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Nutter5, Ph. André6, D. Arzoumanian7, M. Benedettini8, J.-P. Bernard9,10, A.

Duarte-Cabral11,12, C. Fallscheer1,2, R. Friesen13, J. Greaves14, M. Hennemann6, T. Hill6, T.
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ABSTRACT

We present Herschel observations from the Herschel Gould Belt Survey and SCUBA-

2 science verification observations from the JCMT Gould Belt Survey of the B1 clump
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in the Perseus molecular cloud. We determined the dust emissivity index using four

different techniques to combine the Herschel PACS+SPIRE data at 160− 500 µm with

the SCUBA-2 data at 450 µm and 850 µm. Of our four techniques, we found the most

robust method was to filter-out the large-scale emission in the Herschel bands to match

the spatial scales recovered by the SCUBA-2 reduction pipeline. Using this method,

we find β ≈ 2 towards the filament region and moderately dense material and lower

β values (β & 1.6) towards the dense protostellar cores, possibly due to dust grain

growth. We find that β and temperature are more robust with the inclusion of the

SCUBA-2 data, improving estimates from Herschel data alone by factors of ∼ 2 for β

and by ∼ 40% for temperature. Furthermore, we find core mass differences of . 30%

compared to Herschel-only estimates with an adopted β = 2, highlighting the necessity

of long wavelength submillimeter data for deriving accurate masses of prestellar and

protostellar cores.

1. Introduction

Molecular clouds are composed of dust and molecular gas ranging from ∼ 102 cm−3 for

the large-scale, low-density cloud to > 104 cm−3 for the small-scale, dense star-forming “cores”

(Bergin & Tafalla 2007). These molecular clouds are often traced by their cold dust emission,

which peak at far-infrared or submillimeter wavelengths, and many studies have used optically

thin dust emission to measure masses and column densities of cores and filaments (e.g., Kirk et al.

2006; Enoch et al. 2009; André et al. 2010; Arzoumanian et al. 2011). A key parameter to convert

dust emission into mass (or column density) is the dust opacity, which corresponds to the ability

of dust grains to absorb radiation. Unfortunately, the dust opacity is one of the most difficult

observational measurements, and uncertainties in the dust opacity can result in significant mass

uncertainties (Henning et al. 1995; Shirley et al. 2011; Martin et al. 2012). Since dust populations

in molecular clouds are expected to change due to dust coagulation and the formation of icy mantles

in the densest environments (Draine & Lee 1984; Ossenkopf & Henning 1994), it is important to

determine the dust opacity for both the large-scale cloud and the small-scale cores.

Generally, submillimeter dust opacities assume a power-law form such that κν ∼ νβ, where β is

the dust emissivity index. Since the spectral energy distribution (SED) of cold, dusty star forming

regions are best represented by greybody emission, β is critical to the SED fit. Several studies have

attempted to determine β towards specific prestellar or protostellar cores using long-wavelength

submillimeter emission (e.g., Friesen et al. 2005, Schnee et al. 2010, Shirley et al. 2011). These

studies, however, were limited in wavelength coverage and poor map sensitivities. Conversely, re-

cent observations with the Herschel Space Observatory (Pilbratt et al. 2010) extend our ability

to measure cold dust emission to larger-scales over multiple wavelengths. In particular, the Pho-

todetector Array Camera and Spectrometer (PACS; Poglitsch et al. 2010) and the Spectral and

Photometric Imaging Receiver (SPIRE; Griffin et al. 2010) have provided unprecedented sensitiv-
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ity for far-infrared and submillimeter wavelengths at 70 - 500 µm, which cover the SED peak from

cold dust at T ∼ 10 − 40 K. Both β and temperature, however, affect the curvature of the black

body function, and thus, are degenerate towards the SED peak. To break this degeneracy, β can

be constrained from the Rayleigh-Jeans tail of the SED (Doty & Leung 1994; Shetty et al. 2009b),

i.e., λ ≫ 300 µm for cold star-forming regions at T . 30 K. Therefore, additional long-wavelength

data at good resolution and sensitivity are necessary to constrain the dust emissivity.

These requirements make the Submillimetre Common-User Bolometer Array-2 (SCUBA-2;

Holland et al. 2013) at the James Clerk Maxwell Telescope (JCMT) an excellent complement to

PACS and SPIRE data. SCUBA-2 can simultaneously observe at 450 µm and 850 µm, both at

higher resolutions than the three SPIRE bands (the JCMT primary mirror is five times larger than

Herschel ’s). Therefore, SCUBA-2 observations provide necessary data along the Rayleigh-Jeans

tail and excellent spatial resolution at longer wavelengths.

To explore possible variations of β towards cold cores, we have combined PACS+SPIRE data

with SCUBA-2 data from the JCMT Gould Belt Survey (GBS) for the first time. For this study,

we have selected the B1 clump of the Perseus molecular cloud. B1 was previously observed with

Herschel as part of the Herschel GBS (Sadavoy et al. 2012; Pezzuto et al. 2012), and was the first

field of the JCMT GBS (Ward-Thompson et al. 2007) that nominally reached the SCUBA-2 survey

depth. B1 is a nearby star-forming region at 235 pc (Hirota et al. 2008) with a total clump mass

of ∼ 1200 M⊙ and ∼ 10 dense submillimeter cores grouped into a central cluster (Kirk et al. 2006).

B1 is also relatively young (compared with the nearby NGC 1333 and IC 348 clumps), containing

a high percentage (> 40 %) of Class I young stellar objects (YSOs), of which several drive outflows

(Jørgensen et al. 2008; Bally et al. 2008). Furthermore, a recent study by Pezzuto et al. (2012)

suggests that two dense cores in B1 are excellent candidates for first hydrostatic cores based on

Herschel detections at & 100 µm with no corresponding Spitzer detections at 24 µm. Additionally,

Herschel observations of B1 revealed several pillar-like structures (Sadavoy et al. 2012), suggesting

that a strong ionization front may be influencing the clump. This front likely originates from 40 Per,

a high mass main sequence star in the Perseus OB2 region (see Bally et al. 2008).

This paper is organized as follows: In Section 2, we describe our Herschel and SCUBA-2

datasets, as well as CO (3− 2) observations of B1. In Section 3, we show our results, first from our

SCUBA-2 continuum and CO (3−2) observations, and then from fitting SEDs to the Herschel-only

bands. In Section 4, we determine β using the PACS+SPIRE and SCUBA-2 bands following four

different techniques to combine these data. In Section 5, we use our most robust technique to probe

the variations in dust opacity and core mass, and we discuss the implications of our analyses for

future studies that will combine SCUBA-2 and PACS+SPIRE data. In Section 6, we summarize

our results.
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2. Data

2.1. Herschel Observations

The western half of Perseus, including the B1 clump, was observed with Herschel in February

of 2010 as part of the the Herschel GBS. These data consist of parallel photometric observations

with the PACS and SPIRE instruments at 70 µm, 160 µm, 250 µm, 350 µm, and 500 µm at a

60 arcsec s−1 scan rate. The PACS and SPIRE raw data were reduced with version 7.0 of HIPE

using modified reduction scripts by M. Sauvage (PACS) and P. Panuzzo (SPIRE) and updated

calibration corrections; we used the PACS Calibration Set v26 and the SPIRE Calibration Tree 6.1

for our PACS and SPIRE reductions, respectively. The final maps were produced using version 11

of the scanamorphos routine (Roussel 2012). For more information, see Sadavoy et al. (2012). For

more information about the observations of Perseus and an alternative map making routine, see

Pezzuto et al. (2012). The Herschel observation have resolutions of ∼ 8− 36′′.

2.2. SCUBA-2 Observations

B1 was observed at 450 µm and 850 µm with SCUBA-2 as part of Science Verification (here-

after, S2SV) observations for the JCMT GBS in October 2011. SCUBA-2 is a bolometer de-

tector with ∼ 10000 pixels spread over eight science arrays for a field of view of ∼ 45 arcmin2

(Holland et al. 2013). For comparison, the predecessor bolometer detector, SCUBA, contained

only 128 pixels over two science arrays for a field of view of ∼ 5 arcmin2 (Holland et al. 1999). For

S2SV, all eight science grade arrays (four arrays for each band) were available.

The B1 clump was observed six times on October 18 in very dry (Grade 1; τ225 < 0.05) weather

and three more times on October 19 in poorer conditions (Grade 3; τ225 < 0.1). Each observation

used a PONG1800 observing pattern (Dempsey et al. 2012; Holland et al. 2013), which involved

mapping a 38′ × 38′ square box centered at 3h33m12s.7, +31◦06′48′′ (J2000) with a mapping speed

of 480 arcsec s−1 and scan spacing of 30′′. The box was mapped 5 times, rotating the sides by

18◦ with respect to the sky between each coverage to produce a well-sampled circular map of ∼

30′ diameter. This pattern was repeated to increase the sensitivity of the map. Two of the six

observations on October 18 were made at high elevations (> 65◦), which caused erratic telescope

tracking motions during the PONG-mode mapping and introduced corrugated artifacts into the

respective images.

The S2SV observations were reduced using the Starlink SMURF version 1.4.0 package and the

makemap routine (Jenness et al. 2011; Chapin et al. 2013), which generates a map of the sky by

iteratively fitting a number of different signals in the data. These signals included the common

mode signal (caused by atmospheric emission and oscillations in the refrigerator system), the gain of

each bolometer, the atmospheric extinction, and the astronomical signal. The mapmaker iterated
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until a convergence parameter is reached1. Each observation was reduced independently in this

manner and then an initial coadded map was produced from the independent observations. We

combined the four good observations in Grade 1 weather, rejecting the three Grade 3 observations

and two corrugated Grade 1 observations.

An initial coadded map was used to generate a mask that encompassed all parts of the map

that contain significant levels of flux. This mask was used to re-reduce all of the data in the

manner described above, except the astronomical signal is only retained between each iteration

if it lies within the masked area. The purpose of using the mask in this manner was to prevent

spurious artifacts in the low sensitivity regions of the map. For simplicity, the mask was generated

corresponding to those regions with signal-to-noise ratios & 5 at 850 µm. Regions outside the mask,

however, were not used in any analysis, as the data there did not iterate to convergence. We tested

the robustness of the maps by inserting artificial sources into the raw data and recovering reliable

fluxes in the final map. Figure 1 shows the final reduced maps, highlighting the masked regions.

The same mask was used for the 450 µm reductions.

