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We update the constraints on possible features in the primordial inflationary density perturbation

spectrum by using the latest data from the WMAP7 and ACT (Atacama Cosmology Telescope) cosmic

microwave background experiments. The inclusion of new data significantly improves the constraints with

respect to older work, especially to smaller angular scales. While we found no clear statistical evidence in

the data for extensions to the simplest, featureless, inflationary model, models with a step provide a

significantly better fit than standard featureless power-law spectra. We show that the possibility of a step in

the inflationary potential like the one preferred by current data will soon be tested by the forthcoming

temperature and polarization data from the Planck satellite mission.
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I. INTRODUCTION

Current cosmological observations can be explained in
terms of the so-called concordance�CDMmodel in which
the primordial fluctuations are created during an early
period of inflationary expansion of the Universe. In par-
ticular, the spectrum of anisotropies of the cosmic micro-
wave background (CMB) is in excellent agreement with
the inflationary prediction of adiabatic primordial pertur-
bations with a nearly scale-invariant power spectrum [1–5].
In its simplest implementation, inflation is driven by the
potential energy of a single scalar field, the inflaton, slowly
rolling down towards a minimum of its potential; curvature
perturbations, that constitute the primordial seeds for struc-
ture formation, are originated during the slow roll from
quantum fluctuations in the inflaton itself. The scale in-
variance of the spectrum is directly related to the flatness
and smoothness of the inflaton potential that are necessary
to ensure that the slow-roll phase lasts long enough to solve
the paradoxes of the big bang model.

However, inmore general inflationarymodels, there is the
possibility that slow roll is briefly violated. This naturally
happens in theories with many interacting scalar fields,
as it is the case, for example, in a class of multifield,
supergravity-inspired models [6,7], where supersymmetry-
breaking phase transitions occur during inflation. These
phase transitions correspond to sudden changes in the in-
flaton effective mass and can be modeled as steps in the
inflationary potential. If the transition is very strong, it can
stop the inflationary phase as it happens in the usual hybrid
inflation scenario; on the contrary, inflation can continue but
the inflationary perturbations and thus the shape of the
primordial power spectrum are affected. Departures from
the standard power-law behavior can also be caused by
changes in the initial conditions due to trans-Planckian
physics [8–10] or to unusual initial field dynamics [11,12]

A violation of slow roll will possibly lead to detectable
effects on the cosmological observables, or at least to the
opportunity to constrain these models by the absence of
such effects. In particular, steplike features in the primor-
dial power spectrum have been shown [13,14] to lead
to characteristic localized oscillations in the power spec-
trum of the primordial curvature perturbation. Such oscil-
lations have been considered as a possible explanation
to the ‘‘glitches’’ observed by the Wilkinson Microwave
Anisotropy Probe (WMAP) in the temperature anisotropy
spectrum of the CMB, although the WMAP team notes
that these could be caused simply by having neglected
beam asymmetry, the gravitational lensing of the CMB,
non-Gaussianity in the CMB maps and other ‘‘small’’
(&1%) contributions to the covariance matrix. In the
following we will assume that these features have indeed
a cosmological origin as in the class of extended models
described above, and we will use CMB data to constrain
the phenomenological parameters describing the step in the
inflaton potential.
Constraints on oscillation in the primordial perturbation

spectrum, as well as best-fit values for the step parameters,
have been previously derived in Refs. [15–19]. Here we
improve on the previous analyses in several aspects. First,
we use more recent CMB data, in particular, the WMAP
7-year and the Atacama Cosmology Telescope (ACT) data.
This allows us to derive tighter constraints on the parame-
ters; in particular, we get an upper limit on the step height
(related to the amplitude of oscillations) that is indepen-
dent on the position of the step itself in the prior range
considered. We also find a clear correlation between the
position and the height of the step. Second, we generate
mock data corresponding to the model providing the best
fit to the WMAP data, and use these data to assess the
ability of the Planck satellite to detect the presence of
oscillations in the primordial spectrum.
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The paper is organized as follows. In Sec. II we describe
the evolution of perturbations in interrupted slow roll and
the phenomenological model used to describe a step in the
inflationary potential. In Sec. III we discuss the analysis
method adopted. In Sec. IV we present the results and in
Sec. V we derive our conclusions.

