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Abstract

A comparative study of two new Galerkin projection schemes to com-
pute the response of discretised stochastic partial differential equations
is presented for discretised structures subjected to static and dynamic
loads. By applying an eigen-decomposition of a discretised system, the
response of a discretised system can be expressed with a reduced basis of
eigen-components. Computational reduction is subsequently achieved by
approximating the random eigensolutions, and by only including dominant
terms. Two novel error minimisation techniques have been proposed in
order to lower the error introduced by the approximations and the trunca-
tions: a) Sample-based Galerkin projection scheme, b) Sample-aggregated
based Galerkin projection scheme. These have been applied through intro-
ducing unknown multiplicative scalars into the expressions of the response.
The proposed methods are applied to analyse the bending of a cantilever
beam with stochastic parameters undergoing both a static and a dynamic
load. For the static case the response is real, however the response for the
case of a dynamic loading is complex and frequency-dependent. The re-
sults obtained through the proposed approaches are compared with those
obtained by utilising a direct Monte Carlo approach.

Keywords: Stochastic differential equations; eigenfunctions; Galerkin;
projection; reduced methods.

1 Introduction

The mathematical models and the parameters used to model physical systems
are idealizations of physical processes. They cannot often be known for certain,
and a degree of randomness is involved. In fact, input uncertainty in the form
of material parameters, geometrical configuration or boundary conditions are
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ubiquitous and intrinsic to the models being analysed. Many civil engineer-
ing problems are concerned with materials that are intrinsically random and
merely using the average value or the best possible deterministic values of the
material properties would not establish their behaviour with desired confidence
or reliability. Fortunately, the entire subject of uncertainty can itself be ad-
dressed in a scientific and a mathematically precise way by utilising stochastic
computational models.

This work proposes and compares new reduced order methods to approxi-
mate the response of stochastic discretised equations. Stochastic sampling tech-
niques which employ Monte Carlo type simulations have been widely used to
solve such systems [1, 2]. However the convergence of such methods can be
deemed slow. In order to lower the computational cost numerous methods have
been suggested. These include principal component analysis [3], quasi Monte
Carlo [4] and Latin hypercube sampling [5]. A comprehensive review of sam-
pling techniques is given by [6]. In spite of the slow convergence rate, brute force
Monte Carlo simulations are often treated as a benchmark solution in stochastic
computational mechanics literature e.g. [7].

Expansion methods have also been utilised for computing the response of
stochastic structures. Such methods include the perturbation method [8, 9] and
Neumann series [10, 11]. A perturbation method expands a systems solution
by using a Taylor series whilst the Neumann series method approximates the
inverse of the stochastic matrices with a Neumann type matrix series expansion.
Projection methods have also been used for solving stochastic equations. Orig-
inating from [12], [13] have proposed a polynomial chaos expansion (PCE) for
stochastic finite elements which produces a linear combination of Hermite poly-
nomials and undetermined deterministic coefficients. Numerous studies have
applied the PCE including [14] and [15]. In turn a generalised PCE approach has
been proposed [16, 17] based upon the Wiener-Askey chaos expansion. [18, 19]
have explored projections onto preconditioned stochastic Krylov basis functions
whilst [20] has utilised a random eigenfunction expansion method to formulate a
random basis. Further methods such as stochastic collocation techniques [21, 22]
and meta-modelling schemes [23, 24] and reduced stochastic spectral function
approach [25, 26] have been suggested when a stochastic finite element analysis
of a structural dynamic system is performed. A comprehensive review of the
available literature is not given in this paper, however we refer the reader to
[27, 28] for a wide-ranging review of the available reduced order methods.

If the PCE were used, both the static and dynamic cases would use the
same projections. In turn this introduces additional problems into the compu-
tation [29]. This paper aims to discuss projection methods which are specificity
designed to capture the physical nature of the systems. By applying a ran-
dom eigenfunction approach a comparative study between two novel Galerkin
projection schemes (a) A sample-based Galerkin projection scheme and (b) A
sample-aggregated based Galerkin projection scheme are presented. After ap-
plying appropriate computational reduction methods, the two novel Galerkin
projection schemes are introduced to a system undergoing a static load and to
a system subjected to a dynamic load. The system subjected to a dynamic load
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is analysed in the frequency domain. The methods are consequently applied to
a cantilever beam and their effectiveness are compared. These comparisons are
based upon relative error estimates with respect to a benchmark direct Monte
Carlo approach.

A brief outline of the formulation of stochastic structural systems is given in
Section 2. The relevant projection methods for both loading cases are derived in
Section 3 before two methods for reducing the computational cost are discussed
in Section 4. As a result of the induced error due to the computational reduction,
Section 5 introduces the novel Galerkin projection schemes. The methods are
subsequently applied to analyse the bending of a Euler-Bernoulli cantilever beam
in Section 6 before the major conclusions are drawn in the concluding section.

2 Formulating the discretised systems

In this work, stochastic discretised equations are considered for structures which
are subjected to both static and dynamic loads. This section aims to give a brief
overview of the stochastic discretised equations considered to describe structures
which are subjected to both static and dynamic loads. The stochastic discretised
equations can be obtained by utilising a stochastic finite element approach on
a partial differential equation. The technical details of obtaining the discretised
set of equations have been omitted, however many references are available on
this topic [13].

