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Abstract

The Quasi-Variational (QV) family of methods are a set of single-reference al-

gorithms that can be used to investigate multireference systems with large non-

dynamic correlation effects. Within this current work, the Quasi-Variational

Coupled Cluster Doubles (QVCCD) equations are derived and implemented into

Molpro’s Integrated Tensor Framework (ITF), to produce fast and efficient code.

This code, coupled with a new orbital optimisation implementation, is used to

calculate potential energy curves for third-row diatomic molecules. In contrast

to Traditional Coupled-Cluster methods, the QV methods are able to correctly

describe the dissociation of these molecules.

QV and several other single-reference methods are also applied to 5 chemical

databases comprising of 88 unique reactions. From this, the activation and re-

action energies are determined and contrasted. The QV methods produce larger

activation energies that may correct the shortcomings of the perturbative triples

correction. These results also include a new QV method with an ‘asymmetric-

renormalised’ triples correction. The numerical results show there is little differ-

ence between this procedure and ‘symmetric-renormalised’ triples.

Currently, only closed-shell QVCCD programs exist. Unrestricted QVCCD

equations are derived and presented in the hope that this will facilitate the real-

isation of an open-shell QVCCD program.

Finally, calculating the rate of a chemical reaction is of fundamental impor-

tance to chemistry. Knowledge of how quickly a reaction proceeds allows for an

understanding of macroscopic chemical change. Rate constants are calculated

with the on-the-fly Instanton method. In contrast to semi-classical Transition

State Theory, the Instanton method incorporates quantum effects like atomic

tunnelling into its rate constants. The effects of hydrogen tunnelling are ex-

amined for a reaction involving a Criegee intermediate. It is discovered that

tunnelling does play a role in the reaction rate and may increase it by a factor

of 1000. Combination of the Instanton calculations with the QV methods are

discussed.
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Chapter 1

Introduction

1.1 Quantummechanics and quantum chemistry

In the first half of the 20th century, physics undertook a methodological revolu-

tion. Since the middle of the 19th century, Newtonian mechanics had been under

attack; no longer could it describe the new phenomena that was being observed at

the atomic and sub-atomic levels. [1] Several phenomenological theories were con-

structed to overcome the discrepancies between current theory and observation;

these would be grouped under the name of Quantum Mechanics.

As the century marched on, new ideas would be added to the new body of

theory, one of the most successful being the wave mechanics model, articulated

by Erwin Schrödinger, [2] which forms the foundations of the work carried out

in this thesis. In essence, this describes particle positions and trajectories with

wavefunctions that are solutions to the Schrödinger equation.

At the onset, quantum mechanics was used to investigate physical-chemical

phenomena such as the spectroscopic structure of atoms (and later molecules),

but it was also used to understand the nature of the bonding within molecular

structures and thereby give a rational basis for the empirical rules that dominated

experimental practice. [3]

However, there were two immediate problems with this enterprise: reduction-

ism [4] and finding a many-body wavefunction which satisfies the Schrödinger

equation. Whether chemical phenomena can be totally explained by quantum

mechanics is too large a question to be discussed here, or anywhere in this work.

Suffice for this thesis, the answer to this will be: quantum chemistry, a theory of

1
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chemistry based on quantum mechanics,1 can help to explain relevant chemical

phenomena.

The second problem poses a direct relevance to this thesis; how to solve the

equations of quantum mechanics given the seemingly impossible task of devising

a many-body wavefunction to describe the states of the protons, neutrons and

electrons within a molecular system. Approximations must be introduced to

produce answers to chemical questions. The task of developing approximations

and carrying out calculations has occupied many scientists from the pioneering

work of Walter Heitler and Fritz London, [6] to the modern Coupled-Cluster

theories of today. [7]

1.2 The many-body wavefunction

An approach to finding a many-body wavefunction usually begins by simplifying

the problem at hand. As discussed in Chapter 2, the nuclei and electronic states

that describe a system can be approximately decoupled, thereby reducing the

problem to finding a wavefunction that describes the electronic states. Knowledge

of just these states can be used to explain and explore many areas of chemistry

including bonding, reactivity and spectroscopy.

A problem that must be addressed is how to systematically produce and

compute these electronic wavefunctions for a wide range of molecular systems.

The accurate prediction of the electronic structure of molecules not only allows

the prediction of various physical properties that can be used to guide and inform

experimental practice, but offers an understanding of chemical phenomena which

can complement experimental results.

Many approximations have been devised to solve this problem. One of the first

and most enduring methods for calculating electronic structure is the Hartree-

Fock (HF) approximation. [8] Within this theory the two-body interactions be-

tween individual electrons are replaced by a sum of one-body interactions. This

method is capable of producing impressive answers when compared to exper-

1Theoretical chemistry as a term has been used synonymously with both quantum and

computational chemistry. Theoretical chemistry has existed as long as chemistry; for example,

we are not concerned with the old Caloric and Phlogiston theories. Therefore the term quantum

chemistry will be used. [5]
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imental data, however, for many chemical processes, knowledge of the correct

two-body interaction is important for physically correct results.

Introducing correlations between electrons is often important in calculating

accurate molecular properties like the energy of a system. These correlating

effects can be broken down into two categories: dynamic and non-dynamic. Dy-

namic correlation describes the correct two-body electron interactions that are

absent from the mean field HF method. Non-dynamic correlation is concerned

with representing the many-body wavefunction in a complete basis of functions.

Advanced methods like Configuration Interaction and Coupled-Cluster theory

have been developed to circumvent the problem of dynamic correlation, [9, 10]

however, they often fail to produce even qualitatively correct results for systems

where non-dynamic correlation is important.

Configuration Interaction and Coupled-Cluster theory both rely on choosing

a single electronic state, usually the HF state, to embody the electronic wave-

function. For certain systems, a better description would be to use a linear sum

of electronic states. Constructing a wavefunction like this becomes important

when investigating photochemistry, excited states, radicals, breaking and form-

ing chemical bonds and predicting spectroscopic data. [11] In other words, a

large amount of potentially interesting chemistry must take into account several

electronic states to predict accurate results.

Traditionally, methods like Complete Active Space Self-Consistent Field the-

ory and Mulitreference Configuration Interaction have been used to investigate

these systems. [12] There are several problems associated with these methods;

firstly, the user must manually choose which electronic states to include in the

construction of the wavefunction, and secondly, the time required to run these

calculations grows rapidly with increasing system size.

Choosing the correct electronic states can often be a difficult and error prone

task. In recent years, methods have been developed which do not rely on the

choice of multiple electronic states to generate accurate answers, yet manage to

scale well with system size. One such family of methods are based on Quasi-

Variational Coupled-Cluster Doubles theory (QVCCD). [13] These methods form

the basis of this thesis.
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1.3 Current work

Currently we are concerned with the development, extension and application of

the QVCCD method. In Chapter 3, the previous work of developing QVCCD

will be re-examined. This initially led to the method being programmed into

the Molpro computational package. [14] However, this code has been determined

to be too slow to use in practical quantum chemical calculations and so part of

this project has been to derive and re-write the QVCCD and orbital optimisation

programs so that it is faster and of more utility to the chemical community. This

process is set out in Chapter 4.

Certain schemes to improve the QVCCD method have previously been de-

vised, under the name Renormalised Triples. Several approximations were made

in the construction this correction to make it as computationally cheap as pos-

sible. [15] One of the key approximations, hereafter denoted as the ‘asymmetric-

renormalised’ triples, is coded and numerical tests carried out to determine if the

original scheme was justified (Chapter 5).

Also within Chapter 5, the benchmarking of QVCCD is carried out against

both single- and multireference methods. These are all used to determine how

well QVCCD performs in dissociating third-row diatomic molecules and predict-

ing their respective harmonic vibrational constants. QVCCD is also used to pre-

dict the activation and reaction energies of many different reactions and thereby

ascertain if QVCCD can be applied to kinetic and thermodynamic investigations.

The statistics of quantities are calculated and compared to other single-reference

methods.

Quantum chemistry should be used to address chemical problems and predict

results to confirm or guide experiment. With this in mind, the kinetics and

dynamics for the Criegee [16] reaction are investigated in Chapter 6. Briefly,

matter appears to display certain characteristics of waves, especially at the atomic

level. This wavelike behaviour of atoms allows them to tunnel through certain

potential energy barriers and therefore increase the rate of a reaction. [17] The

effect of a hydrogen atom tunnelling through the energy barrier that defines a

Criegee intermediate is investigated with four different computational methods.

These are compared to determine the effects each method has on the result and

also to determine whether a computationally cheaper method can be used in
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future calculations.

Finally, to date, only a closed-shell QVCCD code exists within Molpro. In

Chapter 7, the open-shell, spin adapted, QVCCD equations are derived and pre-

sented. It is the hope of the author that the presentation made here will help

facilitate the implementation of an Unrestricted QVCCD program that can be

used to investigate the numerous examples of open-shell chemistry.

1.4 Conventions and notations

Throughout this work, atomic, or Hartree, units have been used: The elementary

charge (e), electron mass (me), reduced Plank’s constant (� = h
2π
) and Coulomb’s

constant ( 1
4πε0

) are set to unity. [18] These constants will therefore be omitted

from all equations and their dimensionality implied.

The exact many-body wavefunction will be denoted by Ψ, while ψ denotes

the exact electronic wavefunction. Φ will represent an approximate electronic

wavefunction. Spatial-orbitals and spin-orbitals will be represented by φ and χ

respectively.

All operators will be written in non-italicised Latin script and topped with a

caret (Ĥ, T̂, V̂, â, ĥ, etc.)

Excitation levels

The following letters at the end of CI, CC, QVCC, LPF, pCC and DC will denote

the excitation level of the method:

S Singles

D Doubles

T Triples

Q Quadruples

P Pentuples

H Hextuples
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Chapter 2

Electronic Structure Theory

2.1 Postulates of Quantum Mechanics

Any scientific theory must start from a set of postulates. Quantum mechanics is

no exception, and so the description of these postulates are necessary to under-

stand the theory. Different authors tend to choose different postulates, though

by examination they are found to be related to the four presented here: [1, 19]

1. The state and information of a system is fully described by a vector |Ψ(r, t)〉

in a Hilbert Space,1 where r represents the positions of particles and t is the

time. The probability amplitude associated with it, Ψ(r, t), is commonly

called the wavefunction.

The systems examined in this thesis consist of indistinguishable particles

called fermions. This indistinguishability is expressed by imposing symme-

try conditions on the wavefunction. For fermions, such as electrons, the

wavefunction must be anti-symmetric and so must change sign when two

particles exchange positions. Less rigorously, this condition is stated as

the Pauli exclusion principle: No two fermions can occupy the same state

within a system.

2. The probability of a particle in a specific state will be proportional to the

probability density, |Ψ(r, t)|2. This postulate is sometimes referred to as

the ‘Born interpretation’, after Max Born.

3. Physical observables are represented as Hermitian operators in the Hilbert

1For our case, a Hilbert space is best described as a complex inner product space and also

a complete metric space [20]

7



Numerical solutions to the Schrödinger equation 8

space. These operators are chosen to satisfy certain commutation relations

and are invariant to the interchange of two identical particle coordinates in

the wavefunction. If they admit eigenvectors, then the eigenvalues of these

operators are the possible values that the state may take.

The eigenvalues of these operators correspond to possible values of mea-

surement, which are proportional to |〈n|Ψ(r, t)〉|2, i.e. the projection of the

quantum state onto an eigenstate of the operator. In the Copenhagen inter-

pretation, a quantum state is a superposition of different states, each with

an associated probability amplitude. When a measurement is performed

upon it, the wavefunction is said to ‘collapse’ into one of the states.

4. The wavefunction evolves in time according to the Schrödinger equation,

i�
∂

∂t
|Ψ(r, t)〉 = Ĥ |Ψ(r, t)〉 , (2.1)

where |Ψ(r, t)〉 is an eigenstate of the Hamiltonian operator, Ĥ, that charac-

terizes the total energy of the system. This is a second-order differentiation

equation and so analytical solutions are not (in general) available for more

than a two particle system.

The time dependent part of Eq. 2.1 can often be separated, leaving the

time-independent Schrödinger equation,

Ĥ |Ψ(r)〉 =
[
− �2

2m
∇2 + V (r)

]
|Ψ(r)〉 = E |Ψ(r)〉 , (2.2)

where E is the energy of the system and V (r) is a potential function.

This project is not concerned with how a state will evolve with time, so

only the time independent equation will be considered from here on.

2.2 Numerical solutions to the Schrödinger equa-

tion

Presently, there are no exact analytical solutions to the Schrödinger equation for

many electron systems.2 A course of action is to make approximations to the

physical model and develop numerical methods which can be easily carried out

on a computer. By doing this, approximate solutions to Eq. 2.2 can be developed.

2Exact analytical solutions do exist for the Hydrogen atom (one electron, one proton)
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2.2.1 The Born-Oppenhiemer approximation

The starting point for many electronic structure calculations is the Born-Op-

penhiemer (BO) approximation, which involves an approximate decoupling of

equations involving the electron and nuclear eigenstates. [1]

The non-relativistic molecular Hamiltonian can be written succinctly as:

Ĥ = T̂e + T̂N + (V̂N,e + V̂e,e + V̂N,N) = T̂e + T̂N + V̂ , (2.3)

where T̂ and V̂ are the differential kinetic and potential energy operators labelled

by e (electrons) or N (nuclei).

If the electron and nuclei coordinates are assumed to be approximately sepa-

rable, then a trial eigenfunction to the above Hamiltonian can be constructed:

|Ψ(r,R)〉 = ψ(r;R)γ(R) , (2.4)

where ψ(r;R) is the electronic wavefunction that depends explicitly on the elec-

tron coordinates and parametrically on the nuclear coordinates, and χ(R) is the

nuclear wavefunction.

This can be inserted into the Schrödinger equation,

Ĥ(ψγ) = γT̂eψ + ψT̂Nγ + V̂ψγ + U(r,R) = E(ψγ) , (2.5)

T̂N(ψγ) = ψT̂Nγ + U(r,R) , (2.6)

where U(r,R) represents the electronic and nuclear coupling terms that arise

when T̂N is applied to the trial wavefunction. The inverse nuclear mass appears

in U(r,R), so it is expected to be small and can be neglected. The remaining

terms can be rearranged,

ψT̂Nγ + (T̂eψ + V̂ψ)γ = E(ψγ) . (2.7)

The set of equations in the parenthesis depend only on the electronic coordinates

and fixed nuclear positions; this is called the electronic Schrödinger equation.

The nuclear potential term, V̂N,N , can be added into the Hamiltonian after ψ has

been determined. It is a constant that depends on fixed nuclear positions and so

only shifts the eigenvalues in energy.

The mathematics of the approximation can be justified thus: Nuclei are con-

siderably more massive than electrons (an electron is 0.0545% less massive than
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a proton) and therefore move at slower speeds. Relative to an electron’s frame of

reference, the nuclei appear fixed in space and do not seem to move at all.3

It should be noted that this approximation is only reliable for calculating

ground state properties, i.e. the lowest energy eigenstate of a system. For excited

states, or where one nuclear state correlates to several near-degenerate electronic

states, this approximation breaks down and Eq. 2.4 no longer becomes valid. For

this project, this is not an issue as we are only concerned with ground state

properties.

By invoking the BO approximation, the number of dimensions has been re-

duced, so our problem now becomes one of finding the electronic wavefunction

for fixed nuclear positions. Unfortunately, the only system that can be treated

exactly with this approximation is H+
2 , [23] however the BO approximation will

form the point of departure for all successive approximations.

2.2.2 Spin orbitals and Slater Determinants

An electron can be described by a function of its three spatial coordinates, φ(r),

and a spin function, α(ω) or β(ω), which correspond to the spin up (ms = +1
2
)

and spin down (ms = -1
2
) states respectively. This product is called a spin orbital

which is a function of the combined spin and spatial coordinates x,

χ(x) =





φ(r)α(ω)

φ(r)β(ω)
. (2.8)

From these basic building blocks, a wavefunction for a many electron system can

be constructed. A naive approach would be to place N electrons into a product

of N orbitals. This type of wavefunction is called the Hartree product, and

apart from its deficiencies in describing inter-electron repulsion, it fails to take

into account the indistinguishability of electrons and thereby the anti-symmetric

principle. [8]

A true anti-symmetric wavefunction can be formed if a linear combination of

several Hartree products are used. For a simple two-electron system a wavefunc-

3This simplistic interpretation has been challenged by Essén, who states that the structure

of the Coulombic interaction term leads to the separation of the internal and relative degrees

of freedom, and not the ratio of electron to nuclei masses. [21, 22]
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tion can be constructed where electron 1 is in χ1(x1) and electron 2 in χ2(x2),

|Φ(x1,x2)〉′ = χ1(x1)χ2(x2) . (2.9)

A linear combination can be constructed from these two functions such that

the indistinguishability is maintained and the wavefunction is anti-symmetric,

thereby fulfilling the Pauli exclusion principle:

|Φ(x1,x2)〉 = χ1(x1)χ2(x2)− χ1(x2)χ2(x1) , (2.10)

|Φ(x1,x2)〉 = − |Φ(x2,x1)〉 . (2.11)

This type of wavefunction, named after John C. Slater, can be compactly written

as a determinant,

|Φ(x1,x2)〉 =
1√
2!

∣∣∣∣∣∣
χ1(x1) χ2(x1)

χ1(x2) χ2(x1)

∣∣∣∣∣∣
. (2.12)

and generalised to N -electrons:

|Φ(x)〉 = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

χp(x1) χq(x1) . . . χr(x1)

χp(x2) χq(x2) . . . χr(x2)
...

...
. . .

...

χp(xN) χq(xN) . . . χr(xN)

∣∣∣∣∣∣∣∣∣∣∣∣

= |χp(x1)χq(x1) . . . χr(x1)〉 .

(2.13)

It was no accident that a determinant was chosen to represent a wavefunction, as

its mathematical properties are a good model for fermionic particles. For example,

when two rows (two electrons) are interchanged, the sign changes, while having

two columns the same (two electrons in the same orbital) makes the determinant

vanish.

A Slater Determinant (SD) is not a perfect representation of the electronic

wavefunction. Formally, it is an uncorrelated wavefunction because the proba-

bility of finding an electron is independent of the probability of finding another

electron of opposite spin in a given volume of space. Nevertheless, a SD will cor-

relate electrons of parallel spins. [24] This expresses itself through the exchange

correlation effect: two electrons of parallel spin in the same volume of space will

produce a zero determinant.

Though there are many specific cases where an analytical function can be de-

rived for a wavefunction, in theoretical chemistry, single SDs or linear combina-
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tions of SDs are usually used due to their general applicability to any N -electron

system.

2.2.3 Basis sets

If there were an infinite set of functions that formed a complete basis (i.e. a basis

that spans the whole function space), then anyN -electron molecular wavefunction

could be constructed from this set.

Computationally, an infinite sum of an infinite set of functions can not be

calculated, therefore it is necessary to restrict the basis to a finite subset which

spans a subspace of the complete space. As mentioned in the previous section,

SDs are usually chosen as a basis for a molecular wavefunction. Often, one SD

dominates this expansion, so as a further simplifying step, this single SD is chosen

to represent the molecular wavefunction. [25]

These SDs are in turn constructed from a set of orbitals: the one-electron

wavefunctions of Eq. 2.8. These orbitals are themselves expanded in a finite set

of known functions4. Formally, this method is named Linear Combination of

Atomic Orbitals (LCAO) and it forms the cornerstone of the Molecular Orbital

(MO) picture of bonding. [1]

MOs are constructed from the combination of the one-electron orbitals and

describe the electronic states in a molecule. This theory does away with any

assumptions about the form the MOs can take and as a result, usually provides

an accurate and unbiased description of the electronic structure. This should

be contrasted with Valence Bond (VB) theory, which evolved from empirical

chemical experience. [3, 26] This theory contends that the wavefunction can be

modelled by using the overlap of bonding atomic orbitals; though this adherence

to the atomic orbitals is usually at the expense of an accurate wavefunction.

Historically, VB was the first theory used to examine chemical systems, however

MO theory became more popular in the mid 20th century and is now the dominant

picture in electronic structure calculation. This project is based in the LCAO/MO

picture and so VB theory, though an important tool, will not be considered again.

There are several ‘known functions’ from which the one-electron orbitals may

4By convention, this set of functions are referred to as the basis set, as opposed to the basis

of SDs or one-electron orbitals. All occurrences of an unqualified basis set will be taken to refer

to the set of functions that the one-electron orbitals are constructed from.
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be constructed. For example, Slater-type functions could be used; these can be

generically written as, [8]

θ(r) = Arle−αr , (2.14)

where A is a normalisation constant, r is the distance of the electron from the

nucleus, l is the angular momentum quantum number and α is a constant related

to the charge on the nucleus.

Slater-type functions can approximate the exact Schrödinger solutions to the

hydrogen atom very well. Nevertheless, it is computationally more practical to

use Gaussian functions of the form,

θ(r) = Arle−αr2 , (2.15)

to approximate the Slater functions. Integrals over four basis functions are com-

mon in computational chemistry and a product of Gaussians is simply another

Gaussian function. Therefore these integrals can be reduced to products of just

two Gaussians. Most basis sets are constructed by using linear combinations of

these Gaussian functions to approximate more complicated forms.

Some of the most commonly used basis sets are those designed by Dunning and

co-workers. [27] These basis functions were fitted using highly accurate quantum

chemical methods and were designed to converge quickly to the limit of infinite

basis functions. Because of these properties, the correlation consistent basis sets,

cc-pVXZ, where X = {D, T,Q, 5, 6, 7, ...}, can be applied to various chemical

problems with confidence. This family of basis sets have been used throughout

this project.

2.3 Hartree-Fock and Self-Consistent Field the-

ory

The Hartree-Fock (HF) method was one of the first methods developed to find

numerical solutions to the Schrödinger equation for a many-body system. It is

computationally inexpensive and can account for 99% of the total energy of a

molecule. [8] It achieves this by invoking the BO approximation and the LCAO

method to construct the HF wavefunction. These properties make the HF solu-
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tion a good zeroth-order approximation to the wavefunction and a starting point

for many subsequent improvements.

2.3.1 The Hartree-Fock equations

HF theory states that a single SD is an adequate approximation to the electronic

wavefunction,

|Φ0〉 = |χ1(x1)χ2(x2) . . . χi(xN)〉 . (2.16)

The Hamiltonian in atomic units,

Ĥ =
(
− 1

2

∑

i

∇2
i −

∑

i,A

ZA

|ri −RA|

)
+
∑

i,j

1

|ri − rj|
= ĥ(i) + v̂(i, j) , (2.17)

where the potential term is now a sum of the nuclei-electron and electron-electron

electrostatic potentials (ZA is the charge on nuclei A; RA and ri are the nuclei

and electron position vectors respectively), can be split into a sum of one-body

and two-body terms. The task is then to find a set of spin orbitals that minimise

the electronic energy via the variational theorem,

min
χi

E0 = 〈Φ0|Ĥ|Φ0〉 = 〈i|ĥ|i〉+ 1

2
〈ij| |ij〉 , (2.18)

〈i|ĥ|i〉 =
∫

χ∗
i (x1)h(r1)χi(x1) dx1 , (2.19)

〈ij| |ij〉 = 〈ij|ij〉 − 〈ij|ji〉 , (2.20)

〈ij|ij〉 =
∫

χ∗
i (x1)χ

∗
j(x2)r

−1
12 χi(x1)χ

∗
j(x2) dx1dx2 . (2.21)

In the equations above, the Einstein summation convention has been used, where

repeated indices are summed over. This convention will be used in all equations

to follow, unless the sum needs to be explicitly stated for clarity.

The energy can be minimised by restricting the orbitals to be orthonormal

(which in practice means introducing a set of Lagrangian multipliers) and varying

the spin orbitals. In this fashion, the HF integro-differential equations can be

derived, [8]

f̂ |i〉 =
∑

j

εij |i〉 ,

[
ĥ +

N∑

j �=i

Ĵj − K̂j

]
|i〉 =

∑

j

εij |i〉 , (2.22)
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where f̂ is called the Fock operator.

This formulation removes the two-electron terms in Eq. 2.18, and constructs

the kinetic and potential interactions as the sum of three one-electron operators:

• ĥ represents the kinetic energy of the electrons and the Coulombic attraction

between electrons and the nuclei.

• Ĵ is the Coulomb operator which represents the average potential that an

electron in χi experiences from the other N − 1 electrons in the system.

• K̂ is the exchange operator that cannot be given a classical interpretation

like the Coulomb operator. It is defined for each unique pair of same spin

electrons, thereby correlating their motions (the same is not true for elec-

trons of opposite spin).

The use of these one-electron operators means the electronic coordinates (xi)

can be separated in the Schrödinger equation, making possible the use of a SD

constructed from one-electron orbitals. [24]

2.3.2 Roothaan equations

The HF equations can not be solved analytically for systems larger than single

atoms. Instead, the numerical procedure introduced by Roothaan must be used

to find a set of spin orbitals that satisfy Eq. 2.22. [28] This is called the Self-

Consistent Field (SCF) approach, in which the HF wavefunction is the limiting

result. [7]

For a closed-shell molecule, the spatial orbitals defined in the previous section

may be used instead of the spin orbitals. [8] A set of known basis functions must

be introduced in which these spatial orbitals can be expanded and given form,

|i〉 = Cµi |µ〉 . (2.23)

If this set is complete, i.e. infinite, then the exact HF orbitals could be obtained.

This cannot be achieved, so a finite set is chosen so that the error in the expansion

can be reduced by systematically increasing the size of the basis set. Increasing

the basis set to a large number of functions will converge the molecular energy

to a limit know as the HF limit.
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The problem can now be stated: Find the set of expansion coefficients (C)

that minimize the energy functional.

To do this, the integro-differential equations can be rewritten in matrix form.

The new definition of the spatial orbitals are inserted into Eq. 2.22, and the

resulting equations post-multiplied by 〈µ|,
∑

µ

〈µ|̂f|ν〉Cνi =
∑

µ

〈µ|ν〉Cνiεi . (2.24)

Two K ×K Hermitian matrices can be defined; the overlap matrix,

Sµν = 〈µ|ν〉 , (2.25)

and the Fock matrix,

Fµν = 〈µ|̂f|ν〉 , (2.26)

which is simply the Fock operator in the |µ〉 basis representation. Eq. 2.24 can

be written compactly as,

FC = SCε , (2.27)

where ε is a diagonal matrix of orbital energies. The MOs are usually chosen

to be orthonormal, so S becomes the identity matrix (Sµν = δµν .
5) and Eq. 2.27

reduces to a standard eigen equation.

At the end of a SCF calculation, two sets of orbitals are produced. The set

of orbitals which are doubly occupied in the ground state are called the occupied

orbitals, while the remainder are called the virtual orbitals. These virtual orbitals

hold the key to further improvements of the SCF method.

An infinite number of different orbitals can be generated, which are related

to each other via a unitary transformation. It is convenient to work with the set

of orbitals that diagonalize the Fock matrix called the canonical orbitals.

2.3.3 Deficiencies of the SCF method: dynamic and non-

dynamic correlation

As the basis set is increased, the SCF energy will converge to a limit (the HF

limit). A quantity called the ‘correlation energy’ [24] can be theoretically defined

5δij is the Dirac delta function. Simply put: δij =





1, i = j

0, i �= j
.
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as,

Eexact = EHF + Ecorr , (2.28)

where Ecorr, Eexact and EHF are the correlation energy, the exact Schrödinger

energy and the reference energy respectively. The correlation energy represents

the energy effects that HF does not take into account. [29] This can be investigated

with a qualitative analysis of the approximations the HF method makes.

Dynamic correlation

HF theory is a mean field theory, where the two-body interactions have been

replaced by a sum of one-body operators. Each electron, instead of experiencing

the electrostatic repulsion of each individual electron, only experiences an average

repulsion from all other electrons.

The anti-symmetrised SD state can effectively correlate electrons of parallel

spin, as two identical columns will make a determinant vanish (this effect is

called the Fermi hole). The major error comes from the uncorrelated electrons

of opposite spin; the failure to take these interactions into account can lead to

qualitative failures in the wavefunction.

For a two-electron system the r12 term from the Hamiltonian in Eq. 2.17 in-

troduces a condition upon the wavefunction called the cusp condition, [29]
(

∂Φ

∂r12

)

r12=0

=
1

2
Φ(r12 = 0) (2.29)

The failure of the HF wavefunction to capture this cusp can be illustrated by

comparing a HF and a explicitly correlated (Hylleraas-type) wavefunction for

He. [30]

Fig. 2.1 displays both wavefunctions where one electron is fixed in position

and the other is allowed to move towards it in a straight line.6 As the second

electron moves towards the first, the Hylleraas-type wavefunction forms a cusp

(the Coulomb hole). The electron avoids this region due to the presence of the

other electron and the Coulomb repulsion between the two. The HF wavefunction

does not reproduce this and in general, tends to overestimate the interelectronic

repulsion. For this case, the Hylleraas-type wavefunction is able to model the cor-

related motions of the electrons, called dynamic correlation. The HF answer fails

to capture this interaction and produces a qualitatively incorrect wavefunction.

6This is the Molpro logo. Plotting was carried out in Mathematica [31]
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Figure 2.1: HF (blue) and Hylleraas-type (orange) wavefunctions for He, where one

electron is fixed at 0.94 Bohr (the orange cusp) and the other electron is moved in a

straight line towards it.

Non-dynamic correlation

An error occurs when a single SD is used to represent the wavefunction. In

many cases, such as ground state closed-shell organic molecules, this error is

minimal and can be ignored. For other cases, such as transition states, molecular

dissociations, radicals, photo-excitations etc., [11] more than one electronic state

dominates the SD expansion and this approximation is no longer valid.

This is illustrated with a simple example involving H2. [32,33] If two spherical

Gaussian functions, θA and θB, are centred on each hydrogen atom A and B,

then two MOs can be formed,

σg =
1√

2(1 + S)

[
θA(r) + θB(r)

]
, (2.30)

σu =
1√

2(1 + S)

[
θA(r)− θB(r)

]
. (2.31)

In a SCF calculation, the ground state wavefunction (ignoring spin) can be formed

by placing the two electrons into σg.

Φ =σg(1)σg(2) , (2.32)

σg(1)σg(2) =
1

2(1 + S)

[
θA(1)θA(2) + θA(1)θB(2)

+θB(1)θA(2) + θB(1)θB(2)
]
. (2.33)

This wavefunction contains a mixture of ionic (θA(1)θA(2)) and covalent (θA(1)θB(2))

terms.
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As H2 dissociates, the ionic terms remain, thus describing the unphysical

situation where both electrons are situated on one hydrogen atom. To remedy

this, the σu MO needs to be included into the wavefunction expansion with a

varying parameter,

Φ = σg(1)σg(2) + λσu(1)σu(2) . (2.34)

The energy can then be minimised with respect to λ. In this way, as H2 disso-

ciates, the ionic terms cancel (λ = −1) and a physically correct wavefunction is

obtained.

The inability of a single SD to describe the molecular wavefunction is called

non-dynamic correlation and is important to the present project. Capturing

non-dynamic correlation is hard to automate, leaving the user to guess which

configurations to include in the wavefunction expansion. For a general N -electron

case with several nuclei, the choice of configurations is no longer as simple as the

H2 example. Instead of a rigorous mathematical justification, the user must use

their experience and inductive chemical knowledge to judge which configurations

to choose, thereby introducing possible errors.

The failure of HF theory to account for these correlation effects has led to a

series of methods termed Post-HF. Methods like Configuration Interaction and

Coupled-Cluster have been successful in dealing with dynamic correlation. For

non-dynamic correlation, the issue of choosing the active space still remains a bar-

rier to wider use. This difficulty has motivated a series of approximations that

maintain the single determinant postulate, but try to capture the non-dynamic

correlation effects. Most importantly for this project, the Quasi-Variational

Coupled-Cluster method was developed to address this problem and will be the

topic of subsequent chapters.

2.4 Properties of a computational method

Before proceeding to discuss the Post-HF methods, it will be useful to set out

a number of criteria in which they can be judged. [34, 35] Ultimately it is a

subjective choice of which standards a method should satisfy, nevertheless there

are objective reasons for each of the properties presented here which will go

some way to justifying the ones chosen. [36] Satisfaction of these properties will
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usually guarantee that the method can be widely and reliably applied to different

chemical systems and achieve accurate answers. In general, a method will not be

able to satisfy them all.

