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Our goal is to answer the question: compared with experimental structures, how 

useful are predicted models for functional annotation?  We assessed the functional utility 

of predicted models by comparing the performances of a suite of methods for functional 

characterization on the predictions and the experimental structures. We identified 28 sites 

in 25 protein targets to perform functional assessment.  These 28 sites included nine sites 

with known ligand binding (holo%sites), nine sites that are expected or suggested by 

experimental authors for small molecule binding (apo%sites), and ten sites containing 

important motifs, loops, or key residues with important disease%associated mutations.  We 

evaluated the utility of the predictions by comparing their microenvironments to the 

experimental structures.  Overall structural quality correlates with functional utility.  

However, the best%ranked predictions (global) may not have the best functional quality 

(local).  Our assessment provides an ability to discriminate between predictions with high 

structural quality.  When assessing ligand%binding sites, most prediction methods have 

higher performance on apo%sites than holo%sites.  Some servers show consistently high 

performance for certain types of functional sites.  Finally, many functional sites are 

associated with protein%protein interaction.  We also analyzed biologically relevant 

features from the protein assemblies of two targets where the active site spanned the 

protein%protein interface. For the assembly targets, we find that the features in the models 

are mainly determined by the choice of template.   
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The ultimate goal of structure prediction is to provide insights into biological 

functions.  However, it is difficult to quantify and benchmark the utility of protein 

structure prediction for functional inference 1. The biological function of a protein may 

have several different meanings; it can include catalyzing chemical reactions, 

transporting materials across the cell, receiving and sending chemical signals, or 

responding to stimuli and providing structural support.  Most of these functions are 

realized by interacting with other proteins or small molecules.   Therefore, interfaces 

between proteins, or interfaces between a protein and small molecules are critical to 

understanding function.  

Official CASP structural assessments include global and local metrics that evaluate 

atomic level similarity of the structural features of proteins 2%4. The root mean square 

deviation (RMSD) was the first metric used in the CASP evaluations and it is still 

reported in the automatic evaluation system.  The global distance test (GDT) score is 

effective for the automatic evaluation of predictions as it reflects absolute and relative 

accuracy of models for a wide range of target difficulty.  In addition to GDT, several 

other similarity measures are used.  Structural quality often tracks with functional quality, 

but the details of this correlation needs to be further explored.  

The physicochemical environments within functional sites in experimentally solved 

structures are strongly associated with the functional properties of proteins.  Therefore, a 

predicted structure that contains a similar physicochemical environment to an 

experimentally solved structure may be the most useful one for functional annotation.  
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Previous studies have used a structural prediction protocol on a set of proteins and then 

compared the results of functional predictions with those from experimental structures 5 6 

7 8.  In this work, we perform a systematic assessment that compares the ensembles of 

predictions of a target protein from different modeling algorithms to quantify the utility 

of predictions for inferring or recognizing function. 

 

We address one simple question: to what extent do the CASP predictions accurately 

provide protein function information (compared to experimental structures)?   To help 

define the term “protein function”, we asked the experimentalists why they were 

motivated to solve the structures.  Based on the experimentalists’ stated motivations, we 

defined regions or sites for assessment, including nine sites with known ligand binding 

(holo%sites), nine sites that were expected or suggested by experimental authors to have 

small molecule binding (apo%sites), and ten sites containing motifs, loops, or key residues 

with important disease%associated mutations.  We evaluated the physical features of the 

predicted structure sites and the degree to which they shared similarity with the 

experimental structure sites.  We previously developed PocketFEATURE (PF), an 

algorithm that evaluates similarity between two functional sites in terms of their 

physicochemical features 9%11 12.  As part of this work, we applied the PF algorithm to 

assess the extent to which physicochemical features that are observed in experimental 

structures can be replicated by predicted structures. We also analyzed features of 

quaternary structure assemblies in two oligomeric proteins and disease%causing variants, 

which often play an important role in protein function.  
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The biological rationale for determining a protein’s structure provides a key 

perspective from which we evaluate the utility of predicted models.  That is, what 

functional information should be provided by predictions from the viewpoint of the 

experimental authors?  The answers we obtained from experimental authors varied in 

detail. Example include:  
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Based on the answers, we defined three categories of functional sites by manually 

curating these answers and inspecting experimentally solved structures. The three 

categories are:  (1) ���	� ����� ���	�: pockets based on observed ligand binding in 

experimental structures, (2) ���	��������	�: sites based on (a) critical residues provided by 

experimental authors, or (b) known motifs relevant to ligand or substrate binding, and/or 

