Cauchy distribution is heavier-tailed. This means that it is
more prone to produce values that are far from its mean, thus making
the Cauchy method have a higher chance of escaping premature
convergences than the Gaussian method [46]. Therefore, in the
proposed MOPSO algorithm, the Cauchy mutation operation is used.
After each particle has completed its search, the Cauchy mutation is
applied: if the previous position is dominated by the new one after
mutation, the particle’s position is then replaced by the new one. If
neither of the previous position nor the new position dominates the

other, one of them is selected to be that particle’s position with equal
probability. Otherwise the position remains unchanged.

4.4. Taxi-cab method

By applying the Taxi-cab method, a nonlinear function can be op-
timized in finite steps with fast convergence. The Taxi-cab method does
not need any information of the derivative of the objective function, in
which the search is performed by moving the decision variables along
standard base vectors.

The process of the Taxi-cab method is as follows:

(1) Select a particle from the archive and set its position as X ;
(2) Initialize the standard base vectors = … …e [0, ,1 , ,0]m m

T , where
= …m M1,2, , , and M is the number of decision variables;

(3) Select the objective function objn that to be optimized, where
= …n N1,2, , obj. Set =X X0

(4) Let X0 be the starting point of the search. Along each base vector,
objn is treated as the function of one decision variable only, where a
one-dimensional search technique, the golden section search [47] is
applied to generate an optimal step size gm. The search is performed
by proceeding along each of the base vectors successively and
generating a sequence of improved values along the objective
function:

= +−X X g em m m m1 (21)

(5) The process is continued until XM is obtained. Stop the search and
set = +n n 1 then go back to step 3) if:

− ⩽−obj X obj X convergence criteria| ( ) ( )|n M n M 1 (22)

Otherwise, set =X XM0 and go back to step 4);
The Taxi-cab method is applied to all particles in the archive after

each iteration. Any new solutions obtained by the Taxi-cab method that
are not dominated by any members in the archive are added into the
archive, and any members in the archive which are dominated by the
new solutions are deleted from the archive. This ensures that the

Fig. 5. An illustration of using the ε-dominance method (assuming minimizing f1 and f2
simultaneously): when selecting between solutions 1 and 2, solution 1 is preferred since it
dominates solution 2 (same with selecting between solutions 5 and 6). Solutions 3 and 4
are incomparable. However, solution 3 is preferred since it is closer to the lower left
corner represented by point (2ε , 2ε). Solution 7 is not accepted since its box, represented
by point (2ε , 3ε) is dominated by the box represented by point (2ε , 2ε) [22].
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archive always contains a set of non-dominated solutions.

4.5. Integrated method (MOPSO and Taxi-cab)

In the integrated method, the MOPSO is used to explore the solution
space globally, and the Taxi-cab method is used for fine-tuning the non-
dominated solutions in the archive of the MOPSO. The pseudo code of
the integrated method is shown in Fig. 6.

At the beginning of the optimization process, the archive A is empty
(Line 1) and the positions and velocities of all particles are initialized
randomly (Line 3). Since it is possible that the particle positions lie
outside the feasible region, it must be ensured that the decision vari-
ables, which are the active and reactive power injections of SOP, are
constrained within the SOP rated capacity. This is indicated in Line 4

and 13 by using the function EnforceConstraint , in which an upper and a
lower limits are used to bind the particle positions. The initial personal
best positions of all particles are set to their starting positions (Line 5).
The function Dominance (Line 7 and 19) is used to select the non-
dominated solutions from all particles according to the concept of
Pareto optimality, and store them in the archive. In each iteration, the
particle positions and velocities are updated using Eqs. (18) and (19)
(Line 11 and 12). Then the mutation operation (Line 14) as explained in
Section 4.3.2.3 is applied to improve the diversity of solutions. Line 20
illustrates the local search procedure, where the Taxi-cab method is
applied to the non-dominated solutions in the archive. When updating
the archive (Line 21), the technique described in Section 4.3.2.2 is
adopted for retaining and spreading the solutions in the archive.