• Chemical accuracy

A fundamental requirement of a method is that can produce accurate results.

We are interested in chemical problems, so this requirement can be quantified by

specifying that the calculated energies must match chemical experiments that are

within an error of 4 kJ mol−1.7 [25] Larger errors in energy can totally change the

reactive and kinetic predictions of the method. For the cases where there is no ex-

perimental data, there must be confidence that the method can be systematically

improved to calculate chemically accurate results.

• Computational scaling and implementation

A straight forward parametrisation of the wavefunction can generate results that

are within chemical accuracy, but the result will be of little use if it takes years

of computational time to run.

There are two issues to consider; the computational complexity, or time, and

the total memory used. The computational complexity represents the number of

operations that a computer must complete to run the method, while the memory

represents how much storage is needed and accessed at one point. Both of these

algorithmic properties can be described by a prefactor multiplied by a scaling

factor, which can be represented using big-O notation.8

What complexity one finds acceptable depends upon the system size, type

of calculation, time and memory constraints. Therefore it is difficult to suggest

which scaling is best for the general situation.

CCSD and CCSD(T) are two of the most widely used ab initio9 methods for

investigating small to medium sized systems (around 1 to 50 atoms).10 It seems

7This number has changed throughout the years, for example, Ruedenberg called an energy

error on the magnitude of 1 mhartree ‘chemically accurate’ [37]
8f(ε) = O(εp) means, for a sufficiently small ε, there exists a positive constant, K, such that

|f(ε)| = K|ε|p. In our cases it means that our approximation to f(ε) grows no faster than εp

for O(εp). [38]
9Latin for from the beginning. Methods that are derived solely from quantum mechanical

arguments and do not use parameters or experimental data are described as ab initio.
10Using Web of Science, a search for the terms ‘CCSD’ and ‘CCSD(T)’ in the literature

published in 2016 returns 515 results.
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possible that for a many scientists, the scaling of CCSD and CCSD(T) is reason-

able for their research purposes. Therefore, for this project, a computationally

practical method is an iterative method that scales no more than O(o2v4) (where

o and v denote occupied and virtual orbitals respectively), or an non-iterative

method that scales no more than O(o3v4). Storage should then scale as O(o2v2).

Notwithstanding, it is no longer sufficient that the algorithm scale accept-

ably, but the implementation be efficient; for a practical method it is also re-

quired that the code be can run in parallel. This means that several jobs can be

deconstructed into independent tasks and evaluated at the same time on differ-

ent CPUs. Though the scaling factors remain the same, the prefactors can be

dramatically reduced and produce significant time savings.

• Extensivity and size-consistency

Extensivity and intensivity are concepts that originate in thermodynamics. [23]

An extensive property is one that scales with system size, while an intensive

property is invariant. These same principles apply to electronic structure theory:

the energy of a system must scale linearly in the limit of a large number of

electrons, N , [39]

lim
N→∞

Ecorr(N)

N
= const > 0 . (2.35)

If a method does not obey this, then it cannot produce accurate results for systems

of increasing N as the correlation energy will deviate. [40]

A similar, but less general concept is size-consistency. [41] This states that the

energy of two identical non-interacting molecules should be twice the energy of the

of the single molecule. This is important is calculating thermodynamic properties

such as enthalpy changes. Extensivity implies size-consistency, however size-

consistency does not imply extensivity.

It is trivial to test for size-consistency, but extensivity is harder to prove.

Brueckner showed for perturbation theory, that terms with the incorrect depen-

dence on N will cancel out, leaving behind an extensive method. [8] However,

using the techniques of second quantisation, introduced in Section 2.9, extensiv-

ity can be rigorously determined for a given method.
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• Invariance of orbitals under a unitary transformation

The energy of a system is a scalar and therefore should be invariant to a unitary

rotation of the orbital basis. If this principle is not obeyed the method in question

will not give a unique energy for a set of non-degenerate orbitals and will in

practice produce different energies for the same calculation. [8] The HF method

obeys this principle as the energy stays the same even if rotations occur in the

occupied and virtual subspaces (though rotations across the whole space will

change the state and hence the energy).

The importance of this property has become apparent in recent years with the

development of local correlation methods. [42] Invariance of the orbitals means

that a localized basis can be constructed that can be used in a correlation calcu-

lation with significantly reduced computational cost. A method must satisfy this

property if a local treatment is to be applied to it.

• Exact treatment of limiting systems

The use of a finite (one electron) basis means that exact solutions to the Schrödinger

equation can never be found, however exact solutions within such a finite basis

can be calculated. This answer is usually called the Full Configuration Interaction

(FCI) solution. Solutions are constructed from a basis of SDs which ultimately

span the entire space. Such a treatment leads to an impractical method that is

too expensive for anything but small systems and so a subset of this SD expansion

is usually chosen instead.

A more achievable property for a method is to produce the same (exact)

answer as FCI for some limiting system. This benchmark is usually chosen to be

a two-electron system, as this will guarantee the correct treatment of two-body

correlation terms which represent the major contribution to the total correlation

energy. [7]

• Variational minimisation of a functional

In most cases we want to find extrema of an energy functional, as the state that

corresponds to the minimum will be the ground state [43]. By using the varia-

tional method, not only can stationary states be found, but the approximations

to the state can be improved in a controlled way.
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A functional, called the Rayleigh ratio, can be defined by rearranging the

Schrödinger equation and dividing by the norm,

Etrial =
〈Φ|Ĥ|Φ〉
〈Φ|Φ〉

. (2.36)

The variation theorem posits that that Etrial ≥ Eexact.

The trial state that produces the lowest energy is therefore the best approxi-

mation to the actual ground state. The energy of the state is also bounded from

below by Eexact, therefore guaranteeing that the energy will never fall below the

exact Schrödinger equation energy.

• Generalised Hellmann-Feynman theorem

Various molecular properties can be calculated from the energy functional by

expanding its derivative with respect to a perturbation as a Taylor series. The

derivatives of the functional then represent the molecular properties of interest.

To simplify this procedure, a method must satisfy the Generalised Hellmann-

Feynman theorem (GHF). [34] This states that the derivative of the energy with

respect to some perturbation can be related to the expectation value of the deriva-

tive of the Hamiltonian, [43]

dE

dλ
=

〈
Φ

∣∣∣∣∣
dĤ

dλ

∣∣∣∣∣Φ
〉

. (2.37)

This equation is obeyed exactly by variational methods that determine the ex-

act wavefunction. As the quality of this wavefunction declines, Eq. 2.37 becomes

less reliable. For non-variational methods, like coupled-cluster theory, the en-

ergy functional can always be cast into a variational form by using Lagrangian

multipliers. [25]

For example, if the perturbation represented an external electromagnetic field,

the derivatives of the energy functional would then represent polarizabilities and

magnetizabilities. [44] Satisfaction of the GHF theorem is a benefit to calculating

these properties because it means the first-order analytical derivatives can be

derived without the knowledge of the derivatives of the perturbed wavefunction.

• Black box methodology

Finally, a computational method should be easy to use for general members of

the chemical community. In other words, it would be beneficial for the method

to be a ‘black box’.
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There has been debate in the literature as to what constitutes a ‘black box’

method. [11] A general definition for computational chemistry could be:

A method that requires minimum input to obtain an accurate output.

For example, the method would only require the geometry and basis set for

inputs (possibly the number of electrons, charge and multiplicity). The main rea-

son for including this definition is to discriminate against various multireference

methods. As Bartlett et al. have shown, it is possible to construct a definition

that could class multireference methods as a ‘black box’, [11] however it seems

disingenuous to do so. There is a large difference between a single reference calcu-

lation and a multireference one where various electronic states need to be chosen

a priori. Such a choice of states is by no means straightforward and in a lot of

cases can be very difficult. A method that can be easily used and therefore widely

used, should not be dismissed.

2.5 Many-Body Perturbation Theory

With the properties of an ideal method in mind, attention will now be turned

towards improving the SCF solution. A straightforward way to capture the effects

of dynamic correlation is to use Many-Body Perturbation Theory (MBPT). [45]

MBPT proposes that the exact problem to be solved differs by a small amount

from a solvable problem. If this is the case, then the exact Hamiltonian (Ĥ) can

be decomposed into a sum of a reference, the zeroth-order problem already solved

(Ĥ0), and a (perturbative) correction (V̂),

Ĥ = Ĥ0 + λV̂ , (2.38)

where λ is a parameter the determines the strength of the perturbation. For Ĥ0 it

is convenient to use the sum of the Fock operators, so the perturbation becomes

the difference between the exact and average electron-electron potential,

V̂ =
N∑

i<j

r−1
ij −

N∑

i

vHF
i , (2.39)

This describes the Møller-Plesset (MPn, n={2,3,4,5..}) method.

As λ is continuously varied to 1, the energy and wavefunction change. These
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can be expanded as a Taylor series, [8, 25]

E =λ0E(0) + λ1E(1) + λ2E(2) + ... , (2.40)

|ψi〉 =λ0
∣∣∣Φ(0)

i

〉
+ λ1

∣∣∣Φ(1)
i

〉
+ λ2

∣∣∣Φ(2)
i

〉
+ ... , (2.41)

and inserted into the Schrödinger equation. Intermediate normalisation is usually

chosen for the perturbed and unperturbed states,

〈
Φ

(0)
i

∣∣∣Φ(0)
i

〉
=1 , (2.42)

〈
Φ

(0)
i

∣∣∣ψi

〉
=1 , (2.43)

so that,

〈
Φ

(0)
i

∣∣∣Φ(n)
i

〉
=0 . (2.44)

Finally, the fundamental theorem of perturbation theory can be invoked and the

powers of λ collected together to form a system of equations, [38]

Ĥ0

∣∣∣Φ(0)
i

〉
= E(0)

∣∣∣Φ(0)
i

〉
,

Ĥ0

∣∣∣Φ(1)
i

〉
+ V̂

∣∣∣Φ(0)
i

〉
= E(0)

∣∣Φ(1)
〉
+ E(1)

∣∣∣Φ(0)
i

〉
,

Ĥ0

∣∣∣Φ(2)
i

〉
+ V̂

∣∣∣Φ(1)
i

〉
= E(0)

∣∣∣Φ(2)
i

〉
+ E(1)

∣∣∣Φ(1)
i

〉
+ E(2)

∣∣∣Φ(0)
i

〉
. (2.45)

The perturbed state,
∣∣∣Φ(n)

i

〉
, can be expanded in the one-electron basis which

was generated in SCF calculation. This new set of states, |Φn〉, are known and

are eigenfunctions of Ĥ0 with energy E
(0)
n . With these, Eq. 2.45 can be solved

and the nth-order corrections to both the energy and the wavefunction can be

determined.

As an example, the second-order correction to the energy is:

E
(2)
i =

∑

n �=0

〈
Φ

(0)
i

∣∣∣V̂
∣∣∣Φn

〉2

E
(0)
i − E

(0)
n

, (2.46)

which is just the matrix elements of the perturbation operator over a set of

unperturbed functions and energies.

If Ĥ0 was chosen as described above, the nth-order energy corrections described

the hierarchy of MPn methods. The first-order correction (MP1) is simply the

SCF energy, so it necessary to go to the MP2 level to improve the SCF wave-

function and include dynamic correlation effects.
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MP2 typically accounts for 80-90% of the correlation energy and only scales

as O(M5), where M is the number of basis functions, so is relatively cheap com-

pared to the other Post-HF methods. The energy is not variationally determined,

meaning that it is not an upper bound of the exact energy, though it is exten-

sive. [7]

There are several drawbacks to the MPn methods. The main problem being

that various molecular properties, in general, do not converge as the method goes

to higher orders. In most cases, the values of the properties will oscillate and

slowly converge. [46,47] The Møller-Plesset postulate that the SCF wavefunction

is a good zeroth-order approximation is also not necessary true; if it is a poor

description of the system, then higher order terms are needed to produce a reliable

answer. Though in some cases, the answers may diverge as higher orders are used.

It has also been shown that higher order MPn methods depend strongly on

choice of basis. Using routine basis sets with diffuse functions can make the series

diverge for even simple single reference cases. [48] Therefore, increasing the order

and basis set may not lead to improvements.

2.6 Configuration Interaction

The exact wavefunction for a given basis set can be constructed if a complete

(and finite) basis of SDs are used,

|ψ〉 = ci |Φi〉 . (2.47)

The energy can then be minimised with respect to the expansion coefficients, ci.

The linear expansion of SDs needs to be chosen so that it forms a complete

basis. To do this, the set of virtual orbitals (by-products from the SCF pro-

cedure) are used. By forming products of these orbitals, electron motions can

be correlated. In practice these correlating determinants look like ‘excited’ SDs

when compared to the SCF reference state. For example, to correlate the motion

of every pair of electrons, all the states are chosen where electrons i and j have
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been excited into virtual orbitals a and b:11

|ψ〉 =cabij
∣∣Φij

ab

〉
, (2.48)

cabij =− cbaij . (2.49)

The set of mixing coefficients, c, are often referred to as the amplitudes and

satisfy fermion symmetry requirements.

This procedure can be repeated for single, double, triple, etc. groups of elec-

trons, until N -electrons are placed into N -virtual orbitals. Including all these

states into the linear CI expansion produces the Full Configuration Interaction

(FCI) wavefunction, [7]

|ψFCI〉 = c0 |Φ0〉+ cai
∣∣Φi

a

〉
+

1

4
cabij

∣∣Φij
ab

〉
+

1

36
cabcijk

∣∣∣Φijk
abc

〉
+ ... , (2.50)

where the implied summation has not been restricted to i < j < k and a < b < c,

etc., so a factor has been introduced to account for the double counting of spin

orbitals. With a suitably chosen excitation operator, Ĉ, this expansion can be

written more compactly as:

|ψFCI〉 = (1 + Ĉ) |Φ〉 , (2.51)

Ĉ = Ĉ1 + Ĉ2 + Ĉ3 + ... . (2.52)

Here, Ĉ is a sum of excitation operators, Ĉn, that generate the n-excited SDs.

Unlike MBPT which needs to go to infinite order to capture all the correlation

energy, the FCI parametrisation can generate a closed form expression,

EFCI = 〈Φ0|Ĥ|ψFCI〉 . (2.53)

Generating all possible excitations for a given basis set is theoretically possi-

ble, but is often practically impossible for everything but atoms and very small

molecules. An approximation can be easily formed for FCI which can dramati-

cally reduce the number of configurations in the CI expansion. If only single and

double excitations are included, a reasonable amount of dynamic correlation can

be captured while remaining computationally practical. This describes the CISD

method,

Ecorr = 〈Φ0|Ĥ|ψCISD〉 =
1

4
cabij

〈
Φ0

∣∣Ĥ
∣∣Φab

ij

〉
. (2.54)

11Throughout this thesis, the indices in the set {i, j, k, l,m, n, o, p}, {a, b, c, d, e, f} and {r, s}

will respectively refer to occupied, unoccupied (virtual) and generic orbitals in the reference

state.
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CISD has not been popular in recent years, because it is not extensive; it can be

shown that the correlation energy scales as
√
N . [8] So as N goes to infinity, the

correlation energy per monomer will go towards zero.

CISD can be modified by the Davidson correction ex post facto, [49]

Ecorr =
1

4
cabij

〈
Φ0

∣∣Ĥ
∣∣Φab

ij

〉
+∆EDavidson ,

∆EDavidson =(1− c20)
(1
4
cabij

〈
Φ0

∣∣Ĥ
∣∣Φab

ij

〉 )
. (2.55)

This uses the SCF wavefunction coefficient to make the energy approximately

size consistent, but at a loss of exactness for two-electrons and the variational

principle.

Other attempts have been made to correct for the lack of extensivity, including

Quadratic Configuration Interaction (QCI), which removes (in an ad hoc way [50])

certain powers of the amplitudes from the energy and amplitude equations. As a

result, all the terms that scale incorrectly are cancelled and the energy becomes

extensive. Coupled-cluster theory, that accounts for more (higher-order) terms

while scaling the same as QCI, has been shown to be more reliable in general

calculations and therefore the use of QCI has generally decreased. [51, 52]

Even though truncated approximations of CI are not extensive and FCI is

computationally impractical, the CI method gives us a systematic method to ap-

proach an exact answer. The rest of the approximations considered in this chapter

will be compared to FCI and how well they can be systematically extended to

produce the FCI answer for limiting cases.

2.7 Coupled Electron Pair Approximations

A family of methods related to CI are the Coupled Electron Pair Approximation

(CEPA), and the Coupled Pair Functional (CPF), both of which were developed

to remedy the lack of extensivity in CISD. The main idea behind both is to include

the effects of higher order terms into the energy expression, in an approximate

way. [53]

CEPA begins with the CISD amplitude equations, but replaces Ecorr with

〈Φ0|Ĥ|Φ0〉, the unperturbed SCF energy, and removes all the terms quadratic in
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c, [54]

cijab W =
〈
Φij

ab

∣∣Ĥ
∣∣Φ0

〉
+ cklcd

〈
Φij

ab

∣∣Ĥ
∣∣Φkl

cd

〉
, (2.56)

W = 〈Φ0|Ĥ|Φ0〉+∆W . (2.57)

By introducing different energy shifts, ∆W , various CEPA(n) methods can be

defined, where n={0, 1, 2, 3, 4, 5}. For example, ∆W = 0 in CEPA(0).

CEPA can restore extensivity to CISD, however, CEPA(n) are generally not

exact for the two-electron case, no longer variational and are not invariant to a

rotation of orbitals (apart from CEPA(1)) [54]; a heavy price to pay that shows

the value of an extensive method. Traditionally, there has been no systematic

hierarchy of CEPA(n) methods because they have been developed by experiment-

ing with different variations on a theme, i.e. including different energy shifts to

find which ones are best for certain test cases. As a result, “this introduces

empiricism”. [55]

Coupled-cluster theory has been more popular as it captures dynamic corre-

lation energy in a more rigorous way than CEPA. Nevertheless, in recent years

there has been a renewed interest in rewriting a CEPA-type functional in terms

of the variational principle (while maintaining the other problems). [56]

Another modification of the CISD energy functional, via a partial normaliza-

tion denominator, gives an extensive method called the Coupled Pair Functional

(CPF). [57] Divided by a so called ‘topological factor’ that has the effect of

cancelling out localised terms in the CI numerator, CPF is an approximately ex-

tensive functional. CPF is related to the present work as interesting parallels can

be drawn between it and Linked Pair Functional theory, which forms the basis of

QVCCD theory.

2.8 Coupled-Cluster theory

So far, an approach to improving the SCF wavefunction was to find an operator

that could reproduce the exact wavefunction within a given basis set,

|ψ〉 = X̂ |Φ0〉 . (2.58)
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For CI, X̂ was chosen as (1 + Ĉ). Another parametrisation involves choosing X̂

to be an exponential operator, [58]

|ψCC〉 = eT̂ |Φ0〉 = (1 + Ĉ) |Φ0〉 , (2.59)

where T̂ is a sum of excitation operators,

T̂ =
N∑

i

T̂i . (2.60)

This is often referred to as the exponential ansatz and defines the Coupled-Cluster

(CC) wavefunction. [59]

To obtain an expression for the energy and amplitude coefficients, the CC

wavefunction is inserted into the Schrödinger equation and pre-multiplied by

〈Φ| e−T̂ , where Φ is either the SCF reference state or the set of n-excited states:

〈Φ0|e−T̂ĤeT̂|Φ0〉 = ETCC , (2.61)

〈Φa
i |e−T̂ĤeT̂|Φ0〉 = 0 , (2.62)

〈
Φab

ij

∣∣e−T̂ĤeT̂
∣∣Φ0

〉
= 0 . (2.63)

Determining the energy and amplitude equations via projection onto a manifold

of states has been termed Traditional Coupled-Cluster (TCC). [60]

It is worthwhile comparing how this parametrisation differs from CI, as both

are equal to each other when the excitation operators are not truncated. To see

the differences, the exponential operator for only single and double excitations,

can be expanded as a Taylor series,

e(T̂1+T̂2)Φ0 = (1 + T̂1 +
1

2!
T̂

2

1 + T̂2 +
1

2!
T̂

2

2 + T̂2T̂1 +
1

2!
T̂2T̂

2

1)Φ0 . (2.64)

In this form it is easy to see that, unlike CI, this ansatz contains products of

excitation operators called ‘disconnected clusters’. These effectively cancel out

terms with an incorrect dependence on N and lead to an extensive method, even

if T̂ is truncated. [10] They also account for the effects of higher excitations. For

example, T̂
2

2 represents the quadruple excitation of two sets of independently cor-

related electrons. In a general case, the T̂
2

2 contributions will be more important

than T̂4. [7]

To generate a set of working equations, e−T̂ĤeT̂ (also called the similarity

transformed Hamiltonian) can be expanded as a series of nested commuters using
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the Baker-Campbell-Hausdorff (BCH) expansion, [43]

e−T̂ĤeT̂ = Ĥ + [Ĥ, T̂] +
1

2!
[[Ĥ, T̂], T̂] +

1

3!
[[[Ĥ, T̂], T̂], T̂]

+
1

4!
[[[[Ĥ, T̂], T̂], T̂], T̂] + ... (2.65)

where,

[Ĥ, T̂] = ĤT̂− T̂Ĥ . (2.66)

The Hamiltonian does not commute with the excitation operators, however, be-

cause it is at most a two-body operator, it will only interact with at most four

excitation operators before it can commute and make the term equal to zero,

[[[[Ĥ, T̂], T̂], T̂], T̂], T̂] = 0 . (2.67)

As a result, the BCH expansion terminates at the fourth nested commutator,

leading to a finite expression that can be implemented exactly on a computer.

Unfortunately, using the similarity transformed Hamiltonian comes at a price:

it is no longer Hermitian,

(e−T̂ĤeT̂)† = e−T̂
†
ĤeT̂

†
�= e−T̂ĤeT̂ . (2.68)

This coupled with the fact that the energy and amplitude equations are de-

termined by projection means that the TCC energy can not be variationally

determined and therefore is no longer bounded by the exact energy. [10]

2.8.1 Variational Coupled-Cluster

The CC anstaz can be cast in a variational form, namely Variational Coupled-

Cluster (VCC). Instead of using the similarity transformed Hamiltonian, the ex-

pectation value of a Hermitian operator is constructed and minimised with respect

to the set of amplitudes,

EVCC =
〈Φ0|eT̂

†
ĤeT̂|Φ0〉

〈Φ0|eT̂
†
eT̂|Φ0〉

. (2.69)

VCC is both rigorously extensive and variational, however a major problem

arises with the use of the Hermitian Hamiltonian. The BCH expansion does not

exist for such an operator and so it must be expanded as an infinite sum. As a
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result, the method scales as a factorial of the number of particles in the system

and therefore fails to be computationally practical.

Several methods have been developed that attempt to approximate VCC.

Firstly, there is Unitary Coupled Cluster (UCC), which defines an anti-Hermitian

operator,12

|ψ〉 = eσ̂ |Φ0〉 , (2.70)

σ̂ = T̂− T̂
†
. (2.71)

This operator is then used to construct the energy expression,

EUCC =
〈Φ0|e−σ̂Ĥeσ̂|Φ0〉
〈Φ0|e−σ̂eσ̂|Φ0〉

. (2.72)

Eq. 2.72 still remains an infinite expression, though it converges quickly at low

orders of T (the UCC equations correspond to the VCC equations for all orders

of T [61]). However, higher order UCC terms quickly become very complex

compared to the corresponding VCC terms, [62] leading to no immediate gain

from the re-parametrisation.

In Extended Coupled-Cluster (ECC), a different state is projected onto the

similarity transformed Hamiltonian, [63]

EECC =
〈Φ0|eT̂

†
ĤeT̂|Φ0〉

〈Φ0|eT̂
†
eT̂|Φ0〉

= 〈Φ0|eŜ
†
e−T̂ĤeT̂|Φ0〉 . (2.73)

where Ŝ is an effective de-excitation operator. The energy is then varied with

respect to both T̂ and Ŝ to find a minimum. The de-excitation operator can be

truncated at second order to give, [64]

EQCC = 〈Φ0|
(
1 + Ŝ

†
+

1

2
Ŝ
† 2)

e−T̂ĤeT̂|Φ0〉 , (2.74)

which defines Quadratic Coupled-Cluster (QCC).

All of these methods have been shown to perform better than TCC for systems

with strong non-dynamic correlation (for systems without non-dynamic correla-

tion effects, the results are effectively the same). The problem remains that these

approximations to VCC are still computationally expensive.

12The exponential of an anti-Hermitian operator is always unitary. [43]
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2.8.2 Triple excitations

CC theory provides a robust framework for capturing dynamic correlation, that

remains extensive and, when truncated to single and double excitations (CCSD),

is computationally practical for many chemical systems. However, to produce

chemically accurate answers, the inclusion of triple excitations are often required.

[65] A more detailed discussion of the triples corrections will be left for Chapter 3.

The key points are briefly discussed here.

CCSD is equivalent to MP theory through to third-order. It can be corrected

up to forth-order and thereby include some of the effects of triple excitations,

while avoiding the full triples amplitude equations which are computationally

expensive to evaluate. This can be further improved by including certain fifth-

order terms. [66] The correction takes the form of a non-iterative step which is

carried out with an optimised set of CCSD cluster amplitudes. This defines the

(T) correction and the CCSD(T) method which scales as O(o3v4). Its success in

computational chemistry has lead to the often parroted (either ironically or not)

phrase that CCSD(T) is the gold standard of computational chemistry. [67]

While CCSD(T) produces impressive results for many systems, the method

breaks down when it encounters non-dynamic correlation due to its single refer-

ence nature. This is especially apparent in the cases of molecular dissociations

where it produces unphysical results; instead of the energy approaching an asymp-

totic limit, it forms a maximum before falling towards negative infinity.

2.9 Second quantisation

So far, all equations have been presented within the first quantisation framework.

At this stage, it is appropriate to introduce a new formulaism: second quantisa-

tion. Within this framework, concrete sets of working equations can be developed

for computational implementation; as a result, it makes equations easier to eval-

uate at the expense of introducing new notation and concepts. It also provides a

proof, by diagrammatic means, of whether a method can be extensive or not. A

comprehensive review of second quantisation can be found in Ref. [43]

Second quantisation takes place in a linear vector space called the Fock space.

SDs are represented by Occupation Number (ON) vectors and form a complete
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basis:

|k〉 = |k1, k2, ..., kM〉 , (2.75)

kp =





1, if φp occupied

0, if φp unoccupied
. (2.76)

Electronic states are represented by a string of annihilation and creation operators

acting on an ON vector,

creation





â†p |k1, k2, ..., 0p, ..., kM〉 = |k1, k2, ..., 1p, ..., kM〉

â†p |k1, k2, ..., 1p, ..., kM〉 = 0
, (2.77)

annihilation





âp |k1, k2, ..., 1p, ..., kM〉 = |k1, k2, ..., 0p, ..., kM〉

âp |k1, k2, ..., 0p, ..., kM〉 = 0
, (2.78)

The T̂ excitation operators can be written in terms of these operators,

T̂1 = tia â
†
aâi , (2.79)

T̂2 =
1

4
tijab â

†
aâ

†
bâiâj , (2.80)

as well as the Hamiltonian

Ĥ = hpq a
†
paq +

1

2
gpqrs a

†
pa

†
rasaq (2.81)

= Ĥ + V̂ . (2.82)

Matrix elements of the Hamiltonian between different states can be reduced to

evaluating strings of creation and annihilation operators, by using the concept of

normal ordering and Wick’s theorem. [68]

A string of operators are said to be in normal order when all the annihilation

operators are permuted to the right of the creation operators,

{âpâ†qârâ†s}N |k〉 = â†qâ
†
sâpâr |k〉 = 0 , (2.83)

thus producing a zero.

Wick’s theorem states that a string of operators can be written as a nor-

mal ordered product and a sum of all normal ordered products with all possible

contractions,

âpâ
†
qârâ

†
s ={âpâ†qârâ†s}N + {âpâ†qârâ†s}N + {âpâ†qârâ†s}N (2.84)

+ {âpâ†qârâ†s}N + {âpâ†qârâ†s}N , (2.85)
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where a non-vanishing contraction is defined as,

âpâ
†
q ≡ âpâ

†
q − {âpâ†q}N = δpq . (2.86)

When Wick’s theorem is applied to matrix elements, the result is a sum of ele-

ments involving delta functions and normal ordered strings. The normal ordered

parts vanish, leaving only the fully contracted elements. [10]

For example, the CCD energy expression is:

ECCD = 〈Φ0|e−T̂2ĤeT̂2 |Φ0〉 . (2.87)

The Hamiltonian is at most a two-body operator, which means that only states

that differ from each other by two spin orbitals can interact through the Hamil-

tonian (an analogue of the Slater-Condon rules [8]). This means that only one

term from Eq. 2.87 will contribute:

ECCD = 〈Φ0|(V̂T̂2)|Φ0〉

=
1

16
tabij 〈pq| |rs〉 〈Φ0|(a†pa†qasar)(a†aa

†
bajai)|Φ0〉 . (2.88)

Applying Wick’s theorem to the string of operators leads to an expression involv-

ing only a sum of anti-symmetrised integrals and cluster amplitudes,

ECCD =
1

4
tabij 〈ij| |ab〉 . (2.89)

One of the most appealing features of working with second quantisation is the

use of diagrams to generate algebraic expressions and eliminate the manipulation

of annihilation and creation operators. Taking inspiration from the Feynmann

diagrams of quantum electrodynamics, we can postulate a one to one correspon-

dence to algebraic terms that appear in second quantisation and a set of specific

diagrams. [10, 69]

Briefly, downwards-directed (hole) lines and upwards-directed (particle) lines

correspond respectively to creation and annihilation operators. The excitation
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operators can thus be drawn:

T̂1 = i a , (2.90)

T̂2 = i ba j . (2.91)

The one- and two-body operators of the Hamiltonian can be represented by a

dashed horizontal interaction line. The task is to join up the excitation and

interaction lines in every unique way, making sure that no lines are left uncon-

nected. For example, there is only one possible diagram for Eq. 2.89, as only

the two-body operator in the Hamiltonian can fully connect with the doubles

excitation operator,

ECCD = . (2.92)

Using a series of rules (for a details see Ref. [10]), theseGoldstone anti-symmetrised

spin orbital diagrams, can be translated into algebraic expressions which can be

implemented on a computer.

A result of deriving equations in this manner is the ability to invoke the

linked diagram theorem. This states that if only linked diagrams are included

in the energy expression, i.e. diagrams in which all the excitation operators are

linked to the Hamiltonian (with no free hole or particle lines left unconnected),

then the energy will be extensive. The CCD energy consists of only one linked

diagram and so must be extensive. For a proof of this theorem, see Ref. [7]

Finally, another useful feature of the diagrammatic method is the ability to

easily sum over a subset of diagrams to infinite order. For example, ‘ladder’ di-

agrams form a family, which can be obtained by inserting two-body operators

into the middle of Eq. 2.92, thereby representing a growing ladder. [7] Instead
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of evaluating these diagrams separately, to a finite order, a closed form equa-

tion can be derived which accounts for the complete sum. [69]. Such infinite

order summations will become important in the discussion of QVCCD theory in

Chapter 3.

2.10 Multireference methods

So far, only theories based around the single reference paradigm have been ex-

amined. This approximation is only valid when the wavefunction expansion is

dominated by a single reference determinant. Barlett has defined this in terms

of a set of electronic configurations, |x〉, the reference state, |Φ0〉, and the exact

electronic state, |ψ〉: [11]

|〈x|ψ〉| ≤ ε, 〈Φ0|ψ〉 = 1 . (2.93)

A single reference wavefunction can be used when ε ∈ [0.1, 0.2].

Many systems in their equilibrium geometry and ground state can be ade-

quately described by using a single SD. However, this approximation can break

down when chemistry other than equilibrium geometries are investigated. For

example, in transition states, when bonds stretch and break, radicals and metal-

metal bonding. Quantitatively these problems can be expressed in terms of the

above equation, when ε ≥ 0.2.

As a result, CCSD is no longer able to approximate the different configura-

tions with excitations. To capture these effects, it is necessary to use CCSDT,

CCSDTQ, CCSDTQP, etc. But these scale as O(N8), O(N10) and O(N12), so

for practical purposes, these cannot be used.