(c) site finding algorithms, and (3) �	�� ��������� �����	�: patches centered at the key 

residues provided by experimental authors, including functionally critical residues, loops 

and mutations (Table 1 and Supplementary material Table S1).  We evaluated the 
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similarity of the three categories of pockets to the experimental sites. 
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We compared our assessment (using PF) on functional environment to the CASP 

assessments on overall structure quality (Figure 1).  We aim to provide two references for 

users who are considering structural models for functional annotation: (1). Can model%1 

(the best in terms of their structure feature) provide robust functional insights? (2) Can 

the server (the average of all models) provide models with good functional features?  PF 

measures the similarity between two sites in terms of their physicochemical features. The 

chosen official CASP assessments include the CASP ranking (see methods), the global 

distance test (GDT), the template modeling score (TM), and root mean square deviation 

(RMSD).   Figure 1 shows the correlation between PF and official CASP assessments 

(Analysis for individual target are available at 

https://simtk.org/projects/casp12funassess/.).   In general, the correlation between PF and 

TM is lower than that between PF and GDT or PF and RMSD.  This corresponds with the 

fact that TM is often considered as a more accurate measure of the quality of full%length 

protein structures (compared with RMSD and GDT)13, while PF assess local 

characterization and may not reflect the quality of full structures.  

CASP predictor teams could submit up to five models, ranked by their predicted 

quality. For each site, we either averaged scores over all submitted models (“all%models”; 

Figure 1 top panel) or considered only the first model (“model%1”; Figure 1 bottom 

panel).  When we focus on the correlation between PF ranking and CASP ranking, the 

correlation coefficients for model%1 are consistently higher than the all%models average, 
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indicating that predictions with higher overall structure quality often have good 

functional features (Supplementary material Table S2).  For example, the correlation 

between PF%ranking and CASP ranking for T0911 all%models is about 0.4423 and that for 

model%1 is 0.8878 (Predictor teams know which of their structures are likely the best.).  It 

is interesting to note that the assessments on holo sites generally have lower correlation 

coefficients than those on apo sites and critical patches. 

 

The correlation between our functional assessments and the structural assessments 

has two modes: (1) High correlation: predictions with high overall structure quality often 

have good local structure quality at their functional sites.  This is reflected in the higher 

correlation on model%1 assessments.  (2). Low correlation:  some predictions with 

excellent structure quality at local functional sites may not have good overall structure 

quality.  For some targets, we found that PF%scores do not track with the structural 

assessment, resulting in low correlation coefficients (Supplementary material Table S2).     

Two servers (server%220 GOAL 14 and server%005 Baker%ROSETTASERVER 15) 

made predictions on all 28 sites; this provides enough data to allow a comparison 

between servers (Supplementary material Table S3).  Both servers showed fairly good 

performance in structural assessments.  Table 2 shows our functional assessments and 

CASP assessments on model%1 only.  Using the CASP ranking,  twelve of 28 model%1 

sites predicted by ROSETTASERVER were ranked in the top 30 models; whereas, 

eleven of 28 model%1 sites predicted by GOAL were ranked in the top 30 models.  Using 

functional assessments, twelve of 28 model%1 sites predicted by ROSETTASERVER 

were ranked in the top 30 models; whereas, seven of 28 model%1 sites predicted by 
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GOAL were ranked in the top 30.  Notably, for the site in T0920, PF ranked model%1 

from server 220 within the top 30 for its high similarity, even though its overall structure 

rank was 108.  

����		�		���
	����
�����
���	����	�
�	�

-�������	��

The nine holo%sites were defined based on the observed ligands in the experimental 

structures.  The assessments compared the sites in predicted structures where the sites 

were not bound with ligands (apo) with the experimental structures where the sites were 

bound with ligands.  The correlation coefficients between CASP rank and our functional 

assessments ranged from 0.44 to 0.71 (with four sites above 0.5) (Table 3).  When 

comparing only model%1, the correlation coefficients improved with averages of 0.49 to 

0.89 (with eight sites above 0.5).  For all nine sites, the correlation coefficients between 

functional and structural assessments for model%1 were higher than those for all%models 

taken together.  That is, for holo sites, the first ranked model (the best predicted model in 

terms of structure quality) contained better functional characterization. 