2.1 Discretised system: Static load

The case of a structure undergoing a static load can be described by the following
set of stochastic discretised equations

K(θ)uS(θ) = f0 (1)

where K(θ),uS(θ) and f0 correspond to a random stiffness matrix, the response
vector and a deterministic excitation field respectively. The discretised set of
stochastic linear equations given by Equation (1) can be expressed as follows

K(θ)uS(θ) =

K0 +

M1∑
j=1

ξj(θ)Kj

uS(θ) = f0 (2)

K0 ∈ RN×N is a positive definite, symmetric matrix which contributes to the
deterministic nature of the random stiffness matrix. In a similar manner Kj ∈
RN×N are general matrices for j = 1, 2, ...M1 which contribute to the stochastic
nature of K(θ). The function ξj(θ) corresponds to a set of random variables
for j = 1, 2, ...M1. The methods proposed in this paper are general in nature,
therefore the random variables are not restricted to a specific distribution. A
benchmark solution to the set of stochastic linear equations given above can be
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obtained through direct Monte Carlo simulations [DMCS]

uS(θ) =

K0 +

M1∑
j=1

ξj(θ)Kj

−1 f0 (3)

Convergence is guaranteed if all realisations of K(θ) are positive definite and
the number of realisations is sufficiently large. Equation (3) would subsequently
be solved for each θ ∈ Θ.

2.2 Discretised system: Dynamic load

The following set of stochastic discretised equations can be used to represent a
viscously damped structure undergoing a dynamic load in the frequency domain
[30]

[−ω2M(θ) + iωC0 + K(θ)]uD(ω, θ) = f̃0(ω) (4)

where M(θ),K(θ) and C0 are matrices that correspond to a systems’ random
mass and stiffness matrices and a systems’ deterministic damping matrix re-
spectively. The vector f̃0 is a deterministic excitation field, ω is a frequency in
the frequency space Ω and i =

√
−1. The vector uD corresponds to the complex

dynamic response vector. For both the static and dynamic loading cases θ ∈ Θ
is a sample point from the sampling space Θ.

The random variables associated with both the random mass matrix and the
random stiffness matrix seen in Equation (4) can be grouped so that ξj(θ) =
ηj(θ) for j = 1, 2, . . . q1 and ξj+q1(θ) = νj(θ) for j = 1, 2, . . . q2. Thus the
random mass matrix M(θ) and random stiffness K(θ) can be modelled as:

M(θ) = M0 +

q1∑
j=1

ηj(θ)Mi ∈ RN×N (5)

K(θ) = K0 +

q2∑
j=1

νj(θ)Ki ∈ RN×N (6)

M0 ∈ RN×N and K0 ∈ RN×N are the deterministic contributions to the mass
and stiffness matrices, whilst Mj ∈ RN×N and Kj ∈ RN×N are the corre-
sponding stochastic contributions. Similarly to the static case, we assume a
deterministic excitation vector f̃0 ∈ RN . The matrix C0 ∈ RN×N is a deter-
ministic damping matrix. For this study, we consider constant modal damping
[30], therefore the damping matrix C0 takes the following form

C0 = 2ζM0

√
M−1

0 K0 (7)

where ζ denotes a diagonal matrix which contains the modal damping factors

ζ = diag[ζ1, ζ2, . . . ζN ] ∈ RN×N (8)
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As it is assumed that all the diagonal entries are equal it can be deduced that
ζ1 = ζ2 = · · · = ζN . After combining the above expressions, Equation (4) can
be expressed as D0(ω) +

M2∑
j=1

ξj(θ)Dj(ω)

uD(ω, θ) = f̃0(ω) (9)

where D0 ∈ CN×N represents the complex deterministic part of the system and
Dj ∈ RN×N the random components. The total number of random variables,
M2, can be computed through summing q1 and q2. For the given configuration,
the expressions for D0 and Dj are as follows

D0(ω) = −ω2M0 + iωC0 + K0 (10)

Dj(ω) = −ω2Mj for j = 1, 2, . . . , q1

Dj(ω) = Kj−q1 for j = q1 + 1, q1 + 2, . . . , q1 + q2
(11)

In the subsequent sections, a reduced order projection method is presented
in conjunction with two different Galerkin methods. In order to compare the
accuracy of the different methods, a benchmark solution is produced by directly
solving Equation (4) [DMCS]

uD(ω, θ) =

D0(ω) +

M2∑
j=1

ξj(θ)Dj(ω)

−1 f̃0(ω) (12)

This above expression is solved for each θ ∈ Θ and for every frequency value
ω ∈ Ω.

3 Stochastic projection methods

In this section two stochastic projection methods are discussed to calculate the
responses of Equations (2) and (9). We aim to represent these responses by
projecting random scalars onto random bases. In turn, the following stochastic
projections will form a foundation for the proposed Galerkin approaches

uS(θ) =

N∑
j=1

αj(θ)aj(θ) and uD(ω, θ) =

N∑
j=1

βj(ω, θ)bj(θ) (13)

For the case of a static load, αj(θ) ∈ RN denotes the random scalars and
aj(θ) ∈ RN×N the random basis. Likewise for the case of a dynamic load,
βj(ω, θ) ∈ CN denotes the random scalars and bj(θ) ∈ RN×N the random
basis. The stochastic projection method for the case of a static load is initially
considered.
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3.1 Stochastic projection: Static load

In order to obtain an expression for the response in the same form as Equation
(13) we initially consider the following random eigenvalue problem

K(θ)φk(θ) = λk(θ)φk(θ); k = 1, 2, . . . N (14)

For convenience, the matrices of the random eigenvalues and eigenvectors of
K(θ) are defined as follows

Λ(θ) = diag [λ1(θ), λ2(θ), . . . , λN (θ)] ∈ RN×N and

Φ(θ) = [φ1(θ),φ2(θ), . . . ,φN (θ)] ∈ RN×N
(15)

The random eigenvalues are arranged in ascending order so λ1(θ) < λ2(θ) <
. . . < λN (θ). The corresponding eigenvectors are consequently arranged in the
same order. Due to the orthogonality of Φ(θ), it is deduced that Φ(θ)−1 =
Φ(θ)T . Thus the following identities can be defined

ΦT (θ)K(θ)Φ(θ) = Λ(θ); K(θ) = Φ−T (θ)Λ(θ)Φ−1(θ) and K−1(θ) = Φ(θ)Λ−1(θ)ΦT (θ)
(16)

Using these identities, the response of Equation (2) can be expressed as

uS(θ) =
[
Φ(θ)Λ−1(θ)ΦT (θ)

]
f0 =

N∑
j=1

φTj (θ)f0

λj(θ)
φj(θ) (17)

It is apparent that Equation (17) is of the same form as Equation (13). The

quantity
φT

j (θ)f0
λj(θ)

corresponds to the scalar term αj(θ) and φj(θ) corresponds to

the vector term aj(θ). The number of terms in the summation, N , corresponds
to the number of degrees of freedom associated with a structure.

