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 26 

1 ABSTRACT 27 

The Global Effect (GE) traditionally refers to the tendency of effectors (e.g. hand, eyes) to first land in 28 

between two nearby stimuli – forming a unimodal distribution. By measuring a shift of this distribution, 29 

recent studies used the GE to assess the presence of decision-related inputs on the motor map for eye 30 

movements. However, this method cannot distinguish whether one stimulus is inhibited or the other is 31 

facilitated and could not detect situations where both stimuli are inhibited or facilitated.  32 

Here, we detect deviations in the bimodal distribution of landing positions for remote stimuli, and find 33 

that this bimodal GE reveals the presence, location and polarity (facilitation or inhibition) of history-34 

related and goal-related modulation of the non-selected activity (e.g. the distractor activity in correct 35 

trials, and the target activity in error trials). We tested, for different inter-stimulus distances, the effect 36 

of the rarity of double-stimulus trials, and the difference between performing a discrimination task 37 

compared to free choice.  38 

Our work shows that the effect of rarity is symmetric and decreases with inter-stimulus distances, while 39 

the effect of goal-directed discrimination is asymmetric – occurring only when the distractor is selected 40 

for the saccade – and maintained across inter-stimulus distances. These results suggest that the former 41 

effect changes the response property of the motor map, while the latter specifically facilitates the target 42 

location.  43 

 44 

2 NEW & NOTEWORTHY: 45 

Deviations in landing positions for saccades to targets and distractors reveal the presence, location and 46 

polarity of history-related or goal-related signals. 47 

Goal-directed discrimination appears to facilitate the target location, rather than inhibiting the 48 

distractor location,  49 

Rare occurrence of a choice appears to indiscriminately increase the neural response for both locations. 50 
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3 INTRODUCTION 51 

No matter how efficient a decision-making system, its expression will ultimately be limited by the 52 

mechanisms used to translate decisions into actions. Those mechanisms can be seen as an encryption 53 

key to decipher decision-related signals from motor responses (e.g. eye or hand movement 54 

trajectories). In the context of saccadic eye movements, the Superior Colliculus (SC) is a key motor 55 

interface (a role shared with the Frontal Eye Field), integrating several sources of input to produce 56 

motor signals guiding the eye trajectories (for eye trajectories and SC activity, see, for instance, 57 

Goossens & van Opstal, 2012; White & Munoz, 2011 for a review on SC).  58 

To model the saccadic motor interface it is common to use a race-to-threshold mechanism allied with 59 

a winner-take-all policy (Kopecz 1995; Kopecz and Schöner 1995; Trappenberg et al. 2001; Bompas 60 

and Sumner 2011, 2015, Satel et al. 2011, 2014; Wang et al. 2011; Marino et al. 2012). In these 61 

models, the race-winner both triggers (in time) and selects the destination for the next saccade; 62 

‘when’ and ‘where’ are tightly coupled. Although these modelling efforts help us deduce the temporal 63 

dynamics of decision-related signals, they have not focused on the details of spatial selection (Wang 64 

et al. 2012a). In short, these models are optimized to explain only one side of the coin.  65 

In other models the ‘where’ and ‘when’ processes are more loosely coupled (Findlay and Walker 66 

1999; Arai and Keller 2004; Wilimzig et al. 2006). This low coupling is twofold: 1) the ‘where’ 67 

processes are not necessarily completed when the ‘when’ processes trigger a saccade; 2) all the 68 

activity present on the motor map is taken into account to generate the ‘where to move’ motor 69 

response (except in Findlay & Walker, 1999). The first idea can be illustrated with the saccadic 70 

curvature literature, where the incomplete interplay between target and distractor signals changes 71 

with saccade latency to produce curvature either towards or away from the distractor (McPeek et al. 72 

2003; McSorley 2006). The second point was demonstrated by observing the SC/FEF activity during 73 

saccade curvature (McPeek et al. 2003; McPeek 2006) or by reconstructing saccade trajectories from 74 

activity recorded in the SC (Goossens and Van Opstal 2006). Finally, the low coupling between ‘when’ 75 

and ‘where’ is in line with recent results suggesting there is no winner-take-all in the SC motor 76 

interface in mice (Phongphanphanee et al. 2014). The rationale, then, is that using a model of spatial 77 

interactions with a low coupling between ‘where’ and ‘when’ as a decryption key, saccade metrics 78 

can be used to characterize specific decision-related signals projecting onto the SC. 79 

When two close visual stimuli are presented simultaneously, eye movements directed to one of them 80 

tend to land in between the two stimuli, betraying a spatial interaction (Findlay 1982; the Global 81 
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Effect, Deubel et al. 1984; see also Sailer et al. 2002 for hand movements), illustrated in Figure 1E,F. 82 

This Global Effect (GE) has been the topic of intensive investigation in the eye movement community 83 

to understand how visual stimuli interact in, or upstream of, the saccadic motor interface (Casteau 84 

and Vitu 2012; Tandonnet et al. 2012; Tandonnet and Vitu 2013; Van der Stigchel and Nijboer 2013). 85 

Two main accounts for the GE have been suggested (reviewed in the discussion of Katnani and 86 

Gandhi 2011) and they mainly differ in the order of their operations: the averaging mechanism and 87 

the transformation from SC space to visual/saccadic space.  88 

The first account, which is compatible with winner-take-all models, assumes a merging mechanism 89 

driven by a specific pattern of lateral interactions in the SC (short range excitation, long range 90 

inhibition). Regions of activity induced by two close stimuli would merge into a single zone of activity 91 

located between them, as illustrated in Figure 1A/E (Arai et al. 1994; Kopecz and Schöner 1995; 92 

Wilimzig et al. 2006). To apply a winner-take-all in this case is equivalent to taking the average 93 

position between stimuli in SC space and then project the result to saccadic/visual space. Thus the 94 

landing positions of saccades would form a straight line in SC space, and an outward C-curve in the 95 

visual space (for a more detailed explanation, see Katnani and Gandhi 2011).   96 

The second account suggests that vector averaging occurs when the population activity of the SC is 97 

decoded into a command for the extra-ocular muscles. Regions of activity of any two stimulations 98 

would not merge; the mechanism downstream would simply program the saccade corresponding to 99 

the average of all the saccadic vectors activated in the SC (Lee et al. 1988; Goossens and Van Opstal 100 

2005; Van Opstal and Goossens 2008; Gandhi and Katnani 2011; Katnani et al. 2012), as illustrated 101 

in Figure 1B/F. Note that this vector averaging mechanism has also been used to explain trajectory 102 

curvatures in hand and eye movements (Tipper et al. 1997; McSorley et al. 2004; Walton et al. 2005). 103 

Here, the averaging is applied directly on the saccadic vectors, which means that the average happens 104 

in visual/saccadic space. Thus the landing positions of the saccades would form a straight line in 105 

visual space and an inward C-curve in SC space(for a more detailed explanation, see Katnani and 106 