1:     archive 
2:     for 
3:              Initialize: 
4:              
5:              
6:     end
7:     
8:     
9:     while 
10:            for 

11:

12:                   
13:                   
14:                   
15:                   if 
16:                               
17:                   end
18:            end
19:            
20:            Taxi-cab 
21:            Update 
22:            
23:    end

Fig. 6. Pseudo code of the integrated method.

Fig. 7. A modified 69-bus distribution network.
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5. Case study and results

5.1. Description of the test network

The proposed multi-objective optimization framework was devel-
oped in MATLAB and applied to a modified 69-bus distribution network
[48]. The network is rated at 12.66 kV, with a total demand of
3802.19 kW and 2694.6 kVar, which was considered as the minimum
demand. Four DGs were installed at bus 11, bus 12, bus 64 and bus 65,
and an SOP was installed at L72, as show in Fig. 7. Ploss, LBI and VPI of
the initial network are 225.01 kW, 10.82 and 23.26 respectively.

Several assumptions were made:

• The system is three-phase balanced.

• The rated capacity of the SOP is 5 MVA.

• Busses with DG installations are PQ busses with unity power factor.

• The range of DG penetrations is from 0 to 200%, with a 5% incre-
ment.

5.2. Multi-objective operation optimization results

Fig. 8 depicts the Pareto frontiers obtained by the MOPSO method
and the integrated method, which gives a set of Pareto optimal solu-
tions for the network operation under 50% DG penetration along
multiple objectives with an SOP. The integrated method refers to the
one integrating the MOPSO and the Taxi-cab methods.

The corresponding 2-dimentional, i.e. two-objective plots of the
Pareto frontiers in Fig. 8 are presented in Fig. 9. It can be seen clearly
that, the integrated method resulted in more numbers of Pareto optimal
solutions than the MOPSO method. Moreover, better solutions were
obtained by the integrated method, since these solutions resulted in
smaller values for all objectives compared to those obtained by the
MOPSO method.

The extreme points along each axis of the Pareto frontier illustrate
the optimal values that can be obtained along each objective function.
These extreme points searched by both MOPSO and integrated methods
are listed in Table 1. Values of power loss, load balance index, and
voltage profile index are presented in a pair of brackets, i.e. (Ploss, LBI ,
VPI ). The improvements in percentage were calculated in comparison
to those values of the network under the same DG penetration but
without the SOP.

In Table 1, the improvements in each column illustrate that, the
network operation along all the objectives were improved by using SOP
for all DG penetrations varying from 0 to 200%.

Table 1 reveals the correlations between different pairs of objective
functions. The rows of ‘min Ploss points’ show that minimizing the power
loss resulted in decreases in LBI and VPI as well. The same situation
occurred when minimizing the LBI . As shown by the rows of ‘min LBI
points’, Ploss and VPI were also decreased for all DG penetrations. The
minimization of VPI , however, caused increases in Ploss for all DG pe-
netrations except for the case of zero DG penetration. It also caused
increases in LBI when DG penetrations were high. Such conflictions are
marked in red in Table 1.

It can be observed that improvements obtained by the integrated
method were higher than those of the MOPSO method along all ob-
jectives and for all DG penetrations. This was due to the exploitation
capability of the local search technique to fine tune the Pareto non-
dominated solutions. The number of solutions obtained by the in-
tegrated method was 100, which reached the restricted archive size,
whist the average number of solutions found by the MOPSO method
was 42. This proved that the integrated method is capable to find more
diverse Pareto solutions, and hence providing enhanced feasibility for
decision making.

5.3. The impact of DG penetrations on SOP performance

In order to evaluate the impact of DG penetrations on the network
operation, a range of DG penetrations were set as input during the
optimization process. For each penetration, a set of non-dominated
solutions were obtained by the integrated method and plotted against
that penetration value. Hence, variations of the objective functions with
increased DG penetrations were obtained as shown in Fig. 10, where
each ‘ο’ denotes one non-dominated solution.