2.10.1 MCSCF and CASSCF

The multireference analogue of the SCF method is Multi-Configurational Self-

Consistent Field (MCSCF). The wavefunction is expanded into explicitly chosen

states,

|ψMCSCF 〉 = CI |ΦI〉 , (2.94)

where I labels the different electronic (configuration) states. The energy is min-

imised with respect to the orbitals and the mixing coefficients. [12, 70]
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The choice of the configuration basis is left to the user and their ‘chemical

intuition’. If such intuition is faulty or incomplete, the wrong configurations can

easily be chosen.

The Complete Active Space (CASSCF) method can make the choice of the

states more systematic. [71] The orbitals are partitioned into two subspaces: an

active and an inactive (or closed) set of orbitals. The inactive orbitals remain

doubly occupied in all configurations, while the active orbitals are free to change

their occupation number. FCI is applied to all the active electrons and orbitals

to generate a set of excited SDs and hence the configurational space.

The number of configurations generated by CASSCF scales factorially. As a

result, calculations tend not to use more than 18 electrons arranged in 18 active

orbitals due to restrictions of computational resources. [72] The number of states

can be reduced by subdividing the active space again into three more subspaces

(Restricted Active Space, RASSCF), where a limit is placed on the number of

holes and electrons in two of the subspaces (RAS1 and RAS3), while no limits

are placed on the occupation numbers in the remaining subspace (RAS2). [25]

2.10.2 MRCI, MRCC and CASPT2

CASSCF and RASSCF both suffer from the slow convergence of the dynamic

correlation energy. Even for large active spaces, dynamic effects are not captured

completely. [12] To account for this, combinations of the MCSCF procedure with

MP2, CI and CC have been proposed.

Conceptually, the most straight forward ways to do this is to perform CISD

on each configuration in the MR expansion (MRCI) [73, 74] or use second-order

perturbation theory to evaluate the CI expansion coefficients (CASPT2). [75]

Both these approaches give the wavefunction sufficient flexibility to model many

difficult cases, however MRCI suffers from the usual non-extensivity of CISD

(Davidson’s correction can again be applied to make the method approximately

extensive), while the CASPT2 energy is no longer bounded from above. There

are also added issues in choosing Ĥ0 for CASPT2; unlike MPn, the Fock operator

can’t simply be used. [76, 77]

Multireference Coupled-Cluster (MRCC) theory is a large topic in of itself,

where various different methods have attempted to combine the linear parametri-
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sation of the MCSCF wavefunction with the exponential parametrisation of CC

theory. Because of the large scope and depth of the subject, the interested reader

is pointed towards this review article. [11] To date, many of the attempts con-

tain problems like complexity of equations (icMRCC), or suffer from a lack of

spin adaption (state-universal MRCC). So far, no particular method has come to

dominate the rest, [78] with all of them having deficiencies in some areas.

The methods presented above seem like the ideal way to capture non-dynamic

(and even dynamic) correlation. However, there are two major caveats: firstly,

it quickly becomes very expensive to run these methods on systems with many

configurations, secondly, none are black box methods and in a lot of cases it is

hard to choose the active space for a particular region of the potential energy

surface. As a result, these methods are not used by many people outside the

computational chemistry community and will possibly never become the standard

tool of experimental chemists.

This thesis follows on from the work of Robinson, Cooper and Knowles, in that

it is postulated that both dynamic and non-dynamic correlation effects can be

captured using a single reference method, instead of a multireference one. [13,79]

2.11 Contemporary single reference methods

Capturing dynamic and non-dynamic correlation with a single reference state has

been the motivation behind the development of many computational methods.

A quick review of more recent methods will be presented here.

2.11.1 Spin-flip

In certain cases, non-dynamic correlation effects are negligible in triplet (S=+1,

Ms=+1, 0, -1) states compared to singlet (S=0) states. This suggests that the

triplet state can be modelled well by just using a single reference determinant. In

essence, this is what the Spin-Flip (SF) method attempts to do; it constructs a

reference triplet state and generates an expansion of excited sates by ‘flipping’ the

spin of one electron and thereby generating the original singlet state of interest,

[80]

∣∣Φs
Ms=0

〉
= R̂Ms=−1

∣∣Φt
Ms=+1

〉
. (2.95)
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This method is analogous to the Equation Of Motion (EOM) approach in which

the final state is expanded in a basis that conserves the total number of electrons,

but not the number of α or β electrons. [81]

A hierarchy of SF methods can be described by using different reference states.

The simplest uses the SCF wavefunction and diagonalises the Hamiltonian in the

space of all single excitations (similar to CIS, but where only α to β excitations are

allowed). CIS, CCSD and OO-CCD states can all be used without any increase

in computational expense. All of these methods are size extensive up to the limit

of including one single non-spin-flip excitation in the reference state (SF-CCSDT

would not be size extensive, but 2SF-CIST would be)

The SF methodology has also been extended to the excitation of pairs of

electrons (2SF). Instead, a quintet (Ms=2) reference state is chosen. 2SF Offers

improvement over CCSD/CCSDT for double bond breaking, but little known

about its performance. [82] In theory it is possible to extend this to triples etc,

but to date, this has not been achieved.

The SF method has produced accurate energies for diradical separation states

(due to single reference nature of the triplet states), while EOM-SF-CCSD has

been shown to perform well when modelling the breaking of C-H and C-C bonds.

The main problem with SF is that it is restrictive of the systems that can be

investigated with confidence. Single SF is restricted to systems where the non-

dynamical correlation comes from small HOMO-LUMO gap (quasi-degenerate

orbitals), i.e. single bond breaking, diradicals, triradicals. 2SF can model double

bond breaking and tetraradicals, but is again limited in what systems it can

examine with confidence.

The SF postulate that the triplet state is inherently single reference is not

generally true. When this is the case, SF cannot hope to capture non-dynamic

correlation any better than the TCC methods. In this respect, it has been named

a few-reference, instead of multi-reference, method. [82]

2.11.2 Term excluding methods

It has been shown that the larger cluster effects (eg. CCSDTQ) are needed to

correctly describe certain potential energy surfaces. [83] Apart from adding more

terms that deal with the correlations of larger numbers of electrons, the higher
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cluster operators may cancel out lower order terms in CCD/CCSD.

One of the first attempts at excluding terms in the cluster expansion was

carried out by Paldus. [84] Since then, research continues into which terms in the

amplitude equations can be removed and thereby simulate the effect of higher

excitations and improve upon CCSD. Terms that these class of methods exclude

usually contribute a negative energy in dissociation limits.

nCC

What are the minimal amount of terms that need to be retained in CCSD, CCSDT

and CCSDTQ, that still give answers that are exact for 2, 3 and 4 electrons?

This question defines the n Coupled-Cluster (nCC, where n={2,3,4}) hierarchy

of methods. [85]

Exclusion principle violating (EPV) terms in the CC equations can be sepa-

rated into two categories. [7] One set contains all the diagrams where one or two

commonly labelled hole lines are crossed and are called hole-hole conjoint terms

(HCJ). The second group consisted of the same diagrams as the HCJs, but the

common label is a particle and also ‘disjoint’ terms where no common labelling

is possible. These are collected together and called the non-HCJ. Retaining only

the HCJ terms to n-order leads to exactness for n-electrons and a reduction of

the number of terms that are evaluated compared to CCSD.

nCC is orbitally invariant and extensive, however it has been shown that it

still reproduces the unphysical CCSD maximum when dissociating N2. [83]

pCCSD

The Parametrised Coupled-Cluster Singles Doubles (pCCSD) method introduces

a bivariate parametrisation of the quadratic terms into the CCSD amplitude

equations. Certain relationships exist between these quadratic terms,

A B
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C D

and thus can be factorised and multiplied by two varying parameters, α and

β, [55]

A + B + C + D = A /2 + α(A /2 + B) + β(C + D) . (2.96)

This defines the pCCSD(α,β) method, which for any values of α and β, retains all

the desirable properties of CCSD (exactness for two electrons, extensive, orbitally

invariant). For α=β=1, the CCSD equations are recovered. The questions are

then posed: Is the CCSD choice of α/β parameters the optimal one? Is it possible

to obtain answers in a systematic way by varying these parameters? For example,

when α=1 and β=0 the method is identical to 2CC.

pCCSD has been shown to decrease energies and equilibrium geometries errors

compared with CCSD, when measured against CCSD(T) and experiment. For

example, it has been shown to produce improved results when α ranges from -3/2

to -1 and β from 1 to 3/2.

A problem immediately presents itself: what values should α and β take?. It

has been shown that certain values produce better results for some cases, but this

does not mean they will be the best choice for different cases; pCCSD is no longer

an ab initio method in the strictest sense. In some cases (when α=β=0) pCCSD

will have a reduced scaling prefactor compared to CCSD (due to the exclusion of

terms that need to be evaluated), but as the authors admit, this does not produce

the best results. [55] The only way to determine the best α and β values is to

try many calculations with different values and then to compare the results to

a more accurate multireference calculation, thereby defeating the point of using

pCCSD in the first place!

Distinguished Cluster approximation

Inspired by a questioning of particle indistinguishably, the Distinguished Cluster

(DC) approximation begins with an examination of exchange terms in the CCSD
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equations. [86] The operators in second quantisation obey the anti-symmetric

principle, this means (for FCI) that all exchange processes between molecular

fragments will be included in the energy expression and there will be a mutual

cancellation between them. In a truncated formalism, these terms dont cancel.

DC postulates that this may be the reason for unphysical results of CCSD.

Starting with the same quadratic terms from pCCSD, the D term is sepa-

rated into a Coulomb (Dc) and an exchange (Dex) part. These diagrams are no

longer anti-symmetrised Goldstone diagrams; here the two-body interaction line

represents the individual Coulomb and exchange integrals.

Dc Dex

The DC equations are then parametrised with two parameters and set to

0, which has the effect of removing both the Dex and B exchange terms while

leaving the theory exact for two electrons, [83]

A + B + C + D =A + B + C + Dc + Dex

=A /2 + γ(A /2 + B) + δ(C /2 + Dex) + C /2 + Dc . (2.97)

DCSD can produce qualitatively correct potential energy curves (PECs) for spe-

cific molecular dissociations (N2, CO). [86] More surprisingly, when compared to

CCSD, it produces improved bond lengths and frequencies around the equilib-

rium geometry. However when the pertubative triples are added, DCSD(T) fails

to produce even a qualitatively correct PEC for N2 dissociation and H2O bond

angle stretch. [83, 87]

As a method, DC can produce impressive results, especially for the N2 dis-

sociation. Nevertheless, DCSD(T) does not reliably produce accurate results for

multireference systems. The fact that DCSD generally produces better results

than CCSD/CCSD(T) has spurred on several interesting analyses using physics

not generally found in theoretical chemistry papers. [86, 87] In this respect, the

DC approximation has great value.
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2.12 A remark on density based methods

This thesis is focused on finding approximate solutions to the many-body wave-

function and thereby determining molecular properties from this. In this respect,

all the methods discussed so far can be classed as wavefunction based methods.

Nevertheless, there are other ways to determine molecular properties without con-

structing a wavefunction. The Hohenberg-Kohn theorem states that the ground

state properties of a many-electron system can be determined uniquely by an

electron density. This problem can be related to minimising an energy functional

with respect to a density that depends on only three spatial (ignoring spin) co-

ordinates, [88]

E[n] = 〈Φ[n]| Ĥ |Φ[n]〉

=F [n] + V [n] , (2.98)

where the energy and wavefunction have been written in terms of a functional

that depends on the electron density, n. F [n] is called a universal functional that

describes the kinetic and electron-electron interactions, while V [n] is an external

potential that depends on the system (for example the nuclei of a molecule).

If both these functionals are known, then the energy is uniquely and exactly

determined.

F [n] is currently unknown and so approximations must be introduced. A

popular approach are the Kohn-Sham (KS) equations, that share similarities

with the SCF procedure. [89] Here, F [n] is replaced by three functionals:

F [n] = t[n] + vH [n] + vxc[n] , (2.99)

where t[n] and vH [n] represent the kinetic and potential energy of a set of non-

interacting electrons and vxc[n] is an unknown functional that describes the

Coulomb and exchange correlation interactions.

The KS equations are formally exact, nevertheless vxc[n] is not known and

must be given an approximate form. To date, there are hundreds of different

exchange-correlation functionals that are designed for specific and general chem-

ical situations. The interested reader is directed to Ref. [88] for more details.

The KS procedure posses many beneficial properties. For example, HF the-

ory, describes the exchange interaction exactly, but completely ignores dynamic-
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correlation. KS theory, captures both quantities, albeit in an approximate man-

ner, and sometimes can perform better than HF. [90] The procedure also scales

as O(N4) and is far cheaper to run than the post-HF methods.

There are several drawbacks to KS theory. Firstly, the approximate descrip-

tion of the exchange-correlation effects does not produce chemically accurate

answers for general systems. One functional may be designed to perform well for

certain systems, however a general functional that can describe a wide range of

chemical phenomena to within chemical accuracy currently does not exist. [91]

Secondly, there exists no clear hierarchy of functionals that can be used to

improve results. Many different functionals will produce many different answers

and there is usually no way to gauge which functional produces the best answer.

An approximate hierarchy, exaggeratedly called ‘Jacobs ladder’, has been devel-

oped where different families of approximations represent different rungs on a

ladder. [92] This addresses the problem of a hierarchy between, but not amongst

families.

Lastly, and importantly for the current work, KS theory offers no simple and

consistent way of treating non-dynamic and dynamic correlation. [93] Describing

both correlation effects with the use of a single determinant can not be achieved in

a reliable way and so research is mainly focused around integrating multireference

wavefunction based methods into DFT. [94] These methods lose the simplicity of

KS theory and increase the computational cost.
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Chapter 3

Quasi-Variational

Coupled-Cluster: Theory

3.1 The Linked Pair Functional

This project is focused on developing and improving the QVCCD method and

applying it to chemical systems. With this in mind, it is worth examining the

precursor to QVCCD, Linked Pair Functional Doubles (LPFD), as there are

many methodological similarities. [79, 95] Both methods form an approximation

to VCCD, correct up to third-order, which is postulated will qualitatively match

the VCCD energy. This is achieved by combining a subset of linked diagrams

from VCCD into a modified CEPA(0) energy functional. As a result, the only

difference between the two is the definition of a modified excitation operator:

qT̂2.

This section will introduce LPFD and discuss the benefits and limitations of

the method. Because of the similarity, much of the following analysis can be

applied to QVCCD.

3.1.1 Approximating VCCD

As discussed in the previous chapter, VCC has been shown to produce accurate

results for systems with large dynamic and non-dynamic effects. [64] Nonetheless,

it does not utilize a similarity transformed Hamiltonian, so the BCH expansion

cannot be used to produce a finite expression for the energy functional. [43]

It is postulated that if a suitable approximation can be made to VCC, then a

47
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computationally simpler single reference formalism can be developed that could

capture non-dynamic correlation effects.

A first attempt at the problem could be to truncate the excitation operator

to only double excitations (VCCD). The energy functional can be written as:

EVCCD =
〈Φ0|eT̂

†
2ĤeT̂2 |Φ0〉

〈Φ0| eT̂
†
2eT̂2 |Φ0〉

= 〈Φ0|eT̂
†
2ĤeT̂2 |Φ0〉L

≡ 〈 eT̂
†
2 Ĥ eT̂2〉L , (3.1)

where shorthand notation for matrix elements between two reference states has

been introduced. Here the subscript L stands for Linked, as the denominator

exactly cancels with the unlinked terms in the numerator and so can be omitted.

The problem still remains; the exponential operator must be expanded as an

infinite series. The next step could be to remove the exponential altogether and

replace it with a linear operator, (1 + T̂2).

ECEPA(0) = 〈
(
1 + T̂2

)†
Ĥ
(
1 + T̂2

)
〉L . (3.2)

This is simply the CEPA(0) approximation. [96]

CEPA(0) only contains linked diagrams, like VCCD, and so is strictly exten-

sive. However, it is not exact for two electrons. Even if the operator was increased

to include quadratic terms
(
T̂

2

2

)
, the method would still not be exact.

Using the Maclaurin series for an exponential, the VCCD and CEPA(0) func-

tionals can be expanded and compared,

EVCCD = 〈
(
1 + T̂

†
2 +

(
T̂

2

2

)†

2!
+ ...

)
Ĥ
(
1 + T̂2 +

T̂
2

2

2!
+ ...

)
〉L

= 〈
(
Ĥ + 2 Ĥ T̂2 + T̂

†
2 Ĥ T̂2 + T̂

†
2 Ĥ

T̂
2

2

2!
+

(
T̂

2

2

)†

2!
Ĥ

T̂
2

2

2!
+ ...

)
〉L ,

ECEPA(0) = 〈
(
Ĥ + 2 Ĥ T̂2 + T̂

†
2 Ĥ T̂2

)
〉L . (3.3)

By inspection, it appears that 〈T̂
†
2 Ĥ

T̂
2
2

2!
〉L is the lowest order term that occurs in

the VCCD energy, but not in CEPA(0). If this term is inserted into the CEPA(0)

functional, a cubic order approximation (O(t3)) of VCCD could be formed.

This O(t3) term can be evaluated using diagrammatic techniques which were

introduced in Chapter 2. As a result, four linked diagrams can be constructed
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and translated into a sum of four algebraic terms,

〈T̂
†
2 Ĥ

T̂
2

2

2!
〉L = +

+ +

=
1

4
〈ij||ab〉 tdbij tklcdtcakl +

1

4
〈ij||ab〉 tablj tklcdtcdki

+
1

16
〈ij||ab〉 tabkl tklcdtcdij +

1

2
〈ij||ab〉 tdblj tklcdtcaki

= A+ B + C +D . (3.4)

The terms have been labelled by Latin letters as they appear in expression.

For convenience, these four terms can be written with respect to the one- and

two-particle density matrices,

A+ B + C +D =
1

2
〈ij||ab〉 tdbij Aη

a
d +

1

2
〈ij||ab〉 tablj Bη

l
i

+
1

8
〈ij||ab〉 tabkl Cη

kl
ij +

1

2
〈ij||ab〉 tdblj Dη

id
al , (3.5)

where,

Aη
a
d = 〈T̂ †aaa

†
dT̂ 〉 =

1

2
tklcdt

ca
ki ,

Bη
l
i = 〈T̂ †aia

†
l T̂ 〉 =

1

2
tklcdt

cd
ki ,

Cη
ij
kl = 〈T̂ †akala

†
ja

†
i T̂ 〉 =

1

2
tklcdt

cd
ij ,

Dη
id
al = 〈T̂ †ala

†
daaa

†
i T̂ 〉 = tklcdt

ca
ki ,

(3.6)

and each density matrix has been pre-labelled by the term it is responsible for

generating.

For the limiting case of two electrons, a relationship between these terms

becomes apparent,

A+ B + C +D = 〈ẽē||ab〉
(
tdbẽēt

ẽē
cdt

ca
ẽē − tabẽēt

ẽē
cdt

cd
ẽē

+
1

2
tabẽēt

ẽē
cdt

cd
ẽē − tdbẽēt

ẽē
cdt

ca
ẽē

)

= B +
1

2
C , (3.7)

A+D = 0 , (3.8)

B + 2C = 0 . (3.9)
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Here, the ms = +1
2
and ms = −1

2
electrons are labelled ẽ and ē respectively. The

Einstein summation convention is no longer implied over these indices.

The complete cubic term can therefore be parametrised with the B and C

terms, yet still remain exact for two electrons,

A+ B + C +D =
1

2
(1− λ)B − λC . (3.10)

LPFD(λ) includes a subset of these cubic terms into a modified CEPA(0) func-

tional, thereby producing a third-order approximation to VCCD.

3.1.2 Mathematics of LPDF

The O(t3) terms can’t simply be added onto the energy functional, as this would

not be exact for two electrons. Instead, the cluster amplitudes in CEPA(0) are

modified via a matrix transformation that produces one or two of the terms

in Eq. 3.10 according to the parametrisation. [95] This transformation takes the

following form:

Uij
kl = δijkl +∆ij

kl , (3.11)

∆ij
kl = ληijkl +

1

2
(1− λ)(1− τ̂ij)(1− τ̂kl)δ

i
kη

j
l , (3.12)

where τ̂pq are permutational operators that swap the indices p and q.

Powers of this transformation act on the cluster amplitudes to produce a set

of transformed cluster amplitudes, which are pre-labelled by the transformation

power,1

qt
ij
ab =

1

2
(U− q

2 )ijkl t
kl
ab . (3.13)

This transformation also obeys the fermionic anti-symmetry requirements of the

original cluster amplitudes,

qt
ij
ab = − qt

ji
ab = qt

ji
ba = − qt

ij
ba . (3.14)

1A power of this rank-4 tensor is defined in terms of a two dimensional matrix, where i > j

and k > l. This convention will be used throughout this thesis.
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Eq. 3.13 defines the transformed excitation operator,

qT̂2 =
1

4
qt
ij
ab a

†
a a

†
b aj ai

= , (3.15)

where the double line has been introduced to differentiate it from the standard

excitation operator. This can be inserted into the CEPA(0) energy expression to

produce the LPFD(λ) energy,

ELPDF(λ) = 〈(1 + qT̂2)
† Ĥ (1 + qT̂2)〉L

= 〈Ĥ〉+ 2〈Ĥ 2T̂2〉+ 〈1T̂
†
2(Ĥ− 〈Ĥ〉)1T̂2〉 . (3.16)

The effect of using a power of the transformation matrix is to generate the subset

of cubic terms, but to infinite order. This concept can be explored by constructing

a binomial expansion of the powered U matrix:

〈Ĥ 2T̂2〉 =

=
1

4
〈ij||ab〉 2t

ab
ij

=
1

8
〈ij||ab〉

(
U− 2

2

)kl
ij
tabkl

=
1

8
〈ij||ab〉

(
tabij +

∞∑

m=1

(
−1

m

)(
∆m

)kl
ij
tabkl

)
(3.17)

This is simply a geometric series of VCCD terms based on the cubic terms in ∆.

The effect of using the power of a U−1 matrix is to sum this series to infinity and

thereby capture the effects of higher odd order terms than just O(t3). For example

the next term in the series would produce, 〈ij||ab〉 (η2)klij tabkl , which is proportional

to O(t5). A similar analysis can be carried out with U− 1
2 , which generates all

the even ordered terms in the series. As a result of using the powered matrices,

a closed form expression of an infinite sum can be constructed.

To show how LPDF(λ) is an approximation to VCCD, the definition of ∆ can
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be inserted into the first terms of the geometric series,

1

8
〈ij||ab〉

(
tabij −∆kl

ij t
ab
kl

)
=

1

8
〈ij||ab〉 tabij

− 1

16
(1− λ) 〈ij||ab〉 (δki ηlj − δkj η

l
i − δliη

k
j + δljη

k
i )t

ab
kl

− 1

8
λ 〈ij||ab〉 ηklij tabkl

=
1

8
〈ij||ab〉T ab

ij

− 1

4
(1− λ) 〈ij||ab〉 ηkj tabik −

1

8
λ 〈ij||ab〉 ηklij tabkl

=
1

8

+
1

4
(1− λ) − 1

8
λ

= O(t) +O(t3) . (3.18)

This reproduces the leading contribution to VCCD of order O(t), but also the

two O(t3) terms that remain in the limit of two electrons. The O(t2) terms are

recovered by the U− 1
2 transformation matrix.

3.1.3 Comparisons to CID

To further understand the LPFD(λ) methodology and provide another perspec-

tive of its rationale, comparisons can be made with the CID energy functional,

which shares similarities with CEPA(0) and hence the LPFD(λ) energy.

The CID energy can be expanded and partitioned into reference and correla-

tion energy contributions:

ECID = Ecorr + E0 =
〈Ĥ〉+ 2〈Ĥ T̂2〉+ 〈T̂

†
2 Ĥ T̂2〉

1 + 〈T̂
†
2 T̂2〉

=

(
1 + 〈T̂

†
2 T̂2〉

)
E0 + 〈Ĥ− E0〉+ 2〈

(
Ĥ− E0

)
T̂2〉+ 〈T̂

†
2

(
Ĥ− E0

)
T̂2〉

1 + 〈T̂
†
2 T̂2〉

,

if E0 = 〈Ĥ〉 ,

ECID = 〈Ĥ〉+ 2〈Ĥ T̂2〉+ 〈T̂
†
2 (Ĥ− 〈Ĥ〉) T̂2〉

1 + 〈T̂
†
2 T̂2〉

. (3.19)
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A similar procedure can be carried out for the CEPA(0) energy:

ECEPA(0) = 〈Ĥ〉+ 2〈Ĥ T̂2〉+ 〈T̂
†
2 Ĥ T̂2〉L . (3.20)

All the terms in the above equation contain only linked diagrams. The subscript

L can be dropped from the last term if the reference state is explicitly removed

from it, as this is the only generator of unlinked diagrams in this term:

〈T̂
†
2 Ĥ T̂2〉 = 〈T̂

†
2 Ĥ T̂2〉L + 〈Ĥ〉〈T̂

†
2 T̂2〉 ,

〈T̂
†
2 (Ĥ− 〈Ĥ〉) T̂2〉 = 〈T̂

†
2 Ĥ T̂2〉L +

(
〈Ĥ〉 − 〈Ĥ〉

)
〈T̂

†
2 T̂2〉

= 〈T̂
†
2 Ĥ T̂2〉L

= +

+ +

+ , (3.21)

ECEPA(0) = 〈Ĥ〉+ 2〈Ĥ T̂2〉+ 〈T̂
†
2 (Ĥ− 〈Ĥ〉) T̂2〉 . (3.22)

The dashed line capped with a dot represent the interactions with the one-body

part of the Hamiltonian.

It immediately becomes apparent by inspection that Eq. 3.19 and Eq. 3.22 are

very similar; the only difference being the CID correlation energy is divided by

1 + 〈T̂
†
2 T̂2〉. If CEPA(0) only contains linked terms, then the same must be true

for the CID numerator. This means that the unlinked terms, and therefore, the

lack of extensivity comes from the CID denominator. This can be shown by using

the binomial theorem to expand the denominator,

ECID = 〈Ĥ〉+
(
2〈Ĥ T̂2〉+ 〈T̂

†
2 (Ĥ− 〈Ĥ〉) T̂2〉

)(
1 + 〈T̂

†
2 T̂2〉+ 〈T̂

†
2 T̂2〉2 + ...

)
.

(3.23)

Only the first term in the right most parenthesis will generate linked terms, the
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rest will introduce terms like,

〈T̂
†
2 T̂2〉 =

1

4
tijabt

ab
ij = (3.24)

which are not linked via the Hamiltonian and do not grow linearly with system

size. If the excitation operator is complete, then the unlinked terms in the numer-

ator and denominator cancel. However, if the excitation operator is truncated,

this does not happen and the unlinked terms remain.

Conversely, it is this denominator that also makes CID exact for two electrons,

where as CEPA(0) is not. LPFD(λ) introduces the effect of this denominator into

CEPA(0) and in the limit of two electrons, reduces exactly to CID. This can be

shown by inserting the definition of the transformed cluster amplitudes into the

energy functional:

ELPFD(λ) = 〈Ĥ〉+ 2
〈
Φ0

∣∣Ĥ 2t
ẽē
ab

∣∣Φab
ẽē

〉
+

〈
Φ0

∣∣(
1t
ẽē
ab

)† (
Ĥ− 〈Ĥ〉

)
1t
ẽē
ab

∣∣Φab
ẽē

〉

= 〈Ĥ〉+ 2
〈
Φ0

∣∣Ĥ
(
U− 2

2

)ẽē
ẽē
tẽēab

∣∣Φab
ẽē

〉

+
〈
Φ0

∣∣(U− 1
2

)ẽē
ẽē

(
tẽēab

)† (
Ĥ− 〈Ĥ〉

) (
U− 1

2

)ẽē
ẽē
tẽēab

∣∣Φab
ẽē

〉

= 〈Ĥ〉+ 2

〈
Φ0

∣∣Ĥ tẽēab
∣∣Φab

ẽē

〉

U ẽē
ẽē

+

〈
Φ0

∣∣(tẽēab
)† (

Ĥ− 〈Ĥ〉
)
tẽēab

∣∣Φab
ẽē

〉

U ẽē
ẽē

, (3.25)

U ẽē
ẽē = δẽēẽē + ληẽēẽē +

1

2
(1− λ)(δẽẽη

ē
ē + δẽēη

ē
ẽ + δēẽη

ẽ
ē + δēēη

ẽ
ẽ)

= 1 + λ〈T̂
†
2 T̂2〉+

1

2
(1− λ)(〈T̂

†
2 T̂2〉+ 〈T̂

†
2 T̂2〉)

= 1 + λ〈T̂
†
2 T̂2〉+ (1− λ)(〈T̂

†
2 T̂2〉+ 〈T̂

†
2 T̂2〉)

= 1 + 〈T̂
†
2 T̂2〉 , (3.26)

ELPFD(λ) = 〈Ĥ〉+ 2

〈
Φ0

∣∣Ĥ tẽēab
∣∣Φab

ẽē

〉

1 + 〈T̂
†
2 T̂2〉

+

〈
Φ0

∣∣(tẽēab
)† (

Ĥ− 〈Ĥ〉
)
tẽēab

∣∣Φab
ẽē

〉

1 + 〈T̂
†
2 T̂2〉

= ECID . (3.27)

This is the same as FCI in the two-electron limit and so LPFD(λ) must also

produce an exact answer.

For the many electron cases, the effect of the transformed cluster operators

is to renormalise the CEPA(0) functional by a general CI denominator, but one

that only includes linked terms and so remains extensive.
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This simple case also illustrates how LPFD(λ) retains the extensivity of

CEPA(0). In Eq. 3.26, U ij
kl becomes a 1× 1 matrix. For the case of N separated

electron pairs, then U ij
kl simply becomes a block diagonal matrix of 1× 1 blocks

and so no unphysical energy contributions are introduced via the off-diagonal

blocks.

3.1.4 Properties and limitations

As well as being exact for the two-electron case and extensive, LPDF(λ) also

possesses other desirable features. Like CCSD, the energy functional contains

fully linked diagrams, which means that there are no free indices and so the

energy must be a scalar and invariant to rotations in the occupied and virtual

subspaces. The method does not obey the variational principle, however the

energy is variationally minimized so as to satisfy the GHF theorem.

The most computationally expensive step in LPDF(λ) is the contraction of the

transformed cluster amplitude with the two-electron integrals, i.e. constructing

the C term. However, this scales as O(o4v2), which is the same as the most

expensive step in CCSD. If its possible to use CCSD on a system, then it’s also

theoretically possible to use LPDF(λ).2

Nevertheless, LPFD(λ) is not a true ab initio theory. The λ parameter van-

ishes in the two-electron case (Eq. 3.26), but for the general N -electron case,

λ must be chosen, thereby introducing unnecessary empiricism. The particu-

lar values of λ = {0, 1}, which correspond to including the 1
2
B and −C terms

respectively, were chosen and have been previously investigated. [13]

Ultimately, even though LPFD(0) and LPFD(1) showed promising results for

certain systems, both diverge from the VCCD result in many diatomic dissocia-

tions, thereby offering no real benefit over CCSD. The failure was predicted to

be caused by the lack of a complete low order correspondence between LPFD(λ)

and VCCD. This was rectified in the QVCCD method.

2Currently, in practice, an LPDF(λ) calculation within Molpro will take longer than the

corresponding CCSD calculation.
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3.2 Quasi-Variational Coupled-Cluster Doubles

The LPFD(λ) paradigm is based on the limiting case of two electrons. For this,

the A and D terms cancel and are assumed to be unimportant for the N -electron

case. In fact, LPFD(0) and LPFD(1) only reproduce one O(t3) term each and

with the wrong prefactor compared to the full VCCD expansion.

Table 3.1 shows that all four terms are important in the general N -electron

case. The energy contributions of the two relationships that justified LPFD(λ),

A + B = 0 and B + 2C = 0, are examined. For He, these relationships hold,

however, they are no longer equal when the number of electrons is greater than

two.

Atom A+D B + 2C

He 0 0

Ne -0.00220 0.00281

Ar -0.00139 0.00428

Kr -0.00036 0.00047

Xe -0.00009 0.00026

Rn 0.00017 -0.00005

Table 3.1: Contributions of the O(t3) terms to the total energy / hartree.