Fig. 1.— SCUBA-2 observations of the B1 clump at 450 µm (left) and 850 µm (right). Contours

show the masked regions used in the reductions. Areas outside of the mask have uncertain fluxes.

1The convergence parameter was defined as C̄i = 1

Ni

∑ |Fi,p − Fi−1,p|/√σi,p, where i is the ith iteration, p

corresponds to each pixel within the current mask, Ni is the total number of pixels within the mask, Fi,p is the flux in

each pixel for the ith iteration of the map, and σi,p is the variance in each pixel for the ith iteration. The convergence

parameter was measured as an average over all pixels. The ith iteration converged when C̄i ≤ 0.001.
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We used flux conversion factor (FCF) values of 491 Jy beam−1 pW−1 and 556 Jy beam−1

pW−1 for the 450 µm and 850 µm maps, respectively, based on observations of standard calibration

sources (Dempsey et al. 2012, Dempsey et al. 2013). These FCF values corresponded to the version

of Starlink used in our reduction. We adopted a calibration uncertainty of 10% across the SCUBA-2

850 µmmap (Dempsey et al. 2012). For the 450 µm band, however, atmospheric variability becomes

more significant, even in Grade 1 weather. Therefore, we adopted a 50% calibration uncertainty

at 450 µm, which was the typical flux error at 450 µm adopted for the SCUBA Legacy Survey

(Di Francesco et al. 2008). We acknowledge that such a large calibration error is conservative and

with further investigation, will be improved. The final 1 σ rms sensitivity of the observed SCUBA-2

map was ∼ 7 mJy beam−1 at 850 µm over a 6′′ pixel grid. The effective 1 σ point source sensitivity

integrated over the beam area was ∼ 3 mJy, the target set by the SCUBA-2 Gould Belt Legacy

Survey (Ward-Thompson et al. 2007). For the 450 µm map, the final 1 σ rms sensitivity was ∼ 28

mJy beam−1 over 4′′ pixel grid for an equivalent point source sensitivity of ∼ 11 mJy over the beam

area.

The SCUBA-2 beam contains two components, the primary beam and an error beam (e.g.,

Di Francesco et al. 2008). The 450 µm and 850 µm primary beams are ∼ 8′′ and ∼ 13′′ and the

error beams are ∼ 25′′ and ∼ 48′′, respectively. At 450 µm, the error beam accounted for ∼ 40% of

the volume, whereas at 850 µm, the error beam accounted for ∼ 25% of the volume (Dempsey et al.

2013; see also Section 3.1). For this paper, we adopted effective Gaussian beams with FWHM values

of 9.3′′ and 14.2′′ for 450 µm and 850 µm, respectively.

2.3. HARP Observations

We mapped the B1 clump in CO (3 − 2) line emission with the Heterodyne Array Receiver

Program (HARP; see Buckle et al. 2009 and references therein) on June 29, 2012 in good Grade 2

weather (τ225 < 0.08) over 3 hours. In brief, the HARP instrument consists of sixteen heterodyne

detectors arranged in a 4 × 4 pixel grid and covering a frequency range of 325 - 375 GHz. Ob-

servations from HARP are processed by the Auto-Correlation Spectral Imaging System (ACSIS;

Jenness et al. 2008). For these observations, only fourteen receptors were functional. We made two

position-switch raster maps (in orthogonal directions) over a 30′ × 30′ region coincident with the

S2SV-mapped region. The backend was configured to 1 GHz bandwidth over 2048 channels for a

velocity resolution of ∼ 0.42 km s−1.

The data were reduced using the ORAC-DR (Cavanagh et al. 2008) pipeline for ACSIS, and

the reduction recipe outlined below can be found in the latest Starlink release. Heterodyne detectors

are notorious for noisy baselines due to external interferences. Rather than reject the entire spectra

from these detectors, we performed an iterative reduction to remove suspect spectra from the time

series while keeping the good spectra, thereby improving the signal-to-noise and the coverage of

the final spectral map. The reduction pipeline can be broadly divided into two parts:
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First, we performed an initial processing of each observation, which includes chronological

sorting of the raw time-series cube and a quality-assurance stage. Of particular relevance to the

B1 data was the removal of spectra affected by high and low frequency interferences. To identify

these interferences, we trimmed the excessively noisy ends of the spectra and excluded the spectral

region where the astronomical signal was present. High-frequency noise (3 to 4 spectral elements)

was detected using a one-dimensional Laplacian filter along the spectral axis for each receptor,

and the affected blocks of spectra were identified by a threshold rms profile along the time axis.

Low-frequency oscillations (or distortions in the baseline) were found by smoothing features smaller

than 100 pixels, and we summed the rms deviations from the best-linear baseline fit to measure

the non-linearity for each spectrum. Again, we used a threshold to identify spectra that contained

low frequency artifacts. Spectra or whole receptors that failed quality assurance were rejected.

Second, we applied an iterative procedure, which refined the baseline subtraction at each cycle.

We combined and regridded all the raw time series cubes into a group spatial cube. Then, we

applied a baseline subtraction and smoothing so that the astronomical emission was located within

the group cube using clump finding. The emission defines a further mask, which is converted back

to a time series and is applied to the raw time-series cube for the next iteration. In practice one

iteration was sufficient.

We converted the final reduced data from T ∗

A to TMB using a main beam efficiency of ηMB =

0.61. The final reduced data were smoothed to 0.85 km s−1, resulting in a line sensitivity of ∼ 0.3

K. Since the SCUBA-2 and HARP data were observed at the same facility, both data were taken at

very similar resolutions (∼ 14′′). Having both the continuum and line data at the same resolution is

very advantageous. Sun et al. (2006) made a more complete CO (3−2) survey of the entire Perseus

cloud with the KOSMA 3m telescope. These data, however, have much lower spatial resolution

(∼ 82′′), and therefore, comparisons to the HARP or SCUBA-2 data at ∼ 14′′ are difficult.

3. Results

Figure 2 shows the observations at 160 µm, 450 µm, 500 µm, and 850 µm for the central

B1 region. Ground-based submillimeter continuum detectors like SCUBA-2 contend with rapidly

varying atmospheric signals that greatly affect the detection of radiation. To remove the atmo-

spheric emission, we effectively filter-out all large-scale structure from the maps, including the large

scale astronomical signals. For our SCUBA-2 data, this effective spatial filtering corresponds to all

angular scales of & 2.5′ based on tests of the mapmaker to recover Gaussians of various sizes (see

Appendix A for more details). Therefore, we believe that structures of . 2.5′ are recovered fully by

SCUBA-2. Conversely, space-based instruments like those on-board Herschel are free from these

limitations and can recover the diffuse large-scale emission. For our Herschel observations, we can

recover spatial scales within half a scan length (∼ 1.5◦).

Another key difference between the SCUBA-2 and Herschel observations is resolution. The
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Fig. 2.— Observed continuum maps from PACS at 160 µm (upper left), SCUBA-2 at 450 µm

(upper right), SPIRE at 500 µm (lower left), and SCUBA-2 at 850 µm (lower right). Note that

several compact objects with PACS and SCUBA-2 are blended at 500 µm. The observed resolutions

are ∼ 13′′ at 160 µm, ∼ 9′′ at 450 µm, ∼ 36′′ at 500 µm, and ∼ 14′′ at 850 µm. These maps reveal

several known sources in the central B1 region (see Jørgensen et al. 2007; Hatchell et al. 2007).

Herschel resolutions are ∼ 8.4′′, 13.5′′, 18.2′′, 24.9′′, and 36.3′′ at 70 µm, 160 µm, 250 µm, 350 µm,

and 500 µm, respectively for parallel mode observations at 60 arcsec s−1 scan rates. Comparatively,
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the SCUBA-2 resolutions are ∼ 9′′ and 14′′ for the 450 µm and 850 µm bands, respectively. For

clustered environments, the gain in resolution brought by SCUBA-2 at these long wavelengths is

important for measuring the properties of compact sources. For instance, some of the compact

objects within the central B1 region are blended at the longer Herschel wavelengths but separated

out with the SCUBA-2 observations (e.g., see the B1-bN and B1-bS cores in Figure 2).

3.1. SCUBA-2 and HARP Analyses

Molecular line contamination is significant if the line flux measured over the continuum band

boosts the continuum signal over the expected value from dust emission alone (White et al. 2003).

In cold star-forming regions, line contamination is most prominent from rotational transitions of

CO, the second most abundant molecule in molecular clouds. While the Herschel data are largely

free of line contamination2, the SCUBA-2 850 µm band is susceptible to contamination from the CO

(3−2) line transition at 345.796 GHz, which lies in the middle of the band and is commonly detected

in star-forming regions. Additionally, CO (6 − 5) line emission at 691.473 GHz can contaminate

the 450 µm band; see Appendix B. For a recent summary of the effects of line contamination on

observed submillimeter fluxes, see Drabek et al. (2012).

Since the 850 µm continuum bandpass is very wide (∼ 35 GHz), molecular lines need to

be both bright and broad to make significant contributions to the observed continuum emission

(Johnstone et al. 2003). We determined the contribution of CO (3− 2) line emission to the contin-

uum using the same technique as Drabek et al. (2012). For more details, see Appendix B. Unlike

SCUBA-2, the HARP CO (3− 2) line data recover large-scale structures since they were obtained

using a reference position free of line emission at a much larger angular distance from the target

positions. Therefore, we ran the integrated intensity CO (3 − 2) map through the SCUBA-2 re-

duction pipeline to produce a filtered CO flux map that inlcudes only emission on the same spatial

scales as the 850 µm data (see Appendix A). The filtered CO (3 − 2) line emission contributed

. 70 mJy beam−1 (. 100 K km s−1) to the 850 µm continuum emission with the most significant

contributions towards the outflows associated with the protostellar cores B1-c and B1-d.

Figure 3 compares the 850 µm map before and after the CO (3 − 2) line contamination was

removed. In the left panel, the two lobes of CO (3− 2) emission along the northern outflow clearly

dominate the continuum flux, contributing up to ∼ 90% of the total 850 µm flux at the positions

of the outflow. Aside from these outflows, the corrected 850 µm map (right panel) shows little

difference with the original map (left). The CO (3−2) line emission contributes . 15% of the total

850 µm flux for the central region of B1 and . 1% for the rest of the B1 clump.

Hereafter, the observed 850 µm data have been corrected for CO (3 − 2) line contamination.

