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Abstract
In drylands, convective rainstorms typically control runoff, streamflow, water supply and flood risk to
human populations, and ecological water availability at multiple spatial scales. Since drainage basin
water balance is sensitive to climate, it is important to improve characterization of convective
rainstorms in a manner that enables statistical assessment of rainfall at high spatial and temporal
resolution, and the prediction of plausible manifestations of climate change. Here we present a simple
rainstorm generator, STORM, for convective storm simulation. It was created using data from a rain
gauge network in one dryland drainage basin, but is applicable anywhere. We employ STORM to
assess watershed rainfall under climate change simulations that reflect differences in wetness/
storminess, and thus provide insight into observed or projected regional hydrologic trends. Our
analysis documents historical, regional climate change manifesting as a multidecadal decline in
rainfall intensity, which we suggest has negatively impacted ephemeral runoff in the Lower Colorado
River basin, but has not contributed substantially to regional negative streamflow trends.

1. Introduction

Spatial patterns and temporal distributions of rain-
fall control water balance, watershed responses, water
supply, and flood risk. Convective precipitation (e.g.
air mass thunderstorms) is an important source of
drainage basin moisture in many regions, generating
pronounced rainfall variability in space and time that
may be affected by the influence of climate warming on
water-holding capacity of the atmosphere [1]. How-
ever, convective rainstorms are poorly represented in
regional water balances and climate models. This is
because they are spatially smaller than typical grid res-
olutions of satellite data products, general circulation
models (GCMs), andregional climatemodels, and tem-
porally they are shorter than the output resolution of
these data and models [2, 3]. Therefore, it is currently
challenging to assess the potential changes to the water
cycle that may emerge due to future climate change

in regions where these storms play an important role.
This uncertainty thwarts efforts to create plans for sus-
tainable water and land management and conservation
within drainage basins in such regions.

Rainfall heterogeneity is acute in semi-arid and arid
regions, where convective rainstorms are short-lived
and small relative to drainage basin size and dominate
runoff generation [4, 5]. Even under a stationary cli-
mate in such regions, event-based time series of rainfall
recorded over decades from dense gauging networks
only represent one realization of many plausible spatial
patterns and temporal sequences of rainfall that could
occur over different timescales [6–8]. Thus, convective
rainfall is essentially random, or stochastic. Further-
more, a nonstationary climate (i.e. climate change)
might increase/reduce rainfall and thus influence the
water balance within dryland regions, which are already
very sensitive to the spatial and temporal expressions
of climate (e.g. [9–16]).
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Climate changes may be imprinted within storm-
event rainfall in complex ways that depend on regional
moisture sources and temperature [17]. Precipitation
changes in drylands may manifest in wetter (drier) con-
ditions seasonally or annually, in higher (lower) rainfall
intensity for a given storm duration, or in some combi-
nation of these two effects. It is currently challenging to
separate out the impacts of these two classes of climate
change (i.e. shifts in annual precipitation totals versus
shifts in rainfall intensity), and to assess the interac-
tion of their various combinations. The lack of simple
frameworks for such investigation limits progress in
anticipating watershed responses to climate change in
regions dominated by convective rainfall.

Recent research has demonstrated that rainfall
intensity and its expression inannual rainfall is expected
to change with climate warming due to a shift in
the frequency of extreme events [18] arising from
higher moisture holding capacity in the atmosphere
[19], and that the evidence for such changes might
develop slowly in rainfall records [20]. However, it
is unknown how particular classes of climate change
might affect rainfall patterns and runoff generation
across a basin. This information gap creates challenges
for predicting expected hydrologic patterns and pro-
cesses under shifting climate drivers within dryland
drainage basins. It therefore limits progress in research
and management of environments that occupy 41% of
theEarth’s landsurfaceandarehometo1/3of theglobal
population [21].

It would be useful to have a simple rainstorm gen-
erator to investigate spatial and temporal variability
in rainfall under stationary or nonstationary climate.
Various rainstorm generators exist [22], ranging from
those which link the physics of atmospheric circulation
to rainfall patterns [23–25], to theoretical approaches
of space-time relationships of rainfall over individual
stormcycles [26–28], and toempirical–stochasticmod-
els, in which weather is simulated by semi-randomly
sampling from distributions of measured climate vari-
ables [29–31]. Most of these generators are too complex
for simple investigative simulationof convective rainfall
under climate change in small basins. Notable lim-
itations of existing models include large input data
requirements and/or reliance on GCM output to char-
acterize climate change (e.g. [32]).