3.2 Stochastic projection: Dynamic load

Similarly to the case of a static load, a random eigenvalue problem is considered
in order to represent the response in the form of Equation (13). However con-
trary to the static case, random stiffness and random mass matrices are taken
into consideration

K(θ)ψk(θ) = µk(θ)M(θ)ψk(θ); k = 1, 2, . . . N (18)

where µk(θ) and ψk(θ) are the kth undamped random eigenvalue and eigen-
vector. Matrices that contain the set of undamped random eigenvalues and
eigenvectors are defined as follows

Ω2(θ) = diag [µ1(θ), µ2(θ), . . . , µN (θ)] ∈ RN×N and

Ψ(θ) = [ψ1(θ),ψ2(θ), . . . ,ψN (θ)] ∈ RN×N
(19)

where the undamped eigenvalues are arranged in ascending order so µ1(θ) <
µ2(θ) < . . . < µN (θ). The corresponding eigenvectors are subsequently mass
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normalised and arranged in the same order. It is apparent that the following
relationships hold

ΨT (θ)M(θ)Ψ(θ) = I

ΨT (θ)K(θ)Ψ(θ) = Ω2(θ)
(20)

By combining the above identities with Equation (4) it is possible to gain a
representation for the response in the form of Equation (13). We initially define
the following modal damping matrix

C′(θ) = ΨT (θ)C0Ψ(θ) = 2ζΩ(θ) (21)

where ζ corresponds to the diagonal modal damping matrix introduced in Equa-
tion (8). By using the following modal transformation uD(ω, θ) = Ψ(θ)ȳ(ω, θ)
and by pre-multiplying Equation (4) with ΨT (θ), we obtain[

−ω2I + 2iωζΩ(θ) + Ω2(θ)
]
ȳ(ω, θ) = ΨT (θ)̃f0(ω) (22)

By inverting
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]
and pre-multiplying both sides of the

above equation with Ψ(θ) it is apparent that

Ψ(θ)ȳ(ω, θ) = Ψ(θ)
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]−1
ΨT (θ)̃f0(ω) (23)

The computational cost of calculating the inverse of
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]
is rather inexpensive due to the diagonal nature of

[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]
.

By reintroducing uD(ω, θ) for Ψ(θ)ȳ(ω, θ) a dynamic response in the frequency
domain can be obtained

uD(ω, θ) = Ψ(θ)
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]−1
ΨT (θ)̃f0(ω) (24)

This expression can be rewritten in the form of a summation, where N corre-
sponds to the number of degrees of freedom associated with a structure

uD(ω, θ) =

N∑
j=1

βj(ω, θ)bj(θ) =

N∑
j=1

(
ψTj (θ)̃f0(ω)

µj(θ)− ω2 + 2i
√
µj(θ)ωζ

)
ψj(θ) (25)

It is apparent that the response of a system undergoing a dynamic load can
be represented in same form as Equation (13). The random scalars, βj(ω, θ),

correspond to the result of
φT

j (θ)
˜f0

λj(θ)−ω2+2i
√
λj(θ)ωζ

. In turn, these random scalars

are projected onto the space spanned by ψj(θ).

4 Approaches towards reducing the computa-
tional cost

Calculating the exact values of αj(θ), βj(ω, θ), aj(θ) and bj(θ) could prove
difficult, and in turn could be more computationally expensive than solving
Equations (3) and (12). This section aims to address this issue by offering two
approaches to lower the computational cost:
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• The random eigensolutions arising in Equations (17) and (25) can be ap-
proximated.

• The number of terms arising in the summations seen in Equations (17)
and (25) can be reduced.

By implementing these approaches the computational cost associated with ap-
proximating the responses of Equations (2) and (9) will be dramatically lower
than the computational cost associated with computing the exact solutions. Ap-
proximating the random eigensolutions for the case of a static load is initially
considered.

4.1 Approximating the random eigenvalues and eigenvec-
tors

Direct Monte Carlo simulations can be used in collaboration with the random
eigenvalue problem in order to calculate the exact values of the random eigenval-
ues and eigenvectors; however this method is computationally expensive. Nu-
merous methods have been proposed to approximate the random eigensolutions
and in turn lower the computational cost. These include a subspace iteration
method [31] and a polynomial chaos approach [32]. This work explores the
use of a perturbation method to approximate both the random eigenvalues and
random eigenvectors.

4.1.1 Approximating the random eigenvalues and eigenvectors: Static
load

Solutions of different perturbation methods are obtained by varying the trunca-
tion value of a Taylor series expansion. Due to its efficiency and ease, the first
order perturbation method has been considered. An approximation of the j th
random eigenvalue and its corresponding random eigenvector is given by

λj(θ) ≈ λj0 +

M1∑
k=1

(
∂λj
∂ξk

)
dξk(θ) (26)

and φj(θ) ≈ φj0 +

M1∑
k=1

(
∂φj
∂ξk

)
dξk(θ) (27)

where dξk(θ) is a set of random variables. By differentiating the random eigen-
value equation with respect to ξk, pre-multiplying with φTj0 and utilising that

φTj0φj0 = 1, ∂λ
∂ξk

can be expressed as

∂λj
∂ξk

= φTj0
∂K

∂ξk
φj0 (28)

In the instance of Equation (28), ∂K
∂ξk

= Kk.
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The partial derivative of φj with respect to ξk can be calculated by ex-

panding
∂φj

∂ξk
as a linear combination by utilising deterministic eigenvalues and

eigenvectors [33]

∂φj
∂ξk

=

N∑
i=16=j

αjkiφi where αjki =
φTi0

∂K
∂ξk
φj0

λj0 − λi0
(29)

In this instance, ∂K
∂ξk

= Kk and αjkiφi = 0 when i = j. This method requires
all the deterministic eigenvalues and eigenvectors to be know and for all the
eigenvalues to be distinct. The case of repeated eigenvalues is beyond the scope
of this paper.