 

We evaluated six sites that had more than ten predictions that were within 5Å RMSD 

compared to the experimental structures (T0861, T0873, T0889, T0891, T0910 and 

T0911).  For these six sites we selected the top 30 predictions based on functional 

assessments (Table 4 and Supplementary materials section 2).  We highlight one example 

to show how local functional environments can have characteristics that an overall 

structural assessment may not recognize.  One example, T0891, is a heme binding 
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protein.  More than 70% of predictions have a GDT score better than 80.  The 

experimental structure was solved with a heme%binding molecule.   

For T0891, we compared the local features in the best PF ranked model with those 

observed in the best structure model (best GDT model) in Figure 2.  The model%2 from 

server GOAL (220%2) has the best GDT score (91.74) among all the predictions, while its 

PF%zscore is %1.466.  PF estimates similarities by matching similar microenvironments 

between two sites.  Microenvironment refers to the local, spherical region in the protein 

structure that may encompass residues discontinuous in sequence and structure (See 

method).   A higher number of matched microenvironments and a more negative PF%

zscore suggest better similarity. The model%1 from HHPred (349%1) was ranked best by 

our functional assessment with a PF%zscore of %2.035, but its GDT score was 86.61.  

When aligning microenvironments surrounding the heme%binding site, the best structural 

model (220%2) shared five similar microenvironments with the experimental structure.  

We noticed that the secondary structures near the binding site were slightly different from 

those in the experimental structure.  The top PF ranked model matched an additional two 

microenvironments to the experimental structure due to better positioning of the heme%

binding motifs. 

2������	��

The nine apo%sites were defined based on the information provided by experimental 

authors combined with a ligand%binding site searching program (Fpocket 16).  The 

assessments compared sites in predicted structures (apo) to the corresponding sites in 

experimental structures (apo).  The correlation coefficients between CASP rank and our 
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functional assessments ranged from 0.28 to 0.75 (with five sites above 0.5) (Table 3).  

When comparing only model%1, the correlation coefficients improved with averages of 

0.63 to 0.87 (with all nine sites above 0.5).  For eight of the nine sites, the correlation 

coefficients between functional and structural assessments for model%1 were higher than 

those for all%models.  Notably, the average correlation between functional assessments 

and CASP assessments was higher than that for holo sites (Figure 1 and Table 3).  

We evaluated six sites that had more than ten predictions were within 5Å RMSD 

compared to the experimental structures (T0942, T0894, T0895, T0896, T0913 and 

T0917).  For the six sites, we selected the top 30 predictions based on functional 

assessments (See supplementary materials section 2).  Using T0942 as an example, we 

demonstrated how functional assessments capture local physicochemical properties 

(Figure 3).  T0942 has an HEXXH motif of metalloproteinase, identified by sequence 

analysis.  The motif forms a histidine%enriched site (residue 145H, 140H, 136H, 246H) 

that may bind zinc.  Other residues near this motif include 137E, 139S, 196F, 200N, 

201E.  We compared these side%chains from experimental structures, including the best 

GDT ranked model%1 (004%1, GDT 46.3, PF%zscore %0.93), the best GDT ranked all%

models (060%2, GDT 54.5, PF%zscore %1.01), the best PF ranked model%1 (016%1, GDT 

38.6, PF%zscore %1.50), and the best PF ranked all%models (303%4, GDT 39.8, PF%zscore %

1.79).  The top PF%ranked models share similar side%chain arrangements with the 

experimental structures whereas, the best GDT%ranked models did not.  We compared the 

microenvironment alignments between the experimental structures, the best GDT ranked 

model%1 (004%1, GDT 46.3, PF%zscore %0.93), and the best PF ranked model%1 (016%1, 

GDT 38.6, PF%zscore %1.50).  The best GDT model%1 had seven aligned 
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microenvironments.  The best PF model%1 had ten aligned microenvironments. The three 

additional aligned microenvironments observed in the best PF model%1 are colored in 

grey: H246, H140 and H145, which are the key elements of metalloproteinase motifs. 