It is clear that for a general N -electron system, all the cubic terms must

be captured for a method to at least qualitatively match VCCD and thereby

approximately correct CEPA(0) for non-dynamic correlation effects. QVCCD

sets out to capture all these cubic terms by modifying the transformed excitation

operator and introducing four distinct matrices to generate the four different

terms:

qt
ij
ab =+ α

[1
2
(1− τ̂ab)

(
AU

ρ
)c
a
tijcb

]

+ β
[1
2
(1− τ̂ij)

(
BU

ρ
)i
k
tkjab

]

+ γ
[1
2

(
CU

ρ
)ij
kl
tklab

]

+ δ
[1
4
(1− τ̂ij)(1− τ̂ab)

(
DU

ρ
)ic
ak
tkjcb

]
, (3.28)

where the permutation operators have been introduced to maintain the symmetry

requirements of the original cluster amplitudes, and XU
ρ are now labelled by the
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terms they generate. These are in turn constructed from the four different density

matrices which are taken directly from the definition of the cubic terms in Eq. 3.6:

(
AU

ρ
)a
b
= δab + Aη

a
b ,

(
BU

ρ
)i
j
= δij + Bη

i
j ,

(
CU

ρ
)ij
kl
= δijkl + Cη

ij
kl ,

(
DU

ρ
)ib
aj

= δibaj + Dη
ib
aj . (3.29)

Several parameters, represented by Greek letters, have been introduced. These

function to balance the cubic terms in the case of two electrons, but also two

holes; a full derivation of these quantities can be found in Ref. [13]. The corrected

transformed amplitude equations can be written:

qt
ij
ab =+ 2

[1
2
(1− τ̂ab)

(
AU

− q
2

)c
a
tijcb

]

+ 2
[1
2
(1− τ̂ij)

(
BU

− q
2

)i
k
tkjab

]

− 1
[1
2

(
CU

− q
2

)ij
kl
tklab

]

− 2
[1
4
(1− τ̂ij)(1− τ̂ab)

(
DU

− q
2

)ic
ak
tkjcb

]
. (3.30)

With these new definitions, the QVCCD energy takes the same form as the

LPFD(λ) energy,

EQVCCD = 〈Ĥ〉+ 2〈Ĥ2T̂2〉+ 〈1T̂
†
2

(
Ĥ− 〈Ĥ〉

)
1T̂2〉 ,

= +

+ 2 +

+ +

+ + . (3.31)
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The canonical HF case has been assumed when constructing the diagrams. These

are translated into algebraic expressions using the rules set forth in [10]. An extra

rule must be added: if two sets of transformed excitation operator lines appear

in one diagram, then it refers to the 1T̂ operator. If only one set of lines appear,

then the 2T̂ operator must be used.

Following the same argument in Eq. 3.27, it can be shown that the QVCCD

energy reduces to the CID expression for the case of two-electrons. However for

the general N -electron case, all four cubic terms are generated:

〈Ĥ 2T̂〉 =
1

8
〈ij||ab〉 2t

ab
ij

=
1

8
〈ij||ab〉

{
2
[1
2
(1− τ̂ab)

(
AU

−1
)c
a
tijcb

]

+ 2
[1
2
(1− τ̂ij)

(
BU

−1
)i
k
T kj
ab

]

− 1
[1
2

(
CU

−1
)ij
kl
tklab

]

− 2
[1
4
(1− τ̂ij)(1− τ̂ab)

(
DU

−1
)ic
ak
tkjcb

]}

=
1

8
〈ij||ab〉

{
tabij +

[1
2
(tijcbt

ab
ij t

ij
ca − tijcat

ba
ij t

ij
cb)

]

+
[1
2
(tijabt

ab
kjt

kj
ab − tjiabt

ab
kit

ki
ab)

]

−
[1
4
tijabt

ab
kl t

kl
ab

]

−
[1
2
(tijabt

cb
kjt

kj
cb − tjiabt

cb
kit

ki
cb − tijbat

ca
kjt

kj
ca + tjibat

ca
kit

ki
ca)

]}

=
1

8

+
1

16
− 1

16

+
1

32
+

1

16

= O(t) +O(t3) . (3.32)

Much like LPFD(λ), a geometric series of these terms is captured by using the

powers of the transformation matrix. Not only are all the O(t3) terms captured,
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but also higher order terms. For example, the C- and D-type O(t5) terms are

also included:

,

,

thereby introducing the effects of higher excitations into QVCCD. The new defi-

nition of the transformed excitation operator leads to a complete renormalisation

of the CEPA(0) functional by all the O(t3) VCCD terms.

QVCCD is simply a modification of LPFD(λ) and so inherits all the properties

of LPFD(λ); extensivity, exact for two electrons, scalar energy, scaling as O(N6).

Moreover, it removes the parameters from LPFD(λ), thereby eliminating the

inherent empiricism of the method.

QVCCD has been shown to have numerical improvements over both LPFD

in strong non-dynamic regimes. [96] This is due to its success at capturing a

complete and balanced set of VCCD cubic terms to infinite order and thereby

correcting LPFD at the low O(t3) orders.

3.3 Existence of the Uρ tensors

Until now, it has been implicitly assumed that the U tensors raised to a power

exist. For a general matrix, U−1 will only exist if U is nonsingular, ie. it possess

a zero eigenvalue, thereby making |U| = 0. [97]

Using the eigenvalue equation,

U
− 1

2 = Xε
− 1

2X† , (3.33)

for a real U− 1
2 to exist, U must not posses eigenvalues that are less than or equal

to zero. Formally, U must be a positive-definite matrix, i.e. for some vector in

our Fock space, 〈x|U |x〉 > 0. [97]

It therefore needs to be shown that the U tensors are positive-definite. This

can be proved by realising that U is simply a sum of the identity matrix and
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a density matrix, therefore its eigenvalues will be one plus the eigenvalues of

the density matrix. For U to be positive-definite, the density matrix must be

positive-semidefinite, meaning its eigenvalues can be greater or equal to zero.

It is easily recognised that the density matrices defined in Eq. 3.6 are Gramian,

as they are formed from the inner product between a set of vectors, and therefore

positive-semidefinite. [98] This satisfies the condition thatU− q
2 (q = {1, 2}) exists.

[13]

3.4 Single excitations

After doubles, the excitations that contribute the most to the energy and wave-

function are the singles. [7] Currently, within QVCCD theory, single excitations

do not have an adequate mathematical form.

A naive approach would be to combine the singles and doubles amplitudes

into the transformation matrix and so generate both single and double O(t3)

terms. [13] For example,

AU
a
b = δab + tibt

a
i +

1

2
tijbct

ac
ij . (3.34)

In the two-electron case, this becomes,

AU
ẽ
ẽ = δẽẽ + tiẽt

ẽ
i +

1

2
tijẽct

ẽc
ij . (3.35)

However, the corresponding CISD denominator which needs to be captured is,

〈T̂
†
1T̂1〉 = tiẽt

ẽ
i + tiēt

ē
i . (3.36)

Eq. 3.34 only produces one of these terms and so the energy expression would no

longer be exact for the two-electron case.

Alternatively, including the effects of the singles can be achieved by using

projective or variational Brueckner orbitals. [99] These two methods both omit

the single excitations and instead incorporate the effects of these into a new set

of orbitals. These two procedures will be briefly discussed here.
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3.4.1 Projective Brueckner orbitals

Brueckner orbitals, ΦB, can be defined via a series of projections, analogous to

the CC equations, [100]

〈Φ0|Ĥ X̂|Φ0〉 = E (3.37)

〈Φa
i |Ĥ X̂|Φ0〉 = 0 (3.38)

〈
Φab

ij

∣∣Ĥ X̂
∣∣Φ0

〉
= tijabE , (3.39)

where X̂ is an excitation operator, either linear of exponential. Importantly, the

equations for the singles coefficients are defined so that they vanish. The set of

orbitals that satisfy these equations must be generated iteratively by mixing the

virtual and occupied orbitals,

χ′
i → χi + tia χa , (3.40)

This procedure can be justified using Thouless theorem, which states that any

SD can be transformed into any other SD by an exponential operator generating

single excitations, i.e. mixing in virtual orbitals, [101]

|Φ〉′ = eT̂1 |Φ〉 , (3.41)

The effects of the tia coefficients can be combined into the orbitals every iteration,

via Eq. 3.40, set to zero and the energy minimised with respect to the constraint in

Eq. 3.38. [102] This often leads to slow convergence and so the effects of the singles

can instead be included via a unitary rotation of the orbitals among themselves,

χ′
i → eΛ χi , (3.42)

where Λ is an antisymmetric matrix constructed from the singles coefficients,

Λai = tia , (3.43)

Λia = −tia , (3.44)

Λij = Λab = 0 , (3.45)

−Λ = ΛT . (3.46)

This method defines the B(rueckner)CCD, BCID and BQVCCD family of meth-

ods.
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3.4.2 Variational Brueckner orbitals

Instead of defining the Brueckner condition of Eq. 3.38, the energy functional can

can be minimised with respect to the orbitals,

∂E

∂χ
= 0 . (3.47)

Conceptually, the orbital gradient is constructed and then used as an update to

the singles coefficients for the next iteration. The update is used to construct the

unitary rotation in Eq. 3.42 and transform the orbitals. This is repeated until

the orbital gradient and the energy gradient with respect to the amplitudes are a

minimum. This method defines the variational Brueckner or Orbital Optimised

family of methods (OCCD, OCID and OQVCCD). [103]

Both the projective and variational methods account for the singles excitations

exactly, and so are used with LPFD(λ) and QVCCD theory to include these

contributions. It should be noted that even though both methods do not include

single excitations explicitly, both sets of orbitals are usually not equivalent and

will give different answers for the energy and other molecular properties. [103]

A drawback with these procedures are that the orbitals change every iteration,

leading to recalculation of the one- and two-electron integrals. The projective

Brueckner method can avoid the recalculation of the computationally expensive

integrals involving three virtual orbitals. [102] However, this method has been

shown to produce failures when calculating potential energy surfaces, [104] while

orbital optimisation is in general more reliable due to the variational minimisation

of the orbitals.

The orbital optimisation method was subsequently used within both the old

and new implementations of QVCCD.

3.5 Triple excitations

3.5.1 The (T) correction

The effect of triple excitations are often needed to produce chemically accurate

answers, however if the exponential operator is truncated at T̂3, CCSDT scales

as O(N8) and so is too computationally expensive for many chemical systems of

interest.
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It has been shown that CCD is the same as MBPT up to third order [10], so

instead of including the full triples terms, the CCSD energy can corrected up to

fourth-order in MBPT. Triply excited SDs are included and therefore some of the

effects of triple excitations can be incorporated. This correction forms an extra

non-iterative step which is added onto the CCSD energy after it has converged,

denoted as CCSD[T],

ECCSD[T] =ECCSD + E
(4)
T . (3.48)

This correction scales as O(N7) and so is significantly faster than including a

complete description of the triples. [66] However this scheme tends to overestimate

the effects of the triples and can produce incorrect potential energy surfaces. [105]

It was noted that if the singles and doubles terms where to balance properly in

the [T] correction, extra fifth-order terms involving the singles should be included.

These fifth-order terms usually have the opposite sign compared to the forth-order

terms and so offset the overcorrection by [T]. [66] This correction was denoted

CCSD(T) and has been widely used ever since,3

ECCSD(T) = ECCSD + E
(4)
T + E

(5)
ST . (3.49)

As noted in Chapter 2, CCSD(T) is widely used to investigate many different

chemical problems and is often called the Gold Standard of computational chem-

istry. [67] The inclusion of the triples via (T) has been shown to be necessary to

generate chemically accurate results with relatively little computational expense.

This has led CCSD(T) being used in lieu of experimental results as a benchmark

for comparing other computational methods. [106]

3.5.2 Triples correction for OQVCCD

CCD, VCCD and QVCCD are all equivalent up to forth-order in MP theory, [13]

if the singles coefficients are set to zero, so the standard (T) correction can be

3Stanton has provided an interesting rational for the inclusion of E
(4)
T and E

(5)
ST . [66] If the

zeroth-order wavefunction replaces the HF reference in an MBPT treatment, then the leading

order corrections are the E
(4)
T and E

(5)
ST terms.
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applied to OQVCCD,4

EOQVCCD(T) =EOQVCCD + E(T) , (3.50)

E(T) =
1

16

〈
Φ0

∣∣T̂†
2V̂

∣∣Φabc
ijk

〉 〈
Φabc

ijk

∣∣V̂T̂†
2

∣∣Φ0

〉

εi + εj + εk − εa − εb − εc
, (3.51)

which defines OQVCCD(T).

This method has previously been investigated [107] and been shown to produce

promising results for some diatomic dissociations, however, in some cases (e.g.

the OH− anion), OQVCCD(T) produces a maxima at long bond lengths before

the energy starts to fall, thereby reproducing the behaviour of CCSD(T).

This sort of behaviour was blamed on the breakdown of the (T) correction

which contains eigenvalues, εp, of the Fock operator in the denominator. If the

energy difference between the occupied and virtual orbitals becomes small, for

example, when the energies of the orbitals become closer in energy, then E(T)

becomes large and over corrects for the effects of the triples and so leads to

qualitative failures in the description of bond dissociations. [15] Often in systems

with non-dynamic correlation, the MOs can be close in energy, meaning that the

standard (T) will not work with such systems.

3.5.3 Renormalised triples

Several different authors have attempted to construct triples corrections which do

not suffer from the degenerate orbital breakdown. These renormalised triples in-

troduce a denominator into Eq. 3.51, which rescales the correction properly when

the energy difference between the occupied and virtual orbitals becomes small.

Piecuch et al. made use of this methodology in the Completely-Renormalised CC

method (CR-CC). [108] This method has been through several reformulations, all

of which suffer from problems. For example, the earliest attempt at renormalised

triples was no longer extensive, [109] whereas the later CR-CC(2,3) method re-

quires the calculation of the CCSD left eigenstates, thereby nearly doubling the

computational expense compared to standard CCSD. [110]

A renormalised triples scheme can be developed by using an analysis by

Nooijen and LeRoy; Eq. 3.51 can be derived in a different way which allows

4This is the same as the [T] correction as the singles terms vanish and so is less computa-

tionally expensive than the standard (T) correction for CCSD
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the recognition of a renormalising denominator. [111] In preparation, new no-

tation must be introduced: the complete excitation operator will be denoted as

T̃ = T̃1 + T̃2 + T̃3 + ...,5 while T̂ = T̂1 + T̂2. The FCI Schrödinger equation can

be written thus,

〈Φ0| eT̃
†
Ĥ = EFCI 〈Φ0| eT̃

†
. (3.52)

Pre-multiplying by eT̂ |Φ0〉 gives the energy functional,

〈Φ0| eT̃
†
ĤeT̂ |Φ0〉 =EFCI 〈Φ0|eT̃

†
eT̂|Φ0〉 , (3.53)

EFCI =
〈Φ0| eT̃

†
ĤeT̂ |Φ0〉

〈Φ0|eT̃
†
eT̂|Φ0〉

. (3.54)

The identity operator, eT̂e−T̂ = 1, can be inserted into Eq. 3.54 and the Resolution

Of the Identity (ROI) operator, 1 =
∑

k |k〉 〈k|, introduced to produce a sum over

the basis of reference and excited manifolds,

EFCI =
∑

k

〈Φ0| eT̃
†
eT̂ |k〉 〈k| e−T̂ĤeT̂ |Φ0〉
〈Φ0|eT̃

†
eT̂|Φ0〉

, (3.55)

EFCI =ECCSD +
∑

k∈T,Q,...

〈Φ0| eT̃
†
eT̂ |k〉 〈k| e−T̂ĤeT̂ |Φ0〉
〈Φ0|eT̃

†
eT̂|Φ0〉

. (3.56)

Nooijen and LeRoy further identified the cancellation of unlinked terms between

the denominator and numerator, thereby producing an explicitly linked term,

EFCI =ECCSD +
∑

k∈T,Q,...

〈Φ0| eT̃
†
eT̂ |k〉L 〈k| e

−T̂ĤeT̂ |Φ0〉 . (3.57)

If only the triply excited determinants are considered, the excitation operators

can be explicitly written:

δE =
1

16

〈
Φ0

∣∣eT̃2
†
+T̃3

†
eT̂2

∣∣Φabc
ijk

〉
L

〈
Φabc

ijk

∣∣e−T̂ĤeT̂
∣∣Φ0

〉
, (3.58)

δE ≈ 1

16

〈
Φ0

∣∣eT̂
†
2 T̂

(2)†
3 eT̂2

∣∣Φabc
ijk

〉
L

〈
Φabc

ijk

∣∣e−T̂ĤeT̂
∣∣Φ0

〉
, (3.59)

where the T̃2 operator has been approximated with the converged T̂2 operator

and T̃3 has been replaced by the second-order correction to the triples operator,

T̂
(2)

3 |Φ0〉 =
( 1

3!

)2

t
ijk(2)
abc

∣∣Φabc
ijk

〉
, (3.60)

t
ijk(2)
abc =

〈
Φabc

ijk

∣∣V̂T̂2

∣∣Φ0

〉

εi + εj + εk − εa − εb − εc
. (3.61)

5This should not be confused with an excitation operator acting only on the ms = + 1
2

electrons.
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Eq. 3.59 represents the standard (T) correction discussed above, but scaled by

the CCSD norm. [15]

Robinson and Knowles recognised a connection between Eq. 3.59 and the

QVCCD ansatz. The diagrams that appear here are the same family of dia-

grams that the U transformation matrices produce, except contracted with a

triples operator. A simple renormalised correction can therefore be produced

by using the transformed excitation operator in the (T) correction and thereby

approximate this term,

ECR(T) =
1

16

〈
Φ0

∣∣
2T̂

†
2V̂

∣∣Φabc
ijk

〉 〈
Φabc

ijk

∣∣(̂VT̂2 +
1
2!
V̂T̂

2

2)
∣∣Φ0

〉

εi + εj + εk − εa − εb − εc
. (3.62)

This will be denoted as the Completely-Renormalised Triples (CR(T)) correction.

The effect of using the transformed excitation operator can be examined by

considering a three-electron system. Eq. 3.59 simplifies to,

δE ≈ 1

16

〈Φ0| T̂
(2)†
3

∣∣Φabc
ijk

〉
L

〈
Φabc

ijk

∣∣ (̂VT̂2 +
1
2!
V̂T̂

2

2) |Φ0〉

1 + 〈T̂
†
2 T̂2〉

=
1

16

〈Φ0| T̂
†
2V̂

∣∣Φabc
ijk

〉 〈
Φabc

ijk

∣∣ (̂VT̂2 +
1
2!
V̂T̂

2

2) |Φ0〉(
1 + 〈T̂

†
2 T̂2〉

)(
εi + εj + εk − εa − εb − εc

) . (3.63)

In the limit, (T) is divided by the CI norm, which has been shown before to be

the action of the transformed excitation operators, thereby justifying the choice

in Eq. 3.62.

If the quadratic term in Eq. 3.62 is ignored, then a simpler correction is ob-

tained,

EAR(T) =
1

16

〈
Φ0

∣∣
2T̂

†
2V̂

∣∣Φabc
ijk

〉 〈
Φabc

ijk

∣∣V̂T̂2

∣∣Φ0

〉

εi + εj + εk − εa − εb − εc

=
1

16

V abc
ijk W abc

ijk

εi + εj + εk − εa − εb − εc
(3.64)

This will be denoted as the Asymmetric-Renormalised Triples (AR(T)) correc-

tion.

The AR(T) correction requires the construction of two different intermedi-

ates, V abc
ijk and W abc

ijk , instead of just one in the standard (T) correction, thereby

nearly doubling the computational time required to evaluate it. Another approx-

imation can be formed if both excitation operators are replaced with transformed

excitation operators,

ER(T) =
1

16

〈
Φ0

∣∣
1T̂

†
2V̂

∣∣Φabc
ijk

〉 〈
Φabc

ijk

∣∣V̂1T̂2

∣∣Φ0

〉

εi + εj + εk − εa − εb − εc
, (3.65)
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which has been denoted as the (symmetric) Renormalised Triples (R(T)) cor-

rection. This agrees up to sixth-order in MP theory with Eq. 3.62 and so it is

predicted that there will only be a small numerical difference between the R(T),

AR(T) and CR(T) corrections. R(T) only requires the evaluation of one inter-

mediate, and so has the same computational cost as the standard (T) correction.



Triple excitations 68



Chapter 4

Quasi-Variational

Coupled-Cluster:

Implementation

The previous implementation of the QVCCD code was written in Fortran within

Molpro. As a result of the implementation, the code is slow and not able to take

advantage of multiple processors. Part of this project has been to totally rewrite

the code to make it fast, parallel and able to carry out calculations on larger

molecules.

This section will explore the re-derivation of the QVCCD equations used in

the computer code and the issues that were faced in the implementation that are

not obvious from a cursory glance at the equations.

4.1 Programmable equations

The QVCCD equations presented in Chapter 3 can not be programmed into a

computer. These equations must first be manipulated using second quantisa-

tion to produce expressions involving electron integrals and transformed cluster

amplitudes. An explicit expression for the derivative of the energy with respect

to the doubles amplitudes must also be derived, so an energy minimum can be

found.

The general spin-orbital equations will be presented first, before the spin-

adapted equations used to investigate closed-shell systems.

69
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4.1.1 Indices

Before the equations are presented, a new index notation for the rank-4 ten-

sors will be introduced to remove any ambiguities in the implementation. This

notation will be used in both the spin- and spatial-orbital equations.

Any rank-4 tensor can be written in tensor and matrix notations:

Aij
pq = A[pi],[qj] . (4.1)

The composite index is formed between [pi] and [qj], i.e. the columns of the

tensor. This is the convention followed by the cluster amplitudes and will be

maintained for the transformation matrices.

4.1.2 Spin-orbital equations

QVCCD energy

The QVCCD energy can be written in terms of contractions between electron

integrals and transformed cluster amplitudes,

EQVCCD = Ecorr − E0 =2 〈Ĥ2T̂2〉+ 〈1T̂
†
2

(
Ĥ− 〈Ĥ〉

)
1T̂2〉

=2 2V
ab
ij 2t

ij
ab + 1V

ab
ij 1t

ij
ab , (4.2)

where,

2V
ab
ij =

〈
Φ0

∣∣Ĥ
∣∣Φab

ij

〉
, (4.3)

1V
ab
ij =

〈
Φ0

∣∣
1T̂

†(
Ĥ− 〈Ĥ〉

)∣∣Φab
ij

〉
, (4.4)

define various one- and two-electron integrals and the transformed cluster ampli-

tudes,

qt
ij
ab = 2

[1
2
(1− τab)(AU

− q
2 )ac t

ij
cb

]

+ 2
[1
2
(1− τij)(BU

− q
2 )ki t

kj
ab

]

− 1
[1
2
(CU

− q
2 )ljki t

kl
ab

]

− 2
[1
4
(1− τij)(1− τab)(DU

− q
2 )ikac t

kj
cb

]
. (4.5)

Powers of derivatives of the U matrices

Before the energy derivative is examined it will be useful to examine certain

quantities that appear in it. Suffice to say derivatives of the transformation
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matrices that appear in the transformed amplitude equations will be necessary.

Explicit expressions for these derivatives have already been derived, interested

readers are directed to Ref. [13]. The final result will be presented here:

d(Ux)I,J = x

Np∑

K=1

XI,KXJ,Kε
x−1
K

Np∑

M=1
N=1

XM,K d(U)M,NXN,K

+

Np∑

K=1,L=1
εK �=εL

εxK − εxL
εK − εL

XI,LXJ,K

Np∑

M=1
N=1

XM,L d(U)M,NXN,K , (4.6)

In other words, the derivative of U matrix raised to a power x is related to its

eigenvectors, X, eigenvalues, ε and the derivative of the unpowered matrix, dU.

The indices labelled by the capital Latin letters can represent standard indices

or the composite indices of the rank-4 tensor.

A simplification occurs when near-degenerate eigenvalues of the U tensors are

encountered. If εL = εK+µ, where µ is a small variable parameter, then the ratio

in the second line of Eq. 4.6 becomes,

εxK − εxL
εK − εL

=
εxK − (εK + µ)x

εK − (εK + µ)
. (4.7)

In the limit, as µ → 0, the eigenvalues approach degeneracy and the ratio be-

comes,

lim
µ→0

εxK − (εK + µ)x

εK − (εK + µ)
= x εx−1

K . (4.8)

This can be reinserted back into Eq. 4.6 and used when the eigenvalues are de-

generate or the difference between them is below a certain threshold.1

For efficient code, Eq. 4.6 can be written as a tensor contraction,

d(Ux)I,J =Q[U, x]I,JM,N d(U)M,N , (4.9)

Q[U, x]I,JM,N =Q[U, x]J,IN,M , (4.10)

where the tensor Q has been written as a functional that depends explicitly on

a U matrix and a power. This is convenient to do as Q can now be contracted

with another intermediate quantity other than the derivative of the unpowered

matrix.

1This has been chosen to be 1× 10−8 in the present implementation
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Residual equation

To find the minimum, ground state, energy for a given set of nuclear coordinates,

the energy must be minimised with respect to the set of doubles amplitudes, i.e.

the parameters that determine the QVCCD wavefunction,

∂EQVCCD

∂tijab
=0

≡Gab
ij , (4.11)

2Gab
ij = 2V

ab
ij

∂(2t
ij
ab)

∂tijab
+ 1V

ab
ij

∂(1t
ij
ab)

∂tijab
, (4.12)

where Gab
ij is called the residual. This forms part of the update used in the DIIS

procedure to generate a new set of cluster amplitudes and thereby a new energy.

The complete residual expression can be written as,

qG
ij
ab =(1 + τabτij)

{[
A
qRea t

ij
eb + qV

ij
cb (AU

− q
2 )ca

]

+
[
B
qRim tmj

ab + qV
kj
ab (BU

− q
2 )ki

]

−
[1
4

C
qR

nj
mi t

mn
ab + qV

kl
ab (CU

− q
2 )ljki

]

−
[
2 D

qR
af
ni t

nj
fb + qV

kj
cb (DU

− q
2 )ikac

]}
, (4.13)

with the following intermediate quantities,

A
qRea =Q[U, x]f,ce,a

A
qFfc ,

B
qRim = Q[U, x]k,oi,m

B
qFok ,

C
qR

nj
mi =Q[U, x]op,klmn,ij

C
qF

pl
ok ,

D
qR

af
ni = Q[U, x]lc,kdna,if

D
qF

lk
cd ,

(4.14)

A
qFfc = qV

mn
fg tcgmn ,

B
qFok = qV

on
ef t

ef
kn ,

C
qF

pl
ok = qV

op
cd t

cd
kl ,

D
qF

lk
cd = qV

lm
de t

km
ce .

(4.15)

4.1.3 Spatial-orbital equations

In a closed-shell calculation, two electrons with opposite spin are allowed to oc-

cupy the same spatial-orbital. The equations above can thus be simplified if

written in terms of spatial-orbitals. To achieve this, the different spin cases of

the excitation operator must be explicitly written,

T̂2 =
1

4
tijab â

†
aâ

†
bâj âi , (4.16)

=
1

4
tı̃̃
ãb̃
ˆ̃a†aˆ̃a

†
b
ˆ̃aj ˆ̃ai +

1

4
tı̄̄
āb̄
ˆ̄a†aˆ̄a

†
b
ˆ̄aj ˆ̄ai

+ tı̃̄
ãb̄
ˆ̃a†aˆ̄a

†
b
ˆ̃aj ˆ̄ai , (4.17)
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where tilde and bar indicate an electron of ms = +1
2
and ms = −1

2
respectively.

These terms can be identified with the spin-coupled excitation operator, [43]

T̂2 =
1

2
T ij
ab ÊaiÊbj , (4.18)

Êrs =ˆ̃a†r ˆ̃as + ˆ̄a†r ˆ̄as , (4.19)

T̂2 =
1

2
T ij
ab

(
ˆ̃a†aˆ̃aiˆ̃a

†
b
ˆ̃aj + ˆ̃a†aˆ̃aiˆ̄a

†
b
ˆ̄aj

+ ˆ̄a†aˆ̄aiˆ̃a
†
b
ˆ̃aj + ˆ̄a†aˆ̄aiˆ̄a

†
b
ˆ̄aj
)
. (4.20)

The capital T now represents a cluster amplitude with respect to spatial-orbitals.

In a closed-shell system, T ı̃̃

ãb̃
= T ı̄̄

āb̄
, implying,

tı̃̃
ãb̃
= 2T ij

ab . (4.21)

It is convenient to work with anti-symmetrised cluster amplitudes, similar to

antisymmetric two-electron integrals, so Eq. 4.21 becomes,

tı̃̃
ãb̃
= T ij

ab − T ij
ba . (4.22)

Using the commutation relations between spin-creation and annihilation opera-

tors, the mixed spin cases of Eq. 4.20 can be rewritten,

1

2
T ij
ab

(
ˆ̃a†aˆ̃aiˆ̄a

†
b
ˆ̄aj + ˆ̄a†aˆ̄aiˆ̃a

†
b
ˆ̃aj
)
=
1

2
T ij
ab
ˆ̃a†aˆ̃aiˆ̄a

†
b
ˆ̄aj +

1

2
T ji
ba
ˆ̃a†b
ˆ̃aj ˆ̄a

†
a
ˆ̄ai

=T ij
ab
ˆ̃a†aˆ̄a

†
b
ˆ̄aj ˆ̃ai , (4.23)

therefore,

tı̃̄
ãb̄
=T ij

ab . (4.24)

In summary, to turn the set of spin-orbital equations into spatial-orbital equa-

tions, the spin cases where tı̃̄
ãb̄
, should be written out explicitly. The spin-orbital

cluster amplitudes can simply be replaced with the spatial-orbital cluster ampli-

tudes using the following relationships from above, [112]

tı̃̃
ãb̃
= tı̄̄

āb̄
=T ij

ab − T ij
ba ,

tı̃̄
ãb̄
=T ij

ab ,
(4.25)

Only the Gı̃̄

ãb̄
case needs to be considered, and not Gı̃̃

ãb̃
etc., as this will form

the update to the tı̃̄
ãb̄

amplitudes which can be used to construct the same spin

amplitudes.
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Spin-adapted transformation matrices

Before proceeding to the transformed amplitude and residual equations, the spe-

cific spin cases of the U matrices needs to be examined.

There are only two non-zero spin cases for AU and BU: αα or ββ. In spatial-

orbitals, these two cases are the same,

AUba = δba + 2T ij
bcT

ij
ac − T ij

bcT
ij
ca , (4.26)

BUji = δji + 2T ik
abT

jk
ab − T ik

abT
jk
ba . (4.27)

CU consists of three different spin cases that arise through the density matrix,

Cη
lj
ki =




k̃l̃ k̃l̄ k̄l̃ k̄l̄

̃̃ı C1 0 0 0

̄̃ı 0 C2 C2 0

̃̄ı 0 C2 C2 0

̄̄ı 0 0 0 C3




,

From Eq. 4.5, only the C2 case is needed,

CU
lj
ki = δkiδlj + T ij

abT
ab
kl . (4.28)

An issue arises with DU, as the different spin cases are not independent of

one another,

Dη
ij
ab =




̃b̃ ̃b̄ ̄b̃ ̄b̄

ãı̃ D1 0 0 D2

āı̃ 0 D3 0 0

ãı̄ 0 0 D3 0

āı̄ D2 0 0 D1




,

D1
ηijab = 2T ik

acT
jk
bc − T ik

caT
jk
bc − T ik

acT
jk
cb + T ik

caT
jk
cb , (4.29)

D2
ηijab = 2T ik

acT
jk
bc − T ik

caT
jk
bc − T ik

acT
jk
cb , (4.30)

D3
ηijab = T ik

caT
jk
cb . (4.31)

D1 and D2 are coupled. This becomes a problem when powers of the DU matrix

are formed, because the separate blocks cannot be raised to a power independently

of each other.