Gandhi 2011).  107 

 108 
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 109 

Figure 1:Schematic of different mechanisms that could be involved in the spatial decision process. On the 110 

top row, we represent different mechanisms that have been proposed for the saccadic motor map or 111 

downstream machinery. The dark-edged and bright-edged curves stand for the activity of the target and 112 

distractor, respectively. The horizontal dashed line represents a hypothetical saccade initiation threshold. On the 113 

bottom row, we represent the effect of those mechanisms on saccade direction. The arrows represented the 114 

average saccadic vector for each distribution mode while the dots draw the distribution of the saccade 115 

endpoints. The bright-edged and dark-edged disks represent, respectively the distractor and the target on the 116 

monitor screen. The black cross is the fixation stimulus. Panel A/E present the merging mechanism proposed to 117 

explain the unimodal Global Effect. We highlight that this mechanism works on stimuli that are close enough for 118 

their activity to overlap. Panel B/F show the vector averaging mechanism – where the overall activity on the 119 

motor map is integrated by the Long Lead Burst Neurons (LLBN, dark-edged disk) – that has also been suggested 120 

to explain the unimodal Global Effect. We highlight that it would work on remote stimuli. Panel C/G represent a 121 

race-to-threshold mechanism that triggers and generates the saccade corresponding to the first point of activity 122 

to reach the threshold on the motor map. In Panel D/H we suggest that a combination of the race-to-threshold 123 

mechanism (C) and vector averaging (B) would lead to a bimodal Global Effect (see text for more details).  124 

 125 

When two simultaneous visual stimuli are remote rather than close, the landing position of the 126 

saccades tends to form a bimodal distribution. Such bimodal distribution can be explained by a race-127 

to-threshold model combined with a winner-take-all mechanism (Figure 1C/G). In such a model, the 128 

first zone to reach threshold would simply trigger an eye movement to the corresponding stimulus, 129 

as illustrated in Figure 1C. As this system only retains the race winner, this would mean saccades are 130 

directed either to one stimulus or the other; in such models the losing stimulus could affect the 131 

latency (e.g. via lateral inhibition) but not the final destination of the action (Figure 1G).  132 

However, while the GE traditionally refers to circumstances in which a unimodal distribution of 133 

landing positions is observed between two relatively close stimuli (“genuine global effect”, Van der 134 
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Stigchel and Nijboer 2013), there are indications that spatial interactions continue to occur for 135 

bimodal distributions when stimuli are further apart (Arai et al. 2004; Van der Stigchel et al. 2011). 136 

More evidence can be found in the saccade curvature literature in which a correlation between the 137 

initial directions and the landing positions of the saccades was reported (Van der Stigchel et al. 2007) 138 

for inter-stimulus distances that do not evoke unimodal GE. Based on this evidence, it seems that, 139 

even when saccades appear to be successfully directed to one stimulus or another, and do not land 140 

half way in between, close examination of the endpoints reveals some attraction or repulsion to/from 141 

the other stimulus (Figure 1H). This phenomenon, which we will refer to as the bimodal GE, could be 142 

explained neither by a merging nor by a vector averaging mechanism taken alone. The first aim of 143 

our article is to confirm and characterize the bimodal GE, and propose a simple model that can 144 

account for it. 145 

This 'bimodal GE' could be explained by a model that features a low coupling between ‘when’ and 146 

‘where’ to move. It would combine a race-to-threshold mechanism, which triggers the saccade, with 147 

a vector averaging mechanism specifying the spatial destination (Figure 1D). Such a model is similar 148 

to that of Arai and Keller (2004) or Wilimzig et al. (2006). It would have to feature relatively low 149 

mutual inhibition so that the race loser maintains some activity at saccade onset (such as in McPeek 150 

et al. 2003) to influence the saccade metrics through the vector averaging (Figure 1D, and such as in 151 

Goossens and Van Opstal 2005; Van Opstal and Goossens 2008), predicting small deviations of the 152 

endpoints towards the losing stimulus (Figure 1H). This simple model predicts that such deviations 153 

ought to lie on a straight line in visual space and an inward curve in SC space, given that they are not 154 

occurring through merging within the SC. 155 

If the bimodal GE is robust and our logic holds that it reflects residual activity for the loser in an 156 

incomplete decision process, then systematic modulation in bimodal GE should reflect the strength 157 

of this losing activity. This activity should change over time, being stronger at earlier points in the 158 

decision process. It has often been suggested that the relative importance of non-specific signals and 159 

discriminatory signals changes with latency, such that early inaccurate responses are relatively more 160 

driven by non-specific transient visual responses in the SC/FEF drive, while later more accurate 161 

responses are more driven by slower signals carrying more task-relevant information (Bompas and 162 

Sumner 2011, 2015; see also Boehnke and Munoz 2008; Schall et al. 2011). Heeman et al. (2014) 163 

found this relationship in the unimodal GE in a discrimination task: smaller  GE was associated with 164 

longer latency. Our conceptual model for the bimodal GE predicts this same relationship: larger GE 165 

should be associated with shorter latency when the decision process is least complete.  166 
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Once we establish that the bimodal GE is systematically modulated in a way consistent with changing 167 

activity for the losing action option, it becomes a means to test aspects of theory that could not be 168 

tested with the unimodal GE, such as whether distractors are inhibited or targets facilitated during 169 

target selection. This can be achieved in a straightforward paradigm where the participant starts a 170 

trial by fixating a fixation cross and is instructed to make a saccade to peripheral stimuli as soon as 171 

they are presented. Single stimulus trials, in which only one peripheral stimulus is presented, are 172 

interleaved with double stimulus trials, in which two peripheral stimuli are presented. In the latter 173 

condition, the participant faces a choice situation (section 4.3 describes our paradigm in more detail). 174 

The type and context of the double stimulus trials can then be manipulated to assess how endpoint 175 

deviations at distractor and target locations are affected differently by endogenous signals. 176 

Two types of endogenous signals can be fundamentally distinguished: goal-related and history-177 

related (Awh et al. 2012). In the traditional GE paradigm, goal-related signals have been probed by 178 

comparing a discrimination task to a free choice condition – i.e. whether one stimulus is designated 179 

a target, or saccades to either stimulus are allowed. Although early studies failed to demonstrate goal-180 

related effects (Ottes et al. 1985), more recent evidence clearly shows it (Heeman et al. 2014) while 181 

some clinical studies used it to probe the role of FEF in shaping the target discrimination signal (Van 182 

der Stigchel et al. 2013).  Note that Heeman et al. (2014)’s results were predicted by the 183 

aforementioned model of Wilimzig et al. (2006), which features a low coupling between ‘where’ and 184 

‘when’ to move. However, the unimodal GE could not distinguish whether goal-related signals 185 

enhance the target or inhibit the distractor. This is also difficult to distinguish in term of latencies, 186 

where global slowing due to mutual inhibition, slower perceptual discrimination or increased 187 

caution could mask or interact with any facilitation or inhibition effects on target and distractor 188 

individually. With the bimodal GE, the distinction should be clearer: target enhancement would 189 

manifest as increased GE for saccades to the distractor (i.e. when the target loses the race), while 190 

inhibiting the distractor would diminish GE on saccades to the target (when the distractor loses the 191 

race; see Figure 2).   192 
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 193 

Figure 2: Hypotheses for the Effect of Discrimination Task. Rows 1 and 2 depict the activity for the target 194 

and the distractor (dark and bright curves, respectively) on the motor map when one of them reaches the 195 

threshold to trigger a saccade. Row 3 shows the predicted distributions of saccade endpoints. The participant is 196 

presented with a pair of similar stimuli and is either required to make a saccade to the target and ignore the 197 

distractor (discrimination condition), or is able to freely select one of them to make a saccade (free choice 198 

condition; for consistency, we call one stimulus the target and one the distractor in all conditions). In free choice 199 

