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Abstract
This thesis targets to the synthesis of cyclic carbonates as they are compounds of high 

importance in a number of different applications. The one-pot synthesis of cyclic 

carbonates consists of two sequential reactions of epoxidation of the olefin and the 

subsequent cycloaddition reaction of CO2 with the epoxide. To obtain more information 

on the roles of catalyst components, the epoxidation of 1-decene (first step) and the 

cycloaddition of CO2 with epoxide (second step) were conducted individually. 

The supported cobalt catalysts, prepared by a wet-impregnation method, were active in 

the epoxidation of 1-decene in the presence of oxygen from air as the primary oxidant 

and a very small amount of the radical initiator at 80°C. Using TiO2 as a support for cobalt 

resulted in a significant reduction in the quantity of the leached cobalt catalyst compared 

with the use of MgO as a support. 1-Decene epoxidation was also performed over 

supported gold catalysts in the presence of a very small amount of the radical initiator 

using oxygen as the oxidant. Supported gold catalysts prepared by the sol-immobilisation 

method displayed the highest activity. Gold nanoparticles supported on TiO2 and SiO2

showed the highest activity. 

The cycloaddition of CO2 with different epoxides were studied using different catalysts. 

Tetrabutylammonium bromide (Bu4NBr) was the most active quaternary ammonium 

salts. Other heterogeneous catalysts such as polydiallyldimethylammonium bromide and 

imidazole supported onto silica were found to be effective catalysts for this reaction. The 

compatibility between these two catalysts for the two different steps before coupling them 

in a one-pot reaction for the direct synthesis of cyclic carbonate was also investigated. 

The epoxide selectivity was significantly reduced in the presence of Bu4NBr or 

polydiallyldimethylammonium bromide (40% PDDABr/SiO2) or imidazole supported on 

silica (Imid/SiO2). No effect of supported gold catalysts was observed on the 

cycloaddition of CO2 with 1,2-epoxydecane. A simple and highly efficient preparation of 

cyclic carbonates from 1-decene was achieved by the use of 

1%Au/support-Bu4NBr/ZnBr2 catalysts. The oxidative carboxylation process for a range 

of different cycloalkenes is challenging. For the epoxidation step, it was shown previously 

in our group that smaller ring size, such as cyclopentene, became less selective to the 

epoxidation. However, regarding the cycloaddition step, the opposite trend was found. 

Cyclopentene oxide and cyclohexene oxide gave high selectivity for cyclic carbonate, 

whereas the insertion of CO2 in carbonylation of cyclooctene oxide and cyclododecane 

oxide to form cyclic carbonate was a challenging step and the main product was ketone. 
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Chapter 1: Introduction
1.1. History of catalysis
The word catalysis is derived from the Greek language and can be divided into two parts: 

“cata” which means to bring down and “lysein” meaning to break. The term ‘catalysis’ 

was initially coined by Berzlius in 1836 during the combustion of oxygen and hydrogen 

over platinum in a reaction which had the ability to increase its rate without being 

consumed or altered itself during the reaction [1]. Using a suitable catalyst for a reaction 

offers an alternate, energetically more favourable pathway and therefore enables 

procedures to be completed under industrially feasible conditions of time, temperature 

and pressure. In 1825, many studies into reactions were done by Faraday [1], who 

explained that the activity of the platinum catalyst was involved a process of adsorption. 

In 1877, Lemoine [2] explained the thermodynamics of a catalyst and stated that the 

addition of a catalyst cannot change the equilibrium of a chemical reaction but the 

reaction rate would be altered. 

1.2. Catalysts definition
A catalyst accelerates the rate of a chemical reaction towards chemical equilibrium, but 

is not altered itself. It can afford an alternative chemical pathway, which provides lower 

activation energy so the reaction can proceed at an accelerated rate. After the reaction is 

stopped, it can be recovered in its original form from the mixture without having been 

subjected to a chemical change [1]. For this reason, the catalytic material does not appear 

as one of the reactants or products in an overall balanced chemical equation. Figure 1.1 

compares between the non-catalytic and catalytic reactions. For the non-catalytic 

reaction: the reaction proceeds when the reactants react with enough energy to overcome

the activation energy barrier. The catalyst’s role is to lower the amount of energy needed 

to form one or more transition states between the reactants and the product. Nevertheless, 

both the forward and reverse reactions will be altered by a catalyst and there should be 

no change in the equilibrium position.
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Figure 1.1: Activation energy barriers of uncatalysed/catalysed reaction. Adapted from reference 

[3].

1.3. Categories of catalysis
Catalysis can generally be classified into three different groups: heterogeneous catalysis, 

homogeneous catalysis and bio-catalysis. Heterogeneous catalysts exist in a different 

phase from the reactants (gas/solid or gas/liquid/solid). They are often present as metals 

supported on a secondary material, which help to enhance the activity of the catalyst. 

They are easy to separate and can have tuneable selectivity. Secondly, there are 

homogeneous catalysts, which are in the same phase as reactants. These can be more 

active than heterogeneous catalysts, and may have high selectivity but can be difficult to 

separate. Thirdly, there are bio-catalysts such as enzymes or bacteria [4]. The subsequent 

sections will briefly explain these types of catalysis.

1.3.1. Bio-catalysis

Enzyme catalysis (bio-catalysis) is an important area in catalysis. The enzyme is a natural 

catalyst and almost all living organisms’ processes depend on it. The enzymes consist of 

proteins and the amino acids, which are the backbone of proteins and are linked together 

by peptide bonds, and these bonds form the enzyme’s structure [5]. The enzyme active 

sites are a cleft surrounded by an array of amino acid residues, then these residues bind 

the substrates to the enzyme surface. Four types of interactions are used by the enzymes

to bind their substrates, which are: hydrogen bonding, electronic interactions, 
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hydrophobic interactions and Van der Waals interactions. The bond between the substrate 

and the active site is relatively weak, as if the bond is strong, it may prevent the enzymes’ 

catalytic cycle. In recent years, enzyme catalysis has become increasingly used as a 

catalyst for industrial processes [5].

1.3.2. Homogeneous catalysis

In homogeneous catalysis, the catalyst is in the same phase as the reaction mixture, which 

is generally liquid. The advantages of homogeneous catalysis are that there is a good 

contact between the substrates and catalyst, which results in greater selectivity. Many 

transition metals are used as homogeneous catalysts, stabilised by ligands. A ligand can 

play an essential role in homogeneous catalysis, as it can adjust the selectivity of the 

catalyst. Therefore, the catalytic activity and selectivity can be significantly improved by 

selecting appropriate metal and ligand [5]. However, as catalyst and reaction mixture exist 

in the same phase, the difficulties of the catalyst separation and recovery are major 

disadvantages of homogeneous catalysis. 

1.3.3. Heterogeneous catalysis

In heterogeneous catalysis, the catalyst is usually solid, that is present at a different phase 

from the reaction mixture. Therefore, the ease of catalyst separation is the main advantage 

of heterogeneous catalysis. Most heterogeneous catalysis generally involves the three 

following stages of the catalytic process: first, adsorption of the reactants on to the surface 

of the catalyst at active sites, which is physisorption (weak adsorption) or chemisorption 

(strong adsorption, which involves bond weakening or breaking in the reactant). Then, 

interaction between the reactants on surface of the catalyst takes place. The last stage is 

the desorption of products from the catalyst surface so new molecules attach and react. 

Adsorption of reactants on the catalyst surface needs to be strong enough for reactants to 

react, although very strong adsorption leads to difficulty of product desorption from the 

catalyst surface. Heterogeneous catalysis has several advantages over homogenous 

catalysis, as shown in Table 1.1. 

Table 1.1: Comparison between heterogeneous and homogeneous catalysts 

Criterion Heterogeneous Homogeneous
Catalyst phase Generally solid. Metal or metal oxide Metal complex
Recyclability Easy Difficult
Selectivity Variable Usually high
Stability Stable at high temperature Decomposed
Solvent Often not required Required
Application Wide Limited
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There are many industrial applications that use heterogeneous catalysis in chemical, 

pharmaceutical, food and petrochemical industries [6]; some of the industrial processes 

which use heterogeneous catalysis are described in Table 1.2.

Table 1.2: Processes based on heterogeneous catalysts [7]

Process Catalyst
Ethylene epoxidation Ag
Dehydrogenation of alkanes V (oxide), Pt/Al2O3
Ammonia synthesis Fe
Methanol synthesis Cu/ZnO/Al2O3
Catalytic cracking of crude oil Zeolites
Water-gas shift reaction Fe (oxide), Cu-ZnO
Hydrogenation of vegetable oil Ni
Reduction of NOx Rh, V (oxide)

It has become important to develop environmentally friendly chemical processes over the 

past 25 years. In 1998, Warner and Anastas explained the concept of green chemistry in 

12 principles [8, 9]. These principles are presented as follows:

1. Preventing the emergence of waste is less environmentally damaging than treating or 

disposing of waste (or a combination of the two) once it has already been produced.

2. Waste minimisation should be achieved by ensuring the maximisation of atom 

efficiency, thereby meaning that every reagents’ atoms are integrated into the product.

3. The synthesis of environmentally toxic products (or the use of approaches which are

in themselves hazardous) should not take place if there are less toxicity alternatives.

4. Design of a product which is fit for purpose should always be combined with the aim 

to minimise chemical and process hazardousness.

5. When practicable, the minimisation and, ideally, the elimination of solvent and 

auxiliary utilisation should be sought, and where impracticable, toxic and hazardous 

solvents and auxiliaries should not be used.

6. Environmental sustainability considerations should guide every practitioner’s attempt 

to maximise process efficiency, with one implication of this being that ambient reaction 

conditions are unanimously preferable for minimising energy consumption.

7. Renewable raw materials should be used over non-renewable raw materials, with this 

consideration being even more pertinent when the non-renewable raw materials are not 

abundant.
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8. Waste minimisation should be achieved by avoiding and, ideally, eliminating the 

transformation of intermediates into derivatives.

9. The process should utilise catalysis and eliminate the stoichiometric employment of 

reagents.

10. Product lifetimes should be minimised by the product design process after it has 

fulfilled its purpose to ensure the least impactful environmental effect. 

11. Online monitoring and analysis of a system should be engaged in for the purpose of 

controlling undesirable and toxic waste and its release to the environment.

12. Risk minimisation considerations regarding toxic waste leakage, explosions, 

spillages, and fires should be incorporated into process design.

1.4. Carbon dioxide (CO2)
The carbon cycle of carbon dioxide (CO2) naturally occurs in aquatic and terrestrial 

environments in a dynamic exchange with the atmosphere. The main sources of CO2

emissions are fossil fuels, natural gas, deforestation and coal, as well as some chemical 

processes [10]. These emissions of CO2 are not balanced with the consumption of CO2, 

therefore, the CO2 concentration in the atmosphere has kept steadily increasing in the last 

200 years [10]. This increase in CO2 level, along with other greenhouse gases, directly 

affects the atmosphere and causes the increase in the planetary temperature that is 

associated with global climate change [11]. In recent years, there has been increasing 

interest in using CO2 as a chemical starting material for conversion into valuable organic 

chemicals as it is abundant, non-toxic and low cost. A reduction in CO2 emissions could 

be achieved through the reutilisation of CO2. Around 110 Mton of carbon dioxide per 

year is utilised as a synthetic building block [11], 90 Mton of CO2 per annum used for the 

synthesis of urea. Salicylic acid has been synthesised from phenol and CO2 since 1890 as 

it is used in the production of aspirin. Furthermore, carbon dioxide can be incorporated 

into organic chemicals processes such as polycarbonates [12] and cyclic carbonates [13].

1.5. Cyclic carbonates (CCs)
Cyclic carbonates (CCs) such as ethylene and propylene carbonates are extensively used 

as intermediates in the synthesis of pharmaceuticals, raw materials for engineering 

plastics, aprotic polar solvents, electrolytes for lithium-ion batteries, monomers for 

synthesising polycarbonates and the use of CCs is one of the most effective routes for 

CO2 fixation [14]. Cyclic carbonates are prepared via the cycloaddition of CO2 with 



6

epoxides as shown in Scheme 1.1. In this method CO2 is used instead of toxic and 

hazardous reactants such as phosgene as the C1-building block, as it is 100% atom 

economical, hence greatly desirable for transformation [14].

Scheme 1.1: Cycloaddition of CO2 with epoxide.

Several studies have been developed for the synthesis of cyclic carbonates whether using 

homogeneous or heterogeneous catalysts. The following sections describe the 

developments in the area of catalysis of cyclic carbonate synthesis from CO2 and epoxide.

1.5.1. Cyclic carbonate synthesis catalysed by quaternary ammonium salts

Quaternary ammonium salts are typically used as homogeneous catalysts for the synthesis 

of cyclic carbonate by the cycloaddition of carbon dioxide with the epoxide [15]. It was 

shown that a mixture of tetrabutylammonium bromide (Bu4NBr) and 

tetrabutylammonium iodide (Bu4NI) (1:1) can catalyse the cycloaddition of CO2 (at 

atmospheric pressure) with styrene oxide to produce an 83% yield of styrene carbonate 

achievable at 120°C within 4 h [15]. Park and co-worker studied the effect of alkyl group 

length in ammonium salt in the synthesis of cyclic carbonate; they showed that the 

catalytic activity enhanced with increased length of the alkyl groups [16]. However, a

decreased in the conversion was found with longer than C8 alkyl group because it is too 

bulky to form an intermediate. Similar observations were found in previous studies 

described by Zhang and his group, which combined experimental and computational 

study for the conversion of ethylene oxide to ethylene carbonate [17]. In their work, they 

verified that reactions catalysed by tetraethylammonium chloride (Et4NCl) and 

tetraethylammonium bromide (Et4NBr) had a higher activation barrier (30.69 kcal mol-1, 

29.76 kcal mol-1 respectively) than those catalysed by Bu4NBr (28.20 kcal mol-1). The

bulkiness of the tetrahedral ammonium ion [NR4]+ forces the Br anion away from the 

cation, which then results in a smaller amount of electrostatic interaction between Br- and 

cation, which in turn results in more nucleophilicity of the anion. Regarding the effect of 

the anion in the quaternary ammonium salt, it was demonstrated that the order of activity 

was found to be Bu4NBr > Bu4NI > Bu4NCl [18]. In the case of Bu4NI, when it was added 

into the reaction mixture of TBHP and styrene, the colour of the mixture changed to dark 

orange, which may indicate the formation of iodine by oxidation with TBHP [18]. 
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Furthermore, a previous study showed that there was a synergistic effect of Lewis acid 

such as ZnBr2 and the Lewis base on the catalytic synthesis of cyclic carbonate from CO2

and epoxide [19]. Furthermore, they observed that the cycloaddition of CO2 with epoxide 

using Lewis base and Lewis acid resulting to an increase in the reaction efficiency of up 

to 40 times comparing with the reaction carried out using only Lewis acid [19]. 

Furthermore, very low yield of cyclic carbonate (2.13%) was detected when using 

cyclooctene oxide as substrate [19]. Lewis acid enhances the activity of ammonium salt, 

as suggested by Kossev and his group [20]. It was found that Lewis acid promoted the 

reaction between carbon dioxide and different epoxides to synthesise cyclic carbonates 

using quaternary ammonium salts as catalysts. Different molar ratios were studied

between ammonium salt and Lewis acid and found that the optimum molar ratio (Lewis 

base: Lewis acid) is 2:1 where a significant increase in the cyclic carbonate yield was 

obtained (96%). However, low cyclic carbonate yield was found (15%) when the molar 

ratio was 1:1 [20]. It was proposed that Lewis acid and the Lewis base are working 

together to open the epoxide ring, as suggested in the previous reported studies. The 

Lewis acid activates the epoxide, whereas the quaternary ammonium salt opens the ring 

of the epoxide [20]. Very efficient reaction can be achieved due to the cooperative 

between Zn complex and quaternary salts [18, 20]. Nevertheless, homogeneous catalysts 

such as Bu4NBr are dissolved in a reaction mixture containing cyclic carbonates. 

Therefore, separating the catalysts from the reaction mixture may require more energy 

through a purification process.

1.5.2. Cycloaddition of CO2 with the epoxide for cyclic carbonate synthesis using 

heterogeneous catalysts

Limited studies were carried out on the synthesis of cyclic carbonate using heterogeneous 

catalysts [21-29]. As shown previously, Bu4NBr is the most active homogeneous catalyst 

for cycloaddition of CO2 with epoxides. However, homogeneous catalysts are dissolved 

in the reaction mixture, which contains cyclic carbonate, therefore it is necessary to run a 

purification process to separate the catalysts from the products. Consequently, 

immobilising the quaternary ammonium salt by dispersing it on inorganic support would 

be a good solution in order to separate and recover the catalyst easily from the reaction 

mixture.

He and his group [22] investigated the synthesis of cyclic carbonates from terminal 

epoxides using silica-supported quaternary ammonium as a catalyst and CO2 under 

supercritical conditions. They compared the activity of unsupported and silica-supported 
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tetrabutylammonium halide salts for cycloaddition of CO2 with propylene oxide using 80 

atmospheres pressure CO2 with 1 mmol% catalyst for 10 h at 150°C. 97% and 96% cyclic 

carbonate yield were achieved when using the silica supported salts with the bromide and 

iodide respectively. The homogeneous Bu4NBr provided a similar result. However, the 

fluoride salt gave only a 66% cyclic carbonate yield. However, fluoride salt showed a 

leaching after the fourth run, which results in decreased cyclic carbonate yield.

It is challenge to stabilise Bu4NBr on the support and avoid the leaching of the active 

species. Other strategy is to find a material which can share the effectiveness of Bu4NBr 

as well as stay insoluble in an organic solvent would be the perfect solution for the 

leaching of a catalyst in the liquid phase. It was reported that 

polydiallyldimethylammonium bromide supported on silica with ZnBr2 can catalyse the 

cycloaddition of CO2 with propylene oxide with 80% conversion and 96% selectivity for 

cyclic carbonate [23]. Furthermore, this catalyst could be recovered by a simple 

centrifugation after the reaction, and could then be reused 10 times without significant 

loss of activity [23]. More interestingly, this catalyst is non-toxic as it is used for drinking 

water pre-treatment [23].

Hydrotalcite and MgO were shown to be good catalysts for this reaction [24-26] due to 

their acidic and basic properties, which can help to adsorb CO2 onto the surface. One 

study has used MgO for the cycloaddition of CO2 with propylene and styrene oxides [24]; 

41% and 47% yield of propylene and styrene carbonates being obtained respectively at 

135°C using 20 atm CO2 for 12 h using DMF as a solvent. Moreover, using hydrotalcite 

(Mg/Al=5) resulted in increasing the propylene carbonate yield to 88% using 3 atm CO2

at 120°C for 24 h and DMF as a solvent, whereas only 38% yield of styrene carbonate

was achieved under the same conditions [26]. Hydrotalcites and MgO catalysts usually 

required a polar organic solvent, high temperature and long reaction time in order to 

achieve good yield of cyclic carbonate [24-26].

Furthermore, the catalytic activity for imidazolium-based ionic liquids for cyclic 

carbonate synthesis was reported [27]. Miralda et al. prepared a zeolitic imidazole 

framework-8 catalyst for the synthesis of chloropropene carbonate by cycloaddition of 

carbon dioxide with epichlorohydrin and no co-catalysts or solvents were required during 

the reaction [27]. 98% epoxide conversion and only 33.4% selectivity for the cyclic 

carbonate was reported due to the formation of diol (selectivity 29.8%) and dimer 

(selectivity 36.8%) using 7 bar CO2 at 100°C for 4 h. Another study showed that the 

imidazolium-based ionic liquids supported on silica (1.8 mmol%) can convert propylene 
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oxide to the corresponding cyclic carbonate (yield 99%) under solvent-free conditions 

using 8 MPa CO2 at 160°C for 4 h [28]. This catalyst can be reused over four times with 

only a small decrease of its catalytic activity. Furthermore, under the same conditions, 

they studied the effect of MgO (1.8 mmol%) as a catalyst for this reaction and it was 

found that no cyclic carbonate was produced and only 2% conversion of the epoxide was 

observed [28]. Sankar and co-worker reported that a simple organic base can be anchored 

onto silica and used as a heterogeneous catalyst for cycloaddition of CO2 with the epoxide

[29]. They proposed that this catalyst has several advantages over the supported ionic 

liquid-based catalysts, which are effective in producing cyclic carbonate under 

solvent-free conditions, it is easy to synthesise, cost effective and can be reused several 

times without the addition of halide ions. 79% Conversion of styrene oxide and 97% 

selectivity for cyclic carbonate were obtained using imidazole supported silica using 

0.6 MPa CO2 at 130°C for 10 h [29]. However, using an expensive epoxide as raw 

materials would result in a decrease in the CCs production. Therefore, the direct synthesis 

of cyclic carbonates from low-priced olefins would be interesting to study.

1.5.3. Cyclic carbonate synthesis via oxidative addition of CO2 with olefins

Cyclic carbonates can be produced by simpler and cheaper approaches directly from CO2

and olefin instead of an expensive epoxide, which were shown to be remarkably 

economical methods because of the use of the low-priced olefins as starting materials as 

well as minimising the use of chemicals, the waste production and the processing 

time [18, 30, 31]. The oxidative carboxylation process (Scheme 1.2 a) consists of a 

combination of two sequential reactions; first, epoxidation of the olefin and then the 

cycloaddition of carbon dioxide with formed epoxide in a one-pot reaction to produce 

cyclic carbonate (Scheme 1.2 b).

Scheme 1.2: The synthesis of cyclic carbonate from the oxidative carboxylation of olefins. Adapted 

from [18].
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The one-pot synthesis of cyclic carbonate (simultaneous oxidation and carboxylation) 

from olefin involves the addition of CO2 and a co-catalyst at the beginning of the reaction, 

with olefins, oxidants and catalysts required for the epoxidation step. In the one-pot 

multistep reaction (sequential oxidation and carboxylation), CO2 and a co-catalyst are 

added to the same reactor after the epoxidation reaction is completed instead of being 

added at the beginning of the reaction (Scheme 1.3).

Scheme 1.3: Approaches for oxidative carboxylation of olefins. Adapted from [30].

In spite of the fact that the oxidative carboxylation of olefins has been known since 1962 

[32], little attention was paid to this method compared with the route that employs epoxide 

as a starting material. Aresta and co-worker reported the direct synthesis of styrene 

carbonate using the Nb2O5/NbCl5 catalyst [33]; the highest yield of styrene carbonate was 

only 11%, which attributed to the formation of by-products such as benzoic acid and 

benzaldehyde. Another study for the direct synthesis of cyclic carbonate done by 

Srivastava and co-worker using titaniosilicate catalysts. They first conducted the 

epoxidation of allylchloride or styrene (26.2 mmol) using titaniosilicate catalysts and 

H2O2 (14.7 mmol) as an oxidant at 60°C for 8 h in the presence of acetone as a solvent. 

After that, CO2 (6.9 bar) and N,N-dimethylaminopyridine (DMAP; 0.0072 mmol) was 

added at 120°C and the reaction was conducted for a further 4 h. The results are shown in 

Table 1.3 [34]. 54.6% Allyl chloride conversion and 55.6% cyclic carbonate selectivity 

were obtained; it was detected amount of ring-hydrolysed products. A conversion of 

50.4% and cyclic carbonate selectivity of 26% were obtained when styrene was the olefin.
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Table 1.3: Synthesis of cyclic carbonates from olefins [34]

Catalyst
(weight in mg)

Olefin Stage 1
Olefin to epoxide

Stage 2
Epoxide to cyclic 
carbonate

Olefin 
conversion (%)

Epoxide 
selectivity 
(%)

Epoxide 
conv. (%)

Cyclic 
carbonate 
sel. (%)

TS-1 (400 mg) Allylic 
chloride

54.6 100 92.5 55.6

TS-1 (400 mg) Styrene 50.4 89 49.2 26

Another study by Aria and his group investigated the direct synthesis of cyclic carbonate 

from styrene [35]. Bu4NBr (11.56 mmol%) was used as a catalyst for this reaction and 

TBHP (25.4 mmol) as an oxidant; The styrene carbonate yield could reach 38% at 80°C 

for 6 h under 1 MPa CO2. Another investigations by the same group tested the 

performance of Bu4NBr in the presence of zinc bromide for the cycloaddition of carbon 

dioxide with styrene oxide [18]. A short reaction time (1 h) was required for styrene 

carbonate to be produced (yield 100%) at 80°C when using Bu4NBr and ZnBr2 as 

catalysts and only 28% cyclic carbonate yield was obtained with Bu4NBr. Furthermore, 

for the one-pot synthesis of cyclic carbonate, they combined ZnBr2 and Bu4NBr with 

Au/SiO2, as they suggested that the latter is a good catalyst for the epoxidation reaction. 

A 42% yield of styrene carbonate was produced at 80°C for 4 h under solvent-free 

conditions [18]. They also observed that the addition of Bu4NBr and ZnBr2 did not have

any decrease in the epoxide yield during the epoxidation reaction and supported gold 

catalyst has no activity for the cycloaddition of CO2 with styrene oxide [18].

Yokoyama and co-worker [36] studied the synthesis of styrene carbonate, beginning with 

styrene in a one-pot multi-step synthesis (sequential oxidation and carboxylation). They 

used (MTO/UHP/Zn[EMIm]2Br4/([BMIm]BF4) system, where methyltrioxorhenium

(MTO) was used as the oxidation catalyst and urea hydrogen peroxide (UHP) was the 

oxidant; and the ionic liquids (BMIm = 1-butyl-3-methylimidazolium), (EMIm = 

1-ethyl-3-methylimidazolium) as catalysts for cycloaadition of CO2 with formed epoxide. 

An 83% yield of styrene carbonate was formed, using 30 atm of CO2 at 110°C and only 

a 55% yield of cyclic carbonate was produced at 80°C using the same procedure. 

However, no cyclic carbonate was detected when they applied one-pot single step 

(simultaneous oxidation and carboxylation) and the reason may be that CO2 play a 
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negative effect on oxidation step, which might come from its interaction with the oxidant 

UHP resulting to degrade the performance of the UHP [36].

This investigation is in agreement with another study [37], which demonstrated that the 

one-pot multistep synthetic protocol could efficiently promote oxidative carboxylation of

1-octene to yield 83% of cyclic carbonate. In contrast, the one-pot single step 

(simultaneous oxidation and carboxylation) of MoO2(acac)2/TBHP-Bu4NBr system 

clearly stopped the epoxidation reaction and no 1-octene carbonate was produced as 

Bu4NBr prevented the epoxidation reaction. This observation is in contrast to an earlier

study [18], which observed that Bu4NBr and ZnBr2 have no effect on the epoxidation of 

styrene.

In fact, the combination of two reactions in a one-pot process usually needs compatibility 

between the reaction conditions such as temperature, pressure and the suitable catalysts 

for both reactions in the oxidative carboxylation process in one pot. Some of the catalysts 

exhibited low activity towards the epoxidation step, which resulted in a low yield of CCs; 

therefore, finding more active catalysts for the oxidation of olefins is important in one-pot 

synthetic reaction. 

1.6. Catalysis by gold
Historically, gold (Au) was considered to be catalytically inactive (as the d-orbitals are 

filled) until the 1970s where Bond et al. [38] were the first to use a supported gold 

catalyst. They prepared Au/SiO2 by the impregnation method and then dried and reduced 

in H2 and was used in the hydrogenation of olefins. Significant attention had been placed 

on gold catalysis in chemistry after two important reports in the 1980s. These reports are 

as follows: Haruta and co-worker reported that gold nanoparticles supported on iron oxide 

are very active for CO oxidation at low temperatures [39]. Furthermore, Hutchings 

showed that gold was the most effective catalyst for the hydrochlorination of ethyne to 

vinyl chloride [40]. After these two highly important discoveries, the number of 

publications and patents using a gold catalyst have increased [41, 42]. There are many 

important industrial applications for using gold as a catalyst, such as CO oxidation at low 

temperatures [43, 44], synthesis of hydrogen peroxide under non-explosive conditions 

[45], oxidation of hydrocarbon, oxidation of alcohol and hydrogenation of alkynes 

[46-48].

Numerous studies have shown that Au particle size strongly influences their activity for 

many different reactions. The preparation method of the gold catalysts and the choice of 
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the support both have a large influence on the Au particle size [49-53]. Different 

preparation methods have been used for introduction of gold precursors on the support 

such as impregnation, deposition precipitation and sol-immobilisation. The impregnation 

is a simple method for preparing a gold supported catalyst. In this method, the gold 

precursor solution is stirred with the support, gold chloride (AuCl3) and chloroauric acid 

(HAuCl4) are frequently used as gold precursors. The gold particles prepared by this 

method are large (2-100 nm), these catalysts have been used for the direct synthesis of 

hydrogen peroxide [49] and alcohol oxidation [50] and have shown excellent activity. 

However, no activity has been found with CO oxidation. This observation leads to further 

development in the gold preparation method of supported gold catalysts of the deposition 

precipitation by Haruta [51]. The solution of the gold precursor is added to the mixture 

of deionised water with support with a simultaneous addition of sodium carbonate to 

increase the pH of the solution to a fixed value. In this method, a smaller particle size of 

gold catalysts has been produced but the nature of the formed catalyst depends on 

different factors, such as: the pH of the solution, the base used, time for the deposition to 

occur and heat treatment conditions [52]. In the sol-immobilisation method, the Au 

particles are immobilised on the support surface by adding the support to a colloidal 

suspension. Poly vinyl alcohol (PVA) is added (as a stabiliser) to protect the nanoparticles 

of gold catalyst from aggregation. As such, much smaller nanoparticle size distribution 

(2-5 nm) as well as a higher dispersion of gold have been found with the 

sol-immobilisation method [53].

1.6.1. Selective oxidation of alkenes by supported gold catalysts

Selective oxidation is a key process for commercial applications, especially for the 

synthesis of a chemical intermediate. Therefore, oxidation of hydrocarbons for generating 

compounds containing oxygen is an important industrial reaction [54]. Organic

compounds which contain oxygen, such as epoxides, alcohols, aldehydes, ketones and 

acids, are used to produce plastics, detergents, paints, cosmetics and food additives. 

Aerobic epoxidation of terminal alkenes, containing allylic hydrogen are challenges in 

oxidation catalysis. Epoxide is one of the key intermediates in the manufacture of 

functionalised fine chemicals and pharmaceutics. Molecular oxygen from the air is the 

preferred oxidant in terms of green chemistry. Using molecular oxygen for epoxidation 

reactions in combination with an appropriate transition metal catalyst is the main target 

in heterogeneous catalysis [55].



