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A Shadow-Overlapping Algorithm for Estimating
Building Heights From VHR Satellite Images
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Abstract— Building height is a key geometric attribute for
generating 3-D building models. We propose a novel four-stage
approach for automated estimation of building heights from their
shadows in very high resolution (VHR) multispectral images.
First, a building’s actual shadow regions are detected by applying
ratio-band algorithm to the VHR image. Second, 2-D building
footprint geometries are identified using graph theory and mor-
phological fuzzy processing techniques. Third, artificial shadow
regions are simulated using the identified building footprint
and solar information in the image metadata at predefined
height increments. Finally, the difference between the actual and
simulated shadow regions at every height increment is computed
using Jaccard similarity coefficient. The estimated building height
corresponds to the height of the simulated shadow region that
resulted in the maximum value for Jaccard index. The algorithm
is tested on seven urban sites in Cardiff, U.K. with various levels
of morphological complexity. Our method outperforms the past
attempts, and the mean error is reduced by at least 21%.

Index Terms— Building detection, building height estimation,
Jaccard index, morphological dilation, region fitting, shadow
detection, very high resolution (VHR) satellite imagery.

I. INTRODUCTION

GEOMETRY identification of buildings and subsequent
(3-D) modeling play an important role in a range of

urban applications—from urban energy and environmental
analysis [1] and the estimation of renewable energy poten-
tial [2] to data-centric operation and management of smart
and resilient cities [3]. Building height (HB) is one of the
key geometric parameters that is used to transform the (2-D)
footprint area into a 3-D model. Manually obtaining HB from
a large number of buildings for urban-scale 3-D modeling
and analysis is resource intensive. The difficulty and cost
involved in HB estimation also create a barrier to the use and
deployment of advanced modeling, analysis, and management
of the built environment for most, if not all cities and countries.
Finding an efficient and cost-effective way to estimate HB is,
therefore, of paramount importance.
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A common factor in the extraction of HB approaches
based on remotely sensed elevation data is that they require
sophisticated data calibration and processing to obtain a reli-
able digital surface model (DSM). Although studies have
shown the utility and usefulness of elevation data for extract-
ing HB, their implementation typically requires the use of
additional data and often multiple images from different angles
to obtain a satisfactory view of building size and shape [4].
Another feature of elevation data-based HB extraction is the
need for data preprocessing because of point cloud sparsity
and data misalignment [5]. As an alternative to costly data
acquisition and processing, several studies have developed
methods for obtaining HB from one data source, such as
satellite images utilizing the shadows cast by buildings.

This letter presents an original approach, termed the
shadow-overlapping algorithm, ASO, for the automated esti-
mation of HB from monocular very high resolution (VHR)
multispectral pan-sharpened satellite images. The contribu-
tions of this paper are threefold: 1) the generation of artifi-
cial shadows, SAr from a simulation of the actual shadows,
SAc of the buildings in the image space; 2) the solution
to the issue of overlapping shadows of the multiple build-
ings; and 3) the development of an algorithm by combining
1) and 2) for the automated estimation of HB by identifying
the optimal height value for the given building.

The rest of this letter is structured as follows. Previous work
on HB estimation is reviewed in Section II. Our approach and
the simulation process are described in Section III. Experi-
mental results are discussed in Section IV, while Section V
provides concluding remarks and directions of the future work.

II. PREVIOUS WORK

The first task in shadow-based HB estimation is the extrac-
tion of shadow regions from VHR satellite images. In this
respect, [6] reported two widely used techniques: ratio-band
and Graph-Cut partitioning via kernel mapping, with overall
accuracies of 85% and 79%, based on two performance
metrics, F1 score (harmonic mean of precision and recall)
and probabilistic Rand index, respectively. A semiautomatic
approach was proposed in [7] to estimate HB from a single
satellite image by manually adjusting the height of a simulated
building and then matching the projected shadow with the
actual. In contrast, [8] used volumetric shadow analysis to
automatically extract HB, which is primarily designed for
buildings with full scenes of their bases and rooftops, including
the sides of the building. Reference [9] also matched shadow
regions but estimated HB using simple triangulation. Estima-
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Fig. 1. Framework of the shadow-overlapping algorithm for building height estimation.

tion accuracy in this approach is dependent on the quality of
the segmented rooftop polygons.