In this paper, we develop a new parsimonious
rainstorm generator, the STOchastic Rainfall Model
(STORM), designed for simple multidecadal simula-
tions of rainfall patterns and sequences over an entire
drainage basin. The model is based on a combination
of theoretical space-time relationships with empirical-
stochastic selection of historical rainfall characteristics
to create realistic simulations of discrete rainfall events
across a basin and over various timeframes (resolu-
tion: 1 km; 1 min). A strength of our approach is that
STORM is flexible enough to simulate patterns and
sequences of rainfall that do not exist within historical
records, but are plausible based on past precipitation.

Furthermore, the model has the built-in capability to
predictwatershed response topotential climate changes
by censoring or altering relevant input distributions
to incorporate the effects of likely climate changes
(e.g. toward higher/lower total seasonal rainfall and/or
higher/lower intensity storms). We apply STORM to
assess the past expression of climate change on rainfall
characteristics in a dryland basin in the Lower Col-
orado River basin. We further explore its imprint on
ephemeral channelflowcontributions to larger regional
rivers, where there are observations of multidecadal
declines in streamflow (e.g. [15, 33, 34]).

2. Study area

The Walnut Gulch experimental watershed (WGEW)
is a 149 km2 basin tributary to the San Pedro River
within the Lower Colorado River basin in SE Arizona
(figure 1(a)), a region particularly prone to increased
probability of drought [35, 36]. It spans an elevation
range of 1219–1927 m above sea level [37], producing
a mild orographic effect (figures 1(b) and (c)), associ-
ated with the strengthening of convective convergence
at zones of high topographic relief [38, 39]. WGEW
has been monitored for rainfall since the 1950s with
one of the densest rain gauge networks in the world
at 0.6 gauges km−2 [40]. Approximately two-thirds of
the annual precipitation and ∼90% of all runoff in
WGEW occurs during high intensity, convective rain-
storms during the summer monsoon [5, 41–43]. These
storms, which largely originate in the Gulf of Mexico
or the Pacific Ocean [44], are limited in area and are
typically smaller than the basin size.

From a regional water resources perspective, an
important question is why discharge in the down-
stream San Pedro River (sub-tributary to the Colorado
River) declined by >50% in the latter half of the 20th

Century, within which the overall trend largely is dom-
inated by a discharge decrease in the summer monsoon
season (∼70% decline [15], figure 2(a)). There is lin-
gering debate about whether this streamflow decline
can be attributed to regional changes in precipitation
(historical climate change) and associated runoff from
monsoonal ephemeral flow, or to increased lowland
groundwater abstraction [15, 39]. Both have important
implications for water resources in this dryland region.
We aim to address climate change trends in rainfall
characteristics in WGEW and their potential impacts
on runoff and ultimately, to provide new insights on
the likely causes of the observed multidecadal decline
in downstream streamflow in this part of the Lower
Colorado basin.

3. Methods

In this paper, we investigate historical trends in event
precipitation across the network of gauges at WGEW.
Then we use STORM to explore the likely impacts
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Figure 1. Walnut Gulch experimental watershed (WGEW) and orography. (a) USGS 10 m digital elevation model (DEM) hillshade.
(b) Mean annual monsoonal PTotal in WGEW for the period 1953–2015. Variation of observed mean monsoonal PTotal versus gauge
elevation, illustrating small orographic effect in WGEW for observed data (c) and modeled simulations (d), where dashed line in the
latter indicates observed orographic effect. Blue circles represent binned averages over 50 m intervals of elevation, green horizontal
lines in (c) represent mean values for three orographic groups used in modeling (see figure S1), and red vertical error bars represent
±1 standard deviation around binned PTotal estimates.

of shifts in precipitation due to climate change on
runoff. STORMusesanempirical–stochastic approach,
which involves assembling probability distributions of
key rainstorm characteristics, followed by Monte Carlo
sampling of these distributions to simulate spatial and
temporal variability of rainstorms across a spatial grid.