14

Supported gold catalysts have a significant activity on oxidation of several types of 

alkenes [56-60]. Propene epoxidation is one of the most important topics in industrial 

processes. It can be used in the production of different products depending on the reaction 

conditions and the catalysts used [58]. Haruta established the earliest study of using 

supported gold catalysts for the epoxidation of alkenes [59]. He studied how the gold 

(prepared by deposition-precipitation) catalysed epoxidation of propene in the presence 

of hydrogen as a sacrificial reductant. 1% conversion of propene with 99% selectivity for 

propene oxide was obtained using 1% Au/TiO2 [59]. Another study for the oxidation of 

propene by Haruta and his group used an Au/Ti-MCM-41 catalyst. They showed 2% 

conversion of propene and 95% selectivity for propene oxide at 100°C [60]. 1-Octene 

oxidation was also studied using Au/CeO2 catalysts in the presence of 

2,2-Azoisobutyronitrile (AIBN) as the radical initiator by Corma and his group [61]. They 

demonstrated that after 5 h of reaction in the absence of AIBN, very low conversion of 

1-octene was detected, whereas in the presence of AIBN the conversion increased up to 

5% and selectivity for the epoxide up to 45%. Different allylic products were produced 

from oxidation of 1-octene. Another study for the oxidation of 1-octene used graphite 

supported gold in the presence of tert-butyl hydroperoxide (TBHP) as a radical initiator 

using oxygen from the air under solvent-free conditions [62]. It was found that the activity 

of gold supported on different supports was as following: graphite > Al2O3 > SiC > MgO 

> SiO2. Moreover, it was observed that the catalyst prepared using the sol-immobilisation 

method showed higher 1-octene conversion (3.7%) and selectivity for the epoxide 

(29.3%).

Solvent-free oxidation of 1-hexene with air by using supported gold catalysts with a small 

amount of TBHP as initiator was studied [63]. 1% Au/graphite catalysts were prepared 

using impregnation, deposition-precipitation or deposition-precipitation with urea, which 

leads to catalysts that display very similar activity (conversion 0.9% and epoxide 

selectivity 3.7-4.6%). However, a sol-immobilisation method gave higher conversion of 

1-hexene to 2.4% and epoxide selectivity 11.8% and 77% selectivity for allylic products. 

Furthermore, supported gold catalysts have shown excellent activity in the epoxidation 

of cyclic alkenes [64-67]. It was shown previously that a supported gold catalyst can 

oxidise cyclohexene to the corresponding epoxide using O2 and a small amount of 

tert-butyl hydroperoxide as a radical initiator in the presence of a solvent. It was found 

that the epoxide selectivity is strongly dependant on the type of solvent, C6 products are 

produced in high yield when using non-polar solvents, whereas the presence of polar 
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solvents results in the formation of formic acid and CO2 [64]. For instance, cyclohexene 

was almost converted with no C6 products detected when water was used as a solvent, 

whereas a significant increase in the C6 products selectivity of 76% (50% cyclohexane 

oxide and 26% 2-cyclohexen-1-one) and 30% conversion of cyclohexene when 

1,2,3,5-tetramethylbenzene was used as the solvent. Moreover, it was established in this 

study that cyclooctene can be oxidised under solvent-free conditions using similar 

conditions with high selectivity for the epoxide.

Another study using gold nanoparticles supported on Si nanowires catalysts for oxidation 

of cycloalkenes was done by Lee and co-worker [68], they displayed that high conversion 

of cyclohexene (92%) and cyclooctene (38%) can be achieved. Moreover, more than 90% 

selectivity for cyclooctene oxide was detected whereas very low selectivity for 

cyclohexene (0.2%) was found and 2-cyclohexen-1-ol and 2-cyclohexen-1-one were the 

major final products after 24 h. Li and co-workers studied the oxidation of cyclooctene 

using gold supported on carbon nanotubes as the catalyst [69]. 54% conversion of 

cyclooctene and 44% selectivity for cyclooctene oxide could be obtained using TBHP 

and in the presence of CH3CN as a solvent. Corma and his group [66] studied the 

oxidation of cyclohexene using 1.3% Au/CeO2 catalyst and AIBN as a radical initiator. 

20% cyclohexene oxide yield and 15% 2-cyclohexen-1-ol yield were obtained at 60°C 

using O2 as an oxidant. 

Another research on the oxidation of cyclooctene by Hutchings and co-worker [65, 67] 

used different types of supports for gold catalysts. They demonstrated that gold supported 

on graphite displayed the highest activity. Furthermore, they studied the influence of 

preparation method of supported gold catalysts on oxidation of cyclooctene, the 

sol-immobilisation method was found to produce more active catalysts for this reaction. 

It was demonstrated that the catalyst prepared by the sol-immobilisation method 

displayed small particle size (2-3 nm) and this may be the reason for the high activity. 

However, the 1% Au/graphite catalyst prepared by deposition-precipitation and 

wet-impregnation methods, which also exhibit a larger particle size distribution of 

10-30 nm, gave 4-4.2% conversion and 71-78% epoxide selectivity as shown in Table 

1.4. 
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Table 1.4: The effect of preparation methods on the epoxidation of cyclooctene [65]. Refer to Scheme 
1.4

Preparation method Cyclooctene conversion 
(%)

Epoxide selectivity (%)

Sol-immobilisation 7.7 81
Wet-impregnation 4.2 71
Deposition-precipitation 4 78

It was demonstrated that a small amount of the peroxide can be used as a reaction initiator 

for the oxidation of alkenes with supported gold catalysts [70, 71]. Hutchings and 

co-worker reported that TBHP can be used as a radical initiator for the oxidation of 

different cycloalkenes and in its absence no conversion was found [65]. Another 

investigation on the effect of radical initiators on oxidation of cyclooctene was studied 

[65]. They tested a range of radical initiators such as dibenzoyl peroxide (DBP), cumene 

hydroperoxide (CHP), tert-butyl hydroperoxide (TBHP) and azobisisobutyronitrile 

(AIBN) on the oxidation of cyclooctene with and without a supported gold catalyst. In 

the absence of the catalyst, very low activity was found with TBHP, whereas some 

activity was found with CHP, DBP and AIBN. Furthermore, the activity of oxidation of 

cyclooctene was increased when increasing the concentration of the initiator, regardless 

of the absence or presence of the supported gold catalyst. This is in agreement with the 

study by Liu et al. [72]; they noticed that with increasing the concentration of TBHP, the 

reaction activity of styrene oxidation also increased.

The proposed mechanism of oxidation of cyclooctene using supported gold catalyst and 

TBHP as a radical initiator was reported [65] as shown in Scheme 1.4. It was suggested 

that the concentration of TBHP has a notable influence on the pathway. TBHP 

decomposes to (CH3)COO˙ or (CH3)CO˙ in the presence of supported gold catalyst and 

these radicals abstract H atoms to produce allylic radicals (1) to give the oxygen adduct 

(2) and then produces cyclooctene hydroperoxide (3), which is the essential intermediate 

for the oxidation of cyclooctene on the gold surface. Then, cyclooctene hydroperoxide 

(3) transformed into cycloocteneyloxy radical (4), which then abstracts one H atom to 

form intermediate radical (5), which rearranges to generate the epoxide and the allylic 

radical.
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Scheme 1.4: Proposed mechanism for oxidation of cis-cyclooctene using 1% Au/graphite catalyst in 
presence of TBHP as a radical initiator. Adapted from reference [65].

An extension of this study was also carried out by Hutchings and his group on the 

oxidation of different ring size of cycloalkene using supported gold nanoparticles under 

solvent-free conditions using oxygen as the oxidant and a small amount of the radical 

initiator. They found that for the oxidation of cycloalkenes as the ring size decrease (sizes 

of C7 or smaller) allylic oxidation was the dominant reaction pathway (cyclopentene 

oxide selectivity 10.9%, allylic products 77%), whereas with the larger ring sizes, 

epoxidation reaction pathway was preferred (selectivity for cyclooctene oxide 86%, 

allylic products 13%) [73]. Furthermore, they detected that the initiator was not necessary 

during the oxidation of cyclic alkenes and internal linear alkenes after removal of 

stabilisers (added by the manufacturers to prevent oxidation) from the alkenes [74]. In 

contrast, the epoxidation of terminal alkenes still required the presence of the radical 

initiator, which remains a challenge in selective oxidation catalysis. Terminal alkenes 

such as 1-hexene or 1-decene have shown competing pathways for oxidation [75], namely 

epoxidation and allylic oxidation. It was demonstrated that the epoxidation of 1-decene

was achieved over gold supported on graphite prepared via an incipient-wetness 

impregnation method in the presence of a small amount of radical initiator (AIBN) using 

oxygen from air as the terminal oxidant at 90°C for 24 h (conversion 12.3% and epoxide 

selectivity 30.9%).
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1.7. Selective oxidation of alkenes by different catalysts 
Various studies observed that the heterogeneous epoxidation of alkenes, with the 

exception of ethene, is challenging [76, 77]. This may be due to the presence of labile 

allylic H atoms, whose facile abstraction results in production of allylic products instead 

of epoxidation of alkene. The improvement of low-priced heterogeneous catalysts toward 

the epoxidation of alkene has become a hot topic in recent chemical research.

Liang et al. applied iron-based heterogeneous catalysts with molecular oxygen for the 

epoxidation of cyclooctene in the absence of a sacrificial reductant [76] observing that 

the epoxidation of cyclooctene proceeded with conversion 40.2% and high selectivity 

(>96%) at 100°C for 24 h and 20 atm of O2. Further research groups have studied the 

epoxidation of propylene over Ag-based catalyst mixed with 3d-transition metals using 

oxygen as an oxidant [77]. They observed that the highest yield of propylene oxide 

(0.68%) was produced by the addition of Ni to the Ag catalyst at 170°C. Another 

advantage is that the addition of a small amount of Ni decreased the required temperature 

of the reaction (from 230°C to 170°C) [77]. Another study has used porous nickel 

phosphate VSB-5 for the epoxidation of different cycloalkenes at 60°C for 7-8 h using 

H2O2 and acetonitrile as solvent. 84% and 49% conversion of cyclohexene and 

cyclooctene were obtained with 51% and 91% selectivity for their corresponding 

epoxides. However, low cyclododecene conversion (12%) and epoxide selectivity (7.1%) 

were obtained and the main product was the ketone [78]. They showed that the catalyst 

could be used many times without any structural degradation. Another group studied 

nickel catalysts deposited on non-porous carbon with O2 and isobutyraldehyde [79]; they 

found that the different alkenes displayed different reactivity towards nickel-supported 

catalysts. Only a 27% conversion of 1-octene was seen, whereas 98% conversion of

norbornene was observed. However, there was leaching of catalytic active species, which 

resulted in a loss of activity of the catalyst. Another investigation was performed into the 

epoxidation of styrene by TBHP using different supports for NiO, and showed the 

NiO/SiO2 is the best choice for the epoxidation of styrene (selectivity for epoxide 77.7%) 

[80].

Cobalt-based catalysts were reported to be active in epoxidation reactions in both 

homogeneous [81, 82] as well as heterogeneous reactions [83-90]. It was shown that 

cobalt can successfully convert alkenes into the corresponding epoxides. Commercially 

available cobalt(II) perchlorate was investigated for epoxidation of terminal alkenes using 

3-chloroperoxybenzoic acid as the oxidant and performed in CH3CN at room temperature 
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in short time (10 min). 1-Hexene almost converted to give 86% yield of 1,2-epoxyhexane, 

94% conversion of 1-octene and 92% of the 1,2-epoxyoctane was observed [81]. Another 

study investigated epoxidation of norbornene using 

[Co(2-hydroxy-1-naphthaldehyde)2(DMF)2] with TBHP as oxidant, 100% conversion 

and 100% selectivity was found within 6 h in CH3CN [82]. Furthermore, the same group 

studied the immobilisation of [Co(2-hydroxy-1-naphthaldehyde)2(DMF)2] onto a 

modified iron oxide nanomagnet and used it for epoxidation of norbornene under the same 

conditions. 100% norbornene conversion and epoxide selectivity was observed similar to 

the homogenous one [82]. They also investigated the reusability of this catalyst and found 

that after five runs, there is a decrease in the norbornene conversion from 100% to 97% 

without any change in the epoxide selectivity. 

Heterogeneous cobalt catalysts have been applied for the epoxidation of different alkenes, 

such as styrene and stilbene, to the corresponding epoxides using molecular oxygen as a 

primary oxidant in the presence of a polar solvent such as DMF [84-88]. Patil et al. 

studied the epoxidation of α-pinene using Co2+ ions-exchanged zeolite Y having various 

alkali and alkaline earth metal with O2 as oxidant and using DMF as a solvent, 47% 

conversion and 61% epoxide selectivity was found [84]. 

Beier and co-worker also investigate the metal–organic framework STA-12(Co) catalyst 

to study the epoxidation of different alkenes in the presence of DMF as a solvent [87]. 

They found that the selectivity for styrene oxide was low due to oligomerisation, whereas 

high conversion of (E)-stilbene was observed with high selectivity for the epoxide 89%. 

They observed that STA-12(Co) catalyst was reusable with only a small loss of activity 

[87]. Baiker and co-worker demonstrated that DMF is not an inert solvent and should be 

considered a “sacrificial” solvent in the epoxidation of styrene with molecular oxygen. It 

is autoxidised with molecular oxygen to produce 

N-(hydroperoxymethyl)-N-methylformamide, which acting as an oxygen-transfer agent, 

which results in producing N-formyl-N-methylformamide [88]. Formation of 

N-Formyl-N-methylformamide ran parallel with the conversion of styrene and formation 

of styrene oxide. They proposed that the atom-efficiency of this reaction in the presence 

of DMF is poor and far from a “green” technology [88].

A cobalt(II) Schiff base complex has been immobilised onto the surface of Si-MCM-41 

and has been reported to show catalytic activity for the aerobic epoxidation of different 

terminal alkenes in DMF. 47% 1-hexene conversion with 47% yield of the epoxide was 

observed, and 35% conversion of 1-octene with 30% yield of the epoxide was detected at 
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80°C and the flow rate of O2: 3.0 cm3 min-1 using DMF as a solvent. Furthermore, it was

observed that this catalyst could be recovered and reused without any loss of activity [91].
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1.8. Thesis overview 
In the light of the above literature review, it was understood that the direct synthesis of 

cyclic carbonates from olefins and CO2 consists of two sequential reactions of 

epoxidation of the olefin and the subsequent cycloaddition reaction of CO2 with the 

epoxide formed in one pot. The main objective of the thesis is to consider the cyclic 

carbonate formation from the epoxide with a view to finding complementary reaction 

conditions to the alkene epoxidation step.

To obtain more information on the roles of catalyst components, epoxidation of 1-decene 

(first step) and cycloaddition of CO2 with 1,2-epoxydecane (second step) are conducted 

individually. Three major studies have been carried out and are described in three results

chapters:

1- Chapter 3 describes the use of supported cobalt catalysts for epoxidation of 1-decene 

with an investigation on the effect of different reaction parameters by identifying the 

blank conditions in which the 1-decene epoxidation can be performed, the effect of 

support and the effect of radical scavenger.

2- Chapter 4 demonstrates the use of a supported gold nanoparticulate catalyst for 

1-decene epoxidation under green conditions and highlights the effects of different 

parameters, namely the effects of temperature, time, support, preparation method, 

reaction in the absence of oxygen and of radical scavenger.

3- Chapter 5 demonstrates suitable catalysts for the cycloaddition of CO2 with different 

types of epoxides. Furthermore, this Chapter shows the effect of these catalysts on the 

epoxidation step and the effect of gold catalysts on the cycloaddition step. furthermore, 

this Chapter shows the direct synthesis of cyclic carbonate from 1-decene and 

demonstrates the challenge in oxidative carboxylation of cycloalkenes.
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Chapter 2: Experimental 

2.1. Chemicals
All chemicals used in this study were obtained from commercial sources. These chemicals 

were used without further purification. Details of these chemicals are shown in Table 2.1.

Table 2.1: List of chemicals used in the experiments

(a): Impurity of 1-decene: ≤ 2.0% 2-butyl-1-hexene and ≤ 2.0% 2-ethyl-1-octene as provided by the 
supplier.

No. Chemical Chemical source, purity
1 1-Decenea Sigma Aldrich, ≥ 94%
2 1,2-Epoxy decane Aldrich, 98%
3 Graphite Aldrich
4 Titania P25 Degussa
5 SiO2 Aldrich
6 MgO Aldrich
7 Hydrotalcite Aldrich
8 Chloroauric acid, HAuCl4 Johnson Matthey, 99.9%
9 Cobalt nitrate Co(NO3)2·6H2O Aldrich, 99%
10 Tert-Butylhydroperoxide (TBHP) Merck, 70% in H2O
11 α,α-Azoisobutyronitrile (AIBN) Aldrich, 97.5%
12 Cumene hydroperoxide (CHP) Merck, 75%
13 Sodium borohydride (NaBH4) Aldrich, 99%
14 Polyvinyl alcohol (PVA) Aldrich, + 99%
15 Tetrabutylammoniumbromide (Bu4NBr) Alfa Aesar, + 98%
16 Zinc bromide (ZnBr2) Alfa Aesar, 98%
17 Imidazole Aldrich, + 99%
18 Polydiallydimethylammonium chloride Aldrich, 20% in H2O
19 Amberlite® IRA-400 chloride Aldrich
20 Cyclopentene oxide Aldrich, 98%
21 Cyclohexene oxide Aldrich, 98%
22 Cyclooctene oxide Aldrich, 99%
23 Cyclododecene oxide Aldrich, 95%
24 Tetraethylammoniumbromide Aldrich, 98%
25 Tetramethylammoniumbromide Aldrich, 98%
26 Tetrapropylammoniumbromide Aldrich, 98%
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2.2. Catalyst preparation
A number of methods were adopted in this study during catalyst preparation, using 

different catalysts supports namely: magnesium oxide, hydrotalcite, graphite, titanium 

dioxide and silica dioxide. All catalyst metal loading on the support are percentage metal 

by weight of the support.

2.2.1. Sol-immobilisation method 

Supported Au catalysts (2 g) were prepared using sol-immobilisation method [1]. The 

preparation method was as follows: the required amount of HAuCl4 solution (Johnson 

Matthey, 4.94 mg/mL) (4.048 mL) was added to 800 mL of deionised water under 

continuous stirring. Freshly prepared polyvinyl alcohol (1 wt% solution, MW = 10 000, 

80% hydrolysed) was added (PVA/Au (by wt) = 0.65). The polyvinyl alcohol is added to 

protect and stabilise Au nanoparticles. The mixture was stirred for another 15 min; a 

freshly prepared NaBH4 solution (solvent water, 0.2 M, NaBH4/Au (mol/mol) = 5) was 

then added to form a dark-brown sol. The mixture was stirred for additional 30 min while 

the pH was adjusted to 2 by drop wise addition of H2SO4 (with graphite, TiO2, SiO2). 

About 1.98 g of the support was added to the colloid mixture and stirred for 2 hours. The 

catalyst was filtered, washed thoroughly using deionised water (2 L) and then dried at 

110°C for 16 hours prior to use. 

2.2.2. Wet-impregnation method

1 g of the specific catalyst was synthesised using required amount of cobalt nitrate 

[Co(NO3)2·6H2O] (0.0493 g for 2% Co/support), dissolved in deionised water or aqueous 

solutions of HAuCl4 (Johnson Matthey, 4.94 mg/mL) (2.024 mL). The solution was 

mixed with the required amount of the support (MgO, graphite, TiO2, SiO2) under 

continuous stirring at 80°C to allow water evaporation. The resulting paste was dried at 

110°C for 16 h, ground before calcination in static air at 400°C for 3 h at a heating rate 

of 20°C min-1 [1].

2.2.3. Incipient-wetness method

About 1 g of 1% Au/graphite catalyst was prepared using incipient-wetness method [2]. 

An aqueous solution of HAuCl4 (Johnson Matthey, 4.94 mg/mL) (2.024 mL) was mixed 

with 1 mL of deionised water and added drop wise to fill the pores of the graphite support 

prior to air drying. The paste was dried at 110°C for 16 h prior to use.
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2.2.4. Deposition-precipitation method

1% Au/graphite (1 g) was prepared by mixing 250 mL deionised water with graphite 

support (0.99 g) and stirred at 60°C. Sodium carbonate solution (0.53 g/100 mL) was 

added to the mixture drop wise to keep the pH around 8. HAuCl4 solution (Johnson 

Matthey, 4.94 mg/mL) (2.024 mL) was then added to the mixture with a simultaneous 

addition of sodium carbonate to maintain pH of 8. The solution was mixed for 1.5 h, 

filtered and the catalyst washed using 1.5 L of deionised water. The catalyst was dried in 

an oven at 110°C for 16 h. The resulting powder was ground and calcined in static air at 

400°C for 3 h at a ramp rate of 20°C min-1 [3].

2.2.5. Preparation of 15% Bu4NBr supported catalysts for cycloaddition of CO2 with 

1,2-epoxydecane

The route for preparation of supported tetrabutylammonium bromide 

(15% Bu4NBr/support) followed the methodology previously reported in the literature 

[4]. About 0.3 g of Bu4NBr was added to 1.7 g of the support (magnesium oxide, 

hydrotalcite or silica-gel). The mixture was dissolved in methanol and the solvent was 

removed by evaporation. After evaporation of the solvent, the catalyst was dried in an 

oven at 110°C for 16 h.

2.2.6. Catalyst preparation of PDDA-Br/SiO2

The preparation of polydiallyldimethylammonium bromide (PDDABr) was done by a 

simple ion-exchange procedure in water. About 20 g of Amberlite® IRA-400 chloride 

form was washed extensively with a high volume of water (1 L) [5]. NaBr aqueous 

solution (8.8 M, 14 mL) was then mixed with Amberlite three times to obtain the resin in 

bromide form. Afterwards, 5 g of an aqueous solution (20%) of 

polydiallyldimethylammonium chloride was mixed with 10 mL of deionised water. The 

resulting mixture was mixed with 6.7 g of resin and stirred at room temperature for 6 h. 

This mixture was filtered, and the solution was subjected to another ion-exchange process 

with fresh resin in bromide form. This process was repeated three times. The PDDA-Br 

solution was dried under vacuum at 80°C to produce yellow solid. The PDDA-Br/SiO2

was prepared by mixing 5 mL of deionised water with 0.1 g PDDA-Br, prior to mixing 

of the solution with 0.5 g silica-gel. The mixture was stirred at 80°C for 6 h to remove 

water via evaporation, and the remaining H2O was removed under vacuum at 80°C for 

1.5 h to obtain PDDA-Br/SiO2 (colourless powder, 20% PDDA-Br/SiO2). 
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2.2.7. Catalyst preparation of supported imidazolium catalyst (Imid/SiO2)

The route for preparation of supported imidazolium catalyst (Imid/SiO2) followed the 

methodology previously reported by Sankar and co-worker [6]. Silica (5 g), 

3-triethoxychloropropylsilane (2.23 g) and imidazole (0.63 g) were mixed with 175 mL 

of dry toluene and the resultant solution was refluxed for 24 h. The catalyst was filtered 

and washed with toluene (200 mL) and propylene oxide (50 mL) to yield a colourless 

powder.

2.3. Catalytic testing for epoxidation of 1-decene

2.3.1. Glass reactor

Epoxidation reactions were carried out in a magnetically stirred, round-bottomed glass 

flask reactor (50 cm3 capacity) fitted with a reflux condenser (Figure 2.1). Reaction 

mixtures were heated between 60-90°C using a hot-plate. In a standard reaction, the 

required amount of a catalyst (0.05-0.2 g), 10 mL of 1-decene (53 mmol) and a small 

amount of radical initiator (TBHP 0.01 mL, AIBN 6 mg, CHP 0.01 mL) were used. After 

the required reaction time, the mixture was cooled down to room temperature, filtered 

and analysed by gas chromatography (GC) (Section 2.7.1).

Figure 2.1: Glass reactor for epoxidation of 1-decene.
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2.3.2. Autoclave

Epoxidation reactions were performed in a 50 cm3 Parr stainless steel autoclave reactor, 

with an inner lining of Teflon. 1-Decene (53 mmol, 10 mL), the required amount of a 

catalyst (0.1 g) and a small amount of radical initiator (AIBN, 6 mg) were placed into the 

reactor. Before starting the reaction, the autoclave was purged three times with N2, then 

pressurised with oxygen to the required pressure (5-15 bar). The entire setting was heated 

to the required temperature (90°C) under continuous stirring (Figure 2.2) to the required 

reaction time. The reactor was cooled down in an ice water bath and the products were 

analysed using GC.

Figure 2.2: Parr autoclave and controller.

2.4. Catalyst testing for cycloaddition of CO2 with epoxide
Catalytic experiments were performed in a 50 cm3 Parr stainless steel autoclave reactor, 

with an inner lining of Teflon. The required amount of a catalyst and the epoxide (5 mL, 

cyclooctene oxide 5 g) were added into the autoclave. The reactor was purged with CO2

three times and then charged with CO2 to the desired pressure (10-20 bar). Then the 

autoclave was heated to a temperature (60-150°C) under continuous stirring for a required 

reaction time (2-48 h). When the reaction was completed, the reactor was cooled in an ice 

water bath. Products were analysed using gas chromatography, gas chromatography 

coupled with mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy 

(NMR).
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2.5. Catalyst testing for one-pot synthesis of cyclic carbonate
One-pot synthesis of cyclic carbonate (simultaneous oxidation and carboxylation) was 

performed in a 50 cm3 stainless steel autoclave reactor, with an inner lining of Teflon. 

The reactor was charged with the required amount of 1% Au/support (0.1 g), Bu4NBr 

(0.2-0.4 g), ZnBr2 (0.08-0.16 g), 1-decene (53 mmol, 10 mL), and AIBN (6 mg). The 

autoclave was purged three times with O2, and then pressurised with O2 and CO2 at 

required pressure before heated to a required temperature (80-90°C) under continuous 

stirring. On completion of the reaction, the reactor was cooled in an ice water bath and 

depressurised. The catalyst was separated from the reaction mixture by filtration, and 

products and residual 1-decene were analysed by GC.

For one-pot multistep synthesis of the cyclic carbonate (sequential oxidation and 

carboxylation), first the epoxidation reaction was carried out as described in 2.3.1 and 

2.3.2. After the completion of the epoxidation step, the reactor was cooled in an ice water 

bath and depressurised. When the epoxidation step was completed in the glass reactor, 

the reaction mixture transferred to the autoclave. Then co-catalysts Bu4NBr (0.4 g) and 

ZnBr2 (0.16 g) were added to the reaction vessel. The reactor was closed and pressurised 

with CO2 (20 bar) until complete cycloaddition of CO2 with epoxide step is achieved 

(4 h). The reactor was cooled in an ice water bath and depressurised, while the catalyst 

was separated from the reaction mixture by filtration. Subsequently, the reaction products 

and residual 1-decene were analysed by GC.

2.6. Determination of 1-decene hydroperoxide
The amount of 1-decene hydroperoxides was determined using the method described 

here, as these products are not distinguished by GC analysis. Standard reaction was 

carried out as described in 2.3.1 and the reaction mixture was filtered and divided into 

two aliquots; the first aliquot was stirred for 1 h in air at room temperature with 0.15 g of 

triphenylphosphine (PPh3), while the second aliquot was analysed directly using GC.

2.7. Quantitative analysis techniques
Quantitative analysis of the reaction mixtures was performed using GC, GC-MS and 

NMR techniques. These techniques are described in the following section.

2.7.1. Gas chromatography (GC)

Gas chromatography (GC) is a type of chromatography widely used for separation, 

identification and analysis of chemical compounds. The basic components of a GC 
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consist of an injector, a column housed within an oven and detector as shown in 

Figure 2.3. 

Figure 2.3: The basic components of a GC.

On injection, the sample is vaporised and then mixed up with a carrier gas (usually helium 

or nitrogen) which flows through the column. There are two general types of a column: 

capillary and packed columns. The capillary column is the most commonly used column 

in GC as it has great sensitivity and high resolution [7]. The compounds leaving the 

column are exposed to a detector. The flame ionisation detector (FID) is the most 

commonly used GC detector. 

Products from the reaction mixture were analysed using a gas chromatograph (Varian star 

3400 CX) with a CP-wax 52 column (capillary column, 25 m, 0.35 mm ID, 0.2 micron) 

coupled with FID detector. A sample (0.02 μl) was automatically injected into the GC 

using a micro syringe. The GC was operated under standard conditions; a constant 

injector and detector temperature of 250°C, an initial column temperature of 60°C with a 

ramp of 10°C/min. Products of 1-decene epoxidation were identified previously in our 

group [2] using GC-MS by comparing mass spectra and retention times with commercial 

standards. For all reactions studied the 1,2-epoxydecane was formed. As a 

2,3-epoxydecane standard was unavailable, GC-MS was compared to a 2,3-epoxydecane 

simulated spectrum from the NIST database [2], which confirm no 2,3-epoxide was 

observed in the reaction. Response factors (RF) for known products were determined 

using commercial standards, and these response factors were used to determine 

conversion and selectivity of the products. Three different solutions were prepared for 

calibration with the known products. The first solution for calibration contained 10 g of 
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1-decene and 20 mg of each known product. The second and third solutions contained 30 

and 50 mg of each product respectively in addition to 10 g of 1-decene. RF used was an 

average of the three different calibration solutions using the equation below:

Equation 2.1

Table 2.2 below displays the RF for oxidation of 1-decene products.