2The 350 µm band can be contaminated by the high excitation transition CO (7− 6) at 806.652 GHz, though we

believe such contamination should be negligible towards B1. See Appendix B.
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Fig. 3.— Comparisons between 850 µm continuum emission and CO (3 − 2) line emission. Left:

Background image shows the uncorrected 850 µm continuum map. Black contours corresponds to

CO (3−2) line emission at levels of 10 mJy beam−1, 20 mJy beam−1, and 30 mJy beam−1. The CO

data were filtered using the SCUBA-2 pipeline (see Appendix A). The white contours show 850 µm

continuum emission at 30 mJy beam−1. Right: Background image shows the 850 µm continuum

map with the filtered CO line emission subtracted out. The white contours show corrected 850 µm

emission at 30 mJy beam−1. The SCUBA-2 and HARP data have a common resolution of ∼ 14.2′′,

shown as a white circle.

For comparisons with Herschel data, we convolved both the CO-corrected 850 µm map and the

observed 450 µm map to the 500 µm resolution of 36.3′′. For the 450 µm map, both the main beam

and error beam were considered in the convolution3, whereas for the 850 µm map, we found that

the relative power in the error beam was not as significant.

3.2. Herschel-Only Results

We used the PACS 160 µm and the SPIRE 250 µm, 350 µm, and 500 µm data to estimate

the dust properties in B1. Since the PACS 70 µm band can trace non-equilibrium emission from

very small dust grains (Martin et al. 2012) and warm dust emission from protostellar sources (as

3For the 450 µm map, the error beam has a FWHM of ∼ 25′′, which is smaller than the 500 µm beam. We

convolved a two-component Gaussian beam with a main component of 7.9′′ and an error component of 25′′ to 34.25′′

for an effective resolution of 36.3′′. Without considering the error beam, the 450 µm fluxes would be overestimated

by . 10%.



– 11 –

opposed to the cool envelope traced by the longer wavelengths), we do not include those data in

our analysis. First, we corrected the arbitrary zero-point flux offset in each band using Planck HFI

and IRAS data following the method proposed in Bernard et al. (2010). Second, we convolved each

map to the same resolution (36.3′′, or the 500 µm beam FWHM) and projected all maps onto a

common grid of 14′′ pixels.

For the PACS and SPIRE bands, minor colour correction factors (. 3%) are necessary (for

more details, see Pezzuto et al. 2012 and Appendix C). Table 1 lists our adopted colour correction

factors and uncertainties, assuming β ≈ 1.5− 2.5 and T ≈ 10 K− 15 K. Additionally, we estimated

the pixel-to-pixel rms sensitivity by selecting several areas relatively free of diffuse emission in the

Perseus West map (see Figure 1 in Sadavoy et al. 2012). Table 1 lists the approximate 1 σ rms

uncertainties at the native resolution of each band and for the convolved maps (36.3′′ resolution).

Since the selected regions were not entirely free of emission, these sensitivity measurements can be

considered upper limits to the true map noise. These map sensitivities also depend greatly on the

processing, such as the mapmaker. The observed 1 σ rms noise estimates are within a factor of ∼ 2

of the expected 1 σ rms noise errors according to the Herschel observation planning tool (HSpot)4.

Table 1: Adopted Colour Corrections and Flux Uncertainties

Band 160 µm 250 µm 350 µm 500 µm

Colour Correctiona 1.01 1.02 1.01 1.03

Colour Uncertaintyb 5% 0.8% 1% 2%

rmsν (mJy beam−1)c 20 18 15 20

rms36.3 (mJy beam−1)d 80 60 30 20

a Average colour corrections for each band, where Scorrected = CC × Sobs. These values assume T ≈ 10 − 15 K and

β ≈ 1.5− 2.5. See Appendix C.
b Uncertainties refer to the fractional uncertainty in the average colour correction based on the range of accepted

colour corrections. These uncertainties do not include the calibration uncertainties.
c Approximate 1σ rms noise in the Herschel maps for relatively blank regions at the native resolution of each band.
d Approximate 1σ rms noise in the convolved Herschel maps for relatively blank regions at 36.3′′ resolution.

Table 1 excludes additional errors from flux calibration. Flux calibration depends on a number

of factors, including the calibration files used in the reduction and the mapmaker. Based on point

sources, the flux calibrations uncertainties are roughly 5% for PACS5 and 7% for SPIRE6. Since we

4HSpot is a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA

Herschel Science Center, and the HIFI, PACS and SPIRE consortia.

5PACS flux calibration can be found in the “Assessment analysis of the extended emission calibration for the

PACS red channel”, http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb.

6SPIRE flux calibration can be found in the SPIRE Observers Manual (2011), HERSCHEL-DOC-0798, v2.4,

http://herschel.esac.esa.int/Docs/SPIRE/pdf/spire om.pdf

http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb
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are interested in extended emission and our observations were taken with the fast (60 arcsec s−1)

scan rate resulting in elongated beams, we adopted 10% flux calibration errors for both PACS and

SPIRE. To simulate these uncertainties, we generated 1000 random correction factors following

a Gaussian with a mean of 1.0 and a HWHM of 0.1. Since the flux calibrations are correlated

for each instrument (M. Griffin, private communication), we assumed the same flux calibration

corrections for the three SPIRE bands and a separate randomly generated set of corrections for the

PACS 160 µm band. We applied the randomly-selected PACS and SPIRE calibration correction

factors appropriately across the maps. For each pair of correction factors, we fit the resulting SEDs

pixel-by-pixel to identify the broad distribution of best-fit SED parameters within the calibration

uncertainties.

We fitted the SEDs of individual pixels using the IDL program mpfitfun, which performs an

iterative least-squares comparison between a set of data and a model function until a best fit is

achieved (Markwardt 2009). We fit each SED with the modified black body function,

Iν = κν0(ν/ν0)
βBν(T )Σ (1)

where κν0 is a reference dust opacity per unit gas and dust mass at reference frequency ν0, β is

the dust emissivity power law index, Bν is the black body function, T is the dust temperature,

and Σ = µmHN(H2) is the gas mass column density of material with mean molecular mass µmH

and gas column density N(H2). For consistency with other papers from the Herschel Gould Belt

Survey (e.g., André et al. 2010), we assumed that κν0 = 0.1 cm2 g−1 at ν0 = 1000 GHz (Hildebrand

1983). We adopt a mean molecular weight per unit hydrogen mass of µ = 2.8, for a cloud of 71%

molecular hydrogen gas, 27% helium, and 2% metals (e.g., Kauffmann et al. 2008).

Most Herschel GBS analyses (e.g., André et al. 2010; Arzoumanian et al. 2011; Sadavoy et al.

2012) fit SEDs across the 160 − 500 µm Herschel bands assuming β = 2 (Hildebrand 1983). To

test this assumption, we used Equation 1 to fit the Herschel 160 − 500 µm data assuming (1)

β = 1.5, (2) β = 2.0, (3) β = 2.5, and (4) β is a free variable. We applied the colour correction

factors (see Table 1) and the random distribution of calibration correction factors to the observed

emission. For the flux uncertainties, we added in quadrature the colour calibration uncertainties and

the map sensitivities (see Table 1). Figure 4 shows the distributions of SED-derived parameters

for a single example pixel towards the B1-a core. For our sample pixel, when β is fixed, the

temperature distributions are narrow despite the wide range in calibration correction factors. The

mean temperature, however, varies from T ≈ 14 K for β = 1.5 to T ≈ 10.5 K for β = 2.5. Allowing

β to vary produces broad Gaussian-like temperature and β distributions with mean values of 13.7

K ± 1.1 K and 1.60 ± 0.24, respectively. These broad distributions suggest that the Herschel

calibration uncertainties result in significant uncertainties for the SED parameters.

Furthermore, Figure 5 highlights the β-temperature degeneracy of SED-fitting with the Her-

schel bands only. First, we generated fluxes assuming (1) T = 10 K, N(H2) = 1023 cm−2, and

β = 2.25 and (2) T = 14 K, N(H2) = 6× 1021 cm−2, and β = 1.75. Second, we fitted the generated

Herschel band fluxes with our dusty black body models assuming β = 1.5, 2.0, and 2.5 and no
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Fig. 4.— Sample results from SED-fitting towards a pixel in the B1-a core. We fit the observed SEDs

after applying our colour correction factors and random calibration correction factors (see text).

For each calibration correction factor, we fit the modified dust emission with a dusty black body

model assuming β = 1.5, 2.0, 2.5, and free β. We show the (a) relative temperature distributions

for each of these cases of β and (b) the β distribution when unrestricted. We fit the β distribution

with a Gaussian (red curve).

calibration uncertainties. The solid curves show the best-fit SED models to the dust emission for

the first case and the dashed curves show the best-fit SED models for the second case. For both

cases, the generated data were moderately well fit by all three values of β. Note that the Herschel

bands cover the region illustrated by the grey box where the model curves are largely degenerate.

The error bars indicate an uncertainty of 10% to illustrate the range of uncertainty from the cali-

bration. (Recall, instrument calibration is correlated such that the same calibration correction will

be required for the three SPIRE bands.) Conversely, at longer wavelengths, the SED models are

more distinct and thus, the SED parameters are much better constrained. Since we have longer

wavelength data (i.e., 850 µm), we may circumvent the degeneracy between β and temperature

(see Section 4).

4. Determining β

As discussed in Section 3.1, the SCUBA-2 observations do not recover large-scale emission and

that emission can be significant. For example, the residuals between a prediction of unfiltered 850

µm emission (i.e., from SED fitting of the Herschel data assuming β = 2) and the observed 850

µm dust emission suggest that the observed fluxes at 850 µm could be missing & 30% of the total

emission. Therefore, direct comparisons between PACS+SPIRE and SCUBA-2 observations can

be misleading.

In this Section, we explore four different techniques to determine β towards B1 using the
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Fig. 5.— Sample modified black body profiles for dust emission corresponding to (solid) T = 10 K,

N(H2) = 1023 cm−2, and β = 2.25 and (dashed) T = 14 K, N(H2) = 6× 1021 cm−2, and β = 1.75.

For both cases, we fit the generated SEDs (diamonds) with (from left to right) β = 1.5, 2.0, or 2.5.

The Herschel 160−500 µm bands cover the region highlighted by the solid grey box. The dotted line

corresponds to 850 µm. At short wavelengths (i.e., λ . 100 µm), the dust emission may become

optically thick, and thus, the SED curves could be independent of β at these wavelengths. For

simplicity, we do not consider optically thick dust emission at short wavelengths. Thus, β cannot

be constrained with short wavelength observations and instead, long wavelength observations are

necessary.