3.1. Model initialization
To initialize STORM, we created probability den-
sity functions (pdfs) representing key storm attributes
based on aggregated analog and digital precipitation
event data from long-term rain gauges inWalnut Gulch
(www.tucson.ars.ag.gov/dap/). We treated the paired
storm event data (intensities and durations) collected
from all gauges during the summer monsoon season
(May–September) as discrete samples drawn from a
larger population of storms and thus concatenated
these data for further analysis of intensity–duration
relationships (see below). We also computed mon-
soonal precipitation totals by taking the product of
intensity and duration for each event (storm total) and
accumulating these storm totals for each year of record.

We then assembled pdfs for subsequent ran-
dom sampling as follows (see supplementary
material available at stacks.iop.org/ERL/12/104011/
mmedia for more detail). (1) A pdf of annual pre-
cipitation totals (PTotal, mm y−1) fit by a normal
distribution to computed total monsoonal rainfall
for each year over 62 years (1954–2015), for each
gauge that had at least five decades of rainstorm
event data (n = 85 gauges; n = 5270; figure S1(a). (2)

A pdf of storm areas (A, km2), was fit by extreme
value distribution (figure S1(b)) to data digitized
from a previous spatial interpolation analysis of 300
storm events over a 17 year period (figure 5 of
[4]). (3) We established a model domain using a
Universal Transverse Mercator 0.5 km spatial storm-
center grid with a 5 km buffer around the watershed
(figure S1(c)). Points on this grid are randomized in
the model for determination of storm-center location
for each generated rainstorm (uniform distribution).
(4) A pdf of rainstorm durations (PD, minutes) was fit
by generalized extreme value distribution to aggregated
instantaneous storm data from all gauges (n = 185 110;
figure S1(d)). (5) To determine storm-center intensity
(PI, mm hr−1) based on each selected value of dura-
tion, we randomly select one from a family of rainfall
intensity-duration curves that define the phase space
for these two storm variables (figure S1(e)). Each curve
is assigned a probability of selection within STORM
based on the general observation that the largest rain-
storms are less probable than smaller ones (figures S2
and S3). (6) Finally, we compute the rainfall intensity
gradient (figure S1(f)) for each storm to represent the
strong tendency for a decay in PI from the storm center
to the storm margins. To determine PI at each gauge
or grid position that lies within the radius of the simu-
lated rainstorm, we compute the spatial storm gradient
based on a two-dimensional Gaussian rainfall surface
that represents quadratic exponential decay of PI with
distance from the storm center [26]:

𝑃I,𝑥 = 𝑃I,𝑥=0 e−2𝛽
2𝑥2 (1)
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Figure 2. Time series of and Pearson correlation trends in: San Pedro River summer discharge from [15] (a), average event rainfall
intensity, duration, and storm totals at WGEW for all PI (b)–(d), PI > 15 mm hr−1 (e)−(g), and PI ≥ 25 mm hr−1 (h) and (i). Panels
(k)–(m) show time series of PTotal , number of storms, and observed WGEW runoff. Significant trends are shown as least squares fits
with p-values. Note: trend in (m) excludes extreme runoff year of 1999 and runoff for most downstream WGEW gauging station
(Flume 1) near basin outlet is reported in mm, discharge normalized by total upstream drainage area.

where PI,𝑥 is rainfall intensity (mm hr−1) at a dis-
tance x (km) away from the storm center (x = 0), PI,𝑥=0
is the rainfall intensity (mm hr−1) at x = 0, and 𝛽 is
decay parameter describing the decline in rainfall with
distance from the storm center. Previous work in
WGEW and other basins dominated by convective
rainfall has shown very steeply declining rainfall inten-
sity with distance from the storm center [45, 46].

3.2. Model operation
To operate STORM, we begin in Year 1 of a simula-
tion by selecting from the pdf of annual PTotal (figure
S1(a)). Then for each simulated year, we generate
a series of storms with randomly selected rainstorm

characteristics expressed on a grid (see below) until the
selected PTotal is exceeded by at least half of the gauges
in the basin. In other words, each simulation year is
complete when the median value of running PTotal at
all data output locations on the grid (either explicit
gauge locations for model evaluation or arbitrary grid
locations for model simulation), exceeds the selected
value of PTotal for that year. Then a new simulation
year begins.