Table 2.2: Response factors (RF) for the different products in the oxidation of 1-decene

The calculated response factors were used to determine 1-decene conversion, selectivity 

and the yield of products. Conversion was calculated using GC counts (corrected area: 

GC count/RF) according to the formula in Equation 2.2:

Conversion (%) = Equation 2.2

Product selectivity was calculated according to the formula Equation 2.3: 

Selectivity = Equation 2.3

Product yield was calculated according to the formula in Equation 2.4: 

Yield (%) = Selectivity ×Conversion 
100

Equation 2.4

Compound RF
1-Decene 1
Octanal 0.75
3-Nonanone 0.69
Nonanal 0.5
1-Heptanol 0.8
1,2-Epoxydecane 0.80
1-Decen-3-one 0.71
1-Octanol 0.8
2-Decenal 0.76
1-Decen-3-ol 0.82
2-Decen-1-ol 0.69
Heptanoic acid 0.71
Octanoic acid 0.5
2-Decenoic acid 0.81
Nonanoic acid 0.7
3-Nonen-1-ol 0.80
1,2-Decanediol 0.71
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2.7.2. Gas chromatography-mass spectrometry 

GC-MS is an effective analytical instrument with numerous applications in the chemical 

industry. It consists of GC, interface, mass spectrometer and data–control system 

interconnected together. Owing to the integration of the two components, GC-MS cannot 

only divide mixtures into distinct components, but can also characterise each component 

qualitatively and quantitatively in terms of volume and chemical structure of each 

separated compound. The analysis process involves an injection of the volatile sample 

into a heated inlet port ensuring that it is all in the gas phase, which is carried through the 

column by a mobile phase (helium). The analytes in the sample mixture interact with the 

station phase of the column leading to separation of the analytes. The compounds as they 

come off the column are then ionised (electron ionisation for our GCT Premier) in the 

mass spectrometer source under vacuum. The ion beam produced is then passed through 

to the TOF (time of flight) tube where separation of ions takes place (low mass ions move 

faster than higher mass ones) through to the detector (mass analyser) producing our mass 

spectra [8]. All GC-MS was conducted by the Cardiff university GC-MS service and 

analysed by Dr. Simon Waller. The GC-MS used in this study is a Walters GCT Premier 

GC coupled with a HP 6890N mass spectrometer for identification of products for the 

cycloaddition of CO2 with different epoxides. 

2.7.3. Nuclear magnetic resonance spectroscopy 

NMR is another form of spectroscopy, most frequent used as a technique in analytical 

chemistry. This technique requires samples containing nuclei possessing spin. Due to the 

difference in the nuclei spins, NMR experiments can be sensitive for only one particular 

isotope of one particular element. Moreover, chemical environment of 1H and 13C nuclei 

has been subjugated by organic chemists, since they provide valuable information that 

can be used to deduce the structure of organic compounds. Thus, chemists and 

biochemists can apply NMR spectroscopy to analyse molecular conformation in solution 

and analysing the physical features at the molecular level such as solubility and 

conformational exchange [9]. 

For this work, a Bruker ‘Avance’400MHz DPX spectrometer was used to record the 1H 

NMR spectra with a silicon graphics workstation running on an X win 1.3 software. The 

results obtained were presented in ppm with the corresponding number of protons, 

multiplicity and assignment. Chemical shifts within the 1H NMR spectrum were 

measured in either deuterated chloroform or deuterated dimethyl sulfoxide.
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2.8. Catalyst characterisation techniques

2.8.1. Thermal gravimetric analysis (TGA)

Thermal gravimetric analysis (TGA) is a method of thermal analysis which describes the 

changes of the chemical and physical properties of a sample as a function of increasing 

temperature (constant heating rate) or isothermally as a function of time. Thermal 

gravimetric analysis is frequently used to determine either loss or gain of the sample mass 

and that may be due to decomposition or oxidation of the material.

Thermal gravimetric analysis consists of three essential parts: 

(a) An automatic magnetic re-equilibrating balance with a signal-recording device, 

capable of detecting weight change even in small amount (0.1 μg).

(b) A furnace that generates the required temperatures ranging from room temperature to 

1000°C. TGA must use high-temperature inert sample holders such as quartz, ceramic 

material and platinum.

(c) A gas flow controlled using a switch valve, which enable operation in either an inert 

atmosphere (N2, He) or a reactive atmosphere (O2, H2).

The TGA was performed using a Perkin Elmer, thermo gravimetric analyzer, TGA 4000. 

The catalyst (6.55 mg) was heated from 25-600°C under atmospheric air at a heating rate 

of 5°C min-1. 

2.8.2. Scanning electron microscopy (SEM)

Scanning electron microscopy (SEM) involves a microscope that uses electrons as an 

alternative to light to build a three–dimensional image at higher magnification. SEM can 

provide a better depth of focus for the image comparing to optical microscopy. In a typical 

scanning electron microscopy (Figure 2.4), the electron beam is produced from an 

electron gun. The electron beam passes through the column of the microscope and makes 

its way through electromagnetic lenses that are able to focus and direct the beam toward 

the sample [10].
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Figure 2.4: Schematic diagram of SEM. Adapted from [10].

When the electron beam interacts with the sample, two types of electrons are generated, 

namely secondary electrons and backscatter electrons [10]. The secondary electrons are 

produced when the high-energy electron beam is displacing loosely held surface electrons 

that are recorded using a secondary electron detector to produce an image of the surface. 

The principle of secondary electrons relied on the surface area in the specific area of 

intersection of the beam and therefore relate to topographic features. Backscatter 

electrons consist of high-energy electrons from the electron beam that are scattered back 

out of the sample by the atomic nuclei. The intensity of the signal is dependent on the 

atomic number of the area of interaction. The backscatter image displays the contrast in 

chemical composition, and these electrons can provide information about the scanned 

area, such as the topography of the surface and the average atomic number in this area. 

Secondary and backscatter electrons are collected by the detector that converted them to 

a signal which then sent to a viewing screen to create the image of the sample. 

In this study, the analysis was carried out using an EVO40VP model Carl Zeiss scanning 

electron microscope. The sample (0.2 g) was ground before sprinkled over a carbon disc 

stuck onto an aluminium stub and the excess sample were tapped off the disc prior to 

attaching to the sample holder. The entire SEM column was pumped to attain a good 

vacuum (<10-6 Torr) required for proper functioning of the SEM. The sample stage was 
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placed at a working distance between 8-10 mm. The electron gun emits an electron beam 

within a voltage range of 5-25 kV at an I-probe current of 1000 pA (1.0 nA), the generated 

secondary electron was utilised for topographic analysis. 

2.8.3. Transmission electron microscopy (TEM) 

Electron microscopy technique can provide information about the shape, size and 

compositions of supported particles. As mentioned for scanning electron microscopy, 

transmission electron microscopy (TEM) is another type of electron microscopy 

technique which operates on the same basic principle as the light microscope. It uses 

electrons instead of light as a source to image the target [11]. As the metal has a higher 

density than support, it becomes darker in the TEM image (Figure 2.5). Despite the 

enormous applications and higher resolution of TEM compare to SEM, TEM analysis is 

time consuming during the extensive sample preparation to produce a thin enough layer 

to be electron transparent. In spite of this limitation, TEM is a valuable tool in different 

fields such as medical, biological, materials and characterisation of heterogeneous 

catalysts because of its high resolution. The instrument used for TEM analysis was a 

JEOL 2000FX TEM operating at 200 kV and analysed by Dr. Peter Miedziak. Sample 

preparation was as follows: the catalyst powder was dispersed in high purity ethanol, then 

a drop of the suspension was allowed to evaporate on a holey carbon film supported on a 

TEM grid. Images were acquired in transmission mode and particle size distributions 

were calculated using Image J software.

Figure 2.5: TEM image of 1% Au/G.
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2.8.4. X-ray powder diffraction (XRD) 

XRD is a common analytical technique used for identification of the bulk phase of 

crystalline compounds and providing information about the unit cell dimensions [12]. 

When a focused X-ray beam strikes crystalline sample, they are scattered and hence 

constructive interference will occur when scattered X-rays are in-phase with one another 

(Figure 2.6) and a diffraction pattern will be obtained.

Figure 2.6: Interaction of X-rays within a crystalline surface. Adapted from [12].

The distances between the planes can be measured using the Bragg’s equation [12], which 

is shown in Equation 2.5:

nλ = 2dsinθ Equation 2.5

n = an integer 

λ = the X-rays wavelength.

d = distance between two lattice planes.

θ = the scattering angle. 

XRD pattern of a pure powder sample is a fingerprint of the morphology of the substance, 

and each material has its own characteristic diffraction pattern. The X-ray instrument 

consist of an X-ray source, a rotating sample stage and a detector, which collects the 

diffracted X-ray as shown in Figure 2.7.
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Figure 2.7: Basic set up of an X-ray diffractometer.

XRD analysis was performed using a PANalytical X’Pert PRO MPD instrument with a 

Cu Kα X-ray source. The catalyst sample (0.5 g) were ground, placed and flatten on a 

sample disc. The discs were placed onto a sample holder before placed into the XRD 

instrument. A typical scan was performed at diffraction angle (2θ) of 10 to 80 ° at 40 kV 

and 40 mA using an X’Celerator detector. 

2.8.5. Nitrogen physisorption analysis of the surface area using Brunauer, Emmett 

and Teller (BET) method

The measurement of the surface area is an important characterisation technique for 

catalytic materials. The BET method [13] is one of the most commonly used techniques 

to determine the surface area of a catalyst. The theory is based on the BET equation 

(Equation 2.6):

Ī Ī
Equation 2.6

Where:

C = the BET constant.

V = the volume of the adsorbed gas.

Vm = the volume of the monolayer of adsorbed gas.

P = the equilibrium pressure.

Po = the saturation pressure of adsorbates at the temperature of adsorption.
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Moreover, plotting 
Ī

against 
Ī

to give a gradient of and intercept and 

surface area can be calculated using equation 2.7:

S= (Vm).(Na).(A) Equation 2.7

Where:

S= specific surface area.

Na = Avogadro’s number.

A= cross sectional area of adsorbent gas.

The principle BET method is to determine or estimate the surface area based on the 

amount of gas adsorbed. N2 is typically the adsorptive gas used in BET surface area 

determination at a constant temperature (77 K). At a given pressure, the total amount of 

gas adsorbed can be used for calculating the amount of adsorbed gas molecules that would 

generate a monolayer on the surface for this sample. Depending on the size of the N2

molecules adsorbed, the surface area can be simply calculated. The nitrogen 

physisorption analysis was performed using a Micromeritics Gemini 2360 Analyser. 

About 1 g of catalyst samples placed in a sample tube was degassed for 50 minutes at 

120°C to remove moisture and other surface impurities. The tube was allowed to cool at 

room temperature before connecting to a gas inlet (liquid N2 at -196°C) which was

parallel to an empty reference tube. Both tubes were immersed into a Dewar containing 

liquid nitrogen. The setting was initially ran without any sample, before a subsequent run 

containing the sample for nitrogen physisorption analysis. Usually, five-point analysis 

was used and the surface area was calculated using BET equation.

2.8.6. X-ray photoelectron spectroscopy (XPS)

XPS, which is also called electron spectroscopy for chemical analysis (ESCA), is the most 

extensively used surface analysis technique (at depth of 10 nm) due to its relative 

simplicity and revealing of different oxidation state of a sample species under 

investigation. Moreover, it can be used for studying the dispersion of supported catalysts 

[14, 15]. The photoelectronic effect is the basic principle of this technique. When X-ray 

photons (E = hν) hit the sample, it interacts with the inner shell electrons and ionises the 

atom to generate an ejected free photoelectron as presented in Figure 2.8. 
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Figure 2.8: Ejected electron by x-ray photon. Adapted from [14].

The kinetic energy of the emitted photoelectrons can be determined from the energy of 

the photon and the binding energy of the electron using the equation below:

Ek = hν- Eb – Φ Equation 2.8

Where: 

h = Planck’s constant

ν = frequency of radiation

Eb = electron binding energy

Φ = the work function of the material 

The electron binding energy (Eb) is dependent on the chemical bonding of the atom, which 

makes XPS valuable to identify the oxidation state for an atom. Every element has 

characteristic binding energy, which is associated with all core atomic orbitals, and the 

concentration of the element is relative to the intensity of the peaks.

XPS instruments consist of:

1- X-ray source 

2- Sample stage

3- Energy analyser for the photoelectrons 

4- Electron detector
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All XPS was carried out by Dr David Morgan using Kratos Axis Ultra DLD system, 

which was utilised for collection of XPS spectra using monochromatic Al K X-ray 

source, operating at 120 W. Data were collected in the Hybrid mode of operation, using 

a combination of electrostatic and magnetic lenses, and at pass energies of 40 and 160 eV 

for high resolution and survey spectra respectively. All spectra were collected at 90° take 

off angle, using a base pressure of ~110-9 Torr, which was maintained during collection 

of the spectra. The resulting spectra were calibrated to the C(1s) line at 284.8 eV.

2.8.7. Temperature-programmed reduction (TPR)

Temperature-programmed reduction (TPR) is a technique used for the characterisation of 

solid materials, frequently utilised in the field of heterogeneous catalysis, where most 

efficient reduction conditions are ascertained. In this procedure, a catalyst is subjected to 

a predetermined incremental rise in temperature while a reducing gas is flown across it. 

A typically U–tube sample holder containing a catalyst and a thermocouple is inserted 

into it, which measures the temperature of the sample. The entire set up is placed into a 

furnace with temperature control equipment. Air present within the container is expelled 

using inert gases such as N2 or Ar. 10 Vol-% H2 in N2 is passed through the line via flow 

controllers to provide supplementary hydrogen. The resultant gaseous mixture is 

measured at the exit of the sample container attached to a thermal conductivity detector. 

The sample is then subjected to incremental rise in temperature within the oven. If a 

reduction takes place at certain temperature, the consumption of hydrogen will be an 

indicator, which is detected by the measuring instruments [16].

TPR analysis was carried out on a Thermo TPD/R/O 1100 series instrument equipped 

with a thermal conductivity detector (TCD). About 50 mg of the catalyst was placed in 

the U–tube sample holder and then heated up to 800°C under the flow of 10% H2/Ar at a 

heating rate of 5°C min-1.

2.8.8. Inductively coupled plasma-mass spectrometry (ICP-MS)

ICP-MS, or inductively coupled plasma-mass spectrometry is highly effective in the 

analysis of metal concentrations within the solution, which also is highly sensitive to a 

number of elements. Curves resulting from linear calibrations are evident over several 

orders of intensity for the ionisation procedure, which is outline as follows; specimen 

introduction, ICP torch, interfaces and mass spectrometry [17]. ICP-MS was conducted 

by the Cardiff university ICP-MS service and analysed by Dr. Simon Waller. Analysis 

was conducted using the Agilent 7900 ICP-MS. A five-point calibration was made using 
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certified standards. The run consists of a blank to ensure no contamination at the start of 

the run, followed by the calibration standards lowest to highest concentration, then two 

or more blank runs to ensure no carry over from the highest standard follows. Afterwards, 

the sample was run in duplicate separated by a carry over blank to ensure no samples 

carry over into subsequent ones. Each sample itself is a minimum of a triplicate 

measurement. When the run is complete, the internal standard response is linear 

throughout the run.

2.8.9. Fourier transform infrared spectroscopy (FT-IR)

Fourier transform infrared spectroscopy is often used to obtain an infrared spectrum of 

emission or absorption of different materials. Firstly, infrared radiation permeates a 

specimen, some of which is transmitted or absorbed. The resultant spectrum denotes 

molecular rates of transmission and absorption, essentially formulating a molecular 

fingerprint of the specimen. IR spectroscopy thus leads to efficient positive identification 

via qualitative analysis for all substances and materials. Furthermore, the peak sizes 

across a spectrum relate directly to the quantity of materials present. 

Fourier transform infrared spectroscopy is a superior approach for a number of reasons, 

as it is highly accurate in taking immediate readings that do not depend on prior 

calibration as well as it is able to speed up the process, taking one measurement per 

second. Furthermore, it is a non-destructive technique and capable of a more refined 

optical throughput. Moreover, it is basic in its physical mechanism, bestowing one 

moving part only.

FTIR consist of five main parts:

1. IR source.

2. Interferometer.

3. Sample.

4. Detector.

5. Computer.

Due to the requirement for a relative scale in absorption intensity, background spectra 

must be taken into account in such procedures; this is typically a measurement with no 

sample in the beam [18]. Infrared spectra analysis was carried out using a FT/IR-660 Plus 
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fourier transform infrared spectrometer (JASCO). The sample holder was cleaned with 

ethanol; then the sample was placed in the sample holder and the measurement taken. 

Scans were conducted between 400 and 4000 cm-1.
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Chapter 3: Solvent-free aerobic epoxidation of 1-decene using 

supported cobalt catalysts
3.1. Introduction
Selective oxidation is a key process for commercial applications especially for the 

synthesis of chemical intermediates. Therefore, oxidation of hydrocarbons for generating 

compounds containing oxygen is an important industrial reaction [1, 2]. Epoxides are 

considered to be one of the key intermediates in the manufacture of functionalised fine 

chemicals, pharmaceutics, and cosmetics; they facilitate the mixing of lipid soluble acids 

in creams and lotions [3]. The epoxidation of ethene to ethylene oxide is catalysed using 

silver supported on α-alumina catalyst. High selectivity for the epoxide (up to 90%) was 

found. This is due to the absence of an allylic hydrogen [4]. The epoxidation of the olefins 

with longer chains is less facile than ethene due to the presence of this allylic hydrogen. 

The oxidation of propene proceeded through the chlorohydrin process using chlorinated 

reagents and there was a formation of unwanted by-products [5]. The oxidation of 

propene over a titanium silicalite (TS-1) catalyst was also studied. However, this method 

used stoichiometric amounts of hydrogen peroxide [6]. Molecular oxygen is the preferred 

oxidant; hence, using molecular oxygen for epoxidation reactions in combination with an 

appropriate transition metal catalyst is the main target of a heterogeneous catalysis. 

Various studies using different types of heterogeneous catalysts have observed that the 

electrophilic addition of oxygen to alkenes to form epoxide is challenging [7-10]. 

Well-known epoxidation catalysts, such as supported gold catalysts, were previously 

reported as highly selective in the epoxidation of different olefins, such as propene, 

1-octene and cyclooctene [11-16]. However, the application of cost-effective transition 

metals in epoxidation reactions would be more desirable from an economical point of 

view.

Cobalt-based catalysts were reported as active in epoxidation reactions in both 

homogeneous [17, 18] as well as heterogeneous reactions [19-26] as mentioned in Section 

1.7. Heterogeneous cobalt catalysts have been applied for the epoxidation of different 

alkenes such as styrene and stilbene to the corresponding epoxides. However, most of 

these studies used solvents such as dimethylformamide (DMF), which is not an inert 

solvent in the epoxidation of alkenes and is proposed to act as an oxygen-transfer agent 

as well as leading to considerable amount of waste [24]. Therefore, there is still scope to 
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improve the epoxidation of alkene under solvent-free conditions using supported cobalt 

catalyst.

Herein, simple, selective supported cobalt catalysts have been used for the epoxidation of 

1-decene under solvent-free conditions using oxygen from air as the primary oxidant at 

atmospheric pressure. A range of radical initiators have been studied at different 

temperatures in the absence of the catalyst as it was previously observed that the nature 

of the radical initiator present in the reaction mixture affect products selectivity [27]. 

3.2. Results and discussion

3.2.1. Reactions in the absence of catalyst and radical initiator 

Temperature is one of the most important factors affecting reaction conversion [28]. It is 

important to establish the reaction conditions such as reaction temperature in the absence

of the radical initiator and the catalyst. To study the effect of temperature on 1-decene 

conversion, the substrate was heated to different temperatures (60-110°C) for 24 h. 

Table 3.1 shows that the oxidation of 1-decene does not start below 100°C, whereas at 

110°C the reaction starts spontaneously, reaching a conversion of 8%. Therefore, in order 

to avoid 1-decene autoxidation, temperatures below 100°C (60-90°C) have been used for 

the epoxidation of 1-decene.

Table 3.1: Epoxidation of 1-decene at different temperature

Reaction conditions: 1-decene (53 mmol, 10 mL), atmospheric pressure air, reaction time 24 h, rate 
of stirring 800 rpm.

3.2.2. Influence of radical initiators on 1-decene epoxidation

As molecular oxygen is a diradical in its ground state, this may lead to the contribution

of radical reactions, especially in the presence of a radical initiator [7-10]. The presence 

of a radical initiator in the oxidation of alkenes is the key component in increasing the 

selectivity for the epoxide [15, 16]. In addition, very small amounts of radical initiators 

can facilitate the oxidation of 1-decene at lower temperatures (below 100°C). It is 

important to determine the radical reactions in the absence of catalyst in order to fully 

T (°C) Conversion (%) Epoxide selectivity (%) 

60 0 0
70 0 0
80 0 0
90 0 0
100 1 0
110 8 23
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understand the role of the catalytic material. In this study, oxidation of 1-decene was 

performed with the addition of three different radical initiators namely: 

tert-butylhydroperoxide (TBHP), cumenehydroperoxide (CHP) as hydroperoxide radical 

initiators and azobisisobutyronitrile (AIBN) as azoradical initiator (Figure 3.1) at

different temperatures (60-90°C) in the presence of air and in the absence of the catalyst.

Figure 3.1: Structures of radical initiators.

As can be seen in Table 3.2, no reaction was observed over the range of temperatures 

(60-90°C) in the absence of both an initiator and a catalyst as discussed previously. 

Furthermore, there was a gradual increase in the activity with an increase in the 

temperature with all initiators in the absence of a catalyst. TBHP exhibited very low 

activity at low temperatures, AIBN and CHP displayed higher activity than TBHP. The 

selectivity for the epoxide increased from 1.4%, 1.3% and 0.2% at 60°C to be 17.2%, 

13.3% and 13.3% at 90°C when using AIBN, CHP and TBHP respectively as radical 

initiators for this reaction. AIBN became more active and selective toward the epoxide 

compared to other initiators even at lower temperatures. Many other by-products were 

detected during the reaction. Significant quantities of allylic products such as 

1-decen-3-one, 1-decen-3-ol, 2-decenal, 2-decen-1-ol are formed during the reaction. 

Furthermore, C-C cleavage reactions occurred forming different C7+C8+C9 products, 

which will be explained in more details in Section 3.2.3.1.

Table 3.2: Effect of temperature on 1-decene epoxidation using different radical initiators

Reaction conditions: 1-decene (53 mmol, 10 mL), TBHP (0.064 mmol, 0.01 mL), AIBN (0.036 mmol, 
6 mg), CHP (0.028 mmol, 0.01 mL), atmospheric pressure air, reaction time 24 h, rate of stirring 800 
rpm. *Selectivity for epoxide.

Initiator
T= 60°C T= 70°C T= 80°C T= 90°C

Conversion
(%)

Selectivity 
(%)*

Conv.
(%)

Sel.
(%)

Conv.
(%)

Sel.
(%)

Conv.
(%)

Sel.
(%)

- 0 0 0 0 0 0 0 0

AIBN 1.3 1.4 1.6 3.7 3.4 14.2 6.4 17.2

CHP 1.3 1.3 1.2 3.1 3 4.2 5.5 13.3

TBHP 0.5 0.2 0.7 0.7 1.5 3.5 2.3 13.3
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The relatively high activity of AIBN can be explained by its stronger nucleophilic nature 

compared to other radical initiators or there may be low stability and quicker formation 

of radicals in the reaction compared to TBHP (temperatures for 10 h half-lives of radical 

initiators: TBHP 170°C, CHP 135°C, AIBN 65°C) [29] as shown in Figure 3.2.

Figure 3.2: Half-life times of various initiators as function of temperature. Adapted from [29]. 
BPO: Benzoyl peroxide, DTBP: Di-tert-butyl peroxide.

Furthermore, AIBN produces different types of a radical to TBHP. AIBN decomposes to 

produce nitrogen and 1-cyano-1-methylethyl radical as shown in Scheme 3.1. This radical 

interacts with oxygen to generate ROO˙ (R˙= 1-cyano-1-methylethyl radical), which 

therefore enhances the oxidation of 1-decene in the absence of the catalyst.

Scheme 3.1: Decomposition of AIBN.

TBHP usually decomposes to yield an RO˙ radical (Me3CO˙). This is because the 

dissociation energy for the O-H bond is higher than the dissociation energy for the O-O 

bond [30], which may be the reason for the low concentration of ROO˙. In the presence 

of the catalyst surface, the O-H homolysis can also facilitate producing Me3COO˙, which 

is active in abstracting the hydrogen from the allylic position in 1-decene, which may 

explain the activity and selectivity for the epoxide with TBHP in the presence of a 

catalyst. The range of radicals produced during the thermal decomposition of TBHP are 

shown in Scheme 3.2.
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Scheme 3.2: Thermal decomposition of TBHP [30].

Based on all of these previously mentioned data, as TBHP exhibits the lowest activity at 

80°C when compared to other radical initiators in the absence of the cobalt catalyst (Table 

3.2), it was decided to perform further studies with supported cobalt catalysts using this 

particular initiator. 

3.2.3. Cobalt catalysed reactions

3.2.3.1. Effect of metal loading

After investigating the oxidation of 1-decene in the absence of catalyst, further 

experiments were carried out in the presence of supported cobalt catalysts. MgO was 

chosen for the preliminary studies as it is shown in the literature that MgO is an effective 

catalyst for the cycloaddition of CO2 with the epoxide [31, 32], an attempt was made to 

combine the active catalysts for both steps of the oxidative carboxylation of alkene. First, 

MgO support alone was tested, and this showed low activity in the epoxidation reaction

(2% conversion and 4% epoxide selectivity) as shown in Figure 3.3. A number of 

catalysts with cobalt loading from 0.5 to10% (percentage metal by weight of the support) 

were prepared by wet-impregnation and screened for activity in the epoxidation of 

1-decene. Conversion of 1-decene, epoxide selectivity and epoxide yield (yield obtained 

by using GC analysis) are shown in Figure 3.3. It can be seen that the cobalt loading had

an important effect on the catalytic properties. As the cobalt loading increased, both the 

1-decene conversion and the selectivity for 1,2-epoxydecane increased significantly. 

2% Co/MgO produced the highest epoxide yield. A further increase in the cobalt loading 

led to a decrease in the activity, which may be attributed to the growth of catalyst particles 

caused by agglomeration and sintering during the heat treatment and this may result in 

the reduction of the active sites. Based on the data in Figure 3.3, 2% Co/MgO was chosen 

for further investigation. 
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Figure 3.3: Effect of metal loading upon epoxidation of 1-decene. Reaction conditions: catalyst 
(0.1 g), 1-decene (53 mmol, 10 mL), TBHP (0.064 mmol, 0.01 mL), 80°C, atmospheric pressure air, 

reaction time 24 h, rate of stirring 800 rpm. Error bars indicate range of data based on three repeat 
experiments.

Obtaining a high selectivity for the epoxide in epoxidation reactions remains a challenge. 

As expected, a number of other by-products were detected and quantified. These products 

were identified previously by our group [16] using GC-MS by comparing retention times 

and mass spectra with commercial standards as previously mentioned in Section 2.7.1. 

The full list of products formed during the reaction with associated selectivities are 

presented in Table 3.3. Significant quantities of allylic products were formed during the 

reaction after 24 h. Furthermore, C-C cleavage reactions occurred, forming different 

C7+C8+C9 products. A similar observation was found previously with the oxidation of 

1-octene and 1-decene using supported gold catalyst [13, 16]. Corma and co-workers

observed that allylic products were produced during the oxidation of 1-octene under 

solvent-free conditions and using oxygen as an oxidant [13].
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Table 3.3: Product selectivity for 1-decene epoxidation at 12% conversion

Product Selectivity (%)
1,2-Epoxydecane 33
1-Decen-3-one 4.5
1-Decen-3-ol 5
2-Decenal 6.5
2-Decen-1-ol 8
1,2-Decanediol 2
2-Decenoic acid 2.3
Octanal 2.1
Nonanal 2.8
1-Heptanol 1.1
1-Octanol 1.8
Heptanoic acid 1.6
Octanoic acid 3.3
Nonanoic acid 7.1
3-Nonen-1-ol 1.0
3-Nonanone 2.7
Cyclododecane 1.2
Unknown products 12.5

Reaction conditions: 2% Co/MgO (0.1 g), 1-decene (53 mmol, 10 mL), TBHP (0.064 mmol, 0.01 mL), 
80°C, atmospheric pressure air, reaction time 24 h, rate of stirring 800 rpm.

3.2.3.2. Time online studies for 1-decene epoxidation over a 2% Co/MgO catalyst

It is desirable to analyse the product profiles during the course of the reaction, as some 

products may be formed from the sequential oxidation of others. In order to understand 

the detailed reaction profile of 1-decene epoxidation over the 2% Co/MgO catalyst, time 

online studies (effect of reaction time on conversion and selectivity) were carried out for 

96 h as shown in Figure 3.4. It is clear that with increasing reaction time, the conversion 

of 1-decene significantly increases from 1.5% at 4 h to 34% at 96 h. In addition to that, it 

can be seen that the products of allylic oxidation such as 1-decen-3-one, 1-decen-3-ol, 

2-decenal and 2-decen-1-ol were the predominant products at the beginning of the 

reaction. A further increase in the reaction time resulted in a drop of the selectivity for 

these products, accompanied with a gradual increase in the epoxide selectivity to be the 

maximum at 48 h at a conversion of 23%. Interestingly, a further increase in the reaction 

time (over 48 h) resulted in a steady decrease in the epoxide selectivity to a value of 28% 

at 96 h. Furthermore, the selectivity for the diol increased with increasing the reaction 

time. This is believed to be a result of opening the epoxide ring. This was caused by the 

reaction between the epoxide and in-situ formed water, which may come from 

condensation reactions or may via the breakdown of the hydroperoxy intermediate to 

form water and ketone or aldehyde. Once this water has formed, the epoxide is easily 
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hydrolysed to the diol. In addition to that, an increase in selectivity to cracked acids 

(heptanoic, octanoic, nonanoic acids) was also noted; this may be due to the oxidation of 

C7, C8 and C9 alcohols and aldehydes. A similar observation was reported by Gupta et. al

[16].

Figure 3.4: Effect of reaction time on conversion and selectivity. Reaction conditions: 2% Co/MgO 
(0.1 g), 1-decene (53 mmol, 10 mL), TBHP (0.064 mmol, 0.01 mL), 80°C, atmospheric pressure air, 
rate of stirring 800 rpm. Allylic products=∑ (1-decen-3-one, 1-decen-3-ol, 2-decenal, 2-decen-1-ol). 

Others=∑ (C7+C8+C9 acids, C8+C9 aldehyde, C7+C8 alcohols, 3-nonen-1-ol, 3-nonanone, 
cyclododecane, 2-decenoic acid). Error bars indicate range of data based on three repeat 

experiments.