4.1.2 Approximating the random eigenvalues and eigenvectors: Dy-
namic load

Similarly to the previous case, the random eigenvalues and eigenvectors for the
case of a dynamic load can be approximated by a first order perturbation

µj(θ) ≈ µj0 +

M2∑
k=1

(
∂µj
∂ξk

)
dξk(θ) (30)

and ψj(θ) ≈ ψj0 +

M2∑
k=1

(
∂ψj
∂ξk

)
dξk(θ) (31)

where µj0 and ψj0 are the jth deterministic undamped eigenvalue and eigen-
vector and dξk(ω) a set of random variables. The derivative of the undamped
random eigenvalues with respect to ξk can be obtained by differentiating and
manipulating the random eigenvalue equation denoted by Equation (18) [33].
This results in the following equation

∂µj
∂ξk

=
ψT0j

[
∂K
∂ξk
− µ0j

∂M
∂ξk

]
ψ0j

ψT0jM0ψ0j

(32)

where µ0j and ψ0j correspond to the deterministic undamped eigenvalues and
eigenvectors. Due to the mass normalisation of the undamped eigenvectors, the
above denominator equates to one, thus it can be deduced that

∂µj
∂ξk

= ψT0j

[
∂K

∂ξk
− µ0j

∂M

∂ξk

]
ψ0j (33)

The values of both ∂M
∂ξk

and ∂K
∂ξk

seen in Equation (33) are as follows

∂M

∂ξk
=

{
Mk, for k = 1, 2, . . . , q1

0, otherwise

∂K

∂ξk
=

{
Kk−q1 , for k = q1 + 1, q1 + 2, . . . , q1 + q2

0, otherwise

(34)
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where Mk and Kk−q1 correspond to the random components of M(θ) and K(θ)
introduced in Equations (5) and (6). The partial derivative of the random un-
damped eigenvectors with respect to ξk can be expressed by a linear combination
of deterministic eigenvectors. The full algebraic detail of obtaining the deriva-
tive of the random eigenvectors has been omitted, but can again be found in

[33]. The final expression for
∂ψj

∂ξk
is given by

∂ψj
∂ξk

= −1

2

(
ψTj0

∂M

∂ξk
ψj0

)
+

N∑
i=1 6=j

ψTk0

[
∂K
∂ξk
− µj0 ∂M∂ξk

]
ψj0

µj0 − µk0
ψk0 (35)

where values of both ∂M
∂ξk

and ∂K
∂ξk

are identical to those given in Equation (34).
This method also requires all the deterministic eigenvalues and eigenvectors to
be known. Furthermore the eigenvalues are required to be unique. The proposed
methods would still be valid for the case of repeated eigenvalues, however a
different method would be required to approximate the eigenvectors.

4.2 Truncation of the series expansions

At present both the static and dynamic methods described in Section (3) require
the calculation and summation of N terms. However a vast number of higher
order terms seen in the summations have a relatively low value, therefore further
computational reduction can be achieved by removing these low valued terms.

4.2.1 Truncation: Static load

The series given in Equation (17) can be truncated after a certain number of
terms. As the eigenvalues have been ordered ascendingly, it can be deduced
that the higher order terms arising in the summation have a low value. By
retaining the dominant terms, it is hoped that enough terms are retained in
order to capture the behaviour of the system. The number of dominant terms
to be retained can either be predefined or determined by a ratio such as:

λ10
λns0

> ε (36)

where λ10 is the first, and therefore the smallest deterministic eigenvalue and
λns0

is the ns largest deterministic eigenvalue which satisfies the above inequal-
ity. The value of ns would correspond to the number of terms to be kept in the
truncation. The value ε is to be selected appropriately. Hence Equation (17)
can be truncated as follows

uS(ω) ≈
ns∑
j=1

φTj (ω)f0

λj(ω)
φj(ω) (37)

where ns < N . The full response for uS(ω) can then be obtained by performing
a Monte Carlo simulation on each sample.

10



4.2.2 Truncation: Dynamic load

By combining the ordering of the eigenvalues with the following relationship:
ωj(θ) =

√
µj(θ) it can be deduced that

ω1(θ) < ω2(θ) < . . . < ωN (θ) (38)

where ωj corresponds to the jth natural frequency. By examining the scalar
term βj(ω, θ) it can be observed that the natural frequencies appear in the
denominator

βj(ω, θ) =
ψTj (θ)̃f0

ω2
j (θ)− ω2 + 2iωj(θ)ωζ

(39)

For the values of j satisfying ω2
j (θ) + 2iωjω(θ)ζ > ω2, it is apparent that the

value of the denominator increases as the value of j increases. Therefore it
is established that the value of βj(ω, θ) generally decreases as the value of j
increases. Consequently the upper limits of the summations seen in Equation
(25) can be lowered

uD(ω, θ) ≈
nd∑
j=1

(
ψTj (θ)̃f0

ω2
j (θ)− ω2 + 2iωj(θ)ωζ

)
ψj(θ) (40)

where nd < N . Similarly to a system subject to a static load, the value of nd can
be defined in two ways. The value can be predefined or it can by deduced from
the ratio of two eigenvalues (similarly to that seen in Equation (36)). Monte
Carlo simulations would subsequently be performed for each θ ∈ Θ and ω ∈ Ω.