For each simulated storm, we randomly select
(figure S1): (1) storm center location; (2) storm PD
(1 minute resolution); (3) intensity–duration curve
number, which defines rainstorm PI at the storm cen-
ter as a function of the selected duration, modified by

4
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a randomized fuzzy tolerance within ±5 mm hr−1; and
(4) storm area, from which we calculate storm radius
(assuming circular storm shape) as 𝑟 =

√
𝐴∕𝜋 . We

then apply the computed storm gradient (equation (1))
to determine PI for each affected output grid location
(or gauge location). To do this, we project r on the basin
map, and determine which grid locations are affected
using Euclidean geometry and then compute PI,𝑥 for
each affected grid cell excluding the storm center.

3.3. Orography, model evaluation, and climate
change scenarios
The simulation procedure for STORM described above
was enhanced to include orography, the tendency for
precipitation to vary with elevation. We used the hyp-
sometric method to evaluate the elevational control on
total monsoonal precipitation. The orographic effect
is thus included by dividing the basin into three oro-
graphic groups of elevations (green horizontal lines in
figure 1(c)), which broadly define spatial areas of the
basin. We use these orographic groups to further
modify selection probabilities for intensity-duration
curves (figures S1E and S2). Essentially, we increase the
probability of selecting more intense storms where the
storm center is located at higher elevation, and vice
versa (supplementary material).

We evaluated the model’s skill at generating
distributions of the various storm characteristics
that are statistically similar to those of the origi-
nal dataset from which pdfs were derived. To this
end, we evaluated selected rainfall characteristics at
85 gauge locations (figure 1(a)) from 30 ensembles
of thirty-year simulations of STORM. We com-
pared rainstorm characteristics that emerge from the
model, rather than those which are forced by it. The
resulting statistical tests demonstrated high model
skill without model tuning (supplementary material
figures S4−S6).

Once we were satisfied with the model’s simulation
skill, we modified the inputs to STORM to investigate
rainfall resulting from two classes of climate change and
their interactions over a grid within the basin. First, we
looked at step changes in overall wetness by increas-
ing/decreasing the distribution mean of PTotal by one
standard deviation, while maintaining the pdf shape
(figure S1(a)). These simulations of changes in wet-
ness are indicated by PTotal(+) or PTotal(−). Second,
we investigated step changes in storminess (i.e. value
of storm event PI for a given PD) by multiplying the
selected PI value at the storm center by a scalar fraction
(supplementary material) and adding (subtracting) the
product to the selected PI value to reflect increased
(decreased) storminess. This effect propagates into PI
at any location within the storm area by equation (1)
and shifts the phase space of PI–PD up or down to
reflect step changes in storminess (figure S1(e)). These
simulations of changes in storminess are indicated by
PI(+) or PI(−). Finally, we looked at the combined

effects of each permutation of these classes of climate
change. Note that the simulated climate change sce-
narios presented here are heuristic rather than accurate
characterizations of climate change projections.

To estimate the first-order effects of rainfall on
runoff, we assumed a spatially uniform infiltration rate
of 15 mm hr−1 based on previous work in this basin
[4, 5, 39, 47]. We use this threshold rate to calculate
local infiltration-excess precipitation (herein referred
to as potential runoff, ROPot) from STORM rainfall
output for each modeled scenario.

We investigated the impact of each climate change
scenario on precipitation as measured by five met-
rics calculated from model output at each grid
location for each simulation year: (1) number of
storms; (2) mean storm total (rainstorm total aver-
aged over all events); (3) total ROPot as cumulative
sum of discrete storm events of PI> 15 mm hr−1 as
ROPot =

∑
[(PD/60 min) ∗ (PI>15 – 15 mm hr−1)]; (4)

ROPot coefficient (ROPotCoeff) as ROPot/PTotal; and
(5) total ROPot for discrete heavy rainfall events where
PI ≥ 25 mm hr−1 as ROPotHeavy =

∑
[(PD/60 min) ∗

(PI≥25 – 15 mm hr−1)]. The heavy rainfall metric is
most diagnostic of likely runoff response within the
drainage basin. The degree of spatial heterogeneity
in ROPotHeavy (measured by coefficient of variation,
CV) reflects the likelihood of runoff reaching the basin
outlet.