SCUBA-2 data. In Section 4.1, we determined β using filtered dust emission maps and in Section

4.2, we determined β using unfiltered maps. Since filtered maps do not include any large-scale

structure, there is no reason to expect a priori that β will be the same for filtered and unfiltered

maps. For example, the extended emission may trace more of the warmer, diffuse cloud structure

than the cold, dense structures associated with cores, therefore broadening the SED and lowering β

(Martin et al. 2012). If true, the absence of the large-scale structure may result in more pronounced

variations in β towards the small scale features in the filtered maps than in the unfiltered maps.

For all fits to the SEDs, we used the following procedure unless stated otherwise:

1. We applied the colour correction factors in Table 1 to the Herschel bands.
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2. We adopted flux errors as the quadrature sum of the 1 σ rms errors and the uncertainty of the

colour corrections (see Table 1).

3. We generated different sets of 1000 random calibration correction factors following a Gaussian

distribution to represent a 10% or 50% calibration uncertainty. We generated a separate set

of calibration correction factors for PACS, SPIRE, SCUBA-2 at 450 µm, and SCUBA-2 at

850 µm.

4. We fit SEDs following a minimization of χ2 routine. We used the modified black body model

in Equation 1 and the IDL mpfitfun routine to minimize the χ2 fit.

5. For the filtered maps (see Section 2.2), we only considered regions with ≥ 10 σ intensities at

160 - 850 µm at 36′′ resolution (excluding the 450 µm band). The filtered maps are only well

measured within the masked regions used in the reduction (see Section 2.2). Since the 450

µm data has a higher 1 σ rms noise level (∼ 100 mJy beam−1), these regions include 450 µm

emission that is < 5 σ.

4.1. β Using Filtered Maps

For our first case (hereafter the Filtered Case), we removed the large-scale emission from the

Herschel observations by applying the SCUBA-2 reduction pipeline to the observed Herschel maps

as we did with the CO (3−2) line data (see Appendix A for more information). This technique has

the advantage of forcing all the data to include the same range of spatial scales, and thus, β and

temperature can be determined from directly fitting the SEDs of the 160−850 µm emission. Unlike

with our SCUBA-2 data, we can compare the filtered and unfiltered versions of the Herschel maps

and see how the SCUBA-2 mapmaker removes large-scale emission. Figure 6 compares the filtered

SPIRE 250 µm map with the filtered-out large-scale emission. Note that a few artifacts remain at

the locations of the brightest cores. These artifacts are very localized and thus, become negligible

(< 5% of the observed emission) when the filtered maps are convolved to 36.3′′ resolution. As of

this writing, the SCUBA-2 reduction pipeline is still evolving. Thus, while some artifacts may be

introduced in this version of the SCUBA-2 reduction pipeline, future versions of the pipeline should

improve the filtering.

For our second case (hereafter the SCUBA-2 Ratio Case), we determined β using the 450 µm

and 850 µm bands only, i.e., without Herschel data (e.g., see Hill et al. 2006; Hatchell et al. 2012).

Using Equation 1, the ratio of the fluxes at 450 µm and 850 µm is

I450
I850

=

(

ν450
ν850

)(β+3) [exp (hν850/kT )− 1.0

exp (hν450/kT )− 1.0

]

. (2)

Therefore, β can be determined from the ratio of 450 µm to 850 µm emission for a given temperature.

For simplicity, we find β for assumed line-of-sight temperatures. We do not naively expect the line-
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Fig. 6.— Comparison between the filtered Herschel map at 250 µm and the filtered-out large-scale

emission (using the SCUBA-2 mapmaker; see Appendix A). Map resolutions are 18′′.

of-sight temperature to be constant, particularly since the B1 cluster contains known protostellar

sources (i.e., B1-c, see Figure 3). Additionally, we also assume that the 450 µm and 850 µm maps

include the same range of spatial scales.

For the Filtered Case, Figure 7 shows contour plots of reduced χ2 assuming temperatures of

5 K ≤ T ≤ 20 K and β values of 0.5 ≤ β ≤ 4.0. These plots highlight the uncertainties from the

minimization of χ2 technique only. For clarity, we do not include the calibration uncertainties for

these plots. (We note, however, that the calibration uncertainties will only increase the accepted

range of beta and temperature values and would not change the behaviour of the SED fitting itself.)

For simplicity, we show results for a pixel towards B1-a and a pixel towards the brightest part of

the filament, though these sample pixels represent the typical behaviour for B1-a and the filament.

We compare the results from SED-fitting to the Herschel bands alone (H-only) and the Herschel

bands with the 850 µm data (H+850), where the contours correspond to 2χ2
0 and 4χ2

0, and χ2
0 is the

reduced χ2 measure from the best-fit SED to the corresponding data. Thus, Figure 7 represents the

relative uncertainties in β and temperature from SED fits using the minimization of χ2 technique.

By adding the 850 µm flux as a new constraint, we see significant improvements in our ability to

determine β and temperature. For example, we find improvements in the uncertainty of β by a

factor of ∼ 2, and improvements in the uncertainty of temperature by ∼ 40% with the 850 µm

data.
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Fig. 7.— Measurements of relative reduced χ2 for assumed values of temperature and β for (top)

a pixel towards B1-a and (bottom) another pixel towards the brightest part of the filament (see

also Figure 8). For these plots, we do not assume any calibration uncertainties. The central star

corresponds to the best-fit temperature and β value from SED-fits to the Herschel-only (H-only)

data or the Herschel with 850 µm (H+850) data. The reduced χ2 measure associated with the

best-fit SED, χ2
0, is shown in the top right corner. The contours correspond to 2χ2

0 and 4χ2
0. For

the H+850 data, we have four degrees of freedom and for the H-only data, we have three degrees

of freedom.

In addition to temperature and β uncertainties from the fitting technique, each instrument has

a 10% flux calibration error. As in Section 3.2, we applied calibration correction factors within a

Gaussian distribution to represent the flux calibration errors for each instrument. Figure 8 shows

the mean β values and two example SEDs for the H-only and H+850 cases. For the H-only case, we

found more extreme values of β towards the dense cores and filament. For example, the H-only fits

give β ≈ 1.5 towards B1-a and β ≈ 2.5 towards the filament, whereas the H+850 fits give β ≈ 2.0

towards both. Similarly, the H-only fits overestimated the temperature by ∼ 2 K towards B1-a and

underestimated the temperature by . 1 K towards the filament compared to the H+850 results.

In the bottom panels of Figure 8, we show the SEDs for the sample pixels towards B1-a and the
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south-west filament, corresponding to the same example pixels in Figure 7. With the 850 µm band

included, we found a significant difference in the absolute value of β (see also Figure 7), though the

uncertainties related to the calibration correction factors are nearly identical.

Fig. 8.— Dust emissivity maps towards the B1 main cluster for the Filtered Case. White contours

show 850 µm flux levels of 1 Jy beam−1 and 2 Jy beam−1 at 36′′ resolution. Bottom: Sample SEDs

from (c) B1a and (d) the south-west filament, each marked by squares in the top panel. The curves

show the best-fit SEDs. For the solid curves, we used the H+850 bands, whereas for the dashed

curves, we used the H-only bands. The error bars on the data points illustrate the range in flux

from the calibration uncertainties. The 450 µm band is included for comparison; it was not used

in the fitting.
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Figure 9 shows the distributions of temperature and β for the Filtered Case. These plots

highlight the change in absolute value of β between the H+850 and H-only fits. For the mean β

distribution (Figure 9b), the H-only β distribution peaks at β ≈ 2.5 and the H+850 distribution

peaks at β ≈ 2.0. For both the H-only and H+850 fits the 1 σ standard deviation errors based on

the calibration uncertainties alone are σT . 1.5 K for temperature and σβ < 0.3 for β. Note that

these errors are typically less than the errors from the χ2 fitting (Figure 7), suggesting that the

constraints on the SED-fitting are more significant than uncertainties in the flux calibration. For

larger calibration uncertainties at 850 µm, however, the uncertainties in temperature and β due to

the calibration becomes more significant. For example, if we were to assume 50% calibration errors

at 850 µm, the 1 σ standard deviation errors would become σT . 3.7 K and σβ . 0.8, and thus,

we cannot constrain well either parameter. Therefore, long wavelength observations can improve

the SED-fitting only if the calibration uncertainties are relatively low, as achieved with SCUBA-2

at 850 µm.

Fig. 9.— Histograms of (a) temperature and (b) β for the B1 complex. For comparison, the

temperature and β values correspond to SED fits when the SCUBA-2 850 µm band is included

(solid lines) or excluded (dashed lines) with the filtered Herschel maps (Filtered Case). In both

cases, we only consider pixels with ≥ 10 σ fluxes in all five bands.

Alternatively, with the SCUBA-2 Ratio Case, we can determine β if the temperature is known

(see Equation 2). For simplicity, we assumed fixed temperatures across the entire map and for

comparison with the Filtered Case, we used the 36.3′′ convolved maps at 450 µm and 850 µm. Ad-

ditionally, we generated 1000 random calibration correction factors within a Gaussian distribution

assuming a calibration uncertainty of 50% at 450 µm and 10% at 850 µm. Figure 10 compares

the resulting mean β distributions from the SCUBA-2 Ratio Case for the assumed temperatures of

T = 9 K, 11 K, and 13 K. While the β distributions appear to have very similar structures, the dis-

tributions themselves are clearly shifted with respect to one another. Using a Kolmogorov-Smirnov

test, the β distributions at T = 9 K and T = 11 K agree within 90% for a shift of ∆β ≈ 0.4, and the

distributions at T = 11 K and T = 13 K agree within 90% for a shift of ∆β ≈ 0.27. Furthermore,

the high calibration uncertainty at 450 µm results in a standard deviation error of σβ ≈ 0.55 across
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the B1 clump regardless of the temperature.

Fig. 10.— Distributions of β for fixed temperatures of 9 K, 11 K, and 13 K, and using Equation 2

from the SCUBA-2 Ratio Case.

SCUBA-2 observations alone cannot constrain both β and temperature. If the temperature

or β across a cloud is roughly constant, then we can probe relative variations using the SCUBA-2

Ratio Case. For regions with known prestellar and protostellar objects like the B1 complex, it is

not ideal to assume constant temperatures or β indices, however. For example, Figure 9 reveals a

∼ 6 K variation in temperature within the central B1 region. A difference of 6 K in temperature

results in a significant uncertainty of ∆β ≈ 0.86. Similarly, when we fixed β, we found that the

temperature distributions shifted by ∼ 2 K between β = 1.5, 2.0, and 2.5 (see Figure 4). Thus,

Figures 4 and 10 illustrate the caution needed for analyses which assume either a fixed β or a

fixed temperature. In either case, a slight increase or decrease in the fixed parameter can result in

significant differences in the determined quantity.