It is observed in Fig. 10 that, all the variations present U-shape
trajectories. The network power loss, load balance index and voltage
profile index started to decrease when DG penetration increased from 0.
Once these minimum values were reached, if the DG penetration con-
tinued to increase, the objective function values started to increase.
With further increase of the DG penetration, the objective function
values were even higher than those of the network without DG. Fig. 10
also provides an optimal range of DG penetrations that leads to im-
proved network operations. For the test network under study, the op-
timal range of DG penetrations was around 20–80%.

5.4. Performance assessment of the integrated method

The performance assessment of multi-objective optimization
methods is different from that of single-objective optimization methods,

Power Loss (kW)LBI

VPI

The MOPSO method
The integrated method

Fig. 8. Pareto frontiers obtained by the MOPSO
method and the integrated method (50% DG
Penetration).
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since a set of solutions rather than a single one are obtained. The di-
versity metric (Δ) and the mean ideal distance metric (MID) were used
in this study to evaluate the quality of Pareto solutions. These two
metrics give visions of how the Pareto solutions are dispersed and how
they are close to the ideal values, which are formulated as follows:

∑= −
=

= … = …( { } { })max of min ofΔ
n

N

j N n
j

j N n
j

1
1, , 1, ,

2
obj

PS PS
(23)

∑=
=

MID C N/
j

N

j PS
1

PS

(24)

The MOPSO method
The integrated method
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Fig. 9. 2-Dimentional plots of the Pareto frontiers shown in Fig. 8.
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Fig. 10. Variations of the objective functions with increased DG penetrations.

Table 2
Performance metrics of Pareto solutions obtained by the MOPSO and integrated methods.

Methods Metrics

diversity Δ mean ideal distance MID

The MOPSO method 8.00 5.02
The integrated method 10.02 4.52
Improvement (%) 25.3% 10.0%

Table 1
Extreme points obtained by MOPSO and integrated methods & corresponding improvements to the case without SOP.

The numbers in a pair of brackets represent the optimization results of power loss, load balance index and voltage profile
index, i.e. (P LBI VPI, ,loss kW( ) ). The numbers marked in red represent the results that are worse than the case without SOP.
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where n denotes the nth objective function and Nobj is the number of
objective functions. j is the jth Pareto solution in the Pareto set and NPS

is the number of solutions in the Pareto set. ofn
j is the value of the nth

objective function corresponding to the jth solution. = …max of{ }j N n
j

1, , PS

and = …min of{ }j N n
j

1, , PS represent the maximum and the minimum values
of the nth objective function. Cj is the Euclidean distance of the jth so-
lution from the ideal point (0,0,0).

The larger the diversity metric (Δ), the more diverse the Pareto
solutions are. The smaller the mean ideal distance metric (MID), the
closer to the ideal point the Pareto solutions are. These two metrics
were calculated based on the solutions obtained by the integrated
method as well as the MOPSO method and are listed in Table 2.

As shown in Table 2, the integrated method improves Δ by 25.3%
compared to that obtained by the MOPSO method, which illustrates
that the integrated method results in more diverse solutions. The im-
provement of MID by 10% shows that, the integrated method is capable
of obtaining Pareto solutions with higher quality than the MOPSO.

5.5. Comparisons of SOP with network reconfiguration

Comparisons of SOP and network reconfiguration in operation op-
timization on the 69-bus distribution network with different DG pene-
trations are shown in Tables 3. Results listed are the optimal points
along each objective function, which were selected from the Pareto
frontiers obtained by using SOP and reconfiguration respectively.
Again, the values of power losses, load balance index, and voltage
profile index are presented in a pair of brackets, i.e. (Ploss, LBI , VPI ),

and improvements in percentage were calculated in comparison to
those values of the network without reconfiguration or SOP. The results
of Table 3 are visualized in Fig. 11.

It can be seen from Table 3 that, with different DG penetrations,
SOP outperformed network reconfiguration along all objective func-
tions. For example, when the DG penetration is 50%, the power loss
reduction obtained by reconfiguration is 37.2% while the reduction
obtained by SOP is 70.8%. Under the same condition, improvements of
load balance and voltage profile obtained by reconfiguration are 12.1%
and 68.4%, while the corresponding improvements obtained by SOP are
93.0% and 77.4%.

