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ABSTRACT 

Sustainable and effective treatment of landfill leachate has become one of the most 

important environmental problems due to the fluctuating composition and quantity, as 

well as its high concentrations of pollutants. High-tech solutions applied for the 

leachate treatment are expensive and energy consuming, and in addition they are not 

suitable at many landfill sites, especially those in rural areas. Hence there is need to 

develop novel and sustainable low-energy systems for the effective treatment of 

landfill leachates. 

Constructed wetlands (CWs) are inexpensive simple to operate and they have the 

potential to remove not only organic carbon and nitrogen compounds, but heavy 

metals. This study focussed on the design, development and experimental 

investigation of a novel CWs for the treatment of landfill leachate. The CWs employed 

dewatered ferric waterworks sludge (DFWS) as the main substrate. The overall aim 

of the study was to design and assess the novel configuration of the CWs, whilst also 

contributing to advancing the understanding of pollutant removal from the landfill 

leachate in the CWs, through the development of models to explain the internal 

processes and predict performance.  

The key design and operational variables investigated were: the primary media used, 

i.e. the DFWS, and the wetting and drying regimes. The CWs was configured as 4-

stages in series which was operated for 220 days. Thereafter, an additional unit was 

added due to clogging and the CWs was operated for 185 days in this second period. 

Results and experimental observations indicate that the chemical treatment 

processes (adsorption and precipitation) contributed to the clogging.   

The DFWS used served as adsorbent for heavy metals removal in the system.  

Results of heavy metals, organic matter (COD), ammonia and total nitrogen removal 

indicate average removals of 99%, 62%, 83% and 81%, respectively in first period; 

and 100%, 86%, 90% and 82% in second period, with an average heavy metals 

loading rate 0.76 g m-2 day-1, organic loading  rate 1070 g m-2 day-1, ammonia loading 

rate of 178 g m-2 day-1 and total nitrogen loading rate 192 g m-2 day-1. Results were 

supported through mathematical analysis using STELLA model for heavy metals 

transformation in CWs and numerical modelling using HYDRUS CW2D, which 

enhanced understanding of the internal processes for organic matter and nitrogen 
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removal. The result from STELLA modelling showed that up to 90% of the removal of 

heavy metals was through adsorption, which is highly significant. While HYDRUS 

CW2D results showed that the main path of nitrogen removal was through 

simultaneous nitrification and denitrification. 

Overall, results have shown that CWs design has great potential for reduction of 

metals and nutrients in landfill leachate. Results of this study can contribute to future 

CW research and design for landfill leachate treatment, through the increased 

understanding of long-term pollutant removal in these systems. In time, this may result 

in the wider application of CWs for landfill leachate treatment to better protect the 

environment. 
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1.1 Overview 

1.1.1 Landfill leachate treatment 

All municipal landfills are susceptible to infiltration by precipitation and runoff. As the 

water infiltrates the landfill, substances leach from the waste including oxygen 

demanding organic compounds, suspended solids, nitrogen compounds, 

phosphorus, metals and toxic organics. Consequently, landfill leachate is often 

characterized as hazardous and highly polluted. The composition of landfill leachate 

varies widely depending on a variety of parameters including type of landfill waste, 

climatic conditions, landfill age and mode of operation (Kjeldsen et al. 2002).  

Landfill leachates are capable of causing severe environmental impacts especially in 

water bodies such as aquifers and surface waters. These effects may include 

eutrophication or toxic effects on aquatic organisms resulting from ammonium 

nitrogen (NH4-N), heavy metals (HM) or organic matter (OM). NH4-N concentrations 

often present more of a long-term problem than the leaching of degradable organic 

substances such as volatile fatty acids.  It is generally recognised that mature 

leachates contain relatively low concentrations of degradable organic material but 

high levels of NH4-N, up to 5000 mg L-1(Li et al., 1999). Such high NH4-N levels, 

together with the enormous quantities of leachates have posed serious pollution 

threat to the water environment. Therefore, the removal of NH4-N has become a 

critical issue in leachate treatment.  