75 Quasi-Variational Coupled-Cluster: Implementation

A simple rotation can be applied to uncouple and derive explicit expressions

for the D1 and D2 blocks:

Q =
1√
2


1 1

1 −1


 ,

∆ =


D1 D2

D2 D1


 ,

Q† ∆Q =


(D1 +D2) 0

0 (D1 −D2)


 = D , (4.32)

which produces a diagonal matrix. The power of the matrix can be formed and

rotated back to produce explicit expressions for the powered D1 and D2 blocks,

∆ = QDQ† ,

∆−q
2 = QD−q

2Q†

=
1

2


1 1

1 −1





(D1 +D2)

−q
2 0

0 (D1 −D2)
−q

2





1 1

1 −1




=
1

2


(D1 +D2)

−q
2 + (D1 −D2)

−q
2 (D1 +D2)

−q
2 − (D1 −D2)

−q
2

(D1 +D2)
−q

2 − (D1 −D2)
−q

2 (D1 +D2)
−q

2 + (D1 −D2)
−q

2


 ,

(4.33)

D1 =
1

2

{
(D1 +D2)

−q
2 + (D1 −D2)

−q
2

}
, (4.34)

D2 =
1

2

{
(D1 +D2)

−q
2 − (D1 −D2)

−q
2

}
. (4.35)
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Two quantities can be defined,

Y =D1 +D2 , (4.36)

W =D1 −D2

=D3 , (4.37)

D1
−q

2 =
1

2

(
Y−q

2 +W−q
2

)
, (4.38)

D2
−q

2 =
1

2

(
Y−q

2 −W−q
2

)
, (4.39)

D3
−q

2 = W−q
2 . (4.40)

As a result, D1, D2, and D3 need to be constructed, so as to construct Y and

W. This can be simplified by recognising D3 = D1 −D2, which gives:

W ij
ab = δabδij + T ik

caT
cb
jk (4.41)

Y ij
ab = W ij

ab + 4T ik
acT

bc
jk − 2T ik

caT
bc
jk − 2T ik

acT
cb
jk (4.42)

Spin-adapted amplitudes

The spin-adapted transformed amplitude equations can be written as,

qT
ij
ab =

[
(AU

− q
2 )ac T

ij
cb + (AU

− q
2 )bc T

ij
ac

]

+
[
(BU

− q
2 )ki T

kj
ab + (BU

− q
2 )kj T

ik
ab

]

−
[
(CU

− q
2 )ljki T

kl
ab

]

− 1

2
(1 + τijτab)

[
(Y − q

2 )ikac(T
kj
cb − 1

2
T kj
bc )

+
1

2
(W− q

2 )ikacT
kj
bc + (W− q

2 )jkacT
ik
cb

]
, (4.43)

where the tensors defined in Eq. 4.36 have been used.
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Spin-adapted residual

Finally, the residual in terms of spatial-orbitals becomes,

qG
ij
ab = (1 + τabτij)

{[
(AqRaf +

A
qRfa)(2T

ij
eb − T ij

be) + qV
ij
cb (AU

− q
2 )ca

]

+
[
(BqRoi +

B
qRio)(2T

oj
ab − T oj

ba ) + qV
kj
ab (BU

− q
2 )ik

]

−
[
(CqR

pj
oi +

C
qR

jp
io )T

op
ab + qV

kl
ab (CU

− q
2 )jlik

]

− 1

2

[
D
q1R

io
ag(8T

oj
gb − 4T oj

bg )

− D
q1R

io
bg(4T

oj
ga − 2T oj

ag ) + 2 D
q2R

io
bgT

oj
ag

+ qV
kj
cb (Y

− q
2 )kica −

1

2 qV
kj
ca (Y

− q
2 )kicb

+
1

2 qV
kj
ca (W

− q
2 )kicb + qV

ik
cb (W

− q
2 )kjca

]}
, (4.44)

where the intermediate quantities are defined:

A
qRea =Q[U, x]a,ce,f

A
qFac ,

B
qRim = Q[U, x]k,io,m

B
qFki ,

C
qR

pn
om =Q[U, x]kl,ijop,mn

C
qF

lj
ki ,

D1
qR

mo
eg = Q[Y, x]ai,ckem,go

D1
qF

ik
ac ,

D2
qR

mo
eg =Q[W, x]ai,ckem,go(

D2
qF + D3

qF)
ik
ac ,

(4.45)

A
qFac = qV

ij
abT

ij
cb ,

B
qFki = qV

ij
abT

kj
ab ,

C
qF

lj
ki = qV

ij
ab T

kl
ab ,

D1
qF

ik
ac = (T kj

cb − 1

2
T kj
bc ) qV

ij
ab ,

D2
qF

ik
ac =

1

2
T kj
bc qV

ij
ab ,

D3
qF

jk
ac = T ik

cb qV
ij
ab ,

(4.46)

4.1.4 Contravariant configurations

The doubly excited SDs that are generated by the transformed excitation opera-

tors are not orthogonal, [43]

〈
Φab

ij

∣∣Φcd
kl

〉
= 4δacδbdδjlδik + 4δbcδadδjkδil − 2δacδbdδilδjk − 2δbcδadδjlδik , (4.47)

making terms like Eq. 4.4 difficult to evaluate.

Instead, it is useful to project onto the space spanned by the orthogonal

complement to
∣∣Φab

ij

〉
, [102, 113]

〈
Φ̆ab

ij

∣∣∣ =1

3

〈
Φab

ij

∣∣+ 1

6

〈
Φab

ji

∣∣ . (4.48)

This yields the desired orthogonal relationship,

〈
Φ̆ab

ij

∣∣∣Φcd
kl

〉
=δikδjlδacδbd + δilδjkδadδbc , (4.49)
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where the normalisation is chosen to obey,

〈
Φ̆ab

ij

∣∣∣Φab
ij

〉
=1 + δijδab . (4.50)

Using the orthogonal complement also makes optimisation of the cluster ampli-

tudes easier. For the iterative update, the second derivatives of the amplitudes

are required. This can be approximated by a diagonal matrix that assumes the

off-diagonal blocks of the Hessian to be small (a Quasi-Newton method). In the

non-orthogonal basis, this is not necessarily true. The new basis minimises these

blocks and allows this approximation to be made; the inverse of the Hessian

matrix would need to be constructed otherwise.

As a result, two new tensors must be defined,

qVab
ij =2 qV

ab
ij − qV

ab
ji , (4.51)

and inserted into the energy and residual expression instead of qV
ab
ij . This allows

the contravariant sum of the residual expression to be taken,

Gij
ab =

1

3

∂E

∂T ij
ab

+
1

6

∂E

∂T ij
ba

, (4.52)

which defines the final residual used within the program.

4.2 Implementation

4.2.1 Integrated Tensor Framework

The spin-adapted equations presented in this chapter have been programmed into

Molpro using the Integrated Tensor Framework (ITF). [14]. The philosophy be-

hind the ITF is that of division of labour: the quantum chemist should work on

theory and equations while the computer scientist should work on the implemen-

tation. This allows developers to easily program equations and generate fast and

efficient code.

The ITF effectively forms a layer between the quantum chemical equations

and the concrete implementation of these on a computer. It allows the input of

a generic set of instructions, the tensor equations, which the computer decides

how best to implement, e.g. memory allocation and addressing of tensors, spa-

tial symmetry, parallelism and input-output operations. [74] It achieves this by
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allowing the user to write in a domain specific language which is centred around

binary tensor contractions, but hiding how the tensors are actually contracted

and stored. Several python scripts are used to convert this high-level language

into assembler code (postfixed by .itfca) which is read and executed by a virtual

machine which contains fast matrix multiplication routines.

To date there has been little documentation about the ITF and its language,

therefore the basics will be outlined here.

Code is written into a .itfaa algorithm file. Each of these files start with a

declaration of the index space and a set of tensors that will be used in the code:

---- decl

index-space: ijklmn, Closed, c

index-space: abcd, External, e

index-space: CD, Core, C

tensor: aU[aa], !Create{type:disk}, aU

tensor: bU[ii], !Create{type:disk}, bU

tensor: cU[iiii], !Create{type:disk; sym:01/23}, cU

tensor: W[aaii], !Create{type:disk; sym:01/23}, W

tensor: Y[aaii], !Create{type:disk; sym:01/23}, Y

This block is headed by the ---- decl header and continues until the start of a new

header.

In the example above, a set of occupied and virtual indices are declared using the

Closed and External keywords respectively. Core indices, i.e. orbitals in which no

excitations occur, can also be declared with Core. The three index-spaces are labelled

c, e and C for ease of reference.

A tensor can be declared using tensor:, followed by the name and index space.

For example, the AU tensor is only indexed within the external space, while W and Y

rank-4 tensors have indices in both the closed and external spaces. For these tensors,

the first and third form the first composite index, while the second and fourth form the

second.

If the tensor does not already exist by default in the ITF, then it must be explicitly

created by using the !Create{type:disk} option. The permutational symmetry of the

indices can be optionally specified using the sym:01/23 option; in this example, this
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defines,

CU
lj
ki = CU

jl
ik . (4.53)

The equations are then written into blocks of code that are called by the driver

program. For example, the 1t
ij
ab equation of Eq. 4.43 can be directly written into the

.itfaa file:

---- code ("QVCCD_qT")

alloc T1[abij]

load aUm05[*c]

.T1[abij] += aUm05[ac] C[cbij]

.T1[abij] += aUm05[bc] C[acij]

drop aUm05[*c]

load bUm05[k*]

.T1[abij] += bUm05[ki] C[abkj]

.T1[abij] += bUm05[kj] C[abik]

drop bUm05[k*]

load cUm05[kilj]

.T1[abij] -= cUm05[kilj] C[abkl]

drop cUm05[kilj]

load d3Um05[ac*k], Ym05[acik], L1[cbkj]

.T1[abij] -= Ym05[acik] L1[cbkj]

.T1[abij] -= 0.5 * d3Um05[acik] C[bckj]

.T1[abij] -= d3Um05[acjk] C[cbik]

drop L1[cbkj], Ym05[acik], d3Um05[ac*k]

store T1[abij]

Each block of equations starts with the ---- code header followed by a name which

can be referred to in the driver program. This block continues until another code block

is started or the ---- end footer is used.

Memory for tensors can be allocated on the stack using the alloc keyword; this

also serves the purpose of initialising all elements to zero within the tensor. The load

command can be used to reload previously initialised tensors back onto the stack. The

tensor contractions then appear as they do in Eq. 4.43, without the need for any explicit

loops; the ITF will generate code that automatically loops over the dummy indices.

The indices can either be explicitly written or the wild card * can be used if there is

no ambiguity as to which tensor object is being referred to. Finally a tensor can be
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removed from the stack with drop, or placed into the heap with store.

The tensor names in the above code have been chosen so it is obvious as to what

they refer to. The only difference with the naming convention of Eq. 4.43 is the L1

intermediate which is just,

(L1)kjcb = T kj
cb − 1

2
T kj
bc . (4.54)

Loops over specific indices can be used to load in certain blocks of the tensor at

one time, thereby reducing the memory consumption. For example,

for [i,j]:

alloc V1[**ij]

load K4E[**ij]

.V1[**ij] += K4E[**ij]

drop K4E[**ij]

load Ki[**ij]

.V1[**ij] += T1[**kl] Ki[klij]

drop Ki[**ij]

This loads in and loops over the blocks indexed by the closed indices. The syntax

follows that of Python, where a loop is indicated by the level of indentation.

Finally, if-statements can also be simulated. In essence, these create another .itfca

file which Molpro will then use. To do this, the different .itfca files must be defined at

the start of the code:

#algo QVCCD

#algo OQVCCD: orb_opt

This will create two files, QVCCD.itfca and OQVCCD.itfca. The ‘if-statements’ can

then be placed in the code, for example:

#if orb_opt

// Update singles residual

...

#endif

The singles residual should be updated when running a OQVCCD calculation, but not

for a QVCCD calculation. With the #if and #endif statements, the QVCCD.itfca file
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will not include this code and therefore will not execute it, while the OQVCCD code

will.

All the code generated by the ITF is fully parallelised, allowing for a significant

speed up to occur when using several processors.

4.2.2 Auxiliary code

At the present time, the ITF has several limitations that require auxiliary C++ code

to be written. For example, the ITF can not diagonalise tensors, so forming powers of

the U tensors and forming the Q intermediate must occur outside of the ITF.

This means that the ITF code must be structured around these calls to the C++

code. For example, the transformation matrices must be formed in the ITF, before

being extracted and raised to a power in the C++. All of the tensors in the ITF map

onto class objects and can be easily manipulated.

qTransform

The Q intermediate of Eq. 4.6 must be formed outside of the ITF. This can be split

into several intermediates,

Qij =
(
Cik +Aik

)
XT

kj , (4.55)

Cmk =





∑
k,l,m
k �=l

εxk−εxl
εk−εl

BklXml , εk − εl > 1× 10−8

x
∑

k,l,m
k �=l

εxk
εk
BklXml , εk − εl ≤ 1× 10−8

(4.56)

Amk = x
∑

k,m

Bkk
exk
ek

Xmk , (4.57)

Bij = DikXkj , (4.58)

Dij = FikXkj , (4.59)

where X and ε are the eigenvectors and eigenvalues of U,2 x is the power and F are

the intermediates defined in Eq. 4.46.

The BLAST library has been used where possible, however, this can not be used

when forming the C intermediate. The computational expense of forming this step can

be mitigated by using the MPI library to make the loop run on parallel processors.

2By modifying the existing C++ object, the eigenvectors and eigenvalues can be calculated

once per iteration, stored, then used to form the powers of U and Q intermediate.
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Orbital Optimisation

The previous chapter discussed the inclusion of single excitations implicitly into the

QVCCD energy.

For the orbital optimisation procedure, the energy derivative with respect to the

orbitals needs to be constructed. The spin-adapted expression can be written as, [96,

103]3

∂E

∂φ
= f i

a =F i
a − T i

jF
j
a − T b

aF
i
b

− T k
l

(
2 〈il|ak〉 − 〈li|ak〉

)

+ T c
d

(
2 〈id|ac〉 − 〈di|ac〉

)

+ 1T
ik
cd 1T̃

cd
jl 〈jl|ak〉 − 1T̃

kl
ac 1T

bd
kl 〈ic|bd〉

− 1

2
(1T̃

ik
bd 1T̃

cd
jk + 31T

ki
bd 1T

cd
kj ) 〈jb|ac〉

+
1

2
(1T̃

jl
ac 1T̃

bc
kl + 31T

lj
ac 1T

ac
lk ) 〈ik|bj〉

+ 1T̃
ik
bd 1T̃

cd
jk (bj|ac)− 1T̃

jl
ac 1T̃

bc
kl 〈ik|jb〉

+ 2T̃
ij
bc 〈bc|aj〉 − 2T̃

jk
ab 〈ib|jk〉 , (4.60)

where the intermediate quantities are defined as,

qT̃
ij
ab = 2qT

ij
ab − qT

ij
ba ,

T i
j = 1T̃

ik
ab 1T

ab
jk ,

T b
a = 1T̃

ij
ac 1T

bc
ij ,

F p
q = hpq +

(
2 〈pi|qi〉 − 〈pi|iq〉

)
.

(4.61)

This can be simplified for a more efficient implementation by collecting together terms

3There is a typo in the original paper by Robinson. Lines two and six of Eq. 4.60 were

written:

− 1

2
(1T̃

ik
bd 1T̃

jk
cd + 31T̃

ki
bd 1T̃

kj
cd )(ja|bc)

+
1

2
(1T̃

jl
ac 1T̃

kl
bc + 31T̃

lj
ac 1T̃

lk
bc )(ib|kj)
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that involve the same Coulomb or exchange integrals,

f i
a =F i

a − T i
jF

j
a − T b

aF
i
b

+ 1N
jl
ik(ja|lk)− 2N

bd
ac (ib|cd)

+ 3N
ij
bc(ja|bc)

+ 4N
jk
ab (ib|kj)

+ 5N
ij
bc(ba|jc) + 6N

jk
ab (ij|kb) , (4.62)

where the following intermediates are defined as,

1N
jl
ik = 1T

ik
cd 1T̃

jl
cd ,

2N
bd
ac = 1T̃

kl
ac 1T

kl
bd ,

3N
ij
bc = 2δijT

c
b − 1

2
(1T̃

ik
bd 1T̃

jk
cd + 31T̃

ki
bd 1T̃

kj
cd ) ,

4N
jk
ab =

1

2
(1T̃

jl
ac 1T̃

kl
bc + 31T̃

lj
ac 1T̃

lk
bc )− 2δabT

k
j ,

5N
ij
bc = 1T̃

ik
bd 1T̃

jk
cd + 2T̃

ij
bc − δijT

c
b ,

6N
jk
ab = δabT

j
k − 1T̃

jl
ac 1T̃

kl
bc − 2T̃

jk
ab .

(4.63)

Within the program, 3N
ij
bc and 5N

ij
bc are constructed then contracted with the three

external integrals using an external call to the Fortran code within Molpro. The rest

of the integral contractions take place within the ITF.

For an OQVCCD calculation, Eq. 4.62 is constructed and passed from the C++

code into Fortran. It is used to call a previously existing function called absorb, which

creates the exponential operator from the residual. This rotates the orbitals and a new

set of integrals are calculated, which are used in the next iteration.

Triples corrections

The triples correction from Chapter 3 can be rewritten as a series of tensor contractions,

[114,115]

E(T) = −1

3
W abc

ijk R
ijk
abc ,

Rijk
abc =

(
4W abc

ijk +W abc
kij +W abc

jki − 2W abc
kji − 2W abc

ikj − 2W abc
jik

)
/Dabc

ijk ,

W abc
ijk = P abc

ijk

(
T ad
ij 〈cb|kd〉 − T ad

ij 〈cl|kj〉
)
,

Dabc
ijk = εi + εj + εk − εa − εb − εc .

(4.64)

P abc
ijk is a permutation operator that permutes the occupied and virtual indices simul-

taneously.
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This correction can only be applied to a canonical set of orbitals due to the eigenval-

ues of these being in the denominator. However, with orbital optimisation, the orbitals

are rotated every iteration and so are no longer canonical.

Two schemes can be devised that can result in a canonical set of orbitals. The

off-diagonal blocks in the Fock matrix (Fai) can be set to zero and the resulting matrix

diagonalised every iteration and a new set of integrals calculated. Alternatively, the

Fock matrix can be diagonalised after the energy has converged, a new set of integrals

calculated and the cluster amplitudes rotated using the eigenvectors of the Fock matrix.

The second approach requires passing the eigenvectors of the Fock matrix into

the ITF, or passing the cluster amplitudes from the ITF into the Fortran code. The

first scheme, doesn’t require this and so was attempted first due to apparent ease

of implementation. Numerical tests however proved to be disappointing as changing

the Fock matrix affected the convergence of the method. The second scheme was

implemented and was successful in matching the number of iterations from the old

implementation.

Renormalised triples

The renormalised triples can be easily implemented into the ITF after the standard

triples code has been made to work. This only requires rotating the 1T transformed

cluster amplitudes instead of the standard cluster amplitudes, then sending these to

the triples code. This means replacing the cluster amplitudes in Eq. 4.64 with 1T
ad
ij

The asymmetric triples requires an extra tensor intermediate; one formed from the

2T ,

E(T) = −1

3
V abc
ijk Rijk

abc , (4.65)

V abc
ijk = P abc

ijk

(
2T

ad
ij 〈cb|kd〉 − 2T

ad
ij 〈cl|kj〉

)
. (4.66)

All intermediate quantities are the same as in Eq. 4.64. This can be achieved without

an increase in memory, as both intermediates do not appear on the stack at the same

time.
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Chapter 5

Benchmarking and applications

To date there have been several performance studies of the Quasi-Variational Coupled-

Cluster Doubles family of methods, hereafter collectivity denoted as the QV methods.

[107,116,117]. This work will be continued by applying the QV methods to larger and

more interesting examples.

In Section 5.1, the Potential Energy Curves (PECs) for third-row diatomic molecules

will be examined and compared to those obtained with multireference methods. Sec-

tion 5.2 will examine the differences in using the QV methods, as opposed to other

single-reference methods, to calculate activation and reaction energies. Numerical tests

will be carried out in Section 5.3 with the asymmetric-renormalised triples correction

and compared to OQVCCDR(T). Finally the computational timings and scaling of the

QV methods will be presented in Section 5.4.

5.1 PECs and diatomic constants

It is well documented that traditional Coupled-Cluster methods, like CCSD, produce

errors in the wavefunction and energy when used to describe chemical systems with

strong non-dynamic correlation [64].

For molecules, this occurs typically when covalent bonds are extended, and is most

pronounced for the breaking of double and triple bonds. Normally, such situations have

to be investigated with multireference (MR) methods, which means choosing a suitable

active space into which the approximate wavefunction can be expanded. The use of

MCSCF, with subsequent treatment of dynamical correlation effects through MRCI or

related approaches, has been very successful in generating global ground and excited

state potential energy surfaces for small molecules.

However, for larger molecules, the difficulty of choosing a suitable active space,

87
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the computational scaling with system size, and the lack of a practical general size-

extensive formulation, all provide an impetus for seeking alternative approaches. The

QV methods can bridge this gap between a single-reference formalism and capturing

non-dynamic correlation.

The previous computational implementation of the QVCCD method suffered from

long computational times, meaning that previous studies were limited in the size of

system that could be addressed. In the current work, the QVCCD code has been

completely rewritten within the Integrated Tensor Framework (ITF) (as described in

Chapter 4), to allow calculation of larger systems.

PECs and vibrational constants of third-row diatomic molecules will be investigated

and compared with CCSD(T), MRCI and the Distinguishable Cluster (DCSD) approx-

imation. Size consistency errors will also be determined by comparing the asymptotic

values of the QV methods and the dissociation energy calculated with the separated

atoms.

5.1.1 Computational details

All calculations have been carried out using Molpro and the ITF implementation of

the QV methods. For each system, a potential energy curve has been calculated, from

which diatomic constants can be determined by polynomial fitting. The number of

points in the curve and the degree of the polynomial were increased until the constants

converged to an answer. All energies and spectroscopic quantities have been calcu-

lated using CCSD(T), the three QV methods (OQVCCD(T), OQVCCDR(T), OQVC-

CDAR(T)), DCSD and MRCI, with and without cluster corrections. The valence space

was chosen for each active space, apart from Cl2 which has been extended to produce

smooth curves for the calculation of the spectroscopic constants. For comparison with

empirical values, [118] CCSD(T) calculations have been carried out by correlating the

core orbitals and including relativistic scalar effects via the second-order Douglas-Kroll-

Hess Hamiltonian. [119]

All energy calculations have been extrapolated from the cc-pVQZ and cc-pV5Z basis

sets, while the relativistic calculations have been extrapolated from cc-pwCVQZ-dk and

cc-pwCV5Z-dk.1

The size consistency error was estimated for these methods by taking the difference

of the dissociation energy calculated from the asymptotic limit and the dissociation

energy calculated from the separate atoms. Open-shell QV methods are currently not

1Please see Ref. [120] for relevant data and Molpro inputs.
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available, so the atomic energies were calculated using RCCSD(T). These are predicted

to differ little from the hypothetical open-shell QV methods.

The OQVCCDAR(T) PECs have not been included on the graphs for clarity. Dis-

cussion of the performance of this method compared to OQVCCDR(T) will be deferred

until Section 5.3.

5.1.2 Singly bonded molecules

A majority of chemical reactions involve breaking and forming single bonds. Therefore

it is important for a quantum chemical method to describe this phenomenon correctly.

To start, we investigate the breaking of three singly bonded molecules; HCl, BCl and

Cl2.

HCl

For the dissociation of HCl, Fig. 5.1, we observe the typical behaviour of CCSD(T) at

long bond lengths: the energy forms a maximum, in this case around 3.0 Å, before

falling rapidly. OQVCCD(T) also matches this behaviour, illustrating the breakdown

of the (T) correction. Eigenvalues of the Fock matrix appear in the denominator of this

correction and so can lead to an over-estimation of the effects of the triples when these

eigenvalues are close in energy. This problem can be corrected by using a renormalised

triples scheme.
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Figure 5.1: Calculated potential energy curves for HCl with extrapolated cc-pVQZ:cc-

pV5Z basis set.
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OQVCCDR(T) performs well, leading to a flat dissociation limit of around -460.201

hartree, which is bounded by both the MRCI and MRCI+Q energies. DCSD also

performs well, leading to a dissociation energy slightly above the MRCI energy. The

size consistency error for the renormalised QV methods, shown in Table 5.2, is an order

of magnitude larger than the MRCI error, however it is an order of magnitude less than

the OQVCCD(T) error.

All the QV methods predict a first vibrational constant in agreement with the

CCSD(T) value (Table 5.1); there is a slight over prediction of around 5 cm−1 from the

renormalised QV methods.

BCl

For BCl (Fig. 5.2) the error in the CCSD(T) energy comes mainly from the inability

to model multi-reference systems, as OQVCCD(T) produces an energy that is quali-

tatively similar to the MR methods. At around 4.0 Å, the CCSD(T) energy sharply

drops. The Renormalised QV methods do not form this maximum and flatten out

to asymptotic limits. The symmetric- and asymmetric-renormalised triples predict a

slightly higher energy than the standard triples at long bond lengths; the difference

being 0.014 hartree. Surprisingly, the standard triples correction produces a lower size

consistency error than the renormalised QV methods by two orders of magnitude.
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Figure 5.2: Calculated potential energy curves for BCl with extrapolated cc-pVQZ:cc-

pV5Z basis set.

The QV methods and DCSD predict vibrational constants which are close to the
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CCSD(T) and empirical values.

Cl2

Coupled-cluster theory again produces a maximum at long bond lengths for Cl2, in

part due to the breakdown of the triples correction (Fig. 5.3). Both renormalised QV

methods follow the MCRI+Q energy, with an over prediction in energy from 3.0 Å.

The energy for both these methods does start to fall slowly at 4.3 Å, the difference

between here and 6.5 Å being 1.8 × 10−3 hartree. This can be explained by the non-

variational nature of the QV methods; the energy is not bounded from below by the

exact Schrödinger energy.
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Figure 5.3: Calculated potential energy curves for Cl2 with extrapolated cc-pVQZ:cc-

pV5Z basis set.

The renormalised QV methods and MRCI converge to a larger asymptotic limit

compared to OQVCCD(T) and MRCI+Q. The size consistency error for all the QV

methods is an order of magnitude greater than the MR methods.

Again, all the QV methods predict vibrational constants that are close to the

CCSD(T) values.

AlO−

Fig. 5.4 shows the potential energy curve for AlO−, formally a singly bonded anion.

CCSD(T) fails when the MR nature of the the system becomes too large at around

3.4 Å. The QV methods are able to dissociate the molecule and lead to an asymptotic
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HCl BCl Cl2 AlO− S2 P2 SiO

CCSD(T) 2996.1 841.3 561.4 971.1 699.0 786.7 1241.8

CCSD(T)+ 2997.1 841.3 561.4 972.8 702.1 792.9 1249.0

OQVCCD(T) 2999.0 842.6 565.2 978.6 707.8 797.2 1251.0

OQVCCDR(T) 3002.0 843.2 567.5 979.9 713.8 801.6 1253.1

OQVCCDAR(T) 3002.0 843.1 567.3 983.4 713.9 801.9 1252.8

DCSD 3001.8 844.2 564.1 987.4 700.2 787.9 1263.4

MRCI 2992.8 869.7 559.2 958.9 693.6 778.8 1227.8

MRCI+Q 2989.8 856.0 556.0 951.4 697.4 776.6 1222.0

Empirical 2991.0 839.1 559.7 - 699.7 1241.6 780.8

Table 5.1: ωe/cm
−1 with extrapolated cc-pVQZ:cc-pV5Z basis set. Empirical values

taken from the NIST Chemistry WebBook. [118]

limit. The renormalised triples methods are bounded by the MRCI and MRCI+Q

energies, but lead to an asymptotic limit at around -316.985 hartree, which is lower

than the MRCI+Q energy by 0.02 hartree. All the QV and MR methods predict a lower

asymptotic limit, producing a size consistency errors that are comparable in magnitude,

however the cluster correction on MRCI appears to increase this error by an order of

magnitude.

DCSD follows the MRCI+Q curve well, however flattens off earlier. After 3.1 Å it

becomes difficult to converge the cc-PVQZ and cc-PV5Z answer to the same state and

therefore interferes with the extrapolation.

All QV methods predict spectroscopic constants in agreement with CCSD(T).

HCl BCl Cl2 AlO− S2

OQVCCD(T) -0.019280 -0.000896 -0.020608 -0.022369 0.013717

OQVCCDR(T) 0.004131 0.012843 0.012595 0.002785 0.055709

OQVCCDAR(T) 0.004121 0.012866 0.012609 0.002837 0.057487

MRCI -0.000213 0.030943 0.004076 -0.007330 0.018244

MRCI+Q 0.000009 0.034257 -0.001939 -0.021658 0.004454

Table 5.2: Size consistency error / hartree with extrapolated cc-pVQZ:cc-pV5Z basis

set.
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Figure 5.4: Calculated potential energy curves for AlO− with extrapolated cc-pVQZ:cc-

pV5Z basis set.

5.1.3 Multiply bonded molecules

Dissociation of doubly bonded molecules present another challenge. The S2 molecule,

an analogue of O2, is investigated.

S2

For the Σ+
g excited state of S2, the QV methods are able to dissociate the molecule

and produce a qualitatively correct PEC. Renormalised QV methods predict a slightly

higher asymptotic value than MCRI, while the standard triples flattens out to a limit

above the MRCI+Q energy. The multireference energies are quicker to reach an asymp-

totic limit compared to the renormalised QV methods, which is characteristic of ionic

character in the wavefunction at long bond lengths. This behaviour is also mimicked

with the DCSD method leading to very similar PECs beyond the equilibrium bond

length. Interestingly the standard triples QV method does not exhibit this ionic char-

acter and follows the MRCI+Q energy well, nevertheless its energy gradually begins to

fall at longer bond lengths.

The QV and MR methods over predict the dissociation energy with the largest size

consistency error being produced by OQVCCDAR(T) of 0.057 hartree. The cluster

correction to MRCI reduces this error by an order of magnitude compared to MRCI

without the correction.

All QV methods predict larger vibrational constants than is expected from the



PECs and diatomic constants 94

1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4
RS S / Ångstrom

795.47

795.42

795.37

795.32
En

er
gy

 / 
ha

rtr
ee

CCSD(T)
OQVCCD(T)
OQVCCDR(T)
DCSD
MRCI
MRCI+Q

Figure 5.5: Calculated potential energy curves for S2 with extrapolated cc-pVQZ:cc-

pV5Z basis set.

CCSD(T); the renomalised methods both deviate from this value by around 15 cm−1.

P2

To break a triple bond, excitations up to hextuples should be included in the wavefunc-

tion expansion. CCSD(T) does not disprove this as the energy shows the unphysical

maximum in Fig. 5.6. The QV results show a marked improvement even for these chal-

lenging systems. This is most likely due to the implicit inclusion of higher excitations

via the U− q
2 tensors.

The QV energy for P2, an analogue of N2, shows it is able to predict a qualitatively

correct PEC, even in large non-dynamic correlation regimes. The standard triples

correction appears to perform better in this case, as the energy closely follows the

MRCI energy, whereas the renormalised methods, including DCSD, exhibit strong ionic

character, leading to larger asymptotic limits.

The QV methods all over predict the first vibrational constant; in this respect

CCSD(T) provides a better estimate of this constant.

SiO

Again, all the QV methods can dissociate SiO without the energy dropping towards

negative infinity, however all the triples schemes predict a higher energy at long bond

lengths compared to MRCI (Fig. 5.7). The energy is no longer bounded by the MRCI
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Figure 5.6: Calculated potential energy curves for P2 with extrapolated cc-pVQZ:cc-

pV5Z basis set.
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Figure 5.7: Calculated potential energy curves for SiO with extrapolated cc-pVQZ:cc-

pV5Z basis set.
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and MRCI+Q result. The standard (T) correction produces a very similar answer to

the renormalised methods.

DCSD appears to flatten off to an asymptotic limit earlier than the MR methods.

No further points could be calculated as the energy jumps to an excited state at beyond

2.5 Å.

The QV methods over predict the first vibrational constant by around 10-12 cm−1

compared with the CCSD(T) result.

Breaking two single bonds

Breaking more than one chemical bond at a time presents another challenge to single

reference methods. As an accompaniment to the diatomic molecules, the PECs for the

BeCl2 were calculated and compared. This was achieved by symmetrically moving the

Cl atoms away from the central Be atom (Fig. 5.8).
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Figure 5.8: Calculated potential energy curves for BeCl2 with extrapolated cc-pVQZ:cc-

pV5Z basis set.