6. Conclusion

In this study, a multi-objective optimization framework was pro-
posed to improve the operation of a distribution network with an SOP.
Power loss reduction, load balancing and voltage profile improvement
were taken as objectives, and the various penetrations of DG were taken
into consideration. Firstly, a load flow algorithm incorporating the
model of SOP was developed. Then a novel method that integrates both
global and local search techniques was proposed to determine the op-
timal SOP set-points. In the integrated method, a MOPSO algorithm is
used to explore the solution space globally, which contains an archive
to store the non-dominated solutions, as well as a mutation operator to
search for a wider space and avoid pre-convergences. A local search
technique - the Taxi-cab method is used for solution space exploitation,
which refines the quality of non-dominated solutions in the archive of

Table 3
Comparisons of SOP and network reconfiguration in operation optimization on the 69-bus distribution network.

DG Penetration 0 50% 100% 150% 200%
Without reconfiguration/SOP (225.0, 10.8, 23.3) (97.7, 4.3, 11.5) (107.9, 2.2, 2.2) (227.5, 3.7, 10.3) (436.6, 7.3, 19.4)

Network Reconfiguration min Ploss point (105.7, 6.3, 12.2) (61.4, 3.8, 7.3) (75.7, 2.6, 2.9) (155.4, 2.7, 6.1) (296.8, 3.8, 12.3)
Improvement 53.0% 37.2% 29.8% 31.7% 32.0%

SOP min Ploss point (60.0, 2.4, 9.2) (28.5, 0.9, 4.1) (49.7, 0.8, 1.8) (119.3, 2.1, 6.5) (233.5, 4.8, 11.6)
Improvement 73.3% 70.8% 53.9% 47.6% 46.5%

Network Reconfiguration min LBI point (106.2, 6.1, 13.7) (61.6, 3.7, 6.6) (105.4, 2.1, 2.2) (279.4, 2.3, 4.3) (501.7, 4.4, 19.8)
Improvement 43.2% 12.1% 2.0% 38.7% 40.0%

SOP min LBI point (137.9, 1.0, 6.7) (67.4, 0.3, 3.0) (61.2, 0.7, 1.9) (122.5, 2.0, 5.1) (246.4, 4.1, 8.9)
Improvement 90.7% 93.0% 68.2% 45.9% 43.8%

Network Reconfiguration min VPI point (114.9, 6.3, 9.9) (100.2, 4.2, 3.6) (106.0, 2.1, 1.8) (170.6, 3.1, 4.0) (320.3, 4.6, 7.9)
Improvement 57.3% 68.4% 20.7% 61.4% 59.1%

SOP min VPI point (196.5, 1.2, 5.9) (176.2, 0.5, 2.6) (113.3, 1.2, 1.7) (970.4, 5.5, 3.4) (1509.2, 11.2, 6.1)
Improvement 74.7% 77.4% 22.7% 67.0% 68.6%

The numbers in a pair of brackets represent the optimization results of power loss, load balance index and voltage profile index, i.e. (P LBI VPI, ,loss kW( ) ).
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Fig. 11. Comparisons of the improvements along different
objectives obtained through network reconfiguration and
SOP.
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MOPSO and enhances the search capability.
The multi-objective optimization framework was applied to a 69-

bus test network. The results elaborated that SOP is an effective tool to
improve the network operation in power loss reduction, load balancing
and voltage profile improvement. With the DG penetration increasing
from 0 to 200%, on average, an SOP reduces power losses by 58.4%,
reduces the load balance index by 68.3% and reduces the voltage
profile index by 62.1%, all compared to the case without an SOP. The
analysis of the impact of DG penetrations on SOP performance showed
that, the use of SOP facilitates a large increase in DG penetration and
provides a significant increase in the flexibility of distribution network
operation. When compared with the conventional MOPSO method, the
proposed integrated method increases the diversity metric by 25% and
reduces the mean ideal distance metric by 10%. It is also found that the
network with an SOP outperformed the one using network re-
configuration in operation optimization under various DG penetrations.
With the DG penetration increasing from 0 to 200%, on average, an SOP
outperforms network reconfiguration on power loss reduction, feeder
load balancing and voltage profile improvement by 21.7%, 41.1% and
8.7% respectively.