�

1�������������	��

The ten critical patches were defined based on the information provided by 

experimental authors and resources, such as sequence analysis and a literature review.  

We compared the microenvironments surrounding the patches in predicted structures 

with those in experimental structures.  Table 3 shows the correlation coefficients between 

CASP rank and our functional assessments ranging from 0.40 to 0.96 (with seven sites 

above 0.5).  When comparing only model%1, the correlation coefficients ranged from 0.41 

to 0.85 (with eight sites above 0.5).  In this category, model%1 (the best predicted model 

in terms of structure quality) and other models have similar levels of functional 

characterizations.   

We evaluated four sites that had more than ten predictions that were within 5Å 

RMSD compared to the experimental structures (T0860, T0882, T0920%0, T0920%1).  For 

these four sites we selected the top 30 predictions based on functional assessments 

(Supplementary materials section 2).  In this category, functional information is often not 

available to predictors (in contrast to ligand binding sites); hence, we observe greater 

deviation between structural quality and functional quality.  For example, when we 

ranked model%1 for the critical patch T0920%1, the best functionally characterized 

prediction was 220%1 (GOAL), whose official CASP rank was 108 in terms of its overall 

structural quality (Table 2 & Supplementary material section 2).  
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We applied PocketFEATURE to analyze patches surrounding mutations in two 

targets: T0948 (four patches) and T0945 (twenty patches).  The four patches in T0948 

cluster together and were treated as one functional site for overall assessment on critical 

patches, as discussed above (Table 1%3). We analyzed the twenty mutation patches and 

found that the functional ranking tracks with the overall structure quality, but with great 

deviations (Supplementary material Table S11).  Figure 5 shows one patch surrounding a 

single nucleotide polymorphism (SNP) 376H.  The patch included residues: 245, 308, 

312, 313, 314, 315, 374, 375, 376, 377, 378, 379, 380, 381, and 83, all of which form a 

tight cluster near 376H (left, experimental structure).  The fifteen residues surrounding 

this SNP are the microenvironments associated with the functional effects of mutations.   

However, in the best GDT model (best GDT 220%1, GDT 59.27, PF%zscore %1.32) these 

microenvironments are not clustered near 376H because one of the key loops was not 

predicted near the functional center.  In the top PF ranked model (best PF model, 324%1, 

GDT 54.07, PF%zscore %1.55), the corresponding microenvironments form one cluster 

with the functional loops predicted in the correct position, even though the secondary 

structures in the neighboring domain are not correctly predicted.  

����		�		���
	�������
������	�����������	�
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Two target assemblies contained a pocket at the protein interface: CckA histidine 

kinase (T0893), and STRA6 receptor (T0930).  CckA is a histidine kinase, a dimeric 

bifunctional enzyme mediating both phosphorylation and dephosphorylation of 

downstream targets 17. The most important features of the quaternary structure are (1) the 
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conserved, exposed histidine residue, which acts as a phosphate acceptor during 

autophosphorylation, (2) the connectivity of the four helices of the dimerization and 

histidine phosphotransfer (DHp) domain and (3) the relative position of the catalytically 

active (CA) domain to the DHp domain 18.  A total of eight groups submitted dimeric 

models with acceptable oligomeric quality for T0893 (Supplementary material Figure S2 

and Table S9). These were manually inspected for the presence of the three features. All 

the models exposed the phosphate acceptor histidine, four models correctly reproduced 

the connectivity of the four helices of the DHp domain, and two models predicted the 

correct position of the CA domain for ��� autophosphorylation. However, no model 

included all three features. 

STRA6 is a dimeric integral membrane receptor for retinol uptake that associates with 

the retinol binding protein (RBP) and translocates the retinol molecule into the lipid 

bilayer 19.  The two features of the STRA6 receptor dimer important for its function are 

the geometry of the cleft in the dimeric interface, which bends the outer membrane 

outwards, and the coordination of residues from both subunits to create the RBP%binding 

motif.   