(Column 1), we expect the bimodal Global Effect will be similar on S1 and S2 side, since the participant should 200 

treat them as equivalent (Row 1). In the discrimination task, we expect the target stimulus to be relatively 201 

advantaged, and thus the pattern may not be symmetrical. Under the assumption that the distractor is inhibited 202 

while the discrimination progresses (Column 2), the activity of a loser distractor (Row 1) would be less than that 203 

of a loser target (Row 2), leading to less bimodal GE on Target side – as compared with free choice (Row 3, dark 204 

dashed line). Under the assumption that the target is boosted (Column 3), we would predict an opposite pattern 205 

(Row 1 & 2), and the bimodal GE on the Distractor side would be larger compared to free choice (Row 3, bright 206 

dashed line).  207 

 208 

History-related signals, such as the spatial probability of the target, are also known to affect the GE 209 

(He and Kowler 1989; Wang et al. 2012b). However, history-related signals that are spatially 210 

nonspecific –such as the probability of occurrence of double-stimulus trials – would affect equally 211 

both stimuli and could not be detected with the unimodal GE. Thus, their effect is unknown. When 212 

comparing a condition with rare double-stimulus trials to a condition with frequent double-stimulus 213 

trials, we hypothesized that rarity of double-stimulus trials could make both stimuli more salient, 214 
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leading to an increase of the bimodal GE for saccades to both stimuli (see Figure 3). Alternative 215 

hypotheses would be no effect for spatially non-specific history, or an enhancement for frequent 216 

conditions as occurs for spatially specific history effects.  217 

Finally, because the bimodal GE can be measured over a large range of inter-stimulus distances, we 218 

expect that it can be used to assess the spatial properties of the above signals. Specifically, we aimed 219 

to investigate whether the effect of probability (or relative surprise) is similar to goal-related signals 220 

(and at the same time, we explore which distance is best to study the bimodal GE). 221 

 222 

Figure 3: Hypothesis for the effect of Rarity.  Row 1 and 2 depict the stimulus-related  activity on the motor 223 

map when one of the stimuli (S1 and S2, respectively in dark and bright gray contours) wins the race-to-224 

threshold to trigger a saccade. Row 3 presents the predicted distributions of saccade landing positions. We 225 

hypothesized that there could be a homogenous boost of the signals reaching the motor map when the context is 226 

unfamiliar (a surprise effect). In the control condition (Column 1, Pair Frequency 80%), the pair of stimuli is 227 

presented only for 80% of the trials while in the test condition (Column 2, Pair Frequency 20%), the pair of 228 

stimuli is presented only for 20% of the trials. Under the above assumption, we predict that the activity of any 229 

race looser (S1 or S2, first and second row) should be greater in Pair Frequency 20% than in Pair Frequency 230 

80%. Thus the bimodal Global Effect would be larger on both stimulus side (third row) when compared to 231 

control. 232 

 233 
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4 METHODOLOGY 234 

4.1 PARTICIPANTS 235 

Four naive individuals and the author (25-27 years old; 3 males and 2 females) participated in the 236 

experiment. All had normal visual acuity, were postgraduate at Cardiff University, had given their 237 

written informed consent and received payment for their time. No participants reported drug or 238 

alcohol dependencies or sleeping disorders. Ethical approval was obtained through the local ethics 239 

committee. All but one were naïve to the purpose of the experiment 240 

4.2 APPARATUS 241 

Participants performed the experiment in a quiet dark room. They sat at a distance of 72 cm from a 242 

CRT monitor (ViewSonic P225f) with a 100 Hz refresh rate. Its dimensions were 36.60 cm in width 243 

and 29.30 cm in height for a density of pixels approximately 35 PPCM (pixels per centimeter). The 244 

monitor was covered with a red filter. Eye movements were recorded with an Eyelink 2000 system 245 

(Tower mount system; SR Research Ltd., Canada), an infra-red video-based eye tracker that has a 246 

spatial resolution of 0.01° and a typical average accuracy between 0.25° and 0.5°. It was used at a 247 

time resolution of 1000 Hz while the participant’s chin was resting on the headset pad. Only the left 248 

eye was recorded. The experiment was programmed with pygame, a python library that provides 249 

graphic and input management, and pylink, the official Eyelink library for python. All the analyses 250 

were conducted with scipy (McKinney 2010), the scientific package for python (e.g. 251 

www.python.org), and with ipython 2.0 (Perez and Granger 2007). The source code and data are 252 

available on the open science framework ( https://osf.io/9adbk/ ). 253 

 254 

4.3 STIMULI AND PROCEDURE 255 

All the trials followed the same template: the participant started by staring at a white fixation cross 256 

of radius 0.4° (luminance: 4.5 𝑐𝑑/𝑚2 except when stated otherwise) on a black background at the 257 

center of the screen. After a random interval of 500-1000ms, the fixation cross disappeared and a 258 

target element was presented at an eccentricity of 13.5° (see Figure 4A and B) while its direction 259 

could have been any one of the 32 directions tested. We tested 8 directions per quadrant (given in 260 

directional angles, see Figure 4A): from +5.625° to +45° by steps of 5.625° for the top right quadrant; 261 

and reciprocally for the other quadrants (see Figure 4A). For a certain percentage of the trials (double 262 

https://osf.io/9adbk/
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stimulus trials), an additional stimulus is simultaneously displayed at the horizontal mirror image of 263 

the target: if the target is presented in the top part of the screen (e.g. at 45°), the additional stimuli 264 

will be displayed symmetrically in the bottom part of the screen (e.g. at -45°). The stimuli remained 265 

present until after the end of the saccades analyzed here. Following this, the screen was cleared and 266 

a new trial began. 267 

We tested the effect of the task performed by the participants when a pair of stimuli was presented 268 

(Task-Type). In Free Choice Task conditions (Free Choice), the additional stimulus was identical to 269 

the target but 12.5% brighter. For these conditions, the participants were simply asked to move their 270 

eye to any presented stimulus as quickly and precisely as possible. They did not receive further 271 

instructions for the case of double-stimulus trials. In the Discrimination Task (Discrimination), the 272 

additional stimulus was of a different shape to the target and was also 12.5% brighter. For these 273 

conditions, the participants were instructed to ignore the distractor and to move their eyes to the 274 

target as quickly and precisely as possible. For different blocks, the distractor and the target of 275 

Discrimination conditions could either be a circle or a diagonal-cross of 0.8°. The distractor logically 276 

inherited the remaining shape: it was a circle if the target was a diagonal-cross and vice versa. 277 

We tested the effect of frequency of occurrence of the pair of stimuli: in High Frequency conditions 278 

(F-80), the additional stimulus was presented 80% of the time, while, in Low Frequency conditions 279 

(F-20), its frequency was set up at 20%. 280 

One experimental session would test one of the 4 following combinations: F-20/Free Choice, F-281 

20/Discrimination, F-80/Free Choice, F-80/Discrimination. For all the participants, the sessions were 282 

ordered as follows: F-20/Free Choice, F-20/Discrimination, F-80/Free Choice, F-80/Discrimination, F-283 