Shao et al. [10] used a classification approach to detect
shadows and characterized the relationship between buildings
and their shadows to estimate HB, with overall classification
accuracy of 87% evaluated by a confusion matrix. The method
overestimates the shadow lengths of buildings, resulting in
large errors in calculated HB. In [11], the number of a
building’s storeys as well as its length and shape were inferred
based on the identification of shadow areas. In the absence
of detailed validation, it appears that the empirical nature
of the rule-based classification may only be practical for
the presented cases. In [12], HB was estimated from the
extracted shadow regions based on the sun-satellite geometry
relationship using three different approaches: ratio, example-
based, and rule-based with mean error in estimated HB of 0.67,
1.51 and 0.96 m, respectively. The method does not consider
overlapping shadow regions caused by other buildings and
vegetation, limiting its applicability in dense urban areas.
Reference [13] applied a semiautomated triangular analysis of
shadow geometry to estimate HB, which is computationally
expensive and may restrict its use if there are many buildings
in the scene.

More recently, [14] estimated HB from Google Earth1

images by first calculating the ratio of HB to the shadow
length of known buildings, and thereafter utilizing the identi-
fied shadow-length ratio to obtain heights of other buildings
with unknown heights. The approach sits somewhere between
direct and indirect approaches as some field measurements
are required. Reference [15] developed a custom filter for
enhancing shadows and reducing the spectral heterogeneity
of the regions of interest (ROIs) to form an optimized contour
model for estimating HB using a shadow length and a solar
elevation angle. However, the presented approach is not tai-
lored to detect the ROIs of objects with spectral dissimilarity.
F1 score evaluation results illustrate a large aggregate height
variance (4.13 m) due to the underestimation of building
shadow lengths. In the studies reviewed here, the lowest and
highest root-mean-square errors (RMSEs) were found to be
0.98 m [14] and 22.66 m [15], respectively. Error estimates of
all reviewed literature are provided in Table II for comparison
against this letter.

1Google Earth. https://earth.google.com.

III. PROPOSED METHOD

The framework of the shadow-overlapping algorithm, ASO,
is shown in Fig. 1, and the steps are discussed as follows.

A. Identification of the Building Shadow Mask

To reliably extract the actual shadows of buildings,
SAc, we applied a refined version of our previously devel-
oped shadow detection algorithm, AS [6], as proposed by
Rüfenacht et al. [16]. Candidate shadow regions are obtained
by applying a nonlinear mapping function to the extracted dark
pixels from both the visible, V , and near infrared, NIR, bands
using

f (x) = 1

1 + e
−α

(
1−x

1
γ −β

) (1)

where α, β, and γ are the parameters to control the sigmoid
function. Each candidate dark pixel in V is multiplied with its
counterpart in NIR to obtain the candidate shadow image D.
In cases where V and NIR pixel values are dark, the cal-
culation of image ratio (T = V/NIR) can affect shadow
detection. Both D and T are in the range [0, 1]. The final
shadow candidate image IS is calculated2 using

IS = (1 − D)(1 − T ). (2)