Unfortunately, STRA6 had no sequence similarity to any known membrane 

transporter, channel, or receptor at the time of the CASP12 experiment, and the 

prediction of its tertiary structure and assembly was unsuccessful. Therefore, no 

predictions were of sufficient quality to provide biologically relevant information about 

the function. 
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To evaluate whether structure predictions can be interpreted as an indicator of the 

pathogenicity status of missense mutations, we assessed secondary structure and solvent 

accessibility predictions. The mutation databases ClinVar 20 and HGMD 21 were utilized 

to obtain a total of 20 unique, non%synonymous pathogenic variants and 64 variants of 

unknown clinical significance (VUS) for the target region T0945 of the DPAGT1 protein. 

Being an essential part of N%glycosylation, the observed DPAGT1 mutations are linked to 

myasthenia and myopathy [Selcen 2014] and limb%girdle congenital myasthenic 

syndrome with tubular aggregates 22.  In addition, DPAGT1 is involved in disturbing 

intercellular adhesion in oral cancer 23. To measure prediction accuracy at pathogenic 

variants and VUS, we analyzed the following five metrics for variant%affected residues: 

1) The standard deviation of predicted relative (RelAcc) and absolute solvent 

accessibility. 2) The RMSD between predicted and correct relative and absolute solvent 

accessibility (AccErr). 3) The fraction of correctly and incorrectly predicted secondary 

structure as reported by DSSP [Kabsch and Sander 1983]. 4) The fraction of correctly 

and incorrectly predicted exposure statuses. Based on its relative solvent accessibility a 

residue is considered buried (RelAcc < 0.09), intermediate (0.09 ≥ RelAcc < 0.36), or 

exposed (RelAcc ≥ 0.36) 24. 5) The distribution of pathogenic variants in highly 

conserved residues as reported through ConSurf 25.  

For residues affected by pathogenic variants the average RMSD and standard 

deviation of relative solvent accessibility is 0.14 and 0.20, respectively (Supplementary 

material Figure S3).   We did not find a significant difference between these values and 

the according metrics for residues affected by VUS. Hence, a suspected correlation 
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between prediction accuracy of an ensemble of structure predictors and a variant’s 

pathogenicity could not be established.  

Comparing the twenty identified pathogenic variants in T0945 with all 488 VUS, the 

absolute solvent accessibility values for both groups distribute similarly (Median: 0.16 

and 0.19, STD: 37.76 and 34.20).  After categorizing residues in buried, intermediate, or 

exposed, the exposure status of 34.0% of all buried, 30.4% of all exposed, and 58.0% of 

all intermediate variants are incorrectly predicted. Wrongly predicted exposure states for 

pathogenic variants/VUS in DPAGT1 are distributed as follows: 31.17/26.40% (buried), 

45.48/64.71% (intermediate), and 33.45/42.64% (exposed).  In general, the AccError 

does not correlate with GDT. This suggests that the prediction quality of a single 

missense mutation is not reflected in the overall quality of the structures.  
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We have previously reported a system, FEATURE 12, for representing protein 

“microenvironments,” as statistical descriptions of physicochemical and structural 

features in a sphere volume of 7.5 Å radius.  A single ligand site is often comprised of 

between ten to twenty microenvironments, each centering on one of the key residues.  

PocketFEATURE employs a matching system that aligns similar microenvironments, or 

physicochemical properties, between sites or even entire proteins (instead of sequence 
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alignments).  PocketFEATURE can distinguish statically and dynamically between 

similar sites, between homologs 26, and even between unrelated proteins 9.  

PocketFEATURE is able to distinguish aspects of the drug%binding pocket in FtsZ 

structures from different species that are not evident with other comparison methods such 

as RMSD. PocketFEATURE can also detect the effects of mutations in protein pockets 

26.  In addition, it can detect key functional changes driving molecular dynamic 

trajectories.  Our analysis is based on the evidence that PocketFEATURE can distinguish 

more finely grained physicochemical differences associated with protein function % 

including ligand binding or mutation effects between sites with very similar structure 

properties. Of course other methods (SiteCompare27 and SMAP28) that share similar 

characteristics could also be used.  