5 Error minimisation through Galerkin meth-
ods

Expressions for computing the response of discretised structures that are sub-
jected to a static or a dynamic load have been proposed. It has been shown
that computational reduction can be achieved by approximating eigensolutions
and by applying suitable truncations. However these reductions induces error
into the calculations. This has motivated an error minimisation approach, and
as a consequence, two Galerkin approaches have been considered:

• A sample-aggregated based Galerkin approach [SPAG]

• A sample-based Galerkin approach [SPSG]

By incorporating the Galerkin approaches, this section aims to reduce the error
induced due by the approximations and truncations introduced in Section (4).
The SPAG approach for the case of a static load is initially considered.
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5.1 Sample-aggregated based Galerkin approach: Static
load

For this approach, the solution vector is modified to take the following form

uSA(θ) ≈
ns∑
j=1

cj

(
φTj (θ)f0

λj(θ)

)
φj(θ) (41)

where λj ∈ Rns and φj ∈ RN×ns represent the random eigenvalues and eigenvec-

tors, and f0 ∈ RN is the deterministic excitation vector. cj ∈ Rns corresponds
to deterministic constants which need to be determined. The residual vector for
this the new approach is defined as

rSA(θ) = K(θ)u(θ)− f0 (42)

By making the residual orthogonal to a basis function, the deterministic scalars
cj can be computed. As Equation (23) can be viewed as a projection onto a
subset of random eigenvectors, the residual can be made orthogonal to the same
subset of random eigenvectors

< rSA(θ),φk(θ) > ∀ k = 1, 2, . . . ns (43)

where < u,v >= E{uTv} is the inner product. By using this condition and the
expression for the residual, one has

E

{
φTk (θ)

(
M1∑
i=0

Ki(θ)ξi(θ)

)(
ns∑
j=1

cj

(
φTj (θ)f0

λj(θ)

)
φj(θ)

)
− f0

}
= 0

∀ j = 1, 2, ...ns and k = 1, 2, ...ns
(44)

where E {�} donates the expected value. For notational convenience, we can

define αj(θ) =
φT

j (θ)f0
λj(θ)

, thus it can be shown that Equation (44) can take the

following form

E


ns∑
j=1

M1∑
i=0

φTk (θ)Ki(θ)φj(θ)ξi(θ)αj(θ)cj

 = E
{
φTk (θ)f0

}
(45)

By defining the vector cSA = [c1, c2, . . . cns
]
T

, Equation (45) can be re-written
as

E {ZSA(θ)} cSA = E {ySA(θ)} j, k = 1, 2, . . . , ns (46)

where ZSWkj
(θ) =

∑M1

i=0

[
φTk (θ)Ki(θ)φj(θ)

]
[ξi(θ)αj(θ)] ; ∀j, k = 1, 2, . . . ns and

ySA(θ) = φTk (θ)f0. The number of equations that need to be solved in order
to calculate the unknown vector c(ω, θ) corresponds to the value of ns. The
arising expected values can be computed by using Monte Carlo simulations.
Therefore by solving the set of linear equations given by Equation (46) the
unknown coefficients can be obtained.
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5.2 Sample-based Galerkin approach: Static load

In a similar manner to the previous approach, the solution vector has been
modified to take the following form

uSS(θ) ≈
ns∑
j=1

dj(θ)

(
φTj (θ)f0

λj(θ)

)
φj(θ) (47)

where λj ∈ Rns and φj ∈ RN×ns represent the random eigenvalues and eigen-

vectors and f0 ∈ RN represents the deterministic excitation vector. Contrary
to the previous approach, dj(θ) ∈ Rns are unknown constants that need to be
computed for each realisation. The residual vector for this approach is defined
as

rSS(θ) = K(θ)uSS(θ)− f0 (48)

By making the residual orthogonal to a basis function, dj(θ) can be computed.
By using the same analogy as seen in the previous approach, the residual has
been made orthogonal to a subset of random eigenvectors

< rSS(θ),φk(θ) > ∀ k = 1, 2, . . . ns (49)

Thus resulting in the following expression{
φTk (θ)

(
M1∑
i=0

Ki(θ)ξi(θ)

)(
ns∑
j=1

dj

(
φTj (θ)f0

λj(θ)

)
φj(θ)

)
− f0

}
= 0

∀ j = 1, 2, . . . ns and k = 1, 2, . . . ns
(50)

For notational convenience, we define αj(θ) =
φT

j (θ)f0
λj(θ)

. Therefore, the above

expression can be manipulated to give

ns∑
j=1

M1∑
i=0

[
φTk (θ)Ki(θ)φj(θ)

]
[ξi(θ)αj(θ)dj(θ)] = φTk (θ)f0 (51)

where dj(θ) would be computed for each realisation. By defining the vector

dSS (θ) = [d1(θ), d2(θ), . . . dns
(θ)]

T
, Equation (51) can be simplified to

ZSS(θ)dSS(θ) = ySS(θ) j, k = 1, 2, . . . , ns (52)

where ZSSkj
(θ) =

∑M1

i=0

[
φTk (θ)Ki(θ)φj(θ)

]
[ξi(θ)αj(θ)] ; ∀j, k = 1, 2, . . . ns and

ySS(θ) = φTk (θ)f0. The number of equations that need to be solved in order to
calculate the unknown vector d(θ) corresponds to the value of ns. Therefore,
similarly to the sample-aggregated based Galerkin approach, the lower the di-
mension of the reduced system, the fewer the number of equations that need to
be solved.