We then applied image thresholding to IS to obtain the
initial shadow mask, MS,I, where the influence of noise is
reduced by computing the histogram3 of IS. Although noise
reduction from MS,I was conducted to obtain an accurate
binary image of the initial shadow mask, small dark areas
of nonshadow pixels remained. We, therefore, proposed a
morphological filter to remove all small objects, i.e., the
nonshadow pixels. To keep only the areas of building shad-
ows, the process of elimination of small objects is con-
trolled by removing the areas <100 pixels [6]. In this letter,
AS is improved further to detect and eliminate the vegetation
cover by applying normalized difference vegetation index.
A binary vegetation mask MV is extracted using automatic
histogram thresholding from [18]. Thereafter, we subtracted
MV from MS,I to obtain the final building shadow mask MS.
To eliminate shadows from vegetation canopies near buildings,

2Equations 1 and 2 are discussed further in [16].
3The number of histogram bins is selected based on Sturges’ rule [17].
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we applied a probabilistic fuzzy landscape approach from [19]
that applies low and high thresholds to the membership values
of the generated fuzzy landscapes.

B. Generation of the Artificial Shadow

A binary image of the building footprint or region is
required to simulate its shadows for estimating HB. To do
so, we automatically detected the building footprints using the
graph theory-based approach proposed by Ok [19]. We used
the first level of partitioning in which building footprints
are determined by iterative Graph-Cut performed in two-
label partitioning comprising the background and foreground.
As this letter is one of the first use of the images from new
satellite sensors, WorldView-3 (WV3), for object detection,
we conducted further refinements to the approach, in particular
on the adjustment of the thresholding values, fuzzy landscape
parameters, and the geometry of the extracted building regions.
The mask of buildings MB was then obtained where the build-
ing footprints are accurately separated from their background.
Thereafter, based on a flat terrain assumption,4 we utilized
solar information5 in the image metadata to generate a flat
linear morphological opening, the line structuring element,
which is symmetric with respect to the neighborhood center.
The direction of the sun illumination is maintained using the
solar azimuth angle [λ, as per 3] to determine the length of
the smallest connected single edge segment L, using 4

λ = Az − π/2 (3)

L = H max
T

tan φ Rimg
(4)

where H max
T is the maximum height threshold for the buildings

that cast shadows, Az is the azimuth, φ is the solar elevation
angle El, and Rimg is the image resolution. After creating
the line structuring element, we investigated the connected
components of buildings in MB and their shadows in MS to
label each component with an eight-connected neighborhood.
The connected components are then extracted with a unique
label for creating a mask of their perimeter pixels MBp, using

MBp = (MBc ⊗ O3×3) ∩ MB (5)

where MBc is the complement of the building object equa-
tion (6), and O3×3 is a matrix of ones. ⊗ and ∩ denote mor-
phological dilation and pixel value intersection, respectively,
using

MBc = 1 − MB. (6)

Once MBp is identified, ASO then simulates SAc in the
opposite direction of the solar illumination to generate new
regions of building shadows Smax

sim , using

Smax
sim = (MBp ⊗ Nse) ∩ MBc (7)

4Acute solar elevation angles (φ < 30°) lead to large cast shadows [19].
5Contains date, time, solar illumination angles (azimuth and elevation),

and the angles of solar projection, i.e., the viewing geometry during image
acquisition. The images are supplied georeferenced and orthorectified to Earth
surface coordinate system (data: UTM).

where Nse is the neighborhood associated with the structuring
element (se). SAr for each building region was then identified
using

SAr = Smax
sim ∩ MS. (8)

Because of shadows cast by adjacent and connected build-
ings, some shadow areas in SAc may not have corresponding
shadows in SAr. Matching between both shadows is, therefore,
evaluated using F1 score as ASO keeps tracing the trail of
each SAc in the shadow mask MS to fit each SAr with the
corresponding SAc in MS.