80/Discrimination, F-80/Free Choice, F-20/Discrimination, F-20/Free Choice. While we would usually 284 

counterbalance the order across participants, here we thought it was useful to keep this order since 285 

surprise in F-20 conditions is part of the design rationale and participants were not told whether 286 

there will be double-stimulus trials. The palindrome order within participant was used to minimize 287 

any linear training effects. We also check that our results hold when order effects are taken into 288 

account. 289 

The participants were required to undertake 8 sessions of 1600 trials each (8x60min); each session 290 

being separated at least by one night. A break was offered every 200 trials while a break and a 291 

calibration on 13 points were imposed at every 400 trials.  292 
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 293 

Figure 4: Summary of the Paradigm. A: the possible positions of the stimulus on the monitor’s display during a 294 

trial (light gray dots); the eccentricity of the stimuli was always of 13.5° while their directional angles varied 295 

from 5.625 to 45° (by step of 5.625). The stimulus pair in double-stimulus trials was always symmetrical that one 296 

stimulus was presented in the upper hemi-field and the other in the lower hemi-field (same eccentricity, opposite 297 

directional angles). The schematic illustrates  a Discrimination Task trial where the S1(in dark gray) is a 298 

diagonal-cross and the additional stimulus S2 (in dark gray) is a circle. Note that the color of the background 299 

and stimuli are not respected in this schematic, and the array of possible stimulus locations (light grey dots) was 300 

not visible to the participant. B: A pair of stimuli –S1 and S2- appeared on the screen simultaneously after the 301 

offset of the fixation cross F. 302 

 303 

4.4 DATA ANALYSIS 304 

4.4.1 Saccade Detection and Cleaning 305 

Saccade end points were detected as the first data point with a velocity below 10°.s-1, an acceleration 306 

below 6000°.s-2, and a shift from the previous fixation above 1.0°. Thensaccade start points were 307 

detected as the last data point (backward from the saccade end point) at which the eyes had a velocity 308 

below 30°.s-1, an acceleration below 6000°.s-2, and a shift from previous fixation below 0.3°. The 309 

difference in criteria for saccade end and start points were implemented to deal with an artifact that 310 
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can occur at the end of saccades (see (Nyström et al. 2013), for more information of this post-saccadic 311 

oscillation artifact). Trials were automatically marked as suspect and inspected if: 1) there were 312 

missing values or gaze positions outside the monitor during the saccade, 2) no entire saccade was 313 

detected, 3) the reaction time from target onset was less than 80ms, 4) the saccade duration was 314 

longer than the reaction time, and 5) the position shift from the fixation was less than 7.5°. In 315 

addition, the experimenter could allow some trials that presented a position outside the monitor 316 

display, or reject a trial that presented a blink. After cleaning, the loss rates were 1.7%, 1.5%, 4.5%, 317 

3.4% and 2.2% (given for each of the 5 participants). Note that we included all the saccades made 318 

toward Target and Distractor side in the Discrimination task. We also included all the saccades 319 

toward S1 and S2 in the Free Choice task. 320 

4.4.2 Measure of the Global Effect: Distance From the Closest Attractor 321 

The landing positions correspond to the endpoint positions of the first saccade produced after the 322 

onset of the stimuli. Note that for each of the 8 stimulus distances that we tested, there were 4 323 

possible target positions (one per quadrant); for the analysis, the data were mirrored and combined 324 

across these.  325 
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 326 

Figure 5: Landing Positions and Distance From the Closest Attractor. We used violin plots to present the 327 

data distributions – the larger the violin, the denser the data points at that y-position. For instance, in A, the 328 

dark violin for the inter-stimulus distance 11.25 shows a unimodal distribution of landing positions centered on 0 329 

– that is exactly between the two stimuli. The brighter violin is the control distribution from single-stimulus trials 330 

with the same locations. The dashed lines are the means of the control modes. While the inter-stimulus distance 331 

increases, the distribution splits progressively into a bimodal distribution that is eventually indistinguishable 332 

from control. In B, we plot the distance from closest attractor (DFCA), so that the transformation can be 333 

observed by comparing the top plot and the bottom plot (see section 4.4.2 for further details). The DFCA on each 334 

side is simply the landing positions in double-stimulus trials centered on the mean of the landing positions in 335 

single-stimulus trials. The lines with dots represent the means of the distributions. The data are from all the 336 

participants and all conditions. 337 

 338 

To measure the bimodal GE, we divided the landing positions into two groups one directed towards 339 

the target, and another directed towards the distractor. For each group, we computed a control 340 

landing position from the single-stimulus trials. We then examined the deviation of each group from 341 

their control. The controls were computed across the four screen quadrants (we mirrored the data 342 

and collapsed them to one quadrant), and are distance specific (e.g. one control per distance), 343 

participant specific, and block specific (to correct for calibration discrepancies). We named the 344 
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measure the Distance From the Closest Attractor (DFCA) – the attractors being the control positions. 345 

For the landing position i and on the y-axis, this is defined mathematically, by: 346 

𝐷𝐹𝐶𝐴𝑖  = min (|𝐶1 − 𝑦𝑖|, |𝐶2 − 𝑦𝑖|) 347 

Where C1 and C2 are the control position. Figure 5 shows the DFCA for saccades directed toward the 348 

target. Note that another major difference with the usual measure of the GE is that we get one 349 

measure per trial, which increases the statistical power. 350 

4.4.3 Statistical analysis 351 

 To test statistically the difference in DFCA across conditions and distances, the saccades of all the 352 

participants were gathered (as in Van der Stigchel & Nijboer, 2013). This led to an average of 389 353 

trials for each distance in each condition for the conditions Free Choice | F-20 and Discrimination | F-354 

20 and an average of 1,543 trials for conditions Free Choice | F-80 and Discrimination | F-80. The 355 

proportion of landing positions between the two stimuli was reasonably balanced in all conditions 356 

and participants. Given that the distributions of DFCA are clearly non-normal and have different 357 

shapes across distances, we used the non-parametric independent 2-group Mann-Whitney U-test to 358 

test for mean differences (the wilcox.test(x, y, paired=FALSE)  in R). In order to focus on 359 

differences within participants, and because the U-test does not apply this by itself, we applied a 360 

within-subject correction (Cousineau 2005)  by centering the data of each participant on the same 361 

mean. 362 

Using the DFCA, we ran one U-test for each of the eight stimuli distances testing for an effect of Task-363 

Type (Discrimination against FreeChoice). The same procedure was repeated to test the effect of Pair-364 

Frequency across stimuli distances (level F-20 against level F-80). The p-values for a set of tests were 365 

corrected according to Hommel’s correction, which has been recommended for adjusting mildly 366 

correlated p-values (Blakesley et al. 2009). We report, in Figure 7, the Hodges–Lehmann estimator 367 

(HLΔ) – i.e., the median of pairwise differences in bimodal GE between two conditions. This can be 368 

interpreted as the GE modulation between the two tested conditions. A complete report of the U-test 369 

statistic can be found on the OSF repository. 370 
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5 RESULTS: DISTANCE FROM CLOSEST ATTRACTOR 371 