Acknowledgments

The authors gratefully acknowledge the Angle-DC project, UK/India
HEAPD project (Grant No. EP/K036211/1) and FLEXIS project. FLEXIS
is part-funded by the European Regional Development Fund (ERDF),
through the Welsh Government. Information on the data underpinning
the results presented here, including how to access them, can found in
the Cardiff University data catalogue at http://doi.org/10.17035/d.
2017.0041041452.

References

[1] Villalobos JG, Zamora I, Knezović K, Marinelli M. Multi-objective optimization
control of plug-in electric vehicles in low voltage distribution networks. Appl
Energy 2016;180:155–68.

[2] Jenkins N, Long C, Wu J. An overview of the smart grid in great Britain. Engineering
2015;1:413–21.

[3] Blaabjerg F, Yang Y, Yang D, Wang X. Distributed power-generation systems and
protection. Proc IEEE 2017;105:1311–31.

[4] Bahrami S, Amini MH. A decentralized framework for real-time energy trading in
distribution networks with load and generation uncertainty. arXiv preprint
arXiv:1705.02575, 2017.

[5] Amini MH, Moghaddam MP, Karabasoglu O. Simultaneous allocation of electric
vehicles’ parking lots and distributed renewable resources in smart power dis-
tribution networks. Sustain Cities Soc 2017;28:332–42.

[6] Mallwitz R, Engel B. Solar power inverters. In: Integrated Power Electronics Systems
(CIPS), 2010 6th International Conference on; 2010. p. 1–7.

[7] Schnelle T, Schmidt M, Schegner P. Power converters in distribution grids - new
alternatives for grid planning and operation. In: PowerTech, 2015 IEEE Eindhoven;
2015. p. 1–6.

[8] Okada N. Verification of control method for a loop distribution system using loop
power flow controller. In: 2006 IEEE PES Power Systems Conference and
Exposition; 2006. p. 2116–23.

[9] Okada N, Takasaki M, Sakai H, Katoh S. Development of a 6.6 kV - 1 MVA trans-
formerless loop balance controller. In: 2007 IEEE Power Electronics Specialists
Conference; 2007. p. 1087–91.

[10] Nguyen PH, Kling WL, Ribeiro PF. Smart power router: a flexible agent-based
converter interface in active distribution networks. IEEE Trans Smart Grid
2011;2:487–95.

[11] Bloemink JM, Green TC. Increasing distributed generation penetration using soft
normally-open points. In: IEEE PES General Meeting; 2010. p. 1–8.

[12] Bloemink JM, Green TC. Increasing photovoltaic penetration with local energy
storage and soft normally-open points. In: 2011 IEEE power and energy society
general meeting; 2011. p. 1–8.

[13] Cao W, Wu J, Jenkins N, Wang C, Green T. Operating principle of Soft Open Points
for electrical distribution network operation. Appl Energy 2016;164:245–57.

[14] Cao W, Wu J, Jenkins N, Wang C, Green T. Benefits analysis of Soft Open Points for
electrical distribution network operation. Appl Energy 2016;165:36–47.

[15] Long C, Wu J, Thomas L, Jenkins N. Optimal operation of soft open points in
medium voltage electrical distribution networks with distributed generation. Appl
Energy 2016;184:427–37.

[16] Wang C, Song G, Li P, Ji H, Zhao J, Wu J. Optimal siting and sizing of soft open

points in active electrical distribution networks. Appl Energy 2017;189:301–9.
[17] Xiao L, Shao W, Wang C, Zhang K, Lu H. Research and application of a hybrid model

based on multi-objective optimization for electrical load forecasting. Appl Energy
2016;180:213–33.