13



5.3 Sample-aggregated based Galerkin approach: Dynamic
load

A similar approach to that seen in Section 5.1 can be implemented for incorpo-
rating a sample-aggregated based Galerkin error minimisation approach. The
response vector for the case of a dynamic load has been modified to take the
following form

uDA(ω, θ) ≈
nd∑
j=1

gj(ω)

(
ψTj (θ)̃f0

ω2
j (θ)− ω2 + 2iωj(θ)ωζ

)
ψj(θ)

=

nd∑
j=1

gj (ω)βj (ω, θ)ψj(θ)

(53)

Here βj(ω, θ) corresponds to the scalars introduced in Equation (25) and gj (ω) ∈
Cnd are unknown constants that need to obtained for each ω ∈ Ω. In order
to compute these unknown scalars, the residual obtained by computing the
response by using Equation (53) can be projected onto the random undamped
eigenvectors

< rDA(ω, θ),ψk(θ) > ∀ k = 1, 2, . . . nd (54)

where

rDA(ω, θ) =

(
M2∑
i=0

Di(ω)ξi(θ)

)(
nd∑
j=1

gj(ω)βj(ω, θ)ψj(θ)

)
− f̃0(ω) ∈ CN (55)

By following a similar approach to that seen in Section 5.1, the unknown con-
stants gj can be computed by solving the following set of linear equations

E {ZDA(ω, θ)}gDA(ω) = E {yDA(ω, θ)} j, k = 1, 2, . . . , nd (56)

where ZDAkj
(ω, θ) =

M2∑
i=0

[
ψTk (θ)Di(ω)ψj(θ)

]
[ξi(θ)βj(ω, θ)] ;

βj(ω, θ) =

nd∑
j=1

(
ψTj (θ)̃f0

ω2
j (θ)− ω2 + 2iωj(θ)ωζ

)
yDA(ω, θ) = ψTk (θ)̃f0(ω) ∀ j, k = 1, 2, . . . nd

and gDA(ω) is a vector that contains the unknown constants gj(ω)

The expected values can be computed by utilising Monte Carlo simulations.
The size of the linear system that needs to be solved corresponds to nd × nd.
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5.4 Sample-based Galerkin approach: Dynamic load

Similarly to the case of a static load, the response vector has been modified to
take the following representation

uDS(ω, θ) ≈
nd∑
j=1

hj(ω, θ)

(
ψTj (θ)̃f0

ω2
j (θ)− ω2 + 2iωj(θ)ωζ

)
ψj(θ)

=

nd∑
j=1

hj (ω, θ)βj (ω, θ)ψj(θ)

(57)

The scalars βj(ω, θ) correspond to those seen in Equation (25) and hj (ω, θ) ∈
Cnd are unknown constants that need to be obtained for every realisation of
each frequency. By applying a sample-based Galerkin approach the unknown
constants can be computed. By making the residual orthogonal to the random
undamped eigenvectors, the unknown scalars hj(ω, θ) can be computed. By
applying the same analogy as that seen in Section 5.2, it can be shown that
the following set of equations need to be solved for every realisation of each
frequency

ZDS(ω, θ)hDS(ω) = yDS(ω, θ) j, k = 1, 2, . . . , nd (58)

where ZDSkj
(ω, θ) =

M2∑
i=0

[
ψTk (θ)Di(ω)ψj(θ)

]
[ξi(θ)βj(ω, θ)] ;

βj(ω, θ) =

nd∑
j=1

(
ψTj (θ)̃f0

ω2
j (θ)− ω2 + 2iωj(θ)ωζ

)
yDS(ω, θ) = ψTk (θ)̃f0(ω) ∀ j, k = 1, 2, . . . nd

and hDS(ω, θ) is a vector that contains the unknown constants hj(ω, θ)

The number of equations that need to be solved in order to calculate the
unknown vector hDS(ω, θ) corresponds to the value of nd. It is imperative that
the value of nd is kept as low possible as a nd × nd sized set of linear equations
needs to be solved for every realisation in each frequency step.

Let N correspond to the dimension of a stochastic finite element linear sys-
tem and nsamp the number of Monte Carlo simulations under consideration.
The total computational complexity incurred by directly solving Equation (3)
is nsampO(N3). The same is true when solving Equation (4) for each frequency
step. For both sample-based Galerkin approaches, the main contributions to-
wards the computational complexities occur when inverting all of the ZSS and
ZDS matrices. For the case of a static load, it can be deduced that the main con-
tribution towards the computational complexity is nsampO(N3

s ) where Ns < N .
Likewise for the case of a dynamic load, for each frequency step it can be
deduced that the main contribution towards the computational complexity is
nsampO(N3

d ) where Nd < N . However for the sample-aggregated based Galerkin
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approaches, the contributions due to inverting the E {ZSA} and E {ZDA} matri-
ces are considerably less. For the case of a static load the contribution is O(N3

s )
where Ns < N , whilst for the case of a dynamic load the contribution is O(N3

d )
where Nd < N for each frequency step. The reduction in the computational
complexity is due to the reduction in the number of inversions that need to be
performed.

6 Application examples

Thus far four different methods for computing and approximating the responses
of Equations (1) and (4) have been discussed:

• Directly solving in order to compute the benchmark solution (Equation
(3) and (12)) [DMCS]

• Approximating the solution by projecting random scalars onto a stochastic
basis (Equations (37) and (40)) [SP]

• Approximating the solution by projecting a random scalar onto a stochas-
tic basis (including a sample-aggregated based Galerkin error minimisation
approach) (Equations (41) and (53)) [SPAG]

• Approximating the solution by projecting a random scalar onto a stochas-
tic basis (including a sample-based Galerkin error minimisation approach)
(Equations (47) and (57)) [SPSG]

This section aims to apply and compare the proposed methods by utilising
a physical structure. Subsequently the four methods are applied to analyse the
bending of a Euler-Bernoulli cantilever beam that has stochastic parameters.
The analysis has been conducted separately for when the cantilever beam is
subjected to a static load and for when the cantilever beam is subjected to a
dynamic load. The effectiveness of the approximation methods are subsequently
scrutinised for both cases. The length of the cantilever beam under consideration
is 0.80 m, and its cross-section is a rectangle of width 0.035 m and height 0.0035
m. Figure 1 illustrates the system.