C. Estimation of Building Heights

To estimate the heights of the buildings from a single VHR
satellite image, we develop the shadow-fit function fsf based
on Jaccard index (JI), which yields ASO to compute the fitting
connected components over the pixels between SAc and SAr
regions. The estimated values of HB are extracted depending
on the optimal height of a specific building using a set of HB,
solar angles Az and El, the number of buildings in MB, Rimg,
MB, and MS into fsf . We measure how fit and similar the two
shadow regions are by Jaccard similarity coefficient using

JI = |SAc ∩ SAr|/|SAc ∪ SAr|. (9)

JI computes the size of the intersection (SAc and SAr)
divided by the size of the union of the two regions. The
computation of the overlap by JI between SAc and SAr is
iterated until ASO finds the maximal index of fitting the two
shadow regions, which approaches to 1. The algorithm then
extracts the highest index, which will represent the value of
the optimal height Hopt

6 of a given building. The final shadow
region is simulated within the image space using Hopt, Az, El,
Rimg, and a given building footprint in the MB into another
developed function fssim to visualize and combine all outputs
of the SAr regions into a single image. ASO performance is
evaluated using the RMSE measure, as in 10, where yi and ŷi

are actual and predicted values, respectively, using

RMSE =
√√√√ 1

n

n∑
i=1

(yi − ŷi )2. (10)

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Input Data Set

The test images7 used in this paper contain seven orthorec-
tified and pansharpened images, obtained from one of the
latest satellites, VHR WV3 with a ground sampling distance
of 40 cm, as shown in the first column of Fig. 2. The images
include four multispectral bands (B, G, R, and NIR) with a
radiometric resolution of 16 bits per band. The WV3 images
were taken with solar elevation (El) and azimuth (Az) angles
of 16.3° and 173.2°, respectively, and with a maximum

6In this letter, the shadow regions are not obscured by their buildings over
the test images, because there is no significant difference between the azimuth
and elevation angles of both the sun and the satellite. Hence, the correction
of the building lengths derived from the shadow regions was not necessary.

7Source images can be downloaded from IEEE Xplore Digital Library.
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Fig. 2. Estimated values of building heights. C1: test images (#1–7).
C2: detected building footprints for test images. C3: extracted shadow regions
for detected buildings. C4: artificial shadow regions for detected buildings.
C5: colormaps of estimated building heights.

off-nadir angle of 27.6° in which the cast shadow lengths were
visible within the selected image. All test images are chosen
to evaluate the performance of the new approach over diverse
urban landscape scenes, which include different geometries in
buildings in challenging environmental conditions. Moreover,
we used VHR WV3 images to evaluate the usage of new
satellite images in urban applications, as well as to compare
the performance of the proposed approach to the existing
methods for estimating building heights. The performance of
our approach is evaluated using the reference building height
data from Ordnance Survey (OS)8 MasterMap topography
layer. Building heights of the corresponding urban areas of
the test images in the OS reference data are used to compare
results with the actual. The experiments were performed on
an Intel i7 personal computer at 3.40 GHz and 16-GB RAM.

B. Results and Discussion

Results are given in Fig. 2 and validation outputs in Table I.
Algorithmic accuracy was measured using precision, recall,
and F1 score, which are presented in Fig. 3. The overall
accuracy of our approach is compared against previous works
on image-based building height estimation in Table II.

The results in Fig. 2 are promising considering the complex
building characteristics of the test images, i.e., the variations in
geometry, roof color, orientation, and challenging illumination
conditions. As expected, the algorithm performs very well for
standalone buildings of regular shape. Zero error was found

8The U.K. government agency is responsible for the official, definitive
topographic survey and mapping of Great Britain. Building heights in OS
MasterMap are automatically derived from digital terrain and surface models.
Further details on their creation can be found here: https://goo.gl/ohws6c.

TABLE I

ESTIMATED BUILDING HEIGHTS USING THE PROPOSED ALGORITHM

Fig. 3. Performance of the proposed shadow overlapping algorithm.

TABLE II

ALGORITHM PERFORMANCE AGAINST PREVIOUS WORKS

for test image #1, which is a detached commercial building.
The algorithm underestimated the heights for mixed-geometry
and mixed-size buildings in #6 and #7, respectively, by a small
margin. The mean absolute error for all images was 0.65 m,
demonstrating the robustness of the algorithm.