Additionally, in Figure 8 the SEDs show that the observed 450 µm fluxes are roughly 15%

greater than those predicted from the SED fits, suggesting that the observed 450 µm emission

towards these pixels is relatively much brighter than the filtered 500 µm emission. Figure 11 shows

the fractional flux increase in the observed 450 µm data over the 450 µm emission predicted from

the best-fit SEDs from the Filtered Case. The ratio of observed 450 µm emission to predicted 450

µm emission peaks around 10-15%. (As described in Appendix B, we believe this “excess” at 450

µm is not due to CO (6-5) contamination.) As a test, we scaled the 450 µm emission down by

12.5% and found that β decreased by ∆β ≈ 0.18 based on a Kolmogorov-Smirnov test. These

relative fractions may indicate that the 450 µm map does not trace the same material as the 850

µm map, e.g., due to different spatial scales filtered-out in the reduction or due to temperature

variations along the line of sight. Alternatively, these variations could be related to uncertainties

in the 450 µm fluxes themselves, e.g., from atmospheric variabilities or the beam pattern. Since we

cannot assume a single line-of-sight temperature for the B1 clump and the 450 µm emission itself is

very uncertain, we believe the SCUBA-2 Ratio Case method is less robust than the Filtered Case
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method.

Fig. 11.— Fractional differences between the observed and predicted 450 µm emission for pixels

with bright (> 10 σ) observed 450 µm fluxes. These results correspond to the emission predicted

from SED fits following the Filtered Case for the H+850 bands.

4.2. β Using Unfiltered Maps

For the next two techniques, we determined β after attempting to recover the missing large-

scale emission filtered-out in the SCUBA-2 bands. In Figure 6, the median filtered-out large-scale

emission at 250 µm corresponds to ∼ 1 Jy beam−1 at 18′′ resolution (or ∼ 3 Jy beam−1 at 36.3′′

resolution). This extended emission peaks towards the central B1 cluster, with additional emission

along the south-west filament and to the north. We could naively expect a similar large-scale

distribution at 450 µm and 850 µm.

We considered two methods to recover the missing extended emission. The first method,

hereafter the Offset Case, seeks to identify the missing large-scale emission at 850 µm using a grid

of incremental offset values that were added to the observed 850 µm map to represent the filtered-

out extended emission. We adopted the flux increment that best fit the overall SED to represent

the missing emission. For more details, see Appendix D.1.

The second method, hereafter the Spatial Factor Case, assumes that the observed 450 µm

and 850 µm data correspond to the same spatial scales and that both bands are missing the same

fraction of extended emission. For the Spatial Factor Case, we modify the dusty black body function

in Equation 1 as:

Iν = κν0(ν/ν0)
βBν(T )ΣFSF (3)

where FSF is a scaling factor corresponding to the fraction of recovered emission. For the Herschel
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bands, FSF = 1 (i.e., 100% of the emission is recovered), whereas for the SCUBA-2 bands, FSF ≤ 1,

and we assume FSF is identical for both the 450 µm band and the 850 µm band. For more details,

see Appendix D.2.

Recovering the large-scale emission is very uncertain, and we found large uncertainties in our

analyses. For the Offset Case, we found uncertainties of 20-50% for the missing extended emission

alone, suggesting that we cannot constrain well the diffuse emission. Thus, the Offset Case cannot

be used to constrain β from SED fits. For the Spatial Factor Case, the 450 µm emission is less certain

due to a larger calibration uncertainty of 50% and as Figure 11 demonstrates, the observed 450

µm emission tends to be 10-15% brighter than the predicted (filtered) emission. Since the scaling

factor is very dependent on both the 450 µm and 850 µm fluxes, the large flux uncertainties at 450

µm will greatly affect the final results. Finally, based on the filtered Herschel maps (see Section

4.1), the fraction of emission lost in the filtering appears to vary considerably with wavelength.

Therefore, FSF may actually vary somewhat between the 450 µm and 850 µm bands. For the β

results using these two techniques, see Appendix D.1 and Appendix D.2.

4.3. Comparison of the Techniques

The Filtered Case is the most robust technique to combine SCUBA-2 data with PACS and

SPIRE data. For the Filtered Case, we have demonstrated that the 850 µm band makes a sig-

nificant improvement to the uncertainties associated with SED fitting (see Figure 7) and impacts

the absolute value of β. For example, we determined that the H-only results generally underesti-

mated β towards the dense cores and overestimated β along the filament. These observations are

in agreement with a recent study by Kelly et al. (2012), which suggests that SED fitting through

the minimization of χ2 may be biased towards lower β values for prestellar cores.

Using the Filtered Case technique, we find β ≈ 1.6 − 2 for the dense cores with the lowest

values towards the B1-c core. In addition, we find β ≈ 2 along the filament and β & 2 towards

the moderately dense clump material. Similarly, Friesen et al. (2005) found β ≈ 1.3 − 2.1 using a

Fourier Transform Spectrograph at 350 GHz to observe several hot molecular cores. Other studies,

however, have identified larger β values towards dense cores. For example, Schnee et al. (2010)

found β ≈ 1.7 − 2.7 towards a starless core using mid-infrared and (sub)millimeter continuum

observations, and Shirley et al. (2011) found β ≈ 2.2− 2.6 towards a young protostellar core using

radiative transfer models with SCUBA flux ratios and near-infrared colour excesses. Additionally,

Arab et al. (2012) found β ∼ 2 values towards the cooler (∼ 40 K), denser regions of the Orion bar

and β ∼ 1.1 towards the warmer (∼ 70 K) regions using Herschel and Spitzer observations. Thus,

a larger study of dense cores and their environments with the same set of observations is necessary

to understand these differences in β.

With the remaining three techniques, β is unclear. For the SCUBA-2 Ratio Case (Section 4.1),

a minor variation in temperature greatly affects the measure of β; for the Offset Case (Section 4.2
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and Appendix D.1), the Herschel calibration uncertainties result in very uncertain 850 µm offsets;

and for the Spatial Factor Case (Section 4.2 and Appendix D.2), the 450 µm band is very uncertain,

and thus, causes a wide range of plausible scale factors. Additionally, it is not clear that the 450

µm and 850 µm observations trace the same scales. Both the SCUBA-2 Ratio Case and the Spatial

Factor Case require the 450 µm band.

In Section 5, we discuss the results for the Filtered Case only. For comparison, we will consider

both the H-only and H+850 results.

5. Discussion

5.1. Submillimeter Dust Opacity and Dust Masses

We are interested in comparing the dust opacity between the dense cores and the ambient

clump material. In Equation 1, we assumed that the dust opacity follows a power-law distribution

for a reference opacity, κν0 , at 1000 THz (300 µm). Ideally, we would want to fit κν0 as well as

β. According to Ossenkopf & Henning (1994), the dust opacity at 300 µm increases by a factor of

. 2 for coagulated dust grains with icy mantles (this effect is more significant for grains without

icy mantles). More recently, Martin et al. (2012) and Roy et al. (2013) used submillimeter dust

emission and near-infrared extinction maps to constrain the submillimeter dust and gas opacity at

250 µm for β = 1.8. Both studies found a steady increase in dust opacity (by factors of ∼ 2 − 4)

towards colder temperatures, suggesting that the dust opacity should not be fixed at 300 µm.

Unfortunately, we cannot separate out the degeneracy of κν0 with column density in B1 at

this time. Although κν0 can be constrained by independent measurements of column density, we

are interested in changes to the dust over small scales (i.e., between dense cores), and as such we

cannot utilize extinction maps (at ∼ 2′ resolutions) as done by Martin et al. (2012) and Roy et al.

(2013). Therefore, while we cannot measure absolute values of κnu with our observations, we can

probe the variations in κnu due to our differences in β. Thus, we focus on the relative variations in

κnu with the H+850 data and the significance of assuming β = 2, as with most Herschel analyses

of molecular clouds.

Figure 12 shows the dust opacity at 850 µm relative to the opacity at 300 µm for the Filtered

Case. This measure does not assume any prior knowledge of the dust opacity at either 300 µm or

850 µm. Thus, Figure 12 demonstrates that the relative dust opacity at 850 µm increases by a factor

of 2− 3 between the moderately dense clump material and the dense B1-c core, which suggests the

grains are evolving. Dust coagulation alone can increase the submillimeter dust opacity by factors of

4-5 at 850 µm, though this increase is enhanced for bare dust grains and suppressed with surface ices

(Ossenkopf & Henning 1994). Alternatively, Ossenkopf & Henning (1994) noted that moderately

elliptical dust grains or higher abundances of metal compounds can increase submillimeter dust

opacities at 850 µm by factors of a few. Without an independent measure of the dust opacity or
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column density, however, we cannot directly measure the absolute variations in dust opacity. Thus,

further observations of the clump chemistry and dust are necessary to help determine the causes

of these opacity variations.

Fig. 12.— Distribution of the dust opacity at 850 µm relative to the dust opacity at 300 µm using

the Filtered Case. The dashed line shows the relative dust opacities for β = 2.

To measure column densities and masses, however, we must assume a dust opacity law. Thus,

we adopted a dust opacity per unit dust mass of κν,d = 10 (ν/1 THz)β cm2 g−1, following our

assumed dust and gas opacity, κν0 = 0.1 cm2 g−1 at 1 THz (300 µm), and a dust-to-gas mass ratio

of 100. Figure 13 shows the resulting map for the dust opacity at 850 µmand the distribution of

best-fit temperatures from the Filtered Case using the H+850 bands. Based on our 1 σ uncertainties

for β, we find that the uncertainties on κν,d are 10−30%, where the largest errors are found towards

the compact cores. These results are only valid if the dust opacity is kept fixed at 300 µm. From

the temperature map, B1-a, B1-c, and B1-d show internal heating from protostellar sources. B1-b

contains two first hydrostatic core candidates (see Pezzuto et al. 2012), and we see an indication of

moderate heating towards these cores (at 36′′ resolutions, we cannot separate the two components).

The uncertainties on the dust temperatures are predominantly σT < 1.5 K with the largest errors

towards B1-c. The dust temperature is ∼ 10.5 K and ∼ 12 K for B1-b and B1-d, respectively, which

are similar to the NH3-derived kinetic gas temperatures of ∼ 11.5 K reported in Rosolowsky et al.