3.2.3.3. Evidence for a free radical mechanism

From Table 3.4 it can be seen that the absence of the radical initiator (carrying out the 

reaction without TBHP) resulted in negligible conversion after 24 h reaction, which 

suggests a free radical mechanism for the epoxidation of 1-decene. This observation is in 

agreement with previously reported studies [16, 33]. A diagnostic experiment to confirm 

the radical mechanism for 1-decene epoxidation involved the reaction in the presence of 

a radical scavenger, which should scavenge the radical chain reaction. The results shown 

in Table 3.4 suggest that using 2,6-di-tert-butyl-4-methylphenol (BHT) as a radical 

scavenger leads to termination of the reaction. Therefore, radical chemistry is involved in 

the present reaction medium. As a result, oxygen from the air seems to be being activated 

via a free-radical species.
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Table 3.4: Effect of radical scavenger on epoxidation of 1-decene

Catalyst Radical 
initiator

Radical 
scavenger

Conversion (%) Epoxide 
selectivity (%)

2% Co/MgO - - 1 0

- TBHP - 1.5 3.5

2% Co/MgO TBHP - 12 33

2% Co/MgO TBHP BHT 0 0

Reaction conditions: 2% Co/MgO (0.1 g), 1-decene (53 mmol, 10 mL), TBHP (0.064 mmol, 0.01 mL), 
BHT (0.064 mmol, 0.014 g), 80°C, atmospheric pressure air, reaction time 24 h, rate of stirring 
800 rpm.

3.2.3.4. Catalyst stability, effect of the support and leaching study

Although a comparatively high activity with the Co/MgO catalyst was observed, the 

leaching of the active component into the solution is a major problem facing 

heterogeneous catalysts especially in the liquid phase. In the case of 2% Co/MgO catalyst, 

ICP analysis showed leaching of the cobalt on the level of 45 ppm, corresponding to 

approximately 22% of the cobalt present in the catalyst. Furthermore, XPS analysis for 

both the fresh and the reused supported cobalt catalysts are displayed in Table 3.5. For

the MgO supported cobalt samples, the cobalt signal was very weak for the fresh catalyst, 

but the binding energy ascertained from the peak maxima is in agreement with that of the 

nature of another supported catalyst (2% Co/TiO2), which was found to have a binding 

energy of 781 eV, characteristic of Co2+. The reused 2% Co/MgO catalyst, however, 

showed no cobalt, which again would indicate leaching or sintering of the cobalt to larger 

particles (Table 3.5).

Table 3.5: XPS derived molar concentrations (at%) for 2% Co catalysts supported on MgO andTiO2

Concentration (at%)a

Sample identifier Co Ti Mg O C

2% Co/MgO Fresh 0.4 -- 21.8 39.8 38.0b

2% Co/MgO Reused -- -- 22.4 39.3 38.3

2% Co/TiO2 Fresh 2.0 22.5 -- 54.1 21.4b

2% Co/TiO2 Reused 0.9 16.2 -- 41.7 41.2

Note: (a): (at%) is the atomic concentration of the elements in the analysed area. It is the molar ratio 
of the elements. (b): carbon in the fresh sample may come from the atmosphere, solvent or from the 
tape that used to stick samples down or contamination from x-rays.
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Cobalt leaching has to be given great attention since the homogeneous cobalt catalysts 

such as cobalt (II) perchlorate (2.86 mmol%, amount of cobalt in relation to the alkene

amount) were found to be highly active for the epoxidation of different terminal alkenes 

[17]. It was observed that different terminal alkenes, such as 1-octene and 1-hexene

almost converted to give 86-94% yield of the corresponding epoxide using 

3-chloroperoxybenzoic acid as the oxidant and performed in CH3CN at room temperature 

[17]. However, in the current study, the leached cobalt (0.011 mmol%) is much less than 

the cobalt amount used in the previous study. Furthermore, in our study oxygen from air 

was used as an oxidant under solvent-free conditions. Therefore, it is difficult to compare 

the catalysts activity under different reaction conditions.

It is important to increase the metal-support interaction in order to reduce the leaching of 

the active species. Reducible supports such as TiO2 can diffuse onto the metal, which 

results in a marked effect on the catalytic activity known as strong metal support 

interactions (SMSIs) [34]. Furthermore, TiO2 is well known to be an appropriate material 

for oxidation reactions and has good interaction with the metal when used as a support 

[35, 36]. Therefore, further studies were conducted using TiO2.

For the next experiments, the same conditions were applied as for the studies with MgO. 

From Figure 3.5 it can be seen that 4% conversion of 1-decene and 16% selectivity for 

1,2-epoxydecane was found when using TiO2 support alone. In the presence of 

2% Co/TiO2 catalysts, the conversion of 1-decene and selectivity for the epoxide was

greatly enhanced to be 14% and 34% respectively.



56

Figure 3.5: Effect of TiO2 and 2% Co/TiO2 on 1-decene epoxidation. Reaction conditions: catalyst 
(0.1 g), 1-decene (53 mmol, 10 mL), TBHP (0.064 mmol, 0.01 mL), 80°C, atmospheric pressure air, 

reaction time 24 h, rate of stirring 800 rpm. Error bars indicate range of data based on three repeat 
experiments.

By comparing the activity of the 2% Co/TiO2 catalyst to the previously reported 

heterogeneous cobalt catalyst for the epoxidation of terminal alkenes [37], it was found 

that the 2% Co/TiO2 catalyst (0.06 mmol%) became less active and selective for the 

epoxide. A cobalt(II) Schiff base complex immobilised onto the surface of Si–MCM-41 

(0.07 mmol%) can convert different terminal alkenes, such as 1-hexene and 1-octene with 

35-47% conversion and 30-47% yield of the epoxide at 80°C for 24 h. [37]. However, 

this later study was carried out in the presence of DMF (8 mL), which is not an inert 

solvent in the epoxidation reaction with molecular oxygen, as mentioned in Section 1.7 

[24]. This reaction condition is against the concept of our study for the epoxidation of 

1-decene under solvent-free conditions. 

When TiO2 was used as support for cobalt, the quantity of cobalt leached from the catalyst 

decreased to 12 ppm, accounting for 6% of total cobalt loading. It has been reported that 

alcohols and acids tend to cause leaching of the active components in liquid phase 

oxidations [38]. This was particularly observed in the epoxidation of 1-decene, where 

many products with alcohol and acid functional groups were formed. 

Hot filtration experiments may help to draw conclusions about the nature of active species 

in this reaction. Table 3.6 compares the normal epoxidation of 1-decene at 8 h and 24 h 
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as well as a hot filtration reaction where the catalyst was filtered off after 8 h reaction 

time and then the reaction was run for another 16 h. As can be seen in Table 3.6, the

reaction proceeded after catalyst removal, but with a significantly reduction in 1-decene 

conversion from 14 to 4% and in the epoxide selectivity from 34% to 14%. Therefore, 

this experiment helps to draw conclusion that the main catalytic route is heterogeneous 

with a minor contribution from homogeneous catalysis.

Table 3.6: Heterogeneous versus homogeneous cobalt catalysis

Reaction time
(hour)

Conversion
(%)

Epoxide selectivity
(%)

8 3.4 10

24 14 34

HFa 4 14

Reaction conditions: 2% Co/TiO2 (0.1 g), 1-decene (53 mmol, 10 mL), TBHP (0.064 mmol, 0.01 mL), 
80°C, atmospheric pressure air, rate of stirring 800 rpm. (a): hot filtration, the catalyst was filtered 
off after 8 h reaction time and then the reaction was run for another 16 h.

3.2.3.5. Effect of the catalyst mass of the 2% Co/TiO2

The effect of the amount of 2% Co/TiO2 catalyst used in the oxidation of 1-decene was 

studied at 80°C using TBHP as radical initiator with a reaction time of 24 h. As can be 

seen in Table 3.7 the conversion of 1-decene increases with increasing the amount of 

catalyst, as does the selectivity for 1,2-epoxydecane. In contrast, the selectivity for allylic 

products decreases with increasing the catalyst mass. When doubling the catalyst mass 

from 0.05 to 0.1 g, the conversion increased from 7% to 14% respectively. However, 

increasing the mass from 0.1 to 0.2 g resulted in a 2% only increase in the conversion, 

which may indicate that there is a mass transport limitation in this range. Furthermore, 

when reactions were performed with 0.05 g of 2% Co/TiO2 catalyst, the allylic products 

distribution was similar to the reaction performed without catalyst (selectivity 42-45%),

whereas there was a significant reduction in the selectivity for these products when the 

catalyst mass increased to 0.1 g. Therefore, the optimum amount of catalyst to be used in 

the reaction was 0.1 g (0.06 mmol%, amount of cobalt in relation to the 1-decene 

amount). Amounts below this led to a decrease in the conversion and in the epoxide 

selectivity and only minor gains in the conversion and the epoxide selectivity were 

observed when doubling this amount.
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Table 3.7: Effect of the catalyst mass of the 2% Co/TiO2 on 1-decene oxidation

Catalyst Conversion 
(%)

Epoxide 
selectivity (%)

Allylic products 
selectivity (%)

Others 
selectivity (%)

None (blank) 2 4 45 37
0.05 g 7 18 40 27
0.1 g 14 34 24 30
0.15 g 15 34 24 27
0.2 g 16 36 22 28

Reaction conditions:1-decene (53 mmol, 10 mL), TBHP (0.064 mmol, 0.01 mL), 80°C, atmospheric 
pressure air, reaction time 24 h, rate of stirring 800 rpm. Allylic products=∑ (1-decen-3-one, 
1-decen-3-ol, 2-decenal, 2-decen-1-ol). Others=∑ (C7+C8+C9 acids, C8+C9 aldehyde, C7+C8 alcohols, 
3-nonen-1-ol, 3-nonanone, cyclododecane, 2-decenoic acid, 1,2-decanediol).

3.2.3.6. Presence of 1-decene hydroperoxide in the reaction 

It was proposed that the hydroperoxide is the intermediate to produce epoxide and the 

allylic products [13, 16]. This intermediate cannot be easily identified using gas 

chromatography, as it decomposes in the injector due to the high temperatures [23, 39]. 

As a result, another way of product determination needs to be found. It is possible to 

reduce hydroperoxide into corresponding products such as alcohols using 

triphenylphosphine (PPh3), which is frequently used to scavenge thermally unstable 

peroxides in GC analysis [23, 39]. A standard reaction was performed for 24 h at 80°C in 

the presence of TBHP and a 2% Co/TiO2 catalyst. After filtration, the reaction mixture 

was divided into two solutions, then PPh3 was added to one of them and stirred for 1 hour 

at room temperature. Reaction mixtures before and after PPh3 treatment were analysed 

by GC. After analysis, it was noticed that there was a small increase in the selectivity for 

allylic products such as 2-decen-1-ol from 6.7% to 8.9% and 2-decenal from 3.4% 

to 6.2%. The increase in the aldehyde selectivity may be due to the loss of water from the 

hydroperoxide intermediate by breaking the O-O bond (probably a radical mechanism); 

the formed OH radical could pick off a hydride from the adjacent and very close CH2

group, which then gives the aldehyde and water [40]. Alternatively, it may be due to the 

oxidation of the allylic alcohol to give the aldehyde. A similar observation was found in 

the previous study using supported gold catalyst for epoxidation of 1-decene [16]. After 

the addition of PPh3, an increase in the selectivity for allylic products such as 

2-decen-1-ol, 1-decen-3-one and 2-decenal was found.

3.3. Proposed mechanism for epoxidation of 1-decene
1,2-Epoxydecane was found to be the epoxide product of the reaction of TBHP with 

1-decene in the absence of the catalyst; a similar observation by our group was found in 

a previous study for 1-decene oxidation [16]. This is an interesting finding because initial 
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radical abstraction of H would be anticipated at the 3-(allylic) position of 1-decene, and 

this is where an initial oxygen attack would be expected to take place to generate 

C7H15-CH(O-O.)-CH=CH2. This route might potentially generate the 2,3-epoxydecane, 

which was not observed even in trace amounts as mentioned in Section 2.7.1. Oxygen

attachment could be at the 1-position in the delocalised allylic radical to give the primary 

allylic hydroperoxide, followed by dehydration. This could generate 

C7H15-CH=CH-CHO, which may facilitate epoxidation by conversion into the 

corresponding peracid C7H15-CH=CH-CO-OOH, which was noted previously by 

Mukaiyama and co-workers [41]. The product of peracid epoxidation would selectively 

be the 1,2-epoxydecane along with an equivalent quantity of 2-decenoic acid [16]. Table 

3.3 indicates that, in the presence of the catalyst, the allylic products and 2-decenoic acid 

were observed, but in minor quantities relative to 1,2-epoxydecane. Therefore, the 

involvement of the cobalt surface is critical in controlling this free radical chemistry and 

increasing the epoxide selectivity. A reaction mechanism for the epoxidation of 1-decene

was previously proposed by our research group using a supported gold catalyst [16]. As 

shown in Scheme 3.3, over supported cobalt catalysts in the presence of TBHP as radical 

initiator, TBHP decomposes to create the radical. The radical produced abstracts an allylic 

hydrogen atom from the 1-decene molecule and produces allylic radical which further 

interacts with oxygen to produce a peroxy radical, which is the epoxidising species. This 

peroxy species reacts with a 1-decene molecule to produce the hydroperoxide and one 

mole of 1-decene radical which forms a cycle to generate a peroxy-radical again. In the 

absence of the supported cobalt catalyst, low conversion was observed and the decene 

hydroperoxide intermediate accumulated in the reaction mixture and hence more allylic 

products were observed as shown in Table 3.7. However, when the supported cobalt 

catalyst was present in the reaction mixture, the hydroperoxide so formed completed the 

reaction to produce 1,2-epoxydecane and the allylic products. This involves a complex 

sequence in which the hydroperoxide reacts on the surface of cobalt to generate a 

3-dec-1-enyloxy radical. This radical interacts with the second 1-decene and subsequent 

fragmentation results in the formation of the epoxide and 3-decen-1-yl radical (Scheme 

3.3). It is possible to envisage a similar process which would generate epoxide in addition 

to a decenyloxy radical. This process would involve the attachment of a peroxy radical to 

the terminal carbon of 1-decene, after which fragmentation (O-O cleavage) takes place. 

Since the cobalt surface directs the selectivity towards the epoxide rather than the allylic 

products, the presence of the cobalt surface throughout these processes is indispensable

(Scheme 3.3).
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Scheme 3.3: Proposed mechanism of 1-decene epoxidation based on proposed mechanism by gold 
catalyst. Adapted from [16]. In: Radical initiator.

In the absence of supported cobalt catalyst, the reaction gave rise to more allylic oxidation 

products, rather than the 1,2-epoxydecane, as shown previously in Table 3.7. This may 

be explained by a Russell termination mechanism, as shown in Scheme 3.4 for the 

3-dec-1-enylperoxy radical. Interaction of an oxygen molecule with the radical from 

1-decene, which contains an α-hydrogen atom, leads to the peroxy radical, which can 

undergo Russell termination to give an alcohol and a ketone [42, 43]. Thus, the presence 

of the cobalt surface is essential to direct the reaction towards the formation of the 

1,2-epoxydecane.
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Scheme 3.4: Russell termination and formation of allylic products. Adapted from [16].

3.4. Catalyst reusability
After a standard reaction, the reuse of the catalysts was investigated. The reused 

2% Co/TiO2 catalysts were filtered off and either dried in the oven at 110°C for 16 h 

without a washing step, or washed with acetone (1 L) and then dried in the oven at 110°C 

for 16 h. The epoxidation of 1-decene over fresh and reused 2% Co/TiO2 catalysts is 

summarised in Table 3.8. When the fresh 2% Co/TiO2 catalyst was used in the reaction, 

the conversion of 1-decene reached 14% with an epoxide selectivity of 34%. The reused 

cobalt catalysts (dried only without a washing step) did not enable effective reuse and 

exhibited lower activity compared to the fresh one. This may be ascribed to the adsorption 

of products, which results in the deactivation of the 2% Co/TiO2 catalyst. FTIR analysis 

of the reused catalyst confirmed the presence of additional species. Strong stretching in 

the region 2900-2970 cm-1 can be assigned to CH stretching modes (Figure 3.6), which 

may indicate the adsorption of products on the surface of the spent catalyst. When the 

catalyst was washed with acetone, the FTIR characteristic bands (Figure 3.6) reduced in 

size, suggesting that some of the adsorbed products were removed and the catalytic 

activity was slightly restored (conversion 11% (Table 3.8)). XPS analysis (Table 3.5) is 

in agreement with FTIR analysis, which indicates that the quantity of carbon (C) on the 

spent cobalt catalyst increased when compared to that on the fresh catalyst (from ca.

21.4% to ca. 41.2%). This resulted in a decrease in activity, which was probably due to 

the C blocking the active sites of the cobalt catalysts. 
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Table 3.8: Catalyst reusability study for epoxidation of 1-decene: 2% Co/TiO2

Reaction conditions: 2% Co/TiO2 (0.1 g), 1-decene (53 mmol, 10 mL), TBHP (0.064 mmol, 0.01 mL), 
80°C, atmospheric pressure air, reaction time 24 h, rate of stirring 800 rpm.

Figure 3.6: FTIR for the fresh and the reused 2% Co/TiO2 catalysts. 

Washing conditions Conversion (%) Epoxide selectivity (%)

Fresh catalyst 14 34

Reused without washing, dried static 

air at 110°C for 16 h

7 19

Reused and washed with acetone 

(1 L), dried static air at 110°C for 16 h

11 22

C-H stretch

2500260027002800290030003100
cm-1

Fresh 2% Co/TiO2

Reused 2% Co/TiO2 oven-dried dried at 110°C for 16 h 
without washing step 

Reused 2% Co/TiO2 wash with acetone (1 L) and oven-
dried at 110°C for 16 h.

C-H stretch
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3.5. Catalysts characterisations
In addition to the previously mentioned techniques (XPS and FTIR), the techniques of 

TGA, XRD, SEM, BET and TPR were used to characterise the supported cobalt catalysts. 

Thermal gravimetric analysis (TGA) was used to detect the desired calcination 

temperature for the catalysts. It is suggested that 400°C is the suitable temperature for 

calcination in order to complete the decomposition of the precursor and the formation of 

the cobalt oxide as shown in Figure 3.7. 

Figure 3.7: TGA of a cobalt catalyst (6.5 mg, dried only) prepared by wet-impregnation.

As the 2% Co/MgO and 2% Co/TiO2 catalysts are the chosen catalysts for this study, 

XRD analysis of the supports and corresponding cobalt catalysts was carried out (Figure 

3.8 and Figure 3.9). The reflections from the cobalt oxide would be expected to be 

2θ= 19.0°, 31.3°, 37.0°, 38.6°, 44.9°, 55.8°, 59.4° and 65.4° [44]. The cobalt catalyst did

not exhibit strong diffraction peaks as a number of reflections would overlap with the 

reflection patterns of the MgO, and the main reflection patterns can be assigned to the 

MgO, which can then hardly be distinguished. A broad reflection peak of the cobalt oxide 

at 59.4° was observed (Figure 3.8). A similar observation was found in a previous study 

[45]; it was demonstrated that the basic sites on the MgO surface could promote the 

dispersion of the cobalt during the impregnation, and thus no strong diffraction patterns 

can be observed for Co/MgO [45].
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Figure 3.8: X-ray diffraction patterns for: MgO and 2% Co/MgO.

When the 2% Co/TiO2 catalyst was analysed using XRD, a slight shift of the signals was 

noted for the fresh and reused 2% Co/TiO2 towards smaller 2θ angles, compared with the 

TiO2 support alone (Figure 3.9). This may indicate the incorporation of the cobalt into the 

lattice. Furthermore, it can be seen that the XRD reflections of the fresh and reused 

2% Co/TiO2 did not display enough distinguishable differences in their reflections. The 

characteristic XRD reflections of cobalt ion were not observed, indicating that cobalt was

uniformly dispersed among the TiO2 support. A similar observation was found in a 

previous study, where the authors could not detect cobalt in loading as high as 

10% Co/TiO2 by XRD [46].

2 Theta (degree)
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Figure 3.9: X-ray diffraction patterns for: TiO2, the fresh and reused 2% Co/TiO2.

The surface morphology for all the undoped supports and supported cobalt catalysts are 

shown in Figure 3.10, Figure 3.11 and Figure 3.12. It can be seen from the SEM images 

that the difference in morphology between the fresh and reused 2% Co/TiO2 catalyst is 

negligible.
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Figure 3.10: SEM image for: (1) MgO and (2) 2 % Co/MgO.

(1)

(2)
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Figure 3.11: SEM image for: (1) TiO2 and (2) fresh 2% Co/TiO2.

(1)

(2)
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Figure 3.12: SEM image for reused 2% Co/TiO2.

From the N2 adsorption analysis, the surface areas of different supports and supported 

cobalt catalysts were calculated and listed in Table 3.9. There was a reduction in the 

surface area of the 2% Co/support catalysts compared to the undoped supports, which 

may indicate the incorporation of the cobalt in the support pores. There was a slight 

decrease in the surface area of the reused 2% Co/TiO2 from 47 to 45 m2 g-1, which may 

be a result of the adsorption of some products and remaining substrate on the surface. The 

analysis was carried out twice and error in the analysis was no more than 1 m2 g-1.

Table 3.9: Nitrogen physisorption analysis of the surface area using BET method of different 
supports and supported cobalt catalysts

Catalyst Surface area (m2 g-1)

MgO 55

2% Co/MgO 49

TiO2 51

2% Co/TiO2
Reused 2% Co/TiO2

47
45
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The H2-TPR profiles of the Co3O4 and 2% Co/TiO2 catalysts are shown in Figure 3.13.

The results show that the reduction peaks of the 2% Co/TiO2 exhibit two hydrogen 

consumption peaks attributed to two-step reduction. The first reduction peak is observed 

between ~320-390°C and mainly resulted from the reduction of Co3O4 to CoO, which is 

in agreement with the reduction peak of unsupported Co3O4 in this temperature range. 

TPR analysis agrees with previously mentioned XPS analysis, which is that the cobalt is 

found to be Co2+. The second set of peaks of the reduction of 2% Co/TiO2 at 400-600°C 

may be attributed to the reduction of CoO to metallic Co. This is in agreement with 

previous studies reported for Co3O4/TiO2 [46-48].

Figure 3.13: TPR for Co3O4 and 2% Co/TiO2.

3.6. Conclusions
It has been shown that supported cobalt catalysts are active in the epoxidation of 1-decene 

under solvent free conditions in the presence of a very small of a radical initiator and 

oxygen from air as a primary oxidant at 80°C. The influence of the reaction temperature 

in the absence of a radical initiator and catalyst was investigated and it was found that the 

oxidation of 1-decene does not start below 100°C, whereas at 110°C the reaction starts 

spontaneously (as shown in Table 3.1). The presence of a very small amount of radical 

initiators allows for the use of atmospheric oxygen as an oxidant in place of expensive 

and environmentally hazardous oxidants. Different radical initiators were investigated, 

namely tert-butylhydroperoxide (TBHP), cumene hydroperoxide (CHP) and 

100 200 300 400 500 600 700
Temperature (°C)

Co3O4

2% Co/TiO2
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azobisisobutyronitrile (AIBN). TBHP was identified as suitable as it exhibited the lowest 

activity (conversion 1.5% and epoxide selectivity 3.5%) at 80°C when compared to other 

radical initiators in the absence of the cobalt catalyst (as illustrated in Table 3.2). The 

combination of TBHP and 2% Co/MgO catalyst resulted in high conversion of 1-decene 

(12%). In the absence of TBHP and the presence of the 2% Co/MgO catalyst, traces of 

the conversion were observed, which indicates the importance of the radical initiator in 

this reaction. Using 2,6-di-tert-butyl-4-methylphenol (BHT) as a radical scavenger led to 

the termination of the reaction. This suggests free radicals are involved in the catalytic 

cycle in the liquid phase epoxidation of 1-decene (as shown in Table 3.4). When TiO2

was used as a support for cobalt, the quantity of cobalt leached from the catalyst 

significantly decreased. It was also shown that there was a significant drop in the 

conversion with the reused catalysts without a washing step with acetone (from 14% to 

7%), which may be due to the adsorption of the products and blocking of the active sites. 

After the washing step, the catalyst reusability slightly increased (conversion 11%) as 

illustrated in Table 3.8, suggesting that some of the adsorbed products were removed and 

the catalytic activity was slightly restored. FTIR and XPS indicated the adsorption of 

products and remaining substrate on the reused catalyst surface, resulting in a decrease in 

the catalyst activity.
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Chapter 4: Oxidation of 1-decene using supported gold 
catalysts

4.1. Introduction
Selective oxidation is a key process in chemical technology, especially for the synthesis 

of chemical intermediates. Using oxygen as a primary oxidant is an attractive concept to 

reduce waste and create green chemical routes [1, 2]. Many studies have been carried out 

with the use of supported gold catalysts for the oxidation of alkenes [3-7]. Nevertheless, 

the aerobic epoxidation of α-alkenes, containing allylic hydrogens, remains a challenge

in oxidation catalysis. Earlier investigations by Hutchings and co-workers showed that 

supported gold nanoparticles are active for the oxidation of a range of alkenes under 

solvent-free conditions using oxygen as an oxidant and a very small amount of a radical 

initiator [3, 4, 8]. Furthermore, the same group studied the oxidation of cycloalkenes and 

showed that as the ring size of a cycloalkene decrease (sizes of C7 or smaller), allylic 

oxidation was the dominant reaction pathway [9]. However, with larger ring sizes, an 

epoxidation reaction pathway was preferred. Hutchings and his group also demonstrated 

that an initiator was not needed during the oxidation of cyclic and internal linear alkenes 

after the removal of stabilisers (added to prevent oxidation) [10]. In contrast, the 

epoxidation of terminal alkenes still required the presence of a radical initiator [10]. In a 

previous report on the oxidation of 1-decene, 1% Au/graphite prepared by incipient 

wetness was found to be an effective catalyst [11].

In Chapter 3, supported cobalt catalysts were observed to have good activity for 

epoxidation of 1-decene under solvent-free conditions. However, the leaching of the 

active species took place, especially when using MgO as support (Co leached 22%); 

whereas there was a significant reduction in the leaching (6%) when using TiO2 as a 

support. Therefore, it is preferable to use a non-leaching and more stable catalyst. Thus, 

the focus of this Chapter is on continuing and extending the investigation on the oxidation 

of 1-decene with the use of more stable and leaching resistant supported gold catalysts 

prepared by different methods and oxygen from air, or low-pressure molecular oxygen as 

an oxidant. The identification of background reactions in the absence of the supported 

gold catalysts will also be discussed. Previously, gold nanoparticles supported on oxides 

were suggested to be active for the epoxidation of different alkenes [3]. Therefore, three 

metal oxide supports: namely, TiO2, SiO2 and MgO, in addition to graphite, were used in 

the experiments. Finally, the optimisation of the reaction conditions such as the reaction 

time and O2 pressure were examined.
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4.2. Results and discussion

4.2.1. Reaction in the absence of catalyst

Initially, a range of blank reactions were carried out (in the absence of a catalyst) for the 

epoxidation of 1-decene with the use of oxygen from the air as the primary oxidant at 

atmospheric pressure. AIBN was chosen as the radical initiator for this reaction to 

continue and extend the previous investigation on 1-decene oxidation using supported 

gold catalysts [11]. Our group showed earlier that the presence of a radical initiator is 

essential for the oxidation of linear terminal alkenes (in contrast to internal alkenes) [10,

11]. Chapter 3 showed that without the presence of the catalyst and radical initiator, no 

reaction was recorded below 100°C, whereas at 110°C, 8% conversion and 23% 

selectivity for epoxide were observed after a 24 h reaction time. Consequently, all further 

reactions were performed in the temperature range of 60°C to 90°C. In the presence of 

AIBN, low conversion of 1-decene was observed over the studied temperature ranges 

60-90°C, with a maximum conversion of 6% and an epoxide selectivity of 17% at 90°C 

(Table 4.1). A reaction temperature of 90°C was chosen for further catalyst screening to 

continue and extend the previous investigation on 1-decene oxidation [11].

Table 4.1: Effect of temperature on 1-decene epoxidation in the absence of the catalyst

Reaction conditions: 1-decene (53 mmol, 10 mL), AIBN (0.036 mmol, 6 mg), atmospheric pressure 
air, reaction time 24 h, rate of stirring 800 rpm. (a) Conv.= Conversion, (b) Sel.= Selectivity for 
epoxide.

4.2.2. Graphite supported catalysts in epoxidation of 1-decene

4.2.2.1. Effect of the catalyst preparation method

An important factor that can affect the activity of a catalyst is the preparation method 

[12]. Initial studies on 1-decene epoxidation (90°C, AIBN as a radical initiator, 

atmospheric pressure of air) showed that 1% Au/graphite (1% Au/G) prepared by 

incipient wetness is an effective catalyst for this reaction [11]. The following three 

preparation methods of 1% Au/G were studied: sol-immobilisation, wet-impregnation 

and incipient wetness (as explained in Sections 2.2.1, 2.2.2 and 2.2.3). The results shown 

in Figure 4.1 demonstrate that 1% Au/G prepared by the sol-immobilisation method 

Initiator
T= 60°C T= 70°C T= 80°C T= 90°C

Conv.(a) 

(%)
Sel.(b) 

(%)
Conv.
(%) 

Sel. 
(%) 

Conv.
(%) 

Sel.
(%) 

Conv.
(%) 

Sel.
(%) 

No initiator 0 0 0 0 0 0 0 0

AIBN 1 1 2 4 3 14 6 17
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resulted in the highest epoxide yield (yield obtained by using GC analysis). The 

conversion and epoxide selectivity were 11% and 28% respectively, which observed 

higher activity and epoxide selectivity than catalysts prepared using the wet-impregnation 

and the incipient-wetness methods. These results are in agreement with previous 

observations on the oxidation of different alkenes. It was found that the preparation of 

supported gold catalysts using the sol-immobilisation method significantly enhanced 

catalyst activity in the oxidation of cyclooctene, whereas lower activity was found with 

wet impregnation and deposition precipitation methods, as mentioned previously in 

Section 1.6.1 [3, 8-10, 13]. Furthermore, a similar observation was made with the 

oxidation of 1-hexene with air using supported gold catalysts with a very small amount 

of TBHP [14]. The sol-immobilisation method gave a higher conversion of 1-hexene and 

epoxide selectivity comparing to the wet-impregnation and deposition precipitation 

methods, which displayed similar activity. Moreover, the 1% Au/G catalyst prepared 

using sol-immobilisation method was observed to show higher 1-octene conversion and 

epoxide selectivity than that prepared with the other methods under solvent-free 

conditions [15].