One of the reasons for the success of our approach in
challenging urban conditions is that in addition to applying
a thresholding scheme to filter out the building from the
background, our algorithm is also able to mitigate the issue of
the overlapping shadow of two buildings. When the simulated
shadow of a building overlaps the shadow of another, JI is
set to zero to avoid erroneous estimation of the building
height. The performance appears to be affected by the presence
of vegetation within the shadow region, as can be seen in
image #4. Two buildings are separated by a narrow gap.
The shadow of the smaller building gets blocked by the larger
building on the north. The estimation error for the larger
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building was 0.1 m (≈1%), while the error for the smaller
building was 2.55 m (≈47%). The situation was exacerbated
by the presence of tall vegetation on the northeastern side of
the smaller building, preventing the accurate filtering of the
shadow.

The Graph-Cut segmentation method [19] used for detecting
building footprint worked well, except for image #6, in which
the side of the oil storage silo and the roof were of the
same color. The shape of the building footprint was, therefore,
larger than the actual [see Fig. 2 (C2)]. However, the shadows
were unaffected and the overestimated footprint did not have
a noticeable effect on the estimation of the building height.
On the other hand, in cases where there are many shallow
buildings such as images #3 and #7, the presence of darker
pavements and roads can affect the performance of the algo-
rithm. One possible reason is that the spectral reflectance of
some nonshadow dark objects, such as roads and building
roofs, are nearly identical to each other or to their background,
resulting in dark objects being identified as shadow regions.
In addition, some adjacent buildings occlude the shadow cast
by other buildings. As a result, the length of the shadow
region appears longer than its actual length if the shadow
regions are combined with other shadow regions cast by other
objects or buildings. In contrast, they will appear shorter if
some parts of the shadow region are obstructed because of
the adjacent buildings. Our approach mitigated this issue with
the help of morphological postprocessing and thresholding in
the simulation process. In addition, the approach removed all
shadow pixels of nonbuilding objects, such as walls, cars, and
utility pole that are independent of the building shadow.

Although satellite test images present diverse building
attributes from different areas, the results demonstrate the
effectiveness of our approach. The comparison of accuracy
between the new and past approaches in Table II indicates
that our approach gives more accurate estimation of HB using
shadow information in an automated manner. The average
processing times for one building, one scene, and all seven
test images were 0.10 s, 1.50 min, and 4 min, respectively.
Execution time depends on the size of the image and the
complexity of the scene, as shown in Table I. Smaller images
(e.g., #1 and #6) with one or two rectilinear buildings require
less processing time and have the lowest estimation error.

V. CONCLUSION

In this letter, we presented a novel shadow-overlapping
algorithm, ASO, for estimating building heights from a single
VHR multispectral image. The new approach is based on
the automated identification of building shadow regions using
the solar information in the image metadata, morphological
operations, and Jaccard index (JI). The algorithm is tested on
different urban scenarios with varying building and neighbor-
hood attributes. Results are encouraging and outperform past
approaches with a 21% reduction in mean error and an overall
accuracy of ∼80%. The increased accuracy is attributed to the
consideration of overlapped shadow regions and the removal of
landscape features (e.g., the shadows of vegetation canopies).

The core benefit of our approach is the cost-effective
extraction of building height and subsequent 3-D construction

of urban areas. Applications can range from 3-D urban change
monitoring to the high resolution assessment of potential and
forecasting of renewable energy such as solar photovoltaics
and wind. The speed and frequency (e.g., daily) of VHR
acquisition compared to the more expensive methods such
as LiDAR open up significant possibilities for emergency
response such as the assessment of damage to buildings
and infrastructure immediately after a disaster event. Future
work can expand on our methodology to enhance accuracy
by differentiating between the terrain and building shadows,
as well as by integrating multiple methods and data sources,
such as DSMs.
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