II. INFLATIONARY PERTURBATIONS INMODELS
WITH INTERRUPTED SLOW ROLL

Steps in the potential can naturally appear in ‘‘multiple
inflation’’ models, where the inflaton field � is gravita-
tionally coupled to a ‘‘flat direction’’ field � (belonging to
the visible sector of the theory), i.e. a direction in field
space along which the potential vanishes. The �-field can
undergo a symmetry-breaking phase transition and acquire
a vacuum expectation value h�i. The gravitational coupling
between the � and the inflaton field will cause the effective
mass-squared of the latter to change; for example, in the
case in which the coupling between the two fields is
described by a term ��2�2=2 in the Lagrangian, the in-
flaton mass-squared after the phase transition will become
m2

effð�Þ ¼ m2
0 þ �h�2i. It is worth noticing that the pres-

ence of flat field directions also opens the possibility to
have inflation with a curved trajectory in field space; how-
ever, in the following, we will disregard this scenario.

The exact behavior of the inflaton mass will depend on
the dynamics of the phase transition; however, this is so
fast that the �-field reaches the minimum of its potential
very rapidly. It is then very reasonable to model the inflaton
mass in a phenomenological way as

m2
effð�Þ ¼ m2

�
1þ c tanh

�
�� b

d

��
: (1)

Here, the parameter b is of the order of the critical value of
the inflaton field for which the phase transition occurs, c is
the height of the step (related to the change in the inflaton
mass), and d is its width (related to the duration of the
phase transition). In the following we shall work in reduced
Planck units (c ¼ ℏ ¼ 8�G ¼ 1), so that all dimensional
quantities like m, b, and d should be multiplied by the
reduced Planck mass Mp ¼ 2:435� 1018 GeV in order to

get their values in physical units.
Let us now briefly recall how to compute the spectrum of

primordial perturbations, as discussed in detail by Adams
et al. [13]. For the moment, we do not specify the exact
form of the inflaton potential Vð�Þ; we will return to this
in the next section. In the case of scalar perturbations,
it is useful to define the gauge-invariant quantity [20]

u � �zR, where z ¼ a _�=H, a is the scale factor, H is
the Hubble parameter,R is the curvature perturbation, and
dots denote derivatives with respect to the cosmological
time t. The Fourier components of u evolve according to

u00k þ
�
k2 � z00

z

�
uk ¼ 0; (2)

where k is the wave number of the mode, and primes
denote derivatives with respect to conformal time �.
When k2 � z00=z, the solution to the above equation tends

to the free-field solution uk ¼ e�ik�=
ffiffiffiffiffi
2k

p
.

In the slow-roll approximation, z00=z’2a2H2. However,
in the models considered here this expectation can be
grossly violated near the phase transition, and the time
evolution of z has to be derived by solving the equations
for the inflaton field and for the Hubble parameter:

€�þ 3H _�þ dV

d�
¼ 0; (3)

3H2 ¼
_�2

2
þ Vð�Þ: (4)

Once the form of the potential is given, these can be
integrated to get H and �, and thus z, as a function of
time. At this point, it is possible to integrate Eq. (2) to get
ukð�Þ for free-field initial conditions when k2 � z00=z.
Finally, knowing the solution for the mode k, the power
spectrum of the curvature perturbation PR can be com-
puted by means of

PR ¼ k3

2�

��������
uk
z

��������
2

(5)

evaluated when the mode crosses the horizon. The result-
ing spectrum for models with a step in the potential is
essentially a power law with superimposed oscillations;
thus, asymptotically, the spectrum will recover the familiar
kns�1 form typical of slow-roll inflationary models.
In practice, however, one has to relate the horizon size at

the step with a physical wave number. For a general wave
number k? one can write k? � a?H? ¼ aende

�N?H?,
where a? and H? are the scale factor and the Hubble
parameter at the time the mode crossed the horizon, aend
is the scale factor at the end of inflation, and N? is the
number of e-fold taking place after the mode left the
horizon. We choose N? ¼ 50 for the pivot wave number
k? ¼ k0 ¼ 0:0025 Mpc�1. A different choice would cor-
respond to a translation in the position of the step in � and
would thus be highly degenerate with b. For this reason we
do not treat N? as a free parameter, consistent with what
has been done in previous studies [16,17].