Figure 4.1: Effect of the catalyst preparation method on 1-decene oxidation. Reaction conditions: 
catalyst (0.1 g), 1-decene (53 mmol, 10 mL), AIBN (0.036 mmol, 6 mg), 90°C, atmospheric pressure 
air, reaction time 24 h, rate of stirring 800 rpm. Allylic products=∑ (1-decen-3-one, 1-decen-3-ol, 

2-decenal, 2-decen-1-ol). Others=∑ (C7+C8+C9 acids, C8+C9 aldehyde, C7+C8 alcohols, 3-nonen-1-ol, 
3-nonanone, cyclododecane, 2-decenoic acid, 1,2-decanediol). Error bars indicate range of data 

based on three repeat experiments.
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In a previous study, the metal particle size prepared by the impregnation method was 

found to be in the range 10-30 nm [3]. In contrast, much smaller particle sizes (2-3 nm) 

with a small distribution range (1-10 nm) were reported for catalysts prepared by 

sol-immobilisation [3]. Therefore, the 1% Au/G catalyst prepared using 

sol-immobilisation, which is the most active one in this study, has been characterised 

using TEM and XRD. The TEM data analysis and particle size distribution (PSD) are 

presented in Figure 4.2. Gold particles can be seen as dark contrasts on the surface of the 

graphite particles. PSD data has been determined from bright field TEM micrographs and 

measured diameter of at least 100 particles. For the 1% Au/G catalyst prepared using the 

sol-immobilisation method, the PSD showed that this catalyst contained much smaller 

particles, with most particles being 3-4 nm with a small distribution range 1-7 nm in 

diameter (Figure 4.2). Therefore, a possible explanation for the improved activity of the 

sol-immobilisation catalyst is the higher dispersion of Au through a smaller particle size.

Figure 4.2: (a) TEM and (b) PSD for 1% Au/G prepared by sol-immobilisation method. Counts: 
number of occurrences of particles of indicated diameter within the sample assessed.

XRD reflections are shown in Figure 4.3 for the graphite and the 1% Au/G catalysts 

prepared by wet-impregnation and sol-immobilisation. A comparison with pure graphite 

reveals that most of the reflections come from the support. The main reflections of gold 

are expected at 38.5 °, 45.2° and 65.2°. The XRD pattern of the graphite and the 1% Au/G 

catalyst prepared by sol-immobilisation did not show distinguishable differences in their 

reflections, and no obvious gold peak was found. This result indicates higher dispersion 

of Au through a smaller particle size, which is in agreement with previous TEM data. In 

contrast, the presence of crystalline Au was observed for the catalyst prepared by 

wet-impregnation, and the Au nanoparticles size calculated from XRD is 18 nm, which 
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is much larger than that produced by the sol-immobilisation method. Therefore, the 

sol-immobilization method is a suitable technique for preparing 1% Au/G catalyst as it 

exhibits excellent control over the particle size. Smaller particles are more reactive 

because of the good dispersion of Au on the support surface; this resulted in generating

more active sites, which, in turn, increase the activity and epoxide selectivity. 

Figure 4.3: XRD diffraction patterns for : (a) graphite (b) 1% Au/G (wet-impregnation) 
(c) 1% Au/G (sol-immobilisation). 

4.2.2.2. Time online study for epoxidation of 1-decene using 1% Au/G 

To understand the detailed reaction profile of 1-decene oxidation over the 1% Au/G 

catalyst prepared using sol-immobilisation method, time online studies were carried out 

at a temperature of 90°C. The effect of reaction time for the reactivity of 1% Au/G 

prepared by the sol-immobilisation method was compared with the reactivity of the 

graphite support and the blank reaction as shown in Figure 4.4. The reaction profile with 

respect to the 1,2-epoxydecane yield (yield obtained by using GC analysis) was 

comparable between the blank reaction, the reaction with graphite and with the 1% Au/G 

catalyst. In all the reactions, an induction period of ca. 10 h was observed before the 

formation of any epoxide. After this induction period, the epoxide yield increased at 

different rates for the three reactions, with the rate of epoxide formation following the 

trend of 1% Au/G catalyst > graphite > blank. After the 24 h reaction time, a significant 

improvement in the epoxide yield (yield obtained by using GC analysis) was observed 

when the 1% Au/G catalyst was used. The presence of the supported gold catalyst,
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therefore, directed the reaction preferentially towards the epoxide with a higher epoxide 

yield than the uncatalysed reaction.

Figure 4.4: Epoxidation of 1-decene: time online study. Reaction conditions: catalyst (0.1 g), 
1-decene (53 mmol, 10 mL), AIBN (0.036 mmol, 6 mg), 90°C, atmospheric pressure air, rate of 

stirring 800 rpm. Error bars indicate range of data based on three repeat experiments.

A better understanding of the evolution of the reaction pathways with respect to the 

reaction time can be found from the interpretation of 1-decene conversion and the 

selectivities for specific products. Figure 4.5 shows that with an increasing reaction time,

the conversion of 1-decene gradually increased over the reaction time from 1% at 4 h to 

33% at 96 h with a shorter induction period. This result may suggest that with longer 

reaction runs, a greater degree of conversion of 1-decene should be observed. 

Furthermore, the selectivity data shows that allylic products, such as 1-decen-3-one, 

1-decen-3-ol, 2-decenal and 2-decen-1-ol, were the predominant products at the 

beginning of the reaction, and a lower selectivity for the epoxide was detected. Epoxide 

selectivity steadily increased with increasing the reaction time to be the maximum at 48 h.

After 48 h, the selectivity for the epoxide was found to drop to a value of 9% after 96 h. 

furthermore, the selectivity for the diol increases with increasing the reaction time. This 

perhaps is the result of the opening of the epoxide ring, as discussed in Chapter 3. A 

similar observation was found with different terminal alkenes (1-hexene, 1-octene, 

1-decene) [11, 14, 15], as the reaction time increased, there was an increase in the alkene 

conversion and epoxide selectivity.
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Figure 4.5: Effect of reaction time on conversion and selectivity. Reaction conditions: 1% Au/G 
(0.1 g), 1-decene (53 mmol, 10 mL), AIBN (0.036 mmol, 6 mg), 90°C, atmospheric pressure air, rate 

of stirring 800 rpm. Allylic products=∑ (1-decen-3-one, 1-decen-3-ol, 2-decenal, 2-decen-1-ol). 
Others=∑ (C7+C8+C9 acids, C8+C9 aldehyde, C7+C8 alcohols, 3-nonen-1-ol, 3-nonanone, 
cyclododecane, 2-decenoic acid). Error bars indicate range of data based on three repeat 

experiments.

Table 4.2 shows the detailed selectivity profile for all the products for this catalysed 

reaction. Under these conditions, the selectivity for 1,2-epoxydecane was ca. 28% 

whereas the total selectivity for the products of C10 oxidation was more than 33%, which 

amounts to over 60% of the total products produced. Furthermore, C-C cleavage reactions 

occurred, forming different C7+C8+C9 products. These results are in agreement with 

previous studies for oxidation of terminal alkenes where different allylic products were 

produced and C-C cleavage reactions occurred [11, 14, 15].
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Table 4.2: Full list of products observed and quantified in the epoxidation of 1-decene using 1% Au/G
Conversion (%) 11
Product Selectivity (%)
1,2-Epoxydecane 28
1-Decen-3-one 5.8
1-Decen-3-ol 7.3
2-Decenal 7.2
2-Decen-1-ol 8
1,2-Decanediol 2
2-Decenoic acid 2.3
Octanal 1.8
Nonanal 3.8
1-Heptanol 1.4
1-Octanol 1.1
Heptanoic acid 1.4
Octanoic acid 3.8
Nonanoic acid 8.5
3-Nonen-1-ol 1
3-Nonanone 2.5
Cyclododecane 1.2
Unknown products 10

Reaction conditions: 1% Au/G (0.1 g), 1-decene (53 mmol, 10 mL), AIBN (0.036 mmol, 6 mg), 90°C, 
atmospheric pressure air, reaction time 24 h, rate of stirring 800 rpm.

4.2.2.3. Effect of O2 pressure 

The previously mentioned reactions were carried out under atmospheric pressure of air. 

In the current study, we examined the effect of the O2 pressure on the epoxidation of 

1-decene by using 1% Au/G (sol-immobilisation). The conversion of 1-decene was found 

to increase when increasing the O2 pressure from 3% at 0.2 bar to 24% at 15 bar of O2 as 

shown in Figure 4.6. This increase in the conversion appears to be linear with the O2

pressure. However, no significant change in 1,2-epoxydecane selectivity was observed 

with an increase in the O2 pressure as shown in Figure 4.6. Furthermore, a slight decrease 

was found in the selectivity for the allylic products during the increase in the O2 pressure

from 5 to 10 bar, whereas some increases in the selectivity of C8 and C9 products were 

detected with increase the O2 pressure. Similar observations were made for the 

epoxidation of different alkenes (styrene, cyclohexene, cyclooctene) using different 

catalysts [16, 17]. It was found that as the oxygen pressure increased, the conversion 

increased without any change in the epoxide selectivity [16, 17]. Therefore, the major 

effect of an increase in oxygen pressure is an increase in the 1-decene conversion to reach 

24%, which is much higher than the conversion under the atmospheric pressure of air 

(11%).



82

Figure 4.6: Effect of O2 pressure of epoxidation of 1-decene using 1% Au/G. Reaction conditions: 
1% Au/G (0.1 g), 1-decene (53 mmol, 10 mL), AIBN (0.036 mmol, 6 mg), 90°C, reaction time 24 h, 
rate of stirring 800 rpm. Allylic products=∑ (1-decen-3-one, 1-decen-3-ol, 2-decenal, 2-decen-1-ol). 

Others=∑ (C7+C8+C9 acids, C8+C9 aldehyde, C7+C8 alcohols, 3-nonen-1-ol, 3-nonanone, 
cyclododecane, 2-decenoic acid, 1,2-decanediol). Error bars indicate range of data based on three 

repeat experiments.

To understand the role of increase in the O2 pressure and the reaction profile, time online 

studies were carried for epoxidation of 1-decene under 15 bar of O2 using 1% Au/G.

Similar to the results obtained under the atmospheric pressure of air, with increasing 

reaction time, the conversion of 1-decene significantly increases from 4% at 4 h to 24% 

at 24 h. In addition to that, allylic products such as 1-decen-3-one, 1-decen-3-ol, 

2-decenal, 2-decen-1-ol are the predominant products at the beginning of the reaction. A 

further increase in the reaction time resulted in a drop in the selectivity for these products, 

accompanied with an increase in the epoxide selectivity for a maximum of 19% after 24 h 

of reaction, as shown in Figure 4.7.
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Figure 4.7: Time online study for epoxidation of 1-decene using 1% Au/G under O2 pressure. 
Reaction conditions: 1% Au/G (0.1 g), 1-decene (53 mmol, 10 mL), AIBN (0.036 mmol, 6 mg), 90°C, 

15 bar O2, rate of stirring 800 rpm. Allylic products=∑ (1-decen-3-one, 1-decen-3-ol, 2-decenal, 
2-decen-1-ol). Others=∑ (C7+C8+C9 acids, C8+C9 aldehyde, C7+C8 alcohols, 3-nonen-1-ol, 

3-nonanone, cyclododecane, 2-decenoic acid, 1,2-decanediol).

The epoxide selectivity was higher when the reaction was carried out under atmospheric 

pressure of air in the glass reactor. Therefore, further investigation was performed under 

atmospheric pressure of air.

4.2.3. Metal oxides as supports in the epoxidation of 1-decene

Supports are well known to play an important role in catalyst activity [8, 18]. Metal oxides 

are widely used as supports in heterogeneous catalysts because they highly influence 

catalysts activity [19]. The properties of these supports have been reported to play a 

predominant role in the adsorption of gold nanoparticles [19, 20, 21], which, in turn, 

influences catalytic activity. As metal oxides have shown good activity for alkene 

epoxidation [8, 22-27], three different metal oxides have been investigated for 1-decene 

oxidation. These supports have been classified into reducible (TiO2) and non-reducible 

supports (SiO2, MgO).

From the nitrogen physisorption analysis, the surface area of different supported gold 

catalysts is listed in Table 4.3. A reduction in the surface area of the 1% Au/support 

catalysts was observed compared with the undoped supports, which may indicate the 

incorporation of Au in the support pores. The analysis was carried out twice and error in 

the analysis was no more than 1 m2 g-1.

0

10

20

30

40

50

0 5 10 15 20 25

C
on

ve
rs

io
n/

Se
le

ct
iv

ity
 (%

)

Reaction time (hour)

Conversion Epoxide Allylic products Others



84

Table 4.3: Nitrogen physisorption analysis of the surface area using BET method of different 
supports and supported gold catalysts

From Figure 4.8 it can be seen that the XRD patterns of the TiO2 and the 1% Au/TiO2 did 

not display enough distinguishable differences in their reflections. This is due to the 

overlapping between TiO2 phases and the Au reflections.

Figure 4.8: X-ray diffraction patterns for: (a) TiO2 and (b) 1% Au/TiO2.

10 20 30 40 50 60 70 80
2 Theta (degree)

(a)

(b)

Catalyst Surface area m2 g-1 

Graphite 9

1% Au/G 8

SiO2 989

1% Au/SiO2 970

MgO 55

1% Au/MgO 49

TiO2 51

1% Au/TiO2 47
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The XRD patterns are shown in Figure 4.9 for the SiO2 and the 1% Au/SiO2. A broad 

reflection peak of Au at 38.5° was observed. Small Au particles with a range of 2-8 nm 

produced broader reflection peak.

Figure 4.9: X-ray diffraction patterns for: (a) SiO2 and (b) 1% Au/SiO2.

Table 4.4 shows that the supports alone showed limited activity in the absence of gold. 

Some activity was observed when TiO2 was used compared with the other supports. This 

observation may be due to the ability of TiO2 to adsorb oxygen [28]. The addition of gold 

to the supports, using the three methodologies (wet-impregnation, deposition 

precipitation and sol-immobilisation), resulted in an increase in activity and selectivity

for 1,2-epoxydecane in all cases. The supported gold catalysts prepared by the 

sol-immobilisation method exhibited the highest activity for each of the metal oxide 

supports. This result could be attributed to the formation of small Au particles, as the 

sol-immobilisation method leads to the formation of such particles. The SiO2 and TiO2

supported gold catalysts showed higher activity and epoxide selectivity than that of the 

MgO and graphite supported catalysts. This observation is in agreement with that of 

previous studies on propene epoxidation with 1% Au/TiO2. It was suggested that a 

peroxide species is produced by gold and then epoxidised propene over titania sites [22-

27]. Furthermore, TiO2 can diffuse onto the metal, which can enhance catalytic activity 

[29]. The shape of the gold particles appears to be affected by the interaction with the 

support material during the adsorption of the gold colloids on the support surface in the 

sol-immobilisation method. It has been suggested that various geometries of the gold 

10 20 30 40 50 60 70 80
2 Theta (degree)

(a)

(b)
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particles can occur on each of the support, giving rise to different faceting and creation 

of defect sites, which would influence the catalytic properties of the supported gold 

particles [30]. Therefore, the choice of support affected the activity of gold catalysts and 

epoxide selectivity, providing clear evidence that the chemical nature of the support is 

important.

Table 4.4: Epoxidation of 1-decene using 1% Au/support prepared by different methods

Reaction conditions: Catalyst (0.1 g), 1-decene (53 mmol, 10 mL), AIBN (0.036 mmol, 6 mg), 90°C, 
atmospheric pressure air, reaction time 24 h, rate of stirring 800 rpm. Allylic products=∑ 
(1-decen-3-one, 1-decen-3-ol, 2-decenal, 2-decen-1-ol). Others=∑ (C7+C8+C9 acids, C8+C9 aldehyde, 
C7+C8 alcohols, 3-nonen-1-ol, 3-nonanone, cyclododecane, 2-decenoic acid). (a): Deposition-
precipitation.

Catalyst Preparation 

method

Conversion 

(%)

Selectivity (%)

Epoxide Allylic 

products

Diol Others

Blank - 6 17 45 1 25

SiO2 - 5 25 38 1 22

1% Au/SiO2 Wet-impregnation 8 25 33 2 30

Dep-precipitation a 11 26 30 3 35

Sol-immobilisation 13 34 28 1 27

TiO2 - 9 27 33 1 25

1% Au/TiO2 Wet-impregnation 11 27 32 2 30

Sol-immobilisation 13 34 30 2 24

Dep-precipitation a 11 28 33 2 30

MgO - 5 18 35 1 26

1% Au/MgO

G

1% Au/G

Wet-impregnation 8 24 32 1 33

Sol-immobilisation

-

Incipient-wetness

Wet-impregnation

Sol-immobilisation

12

6

9.5

9.6

11

27

17

25.6

25.4

28

30

42

33

31

28.3

2

1

2

1

2

31

28

27

27

27
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TEM analysis for supported gold catalysts was performed and the images are presented 

in Figure 4.10 and the PSD in Figure 4.11. Similar to 1% Au/G, the sol-immobilisation 

method produced a small particle size of the supported gold catalysts. The size 

distribution of the Au particles for 1% Au/TiO2, 1% Au/SiO2, 1% Au/MgO and 

1% Au/G, determined from bright field TEM micrographs are shown in Figure 4.11. Our 

group previously found the similarity of PSDs for the deposition-precipitation and 

impregnation methods, with most Au nanoparticles to be in the 10-30 nm size range [3]. 

In contrast, in this work, the 1% Au/support catalysts prepared using the 

sol-immobilisation method showed much smaller particles, with most particles being 

3-5 nm in diameter (Figure 4.11). Interestingly, this result is in agreement with the 

activities of the 1% Au/support catalysts shown in Table 4.4, which confirms that the 

catalysts prepared using the sol-immobilisation method produced a much smaller Au 

particle size, which resulted in the higher activity of the catalysts. Smaller particles are 

more reactive because of the good dispersion of Au on the support surface; this results in 

generating more active sites, which, in turn, increases the activity.

Figure 4.10: TEM for (a) 1% Au/TiO2 (b) 1% Au/SiO2 (c) 1% Au/MgO (d) 1% Au/G. Catalysts 
prepared using sol-immobilisation method.

(a) (b)

(c) (d)
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Figure 4.11: PSD for: (a) 1% Au/TiO2 (b) 1% Au/SiO2 (c) 1% Au/MgO (d) 1% Au/G. Catalysts 
prepared using sol-immobilisation method. 

4.2.4. Effect of the catalyst mass of the 1% Au/TiO2

Further we studied the effect of catalyst mass on epoxidation of 1-decene using 

1% Au/TiO2. The amount of 1% Au/TiO2 varied in the range 0.05-0.2 g. Table 4.5 shows 

that the conversion of 1-decene increased from 8% to 16% with increasing catalyst mass 

from 0.05 g to 0.2 g, the selectivity for the epoxide also increased from 22% to 36% 

respectively. In contrast, the selectivity for allylic products decreased with increasing 

catalyst mass, which indicates the importance of the Au surface for directing the 

selectivity toward 1,2-epoxydecane. When doubling the catalyst mass from 0.05 to 0.1 g, 

the conversion increased from 8% to 13% respectively. However, increasing the mass 

from 0.1 to 0.2 g resulted in only a 3% increase in the conversion, which may indicate the 

mass transport limitation in this range. Therefore, 0.1 g (0.0094 mmol%, amount of Au 

in relation to the 1-decene amount) is the desired amount of 1% Au/TiO2 catalyst for the 

epoxidation of 1-decene under these conditions.
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Table 4.5: Effect of the catalyst mass of the 1% Au/TiO2 on 1-decene oxidation

Reaction conditions: 1-decene (53 mmol, 10 mL), AIBN (0.036 mmol, 6 mg), 90°C, atmospheric 
pressure air, reaction time 24 h, rate of stirring 800 rpm. Allylic products=∑ (1-decen-3-one, 
1-decen-3-ol, 2-decenal, 2-decen-1-ol). Others=∑ (C7+C8+C9 acids, C8+C9 aldehyde, C7+C8 alcohols, 
3-nonen-1-ol, 3-nonanone, cyclododecane, 2-decenoic acid, 1,2-decanediol).

4.2.5. Evidence of radical initiated 1-decene oxidation

In the absence of AIBN, the epoxidation of 1-decene did not occur even in the presence 

of the 1% Au/TiO2 where the conversion was only 1% and no epoxide was produced. In 

the presence of AIBN only, low conversion and selectivity for the epoxide was detected. 

However, when 1% Au/TiO2 catalyst was present with AIBN, significant improvement 

in the catalytic activity was seen in the epoxidation of 1-decene. A radical scavenger was 

used in this study in order to establish the role of the small amount of AIBN for the oxygen 

activation in the presence of 1% Au/TiO2. Therefore, addition of the radical scavenger 

2,6-di-tert-butyl-4-methylphenol (BHT) resulted in interaction with radicals and 

terminated the propagation of the radical mechanism (Table 4.6), which shows that 

radical chemistry is involved in the reaction. Therefore, oxygen from air seems to be 

activated via free-radical species. Another diagnostic experiment that indicated the 

involvement of oxygen in this reaction involved carrying out the reaction under N2

atmosphere instead of air. It was observed that no epoxide was detected, which indicates 

that molecular oxygen from the air is involved in the oxidation route. Similar observations 

were detected previously when using oxygen from air as the primary oxidant [11, 14].

This demonstrates that the addition of radical scavenger resulted in inhibiting the 

oxidation of alkenes (1-decene, 1-hexene) [11, 14].

Catalyst Conversion 
(%)

Epoxide 
selectivity 
(%)

Allylic 
products 
selectivity (%)

Others 
selectivity (%)

None (blank) 6 17 42 27
0.05 g 8 22 36 28
0.1 g 13 34 30 26
0.15 g 14 35 22 28
0.2 g 16 36 21 27
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Table 4.6: Effect of radical scavenger on epoxidation of 1-decene 

Catalyst Radical 
initiator

Radical 
scavenger

Conversion (%) Epoxide 
selectivity (%)

1% Au/TiO2 - - 1 0
- AIBN - 6 17
1% Au/TiO2 AIBN - 13 34
1% Au/TiO2
1% Au/TiO2 under N2

AIBN
AIBN

BHT
-

Trace
1

0
0

Reaction conditions: 1% Au/TiO2 (0.1 g), 1-decene (53 mmol, 10 mL), AIBN (0.036 mmol, 6 mg), 
BHT (0.036 mmol, 7.93 mg), 90°C, atmospheric pressure air, reaction time 24 h, rate of stirring 
800 rpm.

Table 4.7 shows the detailed selectivity profile for all the products for this catalysed 

reaction. Similar observations to what was found with 1% Au/G. The selectivity for 

1,2-epoxydecane is ca. 34% whereas the total selectivity for the products of C10 oxidation 

is more than 30%. Furthermore, C-C cleavage reactions occurred, forming different 

C7+C8+C9 products. 

Table 4.7: Products observed for the epoxidation of 1-decene using 1% Au/TiO2

Conversion (%) 13
Product Selectivity (%)
1,2-Epoxydecane 34
1-Decen-3-one 6
1-Decen-3-ol 7
2-Decenal 7.5
2-Decen-1-ol 9.5
1,2-Decanediol 2
2-Decenoic acid 2
Octanal 1.3
Nonanal 1.7
1-Heptanol 1.2
1-Octanol 1.9
Heptanoic acid 1.6
Octanoic acid 3.3
Nonanoic acid 7.3
3-Nonen-1-ol 1
3-Nonanone 2.7
Cyclododecane 1.5
Unknown products 7.7

Reaction conditions: 1% Au/TiO2 (0.1 g), 1-decene (53 mmol, 10 mL), AIBN (0.036 mmol, 6 mg), 
90°C, atmospheric pressure air, reaction time 24 h, rate of stirring 800 rpm.
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4.2.6. Reusability and stability of supported gold catalysts

One of the key advantages of heterogeneous catalysts is their ability to be readily

recovered by filtration for re-use. Therefore, 1% Au/TiO2 prepared by sol-immobilisation

was investigated. The 1-decene epoxidation reaction was carried out under standard 

conditions for 24 h, followed by recovery of the catalyst by filtration; washing the catalyst 

with acetone, and then drying it before it was re-introduced to the reactor for the second 

test. The epoxidation of 1-decene over fresh and reused 1% Au/TiO2 catalysts is

summarised in Table 4.8.

As mentioned previously, the fresh 1% Au/TiO2 was found to have 13% conversion with 

an epoxide selectivity of 34%. The activity of the reused 1% Au/TiO2, which was oven 

dried without the washing step, had a much lower conversion of only 4% over 24 h. This 

may be due to the adsorbed materials resulting in the deactivation of the catalyst. When 

the reused catalyst was washed with acetone, it was found to be more active than the dry 

one, providing evidence of products inhibition. However, epoxide selectivity was noted 

to be reduced for all the reused catalysts.

Table 4.8: Catalyst reusability study for epoxidation of 1-decene: 1% Au/TiO2

Reaction conditions: 1% Au/TiO2 (0.1 g), 1-decene (53 mmol, 10 mL), AIBN (0.036 mmol, 6 mg), 
90°C, atmospheric pressure air, reaction time 24 h, rate of stirring 800 rpm.

TEM analysis of the reused 1% Au/TiO2 catalyst was conducted to compare between the 

fresh and reused catalysts. The PSDs showed that the fresh 1% Au/TiO2 catalyst 

contained smaller particles, with most particles being 2-5 nm. In contrast, the reused 

1% Au/TiO2 catalyst showed some large particles in the range of (2-17 nm), which may 

also have resulted in reducing the activity of the reused catalyst, as shown in Figure 4.12. 

The increase in the particle size may indicate sintering and growth of the Au 

nanoparticles, probably resulting from disruption of the protective ligand shell (PVA) 

during drying the catalyst. PVA was added during preparing of the catalyst to protect the 

nanoparticles, as mentioned previously in Section 2.2.1.

Washing conditions Conversion (%) Epoxide selectivity (%)

Fresh catalyst 13 34

Reused, without washing, dried 

static air, 110°C, 16 h

4 20

Reused, washed with acetone (1 L), 

dried static air, 110°C, 16 h

10 24



92

Figure 4.12: TEM for: (a) fresh 1% Au/TiO2 (b) reused 1% Au/TiO2 and PSD for: (c) fresh
1% Au/TiO2 (d) reused 1% Au/TiO2 prepared by sol-immobilisation method.

4.3. Conclusions 
1-Decene epoxidation was performed over supported gold catalysts in the presence of a

small amount of radical initiator (AIBN, 6 mg) under mild, solvent-free conditions using 

oxygen as the oxidant. In the absence of the radical initiator, no oxidation reaction was 

observed. The optimal reaction temperature range is 60-90°C (as mentioned in Table 4.1), 

as above 100°C the reaction proceeded spontaneously without the addition of AIBN or 

the catalyst. Various preparation methods of the gold catalyst were attempted; 

sol-immobilisation is the optimum procedure for preparation of the active supported gold 

catalysts for epoxidation of 1-decene and the particle size distribution for these catalysts 

showed much smaller particles, with most particles being 3-5 nm in diameter. When 

increasing the reaction time, the conversion of 1-decene increased. In addition to that, it 

can be seen that allylic products were the predominant products at the initial stage of the 

reaction. A further increase in the reaction time resulted in a drop of selectivity for these 
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products, accompanied by a slight increase in the epoxide selectivity. A further increase 

in the reaction time (over 48 h) resulted in a steady decrease in the epoxide selectivity 

and an increase in the diol selectivity, which is believed to be a result of the epoxide ring 

opening resulting in the diol formation (as shown in Figure 4.5). When epoxidation of 

1-decene was performed under O2 pressure, it was found that as the O2 pressure increased, 

conversion of 1-decene was observed to increase correspondingly, but no effect was 

detected on 1,2-epoxydecane selectivity (as explained in Figure 4.6). Gold nanoparticles 

were supported on graphite, TiO2, SiO2 and MgO; TiO2 and SiO2 showed the highest 

activity. Reactions with a radical scavenger have confirmed that a very small amount of 

radical initiator (AIBN, 6 mg) was necessary to initiate epoxidation of 1-decene (as 

illustrated in Table 4.6). No epoxide was detected when carrying out the reaction under 

N2 atmosphere, which indicates that molecular oxygen from the air was involved in the

oxidation route. Increasing the 1% Au/TiO2 catalyst mass resulted in increasing the 

conversion and epoxide selectivity. 0.1 g was the desired amount of 1% Au/TiO2 catalyst 

for epoxidation of 1-decene under these conditions (as mentioned in Table 4.5). 

Supported gold catalysts are a promising catalyst for 1-decene oxidation, with the 

addition of a very small amount of AIBN.
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Chapter 5: Synthesis of cyclic carbonates 
5.1. Introduction
The main sources of anthropogenic CO2 emissions are from the use of fossil fuels such 

as natural gas, oil and coal. These emissions lead to an increase in the concentration of 

carbon dioxide in the atmosphere. Carbon dioxide utilisation technology can contribute 

to reducing the CO2 level by using carbon dioxide as a starting material and transforming 

it into valuable chemicals such as cyclic carbonates [1]. There is a wide range of 

applications of cyclic carbonates; they are extensively used as intermediates in the 

synthesis of pharmaceuticals, raw materials for engineering plastics, aprotic polar 

solvents and electrolytes for lithium-ion batteries [2-6]. The use of cyclic carbonates 

(CCs) is one of the most effective routes for carbon dioxide fixation. Cyclic carbonates

are usually prepared via the cycloaddition of carbon dioxide with epoxides to form a five-

membered ring [3,7-11]. In the production of cyclic carbonate, carbon dioxide is a C1 

building block with 100% atom economy and thus, a better alternative to toxic and 

hazardous reagents such as phosgene [12]. Different catalysts were reported for this 

transformation such as quaternary ammonium salts [7-10], phthalocyanine and salen 

complexes [13-15], ionic liquids [16-18], metal oxides [19-22] and immobilised catalysts 

[23-27]. 

To realise cyclic carbonate production on a large scale, epoxides themselves will have to 

be synthesised by the oxidation of alkenes [28]. The direct synthesis of cyclic carbonates 

from low-price olefins, avoiding additional work-up procedures, would be an interesting 

and economically feasible route. The oxidative carboxylation process (Scheme 5.1 b) 

consists of a combination of two sequential reactions: first epoxidation of the olefin, and 

then the cycloaddition reaction of CO2 with formed epoxide in an one-pot reaction to 

produce cyclic carbonate (Scheme 5.1 a).