CCSD(T) again forms the familiar maximum at around 3.5 Å, whereas MRCI and

DCSD dissociate to a flat limit above the MRCI+Q energy. The QV methods appear

to also flatten out to asymptotic limits, however it became difficult to converge to the

QV solution past 3.9 Å.
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5.1.4 Conclusions

This investigation has provided more cases where the QV methods behave well when

dissociating and breaking apart singly and multiply bonded molecules. The sharp

maximum that is encountered when calculating PECs with CCSD(T) is avoided in

all cases with the QV methods, apart from OQVCCD(T), which is susceptible to the

breakdown of the non-iterative (T) correction. DCSD has also been shown to dissociate

these diatomics while avoiding the unphysical maximum of CCSD(T).

The QV methods can provide reasonable estimates to the vibrational wavenum-

ber and first anharmonicity constants, though, as has previously been recognised, they

do not perform as well as CCSD(T). CCSD(T) generally behaves well in the immedi-

ate region of PEC minima and is therefore well suited to calculating these diatomic

constants.

Estimates of the QV size consistency error have shown that there are large energy

differences between the apparent asymptotic limit and the energy of the separated

atoms. From the molecules examined, the largest difference is around 0.057 hartree

for OQVCCDAR(T) and S2. Several errors can account for these results. Firstly, it

becomes difficult to converge the QV energy at bond lengths longer than the ones

presented in the PECs, therefore the energy may not have completely converged to a

limit. Another error must occur by using RCCSD(T) on the separated atoms instead

of a QV method. Both of these problems are unfortunately unavoidable.

Finally, unpromising behaviour has been detected in the PECs of the multiply

bonded molecules. The renormalised QV methods tend to over predict the energy

at longer bond lengths for molecules like S2, P2 and SiO. The same results are seen

with DCSD for S2 and P2. This is characteristic of residual ionic character in the

wavefunction; a remnant from the single-reference wavefunction.

5.2 Determination of activation and reaction en-

ergies

The determination of activation and reaction energy changes is of great importance

to theoretical chemistry. With an accurate description of the reactive potential energy

surface, the kinetics and dynamics of the reaction can be investigated. With the energy

changes of reaction, mechanistic pathways can be developed and intermediate species

identified.

The determination of the activation energy can potentially pose a problem for
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Traditional Coupled-Cluster methods such as CCSD(T). This is due to the fact that

the transition state may possess multireference character owing to the often strained

nature of the system. Therefore, a simple single-reference approach may not fully

capture the non-dynamic correlation effects.

Instead of examining individual chemical reactions, large databases of pre-defined

molecules and reactions can be employed. This allows the determination of statistical

measurements for the quantities being calculated and thereby provide a more reliable

picture of how different methods perform against each other.

In this current work, six different chemical databases are employed to determine the

effects that the QV and TCC methods have when calculating activation and reaction

energies.

5.2.1 Computational details

Two closed-shell databases were selected for the calculation of activation energies (Ea):

• CRBH20 contains 20 cycloreversion transition states, the reverse processes of

cycloaddition reactions. These include the fragmentation of 5-membered het-

rocyclic rings (10 dioxazoles and 10 oxathiazoles) into cyanate and carbonyl

products [121]. These reactions also involve the migration of a hydrocarbon

or hydrofluorocarbon substituent across a C=N bond.

• BHPERI consists of 26 transition states for pericyclic reactions compiled by

Goerigk and Grimme. [122] These include 10 pericylic reactions with unsatu-

rated hydrocarbons such as an electrocyclic reaction of cyclobutene, Diels-Alder

reactions with cyclopentadiene and cycloreversions of large molecules such as cis-

triscyclopropacyclohexane. [123] Also included are three classes of 1,3-dipolar cy-

cloadditions, involving diazoniium, nitrilium and azomethine betanines to form

5-membered hetrocyclic rings. [124] Finally, 7 Diels-Alder reactions are incor-

porated, involving the addition of ethylene to different 5-membered hetrocy-

cles. [125]

Two databases were chosen to investigate solely reaction energies (∆E):

• ISOMER20. A closed-shell subset of this database was constructed from the

20 original organic isomerisation reactions; [126] this now consists of reaction

energies for 16 endothermic reactions. These include isomerisations of small

molecules like hydorgen cycanide and isocyanic acid, and larger molecules like

ketene and acetaldehyde.
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• DARC consists of 14 exothermic Diels-Alder reactions. [122, 127] These in-

clude reactions of dienes like butadiene and cyclopentadiene with ethene, ethyne,

maleine and maleinimide.

Finally two databases were chosen that consist of both activation and reaction

energies:

• O3ADD6 contains 2 reactions with the addition of ozone to ethene and ethyne.

[122,128] The database is comprised of 2 barrier heights, 2 reaction energies and

2 van der Waals (vdW) energies for the associated ozonide complex.

• CRIEGEE is a newly constructed database which comprises of a reaction path-

way, as shown in Fig. 5.9, involving a Criegee intermediate. This pathway con-

sists of 3 sequential transition states and so in total provides a set of 3 activation

energies and 1 exothermic and 2 endothermic reaction energies.

Figure 5.9: Mechanism for the CRIEGEE database

In total, these databases contain 153 distinct chemical species that are used to

calculate 51 activation energies and 37 reaction energies.

A framework exists within Molpro [14] for carrying out calculations with databases.

This employs the XML language to mark-up the molecular geometries and define re-

actions. This facilitates the batch calculation of the single point energies for all the
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molecules in the database. The energy differences and related statistics can also be

calculated for each of the defined reactions using Python scripts that are supplied with

Molpro.

This framework was applied to the six databases using MP2, CCSD, CCSD(T),

DCSD, OQVCCD, OQVCCD(T), OQVCCDR(T) and OQVCCDAR(T). The mean,

standard deviation (σ), mean absolute deviation (MAD) and absolute maximum dif-

ference were calculated for each method relative to OQVCCDAR(T). Several different

basis sets were used, however only the largest basis set results are presented here.2 For

the O3ADD6 database, the systems were small enough to use CCSDT as the benchmark

and investigate the effects of the full inclusion of triple excitations. These calculations

were carried out using Molpro’s interface to the MRCC program of M. Kallay. [130]

5.2.2 Results and discussion

O3ADD6

The energy differences for the defined reactions in the O3ADD6 database are displayed

in Table 5.3. The values reported, apart from the CCSDT results, are differences from

the CCSDT energies.

The first point to note is the large differences of MP2, CCSD and OQVCCD with

the thermochemistry predicted by CCSDT. MP2 greatly over predicts the reaction

energies of the adduct formation by 40.6 and 134.0 kJ mol−1. CCSD and OQVCCD

both produce more negative reaction energies by around 30 kJ mol−1. DCSD, on the

other hand, produces very impressive results for both reaction energies which are within

chemical accuracy compared to CCSDT.

The non-iterative (T) correction decreases these differences substantially. For CCSD(T),

the differences for the adduct reaction energies are below 1 kJ mol−1. OQVCCD(T)

still predicts a more negative energy by around 5 kJ mol−1 for both reactions. The

effect of the renormalisation is to decrease this quantity even more by 3.5 kJ mol−1;

the AR(T) decreases this further by 0.03 kJ mol−1.

For the van der Waals (vdW) energies, all methods, apart from MP2 predict values

close to CCSDT. DCSD excels here by producing the smallest differences. CCSD and

OQVCCD both produce larger energies, with a maximum difference of 1.5 and 1.7 kJ

mol−1 respectively for reaction 4.

The effect of the standard triples correction is to reduce these quantities further.

OQVCCD(T) produces more negative vdW energies than CCSD(T). These are closer to

2Please see Ref. [129] for all single point energies, statistics and Molpro inputs.
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C2H2 + O3 C2H4 + O3

Method 1. vdW 2. TS 3. Adduct 4. vdW 5. TS 6. Adduct

CCSDT -9.656 33.812 -259.425 -11.202 16.119 -226.177

CCSD(T) -0.392 -3.264 -0.714 -0.546 -2.929 -0.904

OQVCCD(T) -0.235 -2.184 -4.926 -0.242 -1.703 -5.173

OQVCCDR(T) -0.219 -1.483 -7.759 -0.133 -0.949 -8.668

OQVCCDAR(T) -0.217 -1.468 -7.789 -0.130 -0.934 -8.699

MP2 -4.234 -13.624 40.638 98.392 83.326 134.089

CCSD 0.679 5.494 -26.672 1.502 5.735 -31.378

DCSD 0.038 2.639 -0.010 -0.024 1.910 -2.981

OQVCCD 0.791 6.906 -30.165 1.740 7.038 -34.866

Table 5.3: Energy differences with CCSDT / kJmol−1 for the O3ADD6 database with

cc-pVDZ basis set. In the case of CCSDT, the actual energies are reported.

the CCSDT reference by around 0.3 kJ mol−1 for reaction 4. The renormalisation serves

to decrease these quantities again; for the second reaction OQVCCDAR(T) lowers this

by around 0.1 kJ mol−1

The calculation of the activation energies shows larger differences than the vdW

energies. MP2 produces inconsistent results; it over estimates the first Ea by 13.6 kJ

mol−1 and under estimates the second by 83 kJ mol−1. CCSD and OQVCCD improve

upon these results; CCSD predicts higher barrier heights of 5.5 and 5.7 kJ mol−1 for

each reaction, while OQVCCD increases this difference to around 7 kJ mol−1. DCSD

shows good agreement to CCSDT.

The effect of the triples correction is to lower these barrier heights below the full

triples result. OQVCCD(T) predicts larger barrier heights than CCSD(T) by around

0.6 kJ mol−1 for the second reaction. Renormalisation corrects this lowering by the

(T) correction and increases the barrier heights again.

The QV methods with triples corrections produce the smallest differences compared

to CCSDT, with OQVCCDAR(T) differing by around 1 kJ mol−1 for both reactions.

The activation energies that are calculated are in between the CCSD(T) and CCSDT

results. The QV methods appear to correct for the lowering of the barrier height by

the (T) correction.
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CRBH20

The statistics for the CRBH20 database with an OQVCCDAR(T) reference are shown

in Table 5.4. The largest deviation occurs for MP2 with a mean difference and MAD of

23 kJ mol−1. OQVCCD shows the next largest deviation with a mean and MAD of 10.4

kJ mol−1. The triples correction for the QV methods and CCSD clearly make a large

contribution to the overall activation energies. DCSD however, shows one of the small-

est deviations from OQVCCDAR(T), apart from OQVCCD(T) and OQVCCDR(T),

with a mean difference of 1.98 kJ mol−1.

Method Mean σ MAD Max

MP2 23.005 3.513 23.005 30.514

CCSD 6.587 2.182 6.587 10.511

DCSD 1.980 0.968 1.986 3.315

OQVCCD 10.369 2.643 10.369 15.170

CCSD(T) -3.250 0.876 3.250 5.345

OQVCCD(T) -0.748 0.246 0.748 1.209

OQVCCDR(T) -0.013 0.003 0.013 0.021

Table 5.4: Ea statistics / kJ mol−1 for the CRBH20 database with cc-pVTZ basis set.

Overall, the triples has the effect of lowering the activation energy. The QV methods

predict higher activation energies than CCSD(T), with a mean difference approaching

3.4 kJ mol−1. The effect of the renormalised triples corrections is to increase the energy

barrier. The asymmetric-renormalised triples leads to further increases, though only

by around 0.01 kJ mol−1 when compared to OQVCCDR(T).

The largest individual reaction difference of 5.4 kJ mol−1 occurs for reaction 11,

which involves the simplest oxathiazole ring. However, there are no energy differences

that approach 5 kJ mol−1 for the remaining nine oxathiazole rings.

The largest difference for OQVCCD of 15 kJ mol−1 occurs for reaction 3, which

is an ethyl substituted dioxazole ring. The second largest energy difference occurs for

reaction 14; a fluromethyl substituted dioxazole ring. There appears no correlation

between these large energy differences and the two types of hetrocyclic ring.

BHPERI

Table 5.5 shows the results for the BHPERI database.
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Large mean differences are observed for MP2, CCSD, DCSD, OQVCCD. For this

database, MP2 completely under predicts the barrier heights by a mean of 33.9 kJ

mol−1; the largest difference occurs for reaction 9 with an error of 55 kJ mol−1.

OQVCCD and CCSD both show similar differences, each over predicting the barrier

height, with the largest difference also occurring for reaction 9 (a Diels-Alder reaction

involving two cyclopentadienes).

Method Mean σ MAD Max

MP2 -33.937 10.780 33.937 55.070

CCSD 17.517 4.337 17.517 25.257

DCSD 9.044 2.846 9.044 14.641

OQVCCD 18.241 4.648 18.241 26.170

CCSD(T) -2.881 1.028 2.881 5.003

OQVCCD(T) -1.454 0.470 1.454 2.259

OQVCCDR(T) 0.017 0.175 0.050 0.873

Table 5.5: Statistics for the BHPERI database with cc-pVTZ basis set

The triples corrections again lead to a lowering of the barrier heights. CCSD(T)

produces answers that are close to OQVCCDAR(T), with a mean difference of -2.9

kJ mol−1. In general, the QV methods lead to a increase of the activation energies.

Differences greater than 4 kJ mol−1 occur for reactions 11 and 14 (1,3-dipolar cycload-

ditions).

The effects of the renormalised triples are to increase the barrier heights slightly

by a mean of 1.4 kJ mol−1. The asymmetric-renormalised triples leads to a further

increase compared to the symmetric-renormalisation. The difference between these

two methods is small; the largest difference being 0.9 kJ mol−1.

DARC

Table 5.6 presents the statistics for the reaction energies of the DARC database. Over-

all, these results do not show strong derivations from the OQVCCDAR(T) energies

unlike the activation energies in Tables 5.4-5.5. Again, the largest difference occurs

with MP2, which tends to under predict the energy change with a mean difference of

-13.9 kJ mol−1. The maximum absolute difference is around 23.7 kJ mol−1, far beyond

the 4 kJ mol−1 of ‘chemical accuracy’.

DCSD shows the next largest difference after MP2, with a mean difference of 6.3 kJ
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mol−1. OQVCCD shows the closest match to the OQVCCDAR(T) energies, compared

to the other methods without triples corrections.

Method Mean σ MAD Max

MP2 -13.868 7.892 13.868 23.718

CCSD 2.931 1.799 2.931 5.869

DCSD 6.251 1.203 6.251 8.509

OQVCCD 2.451 1.859 2.618 5.124

CCSD(T) 1.623 0.383 1.623 2.017

OQVCCD(T) 0.737 0.285 0.737 0.941

OQVCCDR(T) 0.005 0.002 0.005 0.009

Table 5.6: ∆E statistics / kJ mol−1 for the DARC database with cc-pVTZ basis set.

OQVCCDAR(T) predicts more exothermic reaction energies than all the methods,

though OQVCCDR(T) produces results that are very similar; the mean difference being

0.005 kJ mol−1. CCSD(T) also shows little deviation with a mean difference of 1.6 kJ

mol−1. The renormalised triples correction serves to decrease the reaction energies by

about 1 kJ mol−1 compared to the standard (T) correction.

ISOMER20

Table 5.7 shows the statistics for a close-shell subset of the ISOMER20 database. All

the methods give a mean difference within 1 kJ mol−1 of the reference values, apart

from MP2. However, CCSD and OQVCCD have large σ values, indicating a large

distribution of values that happen to cancel out each other when the mean is taken.

Large absolute maximum differences for both methods occur for the isocyanic acid

isomerisation to fulminic acid (reaction 8).

There is also a small mean difference for DCSD, however this is also due to a wide

spread of relative results.

Overall, the QV methods with the triples predict more endothermic reaction ener-

gies than CCSD(T) and DCSD. There is little difference between the symmetric- and

asymmetric-renormalisation corrections. The renormalisation does serve to slightly

increase the reaction energies.
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Method Mean σ MAD Max

MP2 8.599 14.196 12.550 33.652

CCSD 0.618 5.554 3.905 12.665

DCSD -0.270 2.956 2.272 6.262

OQVCCD 0.586 6.294 4.353 14.355

CCSD(T) -0.324 1.441 0.991 2.910

OQVCCD(T) -0.214 0.519 0.381 1.110

OQVCCDR(T) -0.001 0.007 0.005 0.015

Table 5.7: ∆E statistics / kJ mol−1 for a subset of the ISOMER20 database with

cc-pV5Z basis set.

CRIEGEE

Tables 5.8-5.9 show the statistics for the CRIEGEE database. For the activation ener-

gies, all methods have small mean differences apart from MP2, CCSD and OQVCCD.

For OQVCCD, the barrier height for TS1 differs by 16.7 kJ mol−1. It is this reaction

that also produces the largest errors for CCSD. Again, DCSD produces surprisingly

close results for a method without any triples correction.

Reaction Mean σ MAD Max

MP2 6.648 9.824 9.702 13.656

CCSD 4.474 8.132 5.157 13.815

DCSD -0.442 2.588 2.138 2.544

OQVCCD 6.577 8.809 6.577 16.696

CCSD(T) -1.617 1.455 1.617 3.293

OQVCCD(T) -0.157 0.579 0.391 0.822

OQVCCDR(T) -0.005 0.007 0.005 0.013

Table 5.8: Ea statistics / kJ mol−1 for the CRIEGEE database with cc-pV5Z basis set.

CCSD(T), OQVCCD(T) and OQVCCDR(T) all produce similar answers to OQVCD-

DAR(T). In general, the QV methods produce higher barrier heights than CCSD(T).

The effect of the renormalised triples is to increase this quantity. The largest difference

with CCSD(T) occurs for reaction 1.

Table 5.9 presents the statistical results for the reaction energies. Again, from the

mean differences, all the methods appear to be in good agreement. However MP2 and
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Reaction Mean σ MAD Max

MP2 -3.505 18.351 12.431 23.905

CCSD 0.435 6.224 4.540 7.462

DCSD -1.787 3.156 1.971 5.421

OQVCCD 0.663 9.407 6.728 11.087

CCSD(T) -0.301 4.614 3.113 5.121

OQVCCD(T) -0.034 0.689 0.493 0.790

OQVCCDR(T) -0.001 0.010 0.007 0.013

Table 5.9: ∆E statistics / kJ mol−1 for the CRIEGEE database with cc-pV5Z basis

set.

OQVCCD show large deviations for the first and third reactions. On average, compared

to CCSD(T), the QV methods produce more endothermic reaction energies for the first

and second reactions, while producing a more exothermic energy for the third reaction.

The largest difference for CCSD(T) again occurs for reaction 1 with a lower energy of

5.1 kJmol−1.

5.2.3 Conclusions

There a several conclusions that can be drawn from the statistical information provided.

Firstly, unsurprisingly, MP2 performs poorly for the calculation of accurate activation

and reaction energies. Differences from the OQVCCDAR(T) answer of 23-50 kJ mol−1

have been observed for all databases, while a difference of 134 mol−1 was calculated

in the O3ADD6 database, when compared to CCSDT. These errors stem from the

inability of MP2 to properly describe the dynamic and non-dynamic correlation effects

in these systems.

OQVCCD has also been shown to perform poorly, especially for the calculation of

activation energies. It is therefore vital to included a triples correction to OQVCCD

to produce reliable results. DCSD has produced impressive answers for the O3ADD6

and CRBH20 databases, with differences below chemical accuracy. For the BHPERI

database, the errors increased, but were still below those of OQVCCD. For the cal-

culation of reaction energies, OQVCCD preformed better for DARC, whereas DCSD

performed better with the ISOMER20 subset.

In general, use of the QV methods leads to an increase in the activation energies

and an increase in absolute reaction energies when compared to CCSD(T). From the



107 Benchmarking and applications

mean differences and standard deviations, these methods produce higher barrier heights

by around 2–3 kJmol−1. However, there are individual barrier heights that CCSD(T)

underestimates by 4–5 kJmol−1. These transition states exhibit some non-dynamical

correlation effects, which are, however, generally small. For the calculation of reaction

energies, CCSD(T) and the QV methods are in agreement, with differences approaching

3 kJmol−1. When compared to CCSDT, the effect of the QV methods are to correct for

the limitations of the non-iterative triples and increase the barrier height. This error

is again reduced with the renormalised triples corrections.

5.3 Asymmetric-renormalised triples correction

The symmetric and asymmetric renormalised triples corrections (which define the

OQVCCDR(T) and OQVCCDAR(T) methods) have previously been discussed in Chap-

ter 3. Numerical tests have been carried out to compare these two methods and deter-

mine whether the symmetric approximation is valid, i.e. if
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5.3.1 Potential energy curves

Plotted in Fig. 5.10-5.11 are the PECs for Cl2 and P2 respectively. For most of the

diatomic molecules investigated in Section 5.1, there appears to be no discernible dif-

ference between the OQVCCDR(T) and OQVCCDAR(T) energies, thereby producing

graphs like Fig. 5.10, where the OQVCCDAR(T) energy overlays the OQVCCDR(T)

energy. However, a small difference in energy can be observed for triply bonded P2

towards the end of the curve as both methods approach the asymptotic limit.

The differences in energy can be seen more clearly in Fig. 5.12-5.14 which show the

differences between the OQVCCDAR(T) and OQVCCDR(T) energies. For Cl2, the

differences in energy are around 1×10−5 hartree and so are minimal throughout the

PEC. The difference rises to a maximum at around 3.4 Å before falling to an apparent

limiting difference at longer bond lengths.

This behaviour is not observed for P2, where the energy difference is of the order

of 1×10−3 hartree, i.e. in the range of chemical accuracy (the largest difference being

6.8 kJ/mol at 3.8 Å). After 3.8 Å it becomes difficult to converge the OQVCCD energy

and so it is not possible to determine if the energy difference converges to a limiting

value at longer bond lengths.
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Figure 5.10: Calculated potential energy curves for Cl2 with extrapolated cc-pVQZ:cc-

pV5Z basis set.
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Figure 5.11: Calculated potential energy curves for P2 with extrapolated cc-pVQZ:cc-

pV5Z basis set.
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Figure 5.12: Energy difference between OQVCCDAR(T) and OQVCCDR(T) for the

stretching of Cl2 with extrapolated cc-pVQZ:cc-pV5Z basis set.

1.5 2.0 2.5 3.0 3.5
RP P / Ångstrom

0.0

0.5

1.0

1.5

2.0

2.5

E O
QV

CC
DA

R(
T)

E O
QV

CC
DR

(T
) /

 h
ar

tre
e

1e 3

Figure 5.13: Energy difference between OQVCCDAR(T) and OQVCCDR(T) for the

stretching of P2 with extrapolated cc-pVQZ:cc-pV5Z basis set.
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Energy differences have also been calculated for three more triply bonded molecules

(N2, CO and SiO, Fig. 5.14-5.16), to investigate the effect of the asymmetric-renormalised

triples.

The energy differences for the N2 PEC mirrors the behaviour observed for P2; as the

bond is stretched, the energy difference becomes larger, of the order 1×10−3 hartree.

CO and SiO replicate this behaviour, however the differences at the largest distances

are an order of magnitude less than P2 or N2. For SiO, the energy differences appear

to be approaching a maximum.
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Figure 5.14: Energy difference between OQVCCDAR(T) and OQVCCDR(T) for the

stretching of N2 with extrapolated cc-pVQZ:cc-pV5Z basis set.



111 Benchmarking and applications

1.0 1.2 1.4 1.6 1.8 2.0
RC O / Ångstrom

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E O
QV

CC
DA

R(
T)

E O
QV

CC
DR

(T
) /

 h
ar

tre
e

1e 4

Figure 5.15: Energy difference between OQVCCDAR(T) and OQVCCDR(T) for the

stretching of CO with extrapolated cc-pVQZ:cc-pV5Z basis set.
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Figure 5.16: Energy difference between OQVCCDAR(T) and OQVCCDR(T) for the

stretching of SiO with extrapolated cc-pVQZ:cc-pV5Z basis set.
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5.3.2 Spectroscopic constants

The spectroscopic constants for third-row diatomic molecules were calculated with

OQVCCDR(T) and OQVCCDAR(T) using the method outlined in Section 5.1. The

results are presented in Table 5.10.

All the OQVCCDAR(T) results are similar OQVCCDR(T) with only small differ-

ences appearing for ωe and ωexe. The largest differences in values occurs for AlO−

where the OQVCCDAR(T) ωe is 3.51 cm−1 larger and ωexe is 0.55 cm−1 larger. Equi-

librium bond length and energy are both similar with small differences that are no

larger than the other results.

System Method Re/Å ωe/cm
−1 ωexe/cm

−1 En/hartree

HCl OQVCCDR(T) 1.276 3002.0 53.3 -460.376699

OQVCCDAR(T) 1.276 3001.9 53.0 -460.376694

BCl OQVCCDR(T) 1.721 843.2 5.4 -484.502851

OQVCCDAR(T) 1.721 843.1 5.3 -484.502847

Cl2 OQVCCDR(T) 1.987 567.5 2.6 -919.505526

OQVCCDAR(T) 1.987 567.3 2.5 -919.505519

AlO− OQVCCDR(T) 1.643 979.9 4.8 -317.227567

OQVCCDAR(T) 1.644 983.4 5.3 -317.227557

S2 OQVCCDR(T) 1.900 713.8 2.8 -795.484077

OQVCCDAR(T) 1.900 713.9 2.8 -795.484063

P2 OQVCCDR(T) 1.893 801.6 2.7 -681.844750

OQVCCDAR(T) 1.893 801.9 2.7 -681.844735

SiO OQVCCDR(T) 1.513 1253.1 4.4 -364.248231

OQVCCDAR(T) 1.513 1252.8 3.9 -364.248219

Table 5.10: Comparison between OQVCCDR(T) and OQVCCDAR(T) spectroscopic

constants with extrapolated cc-pVQZ:cc-pV5Z basis set.

For P2 where significant differences in energy where seen at long bond lengths,

there appears to be no substantial difference in any of the diatomic properties. This

is because these properties rely on a description of the minimum well, which both

methods describe similarly as can be seen in Fig. 5.13.
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5.3.3 Harmonic frequencies

A comparison of the calculated 1Ag normal modes for the halides was carried out with

OQVCCDR(T) and OQVCCDAR(T). This procedure used central differences to con-

struct the Hessian matrix. All calculations except At2 were carried out at equilibrium

bond lengths as defined in the NIST Chemistry WebBook [118]. No experimental data

exists for At2, so the bond length of 3.11 Å was taken from a DFT/B3LYP3 calculation

with a Douglas-Kroll Hamiltonian. These results are presented in Table 5.11.

Molecule OQVCCDR(T) OQVCCDAR(T)

F2 946.97 946.97

Cl2 581.87 581.88

Br2 341.18 341.18

I2
a 230.31 230.31

At2
a 89.54 89.54

a Calculated with cc-pVTZ-PP basis set.

Table 5.11: Harmonic vibrational wavenumbers cor-

responding to the 1Ag normal modes / cm−1 calcu-

lated with the cc-pVTZ basis set.

All the vibrational wavenumbers are exactly the same for both methods, except for

Cl2 where the difference is 0.01 cm−1.

5.3.4 Computational time

The computational times for the calculation of the standard (T) correction and the

asymmetric-renormalised (T) correction (AR(T)) were measured for a variety of alkanes

and basis sets. The ratios of these timings are presented in Table 5.12. A number < 1

indicates a slower time to calculated the AR(T) correction.

For small systems and small basis sets, the time taken to calculate AR(T) is com-

parable to the standard (T); for methane at cc-pVDZ and cc-pVTZ, the ratio is close

to 1.0. However as the basis set and system size are both increased, the ratio converges

to around 0.5. This is as expected as the AR(T) code contains double the number of

tensor contractions that scale as O(N7) than the standard (T) code. Nevertheless, in

total, the number of tensor contractions in AR(T) is less than double compared to (T)

and so will never take exactly twice as long to compute.
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Basis Methane Ethane Propane Butane Pentane Hexane

cc-pVDZ 0.76 0.44 0.61 0.86 0.52 0.57

cc-pVTZ 0.87 0.66 0.62 0.63 0.55 0.57

cc-pVQZ 0.65 0.54 0.55 0.52 - -

cc-pV5Z 0.64 0.56 0.52 - - -

Table 5.12: Ratios of the (T) and AR(T) code timings.

5.3.5 Discussion and conclusions

From the results presented in this and the previous sections, there appears to be little

difference between the symmetric- and asymmetric-renormalised triples corrections.

The energies that are produced differ slightly, however, they are not the same. For

all the diatomic cases and database calculations, OQVCCDAR(T) predicts a higher

energy than OQVCCDR(T), which suggests,

〈
Φ0

∣∣∣2T̂
†
2V̂

∣∣∣Φabc
ijk

〉 〈
Φabc
ijk

∣∣∣V̂T̂2

∣∣∣Φ0

〉
> 2

〈
Φabc
ijk

∣∣∣V̂1T̂2

∣∣∣Φ0

〉
. (5.2)

For the triply bonded molecules like P2 and N2, the energy difference between the two

corrections become larger at longer bond lengths. In fact the two corrections produce

differences that are larger than the 4 kJ mol−1 of chemical accuracy. However, around

the equilibrium well, both methods produce similar energies, which is reflected in the

diatomic constants results.

For other triply bonded diatomics like CO and SiO, the energy difference between

the two methods is of the order of 1×10−4 hartree and therefore within the limits of

chemical accuracy.

To conclude, the OQVCCDAR(T) method doesn’t appear to have many benefits

over OQVCCDR(T). The energies and vibrational wavenumbers that it produces are

very similar to OQVCCDR(T); the problem is that it takes nearly double the time

to compute the EAR(T) energy than ER(T). The only advantage of using OQVCC-

DAR(T) would be in the production of accurate dissociation curves for multiply bonded

molecules, or for benchmarking energies where the added computational expense was

acceptable.

5.4 Scaling and timings

Part of the current work has been to rewrite the QVCCD code, including the orbital

optimisation and triples corrections, as stated in Chapter 4. This was undertaken in
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the hope to make the code faster and therefore of more use to the scientific community.

This section will compare the new and old QVCCD implementations and see how

quickly they can calculate the energy of a system. It is also of use to compare how

fast QVCCD is compared to the TCC methods and determine their usability instead of

the CC methods. Finally, QVCCD formally scales as O(N6), with a large time spent

calculating terms involving DU, which scales as O(o3v3). It is this coupled with matrix

diagonalisations that makes QVCCD slower than CCD. The scaling pre-factor for these

terms will be estimated.

5.4.1 Comparisons with the old code

The timings for sections of the old and new QVCCD code were collected and compared.

These sections represent the most time intensive parts of an OQVCCD(T) calculation.

They include:

1. Construction of the U tensors.

2. Construction of qT (q = {1, 2}).

3. Construction of the orbital optimisation derivative, ∂E
∂φ .

4. Construction of the QVCCD residual, G.

5. Construction of the non-iterative (T) correction.

6. The total wall time of the calculation.

Single-point energy calculations were carried out on a selection of simple alkanes and

various different basis sets on one Intel Xeon (Westmere / X5660) 2.80GHz processor.

Only the cc-pVTZ and cc-PVQZ results will presented here as the other basis sets add

nothing new to these comparison.3

Ratios calculated with cc-pVTZ are presented in Table 5.13. A ratio > 1 means

that the new code is faster, while a ratio < 1 indicates the old code is faster.

Overall, the new code is significantly faster in all areas except the construction of

the (T) correction. Significant time savings have been made in the construction of the

U tensors, qT and G.

For the construction of the U tensors, the new code is around 4 times faster for

methane; this ratio increases to 4.8 for pentane. The residual equation is also con-

structed 2.8 times faster than the old code, however this ratio rises more quickly as the

size of the alkane is increased. For pentane, the new code is 6.2 times faster than the

old code. This represents a time difference of around 60 hours.

3Please see Ref. [131] for all timing data and input files.
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Code Methane Ethane Propane Butane Pentane

1. U 4.0 4.4 4.4 4.3 4.8

2. qT 15.2 45.4 50.3 50.0 60.4

3. ∂E
∂φ

1.0 1.2 1.2 1.0 1.1

4. G 2.8 5.7 5.6 5.6 6.2

5. (T) 0.5 0.9 0.8 0.8 0.9

6. Total time 1.9 6.3 6.4 6.4 7.2

Table 5.13: Ratios of the old code and new code timings calculated with cc-pVTZ basis.

The largest speed up occurs for the construction of the transformed amplitude

equations, which are 15.2 times faster than the old code for methane, but 60.4 times

faster for pentane. Unfortunately, the new QVCCD code spends about 4% of the time

in this section of the code, therefore these large ratios do not translate into large ratios

of the total time.

For the orbital optimisation derivative, the timings are generally the same, however

there is a slight increase of the ratios for ethane, propane and pentane. the new code

is on average 0.1 times faster than the old code.

The only area where the new code is slower is the construction of the (T) correction.