III. ANALYSIS METHOD

We compare the theoretical predictions of a class of
inflationary models with a step in the inflaton potential
with observational data. We use a modified version of the
CAMB code that solves Eqs. (2)–(4) numerically using a

Bulirsch-Stoer algorithm in order to compute the initial
perturbation spectrum (5) and, from that, the CMB anisot-
ropy spectrum for given values of the relevant parameters
describing the model. CAMB is then interfaced with a
modified version of the Markov chain Monte Carlo pack-
age COSMOMC [21], that we use to find the best-fit value of
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the parameters, to reconstruct their posterior probability
density function, and to infer constraints on the parameter
themselves.

Models. We consider a chaotic inflation potential of the
form Vð�Þ ¼ m2

effð�Þ�2=2. Using Eq. (1), this corre-

sponds to a potential

Vð�Þ ¼ 1

2
m2�2

�
1þ c tanh

�
�� b

d

��
: (6)

In Fig. 1 we show the shape of this potential for
m ¼ 7:5� 10�6 and different values of the step parame-
ters (close to the best-fit values), compared to a smooth
m2�2=2 potential (c ¼ 0).

The potential (6) uniquely defines the spectrum of per-
turbations PR. The parameters that define the primordial
spectrum and the initial conditions for the evolution of
cosmological perturbations are then the inflaton mass m
and the step parameters b, c, and d. The inflaton mass sets
the overall scale for the potential and consequently for the
amplitude of the perturbations; it can then be traded, in the
Monte Carlo analysis, for the more familiar parameter As,
i.e., the amplitude of the primordial spectrum at the pivot
wave number k0 ¼ 0:0025 Mpc�1. On the other hand, as
already noted above, a step in the potential produces a
perturbation spectrum with oscillations superimposed over
a smooth power law. In the case of the potential (6), the
underlying power law has a fixed spectral index ns ¼ 0:96.
In Fig. 2 we show the primordal spectrum for different
values of the step parameters.

The results obtained in the case of a specific potential
will be, by definition, model-dependent. However, as

argued in Ref. [17], the issue of model dependence can
be alleviated in a phenomenological way by restoring the
spectral index as a free parameter, i.e., by defining the
‘‘generalized’’ spectrum P gen

R as

P gen
R ðkÞ ¼ P ch

RðkÞ �
�
k

k0

�
ns�0:96

; (7)

where P ch
RðkÞ is the spectrum induced by the chaotic

potential (6). Since the latter has an overall tilt of 0.96,
ns will describe the overall tilt of the generalized spectrum.
Summarizing, we consider two classes of models.

Models belonging to the first class (referred to as class
A) corresponding to the potential (6), are described by
eight parameters: the physical baryon and cold dark matter
densities !b ¼ �bh

2 and !c ¼ �ch
2, the ratio � between

the sound horizon and the angular diameter distance at
decoupling, the optical depth to reionization �, the parame-
ters b, c, and d of the step-inflation model, and the overall
normalization of the primordial power spectrum As

(equivalent to specifying m2 as discussed above). Models
in the second class, referred to as class B, correspond to the
generalized step model (7) and are described by the effec-
tive tilt ns in addition to the eight parameters of the first
class. In both cases, we consider purely adiabatic initial
conditions, impose flatness, and neglect neutrino masses.
We limit our analysis to scalar perturbations.
Priors. Apart from the hard-coded priors of COSMOMC