Scheme 5.1: The synthesis of cyclic carbonate from the oxidative carboxylation of olefins [29].
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A previous study observed that cyclic carbonates can be produced directly from CO2 and 

styrene using a supported gold catalyst and TBHP as an oxidant to form the epoxide with 

zinc bromide (ZnBr2) and tetrabutylammonium bromide (Bu4NBr) as catalysts for the 

cycloaddition of CO2 with the formed epoxide, in one-pot (simultaneous oxidation and 

carboxylation) [29]. In contrast, another study found that in the one-pot reaction, Bu4NBr 

prevented the epoxidation reaction and the expected cyclic carbonate was not obtained, 

whereas a very high yield of cyclic carbonate could be achieved by changing the one pot 

reaction to a multistep protocol (sequential oxidation and carboxylation) [30]. In spite of 

the fact that the oxidative carboxylation of olefins has been known since 1962 [31], little 

attention has been paid to this method compared with the route that employs epoxide as 

a starting material. The combination of two reactions in an one-pot process usually needs 

compatibility between reaction conditions. Therefore, it is important to investigate the 

suitable reaction conditions such as temperature, pressure and suitable catalysts for both 

reactions before coupling them in one-pot reaction.

To obtain more information on the roles of catalyst components, the epoxidation of 

1-decene (first step) and the cycloaddition of CO2 with 1,2-epoxydecane (second step) 

were conducted individually. Chapter 4 provides a more detailed explanation about the 

epoxidation of 1-decene using supported gold catalysts. 1% Au/SiO2 and 1% Au/TiO2

prepared by the sol-immobilisation gave the highest yield of 1,2-epoxydecane at 90°C for 

24 h under solvent-free conditions. In this Chapter, firstly, the reaction of the 

cycloaddition of CO2 with epoxide is investigated, using either a homogeneous catalyst 

such as quaternary ammonium salt or a heterogeneous catalyst such as 

polydiallydimethylammonium bromide supported on silica (PDDABr/SiO2) or imidazole 

supported on silica (Imid/SiO2). In this study, the reactions were carried out under 

solvent-free conditions. Furthermore, it is important to study the compatibility between 

these two catalysts for the two different steps before coupling them in one-pot reaction. 

Therefore, the epoxidation reaction was conducted in the presence of Bu4NBr or 

40% PDDABr/SiO2 or Imid/SiO2 to detect the effect of these catalysts in the epoxide 

yield. Furthermore, supported gold catalysts were added to the cycloaddition reaction to 

study their effect on this reaction. Then, the final aim of this study was the combination 

of the epoxidation of 1-decene and cycloaddition of CO2 with the epoxide in one-pot 

(simultaneous oxidation and carboxylation), and one-pot multistep protocols (sequential 

oxidation and carboxylation). Furthermore, cycloaddition of CO2 with different

cycloalkene oxides was studied using Bu4NBr and ZnBr2 catalysts.
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5.2. Synthesis of cyclic carbonate 

5.2.1. Cycloaddition of CO2 with 1,2-epoxydecane using quaternary ammonium salts 

catalysts

Quaternary ammonium salts are typically used as homogeneous catalysts for the synthesis 

of CCs through the cycloaddition of carbon dioxide with the epoxide [32, 33]. In a 

previous study, it was shown that there is a synergistic effect of Lewis acids, such as 

ZnBr2, and Lewis bases on the catalytic synthesis of CCs from CO2 and epoxides [34]. 

Lewis acids enhance the activity of the ammonium salts, as suggested by Kossev and 

co-worker [35], who detected that Lewis acids promote the reaction between carbon 

dioxide and different epoxides to synthesise CCs using quaternary ammonium salts as 

catalysts. The principle of Lewis acid is to activate the epoxide, whereas the quaternary 

ammonium salt opens the ring of the epoxide [35]. Furthermore, they have studied 

different molar ratios between ammonium salt and Lewis acid and found that the optimum 

molar ratio (Lewis base: Lewis acid) is 2:1 as mentioned in Section 1.5.1. Another study 

conducted by Arai and co-worker [36] also found that a catalyst system consisting of 

Bu4NBr and ZnBr2 is active for CO2 cycloaddition, as styrene carbonate could be 

produced from styrene oxide at 80°C for 1 h. Although ZnBr2 alone does not show 

significant activity in this reaction, it is proposed that ZnBr2 and the Lewis base work 

together to open the epoxide ring and activate CO2, as suggested in previously reported 

studies [19, 35]. Four different types of quaternary ammonium salts were tested for 

cycloaddition of CO2 with 1,2-epoxydecane. Table 5.1 shows that the catalytic activity 

among quaternary ammonium salts depends on the alkyl group chain lengths. Me4NBr 

was found to be less active for this reaction under these conditions, whereas Bu4NBr 

almost converted the epoxide to the corresponding cyclic carbonate. The trend for the 

catalytic activity is n-Bu4NBr> Pr4NBr> Et4NBr > Me4NBr. Previous studies have made 

similar observations, with combined experimental and computational studies [37], as 

mentioned in Section 1.5.1. The bulkiness of the tetrahedral ammonium ion [NR4]+ forces 

the Br anion away from the cation more effectively than the smaller alkyl group, which 

then results in a smaller amount of electrostatic interaction between Br- and the cation, 

and which therefore results in greater nucleophilicity of the anion [37].
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Table 5.1: Effect of the cations structure on cyclic carbonate synthesis

R4NBr Conversion of 
1,2-epoxydecane 
(%)

Cyclic carbonate 
selectivity (%)

Cyclic carbonate 
yield (%)b

blank 0 0 0
Me4NBr (4.8 mmol%)a 28 93 26
Et4NBr (3.5 mmol%)a 46 95 44
Pr4NBr (2.8 mmol%)a 82 97 80
Bu4NBr (2.3 mmol%)a 98 97 95

Reaction conditions: R4NBr (0.2 g), ZnBr2 (0.355 mmol, 0.08 g), 1,2-epoxydecane (26.88 mmol, 
5 mL), 80°C, 20 bar CO2, reaction time 4 h, rate of stirring 800 rpm. (a): amount of R4NBr relative 
to 1,2-epoxydecane. (b) Yield obtained by using GC analysis.

Regarding the effect of the anion in the quaternary ammonium salt, it was demonstrated 

that the order of activity was found to be Bu4NBr > Bu4NI≈Bu4NCl > Bu4NF. In the case 

of Bu4NI, when it was added into the reaction mixture of TBHP and styrene, the colour 

of the mixture changed to dark orange, which indicates the formation of iodine by 

oxidation with TBHP [29].

5.2.1.1. Effect of the reaction time on cyclic carbonate synthesis

As shown in Table 5.2, the conversion of 1,2-epoxydecane increased with reaction time. 

58% conversion was found after a 1 h reaction time, whereas almost all the epoxide was

converted to the corresponding CC within 4 h reaction time with 97% selectivity for the 

CC. Notably, selectivity for the CC remained similar (95%-97%) for the entire course of 

the reaction.

Table 5.2: Effect of the reaction time

Reaction time 
(hour)

Conversion (%) Cyclic carbonate 
selectivity (%)

Cyclic carbonate 
yield (%)a

1 58 95 55
2 70 95 67
3 91 97 88
4 98 97 95

Reaction conditions: Bu4NBr (0.62 mmol, 0.2 g), ZnBr2 (0.355 mmol, 0.08 g), 1,2-epoxydecane 
(26.88 mmol, 5 mL), 80°C, 20 bar CO2, rate of stirring 800 rpm. (a) Yield obtained by using GC 
analysis.

5.2.1.2. Effect of CO2 pressure on cyclic carbonate synthesis

Table 5.3 shows the effect of CO2 pressure on the synthesis of CC using a Bu4NBr

(2.3 mmol%, amount of Bu4NBr relative to the 1,2-epoxydecane amount.) and ZnBr2

(1.32 mmol%, amount of ZnBr2 in relation to the 1,2-epoxydecane amount) catalysts. The 

cyclic carbonate selectivity was slightly increased (93% to 97%) with an increase in CO2

pressure in the range of 10-20 bar, whereas there was a significant increase in the epoxide 
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conversion from 80% to 98% when the CO2 pressure was increased from 10 to 20 bar, 

respectively.

Table 5.3: Effect of CO2 pressure on cyclic carbonate synthesis

CO2 pressure 
(bar)

Conversion 
(%)

Cyclic carbonate 
selectivity (%)

Cyclic carbonate 
yield (%)a

10 80 93 74
15 90 94 84
20 98 97 95

Reaction conditions: Bu4NBr (0.62 mmol, 0.2 g), ZnBr2 (0.355 mmol, 0.08 g), 1,2-epoxydecane 
(26.88 mmol, 5 mL), 80°C, reaction time 4 h, rate of stirring 800 rpm. (a) Yield obtained by using GC 
analysis.

5.2.1.3. Effect of the reaction temperature on cyclic carbonate synthesis

To investigate the catalytic activity at different temperatures, experiments in the range of 

70-90°C were carried out. This range was found to provide the optimum reaction 

temperature for epoxidation of 1-decene, as there should be compatibility between the 

reaction temperatures for both epoxidation and carbonate formation reactions in a one pot 

process. The epoxide conversion was affected by the reaction temperature. As shown in 

Table 5.4, with an increase in reaction temperature from 70°C to 80°C, the conversion of 

1,2-epoxydecane increased from 87% to 98% within 4 h reaction time. With a further 

increase in the reaction temperature to 90°C, the reaction was almost completed within 

2 h (99% conversion).

Table 5.4: Effect of the reaction temperature on cyclic carbonate synthesis

T (°C) Time (hour) Conversion 
(%)

Cyclic 
carbonate 
selectivity (%)

Cyclic carbonate 
yield (%)a

70 4 87 95 83
80 4 98 97 95
90 2 99 98 97

Reaction conditions: Bu4NBr (0.62 mmol, 0.2 g), ZnBr2 (0.355 mmol, 0.08 g), 1,2-epoxydecane 
(26.88 mmol, 5 mL), 20 bar CO2, rate of stirring 800 rpm. (a) Yield obtained by using GC analysis.

5.2.1.4. Different linear epoxides

In order to survey the scope of substrates, the cycloaddition of CO2 with other terminal 

epoxides was examined by performing the reaction under the same conditions with 

different reaction temperatures. It is clear from Table 5.5 that at 50°C and 70°C, almost 

all the 1,2-epoxyhexane and 1,2-epoxyoctane were converted to the corresponding CCs

respectively within 4 h under solvent-free conditions using 20 bar CO2 and a 

Bu4NBr-ZnBr2 catalysts. Shorter linear epoxide required lower temperature to be 

converted to the corresponding cyclic carbonate.
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Table 5.5: Cycloaddition of CO2 with different linear epoxides

Epoxide T (°C) Conversion 
(%)

Cyclic 
carbonate 
selectivity 
(%)

Cyclic 
carbonate 
yield (%)a

1,2-epoxyhexane (41.5 mmol) 50 98 97 95
1,2-epoxyoctane (32.72 mmol) 70 98 98 96
1,2-epoxydecane (26.88 mmol) 80 98 97 95

Reaction conditions: Bu4NBr (0.62 mmol, 0.2 g), ZnBr2 (0.355 mmol, 0.08 g), epoxide (5 mL), 20 bar 
CO2, reaction time 4 h, rate of stirring 800 rpm. (a) Yield obtained by using GC analysis.

5.2.1.5. Mechanism for the cycloaddition of CO2 with the epoxide for cyclic 
carbonate synthesis using Bu4NBr and ZnBr2

A possible mechanism for the cycloaddition of CO2 with the epoxide for CC synthesis 

using Bu4NBr and ZnBr2 is well-known from previous studies [37-42]. The initiation of 

this reaction is by coordination of the epoxide with ZnBr2 to form the adduct of the 

zinc-epoxide complex (1) (Scheme 5.2). Afterwards, the Bu4NBr cation coordinates with 

the oxygen atom of the coordinated epoxide, which then enhances the nucleophilic attack 

of the bromide ion at the less-hindered carbon atom of the epoxide. This results in opening 

of the epoxide ring and generation of an O- species (2). The carbon atom of CO2 is 

partially positive; therefore, this carbon atom is attacked by this newly formed O- to give 

NBu4OCOOCHRCH2Br (3) as the key intermediate; the bond Zn-O breaks then cyclises 

via intermolecular nucleophilic attack (5) to yield the CC and regenerate the catalyst

(Scheme 5.2).
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Scheme 5.2: Proposed mechanism for cyclic carbonate synthesis using Bu4NBr and ZnBr2. R: 
C8H17. Adapted from [37-42, 43].

Homogeneous catalysts such as Bu4NBr are dissolved in a reaction mixture containing 

CCs. Therefore, separation of the catalysts from the reaction mixture may require more 

energy through a purification process [44]. A strategy to improve this is to heterogenise 

Bu4NBr by dispersing it on a support to achieve better separation of the catalyst from the 

reaction products [44].

5.2.2. Cycloaddition of CO2 with the epoxide for cyclic carbonate synthesis using 

supported Bu4NBr catalysts

Bu4NBr was immobilised on supports following the previously reported work in the 

literature, where silica gel was used as a support [44]. In the current work, MgO, 

hydrotalcite and silica gel were used as supports (Table 5.6). Hydrotalcite and MgO have 

been observed to be good catalysts for this reaction as they have more basic sites on their 

surfaces which can help to adsorb CO2 as mentioned in Section 1.5.2 [19, 45]. MgO and 

hydrotalcite were calcined at 400°C, which was observed to be an optimum calcination

temperature [19, 45]. Table 5.6 clearly shows that hydrotalcite and MgO supports were

not active under these conditions and the reason behind this may be that hydrotalcite and 

MgO catalysts usually require a polar organic solvent, high temperature and long reaction 

time in order to produce a good yield of CC [19, 45]. Bu4NBr was dispersed on MgO and 

hydrotalcite supports according to previously reported work [44]. It is clear that fresh 

15% Bu4NBr/MgO and 15% Bu4NBr/hydrotalcite catalysts were active and displayed 

high conversion of 1,2-epoxydecane and selectivity for the CC. However, the reusability 
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study shows that no activity was observed for these catalysts, which suggests all the active 

components leached into the solution in contrast to what was observed in a previous study 

[44]. Further investigation for the cycloaddition of CO2 with 1,2-epoxydecane by using 

high surface area silica-gel as a support for Bu4NBr. Silica gel alone did not show any 

activity for this reaction under these conditions. Again, the fresh 15% Bu4NBr/silica-gel 

catalyst displayed high conversion of 1,2-epoxydecane (97%) and selectivity for the 

cyclic carbonate (97%) at 90°C within 4 h. However, all the active components leached

into the solution, leading to catalyst deactivation.

Table 5.6: Cycloaddition of carbon dioxide with 1,2-epoxydecane using 15% Bu4NBr/support

Catalyst T (°C) Conversion 
(%)

Cyclic 
carbonate 
selectivity (%)

Cyclic 
carbonate 
yield (%)b

Blank 80 0 - 0
MgO 80 2 - 0
15% Bu4NBr/MgO 80 94 92 86

90 95 94 89
15% Bu4NBr/MgO (reused)a 80 3 - 0
Hydrotalcite 80 1 - 0
15% Bu4NBr/ hydrotalcite 80 88 93 82

90 92 93 86
15% Bu4NBr/ hydrotalcite 
(reused)a

90 2 - 0

silica gel 80 1 - 0
15% Bu4NBr/silica gel 80 84 95 80
15% Bu4NBr/silica gel 90 92 94 86
15% Bu4NBr/silica gel 
(0.45 g)

90 95 95 90

15% Bu4NBr/silica gel 
(reused)a

90 3 - 0

Reaction conditions: catalyst (0.3 g), 1,2-epoxydecane (26.88 mmol, 5 mL), 20 bar CO2, reaction time 
4 h, rate of stirring 800 rpm. (a) Reused catalyst: the catalyst was filtered off, then washed with 
acetone (1 L) and then dried in the oven at 110°C for 16 h. (b) Yield obtained by using GC analysis.

From previous results, quaternary ammonium salts are still the best catalyst for 

cycloaddition reactions. However, when immobilising or supporting Bu4NBr on different 

supports (to make heterogeneous catalyst), all the active components leached into the 

solution. Therefore, finding a material which can share the effectiveness of Bu4NBr as 

well as being insoluble in organic solvents would be the perfect solution for the leaching 

problem in the liquid phase. It was reported that polydiallyldimethylammonium halides 

can catalyse the cycloaddition of CO2 with propylene oxide and could be reused 10 times 

without significant loss of activity [46].
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5.2.3. Cycloaddition of CO2 with the epoxide for cyclic carbonate synthesis using 

polydiallyldimethylammonium bromide supported catalysts

In the previous discussion, it was shown that Bu4NBr has been supported on different 

supports to synthesise a heterogeneous catalyst for cyclic carbonate synthesis. However, 

the leaching of the active species still exists with this catalyst. Therefore, using a catalyst 

which can share the effectiveness of quaternary ammonium salts and being insoluble in 

organic substrate is valuable in solving the leaching issue. Polydiallyldimethylammonium 

bromide has these valuable properties [46]. More interestingly, this catalyst is non-toxic 

as it is used for drinking water pre-treatment [47].

5.2.3.1. Catalyst characterisations

The procedure for the preparation of polydiallyldimethylammonium bromide has been 

reported previously [46]. From the N2 adsorption analysis, the surface areas of SiO2 

support alone, and fresh and used PDDA-Br/SiO2 are summarised in Table 5.7. For SiO2

the surface area is 345 m2 g-1, whereas the surface area for 20% PDDA-Br/SiO2 and 

40% PDDA-Br/SiO2 decreased to 185 m2 g-1 and 143 m2 g-1 respectively, which may 

indicate the incorporation of PDDA-Br in the support pores. The surface area for reused 

40% PDDA-Br/SiO2 decreased to 88 m2 g-1, which may result of the adsorption of the 

products on the catalyst surface.

Table 5.7: Nitrogen physisorption analysis of the surface area using BET method for 
Polydiallyldimethylammonium bromide supported on SiO2

XRD patterns for pure silica, 20% PDDA-Br/SiO2, 40% PDDA-Br/SiO2 and pure 

PDDA-Br are shown in Figure 5.1. The main diffraction peaks of PDDA-Br are shown 

in the range 17°-72°. After impregnating PDDA-Br on the SiO2 support with 20% 

loading, the diffraction peaks of PDDA-Br disappear, and a clear peak is only shown 

between 15° and 25°; these reflection patterns can be assigned to the silica. With 

40% PDDA-Br/SiO2, diffraction peaks of PDDA-Br appear slightly at 23°, 27°, 30°, 44°

and 54°.

Catalyst Surface area m2 g-1 
SiO2 345
20% PDDA-Br/SiO2 185
40% PDDA-Br/SiO2 143
Reused 40% PDDA-Br/SiO2 88
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Figure 5.1: XRD patterns for: (a) SiO2 (b) 20% PDDA-Br/SiO2 (c) 40% PDDA-Br/SiO2 (d) pure 
PDDA-Br.

Thermogravimetric analysis was carried out and the results are shown in Figure 5.2. It 

was found that there was around 2% weight loss below 100°C, which may be due to the 

removal of water that was adsorbed on the SiO2 surface. The PDDA-Br/SiO2

decomposition starting temperature was 250°C; this decomposition might be due to the 

gradual degradation of polymeric quaternary ammonium salt, as mentioned in the 

previous study [46]. The degradation increased with increasing temperature. The whole 

decomposition of PDDA-Br/SiO2 catalyst was completed near 900°C and the total weight 

loss was around 36%.
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Figure 5.2: TGA for PDDA-Br/SiO2 catalyst (6.5 mg).

The SEM images (Figure 5.3 and Figure 5.4) show that the surface morphologies of 

undoped silica and fresh 40% PDDA-Br/SiO2 are indistinguishable from each other. 

Figure 5.3: SEM image for: SiO2 support.

55

60

65

70

75

80

85

90

95

100

0 100 200 300 400 500 600 700 800 900 1000

M
as

s (
%

)

Temperature (°C)



107

Figure 5.4: SEM image for: 40% PDDA-Br/SiO2.

5.2.3.2. Cycloaddition of CO2 with 1,2-epoxydecane using PDDA-Br/SiO2 catalysts

The results of cycloaddition of CO2 with 1,2-epoxydecane are summarised in Table 5.8. 

It is clear that in the absence of the catalyst no activity was observed. Furthermore, SiO2

alone did not show any activity for this reaction under these conditions. It was suggested 

that the addition of ZnBr2 plays an important role in enhancing the activity of 

PDDA-Br/SiO2 [46]. ZnBr2 alone results in only 2% conversion of 1,2-epoxydecane 

within a 4 h reaction time. However, the addition of 20% PDDA-Br/SiO2 with ZnBr2

resulted in a significant improvement in the activity, which gave 30% conversion of the 

epoxide and a slight increase in the cyclic carbonate selectivity from 89% to 92% within 

a 4 h run time. Furthermore, the influence of the catalyst loading on the activity of the 

reaction was studied. It was found that a conversion of 30% was achieved with 

20% PDDA-Br/SiO2 and ZnBr2, while a 42% conversion of 1,2-epoxydecane was 

observed when the catalyst loading increased to 40% PDDA-Br/SiO2 within a 4 h 

reaction time. Additionally, the amount of 40% PDDA-Br/SiO2 influenced the 

performance of the reaction. Conversion of 38% was detected when using 0.2 g of 

40% PDDA-Br/SiO2 and ZnBr2, whereas increasing the catalyst mass to 0.3 g and 0.5 g 

resulted in a subsequent increase in the epoxide conversion to 42% and 50% respectively,

and the selectivity in the range 89-94%. The reaction time also increased from 4 to 6 h 

with a 40% PDDA-Br/SiO2 catalyst, to increase the epoxide conversion from 42% to 47% 



108

respectively. Interestingly, a further increase in the reaction time to 16 h showed 

significant conversion of 1,2-epoxydecane of 91% and 97% selectivity for cyclic 

carbonate. This confirms that the conversion of 1,2-epoxydecane is highly 

time-dependent under these conditions.

Table 5.8: Cycloaddition of CO2 with 1,2-epoxydecane using PDDA-Br/SiO2 catalysts

Catalyst Conversion 
(%)

Cyclic carbonate 
selectivity (%)

Cyclic carbonate 
yield (%)c

Blanka 0 0 0
SiO2

a 1 0 0
ZnBr2 2 89 1.8
20% PDDA-Br/SiO2

(0.3 g)
30 92 28

40% PDDA-Br/SiO2
(0.2 g)

38 91 35

40% PDDA-Br/SiO2
(0.3 g)

42 89 37
47a 91a 43
91b 97b 88

40% PDDA-Br/SiO2
(0.5 g)

50 94 47

Reaction conditions: ZnBr2 (0.355 mmol, 0.08 g), 1,2-epoxydecane (26.88 mmol, 5 mL), 90°C, 20 bar 
CO2, reaction time 4 h, rate of stirring 800 rpm. (a) 6 h reaction time (b) 16 h reaction time. (c) Yield 
obtained by using GC analysis. (a) no ZnBr2 was present in the reaction. 

 

5.2.3.3. The reusability of the 40% PDDA-Br/SiO2 catalyst

The recycling of 40% PDDA-Br/SiO2 catalyst was examined. In each cycle, the solid 

catalyst was recovered by filtration, followed by rinsing with acetone (1 L) and then 

drying. The recovered 40% PDDA-Br/SiO2 catalyst was reused in the next reaction and 

the results are summarised in Figure 5.5. A significant decrease was observed in the 

conversion after the first cycle of the reused 40% PDDA-Br/SiO2 from a 42% conversion 

of the fresh catalyst to give a conversion of 25% on the reused catalyst. However, there 

was no obvious effect on the cyclic carbonate selectivity, which remained similar 

(88-89%). The second cycle of cycloaddition of CO2 with 1,2-epoxydecane displayed a 

slight decrease in the epoxide conversion from 25% to 20% as well as some decrease in 

the cyclic carbonate selectivity. Furthermore, the third cycle of this catalyst showed a 

small decrease in the epoxide conversion to 16%, whereas the cyclic carbonate was still 

the same value around 80%.
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Figure 5.5: The reusability of the 40% PDDA-Br/SiO2 catalyst. Reaction conditions: 
40% PDDA-Br/SiO2 (0.3 g), ZnBr2 (0.355 mmol, 0.08 g), 1,2-epoxydecane (26.88 mmol, 5 mL), 
90°C, 20 bar CO2, reaction time 4 h, rate of stirring 800 rpm. Error bars indicate range of data 

based on three repeat experiments.

A similar observation of the reusability of the 40% PDDA-Br/SiO2 catalyst was found, 

with an increase in the catalyst mass to 0.5 g instead of 0.3 g (Figure 5.6). Again, the first 

used cycle displayed a notable decrease in epoxide conversion from 50% with fresh 

40% PDDA-Br/SiO2 catalyst to 30% with the reused one. Furthermore, there was a drop 

in the cyclic carbonate selectivity from 94% to 87% respectively. A small drop was shown 

in the epoxide conversion and cyclic carbonate selectivity with the second cycle from 

30% to 25% and from 87% to 83% respectively. The decrease in the reused catalyst 

activity may result of the adsorption of the products and remaining substrate on the 

catalyst surface, which may have blocked the active sites of the catalyst.
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Figure 5.6: The reusability of the 40% PDDA-Br/SiO2 catalyst. Reaction conditions: 
40% PDDA-Br/SiO2 (0.5 g), ZnBr2 (0.355 mmol, 0.08 g), 1,2-epoxydecane (26.88 mmol, 5 mL), 
90°C, 20 bar CO2, reaction time 4 h, rate of stirring 800 rpm. Error bars indicate range of data 

based on three repeat experiments.

A filtration experiment could allow us to draw conclusions about the nature of the 

40% PDDA-Br/SiO2 catalyst in this reaction whether it is acting as a homogeneous or 

heterogeneous catalyst or a combination of both. Filtration tests were conducted after 

running for 2 h reaction time, which ended up with 20% epoxide conversion. Then 

filtering the solid 40% PDDA-Br/SiO2 catalysts, then continuing to either 4 h or 16 h 

reaction times. Comparing the standard reaction within a 4 h reaction time with the 

filtered one at the same reaction time (4 h), it can be seen in Figure 5.7 that the reaction 

proceeds after catalyst removal, but with a significantly reduced conversion of the 

epoxide from 42% of the standard reaction to 25% with an after-filtration reaction. A 

similar observation was made when comparing the 16 h standard reaction with the filtered 

one, a conversion of 91% for the standard reaction, while a 16 h reaction after filtration 

of solid 40% PDDA-Br/SiO2 gave 37% conversion of 1,2-epoxydecane. Therefore, the 

main catalytic route is heterogeneous with significant contribution from homogeneous 

catalysis.
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Figure 5.7: Heterogeneous versus homogeneous 40% PDDA-Br/SiO2 catalyst. Reaction conditions: 
40% PDDA-Br/SiO2 (0.3 g), ZnBr2 (0.355 mmol, 0.08 g), 1,2-epoxydecane (26.88 mmol, 5 mL), 

90°C, 20 bar CO2, rate of stirring 800 rpm. Error bars indicate range of data based on three repeat 
experiments.

5.2.4. Cycloaddition of CO2 with the epoxide for cyclic carbonate synthesis using 

imidazole supported on SiO2 (Imid/SiO2)

It was reported that imidazolium-based ionic liquids are active catalysts for cyclic 

carbonate synthesis [23, 48-50]. In a previous study [23], a supported imidazole catalyst

was used as a heterogeneous catalyst for cycloaddition reaction. It was proposed that this 

catalyst has many advantages over the supported ionic liquid based catalysts, as it is

effective in producing cyclic carbonate under solvent-free conditions, easy to synthesise 

and cost effective. Therefore, supported imidazole catalyst (Imid/SiO2) was prepared 

according to the previous work [23]. For the cycloaddition of CO2 with 1,2-epoxydecane 

using Imid/SiO2, the effect of various reaction parameters such as reaction time and 

catalyst mass were investigated. The aim was to determine the conditions which give the 

highest conversion of the epoxide and cyclic carbonate selectivity. From Table 5.9 it can 

be seen that the amount of Imid/SiO2 catalyst influences the performance of the reaction. 

Increasing the catalyst mass from 0.1 g to 0.4 g resulted in an increase in the epoxide 

conversion from 5% to 17% respectively and the selectivity for cyclic carbonate in the 

range 86-90%. The remaining products such as 1,2-decanediol were formed by opening 

the epoxide ring.
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Table 5.9: Effect of the catalyst mass on cycloaddition of CO2 with 1,2-epoxydecane

Catalyst mass (g) Conversion (%) Cyclic carbonate 
selectivity (%)

Cyclic carbonate 
yield (%)a

0.1 5 86 4.3
0.2 8 88 7
0.4 17 90 15.3

Reaction conditions: 1,2-epoxydecane (26.88 mmol, 5 mL), 90°C, 20 bar CO2, reaction time 4 h, rate 
of stirring 800 rpm. (a) Yield obtained by using GC analysis.

The influence of the reaction time on the conversion and cyclic carbonate selectivity was 

studied and the results are tabulated in Table 5.10. At a 4 h reaction time, a 17% 

conversion was recorded; when the reaction time was prolonged to 16 and 24 h, the 

conversion significantly increased to 58% and 67% respectively. The reusability of 

Imid/SiO2 was demonstrated as follows: the Imid/SiO2 catalyst was recovered by 

filtration, then washed with CH2Cl2 to remove any adsorbed material from products and 

remaining substrate. It was then dried in the oven at 110°C for 16 h. The conversion of 

1,2-epoxydecane with reused Imid/SiO2 showed a significant drop from 67% to 30% 

within a 24 h reaction time. However, the cyclic carbonate selectivity remained almost 

the same at 94-95%, as shown in Table 5.10.

Table 5.10: Effect of the reaction time and reusability study

Reaction conditions: Imid/SiO2 (0.4 g), 1,2-epoxydecane (26.88 mmol, 5 mL), 90°C, 20 bar CO2, rate 
of stirring 800 rpm. (a) Yield obtained by using GC analysis.

A filtration experiment was used to determine the nature of the Imid/SiO2 catalyst in this 

reaction, whether it was acting as a homogeneous or heterogeneous catalyst or a 

combination of both. Filtration tests were conducted after running the normal 4 h reaction 

time, which ended with a 17% epoxide conversion; the catalyst was filtered off after 4 h 

reaction time and then the reaction was run for another 12 h, as shown in Figure 5.8. 

Comparing the 16 h standard reaction with the filtered one at the same reaction time 

(16 h), it can be seen in Figure 5.8 that the reaction proceeds after catalyst removal, but 

with some reduced conversion of the epoxide from 58% of the standard reaction to 35% 

for after-filtration reaction. Therefore, the catalytic route is heterogeneous and 

homogeneous.