[18] Hammache A, Benali M, Aubé F. Multi-objective self-adaptive algorithm for highly
constrained problems: Novel method and applications. Appl Energy
2010;87:2467–78.

[19] Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolu-
tionary algorithm,“ ed: Tik-report; 2001.

[20] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans Evol Comput 2002;6:182–97.

[21] Jong-Bae P, Ki-Song L, Joong-Rin S, Lee KY. A particle swarm optimization for
economic dispatch with nonsmooth cost functions. IEEE Trans Power Syst
2005;20:34–42.

[22] Reyes-Sierra M, Coello CAC. Multi-objective particle swarm optimizers: a survey of
the state-of-the-art. Int J Comput Intell Res 2006;2.

[23] Narang N, Dhillon JS, Kothari DP. Multiobjective fixed head hydrothermal sche-
duling using integrated predator-prey optimization and Powell search method.
Energy 2012;47:237–52.

[24] Kim H, Liou M-S. Adaptive directional local search strategy for hybrid evolutionary
multiobjective optimization. Appl Soft Comput 2014;19:290–311.

[25] Simon D, Omran MGH, Clerc M. Linearized biogeography-based optimization with
re-initialization and local search. Inf Sci 2014;267:140–57.

[26] Arab A, Alfi A. An adaptive gradient descent-based local search in memetic algo-
rithm applied to optimal controller design. Inf Sci 2015;299:117–42.

[27] Palar PS, Tsuchiya T, Parks GT. A comparative study of local search within a sur-
rogate-assisted multi-objective memetic algorithm framework for expensive pro-
blems. Appl Soft Comput 2016;43:1–19.

[28] Baran ME, Wu F. Optimal sizing of capacitors placed on a radial distribution system.
IEEE Trans Power Deliv 1989;4:735–43.

[29] Chen PC, Salcedo R, Zhu Q, Leon Fd, Czarkowski D, Jiang ZP, et al. Analysis of
voltage profile problems due to the penetration of distributed generation in low-
voltage secondary distribution networks. IEEE Trans Power Delivery
2012;27:2020–8.

[30] Keane A, Ochoa LF, Vittal E, Dent CJ, Harrison GP. Enhanced utilization of voltage
control resources with distributed generation. IEEE Trans Power Syst
2011;26:252–60.

[31] Keane A, Malley MO. Optimal utilization of distribution networks for energy har-
vesting. IEEE Trans Power Syst 2007;22:467–75.

[32] Mathews JH, Fink K. Module for the Powell Search Method for a Minimum. http://
mathfaculty.fullerton.edu/mathews/n2003/PowellMethodMod.html; 2004.

[33] Kennedy J, Eberhart R. Particle swarm optimization. In: Neural Networks, 1995.
Proceedings., IEEE International Conference on, vol. 4; 1995. p. 1942–48.

[34] Stoppato A, Cavazzini G, Ardizzon G, Rossetti A. A PSO (particle swarm optimi-
zation)-based model for the optimal management of a small PV(Photovoltaic)-pump
hydro energy storage in a rural dry area. Energy 2014;76:168–74.

[35] Parsopoulos KE, Vrahatis MN. Particle swarm optimization method in multi-
objective problems. In: Presented at the Proceedings of the 2002 ACM symposium
on Applied computing, Madrid, Spain; 2002.

[36] Baumgartner U, Magele C, Renhart W. Pareto optimality and particle swarm opti-
mization. IEEE Trans Magn 2004;40:1172–5.

[37] Xiaohui H, Eberhart R. Multiobjective optimization using dynamic neighborhood
particle swarm optimization. In: Evolutionary Computation, 2002. CEC '02.
Proceedings of the 2002 Congress on; 2002. p. 1677–81.

[38] Xiaohui H, Eberhart RC, Yuhui S. Particle swarm with extended memory for mul-
tiobjective optimization. In: Swarm Intelligence Symposium, 2003. SIS '03.
Proceedings of the 2003 IEEE; 2003. p. 193–97.