5.1 OVERVIEW OF THE BIMODAL GE 372 

Observation of Figure 6A reveals a clear bimodal GE effect, and that the DFCA initially increases and 373 

then decreases with stimulus distance (one-way ANOVA, F(7, 28)=2.9, p = .02, ηg
2=.42), which is how 374 

the GE was expected to fluctuate. Figure 6B reveals that latencies increase with stimulus distance in 375 

all conditions (one-way ANOVA, F(7,28)=9.9, p<.001, ηg
2=.712); this could, at least partially, explain 376 

the aforementioned decrease of bimodal GE. Note that this tendency is also present in FreeChoice, 377 

where there is no discrimination to perform. Thus, lesser Global Effect with longer latency could be 378 

interpreted as a stronger commitment to one stimulus with time.  379 

Figure 7 shows landing positions of a representative participant both in visual and SC space. The 380 

landing positions are distributed along a straight line (slightly curved inward) in visual space and 381 

along a C-curve when projected in an approximation of the human SC space (based on the monkey 382 

data in Robinson 1972; according to Ottes et al. 1986 ’s equations). As discussed in Introduction, this 383 

pattern is what we would expect from a saccadic vector averaging mechanism; and it echoes back to 384 

the pattern obtained when applying simultaneous, weighted supra-threshold micro-stimulations to 385 

the SC (Katnani and Gandhi 2011; Katnani et al. 2012).  386 

 387 
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 388 

Figure 6: Overview of the Distance From the Closest Attractor (DFCA) and Latencies  over stimuli 389 

distances and between conditions.  The figure shows the mean of the distributions with the parametric 95% 390 

confidence intervals; the top part displays the curves for the DFCA on the target side, and the bottom part 391 

displays the curves for the DFCA on the distractor side. 392 

 393 
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 394 

Figure 7: Distribution of Landing Positions in visual space and Superior Colliculus (SC) space from a 395 

representative participant. Distributions are shown for inter-stimulus distances 90° (light grey dots), 67.5° 396 

(medium gray dots) and 33.75° (dark gray dots) in F80/Discrimination Task. The distributions followed an 397 

inwards C-curve on the SC space; this was a consistent pattern across conditions and participants (the figures for 398 

all participants are accessible on the OSF repository). The landing position were projected to an approximation 399 

of the human SC space; using Ottes et al.(1986)’s equations and its original set of parameters that estimates the 400 

electrical stimulation data from Robinson (1972) on monkey. 401 

 402 

As noted in introduction, it is important to establish that the bimodal GE is modulated in size in a 403 

systematic way consistent with representing the losing activity in an incomplete decision process.  404 

We expect that saccades landing in between the two stimuli would have the shorter latencies, driven 405 

by early nonspecific visual transients that are equivalent for both stimuli. Smaller deviations and 406 

accurate saccades (to either the target or distractor) would be associated with longer latency when 407 

the decision process has progressed towards a unique winner (i.e. the losing activity has diminished).  408 

Figure 10 shows that these predictions are confirmed in our data, consistently for every condition 409 

and every distance between the stimuli. Note also that saccades with larger GE (i.e. around the 410 
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midpoint of the two stimuli) are more similar in latency across all conditions than saccades with 411 

smaller GE, consistent with our understanding of non-specific early visual transients followed by 412 

slower signals that are more task-modulated.  413 

 414 

 415 

 416 

 417 

 418 

 419 

Figure 8: Reaction times in relation to the bimodal GE (or Distance from the Closest Attractor). The mean 420 

reaction times are plotted for each 2 degree bins of the Distance from the Closest Attractor distribution. The 421 

DFCA was introduced in Figure 5 and is our measure of the bimodal GE. 422 
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 423 

 424 

5.2 ASYMMETRIC EFFECT OF TASK-TYPE ON BIMODAL GE 425 

 Figure 9A corresponds to the effect of Task-Type on GE, which is the difference between the dark 426 

and light gray curves in Figure 6A. The U-tests revealed a significant effect on the DFCA only at one 427 

distance (45°) on the target side, but a consistently significant effect for all distances but one (56.25°) 428 

on the distractor side. Furthermore, the effect observed at 45° on the target side is a decrease in GE 429 

(shift toward the target) wherease the effect on the distractor side is a consistent increase in GE (shift 430 

toward the center) (Figure 9A, the exact statistical values are reported in the appendix). In 431 

particular, that increase of GE on the distractor side is rather regular over stimulus distances if we 432 

ignore the decrease at 56.25°; certainly, it does not show a monotonic decrease with distance. In 433 

summary, we observe an asymmetric increase in the GE when the participant is asked to aim towards 434 

a target and avoid a distractor (Discrimination) – the clearest effect is that the saccades directed to 435 

the distractor tend to be shifted toward the center (towards the target). That result when interpreted 436 

along with the Figure 2 suggests that the discrimination mechanism is applying a boost on the target 437 

side and little or no inhibition on the distractor side: when the target loses the race, its activity at the 438 

moment the saccade was executed was higher in the discrimination task than in the free choice task, 439 

but when the distractor loses the race there is not much detectable difference in its activity level 440 

between tasks.  441 

These GE modulations are not likely to be explained by the latencies. Figure 10A shows the effect of 442 

Task-Type on latencies, which is the difference between the dark and light gray curves in Figure 6B. 443 

The U-tests revealed that latencies are greater in the Discrimination task than in the Free Choice task 444 

on both stimulus sides (Target and Distractor). The effect size is slightly greater on Target side (mean 445 

HLΔ ~ 20 ms) than Distractor side (mean HLΔ ~ 13ms; Welch Two Sample t(9.12) = -4.55, p = .001). 446 

Although the GE is known to negatively correlate with latencies, that difference of 7 ms is not likely 447 

to explain the asymmetry in GE observed in Figure 9A. In comparison, the work of Heeman et al. 448 

(2014) suggests that a difference of ~120ms is needed to observe a total suppression of GE. Finally, 449 

Figure 6B, suggests an interaction effect of Frequency with Task Type on latencies (confirmed 450 

below); the effect of Discrimination (over FreeChoice) is less in F20 (compare the dashed curves) 451 

than in F80 (compared the solid curves). Such an interaction effect does not seem to be present for 452 

the GE (Figure 6A) and could not explain the GE modulation observed in Figure 9A.  453 
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5.3 SYMMETRIC EFFECT OF PAIR-FREQUENCY ON BIMODAL GE 454 

 Figure 9B shows the effect of Pair-Frequency  on GE, which is the difference between the dashed and 455 

solid curves in Figure 6. The U-tests yielded significant effects of Pair-Frequency both on S1 side and 456 

S2 side (we are now ignoring whether they were target or distractor). In particular, Figure 9B 457 

suggests a symmetric increase of the GE when double-stimulus trials are rare (F-20), which tends to 458 

increase progressively with the inter-stimulus distance up to distance 45°, upon which it decreases. 459 

The only possible asymmetry is that the effect of F-20 on the S2 side tends to decrease more rapidly 460 

with the inter-stimulus distance in comparison with the S1 side. This small asymmetry could be 461 

attributed to the slight difference in luminance between stimulus S1 and S2.  In summary, this pattern 462 

of results, when interpreted in light of the Figure 3, suggests that the effect of rarity is to generally 463 

increase stimulus-related activity on the motor map (i.e. to both stimulus sides). 464 

Again, these GE modulations are not likely to be explained by differences in latencies. Figure 10B 465 

shows the effect of Frequency on latencies, which is the difference between the dashed and solid 466 

curves in Figure 6B. The U-tests revealed that there is no obvious latency modulation between F20 467 

and F80 conditions, so that it cannot explain the GE modulations. This lack of effect is explained by 468 

the interaction of Frequency with Task Type on latencies that we noted above (Figure 6B). F20 469 