For methane, this takes twice as long to evaluate than in the old code, however this

ratio rises as the size of the alkanes is increased. The slowness of the (T) correction can

be contributed to summing over the virtual orbitals instead of the occupied. As there

are generally more virtual orbitals in a calculation, a sum over them will take longer

than a sum of the occupied orbitals. However this procedure takes up less memory and

so becomes more relevant when a calculation uses multiple processors with a maximum

amount of memory between them.

The overall total time taken shows that the new code is faster than the old one,

especially for larger molecules. For methane the speed up is 1.9, whereas for pentane

it is 7.2; this represents a time saving of 98 hours.

Similar speed ups are seen in the cc-pVQZ results in Table 5.14. Again, the new

code is generally faster. Significant savings are seen in the construction of theU tensors,

qT and G. All of these ratios increase as the size of the alkane increases. The largest

ratios occur again for the construction of qT , which is 70.4 times faster in the new code

for propane.

The (T) correction remains slower in the new code, but the ratio rises to 1.0 for

propane, meaning both codes take the same amount of time.
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Code Methane Ethane Propane

1. U 5.4 5.5 5.7

2. qT 43.9 54.6 70.4

3. ∂E
∂φ

1.7 1.8 1.5

4. G 5.5 5.8 7.0

5. (T) 0.6 0.9 1.0

6. Total time 5.0 6.1 7.5

Table 5.14: Ratios of the old code and new code timings calculated with cc-pVQZ basis.

As the basis set is increased, all the ratios are increased. Compared to the old code,

the new code becomes even faster as the basis set grows. This is shown clearly in the

total times take for propane. The new code is 6.4 times faster at cc-pVTZ and 7.5

times faster at cc-pVQZ. This last ratio represents a saving of around 60 hours.

5.4.2 Comparisons with the CC program

The QV methods are designed to be a substitute for the TCC methods when inves-

tigating multireference systems. In general, the QV methods will always be slower

than than CCD, CCSD and CCSD(T) due to the evaluation of the cubic VCCD terms.

However, it will be useful to compare TCC and QV methods to gauge how feasible it

is to replace a TCC calculation with a QV one.

QVCCD/CCD, OQVCCD/CCSD and OQVCCD(T)/CCSD(T) wall timing ratios

were taken for the collection of alkanes and different basis sets.

The QVCCD/CCD timing ratios are presented in Table 5.15. Overall, QVCCD

is slower than CCD, with larger timing ratios occurring for larger systems. QVCCD

takes 72 minutes longer than CCD to calculate the energy of hexane with cc-pVDZ.

As the basis set increases, the ratios appear to decrease; a calculation of methane with

cc-pV5Z basis takes nearly twice as long with QVCCD than CCD. However, this only

represents a difference of 7 minutes.

These trends are caused by the evaluation of DU terms and the diagonalisation of

matrices which occur in QVCCD, but not in CCD. From Chapter 4, QVCCD requires

the evaluation of at least thirteen O(o3v3) terms plus four matrix diagonalisations

per iteration. Four of the terms are carried out in the qTransform function, which

makes use of highly optimised matrix multiplication routines, yet must rely on native

C++ loops to evaluate the most expensive parts. There also exists O(o3v3) terms
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Basis Methane Ethane Propane Butane Pentane Hexane

cc-pVDZ 3.85 8.30 7.52 10.17 12.51 12.75

cc-pVTZ 5.05 6.22 7.34 9.41 10.61 11.15

cc-pVQZ 3.41 4.31 5.33 7.07 - -

cc-pV5Z 2.38 3.31 4.11 - - -

Table 5.15: Ratios of the QVCCD and CCD wall timings.

like
〈
Φij
ab

∣∣∣ĤT̂
2
2

∣∣∣Φ0

〉
which are part of the CCD amplitude equations, but absent in

QVCCD. However, there are around six of these terms and all of them make use of the

fast matrix multiplication routines. [102]

The QVCCD code must also evaluate CU terms that scale as O(o4v2). It is likely

that these terms contribute the increasing ratios as the number of occupied orbitals are

increased. Both set of terms serve to slow down the QVCCD code compared to CCD.

OQVCCD will always be slower than CCSD because of the integral transformation

it has to carry out every iteration. This is illustrated in the large ratios in Table 5.16.

For a small system and basis set, these ratios can be ignored as the absolute timings

are on the order of a 1-20 seconds. For larger basis sets and systems, these ratios

become important because as the time differences become larger. For example, CCSD

is around 5.7 times faster than OQVCCD in calculating the energy of propane/cc-pV5Z.

In absolute time differences, OQVCCD takes 41 minutes more to complete than CCSD.

Basis Methane Ethane Propane Butane Pentane Hexane

cc-pVDZ 12.15 10.60 7.44 13.35 13.17 13.70

cc-pVTZ 9.19 9.01 11.15 13.79 14.55 13.97

cc-pVQZ 6.62 7.37 8.60 8.18 - -

cc-pV5Z 4.35 6.45 5.74 - - -

Table 5.16: Ratios of the OQVCCD and CCSD wall timings.

The two trends observed for the QVCCD/CCD ratios are seen here as well, though

the OQVCCD ratios are slightly larger: As the system size increases, the ratios be-

come larger, however, as the basis set becomes larger (more virtual orbitals) the ratios

decrease in size.

For the OQVCCCD(T)/CCSD(T) ratios (Table 5.17), as the system size grows,

the ratios do not necessarily grow, however as the basis set is increased, the ratios do
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decrease. In general these ratios are lower than in Table 5.16, which is possible due to

the longer time lengths being calculated.

Basis Methane Ethane Propane Butane Pentane Hexane

cc-pVDZ 5.97 7.12 7.73 6.75 5.13 5.13

cc-pVTZ 3.22 2.89 2.50 2.65 2.46 3.61

cc-pVQZ 3.69 3.24 3.05 2.70 - -

cc-pV5Z 3.09 2.69 2.20 - - -

Table 5.17: Ratios of the OQVCCD(T) and CCSD(T) wall timings

For larger systems and basis sets, like propane/cc-pV5Z and pentane/cc-pVQZ,

CCSD(T) is around 2-3 times faster than OQVCCD(T). In absolute terms, an OQVCCD(T)

calculation of pentane/cc-pV5Z will take 38 minutes longer than CCSD(T).

To summarise, for single point energy calculations, the QVmethods seem to perform

well against TCC methods. For CCSD(T), these ratios appear to converge to around

2-3, meaning that the OQVCCD(T) calculation is 2-3 times slower than CCSD(T) (for

these systems). Nonetheless, with the use of multiple processors, the time to carry out

a QV calculation will fall and thereby make these methods more competitive with TCC

methods.

5.4.3 Scaling factors

The previous section showed that the QV methods are slower than their TCC counter-

parts, even though both formally scale as P ×O(N6). The difference is due to the size

of the pre-factor, P , and the terms that O(N6) includes.

Both CCD and QVCCD use the same code in Molpro to evaluate the set of external

integrals; this scales as O(o2v4). However, QVCCD has to evaluate terms that involve

DU and diagonalise matrices, both of which scale as O(o3v3).

With this in mind, if the number of occupied orbitals are kept the same, a polyno-

mial function that describes the timing of the QVCCD method can be written:

a0 + a1v + a2v
2 + a3v

3 + a4v
4 .

The problem is then to find the size of the a3 constant as this is the term that makes

QVCCD slower than CCD. This polynomial can only be used as a estimate to derive

a3. The QVCCD scaling function will also contain terms from the CU tensors that scale

as O(o4v2) which will ultimately effect the overall timing. Nevertheless, if a large basis

set is used, then the O(o3v3) terms will dominate.
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QVCCD calculations were carried out on ethane with cc-pVQZ and cc-pV5Z basis

sets to determined a3. From the resulting computational times, the timings for the

evaluation of the external integrals (KEXTA) were subtracted. These points were

plotted in seconds against the number of virtual orbitals and a cubic polynomial fitted

using a least squares fit. [31] From this, it can be estimated that QVCCD will be

9.30× 10−5 v3 seconds slower in the limit of a large basis set.

The same procedure can be carried out by including the KEXTA times. This gives,

8.97× 10−5 v3 + 5.33× 10−8 v4 . (5.3)

This shows that the evaluation of the O(o2v4) terms slightly decreases the scaling factor

for the O(o3v3) terms. But in this case, the the v3 terms still dominate the expression.

5.4.4 Parallel timings

As well as being more computationally expensive to run, the old QVCCD code does

not take advantage of parallel processors. The ITF generates fully parallel code and

sections of C++ code like qTransform have been written using MPI wrappers. These

have been used to split the loops over multiple processors and sum all the components

together, using a global sum, at the end of the function.

To examine the speed increase of using multiple processors, an energy calculation

for propane was carried out with the new OQVCCD(T) code on 2n Intel Xeon E5-2670

(Sandy Bridge) 2.60GHz processors, where n = {0, 1, 2, 3, 4, 5}. The CPU timings for

these calculations alongside CCSD(T) are shown in Fig. 5.17.

As the number of processors increase, there is a exponential decrease in the CPU

time for both methods. As the number of processors grow, both codes also show

convergence to an absolute speed limit. If the number of processors where increased

beyond 32, both codes would show little speed up.

Fig. 5.18 shows the absolute percentage change in CPU timings. By using two

processors, the OQVCCD(T) code is sped up by 54.3%, while the CCSD(T) code

becomes 65.4% faster. As the number of processors increases, this percentage decreases.

For 4 and 8 processors, both codes show similar percentage increases. For more

processors, the OQVCCD(T) code show smaller percentages of 7.6% and 11.8% for 16

and 32 processors respectively. CCSD(T) on the other hand continues to become 30-

40% faster as the number of processors are doubled. This shows that the CCSD(T) code

is parallelised more effectively than the OQVCCD(T) code. The main culprit for the

decrease in percentage change is qTransform; the most expensive step in OQVCCD(T).
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Figure 5.17: CPU timings for the energy calculation of propane with cc-pVQZ basis.
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Figure 5.18: Absolute percentage change in CPU time for the energy calculation of

propane with cc-pVQZ basis.

Though attempts have been made to make it run effectively in parallel, improvements

can obviously be made that could help to increase the speed.
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Chapter 6

Calculating reaction rates with

Instanton theory

6.1 Reaction rates and rate constants

Calculating and understanding the rate of a chemical reaction is of fundamental impor-

tance to chemistry. How quickly a reaction proceeds, under certain conditions, allows

for an understanding of macroscopic chemical change.

For a unimolecular reaction, the reaction rate and rate constant are related by, [132]

d[P]

dt
= k[R] , (6.1)

where the concentration of a product, [P], changes over time as a function of the

reactant concentration, [R], multiplied by a constant, k. If k is known, then [P] is also

known for any time.

Traditionally, Transition State Theory (TST) has been used to calculate k by con-

structing a model reaction. [23] Within this model, the reactants are assumed to be

in a large pre-equilibrium (defined by an equilibrium constant K‡) with an activated

complex, C‡:

R � C‡

This complex exists in a shallow potential well close to the transition state (TS) which

vibrates classically. As a result, small vibrations along the reaction coordinate will

push this complex through the TS and on towards the products.

Assuming that every activated complex goes forward to the TS and does not collapse

back to the products, the overall rate constant will be proportional to the equilibrium

constant and the rate constant describing C‡ k‡−→ P.

123
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These quantities can be derived by using a statistical mechanics approach involving

the partition functions of the species involved. However, it is usually difficult to know

the structure of the activated complex and so it is often simper to use thermodynamic

quantities and re-express K‡ in terms of the Gibbs free energy of activation, ∆‡G. [23]

The overall rate constant can be written as, [25]

k =
kBT

h
e−∆‡G/RT , (6.2)

where kB is the Boltzmann constant, R is gas constant, T is temperature. This is the

general case of the Eyring equation. [133]

Semi-classical TST theory produces impressive results for specific reactions, however

it fails to take account of the quantum behaviour of matter and therefore predicts

qualitatively wrong results for reactions that involve quantum tunnelling.

Due to the wave-like nature of matter, when an atom experiences a potential energy

barrier, there is a non-zero chance for it to ‘tunnel’ through it and appear on the

other side. For a one dimensional, large (κL > 1), rectangular potential barrier, the

probability that a particle will pass through the barrier is given by, [1]

T = 16
E

V

(
1− E

V

)
e−2κL , (6.3)

κ =

[
2mV (1− E

V )
] 1

2

�
, (6.4)

where E is the energy of the impending particle, V is the potential barrier height, L is

the length of the barrier and m is the mass of the particle.

This simple model can give insights into the tunnelling phenomena. From Eq. 6.3,

if the potential barrier increases or the energy decreases, the tunnelling probability will

decrease. Importantly, the tunnelling factor is inversely proportional to both the mass

and the size of the barrier. So particles of low mass will have a larger chance to tunnel

through a narrow potential energy barrier.

In the context of chemical kinetics, this means that for hydrogen transfer reactions,

the hydrogen atom can tunnel through the potential energy barrier separating the

reactant and product. Less activation energy is needed to overcome the full TS barrier

and so the reaction proceeds at a faster rate.

With the use of Ring Polymer Molecular Dynamics (RPMD) and Instanton theory,

the reaction rate including the tunnelling factors can be calculated and compared to the

semi-classical Eyring rate. [134, 135] In Section 6.2, the theory behind this procedure

will be briefly set out.
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6.1.1 Criegee intermediates

OH radicals are important in atmospheric chemistry. They react and breakdown many

pollutants in the troposphere (lower atmosphere) such as NO2. During day time, under

high light conditions, the majority of OH radicals are formed by the photolysis of ozone

(O3). At night time and in low light environments (such as cities), the most common

pathway is alkene ozonolysis. [16,136] This occurs when ozone adds across the carbon-

carbon double bond and splits the alkene into two molecules (Fig. 6.1).

Figure 6.1: Ozonolysis reaction with ethene

The first molecule on the right in Fig. 6.1 is called a Criegee intermediate. [137]

This molecule can extract a hydrogen from the terminal carbon via a transition state,

and form a vinyl hydroperoxide product. The vinyl can then decompose into the OH

radical and a vinoxy product.

The rate determining step in this mechanism is the hydrogen abstraction and migra-

tion. However, because a hydrogen transfer is involved, tunnelling factors are predicted

to increase the rate of reaction.

The rates and tunnelling factors for the reaction involving the simplest Criegee

intermediate CH3CHOO, have been investigated using the Instanton method and the

results presented in Section 6.4.

6.2 Theory

Calculating reaction rates using the on-the-fly instanton method requires calculation

of the action (S). [17] From classical physics, an object will travel the path of least

action. [138] For quantum mechanics, a particle has an equal probability of travelling

down many paths and so all must be considered when describing the overall trajectory;

each path is characterised by the action. In the classical limit, as h → 0, all the paths

apart from the ones in the vicinity of the classical path cancel and so the classical

result is obtained. [138] It is this trajectory, called the instanton, that passes from the

reactants to the products via a first-order saddle point, that we wish to calculate.
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6.2.1 Ring-polymer potential

To calculate the action for the instanton path, a new potential, called the ring-polymer

potential is defined: [17]

UN (x) =

N∑

i=1

V (xi,1, ..., xi,f ) +

N∑

i=1

f∑

j=1

mj

2β2
N�2

(xi,j − xi−1,j)
2 , (6.5)

where βN = β/N , β = 1
kBT and V (xi) is the energy at a point in the PES. This term

is calculated whenever it is required (hence the name on-the-fly) by any electronic

structure method of choice. The sum extends over N , which are a set of geometries

close to the TS, known as ring-polymer beads.1 This potential therefore describes a

ring of ‘beads’ held together by Hookean springs (the second term in Eq. 6.5). For a

complete derivation of UN from the quantum partition function, see Ref. [135].

The instanton path is found by optimising a set of beads with respect to the ring-

polymer potential and the rate determined by converging the result to an increasing

number of beads. This may require 128 bead geometries to be optimised, however

because the system of beads is cyclic, half the beads lie on top of the other half, so only

N/2 optimisation need to be carried out for a N bead calculation.

The number of optimisation steps can be reduced if the initial bead geometry is

close to the final instanton geometry. This can be achieved by ‘laying’ a ring-polymer

over the TS. Mathematically, this is realised by using, [17]

xi = x‡ +∆cos
(2πi
N

)
q , (6.6)

where the new bead geometry (labelled by i) is taken by adding a small contribution of

the eigenvector which corresponds to the imaginary frequency (q) of the TS geometry

(x‡). ∆ is usually a small number that must be chosen by trial and error. For most

cases ∆ = 0.1 has been found to be sufficient.

Eq. 6.5 is a function of the chosen temperature, which should be chosen with knowl-

edge of the shape of the potential barrier. The crossover temperature can be approxi-

mated by, [17]

Tc =
�ωb

2πkB
, (6.7)

where ωb is the imaginary vibrational wavenumber of the TS, multiplied by i =
√
−1.

This temperature represents the dividing point between two different tunnelling

regimes. [139, 140] Above Tc all the beads of the ring-polymer sit in the saddle point

1Not to be confused with chemical polymers. This ring-polymer is a purely mathematical

construct.
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and the instanton pathway collapses to the TS geometry. It is the fluctuations of

the ring-polymer about the saddle point that describe the tunnelling effects. At large

temperatures above Tc, these fluctuations disappear and the instanton rate reduces to

the TST rate.

Below Tc, the ring-polymer corresponds to a set of delocalised geometries centred

around the TS called the insanton. Fluctuations of the ring-polymer exist in this

regime, which can by-pass the potential barrier and represent tunnelling effects.

For simple reactions, the instanton rate equations are only valid below Tc. Therefore

it is recommended to pick a temperature 10−20K below Tc, optimise the ring-polymer,

then use that geometry as the starting point for a lower temperature.

6.2.2 Rate constants

Within Molpro, instanton (kinst) and Eyring (kTST) rates are both calculated and com-

pared against each other. The Eyring rate is modified by using the partition functions

from an N -bead ring-polymer.

kTSTQr =
1

2π�βN
Q‡

transQ
‡
rotQ

‡
vib e

−βV ‡
, (6.8)

where Qr is the standard reactant partition function, and those labelled by ‡ are the

partition functions for the ring-polymer collapsed to the TS geometry; [17] these there-

fore represent the partition functions of the classical TS. As N → ∞, kTST reproduces

the Eyring rate.

The instanton rate is an extension of Eq. 6.8,

kinstQr =
1

βN�

√
BN

2πβN�2
QtransQrotQvib e

−S/� , (6.9)

BN =

N∑

i=1

f∑

j=1

mj(x̃i+1,j − x̃i,j)
2 , (6.10)

where the partition functions are now defined at the optimised ring-polymer geometry

and S = βNUN (x̃) is the action calculated using the potential at the optimised ring-

polymer geometry.

The tunnelling factor is then defined as,

κtun ≡ kinst
kTST

. (6.11)

κtun gives information on how the rate has increased due to tunnelling effects. This is

the final result that is is calculated by the instanton algorithm in Molpro. Note also

that the reactant partition function need not be calculated as it cancels out in Eq. 6.11.
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6.3 Methodology and instanton scripts

Several python scripts and code modifications have been developed alongside Jeremy

Richardson and will be available to use in Molpro. These scripts aim to semi-automate

the generation of the initial bead geometries and Hessian matrices and thereby speed

up instanton calculations.

To facilitate the optimisation and calculation of the instanton pathway, the geom-

etry of several beads must be chosen via Eq. 6.6, which represent points close to the

TS. The initial instanton.py script will use the Hessian eigenvectors and TS geometry

from a Molpro .xml file to generate an initial set of bead geometries and calculate Tc.

It is best to optimise a small set of beads, for example 16, before attempting 32,

64 and 128 bead calculations. To double the number of bead geometries in a file and

thereby have a reasonable starting guess for the larger bead calculations, a interpolation

scheme can be applied. This is carried out using the interpolate insanton.py script that

uses a set of bead geometries, interpolates between them and adds beads in-between

the existing ones.

An instanton calculation requires the calculation of each bead Hessian before and

after the optimisation routine. The interpolation script can also be used to generate

an initial Hessian for larger bead geometries and thereby avoid having to calculate the

Hessian before the optimisation. For example, a 16 bead Hessian can be saved to a file

using the savehess option, interpolated using the interpolate insanton.py script to a 32

bead Hessian and used in a 32 bead calculation. Only one set of bead Hessians should

be calculated in each calculation.

The work flow for an instanton calculation could be as follows:

• Generate an initial set of bead geometries for a 16 bead instanton calculation

using initial instanton.py below Tc.

• Run the instanton calculation as specified in the Molpro manual. Use the save

and savehess options to save the TS data and bead Hessian.

• Generate geometries and an initial Hessian for a 32 bead calculation using the

interpolate insanton.py script.

• Run the 32 bead instanton calculation remembering to reuse the previously cal-

culated TS data and the readhess option to use the interpolated Hessian.

• Repeat this procedure for 64 and 128 bead calculations, or until the tunnelling

factors converge.
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6.4 Instanton calculations

The first transition state in the CRIEGEE database describes the Criegee intermediate

(see Chapter 5). From the syn-CH3CHOO reactant, a hydrogen is transferred from

the terminal carbon to an oxygen, thus giving the VHP product that breaks down to

form an hydroxyl radical. Because this step involves a hydrogen transfer process, it is

possible that tunnelling will effect the rate of the reaction.

To investigate this effect, the instanton method was applied to TS1 using four dif-

ferent methods; Density Fitting Kohn-Sham Theory (DF-KS), Density Fitting MP2

(DF-MP2), CCSD and CCSD(T).2 Both the TS and reactant geometry were opti-

mised with each method and the cc-pVTZ basis set. The auxillary VTZ/JKFIT and

VTZ/MP2FIT basis sets were also used for DF-KS and DF-MP2 respectively. The

B3LYP3 hybrid functional was used for DF-KS;3 this is a standard functional that has

been shown to perform well for organic molecules. [142,143]

Crossover temperature

Before the instanton calculation, the imaginary wavenumber and crossover tempera-

tures corresponding to each TS were calculated. These are shown in Table 6.1.

Method ωb / cm−1 Tc / K

DF-KS 1602.86 370.06

DF-MP2 1508.82 352.89

CCSD 1775.98 406.45

CCSD(T) 1695.28 388.14

Table 6.1: Imaginary wavenumbers and crossover temperatures for CRIEGEE TS1

with cc-pVTZ basis set.

Compared to the CCSD(T) result, DF-MP2 significantly under predicts the imag-

inary wavenumber by 186 cm−1 , while CCSD over predicts it by 81 cm−1. This is

reflected in the resulting crossover temperatures; DF-MP2 predicts a lower tempera-

ture, while CCSD predicts a higher one. DF-KS performs notably better than DF-MP2

2The density fitting method is used to approximate the two-electron integrals by using a

auxiliary basis set to approximate two-electron densities. This results in considerable savings in

computational time with little effect on the overall accuracy of the method. See Ref. [141] for

details. Within Molpro, analytic gradients are available for both DF-KS and DF-MP2 methods.
3B3LYP3 is usually referred to as B3LYP in the literature.
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in predicting the imaginary wavenumber and crossover temperature. The error com-

pared to the CCSD(T) wavenumber is -92 cm−1, which is comparable to the CCSD

error. The resulting difference when compared to the CCSD(T) crossover temperature

is -18K.

Tunnelling factors

The Criegee reaction occurs in the middle of a sequential reaction mechanism. Molecules

that cross over from the previous TS to form the Criegee intermediate will posses an

amount of thermal energy. It is for this reason that the instanton calculations are car-

ried out at different temperatures. The starting temperatures were chosen below the

crossover temperature for each method and then lowered by 100K intervals until 60K.

The resulting tunnelling factors are presented in Tables 6.2-6.3.

The first point to note is that as the number of beads (N) increases, the tunnelling

factors for DF-KS and DF-MP2 appear to converge to an answer. It was not possible

to obtain tunnelling factors with larger bead numbers for CCSD and CCSD(T) due to

a non-reproducible bug in Molpro’s CC program. The DF-KS and DF-MP2 results also

show that it is necessary to use 128 beads in a calculation to guarantee convergence

to an answer. This is less important for temperatures close to Tc (less than 100K), as

the tunnelling factors do not change orders of magnitude as N is increased. Instead, it

becomes important for temperatures far from Tc as the factors can change many orders

of magnitude as N increases.

It is expected that as the number of beads increases, κtun should increase. [17]

However this is not observed for the DF-KS results at 260K and 160K or the DF-MP2

results at 160K and 60K. DF-KS also shows an anomaly at 360K (N=256) to the

converging behaviour. This is possibly due to the optimisation to a local minimum or

a new saddle point.

For DF-MP2, the crossover temperature was significantly lower than the other

methods and the instanton pathway only existed below 353K. For CCSD, Tc=406K

and so a calculation could be carried out at 400K. For comparison, only the 360K

result is presented for CCSD.

All the methods predict similar tunnelling factors at 360K (340K for DF-MP2).

Therefore at this temperature, the reaction is predicted to proceeded faster compared

to the classical rate by a factor of 20.

For 260K, the methods produce a larger range of results for the κtun. Compared

to CSCD(T), both DF methods under predict this factor, with DF-MP2 predicting a

slower reaction by a factor of 930.57. CCSD, on the other hand, predicts a larger factor
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Method N 360K 260K 160K 60K

DF-KS 16 19.90 333.95 2.35×109 4.54×1047

32 20.71 296.00 1.07×109 -

64 20.47 287.51 8.96×108 -

128 20.57 283.82 8.43×108 -

256 13.62 284.55 8.12×108 -

CCSD 16 25.72 2874.38 2.18×1011 -

CCSD(T) 16 21.35 948.40 1.52×1010 6.48×1056

Table 6.2: Tunnelling factors calculated with cc-pVTZ basis set.

Method N 340K 260K 160K 60K

DF-MP2 16 6.46 6.73 4.33×106 1.26×1032

32 8.09 17.64 33964.40 1.27×1029

64 25.59 19.58 25408.12 4.01×1024

128 26.75 17.85 24576.59 9.89×1023

256 27.41 17.83 24942.40 7.12×1023

Table 6.3: Tunnelling factors calculated with cc-pVTZ basis set.

than CCSD(T) by 1925.98. A warning must be made by comparing tunnelling factors

to the CCSD(T) value as this was only carried out for 16 beads. However, its seems

unlikely that the 360K and 260K values will change by an order of magnitude as N is

increased.

The closest value to the CCSD(T) result is DF-KS, which predicts a slower reaction

by a factor of 664. This is not surprising as DF-KS reproduced the barrier height well

compared to CCSD(T) and is therefore capable of modelling the reactive PES.

Again, for 160K and 60K, DF-KS produces tunnelling factors that are closest

to CCSD(T), with DF-MP2 severely under predicting the amount of tunnelling for

both temperatures. It becomes difficult to converge the instanton calculations at low

temperatures like this and so only a 16 bead calculation could be carried out with

DF-KS.

Also presented in Table 6.4 are tunnelling for various temperatures calculated with

CCSD(T)/cc-pVDZ. These can serve as a comparisons to the limited CCSD(T)/cc-

pVTZ results.

For the N=16 calculations, a smaller basis produces an enhanced tunnelling factor.
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N 360K 260K 160K 60K

16 43.52 3451.58 1.7×1011 1.5×1058

32 55.33 3593.28 1.1×1011 1.4×1064

64 55.28 3573.25 8.4×1010 2.2×1055

128 53.98 3638.57 1.0×1011 6.5×1060

Table 6.4: Tunnelling factors for CCSD(T) calculated with cc-pVDZ

The most important differences are for κtun at 360K and 260K, each of which are

increased by a factor of 0.5 and 0.3 respectively. For 160K and 60K the factors are

enhanced by one order or magnitude and two orders of magnitude respectively.

It is also interesting to note that as N increases, the tunnelling factors increase.

This is true, except at N=64 where the factors at all temperatures decrease, before

increasing again at N=128. This could be a sign of possible oscillating behaviour in

the convergence of the tunnelling factors.

Mass-weighted pathways

The differences in tunnelling factors can be investigated by plotting the potential energy

along the mass-weighted instanton pathway. These pathways are defined by the action

and show the effective barrier through which the tunnelling must occur.
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Figure 6.2: Potential energy along one half of a 16 bead instanton pathway at 260K;

calculated with cc-pVTZ basis.
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Fig. 6.2 shows the mass-weighted pathways at 260K and N=16. The DF-MP2

result produces a smaller and narrower pathway that passes closer to the saddle point

and therefore results in a lower tunnelling factor. CCSD on the other hand produces

a taller barrier which indicates a larger tunnelling factor. DF-KS and CCSD(T) show

similar barrier heights and widths. CCSD(T) produces a slightly taller barrier, which

corresponds to the larger tunnelling factors compared to DF-KS.
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Figure 6.3: Potential energy along one half of a 256 bead instanton pathway at 260K;

calculated with cc-pVTZ basis.

Fig. 6.3 also shows the results of the DF-KS and DF-MP2 calculations at 260K and

N=256. These converged results mirror the behaviour for the N=16 bead calculations.

DF-MP2 produces a smaller and narrower barrier which is closer to the TS saddle

point, therefore producing a lower tunnelling factor. The DF-KS barrier is taller and

wider which means it should produce larger tunnelling factors at 260K.

Finally Fig. 6.4 compares the pathways for the 16 bead calculations of CCSD(T)

with cc-pVDZ and cc-pVTZ basis sets. The two pathways are very similar, though the

cc-pVDZ basis produces a slightly smaller and narrower barrier than cc-pVTZ. It is

therefore expected that the tunnelling factor calculated with cc-pVDZ will be smaller,

however this is not the case (compare Tables 6.2 and 6.3). This result should be used as

a warning when comparing pathways characterised by similar action values; a 16 bead

calculation may not provide enough structure to analyse the barrier in this qualitative

manner.
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Figure 6.4: Potential energy along one half of a 16 bead instanton pathway at 260K;

calculated with CCSD(T).

Isoprene

Finally, as a comparison to the results presented above, the tunnelling factors for the

Criegee intermediate based on isoprene [144] were calculated with DF-KS/B3LYP3

with cc-pVTZ and VTZ/JKFIT.

The imaginary wavenumber was calculated for the TS to be 1616.08 cm−1, giv-

ing a crossover temperature of 370.06K. Both these values are similar to the simple

Criegee intermediate presented above. This is to be expected as both these imaginary

wavenumbers correspond to similar vibrational modes.

The tunnelling factors for the isoprene derivative are shown in Table 6.5. The

factors are similar to the DF-KS results in Table 6.2, though they are generally larger

for isoprene. For example, at 260K, the isoprene tunnelling factor is larger by a factor

of 32, while at 160K, it is larger by an order of magnitude. At 360K the factors are

similar, however the isoprene reaction is predicted to benefit less from tunnelling effects

by a factor of 5.

In general, the tunnelling factors show convergence to an answer. The trend is to

decrease the factors as the number of beads increases.

These results show that the isoprene system is likely to benefit more from tunnelling

effects than the previously examined Criegee intermediate. This my simply be due to

the barrier height being 1.86 kJ mol−1 higher for this reaction than the previous. The

TST reaction rate will be slower, and so the instanton rate is relatively larger, thereby
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N 360K 310K 260K 210K 160K

16 18.62 35.81 374.12 66113.20 2.90×109

32 18.68 34.51 330.85 49706.60 1.40×109

64 18.76 34.25 320.00 45622.13 1.15×109

128 15.93 34.20 317.53 44800.66 1.08×109

Table 6.5: Tunnelling factors calculated at DF-KS/cc-pVTZ and cc-pVTZ/JKFIT

producing a larger tunnelling factor.

6.5 Conclusion

The reaction rates and tunnelling factors have been investigated for the simplest Criegee

intermediate and an isoprene derivative using Molpro’s instanton program and four

different electronic structure methods.

Overall, hydrogen tunnelling does lead to an increase in the rate of reaction com-

pared to the TST for both reactions. For temperatures close to the crossover tem-

perature (360K), all methods predict an enhanced rate of by a factor of around 20.

For lower temperatures, the tunnelling factors increase greatly and all methods give

significant deviations from the classical rate.

For the simplest Criegee system, DF-MP2 leads to an under prediction of the imag-

inary wavenumber of the transition state and therefore a decrease in the crossover

temperature. As a result, it predicts that lower tunnelling factors at the temperatures

that were investigated compared to the (limited) CCSD(T) results.