(2008). The kinetic gas temperature of B1-c, however, is ∼ 12.4 K (Rosolowsky et al. 2008), which

is lower than the observed dust temperatures of ∼ 15 K. This difference in temperature suggests

that the NH3 gas is tracing a different region of the core than the dust (e.g., see Matthews et al.

2006).

Figure 14 compares the N(H2) column densities measured towards the B1 cores for (a) the

H+850 bands and (b) the H-only bands with β = 2 (i.e., using the method employed by most

Herschel GBS papers). The gas column density is determined following Equation 1 and assuming
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Fig. 13.— Results from the Filtered Case showing (a) the dust opacity at 850 µm and (b) the dust

temperature. The dust opacity map assumes κν,d = 10 cm2 g−1 at 300 µm and that all variations

in β manifest themselves as changes in κν,d at 850 µm.

κν = 0.1 cm2 g−1 at 300 µm (κν,d = 10 cm2 g−1 for a gas to dust ratio of 100). Table 2 lists

the total (gas and dust) mass estimates for the B1-b, B1-c, and B1-d cores using these column

density maps. For simplicity, we calculated the masses associated with 5 × 5 pixel boxes around

the cores. For the Herschel-only data with β = 2, we underestimate the columns of mass towards

B1-b by ∼ 10% and overestimate the columns of mass towards B1-c by ∼ 30% (the masses towards

B1-d agree within 1%). Since we find β ≈ 2 for much of the B1 clump (see Figure 9), assuming

β = 2 with Herschel-only data appears to provide a decent first look at the mass distribution

of dense cores and the column density of extended cloud emission. Nevertheless, for regions that

deviate from β = 2, such as B1-c (β ≈ 1.6− 1.7), we find that the SED-fitting to the Herschel-only

bands with β = 2 yields more significant mass uncertainties (∼ 30%). Therefore, accurate core

masses or column densities require direct measurements of β. For example, assuming β = 2 could

affect our ability to classify cores as dynamically stable or unstable, to properly compare the core

mass function to the stellar initial mass function, and to calculate relative (to H2) abundances of

molecules.
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Fig. 14.— Column density maps using the filtered Herschel data. For panel (a), we used the H+850

bands and the β and temperature results from the Filtered Case, and for panel (b) we used the

H-only bands and fixed β = 2. The black boxes correspond to our mass measurements.

Table 2: Core Mass Estimationsa

Core B1-b B1-c B1-d

H+850 15 M⊙ 5 M⊙ 9 M⊙

H-onlyb 13 M⊙ 6 M⊙ 9 M⊙

a Masses measured from the column density maps using the Filtered Case and assuming κν = 0.1 cm2 g−1 at 300

µm. For the H+850 case, the fixed dust opacity at 300 µm is the greatest source of uncertainties, so these masses

are only accurate within a factor of ∼ 2. For the H-only case, forcing β = 2 increases the uncertainties in the masses

by, at most, an additional factor of two.
b Masses measured from filtered H-only maps assuming β = 2.

5.2. Temperature and β

In the literature, the dust emissivity index is often assumed to be β = 2 based on studies of

the dielectric functions of graphite and silicate dust grains (e.g., Draine & Lee 1984). Deviations

from β = 2 can arise from processes such as grain growth and the accumulation of icy mantles. For

example, β < 2 has been attributed to the coagulation of bare dust grains (e.g., Schwartz 1982;

Ossenkopf & Henning 1994; Lis et al. 1998) and Beckwith & Sargent (1991) attributed very low β
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values (∼ 1) towards protostellar disks to grain growth. Large values of β (e.g., > 2), however,

are harder to interpret. Thick icy mantles can steepen the dust opacity slope at submillimeter

wavelengths, but this appears to be a lesser effect than dust coagulation (e.g., Ossenkopf & Henning

1994). Unfortunately, most dust models do not predict dust opacities with β > 2 (Shirley et al.

2011). Meny et al. (2007)) found that β > 2 may arise due to complex interactions between

electromagnetic radiation and the disordered mass and charge structures of amorphous dust grains.

Thus, β highly reflects the dust grain properties, and it is important to understand the relationship

between β and the surrounding environment.

Nevertheless, the relationship between β and temperature is not well understood. Many studies

that fit submillimeter SEDs to determine β use the minimization of χ2 technique as employed here.

Several recent studies, however, have suggested that the minimization of χ2 produces unclear

results due to the degeneracy between β and temperature, especially towards the SED peak (e.g.,

Veneziani et al. 2010; Kelly et al. 2012). Since the Herschel bands span the SED peak for cold

star forming regions, the method of SED fitting becomes significant. In particular, Kelly et al.

(2012) demonstrated that the χ2 minimization technique gives different temperature and emissivity

values than a more detailed Bayesian approach. In addition to the fitting technique, an artificial

anti-correlation between β and temperature can also be introduced by instrumental errors (e.g.,

Shetty et al. 2009a) or temperature variations along the line-of-sight (e.g., Shetty et al. 2009b;

Schnee et al. 2010).

Despite these uncertainties, several large studies have found strong inverse relationships be-

tween β and temperature over large areas and a wide range of temperatures. These studies

include the PRONAOS experiment (e.g., Dupac et al. 2003), the Herschel Hi-Gal project (e.g.,

Paradis et al. 2010), and early science results from Planck (e.g., Planck Collaboration et al. 2011).

In particular, Paradis et al. (2010) employed two techniques to their SED-fitting, a minimization of

χ2 method and a maximum likelihood algorithm. They found an inverse β-temperature relationship

with both methods.

In Figure 7, we find the uncertainties on our values of β and temperature are such that small

degeneracies may persist between any two values determined, and so any anti-correlation seen

between β and temperature may be artificial. Thus, despite our improved constraints to determine

β with the 850 µm data, the SED fits may still retain some degeneracies. From our data, we

believe the causes of any degeneracy are likely dominated more by our use of the χ2 technique

rather than the noise or single component line-of-sight-temperature assumption. For example, we

only selected very bright emission, so issues with noise will be negligible. Additionally, our analysis

used filtered observations and thus, the line-of-sight temperature is less affected by warm diffuse

material. The protostellar cores, however, will have warm central objects and cool outer envelopes,

and thus assuming a single line-of-sight temperature towards these objects may induce a stronger

degeneracy between β and temperature. Nevertheless, with only five bands in the submillimeter

domain, we cannot apply a multiple temperature component fit. Thus, with our analyses, we

cannot make any robust conclusions regarding any physical β-temperature relationship.



– 28 –

5.3. The Addition of SCUBA-2 Data

Figure 7 demonstrates that the SED fits are much improved with the inclusion of 850 µm

observations since the Herschel data alone are unable to constrain β for cold star-forming regions.

Since the 850 µm emission is more dependent on β (see Figure 5), the SCUBA-2 observations have

a significant influence on the best-fit SEDs and the determined values of β. Therefore, this work

demonstrates that the SCUBA-2 850 µm data (or equivalent long wavelength observations) are

essential for constraining SED fits.

The SCUBA-2 450 µm band has superior resolution (∼ 9′′) to the Herschel data at 160− 500

µm presented here (see Figure 2), which is necessary for deblending compact sources to obtain more

accurate flux measurements. Additionally, with the 450 µm band, we can measure dust properties

at higher resolutions. For example, in this paper, we convolved our data to a common resolution of

36.3′′ (corresponding to the 500 µm beam), but with the SCUBA-2 450 µm band, we could exclude

the SPIRE 500 µm band and convolve to a common resolution of 25′′ (the 350 µm beam), and find

the dust temperature, opacity, and column density over smaller scales, thereby probing variations

across cores themselves.

Unfortunately, the 450 µm emission has significant uncertainties. For example, in Figures 8

and 11, we see that the observed 450 µm emission is roughly 10− 15% brighter than the predicted

emission. Additionally, the 450 µm band is more susceptible to atmospheric variability. Therefore,

we do not use the 450 µm band at this time, but note that with better calibrations and atmospheric

modeling, the 450 µm band will become more robust and higher resolution analyses will become

possible.

5.4. High Resolution Extinction Maps

In Section 5.1, we assumed a fixed dust opacity at 300 µm to measure column densities and

masses. To circumvent fixing κν (300 µm), we need to measure the dust opacity or column density

through an independent method, such as from extinction maps. Since we are interested in measuring

changes in dust opacity over small scales, we need high resolution (< 1′) extinction maps. Such

observations would greatly improve the analysis in this paper.

Typically, extinction maps have resolutions of & 2′, which are too coarse to probe changes in

dust opacity between dense cores and the ambient clump. Nevertheless, high resolution (∼ 20′′)

extinction maps are possible with deep near-infrared observations (e.g., Román-Zúñiga et al. 2010).

Therefore, future studies of dust opacity using Herschel and JCMT observations will greatly benefit

from such high resolution extinction mapping.
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6. Summary

We have presented four unique methods to measure the dust emissivity index, β, from a com-

bination of Herschel PACS+SPIRE and SCUBA-2 observations. Of these methods, the Filtered

Case, where the Herschel maps are filtered using the SCUBA-2 reduction pipeline and β is deter-

mined from SED-fitting to the filtered Herschel+850 bands is the most robust. Our main goal was

to examine whether or not the SCUBA-2 850 µm band made significant improvements to the SED

fits and the relative differences in β (or κν,d) that arise from those fits. We summarize our main

findings as follows:

1. The Herschel-only data do not constrain the SED fits well enough to allow simultaneous

fitting of β and temperature towards cold clouds. In Figure 7, we demonstrated that long

wavelength observations are necessary to improve SED fitting to the Herschel bands, provided

that the long wavelength observations have relatively low flux errors. The 850 µm SCUBA-2

band improves our ability to constrain β by a factor of ∼ 2 and our ability to determine

temperature by ∼ 40%. Additionally, we find significant variations in β when the 850 µm

data are included, i.e., we find β ∼ 1.6 towards the B1-c core and β ∼ 2.0 towards the

filament.

2. Based on our SED-fitting, we find the dust opacity at 850 µm varies by factors of 2−3 relative

to the dust opacity at 300 µm, with the highest opacities towards the dense cores, particularly

B1-c. Therefore, the B1-c core may represent a region where the dust grains have coagulated

with some icy mantles, have moderate elliptical shapes, or have higher abundances of metal

compounds (Ossenkopf & Henning 1994). Our observations cannot constrain the source of

the opacity variations. Future studies with high resolution extinction mapping are needed to

probe the dust opacity in more detail.