�����������
��������������������������������	�
�	�

We observed that predictions using holo sites differ in quality from those using apo 

sites and critical patches. In all%models assessments, the correlation coefficients for holo 

sites are lower than the other two categories. Given a sequence with templates that have 

bound ligand(s), predictors generate “apo models” that do not take the ligand information 

into account (They may consider ligand information implicitly if they use templates that 

contain a bound ligand).  Experimental structures solved with a bound ligand often have 

different physicochemical characterizations (to form non%covalent contacts for ligand 

binding).  Therefore, when comparing apo predictions with experimental holo structures, 

we expect lower similarities at these sites.   Our results confirm that the quality of local 

sites (as measured by the similarity to experimental sites) may not be reflected in the 
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overall structure quality.  However, local similarity to the experimental sites is useful in 

deriving biological and functional information from predicted models.   Therefore, we 

looked for methods and servers that could predict holo sites well (Supplementary material 

section 2 Table S4 and Table S7).  Predictions from servers Multicom%construct 29 and 

IntFOLD4 30 performed well for all six holo sites.  These methods likely employed 

algorithms that benefited from ligand%binding template information and for modeling.  

���������
��������
����������
�����		������	�

This iteration of CASP received an encouraging number of oligomeric predictions. 

Correctly predicting the stoichiometry and protein%protein interfaces for a protein 

complex can be extremely important for understanding the biological function of a 

protein. The two cases presented here represent the particularly difficult task of 

predicting functions that arise through the interaction of multiple subunits. In this context, 

the failure of any groups to adequately model the STRA6 translocation path is 

unsurprising. 

The lack of CckA models containing both the correct 4%helical bundle topology and 

the ��� binding affinity can be explained by considering the available templates. The 

structure of CckA has a unique DHp and CA domain arrangement that was not shared by 

any of the available templates. Thus, models were biased by the choice of template 

towards incorrect domain orientations. 

�����
��������
�
���	�

In general, functional utility correlates with the quality of structure predictions, but 

Page 18 of 40

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics

This article is protected by copyright. All rights reserved.



�

19 

there are interesting deviations.  Predictions with higher overall structural quality (model%

1) often have good functional utility.  However, some predictions with good structural 

quality may not have the best local functional sites, and sometimes these are significantly 

worse.  Using PocketFEATURE to evaluate physicochemical properties at local 

functional sites provides reasonably good discrimination between predictions with similar 

structural quality.     

The major uncertainty of our assessment originates from the ill%defined nature of 

functional sites and functional centers.  Even with communication with the 

experimentalists, it was difficult for us to achieve an undisputed functional site definition. 

In future CASPs, it would be useful to have a more structured and systematic procedure 

to retrieve biological relevance from the experimental contributors.  Nonetheless, our 

evaluations still suggest substantial biological utility despite some partial site definitions.  

We found that scoring a SNP alone (very local) does not track with the overall structure 

quality, but scoring patches surrounding a SNP provide more insights into functional 

relevance (Figure 5). We also compared defined site residues’ PF assessments with local 

RMSD measurements (Supplementary material Figure S1).  The local RMSD correlate 

well with overall RMSD, but not PF%scores, suggesting that PF evaluates 

physicochemical properties beyond structure features.  In addition, the local estimation 

also depends on the site definition, which is one of the key limitations of functional 

assessment methods.  
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We emailed to ask experimental authors: (1) Why did you decide to solve the 

structure of this target? (2) Can you briefly describe the function of the target?  (3) Are 

there any of these types of sites: enzymatic active sites, small molecule binding pockets, 

protein interaction sites, nucleic acid interaction sites, mutated sites, critical loops, 

domain boundaries, other critical areas.   

Based on their answers (on 43 targets), we selected 25 targets for which sufficient 

information was provided.  We assigned targets to three groups to assess their utility in 

functional annotation.  (1) Holo sites: defined sites based on observed ligand binding in 

experimental structures. (2) Apo sites: defined sites based on critical residues provided by 

experimental authors or known motifs relevant to active sites.  We employed a patch%

searching algorithm F%Pocket for initial screening and then manually selected sites based 

on experimental authors’ answers. (3) Critical patches: defined patches centered at the 

critical residues (including SNPs) provided by experimental authors.   

Our previous work demonstrates that functional properties of a critical region can be 

extracted by describing their physicochemical environments 12.  We have developed the 

FEATURE system that computes a set of 80 physicochemical properties collected over 

six concentric spherical shells (total 480 properties = 80 properties×6 shells) centered on 

a predefined functional center.   
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PocketFEATURE contains two essential modules to evaluate and compare 

physicochemical properties of a single or a cluster of functional centers 9.  The two 

modules are:   

(1) Given two centers (can be an atom, or average coordinates of multiple atoms) 

from two structures, we use the term “microenvironment” to refer to the local, spherical 

region in the protein structure that may encompass residues discontinuous in sequence 

and structure.  We then measure the similarity between the two microenvironments by a 

Tanimoto%based approach (see Supplementary Material: method description).   