During sufficiently long storms, overland flow is
generated and runoff arrives at the Walnut Gulch
channel, where it moves downstream toward the San
Pedro River, albeit with significant transmission losses
of ∼65% [43]. However, since our model only sim-
ulates the rainfall, computed metrics from STORM
output provide a first-order indication of watershed
response to climate change and corresponding con-
tributions to downstream streamflow trends. A more
detailed understanding of watershed response to cli-
mate change can be assessed by driving a rainfall-runoff
model with rainfall series and inter-storm periods gen-
erated by STORM (see supplementary material for
more detail).

4. Results

Figure1(d)depicts theorographygeneratedbySTORM
after an ensemble of 30× 30 year simulations, based
on our probabilistic treatment of PI−PD curve selec-
tion (figure S2). The averaged results reasonably match
the general elevational trend in PTotal observed in the
historical record (figure 1(c)).

Figures 2(b)–(m) present historical precipitation
and runoff trends in WGEW, corresponding to the
multidecadal period of the observed negative trend in
streamflow in the San Pedro River (figure 2(a), supple-
mentary material). Surprisingly, historical observations
reveal a multi-decadal decline in precipitation inten-
sity for all rainstorm events (figure 2(b)—All PI), for
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events capable of generating local runoff (figure 2(e)—
PI > 15 mm hr−1), and for heavy precipitation events
(figure 2(h)—PI ≥ 25 mm hr−1). While there is no
trend in PD for All PI (figure 2(c)), there are increas-
ing trends in duration for events categorized as PI >

15 mm hr−1 and PI ≥ 25 mm hr−1 (figures 2(f) and
(i)). In terms of average storm totals, there is an overall
decrease in rainfall depth for All PI (figure 2(d)), even
though storm totals have increased for the two cate-
gories of higher intensity (runoff-producing) rainfall,
due to their longer durations (figures 2(g) and (j)).

In summary, rainstorms in WGEW declined in
intensity and in total amount of water delivered per
storm over the multi-decadal period, but higher inten-
sity storms became longer, delivering more water
to the land surface per storm (even under declin-
ing intensity). Cumulative rainfall characteristics at
WGEW show that PTotal has increased over the
decadal period, along with the number of storms
occurring each year (figures 2(k) and (l)). Taken
together, these factors highlight that runoff-producing
rainfall events have concomitantly decreased in num-
ber over this period in favor of many more small
events. As a potential consequence, ephemeral runoff
at the WGEW outlet has significantly declined over
the late 20th Century (figure 2(m); supplementary
material), which is consistent with the negative stream-
flow trend in the downstream San Pedro River
(figure 2(a)).

Figure 3 presents STORM results for a
range of climate change scenarios involving step
changes in wetness (PTotal +/–) and/or storminess
(PI +/–) at WGEW, all of which are compared to the
Control scenario, that represents stationary historical
rainfall. Changing wetness and storminess impacts the
number of storms per year intuitively (more storms
for PTotal(+) and PI(–), and vice versa). Similarly,
storm totals (total rainfall depths per storm) remain
largely unchanged for PTotal(+/–) compared to the
Control scenario because the storm PI–PD relation-
ship is kept constant even though wetness is changed.
However, changes in storminess (i.e. PI for a given
PD) markedly affect number of storms and storm total
magnitudes (figures 3(a) and (c)). When the two cli-
mate change effects are combined in STORM, some
interesting interactions emerge. PI(+) counterbalances
the effect of PTotal(+) in terms of number of storms
per year, yielding a distribution of values identical to
that of the Control run. In contrast, PTotal(–) dom-
inates over PI(–) by reducing the number of storms
from the Control scenario (figure 3(a)). Combining
PTotal(+) with PI(–) produces the largest number of
storms of any modeling scenario, which results in a
very low mean storm total (figure 3(c)), a model result
that is consistent with WGEW historical observations
(figures 2(d),(k), and (l)).

The computations of ROPot and ROPotCoeff at
each output grid location yield additional information

on how the modeled scenarios might be expected
to affect watershed response in WGEW. In general,
for a given PTotal distribution, storminess differences
significantly influence potential runoff. The PI(–) sce-
nario produces a stronger effect than PI(+), markedly
decreasing both ROPot and ROPotCoeff compared to
the Control run due to the relative loss of high inten-
sity storms that contribute rainfall above the runoff
threshold (figures 3(b) and (d)). Within the combined-
effect scenarios, ROPot (and ROPotCoeff) is higher for
PTotal(+)/PI(+) than in the Control scenario, and it
is lower than in the Control runs for PTotal(+)/PI(–).
Since PTotal(+)/PI(–) well represents observed WGEW
precipitation trends (figure 2), model output from
STORM suggest these changes in rainfall character-
istics in this ephemeral basin should result in decreased
runoff.