3. With our analysis, we cannot make robust conclusions about the β-temperature relationship.

We found that both β and temperature are constrained better with the inclusion of 850

µm observations (see Figure 7), yet the degeneracy between these parameters is not entirely

removed. While this degeneracy likely arises from using the minimization of χ2 technique

to fit the SEDs, there can be additional degeneracies due to assuming a single component

line-of-sight temperature.

4. Assuming a fixed β = 2 value with the Herschel bands alone affects the measured best-fit

temperature by . 2 K if β = 1.5 or β = 2.5. We found that the core masses as measured

with the Herschel-only bands and with β = 2 varied by . 30% compared to the results using

Herschel+850 bands and the same assumptions for the dust opacity (κν0 = 0.1 cm2 g−1 at

300 µm). Thus, the Herschel-only bands provide a decent first look at the core masses for an

assumed value of β = 2. Nevertheless, to obtain more accurate core masses, i.e., to measure

the dynamical stability of dense cores or the core mass function, long wavelength data and

high resolution extinction maps are necessary.
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This analysis of the B1 clump with PACS+SPIRE+SCUBA-2 represents the first of many

future analyses with these instruments. The SCUBA-2 observations are an excellent complement

to the Herschel bands, providing a much stronger constraint to SED-fitting and derivations of β.

Herschel and long wavelength observations such as those from SCUBA-2 have only recently provided

the wavelength and spatial coverage necessary to make these measurements. Future analyses using

high resolution extinction maps are also important to probe the changes in κν,d with environment.
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V., Molinari, S., Motte, F., Nguyen-Luong, Q., Peretto, N., Pestalozzi, M., Polychroni, D.,

Rygl, K. L. J., Saraceno, P., Schneider, N., Spinoglio, L., Testi, L., Ward-Thompson, D., &

White, G. J. 2012, A&A, 547, A54

Pilbratt, G. L., Riedinger, J. R., Passvogel, T., Crone, G., Doyle, D., Gageur, U., Heras, A. M.,

Jewell, C., Metcalfe, L., Ott, S., & Schmidt, M. 2010, A&A, 518, L1

Planck Collaboration, Abergel, A., Ade, P. A. R., Aghanim, N., Arnaud, M., Ashdown, M., Au-

mont, J., Baccigalupi, C., Balbi, A., Banday, A. J., & et al. 2011, A&A, 536, A25

Poglitsch, A., Waelkens, C., Geis, N., Feuchtgruber, H., Vandenbussche, B., Rodriguez, L., Krause,

O., Renotte, E., van Hoof, C., Saraceno, P., Cepa, J., Kerschbaum, F., & et al. 2010, A&A,

518, L2+
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A. SCUBA-2 Filtering

Since SCUBA-2 is a ground-based detector, we filter out large-scale astronomical emission in

the process of removing the emission from a bright and variable atmosphere. Thus, SCUBA-2

is sensitive only to spatial scales where emission is fully recovered. To determine the largest such

spatial scale, we introduced artificial Gaussian sources of various sizes ranging from 1′ to 7.5′ FWHM

to the original SCUBA-2 data, and then ran these modified maps through the pipeline. Since the

This preprint was prepared with the AAS LATEX macros v5.2.
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SCUBA-2 pipeline determines which map pixel is covered by which bolometer at any given time,

the extra signal corresponding to the Gaussian sources is simply added to the bolometer timeseries.

Following our reduction process from Section 2.2, the smaller Gaussians were fully recovered, e.g.,

Gaussians of 1′ or 2.5′ sizes. Larger Gaussians, however, were only partially recovered or fully

filtered out. For example, peak fluxes for ∼ 5′ Gaussians were only 70% recovered. Based on these

tests, the SCUBA-2 observations appear to fully recover objects on size scales . 2.5′.

Conversely, Herschel is a space-based observatory, and thus, the PACS+SPIRE data are unaf-

fected by atmospheric emission. For our HARP CO (3− 2) line observations, we used an emission-

free off position to remove the atmospheric contributions. Thus, both PACS+SPIRE and HARP

observations are unfiltered, and such data cannot be directly compared to the SCUBA-2 maps.

One simple solution is to filter out these large-scale structures, such that the Herschel continuum

and HARP line observations are sensitive to the same spatial scales as the SCUBA-2 data.

We filtered out the large-scale emission from the CO (3 − 2) and Herschel maps using the

SCUBA-2 reduction pipeline in the same manner as the artificial Gaussian sources. We created

“artificial maps” by adding the unfiltered CO (3 − 2) integrated intensity map (in Jy beam−1) or

the Herschel data to the SCUBA-2 bolometer timeseries by adjusting the original signal observed at

every bolometer to include the emission observed by HARP, PACS, or SPIRE. Using these artificial

signals, we repeated the SCUBA-2 reduction as given in Section 2.2 four times, once for each of

the four Grade 1 observations. Finally, we combined the products into a single mosaic. Since this

mosaic also includes the original 850 µm data, we subtracted out the reduced 850 µm map to leave

behind the filtered version of the other data (see Figure 6).

B. CO Line Contamination

The CO (3-2) line transition coincides with the 850 µm SCUBA-2 band, and thus, will contam-

inate the continuum emission. Significant CO (3 − 2) contamination is mostly identified towards

outflows and highly energetic regions such as HII regions, where the contamination levels can domi-

nate (> 50%) the total continuum emission (e.g., Davis et al. 2000; Tothill et al. 2002; Drabek et al.

2012). Although B1 is a low-mass star-forming complex, and such regions generally contain weaker

CO (3 − 2) line emission (Drabek et al. 2012), this clump contains several protostellar sources

driving outflows (Bally et al. 2008).

To evaluate the CO (3 − 2) contamination, we determined the contribution from the line

flux over the entire SCUBA-2 850 µm passband. Following Drabek et al. (2012), the line flux at

frequency ν0 across the continuum band is,

Fν0

mJy beam−1 =
2kν30
c3

gν0,line
∫

gν,contdν
Ω

∫

TMBdv, (B1)

where k is the Boltzmann constant, c is the speed of light, Ω is the telescope beam, TMB is the main

beam temperature of the line, gν0,line is the transmission of the submillimeter filter at the frequency
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of the molecular line (ν0), and gν,cont is the transmission profile of the entire submillimeter filter.

Drabek et al. (2012) adopted a “conversion factor” as,

C

mJy beam−1 (K km s−1)−1
=

2kν30
c3

gν0,line
∫

gν,contdν
Ω. (B2)

The SCUBA-2 filter profile, gν,cont, varies significantly with atmospheric conditions. For example,

the filter response is best for dry conditions (τ225 < 0.05) and can drop by more than 50% in wet

conditions (τ225 > 0.12). We used the S2SV observations made in very dry conditions, τ225 < 0.05,

resulting in C ≈ 0.63 mJy beam−1 (K km s−1)−1 (Drabek et al. 2012). This factor, however,

assumes that the beam of SCUBA-2 at 850 µm is 13.8′′. We have adopted here an effective beam of

14.2′′ (see Section 2.2), which considers the larger error beam. Thus, our conversion factor should

be modified by Ωeff/Ω = 1.06. Therefore, we use

C = 0.67 mJy beam−1 (K km s−1)−1. (B3)

In addition to CO (3−2) line contamination, other (weaker) molecular line emission will contaminate

the continuum bands (Drabek et al. 2012). For example, CO (6−5) at 691.473 GHz coincides with

the 450 µm SCUBA-2 band and CO (7−6) at 806.652 GHz coincides with the SPIRE 350 µm band.

Nevertheless, Drabek et al. demonstrated that such high excitation line transitions are generally

negligible compared to the dust emission. For example, the dust emission rises towards shorter

wavelengths as νβ+2 whereas the emission from higher transitions of CO does not rise as steeply.

For example, we do not believe the excess brightness at 450 µm relative to the filtered 500 µm

emission (see Figures 8 and Figure 11) is due to CO (6-5) contamination at 450 µm. Since the CO

(3− 2) line contamination is relatively minor, we can also assume that the contamination from less

abundant molecules (i.e., 13CO or C18O) should be negligible.

C. Herschel Colour Corrections

The PACS and SPIRE fluxes from HIPE7 contain several sources of uncertainty. First, both

instruments have a 10% flux error based on the uncertainties in the calibration. For PACS, flux

calibrations are mainly based on stellar sources and bright asteroids (Poglitsch et al. 2010), whereas

for SPIRE, flux calibrations primarily use Neptune (Griffin et al. 2010). Second, both PACS and

SPIRE calibrations assume that the observed spectral profile follows a ν−1 power-law such that νSν

is flat (Poglitsch et al. 2010; Griffin et al. 2010). For cold molecular clouds (T ∼ 10 K), emission

in the PACS and SPIRE bands will not follow a ν−1 power-law, and thus, colour corrections

are necessary (e.g., see Pezzuto et al. 2012). Furthermore, the spectral colour corrections are not

7The Herschel Interactive Processing Environment (HIPE) is a joint development software by the Herschel Science

Ground Segment Consortium, consisting of ESA, the NASAHerschel Science Center, and the HIFI, PACS, and SPIRE

consortia.
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systematic, and they depend on the SED shape and thus, will vary with frequency, temperature,

and opacity.

Calculating the spectral colour corrections is nontrivial. First, these correction factors require

foreknowledge of the SED profiles. Second, the colour corrections compare the flux from the true

SED profile to the assumed SED profile, both weighted by the filter response function. For SPIRE,

the beam solid angle varies with wavelength, resulting in more power at longer wavelengths. While

this effect is insignificant for point sources, extended sources (i.e., objects that uniformly fill the

entire beam) will be biased towards longer wavelengths. Thus, colour corrections vary between

point sources and extended objects8. PACS calibration does not differentiate between point sources

and extended sources. Since we are interested in the extended Herschel map structures, we will

adopt the extended colour corrections for SPIRE. We caution that these structures likely do not

fill the filter beam uniformly at all wavelengths, and that these colour corrections represent our

best estimate. For SPIRE, these extended source corrections are generally minor (few percent) and

should not greatly affect our results (Griffin et al. 2010). For PACS, however, the colour corrections

of cold objects can be more significant, particularly at 70 µm (Poglitsch et al. 2010). We do not

include 70 µm emission in the SED fits in this paper, however.