On the other hand, HM which are commonly found in high concentrations in landfill 

leachate include iron, manganese, zinc, chromium, lead, copper and cadmium. They 

are a potential source of pollution if the leachate migrates into ground water, surface 

water and reservoirs. 

Collected leachate must either be treated on-site to meet discharge permits or 

transported to a treatment facility off-site. The high variability of leachate 

characteristics makes the design and operation of treatment facilities difficult. 

Treatment of the leachate frequently requires a combination of physical, chemical, 

and biological treatment processes. Many municipal wastewater treatment plants will 

require pre-treatment of leachates to reduce high contaminant concentrations or 

remove toxic substances before they can accept them. Hauling and pre-treatment is 

usually an expensive option for leachate management, and it may create potential 
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hazards during transportation. Construction and operation of conventional wastewater 

treatment facilities on-site are also expensive. One reason for the expense is due to 

the need for continuous management by trained personnel during the many years of 

post-closure leachate collection and treatment.  

1.1.2 Constructed wetland system for landfill leachate treatment 

Constructed wetland system (CWs) are engineered treatment systems that make use 

of the same contaminant removal mechanisms that function in natural wetlands. They 

have been found to provide treatment for a wide range of pollutant compositions and 

for highly variable flow rates. One reason for this is the diverse environments CWs 

provide, including both aerobic and anaerobic microsites.  

CWs have low capital costs, low maintenance requirements, and they can be 

integrated into an urban resource management plan (Inamori et al. 2007; Tomenko et 

al. 2007; Vymazal 2007; Babatunde et al. 2008; Vymazal 2011).  They provide wildlife 

habitats, green space and recreational opportunities in addition to their treatment 

function. These types of systems have been used for treatment of municipal 

wastewater, acid mine drainage, urban stormwater runoff, agricultural runoff, animal 

wastes and industrial wastewater. A more recently explored application is the 

treatment of landfill leachate in these systems.  

CWs are generally categorized into surface flow and subsurface flow wetlands. 

Subsurface flow wetlands are the most common CWs type in Europe; such systems 

have been consistently effective in the removal of biochemical oxygen demand, 

suspended solids, and pathogenic organisms (Garcia et al. 2003; Akratos and 

Tsihrintzis 2006). However, nutrient removal is generally limited because of a lack of 

the oxygen content that is necessary to oxidize ammonium,  and the low adsorption 

capacities of the common substrates used for phosphorus and HM retention (Tanner 

et al. 2002). Therefore, intensified CWs such as artificially aerated and tidal-flow CWs 

were developed to improve oxygen transfer in CWs (Saeed et al. 2012). Artificially 

aerated CWs can increase oxygen transfer rate to 160 g m-2 day-1 by compressing air 

from the atmosphere into the wetland bed with the use of a blower (Kadlce and 

Wallace 2008). Consequently, nutrient removal is intensified and the required area is 

reduced. However, such technology is not widespread because aeration process 

consumes a great deal of energy. Also, the fouling of air diffusers within CWs must 
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be considered, as well as the provisions for replacing or chemically cleaning diffuser 

assemblies. 

 Tidal flow constructed wetland system (TF CWs) are a relatively new technology that 

utilizes a novel oxygen transfer method (Wu et al. 2011). TF CWs are regularly filled 

with wastewater and then drained, and TF CWs act as passive pumps that expel and 

draw air from the atmosphere into pore spaces (Zhao et al., 2004a). In this way, the 

oxygen transfer rate reaches 350 g m-2 day-1 (Wu et al. 2011), and the ammonium 

and organics treatment capacities are consequently improved significantly (Hu et al. 