(when compared to F80) increases the latencies in the Free Choice task (see the difference between 470 

the light gray curves) while decreasing the latencies in the Discrimination task (see the difference 471 

between the black curves). The sum of these positive and negative effects leads to a null effect. 472 
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 473 

Figure 9: Summary of the Mann-Whitney U-tests on Global Effect. Each plot shows the difference in DFCA between the two conditions, which we name 474 

the GE modulation: a positive number means that there is a larger GE (greater deviation towards the center) in Discrimination than in Free Choice 475 

conditions (in subplot A) or a larger GE in F-20 than in F-80 conditions (in subplot B). The modulation in GE – thick dark curves - is estimated with the 476 

Hodges–Lehmann estimators (HLΔ) with 95% confidence intervals. The stars represent the level of significance (*** p<.001; ** p<.01; * p<.05; . p<.1.). Finally, 477 

the thin gray curves display separately the GE modulation in the first and second block of each conditions (see method). A: We ignored the factor Pair-478 

Frequency, mixing the conditions F-20 and F-80.  B: We ignored the factor Task-Type, mixing the conditions Free Choice and Discrimination. Note that we 479 

refer to S1 and S2 as the two stimuli presented simultaneously; S2 corresponds to the slightly brighter one in Free Choice conditions and to the distractor in 480 

Discrimination conditions. 481 



23 | P a g e  

 

 482 

Figure 10: Summary of the Mann-Whitney U-tests on Latencies. Each plot shows the difference in Latency between the two conditions, which we named 483 

RT modulation. The organization is the same as in Figure 9. 484 

 485 
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In order to test whether there is indeed an interaction of Frequency and Task Type on latencies, we 486 

ran a Bayesian Top-down analysis, using R’s BayesFactor package (Raftery 1995; Rouder and Morey 487 

2012), where we compared a full model (explicitly given in the caption of Table 1) to models that 488 

omit one main effect or interaction from that full.  From this analysis, we can see that there is indeed 489 

an interaction effect between Task Type and Frequency on reaction times (row 4 of Table 1, BF > 490 

1000). Note that we could not run this test on bimodal GE because its distribution varies across 491 

distances. 492 

Table 1. Bayesian Top-down Analysis on Reaction times. 493 

 Omitted variable BF or 1/BF  Polarity Interpretation Tag 

[1] Frequency:Side:TaskType 1.8    ±4.9% none weak 

[2] Frequency:Side                8.1    ±6.3% against positive 

[3] Side:TaskType           >1000 ±10% in favor very strong 

[4] Frequency:TaskType      >1000      ±92 % in favor very strong 

[5] Participant                   >1000                   ±5.9% in favor very strong 

[6] Distance                      >1000                      ±12% in favor very strong 

[7] Side                          >1000                          ±12% in favor very strong 

[8] Frequency      >1000 ±10% in favor very strong 

[9] TaskType >1000 ±11% in favor very strong 

Note. BF stands for Bayes Factor. We inversed (1/BF) the BFs less than 1 for easier reading. We add a 494 

Polarity column that tells if the evidence quantified by the BF is against or in favor of an effect of the 495 

omitted variable (e.g. Side:TaskType). The interpretation tags give a qualitative scale to that evidence, 496 

as in Raftery (1995). The symbol ‘:’ denotes an interaction. For instance, the third row reads: there is 497 

very strong evidence in favor of an interaction effect between Side and TaskType. The BFs are given 498 

against the full model:  RT ~ TaskType*Frequency*Side + Distance + Participant with Participant as a 499 

random variable (to account for the within participant design). Side refers to the side 500 

(Target/Distractor or S1/S2) on which are the landing positions. 501 

 502 

 503 

 504 

 505 
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5.4 INTRA-INDIVIDUAL LATENCIES AND BIMODAL GE 506 

Finally, although we checked whether the change in mean latency across conditions could explain the 507 

change in bimodal GE, the intra-participant latency distributions could still explain part of our results. 508 

For instance, it can be argued that the lack of effect on the GE modulation on Target side (Figure 9) 509 

originates from a mixture of a positive GE modulation for early saccades and a negative GE 510 

modulation for late saccades. This explanation would echo the early deviation toward and late 511 

deviation away found in saccade curvature (McSorley 2006). Figure 11 shows the same data as in 512 

Figure 9, except that we divided the saccade distribution into early, middle and late saccades (see 513 

the light gray, dark gray and black curves respectively). We found no consistent effect of latency 514 

groups on the bimodal GE across distances on the Target side (Figure 9A) so that the lack of target-515 

side effect observed in Figure 7A cannot be accounted by an interaction with latencies.  On the 516 

Distractor side, a more consistent pattern is observed: no effect of latencies for distances below 56.25 517 

after which early saccades lead to small or no GE modulation while late saccades lead to large and 518 

positive GE modulation (this ordering may be present for these distances for the target side as well). 519 

We will come back to this interesting pattern in the discussion. Finally, concerning the effect of rarity, 520 

it seems that there is no obvious effect of the latency groups on the GE modulation. 521 

Recall that we used a particular palindromic ordering for the different conditions. A Wilcoxon rank 522 

sum test on the DFCA between the first block and the second block of F-20/Free Choice reports a 523 

significant difference (W= 12E+7, p=0.002) with a small effect size (-0.04°) compared to the effects 524 

observed in Figure 9 (from 0.2° to 0.4°). Thus, it appears that any extra surprise effect in the first 525 

block was small or did not last long enough within the block to produce a large overall effect. Finally, 526 

it is important to note that our results are robust despite order effects. Figure 7 shows no great 527 

change in GE modulation when taking into account either the first or the second block of each 528 

condition (thin gray curves). 529 
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 530 

 531 

Figure 11: Effect of Latency Quantile on GE modulation. The organization is the same as in Figure 9 except that we split the GE modulation into three 532 

groups: early, middle, and late latency saccades, respectively in light gray, dark gray and black.  533 

 534 

 535 
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6 DISCUSSION 536 

In the present study, we demonstrated that, when using a pair of remote stimuli, a bimodal Global 537 

Effect (GE) occurs – i.e., both distribution modes deviated toward the other stimulus. This confirms 538 

previous reports where such an effect was shown or appeared present (Arai et al. 2004; Van der 539 

Stigchel et al. 2007, 2011). Moreover, 1) this deviation appears to occur on a nearly- straight line in 540 

visual space, and a strong curve in SC space – rather than a straight line in SC space and an outward 541 

curve (a circumference around fixation) in visual space; 2) larger deviations are associated with 542 

shorter latency. These patterns are consistent with the model architecture illustrated in Figure 1D, 543 

whereby a strong region of activity triggers a saccade while the decision process is not fully complete. 544 

Other activity remains on the map and contributes towards saccade vector programming 545 

downstream of the SC.  546 

From this perspective, the deviation of the landing position from the race winner –that is the closest 547 

stimulus - gives an estimate of the activity of the race loser. It can then be used to assess endogenous 548 

enhancements or inhibition that the traditional GE could not distinguish. Furthermore, it can assess 549 

these signals over a wider range of interstimulus distances. We found that Task-Type and Pair-550 