Figure 1: The configuration of the cantilever beam

By using a stochastic finite element method the cantilever beam has been
discretised into 80 elements. For the deterministic case, the Young’s modulus
is E = 2 × 1011 Nm−2 thus corresponding to a steel beam. The deterministic
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second moment of area of the beam is I = 1.25×10−10 m4. The bending rigidity
of the beam, EI, has been assumed to be a random field of the following form

EI(x, θ) = EI(1 + a(x, θ)) (59)

where x corresponds to the position along the length of the cantilever beam and
EI corresponds to the mean of the bending rigidity. The random field a(x, θ) is
assumed to be an uniform random field with correlation length µa = L/2 where
L is the length of the cantilever beam. Each of the projection methods have been
simulated 10,000 times and the performances of the approximation methods
have been compared with that of the DMCS approach. 10, 000 samples gives a
satisfactory convergence of the first two moments of the quantities of interest
for both the static load and dynamic load cases. Both cases have been modelled
for two different values of the standard deviation of the bending rigidity: σa =
{0.05, 0.25}. This allows the methods to be compared under different levels of
uncertainty.

6.1 Cantilever beam: Static load

For the case of a static load a 1.00 N deterministic vertical point load is applied
at the free end of the cantilever beam. All three stochastic projection methods
have been truncated to include the first 4 terms, hence ns = 4. This implies
that 156 terms have been discarded from each of the summations. In addition to
the matrix that contributes to the deterministic nature of the random stiffness
matrix, four general matrix are used in conjunction with the random variables
ξi to model the random stiffness matrices. It has been proven that the displace-

ment of the beam can be normalised by f0L
3

3EI to ensure that the deterministic
vertical displacement has a value of 1 at the tip of the cantilever beam.

Figures 2a and 2b illustrate the mean of the normalised vertical displacement
at all nodes of the beam for both values of σa. When σa = 0.05 no visible
difference can be seen between the different methods, however when σa = 0.25
a slight discrepancy can be seen between the SP and the other methods. In
order to further analyse the discrepancy, the percentage error of the mean of
the vertical displacement is explored. This is represented by

ε% = 100× |MDMCS −MCOMP |
MDMCS

(60)

where MDMCS indicates the mean of the DMCS approach, and MCOMP the
mean of the comparable methods. The discrepancy between the SP method and
the Galerkin methods is apparent in Figure 2d. It is apparent that both Galerkin
methods lower the error in the mean of the vertical displacement, however the
SPSG method slightly outperforms the SPAG method.

The normalised standard deviation of the vertical displacement of the can-
tilever beam is illustrated for all nodes in Figures 3a and 3b. All methods
seem to capture the standard deviation of the benchmark method well when
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Figure 2: The mean of the normalised vertical displacement of the cantilever beam
and a comparison of the percentage error of the mean of the normalised vertical dis-
placement for σa = {0.05, 0.25}.

σa = 0.05, however this is not the case when σa = 0.25. The percentage er-
ror of the standard deviation of the vertical displacement is explored to further
compare the methods. The percentage error has been defined as follows

ε% = 100× |SDMCS − SCOMP |
SDMCS

(61)

where SDMCS indicates the standard deviation of the DMCS approach, and
SCOMP the standard deviation of the comparable methods. Contrary to the
mean, for the case of σa = 0.25 a vast difference is apparent between the stan-
dard deviation of the SPSG and SPAG methods. Barring the initial 0.06 m of
the cantilever beam, the SPSG dramatically reduces the percentage error of the
standard deviation. Although applying the SPAG lowers the percentage error
along the cantilever beam, the reduction is small.

In Figure 4 the percentage error of the mean and the standard deviation
of the vertical displacement at the tip of the cantilever beam is further as-
sessed for different values of ns i.e. the number of terms retained in Equations
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Figure 3: The standard deviation of the normalised vertical displacement of the
cantilever beam and a comparison of the percentage error of the standard deviation
of the normalised vertical displacement for σa = {0.05, 0.25}.

(37), (47) and (41). As expected, for each method the percentage error de-
creases as additional terms are retained in the summations. It is apparent that
both the Galerkin methods significantly lowers the percentage error of the mean
in comparison to the SP method. However the performances of the Galerkin
methods differ considerably when assessing the percentage error of the standard
deviation. The SPSG method considerably lowers the percentage error of the
standard deviation. Only a very small reduction is seen when the SPAG method
is used in comparison to the SP method.

6.2 Cantilever beam: Dynamic load

For the case of a dynamic load, an unit amplitude harmonic point load is applied
at the free tip of the beam. This is applied over a frequency range of 0−500 Hz
at an interval of 2 Hz. The constant modal damping model has a 1.5% damping
factor for each of the modes. Initially nd has been set to 10 thus implying that
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Figure 4: A comparison of the percentage errors of the mean and standard deviation
of the vertical tip displacement for different values of ns when σa = {0.05, 0.25}.

10 terms have been retained in Equations (25), (53) and (57). Similarly to the
static case four general matrices (Ki where i = 1, 2, 3, 4) are used in conjunction
with the random variables ξi and deterministic matrix K0 to model the random
stiffness matrices. The mass matrix is assumed to be deterministic.

The mean vertical amplitude at the tip of the cantilever beam is illustrated
over the stated frequency range in Figures 5a and 5b for both σa = 0.05 and
σa = 0.25. The deterministic vertical amplitude is also illustrated [DET]. In
order to analyse the error arising from the mean of the response vector, the
approximate L2 relative error is considered. This ensures that the error arising
for a given frequency can be characterised by a single value. The approximate
L2 relative error of the mean of the response vector for each frequency step has
been defined as follows

ε̂
µ
L2(ω) =

||µDMCS(ω)− µCM (ω)||L2

||µDMCS(ω)||L2

(62)

where µDMCS denotes the mean of the response vector obtained by using the
DMCS method and µCM the mean of the response vector obtained by a com-
parable method. Although decreases are apparent, the SPAG method does not
always decrease the error. Increases are visibly apparent in comparison to the
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Figure 5: The mean of the vertical amplitude is observed at the tip of the cantilever
beam in conjunction with the L2 relative error of the mean of the response vector at
each frequency step. These are illustrated for σa = {0.05, 0.25}.