Figures 3(e)–(m) present maps of ROPotHeavy for
each of the modeled scenarios (30 × 30 year simulations
each), along with their means (𝜇) and coefficients of
variation (CV). These maps indicate the total amount
and spatial distribution of annual excess heavy rainfall
that is highly likely to generate runoff in the water-
shed [39]. Independently, step changes in PTotal and PI
have an approximately equivalent and expectable influ-
ence on ROPotHeavy, in terms of average values and
spatial heterogeneity. For example, increases in wet-
ness or storminess raise average values of ROPotHeavy
across WGEW, while lowering its spatial heterogeneity
by a similar degree (and vice versa, figures 3(e)–(i)).
The ROPotHeavy results suggest that climate changes
expressed through wetness and storminess can have
measurable influence on runoff produced at the basin
outlet. However, the heavy rainfall results differ from
those that include all storms that are likely to generate
local runoff, but which are closer to the threshold (PI
> 15 mm hr−1). For all such storms, PTotal(+) gen-
erates a similar average value of ROPot to PI(+), even
though the PI(+) scenario produced a higher runoff
coefficient. This illustrates a balance between wetness
and storminess (figures 3(b) and (d)).

The STORM output on heavy precipitation from
the combined-effect scenarios demonstrates interac-
tions between these two classes of climate change. For
example, PTotal(–)/PI(–) produces low ROPotHeavy
(as expected), but in a manner that is no less
or more heterogeneous than the Control scenario.
In contrast, PTotal(+)/PI(+) generates the highest
ROPotHeavy,butwith lowspatialheterogeneity (figures
3(k) and (l)). Notably, results from the PTotal(+)/PI
(–) scenario (which best represents decadal trends at
WGEW, figure 2), illustrate a decline in ROPotHeavy
across the basin (figure 3(m), black outline) com-
pared to the Control. STORM results suggest that
the historical climate trend at WGEW produces less
and more spatially homogeneous ROPotHeavy, thus
suggesting an overall negative trend in runoff for
the basin.
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Figure 3. Annual watershed response variables to modeled scenarios. Boxplots of number of storms per year (a), ROPot (b), storm
total (c), and ROPotCoeff (d). Spatial maps of ROPotHeavy (for PI ≥ 25 mm hr−1) based on thirty ensembles, each of 30 years, for the
following scenarios: current climate [Control] (e), PTotal increase [PTotal(+)] (f), PTotal decrease [PTotal(–)] (g), storminess increase
[PI(+)] (h), storminess decrease [PI(–)] (i), PTotal(–) and PI(+) (j), PTotal(–) and PI(–) (k), PTotal(+) and PI(+) (l), and PTotal(+) and
PI(–) (m). Panel (m) (black outline) is the most representative of recent historical climate change in WGEW. Spatial coefficients of
variation (CV) and mean values (𝜇) are also shown on each map.

5. Discussion

Here we investigated whether the results from our
STORM simulations could improve understanding of
why the summer flow in the San Pedro River has
declined by >50% in the latter half of the 20th Cen-
tury ([15], figure 2(a)), a phenomenon that has been
observed more widely within the Colorado River basin
during the recent prolonged drought [34]. We found
that climate change at WGEW is expressed as reduced
overall rainfall intensity,withhighermonsoonal rainfall
totals and more storms per year (but with fewer heavy
rainstorms). Our modeled scenario of PTotal(+)/PI(–)
best represents these observed multidecadal trends.

STORM produces corresponding output that is con-
sistent in relative magnitude (and similar in absolute
magnitude) to the historical record of precipitation
and runoff for the multidecadal period of interest.
Thus, STORM can be used to provide insights into
the probable watershed responses to these multidecadal
changes in precipitation for applications in research or
management.