on H0 (40 km s�1 Mpc�1 <H0 < 100 km s�1 Mpc�1)
and the age of the Universe (10 Gyr< t0 < 20 Gyr), we
impose flat priors on!b,!c, �, � and, when considered, ns
and a logarithmic prior on As. As we shall see, for these
parameters the width of the posterior is much smaller than
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FIG. 1 (color online). Inflationary potential (6) for m ¼
7:5� 10�6. The solid thin black line corresponds to a smooth
(c ¼ 0) chaotic potential m2�2=2. The long dashed red curve
has b ¼ 14:23, c ¼ 0:001, and d ¼ 0:025 and roughly corre-
sponds to the spectrum giving the best fit to the WMAP7 data
(see Sec. IV below). The other curves correspond to b ¼ 14:23,
c ¼ 0:005, d ¼ 0:025 (blue short dashed line), b ¼ 14:23, c ¼
0:005, d ¼ 0:05 (green dotted line), and b ¼ 14:25, c ¼ 0:005,
d ¼ 0:025 (magenta dotted dashed line).
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FIG. 2 (color online). Primordial power spectrum for an infla-
tionary potential of the form (6). The values of the step parameters
are the same as in Fig. 1, namely, b ¼ 14:23, c ¼ 0:001, d ¼
0:025 (red long dashed line), b ¼ 14:23, c ¼ 0:005, d ¼ 0:025
(blue short dashed line), b ¼ 14:23, c ¼ 0:005, d ¼ 0:05 (green
dotted line), and b ¼ 14:25, c ¼ 0:005, d ¼ 0:025 (magenta
dotted-dashed line).
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the prior range, so that the latter is not really relevant. For
the step parameters, the situation is complicated by the fact
that the likelihood (and the posterior) does not go to zero in
certain directions of the subspace. This happens, in par-
ticular, for very small values of c, for which the spectrum
becomes indistinguishable from a power law, and for val-
ues of b either too large or too small so that the features in
the spectrum are moved outside the range of observable
scales. Then we choose for b a flat prior 13 � b � 15, that
roughly encompasses said range. In the case of c and d,
since we do not have any a priori information on these
parameters, not even on their order of magnitude, we find it
convenient to consider a logarithmic prior on both of them.
Hence, we take (in the following, logx denotes the base 10
logarithm) �6 � logc � �1 and �2:5 � logd � �0:5.
Additionally, since the combination c=d2 is better con-
strained by the data than d alone, we also impose
a priori�5 � logðc=d2Þ � 3. Finally, we recall that, since
the posteriors for b, logc, and logd do not necessarily
vanish at the edge of the prior range, all integrals of the
probability density function depend on the extremes of
integration and are thus somewhat ill defined. Care should
then be taken when quoting confidence limits in the b,
logc, and logd subspaces.

Data sets.We perform the statistical analysis for each of
the models by comparing the theoretical predictions to two
different data sets. The first includes the WMAP 7-year
temperature and polarization anisotropy data (WMAP7).
The likelihood is computed using the the WMAP like-
lihood code publicly available at the LAMBDA Web site
[22]. We marginalize over the amplitude of the Sunyaev-
Zel’dovich signal. The second data set includes the
WMAP7 data with the addition of the small-scale CMB
temperature anisotropy data from the ACTexperiment. For
the ACT data set we also consider two extra parameters
accounting for the Poisson and clustering point sources
foregrounds components. The ACT data set is considered
up to ‘max ¼ 2500.

Other than deriving the limits on the models from exist-
ing data, we also assess the ability of future experiments, in
particular, of the Planck satellite, to improve these con-
straints. In order to do this, we simulate ‘‘mock’’ data
corresponding to the step model that yields the best fit to
the WMAP 7 and then perform a statistical analysis on
these data as if they were real. The forecast method we use
is identical to the one presented in [23] and we refer to this
paper for further details and references. The synthetic data
set is generated by considering for each C‘ a noise spec-
trum given by

N‘ ¼ w�1 expð‘ð‘þ 1Þ8 ln2=�2bÞ; (8)

where �b is the full width at half maximum (FWHM)
of the beam assuming a Gaussian profile and where w�1

is the experimental power noise related to the detectors

sensitivity � by w�1 ¼ ð�b�Þ2. The experimental parame-
ters are reported in Table I.
Together with the primary anisotropy signal we also take

into account information from CMB weak lensing, consid-
ering the power spectrum of the deflection field Cdd

‘ and its

cross correlation with temperature maps CTd
‘ .

Analysis. We derive our constraints from parallel chains
generated using the Metropolis-Hastings algorithm. We
use the Gelman and Rubin R parameter to evaluate the
convergence of the chains, demanding that R� 1< 0:03.
The one- and two-dimensional posteriors are derived by
marginalizing over the other parameters.

IV. RESULTS AND DISCUSSION

We first consider the WMAP7 and WMAP7þ ACT
data sets. We find that the �CDM fit to both data sets
can be improved by the inclusion of a step in the infla-
tionary potential, in both cases when the scalar spectral
index is being fixed to ns ¼ 0:96 (model A), and when it is
being treated as a free parameter (model B). The best-fit
values for the step parameters are reported in Table II. We
also show the full likelihood for b in Fig. 3. It can be seen
that in all cases the maximum in the likelihood occurs
for b ’ 14:2; as we show below, this is due to oscillations
placed in correspondence to the WMAP glitches at ‘� 20
and ‘� 40 and thus able to improve, for suitable values of
the other parameters, the goodness-of-fit with respect to the
vanilla �CDM model. We found that in the case of the
WMAP7 analysis the best-fit vanilla �-CDM model is at
about �	2

eff � 6 from the global best fit with features.