[39] Mostaghim S, Teich J. Strategies for finding good local guides in multi-objective
particle swarm optimization (MOPSO). In: Swarm Intelligence Symposium, 2003.
SIS '03. Proceedings of the 2003 IEEE; 2003. p. 26–33.

[40] Coello CAC, Pulido GT, Lechuga MS. Handling multiple objectives with particle
swarm optimization. IEEE Trans Evol Comput 2004;8:256–79.

[41] Alvarez-Benitez JE, Everson RM, Fieldsend JE. A MOPSO algorithm based ex-
clusively on pareto dominance concepts. In: Evolutionary Multi-Criterion
Optimization: Third International Conference, EMO 2005, Guanajuato, Mexico,
March 9-11, 2005. Proceedings.

[42] Deb K, Goldberg DE. An investigation of niche and species formation in genetic
function optimization. In: Presented at the Proceedings of the 3rd International
Conference on Genetic Algorithms; 1989.

[43] Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE Trans Evol Comput 1999;3:257–71.

[44] Laumanns M, Thiele L, Deb K, Zitzler E. Combining convergence and diversity in
evolutionary multiobjective optimization. Evol Comput 2002;10:263–82.

[45] Mostaghim S, Teich J. The role of & epsi;-dominance in multi objective particle
swarm optimization methods. In: Evolutionary Computation, 2003. CEC '03. The
2003 Congress on, vol. 3; 2003. p. 1764–71.

[46] Pošík P. Preventing premature convergence in a simple EDA via global step size
setting. In: Parallel Problem Solving from Nature – PPSN X: 10th International
Conference, Dortmund, Germany, September 13-17, 2008. Proceedings.

[47] Kiefer J. Sequential minimax search for a maximum. Proc Am Math Soc
1953;4:502–6.

[48] Baran ME, Wu FF. Optimal capacitor placement on radial distribution systems. IEEE
Trans Power Delivery 1989;4:725–34.

Q. Qi et al. Applied Energy 208 (2017) 734–744

744

http://doi.org/10.17035/d.2017.0041041452
http://doi.org/10.17035/d.2017.0041041452
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0005
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0005
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0005
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0010
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0010
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0015
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0015
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0025
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0025
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0025
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0050
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0050
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0050
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0065
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0065
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0070
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0070
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0075
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0075
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0075
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0080
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0080
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0085
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0085
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0085
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0090
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0090
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0090
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0100
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0100
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0105
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0105
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0105
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0110
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0110
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0115
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0115
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0115
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0120
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0120
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0125
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0125
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0130
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0130
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0135
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0135
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0135
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0140
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0140
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0145
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0145
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0145
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0145
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0150
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0150
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0150
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0155
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0155
http://mathfaculty.fullerton.edu/mathews/n2003/PowellMethodMod.html
http://mathfaculty.fullerton.edu/mathews/n2003/PowellMethodMod.html
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0170
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0170
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0170
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0180
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0180
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0200
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0200
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0215
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0215
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0220
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0220
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0235
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0235
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0240
http://refhub.elsevier.com/S0306-2619(17)31357-0/h0240

	Multi-objective operation optimization of an electrical distribution network with soft open point
	Introduction
	Mathematical model of SOP in distribution networks
	Problem formulation
	Objective functions
	Power loss reduction
	Load balancing
	Voltage profile improvement

	Constraints
	Bus voltage limits
	Branch capacity limits

	DG penetration

	Optimization framework
	Pareto optimality and dominance
	Overall optimization framework
	Multi-Objective Particle Swarm Optimization (MOPSO)
	Particle Swarm optimization (PSO)
	Multi-Objective Particle Swarm Optimization (MOPSO)
	Selection of pbest and gbest
	Retaining and spreading solutions in the archive
	Mutation operation

	Taxi-cab method
	Integrated method (MOPSO and Taxi-cab)

	Case study and results
	Description of the test network
	Multi-objective operation optimization results
	The impact of DG penetrations on SOP performance
	Performance assessment of the integrated method
	Comparisons of SOP with network reconfiguration

	Conclusion
	Acknowledgments
	References