(2) Given two binding sites (or two clusters of functional centers), we exhaustively 

calculate the similarities between all permissible microenvironment%pairs.  We then 

search for the mutual most similar microenvironment%pairs between two binding sites and 

assign alignments and similarity scores between the two binding sites (see Supplementary 

material Section 4: method description).   

We applied the two modules of PocketFEATURE to assess the physicochemical 

environments of a single or cluster of functional residue centers.   

For apo and holo sites, the challenge was to evaluate how well the binding sites 

are predicted, in terms of the pocket’s physicochemical environments, given the quality 

similarities of the overall predicted structures.  We applied PocketFEATURE to compare 

experimental sites to the corresponding microenvironment centers in the predicted 

structures.  The similarity between the two sites provides an estimate of the probability of 
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a ligand binding to the predicted site, which is the biological relevance of apo and holo 

sites.  

For ��������� �����	�, the challenge is to evaluate how well the critical regions 

associated with the functions of interest are predicted (compared with the experimental 

structures), in terms of the overall physicochemical environments of the critical regions. 

We adopted the procedure above with modifications based on the shape and the size of 

the critical regions.   

��� �����������
�������		�		���
	����� �"��	
���
�����		�		���
	�

CASP predictions were downloaded from assessors’ section of the CASP website.  In 

the assessors' section, under the predictions folder, there was a gziped folder for each 

target containing all predictions from all servers.  CASP rankings and other 

measurements, including GDT, TM, and RMSD (official assessments), were obtained 

from the CASP website (CASP12 result section).  

We performed two assessments: “all%models” and “model%1”.  For each target, each 

prediction server may generate one to five models, with their best model labeled as 

model%1 before submitting to CASP assessment committee.  For “all%models”, we 

calculated PocketFEATURE zscores (PF%zscore) of all server models for each of the 28 

sites.  Specifically, scores of all predictions of a given target from each server were 

treated as independent predictions.  PocketFEATURE scores across these models for 

each site were then normalized to obtain the zscores using the scipy.stats.zscore package.  

For “model%1”, we apply the same procedure to models labeled with model%1 by the 

predictors.  
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Figure 1. Correlation between functional assessments and CASP assessments are 

shown in box plots.  All%models are in top panel and model%1 are at the bottom.  The 

correlation coefficients for model%1 are consistently higher than all%models, suggesting 

that predictions with higher overall structure quality often have good functional features.  

The performance on holo sites is different from those on apo sites and critical patches 

(key residues): the overall (all%models) correlation coefficients for holo sites are lower 

than that of apo sites or critical patches.  

Figure 2: The experimental structure of T0891 has a heme binding site.  Local 

features in the best PF ranked model with those observed in the best structure model (best 

GDT model).  The model%2 from server GOAL (220%2) has the best GDT score (91.74) 

among all the predictions, while its PF%zscore is %1.466 (A more negative PF%zscore 

suggests better similarity.)  The model%1 from HHPred (349%1) was ranked best by our 

functional assessment with a PF%zscore of %2.035, but its GDT score is 86.61.  When 

aligning microenvironments surrounding the heme%binding site, the best structural model 

(220%2) shares five similar microenvironments with the experimental structure. The best 

PF ranked model shares seven similar microenvironments with the experimental 

structure. 

Figure 3: T0942 has an HEXXH motif of metalloproteinase, identified by sequence 

analysis.  The motif forms a histine enriched pocket that may bind Zinc (residue index 

145H, 140H, 136H, 246H).  Other residues near this motif include 137E, 139S, 196F, 

200N, 201E.  We compare the side%chains near these four residues between experimental 
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structures, the best GDT ranked model%1 (004%1, GDT 46.3, PF%zscore %0.93), the best 

GDT ranked all%models (060%2, GDT 54.5, PF%zscore %1.01), the best PF ranked model%1 

(016%1, GDT 38.6, PF%zscore %1.50) and the best PF ranked all%models (303%4, GDT 39.8, 

PF%zscore %1.79).   The best PF%ranked models share similar side%chain arrangements 

with the experimental structures, while the best GDT%ranked models do not.      