Based on the historical observations and output
from STORM, we conclude that the negative multi-
decadal trend in runoff observed at WGEW (figure
2(m)), could arise directly from the expressed trends
in precipitation observed in this basin, over a period
of rising temperature (figure S7). STORM revealed
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that lower rainfall intensity, even with the higher total
precipitation, yields fewer intense storms and lower
average potential runoff (figures 3(b), (e), (h), (k), (l),
(b) and (m)). For example, the PTotal(+)/PI(–) scenario
yielded 9 mm, or 0.3 mm y−1 less ROPotHeavy than the
Control scenario. Ephemeral basins like WGEW expe-
rience high transmission losses (∼65%) as streamflow
transits through the channel to the basin outlet [43].
Based on our modeling and such estimates of high
transmission loss rates (−0.3 mm y−1 −65% transmis-
sion loss =−0.11 mm y−1), it is therefore plausible that
the observed decadal decline in runoff at the WGEW
basin outlet (−0.09 mm y−1, figure 2(m)) is a direct
consequence of a reduced number of heavy rainfall
events and the associated decline in heavy precipita-
tion totals during the monsoon (figure 3(m)). Heavy
rainstorms were apparently replaced during this period
of warmer climate with many more, less intense storm
events that raised annual totals, but did not contribute
appreciably to runoff. In addition, coupled with the
observed increase in temperatures, infiltrated rainfall
contributing to vadose zone moisture was likely to be
rapidly lost due to the correspondingly higher evap-
orative demand over this period (e.g. [33]), thereby
quickly resetting infiltrability to its maximum and fur-
ther reducing potential runoff contributions to the
stream.

If these climate change trends are expressed more
broadly within the Lower Colorado River basin, it is
possible that they do or will have more substantial con-
sequences for streamflow in the major trunk streams, in
addition to affecting vegetation cover and erosion rates
[48–50]. Nevertheless, based on our analysis, we con-
clude that the negative trend in streamflow observed at
WGEW can only explain∼6% of the decadal decline in
San Pedro River summer season streamflow. Although
there are additional ephemeral streams that are pos-
sibly also contributing lower monsoonal runoff to
the San Pedro (e.g. the Babocomare), we intuit that
the observed streamflow decline in the lowlands is
instead largely due to other factors. These include
a combination of accelerated rates of groundwater
abstraction, reduced regional groundwater recharge
in the surrounding upland areas, and progressive
declines in snowpack [51–53]. These net water losses
are likely to have lowered regional water tables and
by extension, subsurface contributions to this low-
land trunk stream [15], regardless of trends in regional
ephemeral flow.

The hydrological analysis presented here has
broader implications for the manifestations of climate
change in dryland basins around the globe. Given that
GCMs are currently unable to resolve convective pre-
cipitation, a model such as STORM could provide
detailed and nuanced insight into the spatial and tem-
poral components of convective rainfall over a dryland
(or other) basin, and the expected watershed responses
to plausible climate changes. Recent work has high-
lighted negative trends in rainfall regimes in Eastern

Africa, for example, expressed in storminess [54]. Such
trends are likely to affect runoff, groundwater recharge,
etc, but their impact on regional water balance are
currently unresolved. More broadly, upward trends in
air temperature are known to affect moisture-holding
capacity of the atmosphere, which may produce more
heavy rainfall events [17]. However, in moisture-
limited (dryland) regions it is plausible that there are
upper limits to atmospheric moisture during convec-
tive events, even when evaporative demand is very high,
due to limited moisture supply from the land in these
dry landscapes (supplementary material).

STORM is widely applicable and simple to use
due to its low data requirements, its flexibility to
assess different classes of climate change, and its ability
to generate numerous stochastic ensembles. Potential
applications of STORM include characterizing vari-
ability in water supply or flash flood risk, investigating
the potential impacts of climate changes on water
resources, or generating spatially explicit hydrologic
input to drive watershed response models, land sur-
face models, or even geomorphic landscape evolution
models (supplementary material).

6. Conclusions

In this paper we presented STORM, a simple, flexi-
ble, and parsimonious simulation model which can be
used by researchers and managers to investigate plau-
sible impacts of climate change on rainstorm-delivered
water to the land surface. STORM’s output can be
subsequently used in other quantitative and model-
ing frameworks to explore the partitioning of rainfall
between the surface and subsurface, ecohydrology,
runoff and erosion, and landscape evolution. STORM
output and historical data suggest historical climatic
changes affected precipitation in the Lower Colorado
River basin over a multi-decadal period. We infer that
this climatic expression, in turn, was responsible for
lower runoff delivered from regional ephemeral tribu-
taries, but has not appreciably contributed to negative
streamflow trends in the lowlands.
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