Since the SED profiles are unknown a priori, we found the colour corrections associated with

cold dust emission at temperatures between 10 K and 15 K and dust emissivity indices between 1.5

and 2.5. For PACS, the colour corrections for cold and dusty environments are given in Müller et

al. (2011)9, and we extrapolated those tabulated values to identify the colour corrections associated

with our adopted ranges of temperature and beta. For SPIRE, we calculated the colour corrections

by integrating model SEDs weighted by the relative spectral response function (RSRF)10 of each

band (e.g., see Pezzuto et al. 2012). We scaled the RSRF profiles such that an SED with a ν−1

profile would yield colour corrections of 1.0 (i.e., what was initially assumed in the calibration).

Assuming various power-law profiles, our colour corrections agree with the corrections in the SPIRE

Observers’ Manual to within a few percent. For both PACS and SPIRE, we adopted the midpoint

between the maximum and minimum colour correction, taking the difference of the average value

with respect to the range of accepted values as our uncertainty. Table 1 lists our adopted colour

corrections for each wavelength. We caution that these values are only valid for T ≈ 10− 15 K and

β ≈ 1.5 − 2.5.

8For additional information, see the SPIRE Observers’ Manual (2011), HERSCHEL-DOC-0798, v2.4,

http://herschel.esac.esa.int/Docs/SPIRE/pdf/spire om.pdf

9PACS Photometer Passbands and Colour Correction Factors for Various Source SEDs, PICC-ME-TN-038, v1.0,

http://herschel.esac.esa.int/twiki/pub/Public/PacsCalibrationWeb/cc report v1.pdf

10For extended emission, the RSRF profile is multiplied by λ2 to account for the differences in the beam size

between the short wavelength end and the long wavelength end of the filter. For more details, see the SPIRE

Observers’ Manual.

http://herschel.esac.esa.int/Docs/SPIRE/pdf/spire_om.pdf
http://herschel.esac.esa.int/twiki/pub/Public/PacsCalibrationWeb/cc_report_v1.pdf
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D. Measuring β from Unfiltered Maps

In this Appendix, we outline the techniques for measuring β while recovering the missing large-

scale structure in the SCUBA-2 maps. These techniques are the Offset Case (Appendix D.1) and

the Spatial Factor Case (Appendix D.2). We highlight the method and discuss the uncertainties in

the determined values of β.

D.1. Offset Case

We use the Herschel data to recover the large-scale structure at 850 µm. We assume that

the missing large-scale emission corresponds to scales > 2.5′, and thus, we do not expect large

variations in the extended structure for scales < 2.5′. The method is outlined below and in Figure

15:

1. For each pixel, we select a 9× 9 pixel subregion (corresponding to ∼ 2.1′ for 14′′ pixels). The

extended emission should not vary over this subregion. See the top panels of Figure 15.

2. We create a grid of 850 µm flux offsets ranging from 0 Jy beam−1 to 1.5 Jy beam−1 in incre-

ments of 0.03 Jy beam−1 to represent the filtered-out emission at 850 µm.

3. For each 850 µm offset, we fit the 160− 850 µm emission from all pixels within the 9× 9 pixel

subregion.

4. We total the individual χ2 measures across the entire subregion for each estimation of the 850

µm offset. If the 850 µm offset is close to the filtered-out extended emission, the total χ2 will

be low, and if the 850 µm offset differs from the true extended emission, then the total χ2

will be high.

5. For the central pixel in the subregion, we adopt the 850 µm offset value that corresponds to

the minimum total χ2. For simplicity, we fit a parabolic function to the distribution of total

χ2 with offset. See the bottom panels of Figure 15.

Figure 15 illustrates our technique. The top panels show two example subregions with 9 × 9

pixel boxes used to measure the offset at the marked positions towards a pixel in B1-a and the

south-west filament. For each estimate of the 850 µm offset ranging from 0 Jy beam−1 to 1.5

Jy beam−1, we found the best-fit SEDs across these subregions, and then summed the χ2 values

from all 81 pixels. The bottom panels show the distributions of total χ2 with 850 µm offsets for

our two example subregions. As expected, when the 850 µm offset is greatly underestimated or

overestimated, the total χ2 is large. We used parabolic fits to identify the offset corresponding to

the minima. For simplicity, Figure 15 does not include the 10% calibration uncertainties for each

instrument.
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Fig. 15.— Technique to measure the missing 850 µm emission. Top: Two examples of 9× 9 pixel

subregions centered on (a) B1-a and (b) the filament. For a given subregion, the SEDs of each pixel

are fit for a range of 850 µm offset values from 0− 1.5 Jy beam−1. Then, for each offset estimate,

we sum the individual χ2 measurements from every best-fit SED in the subregion. Bottom: The

relative total χ2 measure at each offset for the two example subregions. The lowest χ2 value (χ0) is

determined from a parabolic fit to a set of values (shown in blue) near the distribution minimum.

The 850 µm offsets corresponding with these minima are given in the bottom right corners along

with the observed emission at 850 µm (S850).

Figure 16 shows the range of best-fit 850 µm offsets within the 10% calibration uncertainties

for the two pixels highlighted in Figure 15. The range of acceptable offsets appears fairly broad,

suggesting that this technique does not constrain well the missing 850 µm large-scale emission and

these uncertainties overwhelm the uncertainties of the observed 850 µm data (10%). Applying 1000
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random calibration correction factors to each subregion (effectively 81 SEDs per increment) and

each estimated 850 µm offset (50 possible increments) is computationally expensive. Therefore, we

sampled a subset of 10 pixels and found that the 1 σ standard deviation errors in the mean offsets

are 20− 50% of the respective offset measures.

Fig. 16.— Range of best-fit 850 µm offsets. We generated 1000 random calibration correction

factors as described in Section 4, and then found the best-fit 850 µm offset for each set of correction

factors according to our technique (see text and Figure 15). The red curves show a Gaussian fit to

the histograms.

Figure 17 shows the “recovered” 850 µm large-scale emission. The black contours show the

10 σ flux level from Section 4.1. The recovered 850 µm extended emission shows some similarities

and yet some variations with the filtered-out large-scale emission at 250 µm shown in Figure

6. For example, we see the recovered 850 µm large-scale emission peak towards the central B1

region at both wavelengths. Conversely, the recovered 850 µm large-scale emission map appears

more structured, with less extended emission towards the main filament and B1-c. Since the 850

µm emission traces very cold dust, these differences could reflect differences in dust temperature.

Similar differences, however, are not seen between the Herschel bands at 250 µm and 500 µm.

Figure 18 shows the β maps determined from SED fitting with the Herschel+850 bands, where

the 850 µm emission includes the recovered extended structure from Figure 17. We measured β

assuming two extremes, i.e., (a) no uncertainties in the extended emission and (b) 50% uncertainties

in the extended emission. In the bottom panels, we compare the derived β distributions with the

equivalent H-only distribution. Most noticeably, there is a spike at β ≈ 1.8 − 1.9 in Figure 18c,

which is similar to the β ≈ 2 peak seen in Figure 9. Nevertheless, as shown in Figure 18d, this

spike disappears if we assume 50% errors for the 850 µm extended emission, likely due to the 850

µm data being too uncertain to constrain well the SEDs. Indeed, the β distribution with 50% flux

errors in the 850 µm extended structure appears more similar to the H-only distribution, with a

slight offset towards lower β values. Therefore, the Offset Case approach to recover the filtered-out,

large-scale 850 µm emission makes the 850 µm data too uncertain to be an effective constraint.
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Fig. 17.— The recovered diffuse emission at 850 µm obtained with our technique. The black

contours correspond to the 10 σ region in Section 4.1.

D.2. Spatial Factor Case

For the Spatial Factor Case, we attempt to recover the missing large-scale emission by scaling

the 450 µm and 850 µm emission by a spatial filtering factor to account for the missing extended

flux. We assume that the 450 µm and 850 µm observations are missing the same fraction of extended

emission, and then fit the SEDs according to Equation 3, solving for the SED parameters and the

spatial filtering factor, FSF . Since Figure 11 demonstrates that the observed 450 µm emission tends

to be 10-15% brighter than the predicted emission, we adjusted the 450 µm emission downward

by 12.5%. This adjustment appears most reasonable for the brightest parts of the B1 clump (i.e.,

I450 > 5 Jy beam−1), however, and may cause erroneous results outside of these locations.

The top panels of Figure 19 shows the β values and spatial filtering factors derived using

Equation 3. The contours correspond to the regions with I450 > 5 Jy beam−1, and where a scaling

of −12.5% is more reasonable (see Figure 11). Similar to the previous measures of β, we find that

β is lowest towards B1-c. On the other hand, we find β ∼ 2.3 towards B1-a and β ∼ 1.6 towards

B1-b. Additionally, we obtain β ∼ 1.7 along the filament. For the spatial filtering factor, we find

FSF ∼ 0.8 − 0.9 towards the dense, compact cores and FSF ∼ 0.7 towards the filament. Towards

the edges of the 10 σ region, however, the spatial filtering factor drops to . 0.4, suggesting that

most of that emission was removed by the SCUBA-2 reduction pipeline. Figure 19 also shows the

distributions of β and FSF for the > 1 Jy beam−1 and > 5 Jy beam−1 regions. Unsurprisingly, the
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Fig. 18.— Top: Dust emissivity maps assuming (a) no errors for the 850 µm offsets or (b) 50%

errors for the 850 µm offsets (see Appendix D.1). The black contours indicate the region correspond

to > 10 σ from Section 4.1. Bottom: Histograms comparing β distributions from the 850 µm offset

analyses and the distribution obtained from H-only data. We assume no 850 µm offset uncertainties

in (c) and 50% offset uncertainties in (d).

brightest regions (i.e., the locations of the compact objects) correspond with the highest fraction

of recovered emission. Nevertheless, we find a wide range of β values even for the > 5 Jy beam−1

region. Within the calibration uncertainties, we find σβ . 1.0. Therefore, the Spatial Filtering

Case is not a robust method to determine β.
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Fig. 19.— Top: Results from the Spatial Factor Case highlighting (a) the dust emissivity and (b)

spatial filtering factor (FSF ). The dust emission was fit using Equation 3, assuming an equal scaling

factor, FSF for the 450 µm band and the 850 µm band. The contours indicate the region with

I450 > 5 Jy beam−1. Bottom: Histograms for β and spatial filtering factor. The solid lines show

the histograms for the entire region in the upper panels, and the dashed lines show the histograms

for the I450 > 5 Jy beam−1 regions, only. For these analyses, the 450 µm data were scaled by 12.5%

to account for the fractional increase in brightness in the observed maps over the predicted maps

(see Figure 11).
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