TABLE I. Planck [24] experimental specifications. Channel
frequency is given in GHz, FWHM in arcminutes and noise
per pixel for the Stokes I (�T=T), Q and U parameters (�P=T)
is in ½106 
K=K�, where T ¼ TCMB ¼ 2:725 K. In the analysis,
we assume that beam uncertainties and foreground uncertainties
are smaller than the statistical errors.

Experiment Channel FWHM �T=T �P=T

Planck 70 140 4.7 6.7

fsky ¼ 0:85 100 100 2.5 4.0

143 7:10 2.2 4.2

TABLE II. Best-fit values for the parameters of the primordial
spectrum.

Model A Model A Model B Model B

Parameter WMAP7 WMAP7þ ACT WMAP7 W7þ ACT

b 14.23 14.25 14.24 14.25

logc �3:11 �2:71 �2:97 �2:67
logd �1:58 �1:60 �1:65 �1:45
ns � � 0.953 0.959

ln½1010As� 3.08 3.06 3.07 3.08

	2 7469.4 7489.6 7467.9 7491.4
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As far as Bayesian statistics is concerned, the actual
probability density distribution for a parameter is not given
by the likelihood (the probability of the data given the
parameters) but instead by the posterior (the probability
of the parameters given the data). In Fig. 4 we show the
one-dimensional posterior distributions for the step pa-
rameters b, logc, and logd. It can be noted that the poste-
rior for b has a peculiar shape, presenting a peak for
b ’ 14:2 and a fairly wide dip for b & 14. The peak traces
the peak in the likelihood discussed above. The decrease
for b < 14 is instead due to the fact that, lowering b, the
oscillations are moved to larger multipoles where they tend
to spoil the �CDM fit unless c is set to a very small value.

This is clearly illustrated in Fig. 5, where we compare
the WMAP7 data with three realizations of the CMB
spectrum: the �CDM best fit to the WMAP data, the
generalized step model best fit to the same data (corre-
sponding to the third column of Table II), and a generalized
step model with the same parameters as the best fit, with
the exception of b that is set to b ¼ 13:9. It is clear,
especially from the second panel, that for b ¼ 14:2 the
oscillations improve the fit in the region 20 & ‘ & 50. On

the other hand, when b ¼ 13:9 the height of the first peak is
diminished so that the predicted spectrum is completely at
variance with the data. The posterior does not drop to zero
because a fair amount of parameter space still exists, i.e.,
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FIG. 5 (color online). (Top) CMB anisotropy spectrum for the
�CDM (red solid line) and generalized step model (blue long
dashed line) best fits, and for a step model with b ¼ 13:9 (black
short dashed line), compared with the WMAP7 data. (Bottom)
Zoom of the region ‘ � 60, showing the improved fit of the step
model.
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FIG. 3 (color online). Model likelihood as a function of b for
model A (thin curves) and B (thick curves) using WMAP7 data
(dashed curves) and the WMAP7þ ACT data set (solid curves).

 13  13.5  14  14.5  15

P
o

st
er

io
r 

P
ro

b
ab

ili
ty

b

Model A, WMAP7
Model B, WMAP7

Model A, WMAP7+ACT
Model B, WMAP7+ACT

-4 -3.5 -3 -2.5 -2 -1.5 -1

P
o

st
er

io
r 

P
ro

b
ab

ili
ty

Log[c]

Model A, WMAP7
Model B, WMAP7

Model A, WMAP7+ACT
Model B, WMAP7+ACT

-2.5 -2 -1.5 -1 -0.5

P
o

st
er

io
r 

P
ro

b
ab

ili
ty

Log[d]

Model A, WMAP7
Model B, WMAP7

Model A, WMAP7+ACT
Model B, WMAP7+ACT
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curves) and B (thick curves) using WMAP7 data (dashed curves) and the WMAP7þ ACT data set (solid curves).
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models with low c, than can fit the data even with the
oscillations placed in the ‘‘wrong’’ place. The posterior
going to a constant value at the edges of the prior range is
instead related to the oscillations being moved out of the
observable scales. The inclusion of the ACT data in addi-
tion to WMAP7 helps in constraining small values of b,
i.e., oscillations at small scales (large ‘’s).