SP method at large valued resonance frequencies. On the other hand the SPSG
method always decreases the L2 relative error of the mean. This is most appar-
ent at the systems’ resonance values.

Figures 6a and 6b depict the standard deviation of the vertical amplitude
at the tip of the beam for both values of σa. In a similar manner to the case
of the mean, the approximate L2 relative error of the standard deviation of the
response vector is defined as follows

ε̂σL2(ω) =
||σDMCS(ω)− σCM (ω)||L2

||σDMCS(ω)||L2

(63)

where σDMCS denotes the standard deviation of the response vector obtained
by using the DMCS method and σCM denotes the standard deviation of the
response vector obtained by a comparable method. When σa = 0.05 it is appar-
ent that the SPAG method slightly lowers the L2 relative error of the standard
deviation for the majority of frequencies. However when σa = 0.25 the effec-
tiveness of the SPAG method is suspect due to the L2 relative error rising at
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Figure 6: The standard deviation of the vertical amplitude is observed at the tip
of the cantilever beam in conjunction with the L2 relative error of the standard
deviation of the response vector at each frequency step. These are illustrated for
σa = {0.05, 0.25}.

numerous frequencies in comparison to the SP method. Nevertheless the SPSG
method lowers the L2 relative error at all frequencies for both values of σa.

The probability density function of the vertical amplitude of the displace-
ment at the tip of the beam is illustrated by Figure 7 for both values of σa at a
frequency of 154 Hz. This frequency value corresponds to the fourth resonance
frequency of the cantilever beam.

Figure 8 depicts the log of the approximate L2 relative error of the mean of
the response vector for different values of nd. This is depicted for each of the
frequency steps and for both values of σa. The troths arising in the contour plots
of the relative errors correspond to the resonance values, thus it can be deduced
that the error is larger at adjacent anti-resonance values. As expected, the trend
of the approximate relative error increases with frequency. This is due to the
higher order terms becoming more important at the higher frequencies. Both
Galerkin approaches seem to lower the relative error of the mean in general,
however the SPSG method significantly outperforms the SPAG method when

22



Vertical tip deflection (m) ×10-4
0 1 2

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
DMCS
SP
SPSG
SPAG

(a) Pdf: σa = 0.05

Vertical tip deflection (m) ×10-4
0 1 2

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

2000

4000

6000

8000

10000

12000

14000

16000
DMCS
SP
SPSG
SPAG

(b) Pdf: σa = 0.25

Figure 7: The probability density functions of the vertical amplitude when an unit
harmonic point load of 154 Hz is asserted at the tip of the cantilever beam. The
probability density functions are illustrated for σa = {0.05, 0.25}.
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Figure 8: The log of the L2 relative error of the mean of the response vector. The
contour plots depict the log of the L2 relative error for different values of nd at each
frequency step for σa = {0.05, 0.25}.

σa = 0.25.
The log of the approximate L2 relative error of the standard deviation of the

response vector is illustrated for different values of nd at each frequency step
in Figure 9. A slight reduction is seen in the relative error at low frequencies
when the SPAG method is applied, however at larger frequencies the SPAG
method increases the relative error of the standard deviation in comparison to
the SP method. This is evidently visible when σa = 0.25. A large reduction in
the relative error of the standard deviation is seen when the SPSG method is
applied. This can be observed at both values of σa.

23



0 100 200 300 400 500

5

10

15

20

-5

-4

-3

-2

-1

0

(a) SP: σa = 0.05

0 100 200 300 400 500

5

10

15

20

-5

-4

-3

-2

-1

0

(b) SPSG: σa = 0.05
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Figure 9: The log of the L2 relative error of the standard deviation of the response
vector. The contour plots depict the log of the L2 relative error for different values of
nd at each frequency step for σa = {0.05, 0.25}.

7 Summary and Conclusions

7.1 Summary

Two approaches which incorporate different Galerkin projection schemes have
been suggested to calculate the response of discretised stochastic partial differ-
ential equations. By utilising the random eigenvalue problem, it has been proven
that the response vector of discretised structures subjected to static or dynamic
loads can be represented by a summation. Due to the high computational cost
associated with calculating the exact solutions, reduced approaches have been
proposed where random eigenvalues and eigenvectors are approximated and low
valued terms discarded. Consequently two multiplicative Galerkin error minimi-
sation approaches have been presented. The first being a sample-based Galerkin
projection scheme and the other being a sample-aggregated based Galerkin pro-
jection scheme. The two novel Galerkin projection schemes presented in the pa-
per are subsequently used to analyse the response of a stochastic Euler-Bernoulli
cantilever beam undergoing both a static and a dynamic load.

7.2 Conclusions

Following the application of the methods to analyse a stochastic Euler-Bernoulli
cantilever beam, the following conclusions have been established:
The cantilever beam subjected to a static load

• Both Galerkin schemes lower the error arising in the mean of the response.
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• It is only the sample-based Galerkin projection scheme that substantially
lowers the error arising in the standard deviation of the response.

The cantilever beam subjected to a dynamic load

• At low frequencies both Galerkin schemes lower the error arising in the
mean of the response. Both methods also lower the error induced in stan-
dard deviation, however the sample-based Galerkin projection scheme sub-
stantially outperforms the sample-aggregated based Galerkin projection
scheme.

• At high frequencies the sample-aggregated based Galerkin projection scheme
introduces additional error in both the mean and standard deviation of
the response.

• The sample-based Galerkin projection scheme lowers the error in both
the mean and standard deviation of the response at low and high valued
frequencies.

• When the sample-based Galerkin projection scheme is utilised, a sub-
stantial reduction in the L2 relative error is seen in both the mean and
standard deviation of the response at the resonance values in comparison
with neighbouring anti-resonance values.

Further work in this field would include developing methods to compute
optimal bases in order to produce new efficient reduced-order methods.
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