Figure 4. We compare the microenvironment alignments between experimental 

structures, the best GDT ranked model%1 (004%1, GDT 46.3, PF%zscore %0.93), and the 

best PF ranked model%1 (016%1, GDT 38.6, PF%zscore %1.50).  The best GDT model%1 has 

7 aligned microenvironments.  The best PF%scored model 016%1 has 10 

microenvironments aligned. The 3 additional aligned microenvironments observed in the 

best PF model%1 are colored in grey: H246, H140 and H145, which are the key element 

of metaloproteinase motifs.  

Figure 5.  Analysis on the critical patch on T0945 (center at SNP 376H, colored in 

black).  The patch include residues: 245, 308, 312, 313, 314, 315, 374, 375, 376, 377, 

378, 379, 380, 381, and 83, which form a tight cluster near 376H (left).  The 15 residues 

surrounding this SNP are the microenvironments associated with the functional effects of 

the SNP.  However, in the best GDT model (best GDT 220%1, GDT 59.27, PF%zscore %

1.32) these microenvironments are not clustered near 376H.  This is because one of the 

key loops was predicted away from the functional center.  In the best PF ranked model 

(best PF model, 324%1, GDT 54.07, PF%zscore %1.55), the corresponding 

microenvironments form one cluster, with the functional loops predicted in the right 

position.  
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Table 1: 28 sites include nine known ligand binding site (holo, yellow), nine putative ligand 

binding site (apo, blue) and ten critical patches surrounding key residues, motifs, or mutations 

(purple).  The number of functional centers are in column 2. The types of sites are also noted in 

column 3, ligand IDs are marked when they are applicable.  The RMSD ranges of all predicted 

structures are in column 4.  The number of servers that made predictions on each target (site) is 

in column 5.    Column 6 shows the target classification.  Of the 28 sites, six sites are FM (free 

modeling) and 22 sites are TBM (template based modeling).  The number of functional centers in 

each site is listed in column 2 (Specific resiude indexes are in Supplementary material Table S1). 

Note that we identified four critical patches surrounding four different mutations for T0948. 

 

Target ID  # points Type RMSD range (Å) # servers Classification 

T0861  28 Holo/LLP (0.945, 26.170) 42 TBM 
T0863 8 Holo/CLR (4.686, 284.38) 90 FM 
T0873 24 Holo/FMN (2.656, 109.89) 41 TBM 
T0879 7 Holo/ZN/B (4.213, 40.255) 39 TBM 
T0889 21 Holo/SOR (2.591, 44.685) 38 TBM 
T0891 11 Holo/HEM (2.314, 29.119 40 TBM 
T0893 22 Holo/ADP (9.251, 51.388) 43 TBM 
T0910 27 Holo/ANP (2.540, 45.013) 40 TBM 
T0911 10 Holo/GCO (4.377, 193.48) 105 TBM 
T0880-0 14 Apo (8.492, 59.427) 108 FM 
T0880-1 13 Apo (8.492, 59.427) 108 FM 
T0894 19 Apo  (5.064, 68.908) 98 TBM 
T0895 21 Apo (4.353, 24.348) 110 TBM 
T0896 23 Apo (5.030, 150.96) 98 TBM 
T0913 13 Apo (3.955, 42.81) 108 TBM 
T0917 73 Apo (2.564, 44.06) 43 TBM 
T0942 10 Apo (2.992, 72.043) 92 TBM 
T0947 25 Apo (5.292, 33.782) 97 TBM 
T0860 17 Motif (2.654, 54.506) 42 TBM 
T0864 11 Key residues (10.34, 139.28) 101 FM 
T0882  11 Key residues (2.306, 25.381) 116 TBM 
T0914 26 Key residues (13.53, 127.45) 97 FM 
T0915 14 Key residues (5.42, 40.854) 108 FM 
T0920-0 31 Key residues (3.213, 180.13) 39 TBM 
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T0920-1 14 Key residues (3.213, 180.13) 39 TBM 
T0943-1 9 Motif (6.497, 77.188) 40 TBM 
T0943-2 10 Motif (6.497, 77.188) 40 TBM 
T0948  15-19  Mutation (3.092, 36.111) 95 TBM 
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