CCSD, on the over hand, leads to an over prediction of the imaginary wavenumber

and to an increase in the crossover temperature. This leads to larger tunnelling factors

when compared to CCSD(T).

Surprisingly, DF-KS produces the closest results to CCSD(T) at all temperatures,

apart from the anomalous results at 360K (N=256). The instatnton method is ulti-

mately based upon a potential that is calculated by the electronic structure methods.

DF-KS method manages to reproduce the barrier height of CCSD(T) and therefore

describe the PES more accurately than the other methods. Due to its small computa-

tional cost and accurate results, it is recommended to use DF-KS in further instanon

calculations involving organic molecules.

With this project, there is plenty of scope for further work. For example, it would

be interesting to use OQVCCDR(T) in these calculations. In general, the QV methods
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produce larger barrier heights (see Chapter 5) and therefore it is predicted that they

will produce larger tunnelling factors than CCSD(T).

Other DFT functionals could and should be tested to see if they can produce closer

answers that match the CCSD(T) result. B3LYP3 is a well known and reliable hy-

brid functional for organic molecules. However other modern functionals, such as the

Minnesoata M06-2X functional have been shown to reproduce barrier heights to high

accuracy [91] and could therefore be of great use in instanton calculations.

Finally, only two Criegee intermediates have been investigated here. Other Criegee

intermediates, such as derivatives of methylstyrene and α-pinene, occur naturally in

the troposphere. Instanton calculations could be carried out on these to examine if

the amount of hydrogen tunnelling increases or decrease with these systems. In these

cases, it would become necessary to use DF-KS as CCSD would be too computationally

expensive.



Chapter 7

Unrestricted Quasi-Variational

Coupled Cluster theory

Many interesting molecular systems do not posses an even number of electrons; they

are open-shell, not closed-shell. To date, only closed-shell QVCCD codes have been

implemented within Molpro. An attempt towards an Unrestricted Quasi-Variational

Coupled Cluster Doubles (UQVCCD) method has been made by deriving the open-

shell equations. As a result of presenting these equations, it is hoped that the future

development of a UQVCCD program will be made easier.

7.1 UQVCCD theory

It would be enough just to use the spin-orbital equations defined in Chapter 4 as the

set of open-shell equations because the spin-orbitals are summed over the different spin

cases. However, there would be many blocks in the transformed amplitude and residual

tensors that would be zero due to conservation of the ms quantum number; for example,

qt
īj̃

ãb̃
= 0. Significant computational savings can be made by explicitly deriving all the

non-zero spin cases (e.g t̃, t̄ and tı̃̄
ãb̄
).

7.1.1 Restricted and unrestricted formalisms

The choice of a reference wavefunction becomes important when proposing an open-

shell QVCCD program. Both Unrestricted Hartree-Fock (UHF) and Restricted Open-

Shell Hartree-Fock (ROHF) wavefunctions could be used as a reference as both are able

to model open-shell systems.

UHF consists of two sets of simultaneous HF equations; one for the α electrons

137
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and one for the β. [8] As a result, the wavefunction is comprised of two different sets

of α and β orbitals. Usually, the UHF energy is lower than the RHF, however the

wavefunction is no longer an eigenfunction of the total spin operator (Ŝ
2
) and so suffers

from spin-contamination (i.e. the mixing of undesired higher spin-states). [145] This

contamination becomes worse in high non-dynamic correlation regimes and so no longer

becomes a valid reference for CC methods.1

In the ROHF method, each pair of electrons are restricted to occupy the same

spatial orbital. [146,147] The unpaired electrons are then free to occupy single orbitals

by themselves. The resulting equations look similar to the Roothaan-Hall equations

of RHF (see Chapter 2). As a result, a single set of orbitals can be used for both

α and β electrons, instead of the two sets used in UHF. This produces a single set

of two-electron integrals, which allows for the different spin cases to be formulated

explicitly. [148] Additionally, the ROHF wavefunction is an eigenfunction of Ŝ
2
and so

does not suffer from spin-contamination.

It is therefore simpler to use the ROHF wavefunction as the reference instead of

the UHF wavefunction. However, Ŝ
2
does not generally commute with T̂ and so an

unrestricted CC wavefunction, like UCCSD, will still suffer from spin-contamination.

[149, 150] Bartlett has shown that some of this spin-contamination is removed by left

projection of the CC energy equation onto a proper spin-eigenfunction, like ROHF. [151]

The remaining spin-contamination arises in the amplitude equations and higher powers

of T̂.

A different approach involves constructing the T̂1 and T̂2 operators so they commute

with Ŝ
2
. [149] The explicit spin excitation operators êãı̃ and êāı̄ can be replaced by a

smaller set of spin summed operators like Êai = êãı̃ + êāı̄ and their products. [148].

The resulting cluster operators will still produce a spin eigenfunction that spans the

first order interaction space (i.e. the space that forms non-zero matrix elements with

the reference wavefunction), but will be computationally cheaper. This describes the

Restricted CCSD (RCCSD) method.

Spin contamination still remains a problem, but is predicted to be minimal. [148] An

issue with RCCSD is that the working equations are more complicated than UCCSD.

It is proposed, for the reasons given above, that the ROHF wavefunction should

be used as the reference for the future open-shell QVCCD program. The UQVCCD

equations are presented here, however there is no reason that a RQVCCD program

could be developed that would be computationally cheaper to execute.

1“Once lost, good quantum numbers are hard to recover...” [146]
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7.2 UQVCCD equations

7.2.1 Density matrices

AUba = δba + Aηba ,

AŨba = δ̃ba +
1

2
(tı̃̃

b̃c̃
tı̃̃ãc̃ + tı̃̄

b̃c̄
tı̃̄ãc̄) ,

AŪba = δ̄ba +
1

2
(tı̄̄

b̄c̄
tı̄̄āc̄ + tı̃̄

b̄c̃
tı̃̄āc̃) .

(7.1)

BUji = δji + Bηji ,

BŨji = δ̃ji +
1

2
(tı̃k̃

ãb̃
t̃k̃
ãb̃

+ tı̃k̄ãb̄t
̃k̄

ãb̄
) ,

BŪji = δ̄ji +
1

2
(tı̃k̃

ãb̃
t̃k̃
ãb̃

+ tı̃k̄ãb̄t
̃k̄

ãb̄
) .

(7.2)

CU
lj
ki = δkiδlj + Cη

lj
ki ,

Cη
lj
ki =




k̃l̃ k̃l̄ k̄l̃ k̄l̄

̃̃ı C1 0 0 0

̄̃ı 0 C2 C2† 0

̃̄ı 0 C2 C2 0

̄̄ı 0 0 0 C3




,

C1Ũ
lj
ki = δ̃ljki +

1

2
tı̃̃
ãb̃
tk̃l̃
ãb̃
,

C3Ū
lj
ki = δ̄ljki +

1

2
tı̄̄
āb̄
tk̄l̄āb̄ ,

C2U
l̄̄

k̃ı̃
= δ l̄j̄

k̃ı̃
+ tı̃̄

ãb̄
tk̃l̄ãb̄ ,

C2U
l̃̄

k̄ı̃
= δ l̃̄

k̄ı̃
+ tı̃̄

ãb̄
tk̄l̃ãb̄ .

(7.3)

DU
ij
ab = δabδij + Dη

ij
ab ,

Dη
ij
ab =




̃b̃ ̃b̄ ̄b̃ ̄b̄

ãı̃ D1 0 0 D†
5

āı̃ 0 D2 0 0

ãı̄ 0 0 D3 0

āı̄ D5 0 0 D4




,

D1
Ũij

ab = δ̃abδ̃ij + tı̃k̃ãc̃t
̃k̃

b̃c̃
+ tı̃k̄ãc̄t

̃k̄

b̃c̄
,

D2
Uı̃̃

āb̄
= δ̄abδ̃ij + tı̃k̄āc̃t

̃k̄

b̄c̃
,

D3
Uı̄̄

ãb̃
= δ̃abδ̄ij + tı̃k̄āc̃t

̃k̄

b̄c̃
,

D4
Ūij

ab = δ̄abδ̄ij + tı̄k̄āc̄t
̄k̄

b̄c̄
+ tı̄k̃āc̃t

̄k̃

b̄c̃
,

D5
Uı̄̃

āb̃
= δāb̃δı̄̃ + tı̄k̄āc̄t

̃k̄

b̃c̄
+ tı̄k̃āc̃t

̃k̃

b̃c̃
.

(7.4)
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A simple rotation of the Dη
ij
ab matrix can no longer be used to uncouple the D1,

D4 and D5 blocks, like in the closed-shell equations; the complete matrix must be

constructed and powered.

Overall, twelve different U matrices need to be constructed to form the transformed

amplitude and residual equations. Forming these matrices will therefore take about

twice the time as QVCCD, which only requires six different U matrices.

7.2.2 Transformed amplitudes

qt
ı̃̄

ãb̄
=

[
(AŨ

− q
2 )ac t

ı̃̄

c̃b̄
+ (AŪ

− q
2 )bc t

ı̃̄
ãc̄

]

+
[
(BŨ

− q
2 )ki t

k̃̄

ãb̄
+ (BŪ

− q
2 )kj t

ı̃k̄
ãb̄

]

− 1

2

[
(CU

− q
2 )l̄̄

k̃ı̃
tk̃l̄ãb̄ + (CU

− q
2 )l̃̄

k̄ı̃
tk̄l̃ãb̄

]

− 1

2

[
(DU

− q
2 )ı̃k̃ãc̃t

k̃̄

c̃b̄
+ (DU

− q
2 )ı̃k̄ãc̄t

k̄̄

c̄b̄

− (DU
− q

2 )̄k̄ãc̃t
k̄ı̃
c̃b̄

− (DU
− q

2 )ı̃k̃b̄c̄t
k̃̄
c̄ã

+ (DU
− q

2 )̄k̄
b̄c̄
tk̄ı̃c̄ã + (DU

− q
2 )̄k̃

b̄c̃
tk̃ı̃c̃ã

]
(7.5)

qt
ı̃̃

ãb̃
= 2

[1
2
(1− τ̃ab)(AŨ

− q
2 )ac t̃

ij
cb

]

+ 2
[1
2
(1− τ̃ij)(BŨ

− q
2 )ki t̃

kj
ab

]

− 1
[1
2
(CŨ

− q
2 )ljki t̃

kl
ab

]

− 2
[1
4
(1− τ̃ij)(1− τ̃ab)

(
(DŨ

− q
2 )ikact̃

kj
cb + (DU

− q
2 )ı̃k̄ãc̄t

k̄̃

c̄b̃

)]
(7.6)

qt
īj̄

āb̄
= 2

[1
2
(1− τ̄ab)(AŪ

− q
2 )ac t̄

ij
cb

]

+ 2
[1
2
(1− τ̄ij)(BŪ

− q
2 )ki t̄

kj
ab

]

− 1
[1
2
(CŪ

− q
2 )ljki t̄

kl
ab

]

− 2
[1
4
(1− τ̄ij)(1− τ̄ab)

(
(DU

− q
2 )ı̄k̄āc̄t

k̄̄

c̄b̄
+ (DU

− q
2 )ı̄k̃āc̃t

k̃̄

c̃b̄

)]
(7.7)

There are now six different transformed amplitude equations to construct in UQVCCD,

compared to only two in QVCCD. It is expected that UQVCCD will take three times

longer than QVCCD in calculating these quantities.
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7.2.3 Residuals

q g̃
ij
ab = (1− τ̃ab)

[1
2
(
A
qR̃ae +

A
qR̃ea)t̃

ij
eb + (AŨ

− q
2 )ca qṼ

ij
cb

]

+ (1− τ̃ij)
[1
2
(
B
qR̃oi +

B
qR̃io)t̃

oj
ab + (BŨ

− q
2 )ik qṼ

kj
ab

]

− 1

4

[
(
C
qR̃

jn
im +

C
qR̃

nj
mi)t̃

mn
ab + 2(CŨ

− q
2 )jlik qṼ

kl
ab

]

− 1

2
(1− τ̃ij)(1− τ̃ab)

[
(
D
qR̃

io
ag +

D
qR̃

oi
ga)t̃

oj
gb + (DqR

ı̃ō
ãḡ +

D
qR

ōı̃
ḡã)t

ō̃

ḡb̃

+ (DŨ
− q

2 )kica qṼ
kj
cb + (DU

− q
2 )k̄ı̃c̄ã qV

k̄̃

c̄b̃

]
, (7.8)

A
qR̃eg = Q̃a,c

e,g
A
qF̃ac ,

B
qR̃om = Q̃k,i

o,m
B
qF̃ki ,

C
qR̃

pn
om = Q̃kl,ij

op,mn
C
qF̃

lj
ki ,

D
qR̃

mo
eg = Q̃ai,ck

em,go
D
qF̃

ik
ac ,

D
qR

m̃ō
ẽḡ = Qãı̃,c̄k̄

ẽm̃,ḡō
D
qF

ı̃k̄
ãc̄ .

(7.9)

A
qF̃ac = qṼ

ij
abt̃

ij
cb ,

B
qF̃ki = qṼ

ij
abt̃

kj
ab

C
qF̃

lj
ki = qṼ

ij
abt̃

kl
ab ,

D
qF̃

ik
ac = qṼ

ij
abt̃

kj
cb

D
qF

ı̃k̄
ãc̄ = qV

ı̃̄

ãb̄
tk̄̄
c̄b̄
.

(7.10)

q ḡ
ij
ab = (1− τ̄ab)

[1
2
(
A
qR̄ae +

A
qR̄ea)t̄

ij
eb + (AŪ

− q
2 )ca qV̄

ij
cb

]

+ (1− τ̄ij)
[1
2
(
B
qR̄oi +

B
qR̄io)t̄

oj
ab + (BŪ

− q
2 )ik qV̄

kj
ab

]

− 1

4

[
(
C
qR̄

jn
im +

C
qR̄

nj
mi)t̄

mn
ab + 2(CŪ

− q
2 )jlik qV̄

kl
ab

]

− 1

2
(1− τ̄ij)(1− τ̄ab)

[
(
D
qR̄

io
ag +

D
qR̄

oi
ga)t̄

oj
gb + (DqR

ı̄õ
āg̃ +

D
qR

õı̄
g̃ā)t

ȭ

g̃b̄

+ (DŪ
− q

2 )kica qV̄
kj
cb + (DU

− q
2 )k̃ı̄c̃ā qV

k̃̄

c̃b̄

]
, (7.11)

A
qR̄eg = Q̄a,c

e,g
A
qF̄ac ,

B
qR̄om = Q̄k,i

o,m
B
qF̄ki ,

C
qR̄

pn
om = Q̄kl,ij

op,mn
C
qF̄

lj
ki ,

D
qR̄

mo
eg = Q̄ai,ck

em,go
D
qF̄

ik
ac ,

D
qR

m̃ō
ẽḡ = Qãı̃,c̄k̄

ẽm̃,ḡō
D
qF

ı̃k̄
ãc̄ ,

(7.12)

A
qF̄ac = qV̄

ij
abt̃

ij
cb ,

B
qF̄ki = qV̄

ij
abt̃

kj
ab

C
qF̄

lj
ki = qV̄

ij
abt̃

kl
ab ,

D
qF̄

ik
ac = qV̄

ij
abt̃

kj
cb

D
qF

ı̃k̄
ãc̄ = qV

ı̃̄

ãb̄
tk̄̄
c̄b̄
.

(7.13)
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qg
ı̃̄

ãb̄
=

[1
2
(
A
qR̃ae +

A
qR̃ea)t

ı̃̄

ẽb̄
+ (AŨ

− q
2 )ca qV

ı̃̄

c̃b̄
+

1

2
(
A
qR̄be +

A
qR̄eb)t

ı̃̄
ãē + (AŪ

− q
2 )cb qV

ı̃̄
ãc̄

]

+
[1
2
(
B
qR̃oi +

B
qR̃io)t

ȭ

ãb̄
+ (BŨ

− q
2 )ik qV

k̃̄

ãb̄
+

1

2
(
B
qR̄oj +

B
qR̄jo)t

ı̃ō
ãb̄ + (BŪ

− q
2 )jk qV

ı̃k̄
ãb̄

]

− 1

4

[
(CqR

̄n̄
ı̃m̃ + C

qR
n̄̄
m̃ı̃)t

m̃n̄
ãb̄ + 2(CŨ

− q
2 )̄l̄

ı̃k̃ qV
k̃l̄
ãb̄ + (CqR

̄ñ
ı̃m̄ + C

qR
ñ̄
m̄ı̃)t

m̄ñ
ãb̄ + 2(CU

− q
2 )̄l̃

ı̃k̄ qV
k̄l̃
ãb̄

]

− 1

2

[
(DqR

ı̃ō
ãḡ +

D
qR

ōı̃
ḡã)t

ō̄

ḡb̄
+ (DU

− q
2 )k̄ı̃c̄ã qV̄

kb
cb + (

D
qR̃

io
ag +

D
qR̃

oi
ga)t

ȭ

g̃b̄
+ (DŨ

− q
2 )kica qV

k̃̄

c̃b̄

− (DqR
̄ō
ãg̃ +

D
qR

ō̄
g̃ã)t

ōı̃
g̃b̄ + (DU

− q
2 )k̄j̄c̃ã qV

k̄ı̃
c̃b̄

− (DqR
ı̃õ
b̄ḡ +

D
qR

õı̃
ḡb̄)t

ȭ
ḡã + (DU

− q
2 )k̃ı̃c̄b̄ qV

k̃̄
c̄ã

+ (DqR
̄õ

b̄g̃
+ D

qR
ȭ

g̃b̄
)tõı̃g̃ã + (DU

− q
2 )k̃̄

c̃b̄ qṼ
ki
ca + (

D
qR̄

jo
bg +

D
qR̄

oj
gb)t

ōı̃
ḡã + (DŪ

− q
2 )kjcb qV

k̄ı̃
c̄ã

]
,

(7.14)

A
qF̃gc = qV

ı̃̄

g̃b̄
tı̃̄
c̃b̄
,

A
qF̄gc = qV

ı̃̄
ḡãt

ı̃̄
c̄ã ,

A
qR̃ae = Qg̃,c̃

ã,ẽ

A
qF̃gc ,

A
qR̄be = Qḡ,c̄

b̄,ē

A
qF̄gc ,

(7.15)

B
qF̃km = qV

m̃̄

ãb̄
tk̃̄
ãb̄
,

B
qF̄km = qV

m̄ı̃
ãb̄ t

k̄ı̃
ãb̄ ,

B
qR̃oi = Q̃k,m

o,i

B
qF̃km ,

B
qR̄oi = Q̄k,m

o,i
B
qF̄km ,

(7.16)

C
qF

l̄p̄

k̃õ
= qV

õp̄

ãb̄
tk̃l̄ãb̄ ,

C
qF

l̄p̃

k̃ō
= qV

ōp̃

ãb̄
tk̃l̄ãb̄ ,

C
qF

l̃p̄

k̄õ
= qV

õp̄

ãb̄
tk̄l̃ãb̄ ,

C
qF

l̃p̄

k̄õ
= qV

õp̄

ãb̄
tk̄l̃ãb̄ ,

C
qR

̄n̄
ı̃m̃ = Qk̃l̄,õp̄

ı̃̄,m̃n̄
C
qF

l̄p̄

k̃õ
+Qk̃l̄,ōp̃

ı̃̄,m̃n̄
C
qF

l̄p̃

k̃ō
+Qk̄l̃,õp̄

ı̃̄,m̃n̄
C
qF

l̃p̄

k̄õ
+Qk̄l̃,ōp̃

ı̃̄,m̃n̄
C
qF

l̃p̃

k̄ō
,

C
qF

l̄p̄

k̃õ
= qV

õp̄

ãb̄
tk̃l̄ãb̄ ,

C
qF

l̄p̃

k̃ō
= qV

ōp̃

ãb̄
tk̃l̄ãb̄ ,

C
qF

l̃p̄

k̄õ
= qV

õp̄

ãb̄
tk̄l̃ãb̄ ,

C
qF

l̃p̄

k̄õ
= qV

õp̄

ãb̄
tk̄l̃ãb̄ ,

C
qR

̄ñ
ı̃m̄ = Qk̃l̄,õp̄

ı̃̄,m̄ñ
C
qF

l̄p̄

k̃õ
+Qk̃l̄,ōp̃

ı̃̄,m̄ñ
C
qF

l̄p̃

k̃ō
+Qk̄l̃,õp̄

ı̃̄,m̄ñ
C
qF

l̃p̄

k̄õ
+Qk̄l̃,ōp̃

ı̃̄,m̄ñ
C
qF

l̃p̃

k̄ō
,

(7.17)
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D
qF

m̃k̄
ẽc̄ = qV

m̃̄

ẽb̄
tk̄̄
c̄b̄
, D

qF
m̄k̃
ēc̃ = qV

m̄̄

ēb̄
tk̃̄
c̃b̄
,

D
qR

ı̃ō
ãḡ = Qẽm̃,c̄k̄

ãı̃,ḡō
D
qF

m̃k̄
ẽc̄ +Qēm̄,c̃k̃

ãı̃,ḡō
D
qF

m̄k̃
ēc̃ ,

D
qF

m̃k̃
ẽc̃ = qV

m̃̄

ẽb̄
tk̃̄
c̃b̄
,

D
qR̃

io
ag = Qẽm̃,c̃k̃

ãı̃,g̃õ
D
qF

m̃k̃
ẽc̃ ,

D
qF

m̄k̄
ẽc̃ = qV

m̄ı̃
ẽb̄ t

k̄ı̃
c̃b̄ ,

D
qR

̄ō
ãg̃ = Qẽm̄,c̃k̄

ã̄,g̃ō
D
qF

m̄k̄
ẽc̃ ,

D
qF

m̃k̃
ēc̄ = qV

m̃̄
ēã t

k̃̄
c̄ã ,

D
qR

ı̃õ
b̄ḡ = Qēm̃,c̄k̃

b̄ı̃,ḡõ
D
qF

m̃k̃
ēc̄ ,

D
qF

m̄k̃
ēc̃ = qV

m̄ı̃
ēã t

k̃ı̃
c̃ã ,

D
qF

m̃k̄
ẽc̄ = qV

m̃ı̃
ẽã t

k̄ı̃
c̄ã ,

D
qR

̄õ

b̄g̃
= Qēm̄,c̃k̃

b̄̄,g̃õ
D
qF

m̄k̃
ēc̃ +Qẽm̃,c̄k̄

b̄̄,g̃õ
D
qF

m̃k̄
ẽc̄ ,

D
qF

m̄k̄
ēc̄ = qV

m̄ı̃
ēã t

k̄ı̃
c̄ã ,

D
qR̄

jo
bg = Qēm̄,c̄k̄

b̄̄,ḡō
D
qF

m̄k̄
ēc̄ .

(7.18)

As with the transformed amplitudes equations, there are now six different residual

equations that need to be calculated, compared to only two in QVCCD. For the mixed

spin case, there are almost twice as many tensor contractions than in the QVCCD

residual. It is expected that the evaluation of these residual equations will take nearly

four times longer than QVCCD.

All the UQVCCD equations will also have to be solved simultaneously, like UCCSD,

due to the coupling terms that appear in the different spin cases.
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Chapter 8

Conclusions

A new closed-shell Orbitally Optimised Quasi-Variational Coupled Cluster Doubles

(OQVCCD) code has been presented in this thesis. This method is capable of con-

structing an approximate wavefunction that is a solution to the electronic Schrödinger

equation by invoking the Born-Oppenheimer approximation. With this solution, the

energy, as well as other molecular properties, can be calculated and investigated.

Transformed amplitude and residual equations have been re-derived and made suit-

able for efficient computational implementation. This has been achieved by recognising

numerous intermediates that are the same and factorising the remaining equations.

Chapter 4 detailed how these equations have been implemented in the Integrated

Tensor Framework (ITF). This a platform within Molpro that allows developers to

write fast and efficient code in terms of a domain specific language focused around

tensor contractions. Within this context, routines to carry out orbital optimisation

and the caching of eigenvectors have also been developed that can be utilised by other

methods in the ITF.

Numerical studies were carried out in Chapter 5 with the Quasi-Variational (QV)

family of methods to gauge how they perform against more common ab initio meth-

ods. These include calculating Potential Energy Curves and spectroscopic constants for

third-row diatomic molecules with a comparison to Multireference Configuration Inter-

action (MRCI). The results have shown that the Quasi-Variational (QV) methods are

capable of dissociating these systems and producing energy curves that qualitatively

match the MRCI results.

Furthermore, the activation and reaction energies of 88 unique reactions have been

calculated with several single-reference methods and basis sets. This has allowed a

insight into how QVCCD compares to other methods when calculating these important

quantities. In general the QV methods predict larger barrier heights than CCSD(T).
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From the available CCSDT data, the QV methods appear to correct for the lowering of

the barrier height by the perturbative triples correction. For the reaction energies, there

appears to be little difference with CCSD(T) due to the small non-dynamic correlation

effects in most ground state molecules. However, in general, the QV methods produce

larger absolute reactions energies than CCSD(T).

Previous work has developed a renormalised triples correction to replace the stan-

dard non-iterative (T) correction in OQVCCD(T). The motivation behind this was to

correct the (T) method so it could cope with multireference systems. The derivation

of this scheme invoked several approximations to arrive at a numerically robust and

computationally competitive correction. A new method, denoted as the asymmetric-

renormalised triples correction, AR(T), has been developed from one of these approxi-

mations (see Chapter 3), in order to test whether the previous renormalisation scheme

is numerically justified in the approximations it makes.

Energy and frequency calculations involving OQVCCDR(T) and OQVCCDAR(T)

have been carried out on many different chemical systems (Chapter 5). There appears

to be very little difference in the energies and frequencies calculated by both methods.

However, at long bond lengths, triply bonded systems like P2 admit energy differences

of around 6 kJ mol−1. For most of the systems examined, there appears to be very

little difference in the energies and frequencies calculated by both methods, thereby

vindicating the OQVCCDR(T) approximations. Nevertheless, a new method to add to

the QV family of methods has been devolved which can provide accurate benchmarking

values.

Finally, a reason for re-writing the closed-shell QVCCD code was to make it com-

putationally competitive. The old code suffers from poor scaling, long computa-

tional times and no parallelisation, which therefore reduced its utility to computational

chemists. As previously mentioned, the QVCCD code has been entirely rewritten in

the ITF to produce fast, efficient and parallel code. Calculations were carried out in

Chapter 5 to compare the old and the new code. Overall, the new code is several times

faster; for example, an energy calculation of pentane with a cc-pVTZ basis is over 7

times faster with the new code, representing a time saving of 98 hours.

The QV family of methods represent an alternative to both Traditional Coupled-

Cluster (TCC) methods like CCSD and CCSD(T), but also to multireference methods.

When TCC is applied to systems with strong non-dynamic correlations the results are

not just quantitatively, but can be qualitatively wrong. This means that multireference

methods like Multireference Configuration Interaction must be used to produce accurate

results. The main problem with these procedures is that an active space must be chosen
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by the user. This can be a difficult problem to solve as the molecular orbitals must be

explicitly examined to gauge whether they are ‘important’ enough to include into the

active space. There is little criteria as to what constitutes as an ‘important’ orbital and

so an intelligent guess must be used. The QV methods are inherently single-reference

and do not require the user to choose an active space. Yet, it has been shown that they

are able to capture non-dynamic correlation effects in a reasonable time frame. With

this in mind, the QV methods should certainly be used alongside and instead of the

TCC methods when examining multireference systems.

The main focus of this thesis has been the development of an ab initio method

for approximately solving the Schrödinger equation. Once this has been solved, the

question remains: what information can this wavefunction provide? Chapter 6 has

attempted to bridge this gap by applying the on-the-fly instanton method to calculate

reaction rates involving Criegee intermediates.

Criegee reactions occur in the troposphere and are responsible for producing OH

radicals in low light environments. [16] The rate determining step for these systems in-

volves a hydrogen transfer processes and so hydrogen tunnelling through the transition

state potential barrier is likely to occur. The magnitude of this tunnelling factor has

been calculated using different ab inito methods to determine the effect each has on

the rate.

It was discovered that Density Functional Theory (DFT) performs well compared

to CCSD(T) and is therefore recommended to be used. Overall, from these calculations

it was discovered that hydrogen tunnelling plays a large role in the rate of the Criegee

reaction; at 260K the rate is nearly 1000 times faster than the classical rate that does

not include tunnelling.

Finally, in Chapter 7, ground work was laid out for an Unrestricted QVCCD pro-

gram. The residual and transformed amplitude equations were explicitly presented in

terms of spin orbitals. It is a hope that this work can be used in the future to construct

a QVCCD method that can be applied to open-shell systems.

This thesis leaves many options for future work involving QVCCD and the instanton

method, some of which are briefly discussed here:

QVCCD and on-the-fly instanton calculations

The QV methods were not used with the Criegee systems due to time constraints,

however these systems could be ideal for a QV investigation. The main error in the

instanton method comes from the calculation of the potential energy surface. It is
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possible to use the QV methods to do this and thereby provide accurate answers. It

has been observed that OQVCCDR(T) predicts higher barrier heights than CCSD(T)

and so the tunnelling factors are likely to be larger.

It would also be interesting to try QV calculations on smaller systems that involve

hydrogen tunnelling, for example, CH4 → CH3 + H and even H2 + H → H + H2.

Highly accurate analytical expressions have been determined for both these reactions

and therefore could be used to benchmark the QV methods. The obvious obstacle to

this is that both systems are open-shell and therefore an unrestricted code must exist

to carry out these calculations.

A wider range of Criegee intermediates

Only two Criegee intermediates were examined with the instanton method. However

there are several, larger, Criegee intermediates that are more common in the atmo-

sphere. It would be of great interest to examine how hydrogen tunnelling effects these

different systems. It is unlikely that OQVCCDR(T) or even OQVCCD are fast enough

to carry out these experiments due to the size of the systems, so DFT methods will

have to be used.

Analytical gradients

Currently, if derivatives of the QVCCD are required, then numerical differentiation

must be carried out. This can become a problem for even small molecules, as the

number of displacements that are calculated grows as 2M (for central differences),

where M is the number of degrees of freedom. It is this procedure that makes calculating

molecular properties and optimising geometries slow for QVCCD. It also prohibits even

small molecules being investigated using QVCCD and the instanton method due to the

heavy use of first and second derivatives in the program.

Numerical differentiation could be bypassed if analytical formulas for the gradients

were developed for QVCCD (a so called Coupled Perturbed-QVCCD method) . Such

a set of formulas would be of great utility as molecular properties could be routinely

calculated with QVCCD without the prohibitive time cost.

UQVCCD and RQVCCD

As mentioned above, the equations for UQVCCD have been derived, but not imple-

mented within the ITF. This would be a large task as there is no unrestricted infrastruc-

ture currently within the ITF. Gathering the different spin parts of the Hamiltonian,



149 Conclusions

constructing an interface to carry out the integral transformation and designing a new

mapping scheme to place the tensors into different class objects are some of the many

tasks that will be required. However, an UQVCCD code would be of great benefit and

would open up many new areas to investigation.

It is expected that the UQVCCD equations will take around three times as much

computational time as QVCCD. Time reductions could be made by constructing an

RQVCCD method much like RCCSD. A barrier to this approach would be deriving the

equations as they would be more complicated than UQVCCD.

Improvement of qTransform

Usually, a piece of code can always be improved upon. Currently, the OQVCCD(T)

code is many times faster than the old code and only 2-3 times slower than CCSD(T).

Speed improvements could be derived from making the qTransform function more par-

allel. Calculations would take less time therefore there would be more incentive to use

a single-reference method to model multireference systems.

Transition metals

There is still a large amount of closed-shell chemistry that could be investigated with

the QV methods. For example, the transition metal complexes pose a challenging

problem for single-reference methods due to non-dynamic correlation effects. This

could possibly be overcome by using the QV methods to investigate the properties and

kinetics of these systems. Previously, transition metal complexes were out of reach for

the old QVCCD code due to slow computational times, however it is now feasible to

carry out these kind of calculations with the new code.

Further benchmarking

Comparisons for activation energies and other properties should be made with CCSDT

and CCSDT(Q). The challenging part of this task is to find enough systems that are

small enough to use the full triples and perturbative quintuples. From some preliminary

results (Chapter 5), it appears the QV method predicts barrier heights that are close

to the CCSDT values. This was only carried out for two barrier heights and therefore

does not constitute a conclusive proof of concept. Further tests should be carried out

to test the reliability of the QV methods.
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