The shape of the logc posterior is typical of a quantity
parametrizing the amplitude of a nonstandard effect: it is
constant for small values of the parameter (when the step
model becomes indistinguishable from standard �CDM),
and then rapidly vanishes above a critical value. It can be
seen that the probability density becomes half of its asymp-
totic value at c ¼ 0 for c � 10�2. Finally, the posterior for
logc clearly shows that this parameter is largely uncon-
strained by data.

We do not quote one-dimensional confidence limits on
the parameters because, as noted in Sec. III, the posteriors
do not vanish at the edge of the prior range and in this case
the confidence limits depend on the integration range

chosen. However, for illustrative purposes, in Fig. 6 we
show the two-dimensional 95% confidence regions, com-
puted assuming that the posterior vanishes outside the prior
range, in the ðb– logcÞ plane. It is clear from the plots that
there is a region below b ¼ 14 where the data are more
sensitive to the value of c; this is related as noted above to
the oscillations being placed in the region where the data
are more accurate and favor a smooth spectrum over one
with oscillations.
The results presented here are fully compatible with the

analysis made by [25] where the WMAP5 data set was
considered. The apparently different value for the best-fit b
parameter found in that paper is due to the different choice
of the pivot scale (k0 ¼ 0:05 Mpc�1 instead of k0 ¼
0:0025 Mpc�1 as assumed in our analysis). We have
checked that performing the analysis on the WMAP7
data set with the assumption of k0 ¼ 0:05 Mpc�1 results
in a best-fit value of b� 14:7 in agreement with the results
of [25].
Finally, we show our results on the sensitivity of Planck

to the step parameters. We have assumed as a fiducial
model a generalized step model with b ¼ 14:2, logc ¼
�2:97, logd ¼ 1:65, ns ¼ 0:953, As ¼ 2:16� 10�9

(basically corresponding to the model B best fit to the
WMAP7 data, i.e., the third column of Table II). The
one-dimensional posteriors for b, logc, and logd are shown
in Fig. 7, while in Table III we report the mean values for
the primordial spectrum parameters together with their 2�
error. As we can see, the prior range dependence goes away
with Planck data and we can quote marginalized credible
intervals. We also show the two-dimensional posteriors for
the step parameters in Fig. 8. It is evident that the Planck
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FIG. 7 (color online). One-dimensional posterior probability density for b (left), logc (middle), and logd (right) derived from the
mock Planck data, for models of class A (dashed curves) and B (solid curves).

TABLE III. Parameter constraints from Planck.

Parameter Model A Model B

b 14:200	 0:010 14:200	 0:011
logc �3:00	 0:32 �3:00	 0:34
logd �1:66	 0:22 �1:64	 0:23
ns 0.96 (fixed) 0:957	 0:007
ln½1010As� 3:073	 0:016 3:074	 0:016
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data will greatly increase the precision to which the step
parameters can be measured; in particular, a detection of
oscillations will be possible.

V. CONCLUDING REMARKS

We have considered inflation models with a small-
amplitude steplike feature in the inflaton potential.
Features of this kind can be due, for example, to phase
transitions occurring during the slow roll in multifield infla-
tionary models. In these models the primordial perturbation
spectrum has the form of a power law (as in the standard

featureless case) with superimposed oscillations, localized
in a finite range of scales that basically depends on the
position of the step in the potential. We have compared
the theoretical predictions of a specific model, i.e.,
chaotic inflation, and of a more general phenomenological
model to the WMAP7 and ACT data, in order to find
constraints on the parameter describing the model. We
have also studied the possibility of detecting the oscillations
with the upcoming Planck data in the case that they really
exist.
We have found that models with features can improve

the fit to the WMAP7 data when the step in the potential is
placed in such a way as to produce oscillations in the
region 20 & ‘ & 60, where the WMAP7 data shows
some glitches. We found no further evidence for small
scales glitches from the recent ACT data, this is fully
consistent with the recent analysis of [5]. We have also
found that models with too high a step are excluded by the
data. Finally, assuming as a fiducial model the generalized
step model that provides the best fit to the WMAP7 data,
we have found that the Planck data will allow one to
measure the parameters of the model with remarkable
precision, possibly confirming the presence of glitches in
the region 20 & ‘ & 60.
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