Reaction time 
(hour)

Conversion 
(%)

Cyclic carbonate 
selectivity (%)

Cyclic carbonate 
yield (%)a

4 17 90 15.3
16 58 98 57
24 67 95 64
24 Reused catalyst 30 94 28
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Figure 5.8: Heterogeneous versus homogeneous Imid/SiO2 catalyst. Reaction conditions: Imid/SiO2

(0.4 g), 1,2-epoxydecane (26.88 mmol, 5 mL), 90°C, 20 bar CO2, rate of stirring 800 rpm. Error bars 
indicate range of data based on three repeat experiments.

It was proposed that the Lewis base site in imidazole has a major role in catalytic activity 

[23] (Scheme 5.3). As N in the imidazole-supported catalyst has a pair of electrons (Lewis 

base), it can activate the 1,2-epoxydecane ring through the less hindered carbon, which

results in opening of the epoxide ring and generation of an O- species. The carbon atom 

of CO2 is partially positive; therefore, this carbon atom is attacked by this newly formed 

O-. The bond N-C breaks then cyclises to yield the CC and regenerate the catalyst. The 

OH groups of the silica support could play an encouraging role in this cycloaddition 

reaction, which could act in tandem with the Lewis base sites in imidazole for catalysing

this cycloaddition reaction [23].
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Scheme 5.3: Proposed mechanism of cycloaddition of CO2 with epoxide on the surface of Imid/SiO2. 
Adapted from [23].

The next step before the oxidative carboxylation of 1-decene is the investigation the effect 

of Bu4NBr and ZnBr2, 40% PDDA-Br/SiO2 or Imid/SiO2 on the epoxidation of 1-decene 

as well as studying the effect of supported gold catalysts on the cycloaddition of CO2 with

1,2-epoxydecane.

5.2.5. Epoxidation of 1-decene in the presence of Bu4NBr and ZnBr2

The epoxidation of 1-decene was carried out in the presence of Bu4NBr and ZnBr2 using 

supported gold catalysts and a small amount of AIBN and the results are tabulated in 

Tables 5.11 and 5.12 respectively. It was found that adding Bu4NBr markedly reduced 

the selectivity of the epoxide from 19% to 2% when using 1% Au/SiO2 as catalyst under 

15 bar of O2. There was at the same time also an increase in the diol selectivity from 2% 

to 7%; furthermore, trace amounts of epoxide ring opening products such as 

bromoalcohol were detected in addition to a slight increase in the selectivity for some of 

the normal products such as alcohols from 1-decene oxidation reaction. Furthermore, as 

shown in Table 5.12, similar observations were found, the presence of Bu4NBr in the 

epoxidation reaction results in a significant decrease in the epoxide selectivity from 34% 

to 9% when using 1% Au/SiO2 as catalyst and from 34% to 12% when using1% Au/TiO2

under atmospheric pressure of air. These observations suggest that Bu4NBr and ZnBr2

have a negative effect on the epoxidation reaction (they open the epoxide ring). These 

results are in contrast to a previous study for direct synthesis of cyclic carbonate from 

styrene [29]. They observed that the addition of Bu4NBr and ZnBr2 did not have any 

negative effect on the epoxide production during the epoxidation reaction, as mentioned 

in Section 1.5.3.
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Table 5.11: Effect of Bu4NBr and ZnBr2 on 1-decene epoxidation step under 15 bar O2

Catalyst Co-catalyst 1-Decene 
conversion 
(%)

Selectivity (%)

Epoxide Allylic 
products

Diol Others

Blank - 22 17 28 0 40
1% Au/SiO2 - 24 19 24 2 41
1% Au/SiO2 Bu4NBr (1.24 mmol, 

0.4 g)
+ ZnBr2 (0.71 mmol, 
0.16 g)

21 2 26 7 55

Reaction conditions: 1% Au/SiO2 (0.1 g), 1-decene (53 mmol, 10 mL), AIBN (0.036 mmol, 6 mg), 
90°C, 15 bar O2, reaction time 24 h, rate of stirring 800 rpm. Allylic products=∑ (1-decen-3-one, 
1-decen-3-ol, 2-decenal, 2-decen-1-ol). Others=∑ (C7+C8+C9 acids, C8+C9 aldehyde, C7+C8 alcohols, 
3-nonen-1-ol, 3-nonanone, cyclododecane, 2-decenoic acid, epoxide ring opening products such as 
bromoalcohol).

Table 5.12: Effect of Bu4NBr and ZnBr2 on 1-decene epoxidation step under atmospheric pressure of 
air

Catalyst Co-catalyst 1-Decene 
conversion 
(%)

Selectivity (%)

Epoxide Allylic 
products

Diol Others

Blank -
1% Au/SiO2 - 13 34 28 1 27
1% Au/SiO2 Bu4NBr (1.24 mmol, 0.4 g)

+ ZnBr2 (0.71 mmol, 0.16 g)
10 9 32 7 39

1% Au/TiO2 - 13 34 30 2 24
1% Au/TiO2 Bu4NBr (1.24 mmol, 0.4 g)

+ZnBr2 (0.71 mmol, 0.16 g)
10 12 32 6 44

Reaction conditions: catalyst (0.1 g), 1-decene (53 mmol, 10 mL), AIBN (0.036 mmol, 6 mg), 90°C, 
atmospheric pressure air, reaction time 24 h, rate of stirring 800 rpm. Allylic products=∑ 
(1-decen-3-one, 1-decen-3-ol, 2-decenal, 2-decen-1-ol). Others=∑ (C7+C8+C9 acids, C8+C9 aldehyde, 
C7+C8 alcohols, 3-nonen-1-ol, 3-nonanone, cyclododecane, 2-decenoic acid, epoxide ring opening 
products such as bromoalcohol).

In a time online study, the epoxidation of 1-decene in the presence of Bu4NBr and ZnBr2

was investigated under atmospheric pressure of air to see whether there was any effect on 

the epoxidation mechanism. It was shown in Chapter 4 that during the oxidation of 

1-decene, allylic products such as 1-decen-3-one, 1-decen-3-ol, 2-decenal and 

2-decen-1-ol are the predominant products at the beginning of the reaction, and lower 

selectivity for the epoxide was detected. Then, the epoxide selectivity gradually increased 

with the reaction time and was accompanied by a significant decrease in allylic products 

selectivity. Compared with the previous standard reaction (without addition of Bu4NBr 

and ZnBr2) as shown in Figure 5.9, it is shown in Figure 5.10 that in the presence of 

Bu4NBr and ZnBr2, the epoxide selectivity was significantly reduced, whereas there was 



116

an increase in the diol concentration with the increase in the reaction time. Moreover, 

with the increase in the reaction time, there was a small increase in the selectivity of the 

normal products from the 1-decene oxidation reaction, such as alcohols and ketone, in 

addition to the slight increase in the selectivity for trace amounts of epoxide ring opening 

products such as bromoalcohol.

Figure 5.9: Time online study for epoxidation of 1-decene using 1% Au/TiO2 catalyst. Reaction 
conditions: 1% Au/TiO2 (0.1 g), 1-decene (53 mmol, 10 mL), AIBN (0.036 mmol, 6 mg), 90°C, 

atmospheric pressure air, rate of stirring 800 rpm. Allylic products=∑ (1-decen-3-one, 1-decen-3-ol, 
2-decenal, 2-decen-1-ol). Others=∑ (C7+C8+C9 acids, C8+C9 aldehyde, C7+C8 alcohols, 3-nonen-1-ol, 

3-nonanone, cyclododecane, 2-decenoic acid). Error bars indicate range of data based on three 
repeat experiments.
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Figure 5.10: Time online study for epoxidation of 1-decene in the presence of Bu4NBr and ZnBr2. 
Reaction conditions: 1% Au/TiO2 (0.1 g), 1-decene (53 mmol, 10 mL), AIBN (0.036 mmol, 6 mg), 

Bu4NBr (1.24 mmol, 0.4 g), ZnBr2 (0.71 mmol, 0.16 g), 90°C, atmospheric pressure air, rate of 
stirring 800 rpm. Allylic products=∑ (1-decen-3-one, 1-decen-3-ol, 2-decenal, 2-decen-1-ol). 

Others=∑ (C7+C8+C9 acids, C8+C9 aldehyde, C7+C8 alcohols, 3-nonen-1-ol, 3-nonanone,
cyclododecane, 2-decenoic acid, epoxide ring opening products). Error bars indicate range of data 

based on three repeat experiments.

5.2.6. Epoxidation of 1-decene in the presence of 40% PDDA-Br/SiO2

Studying the compatibility between the catalysts for epoxidation and cycloaddition steps 

before coupling them in a one-pot reaction is an essential process. Therefore, the 

epoxidation of 1-decene reaction was carried out in the presence of 40% PDDA-Br/SiO2

using 1% Au/TiO2 and a small amount of AIBN at 90°C for 24 h under atmospheric 

pressure of air. A similar effect of Bu4NBr was found with 40% PDDA-Br/SiO2 towards 

the epoxidation of 1-decene. From Table 5.13 it can be seen that in the presence of 

40% PDDA-Br/SiO2 there was a significant decrease in the epoxide selectivity from 34% 

to 8% with a slight decrease in the conversion of 1-decene from 13% to 11%. The 

presence of 40% PDDA-Br/SiO2 resulted in opening the formed epoxide ring, which led

to increasing the 1,2-decanediol selectivity from 2% to 6% and some increase in 

selectivity to alcohol products.
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Table 5.13: Study the effect of 40% PDDA-Br/SiO2 on 1-decene epoxidation step

Reaction conditions: 1% Au/TiO2 (0.1 g), 1-decene (53 mmol, 10 mL), AIBN (0.036 mmol, 6 mg), 
40% PDDA-Br/SiO2 (0.3 g), ZnBr2 (0.71 mmol, 0.16 g), 90°C, atmospheric pressure air, reaction time 
24 h, rate of stirring 800 rpm. Allylic products=∑ (1-decen-3-one, 1-decen-3-ol, 2-decenal, 
2-decen-1-ol). Others=∑ (C7+C8+C9 acids, C8+C9 aldehyde, C7+C8 alcohols, 3-nonen-1-ol, 
3-nonanone, cyclododecane, 2-decenoic acid, epoxide ring opening product such as bromoalcohol).

Again, to gain more details about the reaction, a time online study for epoxidation of 

1-decene in the presence of 40% PDDA-Br/SiO2 was completed. It is shown in Figure 

5.11 that with increased reaction time, the epoxide selectivity slightly increased in parallel 

with increased selectivity for the diol, which is in contrast to the standard reaction (Figure 

5.9), where the selectivity for the epoxide significantly increases with an increase in the 

reaction time and very low selectivity for the diol was detected. Furthermore, from Figure 

5.11 it can be seen that there was an increase in other products such as alcohols and 

products from the epoxide ring opening.

Figure 5.11: Time online study for epoxidation of 1-decene in the presence of 40% PDDA-Br/SiO2

catalyst. Reaction conditions: 1% Au/TiO2 (0.1 g), 1-decene (53 mmol, 10 mL), AIBN (0.036 mmol, 
6 mg), 40% PDDA-Br/SiO2 (0.3 g), ZnBr2 (0.71 mmol, 0.16 g), 90°C, atmospheric pressure air, rate 

of stirring 800 rpm. Allylic products=∑ (1-decen-3-one, 1-decen-3-ol, 2-decenal, 2-decen-1-ol). 
Others=∑ (C7+C8+C9 acids, C8+C9 aldehyde, C7+C8 alcohols, 3-nonen-1-ol, 3-nonanone,

cyclododecane, 2-decenoic acid, bromoalcohol). Error bars indicate range of data based on three
repeat experiments.
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Catalysts Conversion 
(%)

Selectivity (%)
Epoxide Allylic 

products
Diol Others

1% Au/TiO2 13 34 30 2 24
1% Au/TiO2
+ 40% PDDA-Br/SiO2

11 8 32 6 40
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5.2.7. Epoxidation of 1-decene in the presence of Imid/SiO2

The epoxidation of 1-decene reaction was carried out in the presence of Imid/SiO2 using 

1% Au/TiO2 or 1% Au/SiO2 and a small amount of AIBN at 90°C for 24 h under 

atmospheric pressure of air (Table 5.14). When using 1% Au/TiO2 and 0.2 g of 

Imid/SiO2, the conversion of 1-decene decreased slightly from 13% to 8%, as well as 

reducing the epoxide selectivity from 34% to 22%. A further increase in the amount of

Imid/SiO2 to 0.4 g resulted in a further reduction in conversion to 5% and epoxide 

selectivity to 9%. A similar observation was found with 1% Au/SiO2 in the presence of 

Imid/SiO2 where the conversion reduced from 13% to 7% and epoxide selectivity 

decreased from 34% to 22%, as shown in Table 5.14. These observations suggest that 

Imid/SiO2 had a negative effect on the epoxidation reaction.

Table 5.14: Study the effect of Imid/SiO2 on 1-decene epoxidation step

Catalyst Conversion 
(%)

Selectivity (%)
Epoxide Allylic 

products
Diol Others

1% Au/TiO2 13 34 30 2 24
1% Au/TiO2+Imid/SiO2 (0.2 g) 8 22 33 4 30
1%Au/TiO2+ Imid/SiO2 (0.4 g) 5 9 35 6 35
1% Au/SiO2 13 34 28 1 27
1% Au/SiO2+ Imid/SiO2 (0.2 g) 7 22 34 4 33

Reaction conditions: 1% Au/support (0.1 g), 1-decene (53 mmol, 10 mL), AIBN (0.036 mmol, 6 mg), 
90°C, reaction time 24 h, atmospheric pressure air, rate of stirring 800 rpm. Allylic 
products=∑ (1-decen-3-one, 1-decen-3-ol, 2-decenal, 2-decen-1-ol). Others=∑ (C7+C8+C9 acids, 
C8+C9 aldehyde, C7+C8 alcohols, 3-nonen-1-ol, 3-nonanone, cyclododecane, 2-decenoic acid, epoxide 
ring opening products).

Therefore, as seen in the previous results, the combination of the supported gold catalysts 

with any catalysts for the cycloaddition step under epoxidation conditions gave only small 

amounts of the epoxide.

5.2.8. Cycloaddition of CO2 with 1,2-epoxydecane in the presence of supported gold 

catalysts

As mentioned earlier, it is important to study the compatibility between the catalysts for 

the epoxidation and cycloaddition steps before coupling them in a one-pot reaction;

therefore, the cycloaddition of CO2 with 1,2-epoxydecane reaction was conducted in the 

presence of 1% Au/G, 1% Au/hydrotalcite, 1% Au/MgO, 1% Au/TiO2 and 1% Au/SiO2,

as shown in Table 5.15. It can be seen that supported gold catalysts were not active during 

CO2 cycloaddition with epoxide. Furthermore, the presence of the supported gold 

catalysts had no influence on the catalytic performance of Bu4NBr in the cycloaddition 

of CO2 with 1,2-epoxydecane oxide (Table 5.15).
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Table 5.15: Cycloaddition of carbon dioxide with 1,2-epoxydecane using different catalysts: activity 

data

Reaction conditions: catalyst (0.2 g), 1,2-epoxydecane (26.88 mmol, 5 mL), 20 bar CO2, rate of 
stirring 800 rpm.

5.2.9. Direct synthesis of cyclic carbonate starting from 1-decene

Despite the usefulness and interest in direct synthesis of cyclic carbonate from alkene, 

few studies have been published in the literature. The reason might be the need for 

compatibility between general conditions, components and catalysts for both reactions. 

The epoxidation and cycloaddition reactions were investigated separately to find the 

optimum reaction conditions for the one-pot system. From the previous results, it was 

found that Bu4NBr and ZnBr2 have a negative effect on the epoxide selectivity. Therefore, 

the one-pot synthesis of cyclic carbonate from 1-decene, O2 and CO2 using 

1% Au/support-Bu4NBr/ZnBr2 catalysts was carried out, employing the one pot multistep 

process (sequential oxidation and carboxylation) as well as the one-pot process 

(simultaneous oxidation and carboxylation). The results are summarised in Table 5.16. 

For the direct synthesis of cyclic carbonate in the one-pot (simultaneous oxidation and 

carboxylation), 1% Au/support, a small amount of AIBN, Bu4NBr-ZnBr2, 1-decene, O2

and CO2 were added into the same reactor at the same time. From Table 5.16 it can be 

seen that the selectivity for cyclic carbonate is sensitive to the reaction temperature and 

time. At 80°C, when using 0.2 g of Bu4NBr and 0.08 g ZnBr2, only around 3% selectivity 

for cyclic carbonate was observed with reduced epoxide selectivity. However, a further 

Catalyst T (°C) Time 
(hour)

Conversion 
(%)

Cyclic carbonate 
selectivity (%)

Blank 80 4 0 0
Hydrotalcite 80 4 1 0
1% Au/hydrotalcite 80 4 1.9 2.1
MgO 80 4 2 0
1% Au/MgO 80 4 2 2.5
Graphite 80 4 0 0
1% Au/G 80 4 1 0

TiO2 90 4 0 0
1% Au/TiO2 90 4 1 0
SiO2 90 4 0 0
1% Au/SiO2 90 4 1 0
Bu4NBr (0.62 mmol, 0.2 g) + 
ZnBr2 (0.335 mmol, 0.08 g)

80 4 98 98

1% Au/SiO2+
Bu4NBr (0.62 mmol, 0.2 g) + 
ZnBr2 (0.335 mmol, 0.08 g)

80 4 98 98

1% Au/TiO2+ 
Bu4NBr (0.62 mmol, 0.2 g) + 
ZnBr2 (0.335 mmol, 0.08 g)

80 4 98 97
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increase in the temperature to 90°C and in the amount of Bu4NBr and ZnBr2 to 0.4 g and 

0.16 g respectively led to a further increase in the conversion of 1-decene from 14% to 

18% as well as an increase in carbonate selectivity from 3% to 8% with a concomitant

decrease in epoxide selectivity (Table 5.16). Further increasing in the reaction time led to 

a slight increase in 1-decene conversion to 20% but had no notable effect on the cyclic 

carbonate selectivity. The remaining products observed beside cyclic carbonate are from 

the epoxidation step and a few products from opening the epoxide ring.

Interestingly, higher selectivity of the desired cyclic carbonate product could be achieved 

by changing to a multistep protocol in which CO2, Bu4NBr and ZnBr2 are subsequently 

added into the reactor after the epoxidation of 1-decene is completed. The epoxidation of 

1-decene under atmospheric pressure of air or under 15 bar O2 using 1% Au/SiO2 in the 

absence of CO2 gave 1,2-epoxydecane with a selectivity of 34% and 19% respectively 

(Table 5.16). The formed epoxide was converted to the cyclic carbonate after the addition 

of Bu4NBr and ZnBr2 catalysts and CO2. When the reaction was carried out in the one-pot 

multistep system and epoxidation reaction was carried out under atmospheric pressure of 

air (epoxide selectivity 34%), there was an improvement in the selectivity for cyclic 

carbonate to 24%. Epoxidation of 1-decene under 15 bar O2 became less selective for the 

epoxide (only 19%) and when the reaction was carried out in the one pot multistep system, 

9% selectivity for cyclic carbonate was achieved. Therefore, the one-pot multistep 

process, where the epoxidation reaction carried out under atmospheric pressure of air, 

showed good selectivity for cyclic carbonate. Whenever the yield of 1,2-epoxydecane is 

high, cyclic carbonate is produced under these conditions. As a result, it can be suggested 

that the efficiency of the cyclic carbonate synthesis in an one-pot process would be 

determined mostly by the catalytic performance of the supported gold catalyst. Hence, if 

we find more active and selective catalysts for the 1-decene epoxidation reaction, then it 

will be a more effective catalyst system for the one-pot multistep reaction (sequential 

oxidation and carboxylation). 

A similar observation was also made with 1% Au/TiO2 catalyst; as shown in Table 5.16, 

the epoxide selectivity from epoxidation step was 34%, then after adding the co-catalysts 

and CO2, cyclic carbonate was produced with 22% selectivity.
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Table 5.16: Direct synthesis of cyclic carbonate starting from 1-decene using 1% Au/support-
Bu4NBr/ZnBr2

Reaction starting with 
1-decene

T (°C) 1-Decene 
conversion 
(%)

Selectivity (%)
Epoxide Cyclic 

carbonate
One-pot reaction a, b: 15 bar O2+ 
15 bar CO2 (26 h)

80 14 5 3

90 18 2 8
One pot reaction: 15 bar O2+ 
15 bar CO2 (28 h)

90 20 3 8

One pot multi-step reaction c: 
(epoxidation under 15 bar O2)

90 24 2 (19) e 9

One pot multi-step reaction: 
(epoxidation under atmospheric 
pressure of air)

90 14 3 (34) e 24

One pot multi-step reaction: 
(epoxidation under atmospheric 
pressure of air) d

90 14 3 (34) e 22

Reaction conditions: 1% Au/SiO2 (0.1 g), Bu4NBr (1.24 mmol, 0.4 g), ZnBr2 (0.71 mmol, 0.16 g), 
1-decene (53 mmol, 10 mL), AIBN (0.036 mmol, 6 mg), 24 h reaction time for epoxidation, 4 h 
reaction time for cycloaddition of CO2 with the formed 1,2-epoxydecane, 20 bar CO2 for the one-pot 
multi step, rate of stirring 800 rpm. (a) One pot reaction: 1% Au/SiO2, AIBN, Bu4NBr, 
ZnBr2,1-decene, O2 and CO2 added into the same reactor at the same time. (b) Bu4NBr (0.62 mmol, 
0.2 g), ZnBr2 (0.355 mmol, 0.08 g). (c) One pot multi-step reaction: Bu4NBr, ZnBr2 and CO2 are 
subsequently added into the same reactor after the epoxidation of the 1-decene is completed. (d) 1% 
Au/TiO2 (0.1 g) used instead of 1% Au/SiO2. (e) Selectivity for the epoxide in the epoxidation reaction.

As a result of avoiding interaction between the catalysts themselves for the two steps and 

intermediate product by addition of catalysts at a different stage, the one-pot multistep 

synthetic protocol was viewed as a more attractive and practical route for the oxidative 

carboxylation of 1-decene and CO2 catalysed by 1% Au/support-Bu4NBr/ZnBr2 catalytic 

system. This observation is in agreement with a previous study for direct synthesis of 

cyclic carbonates from 1-octene [30]. They found that the addition of Bu4NBr prevented 

the epoxidation reaction and the expected cyclic carbonate was not obtained. However, a 

very high yield of cyclic carbonate could be achieved by changing the one pot reaction to 

a multistep protocol [30]. 

5.2.10. Proposed mechanism for direct synthesis of cyclic carbonate from 1-decene

The one-pot synthesis of cyclic carbonates through a multistep process is viewed as the 

combination of epoxidation and cycloaddition reactions catalysed by their respective 

catalysts. Therefore, the mechanism of direct synthesis of cyclic carbonate from 1-decene 

over 1% Au/support-Bu4NBr/ZnBr2 catalysts is proposed in Scheme 5.4. The mechanism 

of the epoxidation reaction catalysed by supported gold catalysts was studied previously 

by our group [51] and explained in more detail in Chapters 3. Over a supported gold 
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catalyst in the presence of AIBN as radical initiator, the radical abstracts an allylic

hydrogen atom from the 1-decene molecule and produces the allylic radical (1), which 

further reacts with oxygen to produce peroxy radical (2). This peroxy species reacts with 

1-decene molecule to produce hydroperoxide (3) and one mole of C10 radical (1) again. 

When a supported gold catalyst is present in the reaction mixture, the hydroperoxide thus 

formed completes the reaction to produce allylic and epoxide products via (4) and (5) 

respectively. The formed epoxide coordinates to ZnBr2 to form the adduct of zinc-epoxide 

complex and Bu4NBr cation coordinates with the oxygen atom of the coordinated 

epoxide, which results to open the epoxide ring and generate O- species (7). The carbon 

atom of CO2 is partially positive and the oxygen atoms are partially negative. Therefore, 

the carbon atom of the carbon dioxide is attacked by this newly formed O- to give 

NBu4OCOOCHRCH2Br (9) as the key intermediate. The bond Zn-O breaks then cyclises

to yield the CC and regenerate the catalyst.

Scheme 5.4: Proposed mechanism for direct synthesis of cyclic carbonate from 1-decene. In: radical 
initiator, R: C8H17.

5.3. Cycloaddition of CO2 with cycloalkene oxide
The epoxidation of cycloalkenes was investigated in more detail using supported gold and 

gold–palladium nanoparticles catalysts under solvent-free conditions, using air as the 

oxidant with a small amount of radical initiator [52]. A range of substrates varying the 

size of ring (C5 to C12) was tested and it was found that the selectivity for epoxide

increased with increase in the ring size of cycloalkenes. In order to perform an one pot 

reaction, the cycloaddition of CO2 with cycloalkene oxides reactions have been 

investigated. It has been demonstrated that the cycloaddition of CO2 with various sized 
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cyclic alkene oxides can be completed using Bu4NBr and ZnBr2 without solvent. The 

reactivity of the cyclic alkene oxides is related to the ring size, with the smaller rings 

more reactive than the larger one using the same temperature (90°C). The selectivity for

the cyclic carbonate is dependent on the size of the cyclic alkene oxide ring. In particular, 

the cyclic carbonate selectivity is lower with increasing the ring size of cycloalkene oxide.

The experimental findings of cycloaddition of CO2 with different cycloalkene oxides 

were verified with the DFT calculations as will be explained in the following Section. 

5.3.1. DFT calculations for cycloaddition of CO2 with cycloalkene oxide

The DFT calculations were completed by Luke T. Perrott and Dr. David J. Willock to 

consider the effect of ring size on the production of cyclic carbonate [53]. The reaction 

mechanism followed in the DFT calculations is similar to what was shown in scheme 5.2 

for the incorporation of CO2 into the epoxide catalysed by the quaternary ammonium salt 

and ZnBr2 catalyst system. A [Zn2Br5]- anion is formed when the quaternary ammonium 

salt donates a Br- that connects to one of the Zn centres of a dimer to create an active 

form. The epoxide first coordinates to the [Zn2Br5]− species via a dative bond with a Zn 

Lewis acid centre. The epoxide ring opening then follows the transfer of the bromide ion 

at the less hindered carbon atom of the epoxide. A carbonate intermediate is then formed 

when the CO2 is incorporated, causing the ring to close, forming the cyclic carbonate 

product and regenerating the catalyst. In order to gain computational efficiency, Bu4NBr 

was replaced by Et4NBr as the counter ion and cyclopentene oxide was considered as a 

model reagent. Figure 5.12 shows calculated potential energy for each reaction stage. 

Chemical structure diagrams and atomic coordinates for each structure are shown in the 

Appendix 7.1, which also explained in more detail in our recent publication [53]. It is 

energetically favourable to co-ordinate the cyclopentene oxide to the Zn centre as this 

causes the system’s energy to lower by around 87 kJ mol−1 (Int. 1). High energy 

transition states were found when the cyclopentene oxide ring opened in isolation when 

following the SN1 pathway. The exact energy depends on the orientation of the resulting 

carbocation with respect to the [Zn2Br5]− complex with energies ranging between 38 and 

46 kJ mol−1 higher than the reference state of the isolated reagents (SN1, TS-1t and 

SN1,TS-1b) and 133 kJ mol−1 above the co-ordinated epoxide (Int. 1). With the addition 

of a bridging or a terminal Br- ion, the co-ordination of bromide ion to the three co-

ordinate C atom which is exposed on the epoxide ring opening can occur. Figure 5.12 

utilises ‘t’ and ‘b’ labels to distinguish the terminal or bridging cases. A second barrier at 

65 kJ mol−1 (SN1, TS-1b’) is necessary when a bridging Br- is added along the SN1 
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pathway; however, no such barrier is required with a terminal Br- ion, which leads to 

Int. 2t. Alternatively, the epoxide ring opening from Int. 1 can follow pathways leading 

to transition states for a concerted SN2 type mechanism in which the new C–Br bond is 

formed as the epoxide ring opens and these were found to be noticeably lower in energy. 

Similar to that shown in Figure 5.12, either a terminal or bridging Br- ion can be used to 

promote the bromination of the epoxide carbon atom; however, a terminal Br- ion was 

preferable as this allowed for the generation of a transition state whereby there was a 

simultaneous alignment of the Br- nucleophile with the receiving C atom and stabilisation 

of the epoxide oxygen atom on the Lewis acid Zn centre. As a result, the terminal Br-

structure used in the SN2 step (SN2, TS-1b) generated an energy of −32 kJ mol−1 (SN2, 

TS-1t) relative to the initial reference state whereas a structure with a bridging Br- ion 

generated 18 kJ mol−1. Depending on the formation of the new C-Br bond (either with the 

terminal (Int. 2t) or bridging Br- ion (Int. 2b)), the intermediate formed following the 

bromination of the epoxide resulted in two possible chemical structures.

Four distinct intermediates are shown in Figure 5.12, as the configuration detail is 

dependent on the way the intermediate was formed. Nevertheless, the two intermediates 

with a bridging Br-C bond have a higher energy than those with a terminal Br- ion. All 

four of the calculated structures have been followed the CO2 insertion step. All four cases 

showed a lowering of energy following the initial co-ordination of CO2 to give the Int. 3

structures. Furthermore, relatively low barriers were found for the formation of a C-O 

bond between the C atom of the CO2 and the oxygen atom originating from the epoxide 

(the TS-2 structure set). There was a stabilisation of the transition state through its 

interaction with the Lewis acid catalyst as there was simultaneous coordination of the 

CO2 oxygen atom to the Zn centre during the insertion of the CO2 into the O-Zn bond. As 

a result, the generated structure had a bridging carbonate group between the Zn centre 

and the cyclopentane (Int. 4b and Int. 4t). From this, the Br- anion returned to the 

[ZrBr5]− cluster following ring closure of the cyclic carbonate as a result of the second C-

O bond forming in the cyclic carbonate product. This second C-O bond in the cyclic 

carbonate product had a choice of oxygen atoms. From any of the Int. 4 structures it 

possible to envisage the O atom endocyclic in the intermediate’s metallocycle. This 

means that they will be coordinated to Zn and shift to bond to the C atom. Alternatively, 

if the C-O bond intermediate rotates, exo-cyclic O atom will be utilised for ring closure. 