Frequency draw two clearly distinguishable patterns in terms of modulating the GE. We discuss 551 

further below the interpretation of our results, in terms of their spatial profile, underlying 552 

mechanisms, and their link with the previous literature.  553 

  554 

6.1 EFFECT OF DISTANCE ON THE BIMODAL GLOBAL EFFECT 555 

According to Walker et al. (1997) and Van der Stigchel and Nijboer (2013), the genuine (unimodal) 556 

GE is expected to decrease with stimulus distances. We also found this relationship in the bimodal 557 

GE (see Figure 6A). This may be partly explained by RT increasing with distances. However, the 558 

range of 20ms may be too small to explain the total disappearance of GE (~120ms needed in Heeman 559 

et al. 2014). In our frame of explanation, this decrease in GE with stimulus distance may also be 560 

caused either by: 1) a hypothetical stronger mutual inhibition between the two stimuli whilst their  561 

distance increases – decreasing the activity of the loser or 2) a spatially localized release of the 562 

inhibition exerted by substantia nigra pars reticulata (SNr) on the SC – remote losers would benefit 563 

less from disinhibition centered on target location (Hikosaka and Wurtz 1983; Handel and Glimcher 564 

1999; Basso and Wurtz 2002). Note that 1) would contradict the relatively flat curve of inhibition 565 
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reported in previous modelling and neurophysiological work (Arai et al. 1994; Trappenberg et al. 566 

2001). 567 

 568 

6.2 MODULATION OF THE GLOBAL EFFECT BY DISCRIMINATION SIGNAL 569 

It is often assumed in discrimination tasks that top-down mechanisms facilitate the target-related 570 

activity and/or inhibit the distractor-related activity (Schall and Hanes 1993; Schall et al. 1995; 571 

Wardak et al. 2002; Ipata et al. 2006; Thomas and Paré 2007). Our work shows that the 572 

discrimination signal consistently increases the bimodal GE on the distractor side and had no 573 

consistent effect on the GE on the Target side.  If we recall the predictions of Figure 2, which use the 574 

model described in Figure 1D, the increase of GE on the distractor side means that that the activity 575 

of competition loser – the target – was stronger in the Discrimination Task than in Free Choice (right-576 

hand column in Figure 2). In other words, our results suggest that the discrimination signal is 577 

facilitating/boosting the target rather than inhibiting the distractor. This result is in line with 578 

neurophysiological data reporting more post-stimulus activity in FEF and SC on the target side during 579 

visual search (McPeek and Keller 2002; Fecteau and Munoz 2006) and no obvious inhibition on the 580 

distractor side in the SC before the saccadic burst (White et al. 2012).  581 

However, this conclusion may seem to be in opposition with some previous work. Although it has 582 

been shown that saccade planning enhances processing at target location (Kowler et al. 1995; Deubel 583 

2008), it was also shown that saccade execution suppresses processing at non-target locations (Khan 584 

et al. 2015). Similarly, the Basal Ganglia appear to enhance target location and inhibit distractor 585 

locations (Van Schouwenburg et al. 2013). Finally, it was suggested that local inhibition of the 586 

distractor location could explain saccadic curvature away from a distractor (Tipper et al. 2001; 587 

McSorley et al. 2004). Thus, it seems that further implementation of our paradigm could explore 588 

whether the appearance of inhibition on the distractor can be systematically controlled.   589 

The effect of discrimination did not decrease with stimulus distances. This suggests that its 590 

mechanism is not interacting directly with the GE mechanism itself – which does decline with 591 

distance. If that decline is caused by mutual inhibition or the SNr’s influence on the SC (hypothesis 1) 592 

and 2) discussed above), then the goal-directed boost seems simply additive with those mechanisms. 593 

It is known that the FEF is involved in target discrimination (Schall and Hanes 1993) and has direct 594 

projections to the brainstem saccade burst generator (although their functional role has been 595 

questioned, Hanes and Wurtz 2001), bypassing the SC to control saccades (Schiller et al. 1980; 596 



29 | P a g e  

 

Schiller and Sandell 1983; Schiller and Chou 1998). In the eventuality that the boost to the target is 597 

provided by the FEF, it follows that at least part of this enhancing effect is not altered by the mutual 598 

inhibition and/or the SNr’s action in the SC. 599 

 600 

6.3 MODULATION OF THE GLOBAL EFFECT BY FREQUENCY  601 

Previous studies have shown that the probability of a stimulus appearing at a specific location can 602 

influence the GE (He and Kowler 1989). Location probability is thought to increase the strength of 603 

the preparatory signal in the SC  (Basso and Wurtz 1998; Dorris and Munoz 1998), possibly from the 604 

FEF (Liu et al. 2011), and therefore to decrease the reaction time. Our work goes further and suggests 605 

that probability of occurrence, which, unlike location probabilities, has no spatial dimension, can also 606 

influence the GE. According to our results, the rarity of occurrence of a pair of stimuli increases the 607 

bimodal GE symmetrically, as predicted in Figure 3, and this effect could not be explained by a change 608 

in reaction times. Thus, probability of occurrence tends to enhance the activity related to rare stimuli 609 

configurations and has the opposite effect of the location probability, which enhances the activity of 610 

common locations.  611 

It can also be observed that the effect of rarity on GE decreases with stimulus distance, just as the GE 612 

itself decreases with stimulus distance. In other words, rarity is modulating – rather than being 613 

additive with – the underlying GE itself. There are at least two possible ways this could occur: 1) an 614 

increase of the responsiveness of the neurons on the motor map; 2) a decrease of lateral inhibition 615 

on the motor map. The former would modify the gain function of the neurons (i.e. increasing function, 616 

typically sigmoid, linking input current to firing rate) – varying its x offset (gating) and/or slope.  617 

Interestingly, the norepinephrine system has been suggested to modify the gain function of neurons 618 

in diffuse parts of the brain involved in decision making through coarse projections (Hurley et al. 619 

2004; Aston-Jones and Cohen 2005). Several studies have suggested that the norepinephrine system 620 

responds to the relevance, novelty, and rarity of stimuli (Alexinsky et al. 1990; Privitera et al. 2010; 621 

Preuschoff et al. 2011) with more or less habituation effect (Aston-Jones et al. 1994; Vankov et al. 622 

1995). Direct projections of the Locus Coeruleus to the SC have been found (Edwards et al. 1979; 623 

Mooney et al. 1990; Arce et al. 1994) while high and stable concentration of norepinephrine 624 

decreased the spontaneous and/or stimulus-evoked responses in SC (Mooney et al. 1990; Tan et al. 625 

1999; Zhang et al. 1999). Taken together, these findings would encourage investigations into whether 626 

the norepinephrine system could be the mechanism behind the effect of rarity on the strength of the 627 



30 | P a g e  

 

GE. If this is indeed the case, it would open a new avenue of experimental work to test the effect of 628 

the norepinephrine on decision making.  629 

Regarding the latencies for our rarity manipulation, we believe there are three interacting factors 630 

acting in different directions: the rarity boost discussed above; caution; spatial probability. In Figure 631 

6B, in the Discrimination Task condition, the reaction times are smaller in F20 than in F80 while in 632 

the Free Choice condition, reaction times are smaller in F80 than in F20. Concerning the 633 