Figure 5.12 shows this O atom choice with /e being added to the TS3 transition state 

structure to denote exocyclic oxygen and /i to denote endocyclic oxygen. The lowest 
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energy transition state was found when Int. 4t utilised exocyclic oxygen to maintain the 

coordination with the Zn Lewis acid centre in the transition state. This generated an 

energy of −53 kJ mol−1 (TS-3t’/e) when compared to the starting point of the potential

energy diagram in Figure 5.12. There was only a marginally higher energy generated with 

the first endocyclic transition (−49 kJ mol−1); however, this was driven through the SN1 

pathway that has a high initial epoxide ring opening barrier (SN1 TS-1b’). Significantly 

higher barriers were encountered when the intermediates use the Br- bridging ion and/or 

Zn coordinating oxygen for ring closure, therefore suggesting that these pathways are not 

kinetically relevant. The low energy route for the cyclopentene oxide example through 

the potential energy diagram followed the SN2 pathway for the ring opening step and used

a terminal Br- ion and an exo-cyclic oxygen for the ring closure step. This resulted in the 

generation of a cyclic carbonate with a cis-arrangement and alkyl ring structures in the 

product. Alternatively, where high barrier to reaction occurred, the trans-structure was 

found.

Figure 5.12: Calculated pathways for the addition of CO2 with cyclopentene oxide to form a cyclic 
carbonate. Bracketed numbers are energies in kJ mol-1 relative to the starting reagents shown to 

the left.
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5.3.2. Cycloaddition of CO2 with cyclohexene oxide

Extensive studies were published for cyclic carbonate synthesis from epoxide and carbon 

dioxide as a starting material [19,54-56]. The effect of various reaction parameters such 

as reaction temperature, reaction time and catalysts mass on the cycloaddition of carbon 

dioxide with cyclohexene oxide were investigated. The target of studying these factors is 

to determine the most appropriate conditions which give the highest yield of cyclic 

carbonate. From Table 5.17, it is clear that in the absence of Bu4NBr and ZnBr2 no 

reaction occurred at 80°C and at 125°C only a 2% conversion with no observable cyclic 

carbonate product was seen. This confirms the importance of the Bu4NBr and ZnBr2

catalysts to produce cyclic carbonates. In the presence of Bu4NBr and ZnBr2 catalysts, 

36% conversion of cyclohexene oxide and a 91% cyclic carbonate selectivity were found 

at 80°C. Increasing the reaction temperature from 80°C to 90°C resulted in an increase in

the conversion from 36 to 43%. Selectivity for cyclic carbonate is independent of these 

reaction temperatures (80-90°C). A further increase in the reaction temperature to 125°C 

resulted in a conversion of 49% within 4 h. Increasing the reaction temperature from 80 

to 125°C resulted in a similar selectivity for cyclic carbonate in the range (88%-91%). 

Furthermore, the mass of the catalyst also influences the performance of the reaction, as 

shown in Table 5.17. Increasing the catalyst mass of Bu4NBr and ZnBr2 from (0.2 g 

Bu4NBr, 0.08 g ZnBr2) to (0.4 g Bu4NBr, 0.16 g ZnBr2) resulted in an increase in the 

conversion from 43 to 51% respectively at 90°C. Selectivity for cyclic carbonate slightly 

decreased from 90% to 85% under these conditions due to the formation of small amounts 

of epoxide ring opening products. At 125°C when the catalysts mass was increased, a 

significant improvement in the conversion of cyclohexene oxide was observed from 49 

to 80% respectively with a decrease in the cyclic carbonate selectivity from 88% to 83% 

respectively. Therefore, increasing the reaction temperature to 125°C and doubling the 

amount of the catalyst are important factors for increasing the conversion. Furthermore, 

increasing the reaction time from 4 to 8 hour enhanced the conversion from 80 to 89% 

with no significant effect in the cyclic carbonate selectivity (81-83%). When the reaction 

was performed for 16 h, 98% of conversion was observed and the cyclic carbonate 

selectivity slightly dropped to 80% and the formation of small amounts of other 

by-products such as 1,2-cyclohexanediol, 2-cyclohexene-1-ol and

[1,1'-bi(cyclohexylidene)]-2-one was observed.
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Table 5.17: Cycloaddition of CO2 with cyclohexene oxide

Reaction conditions: cyclohexene oxide (49.4 mmol, 5 ml), reaction time 4 h, 20bar CO2, rate of 
stirring 800 rpm. (a) 8 h (b) 16 h. (c) Yield obtained by using GC analysis.

Catalyst T (°C) Conversion 
(%)

Cyclic 
carbonate 
selectivity (%)

Cyclic 
carbonate yield 
(%)c

Blank 80 - - 0

Bu4NBr (0.2 g) + ZnBr2
(0.08 g)

80 36 91 33

90 43 90 39

Bu4NBr (0.4 g) + ZnBr2

(0.16 g)
90 51 85 43

Blank 125 2 - 0

Bu4NBr (0.2 g) + ZnBr2 
(0.08 g)

49 88 43

Bu4NBr (0.4 g) + ZnBr2

(0.16 g)
80 83 66.4

Bu4NBr (0.4 g) + ZnBr2

(0.16 g)
125a 89 81 72

125b 98 80 78.4
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1HNMR characterisation of cis-cyclohexene carbonate is shown in Figure 5.13.
1H NMR (400 MHz, CDCl3) δ 4.34 (dd, 2H, OCH), 1.54 – 1.48 (m, 2H, CH2), 1.45 – 1.40 
(m, 2H, CH2), 1.19 – 1.11 (m, 2H, CH2), 1.05 – 0.97 (m, 2H, CH2) ppm.

Figure 5.13:1H NMR spectrum in CDCl3 of cis-cyclic cyclohexene carbonate.

The by-products can not be identified by NMR but they are detected by GC-MS. The 

spectroscopic data of GC-MS (obtained by Dr. Rebecca Engel) are described in more 

detail in the Appendix 7.2.1.

The overall target of this work is the direct synthesis of cyclic carbonate from 

cyclohexene, which consists of two sequential reaction in which the alkene is first 

oxidised to the epoxide and then the cyclic carbonate is formed by the reaction with CO2. 

These initial reactions show how the cycloaddition of CO2 with cyclohexene oxide can 

be optimised to achieve the highest yield of cyclic carbonate. However, for the 

epoxidation step, earlier work in our group has shown that the epoxidation of cyclohexene 

is not very selective for cyclohexene oxide using atmospheric oxygen with a small amount 

of TBHP as a radical initiator over a supported Au or Au-Pd catalysts [52]. Furthermore, 

it was observed that the higher epoxide selectivity was obtained when larger ring size, 

such as cyclooctene, was used as the substrate in the oxidation step [52]. Therefore, the 

investigation continued using cyclooctene oxide, which was formed in high selectivity in

the epoxidation step.
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5.3.3. Cycloaddition of CO2 with cyclooctene oxide 

Following a similar approach to that employed for cyclohexene oxide, different 

parameters such as reaction temperature and reaction time were investigated in the 

cycloaddition of CO2 with cyclooctene oxide (Table 5.18) to determine the most 

appropriate conditions, which give the best reaction rate. The influence of temperature 

was tested over temperatures ranging from 90 to 150°C. After 4 h of reaction at 90°C no 

conversion of cyclooctene oxide was observed. When the reaction temperature increased 

from 90°C to 130°C, the conversion increased to 3%. However, no cyclic carbonate was 

formed and no consumption of CO2 during the reaction was observed. The product 

identification by GC-MS (Appendix 7.2.2) indicates that cyclooctanone, cycloocatanol, 

and 1,2-cyclooctanediol were the major by-products. Furthermore, small amounts of 

tributylamine, a decomposition product of the quaternary amine catalyst, were found, 

which may indicate reaction with the Bu4N+ cation has taken place. In short reaction time 

of 4 h, alcohols were the predominant products (total selectivity 59%) with low selectivity 

for cyclooctanone (20%). With increasing the reaction time to 24 h at 130°C, there was a 

significant increase in the cyclooctanone selectivity to be 58%. Furthermore, the 

influence of the reaction time on the conversion of cyclooctene oxide was studied at

different temperatures. At 130°C, at 4 h reaction time, 3% conversion was recorded, when 

the reaction time increased to 24 and 48 h, the conversion of 67% and 99% were obtained. 

Noticeably, an increase in the reaction time from 4 to 48 h resulted in an increase in 

selectivity for cyclooctanone from 20% to 61% respectively. Lewis acids are known to 

catalyse the conversion of epoxides to ketones following the Meinwald rearrangement 

mechanism [57]. DFT calculations suggest that this can take place through an H shift in 

intermediates such as Int 2 (Figure 5.12). The results suggest that, under the reaction 

conditions used here, this H shift is considerably faster than CO2 insertion for the 

cyclooctene oxide substrate [53]. In the case of 150°C, at 4 and 8 h reaction time, the 

conversion of cyclooctene oxide was 10% and 22% respectively. When the reaction time 

was prolonged to 16 and 24 h, the conversion significantly increased to 79% and 98% 

respectively. In general, it can be observed that with increase the reaction temperature 

and reaction time, the conversion of cyclooctene oxide increased from 3% to 98%. 

However, no cyclooctene carbonate was observed under any of the conditions used and 

no consumption of CO2 during the reactions was observed. It was found in a previous 

study that the cycloaddition of CO2 with cyclooctene oxide resulted in very low yield of 

cyclic carbonate at 180°C within 8 h using 4-dimetheylaminopyridine and lithium 

chloride as catalysts [33].
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Table 5.18: Cycloaddition of CO2 with cyclooctene oxide

Temperature 
(°C)

Reaction time 
(hour)

Conversion 
(%)

Selectivity (%)

Cyclic 
carbonate

Cyclooctanone

90 4 - - -

130 4 3 - 20

24 67 58

48 99 - 61

150 4 10 29

8 22 - 36

16 79 - 62

24 98 61

Reaction conditions: cyclooctene oxide (39.6 mmol, 5 g), Bu4NBr (1.24 mmol, 0.4 g), ZnBr2

(0.71 mmol, 0.16 g), 20 bar CO2, rate of stirring 800 rpm.

It was reported previously that the role of Bu4NBr and ZnBr2 is to open the epoxide ring 

and then activate CO2 forming linear carbonate intermediate before cyclisation to cyclic 

carbonate [58]. However, in the case of cyclooctene oxide, no reaction occurred with CO2

and that may due to high steric hindrance of cyclooctene oxide. Therefore, cycloaddition

of CO2 with cyclooctene oxide to form cyclic carbonate is challenging, and the structure 

of the cyclooctanone is significantly more stable than the cyclic carbonate.

5.3.4. Cycloaddition of CO2 with different cycloalkene oxides

Cycloaddition of CO2 with cyclohexene oxide and cyclooctene oxide have been studied 

and it was found that a smaller ring size of the cycloalkene oxide converts easily to 

corresponding cyclic carbonate. In order to confirm the observation of the effect of the 

ring size of cycloalkene oxide in this reaction, a range of different cycloalkene oxides 

have been studied. As expected, cycloalkene oxides with smaller ring size such as 

cyclopentene oxide, showed higher selectivity for cyclic carbonate (91%) at 90°C for 4 h 

reaction time. Moreover, a small amount of by-products were detected by GC-MS 

(Appendix 7.2.3) such as cyclopentanone, 1,2-cycopentanediol and 

2-bromocyclopentanol which may result from the conversion of intermediates such as 

Int 2 in Figure 5.12 to alcohols before the Br− anion returned to the catalyst [53]. In the 



132

case of larger ring size cyclododecane oxide, even with increasing the reaction time from 

8 to 16 h, no cyclic carbonate was produced, and cyclododecanone was the main product 

for this reaction (selectivity greater than 95%). This is in line with the cyclooctene oxide 

results. Therefore, it can be demonstrated that with increasing ring size of the cycloalkene 

oxide, the selectivity towards the corresponding cyclic carbonate decreased and from the 

C8 and larger ring size, there is no formation of the cyclic carbonate at all.

Table 5.19: Cycloaddition of CO2 to different cycloalkene oxides

Reaction conditions: cycloalkene oxide (26.0-57.3 mmol, 5 ml), Bu4NBr (1.24 mmol, 0.4 g), ZnBr2

(0.71 mmol, 0.16 g), 20 bar CO2, rate of stirring 800 rpm.

5.4. The oxidative carboxylation of cycloalkenes
The oxidative carboxylation of cycloalkenes is a challenge. From Table 5.20 it can be 

noted that starting with cycloalkenes with smaller ring size, it becomes less selective for

the epoxide [52]. With increasing the ring size, the epoxide selectivity significantly 

increased (C5<C6<C7<<C8) using supported gold and gold-palladium catalysts under 

solvent-free conditions using air as the oxidant [52]. The reason behind this observation 

is that for the cyclopentene system, the barrier to ring closure to form the cyclopentene 

oxide was 13 kJ mol-1 higher than that for the cyclooctene case [52]. However, regarding 

the cycloaddition of CO2 with a range of different cycloalkene oxides, it was found the 

opposite trend to that in the epoxidation step as shown in Table 5.20. Cyclopentene oxide 

and cyclohexene oxide have given high selectivity for the cyclic carbonate. However, the 

insertion of CO2 in carbonylation of cyclooctene oxide and cyclododecane oxide to form 

cyclic carbonates is a challenging step, and the structure of ketone is significantly more 

stable than cyclic carbonate due to the steric hindrance. This suggests that the direct 

conversion of cycloalkenes to cyclic carbonates is probably only possible for 

cycloalkenes with a ring size below 8 under these reaction conditions.

Substrate T (ºC) Reaction 
time (hour)

Conversion 
(%)

Cyclic 
carbonate 
Selectivity 
(%)

Cyclic 
carbonate 
yield (%)

Cyclopentene oxide 90 4 58 91 53

Cyclohexene oxide 125 4 80 83 66.4

Cyclooctene oxide 150 8 22 - 0

Cyclododecane 
oxide

150 8 13 - 0

16 48 - 0
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Table 5.20: Epoxidation/Carboxylation of different cycloalkenes/cycloalkene oxides

Alkene/Epoxide Catalyst Reaction 
time (h)

T (°C) Conversion 
(%)

Selectivity (%)
Epoxide Cyclic 

carbonate
Cyclopentene 1% Au/G 24 30 8.3 10.9 -

Cyclohexene 60 11.6 5.9 -

Cyclooctene 80 6.8 86 -

Cyclododecene 120 10.2 60.5 -

Cyclopentene 
Oxide

Bu4NBr (0.4 g) 
+ZnBr2(0.16 g)

4 4 58 - 91

Cyclohexene 
oxide

16 125 98 - 80

Cyclooctene 
oxide

16 150 79 - 0

Cyclododecane 
oxide

16 150 48 - 0

5.5. Conclusions 
Oxidative carboxylation of olefins is a remarkably economical method because of the use 

of low-priced olefins as starting materials as well as minimising the use of chemicals, 

waste production and processing time. The oxidative carboxylation process consists of a 

combination of two sequential reactions: epoxidation of the olefin, and then the 

cycloaddition reaction of CO2 to form epoxide in an one-pot reaction to produce cyclic 

carbonate. Cycloaddition of CO2 with 1,2-epoxydecane was studied under solvent-free 

conditions using different homogeneous and heterogeneous catalysts. Bu4NBr is the most 

active quaternary ammonium salts for cyclic carbonate synthesis from epoxides and 

carbon dioxide. High cyclic carbonate selectivity was achieved even in a short reaction 

time of 4 h at 80°C using 20 bar CO2 under solvent-free conditions (as mentioned in Table 

5.1). Different linear terminal epoxides have been easily converted to their corresponding 

cyclic carbonate under these conditions using Bu4NBr and ZnBr2 as catalysts (as shown 

in Table 5.5). When immobilising Bu4NBr on different supports to synthesise 

heterogeneous catalysts, all the active components leached into the solution leading to the 

catalyst deactivation. The polydiallyldimethylammonium bromide supported catalysts 

were tested for this reaction as it was reported to share the effectiveness of Bu4NBr. This 

catalyst could be recovered by simple centrifugation after the reaction. Increasing the 
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catalysts mass and reaction time resulted increasing the conversion of the epoxide. 

40% PDDABr/SiO2 can be reused with some decrease in the activity (as mentioned in 

Figure 5.5 and Figure 5.6). Imidazole supported onto silica has shown to be an effective 

catalyst for the cycloaddition of CO2 with 1,2-epoxydecane to form cyclic carbonate 

under solvent-free conditions and the catalytic route is heterogeneous with some 

contribution from homogeneous catalysis.

The epoxidation of 1-decene reaction was conducted in the presence of Bu4NBr, 

40% PDDABr/SiO2 or imidazole supported catalysts. The presence of these catalysts in 

the epoxidation reaction resulted in significant reduction in the selectivity for the epoxide. 

Furthermore, there was no effect from supported gold catalysts on the cycloaddition of 

CO2 with 1,2-epoxydecane (as mentioned in Table 5.15). A simple and highly efficient 

preparation of cyclic carbonates was achieved by the use of

1%Au/support-Bu4NBr/ZnBr2 catalysts through a one-pot multistep process (sequential 

oxidation and carboxylation) as shown in Table 5.16.

The oxidative carboxylation process for a range of different cycloalkenes posed a 

challenge. Smaller ring size such as cyclopentene become less selective to the epoxidation 

and with an increase in the ring size, the epoxide selectivity significantly increased 

(C5<C6<C7<<C8). However, regarding the cycloaddition step, the opposite trend was 

found. Cyclopentene oxide and cyclohexene oxide gave high selectivity for cyclic 

carbonate. However, the cycloaddition of CO2 with cyclooctene oxide and cyclododecane 

oxide to form cyclic carbonate was a challenging step and the structure of ketone is 

significantly more stable than cyclic carbonate due to the steric hindrance.
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Chapter 6: Conclusions and future work
6.1. Conclusions
Carbon dioxide utilisation technology can contribute to reducing the CO2 level by using 

carbon dioxide as a starting material and transforming it into valuable chemicals such as 

cyclic carbonates (CCs) [1, 2]. Cyclic carbonates are usually prepared via the 

cycloaddition reaction of CO2 with an epoxide. Cyclic carbonates can be produced 

directly from CO2 and olefins, which has been shown to be a remarkably economical 

method because of the use of low-priced olefins as starting materials and minimisation of 

the use of chemicals, waste production and processing time [3].

The one-pot synthesis of cyclic carbonate from olefin and CO2 consists of two sequential 

reactions in one pot: epoxidation of the olefin, and the subsequent cycloaddition reaction 

of CO2 to the formed epoxide. To obtain information about the roles of the catalyst 

components, epoxidation of 1-decene (first step) and the cycloaddition of CO2 with 

1,2-epoxydecane (second step) were conducted individually. In all of these studies, the 

reactions were carried out under solvent-free conditions. Therefore, this thesis was 

divided into different parts. 

In Chapter 3, the liquid phase epoxidation of 1-decene using supported cobalt catalysts 

was reported. It was shown that supported cobalt catalysts are active in the epoxidation 

of 1-decene under solvent-free conditions in the presence of TBHP as a radical initiator 

and oxygen from air as the primary oxidant at 80°C. An investigation was conducted to 

determine how 1-decene oxidation was affected by the reaction temperature in the 

absence of both the radical initiator and the catalyst. The results indicated that 1-decene 

oxidation commenced instantly at a temperature of 110°C, whereas it did not commence 

when the temperature was lower than 100°C. The effect of the choice of radical initiator 

on the oxidation of 1-decene in the absence of a catalyst was then studied. TBHP 

exhibited the lowest activity at 80°C when compared to the other radical initiators (CHP, 

AIBN). Therefore, we decided to perform further studies using this particular initiator. A 

number of catalysts with cobalt loading from 0.5 to 10% were prepared and tested for 

1-decene epoxidation and 2% Co/MgO was found to give the highest epoxide yield. 

Catalyst activity and stability are depending on the properties of the support. The most 

active and stable catalyst was found to be 2% Co/TiO2. At the start of the reaction with 

reduced epoxide selectivity, the main products were allylic products (e.g. 1-decen-3-one, 

1-decen-3-ol, 2-decenal, and 2-decen-1-ol). As the reaction time increased, the epoxide 
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selectivity improved, while the allylic products displayed a considerable reduction in 

selectivity. In the absence of TBHP and presence of the 2% Co/MgO catalyst, traces of 

the conversion were observed, which indicates the importance of the radical initiator in 

this reaction. Using 2,6-di-tert-butyl-4-methylphenol (BHT) as a radical scavenger leads 

to the termination of the reaction. This suggests free radicals are involved in the catalytic 

cycle in the liquid phase epoxidation of 1-decene. FTIR and XPS indicated the adsorption 

of products on the used catalyst surface resulting in decreased catalyst activity.

In Chapter 4, 1-decene epoxidation was performed over supported gold catalysts in the 

presence of a very small amount of radical initiator (AIBN, 6 mg) under mild, solvent-free 

conditions using oxygen as the oxidant. Oxidation did not occur in the absence of the

radical initiators. Supported gold catalysts prepared by the sol-immobilisation method, 

which produced small particles of Au in the range 3–4 nm, displayed the highest activity 

and selectivity for the epoxide. The effect of O2 pressure was studied and it was found 

that as the O2 pressure increased, the conversion of 1-decene increased correspondingly, 

but no effect was detected on 1,2-epoxydecane selectivity. Gold nanoparticles were 

supported on graphite, TiO2, SiO2 and MgO. TiO2 and SiO2 supported gold catalysts 

showed the highest conversion and selectivity for 1,2-epoxydecane whereas the supports 

alone yielded low activity. Oxygen consumption in the reaction was validated by a 

reaction under a nitrogen gas atmosphere. 

In Chapter 5, the cycloaddition of CO2 with different epoxides was studied under 

solvent-free conditions with the use of both homogeneous and heterogeneous catalysts. 

For cyclic carbonate synthesised from epoxide and carbon dioxide, the quaternary 

ammonium salt with the highest activity was determined to be Bu4NBr. High cyclic 

carbonate yield was achieved even in a short reaction time of 4 hours at 80°C using 20 bar 

CO2 under solvent-free conditions. Furthermore, under such conditions, Bu4NBr and 

ZnBr2 as catalysts facilitated the conversion of various linear terminal epoxides into their 

corresponding cyclic carbonates. However, Bu4NBr are dissolved in a reaction mixture 

containing CCs. Therefore, separation of the catalysts from the reaction mixture may 

require more energy through a purification process. The polydiallyldimethylammonium 

bromide supported catalysts were tested for this reaction as they share the effectiveness 

of Bu4NBr and are insoluble in organic solvents, which would reduce the leaching of the 

active components in the liquid phase. This catalyst could be recovered by a simple 

centrifugation after the reaction. The production of cyclic carbonate could be enhanced 

by increasing the mass of the catalyst and reaction time. The reusability of a 
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40% PDDABr/SiO2 catalyst was tested and some decrease in activity was found, which 

may be due to the adsorption of products on the surface or due to some leaching of the 

active species. Furthermore, it was observed that the main catalytic route is heterogeneous 

with some contribution from homogeneous catalysis. The formation of cyclic carbonate 

based on carbon dioxide cycloaddition with 1,2-epoxydecane was effectively catalysed 

by imidazole supported onto silica, the catalytic route exhibiting heterogeneity alongside 

partial input from homogeneous catalysis. Bu4NBr or 40% PDDABr/SiO2 or Imid/SiO2

were present during the performance of 1-decene epoxidation, considerably diminishing 

epoxide selectivity. Furthermore, the cycloaddition of carbon dioxide with 

1,2-epoxydecane was not affected by supported gold catalysts. 

The one-pot synthesis of cyclic carbonate from 1-decene, O2 and CO2 using 

1% Au/support-Bu4NBr/ZnBr2 catalysts was carried out, employing the one-pot 

multistep process (sequential oxidation and carboxylation) as well as the one-pot 

(simultaneous oxidation and carboxylation). Higher selectivity for cyclic carbonate 

product could be achieved by using one-pot multistep protocol. However, it was difficult 

to conduct the process of oxidative carboxylation for various cycloalkene oxides. Epoxide 

selectivity was low when the ring size was small (e.g. cyclopentene), but it improved 

substantially (C5<C6<C7<<C8) when the ring size was enlarged. However, regarding the 

cycloaddition step, the opposite trend was found. Cyclopentene oxide and cyclohexene 

oxide provided high selectivity for cyclic carbonate, whereas the cycloaddition of CO2

with cyclooctene oxide and cyclododecane oxide to form cyclic carbonate was a 

challenging step and the structure of ketone is significantly more stable than cyclic 

carbonate due to the steric hindrance. 

Therefore, starting with an inexpensive alkene instead of an expensive epoxide should be 

attractive as it will make the synthesis of cyclic carbonate economical as well as avoid 

the preliminary synthesis and isolation of the epoxide. For the epoxidation step, most 

published works used the reactive forms of oxygen. In this study, the reaction proceeds 

using oxygen as the primary oxidant under solvent-free green conditions. Performing this 

reaction under solvent-free conditions is a significant improvement as it decreases the 

level of waste as well as the level of toxicity. By using CO2 as a chemical starting material 

rather than toxic phosgene, we would reduce the risk to the environment and contribute 

to the reduction of global warming. 
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6.2. Future work
The research described in this thesis has demonstrated epoxidation of the olefin, and the 

cycloaddition reaction of CO2 to the epoxide. These two steps studied in more detail to 

find the optimum reaction conditions for the one-pot reaction. Based on the results of this 

research, it is recommended that further studies should be conducted on some of the topics 

in this thesis. To this end, it is recommended that the following areas be investigated to 

improve the activity and performance of catalysts in the epoxidation and cycloaddition 

steps.

6.2.1. Epoxidation of 1-decene using supported cobalt catalysts

• A cobalt nitrate precursor has been used for the preparation of supported cobalt 

catalysts. Using a different cobalt precursor may increase the activity and stability 

of cobalt catalysts.

• In the present research, cobalt catalysts have been prepared using a 

wet-impregnation method. However, other preparation methods which produce 

much smaller particles, such as sol-immobilisation, may lead to the synthesis of 

more active and selective catalysts for the epoxidation of 1-decene. When a 

catalyst is prepared by different preparation methods, it displays different catalytic 

activities. Investigation of this point, in addition to finding more active and 

selective catalysts for the epoxidation of 1-decene, would also help establish a 

general relationship between the structure of catalysts and catalytic reactivity.

• The heat treatment for this catalyst is calcination under static air at 400°C for 3 h.

No other heat treatment conditions have been considered. Since it is an important 

factor that influences catalytic performance, reduction of cobalt may improve its 

activity and stability by reducing the leaching of supported cobalt catalysts.

• One of the main limitations, which arose during this study, concerned the reuse of 

cobalt catalysts. Upon reuse, the supported cobalt catalyst displayed reduced 

activity due to adsorption of the products. It is suggested that this issue could be 

addressed by improving the method of preparation as well as improving the 

washing step after use.

• A variation in activity and stability was observed with different supports. It is 

recommended that more research be carried out to examine and address this effect.

6.2.2. Epoxidation of 1-decene using supported gold catalysts 

• Differences in activity and selectivity were observed when using different 

supports for an Au catalyst for the epoxidation of 1-decene. The importance of 
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support for Au catalysts for their effect is well known. Additional investigations 

on this point would examine the support effect as well as the interface effect 

between gold nanoparticles and supports and also the role of support during a 

reaction.

• There are a number of bimetallic systems which could be considered for 

optimising the activity of gold catalysts. There are some bimetallic systems which 

may provide more active or selective catalysts suitable for the epoxidation of 

alkenes, e.g. Au-Cu, Au-Ag and Au-Co. Additional consideration should also be 

given to developing a method of preparation for bimetallic systems.

• A detailed investigation of the preparation and optimisation of supported Au 

catalysts using different supports was conducted to achieve optimal Au catalytic 

activity. However, using a promoter which exhibits highly selective activity in 

other chemical processes in specific ratio with Au may help obtain a more 

selective catalyst for the epoxidation of alkenes.

• Epoxidation of 1-decene under atmospheric pressure of air exhibited high 

selectivity for the epoxide. It is worth to increase the air pressure and study its 

effect on the epoxidation reaction.

6.2.3. Cycloaddition of CO2 with epoxide

• Bu4NBr was found to be the best quaternary ammonium salt for the cycloaddition 

of CO2 with different types of epoxides as a homogeneous catalyst. Determination 

of how to bind Bu4NBr strongly with supports such as covalent bonding to make 

heterogeneous catalyst is further required.

• Study the effect of reduce the amount of Bu4NBr and ZnBr2 in cycloaddition of 

CO2 with 1,2-epoxydecane.

• 40% PDDABr/SiO2 and Imid/SiO2 catalysts displayed good activity as 

heterogeneous catalysts. However, reused catalysts exhibited a decrease in 

activity that may be due to the adsorption of the products and remaining substrate 

on the catalyst surface. Therefore, additional investigation of the washing step for 

the reused catalyst may improve its activity.

6.2.4. Oxidative carboxylation of alkenes

• A higher yield of cyclic carbonate from 1-decene was found in a one pot multi-

step (sequential oxidation and carboxylation) as compared to a one pot 

(simultaneous oxidation and carboxylation). Further research is recommended to 
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improve the selectivity for cyclic carbonate in this multi-step reaction by 

increasing the selectivity of the epoxide. 

• It was shown that the catalysts for the second step have a negative effect on the 

epoxidation step. Therefore, in the oxidative carboxylation of alkene, it is 

recommended that a catalyst be identified for the cycloaddition step which does 

not start catalysis until the epoxidation step is finished. Such a catalyst would 

catalyse the CO2 addition to the formed epoxide.
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Chapter 7: Appendix
7.1. Chemical structure diagrams and atomic coordinates for DFT

calculations 

Int. 1 SN2 TS-1t’

SN2 TS-1b
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SN1 TS-1b
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7.2. Spectroscopic data for cycloaddition of CO2 with different 
cycloalkene oxides: suggested assignments of products are shown on the 
spectra where it was possible.

7.2.1 Cycloaddition of CO2 with cyclohexene oxide experiment (125°C, 20 bar CO2, 
16 h)
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A more concentrated sample shows further side products and the starting material:
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7.2.2. Cycloaddition of CO2 with cyclooctene oxide experiment (130°C, 20 bar CO2, 
24 h)

At 12.9 min two compounds are co-eluting, an isomer of the starting material and 

tributylamine.
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7.2.3. Cycloaddition of CO2 with Cyclopentene oxide experiment (90°C, 20 bar CO2, 
4 h)
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A more concentrated sample shows further side products:
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