Discrimination task, an explanation is that frequent discrimination trials (i.e. F80) raises caution, 634 

which leads to slower reaction times. In that case, rare discrimination trials (see black dashed curve) 635 

would lead to lower caution and to similar reaction times as rare free choice (gray dashed curve) – 636 

which is what we observe. Concerning the Free Choice condition, we can consider the opposite effect 637 

of spatial probability: in F80, there is a rate of 1.8 stimuli per trial appearing on the 13.5° eccentricity 638 

ring, while in F20, this rate drops to 1.2. The higher rate leads to a higher spatial probability, which 639 

leads to faster reaction time in F80 as we observed. To conclude, our results suggest that once other 640 

factors are brought into play, what increases the bimodal GE does not necessarily decrease the 641 

reaction times, and vice-versa. 642 

In the literature, it has been shown that high probability of occurrence of the target in a go/no-go 643 

paradigm increases the proportion of express saccade (Jüttner and Wolf 1992) while the high 644 

probability of a distractor being present seems to decrease the reaction time on trials in which it is 645 

indeed present (Goldstein and Beck 2013). However, these paradigms may not be testing the same 646 

mechanisms as ours. In Jüttner and Wolf (1992), the saccadic system likely learns to inhibit the go-647 

signal when the go-trials are rare while our paradigm only has go-trials. In Goldstein and Beck 648 

(2013), it is possible that, because the distractor is informative of the future target timing and 649 

position, it acts as a warning cue.  650 

6.4 CONCLUSION: 651 

The present work has generated a novel way to assess decision processes and signals occurring in an 652 

action selection map such as the SC.  In particular, we have examined a different aspect of the Global 653 

Effect which we have termed the bimodal Global Effect (GE). Unlike the traditionally defined Global 654 

Effect  (Walker et al. 1997), the bimodal GE can be observed for distant stimuli and for bimodal 655 

distributions. We see it as a tool to measure the modulations that occur on the side of the stimulus 656 

that loses the race to trigger a saccade. Using this framework allowed us to assess in more depth the 657 
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effect of frequency of choice and of active discrimination on the action selection map. We believe that 658 

this framework opens a new avenue to explore decision making in general.  659 

7 APPENDICES 660 

[The following tables are given for the reviewers, but they may not be included in the final version.  661 

They can be found on the open science framework webpage.] 662 

7.1 TABLES 663 

The condition effects (difference between conditions) are reported with the Hodges–Lehmann 664 

estimator (HLΔ). It is the median of all possible differences between the N measures in one condition 665 

and the M measures in another condition (N x M combinations). 666 

A non-parametric 0.95 confidence interval for HLΔ accompanies these estimates. Finally, the 667 

Common Language Effect Size (CLES) (McGraw and Wong 1992; Vargha and Delaney 2000) from the 668 

R package orddom is reported. Indeed, the CLES simply estimates the probability that a DFCA 669 

randomly picked from one distribution is higher than a DFCA randomly picked from another 670 

distribution – also known as the Probability of Superiority. Generally speaking, a CLES of 0% (or 671 

100%) would mean that the first distribution is lower (or higher) and does not overlap with the 672 

second distribution. When the CLES is at 50% the medians of both distributions are aligned.  673 

 674 

Table 1: Target Side U-tests over distances for a distractor type effect (Free Choice against Discrimination): 675 

Distance U-stat  p-value n.Td n.Ts CLES HLΔ 95% CI 

11.25 433851 
 

1.00E+00 981 915 51.67% -0.040 -0.102 0.022 

22.5 460714 
 

1.00E+00 997 909 49.16% 0.028 -0.059 0.115 

33.75 458158 
 

1.00E+00 983 930 49.88% 0.005 -0.101 0.110 

45 412946 ** 2.78E-03 998 914 54.73% -0.219 -0.338 -0.099 

56.25 432647 
 

2.55E-01 1063 863 52.84% -0.119 -0.230 -0.011 

67.5 479230 
 

1.00E+00 1065 925 51.35% -0.056 -0.161 0.049 

78.75 430544 
 

1.00E+00 1035 858 51.52% -0.062 -0.168 0.045 

90 451448 
 

1.00E+00 1007 881 49.11% 0.037 -0.070 0.143 

 Note. Refer to Table 2 note. 676 

Table 2: Distractor Side, U-tests over distances for a distractor type effect (Free Choice against Discrimination): 677 

Distance U-stat  p-value n.F8 n.F2 CLES HLΔ 95% CI 

11.25 452304 ** 5.10E-03 970 1023 54.42% -0.118 -0.185 -0.050 
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22.5 423556 *** 5.45E-06 950 1024 56.46% -0.205 -0.285 -0.125 

33.75 413434 *** 3.81E-07 948 1017 57.12% -0.275 -0.373 -0.177 

45 451307 * 3.88E-02 953 1022 53.66% -0.166 -0.282 -0.051 

56.25 442758  8.91E-01 877 1054 52.10% -0.091 -0.204 0.021 

67.5 397084 * 3.35E-02 869 990 53.84% -0.157 -0.266 -0.050 

78.75 415780 *** 7.91E-06 904 1055 56.40% -0.265 -0.372 -0.159 

90 406350 *** 2.51E-06 915 1026 56.72% -0.284 -0.394 -0.176 

 Note. Refer to Table 2 note. 678 

 679 

Table 3: Target Side, U-tests over distances for a distractor frequency effect (F-20 against F-80): 680 

Distance U-stat  p-value n.F8 n.F2 CLES HLΔ 95% CI 

11.25 225235 *** 2.52E-05 1550 346 58.00% -0.192 -0.273 -0.111 

22.5 259148 ** 1.35E-03 1516 390 56.17% -0.202 -0.309 -0.097 

33.75 252640 . 5.10E-02 1555 358 54.62% -0.193 -0.332 -0.055 

45 228095 *** 3.26E-05 1566 346 57.90% -0.384 -0.549 -0.219 

56.25 245242 *** 7.39E-04 1565 361 56.59% -0.297 -0.449 -0.148 

67.5 279013  6.15E-01 1625 365 52.96% -0.126 -0.268 0.014 

78.75 267306  1.00E+00 1536 357 51.25% -0.051 -0.186 0.085 

90 287083  1.00E+00 1525 363 48.14% 0.074 -0.059 0.207 

 Note. Refer to Table 2 note. 681 

 682 

Table 4: Distractor Side, U-tests over distances for a distractor frequency effect (F-20 against F-80): 683 

Distance U-stat  p-value n.F8 n.F2 CLES HLΔ 95% CI 

11.25 376754 ** 4.34E-03 1556 437 44.59% 0.142 0.062 0.222 

22.5 344744 ** 4.80E-03 1582 392 44.41% 0.176 0.076 0.275 

33.75 360737 * 1.44E-02 1538 427 45.07% 0.198 0.074 0.320 

45 387352 *** 1.15E-05 1537 438 42.46% 0.356 0.210 0.503 

56.25 323915  1.00E+00 1517 414 48.42% 0.069 -0.069 0.208 

67.5 299833  1.00E+00 1451 408 49.35% 0.027 -0.105 0.158 

78.75 302211  1.29E-01 1532 427 53.80% -0.154 -0.281 -0.028 

90 295816  1.00E+00 1540 401 52.10% -0.090 -0.226 0.047 

 Note. Refer to Table 2 note. 684 

 685 

 686 
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