2012). However, denitrifier growth and activity is inhibited by either high oxygen 

content or inadequate electron donor sources, thus resulting in  increase in effluent 

nitrate content in these systems (Zhao et al., 2004b). Therefore, modification of the 

original TF CWs configuration is necessary in order to achieve satisfactory Total 

nitrogen (TN) removal performance. To enhance TN removal anoxic condition can be 

developed by fixing the retention time in the tidal flow operational strategy.   

Various media such as soil, gravel, sand and limestone have been used in CWs. 

However, the novelty of the CW being proposed in this thesis lies in the use of 

dewatered waterworks sludge (DWS) as a substrate for pollutant removal from 

wastewater. DWS are waste by products generated by certain drinking-water 

treatment processes, for which limited sustainable application has been found to date, 

resulting in their disposal predominantly by landfilling (Wang et al. 1993). These 

materials are primarily composed of amorphous masses of iron and aluminium 

hydroxides, and they also contain sediment and humic substances removed from the 

raw water and traces of coagulating agents used in the water treatment process (Chu 

2001). DWS have a large surface area and are highly reactive, this makes them a 

potential adsorbent for pollutants (Ippolito et al. 2011).  

Extensive laboratory scale studies on the novel reuse of alum sludge in CWs have 

been conducted to treat various types of wastewater (Babatunde et al., 2009; Zhao et 

al., 2009; Zhao et al., 2011; Hu et al., 2012). However, the use of DWS to treat high-

strength wastewater, such as landfill leachate with high concentration of pollutants 

has not been investigated by researchers till date.     

This project presents for the first time, the use of Fe-DWS in CWs for landfill leachate 

treatment. The CW is designed to enhance NH4-N removal, and achieve higher TN 

removal integrated with removal of OM and HM. The performance of the CW in 
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removing a range of landfill leachate priority pollutants (including heavy metals and 

nutrients) is investigated to determine the overall effectiveness of the system. 

1.1.3 Aims and Objectives 

The main aim of the study is to contribute to a better understanding of the use of CWs 

for sustainable landfill leachate treatment; and to develop a novel CWs for sustainable 

landfill leachate treatment, using a novel by-product, dewatered water sludge as the 

main substrate. 

The objectives of the study are: 

1. To undertake detailed physical, chemical and engineering characterization of 

drinking water sludges in order to determine their suitability to enhance the removal 

of HM, OM and TN from artificial landfill leachate during treatment in CWs. 

2. Using batch kinetic and equilibrium studies, to examine the kinetics and determine 

the adsorption capacity of the drinking water sludges for Pb, Cr, Cd and Fe  

3. To investigate and determine the mechanism of heavy metals removal from landfill 

leachate by the drinking water sludges, using principal component and canonical 

correlation analysis to evaluate the physicochemical properties of the drinking water 

sludges that are relevant to heavy metal attenuation; and then using sequential 

extraction to study the nature of the interactions established between the metal ions 

and the surfaces of the drinking water sludges. 

4. To determine the role of the inorganic and organic fractions of the drinking water 

sludges in metal attenuation using FTIR spectroscopy.  

5. Based on the characterization and HM adsorption tests, to select suitable drinking 

water sludges for the design and development of a novel CWs for landfill leachate 

treatment, and to assess the configuration and performance of the system in the 

laboratory, using >400 days of data in order to assess  the effect of high pollutant 

loading rate, different operational conditions (anoxic condition and tidal flow strategy) 

and the impact of the pollutant relative concentrations on the treatment performance. 

6. To use numerical simulation (HYDRUS-CW2D) to increase understanding of 

fundamental processes of transformation and elimination of pollutants in system, and 
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contribute to unravelling the black box approach of these systems, whereby, 

interaction (media, water, plants, microorganism) are not well known. 

7.  To develop a dynamic model using the Structural Thinking Experiential Learning 

Laboratory with Animation (STELLA) for simulating HM removal in the  CWs in order 

to increase our understanding of the fate and transformation of HM in the systems. 

1.2 Outline of thesis 

A literature review of constructed wetlands and their application for landfill leachate 

management and treatment is firstly given in chapter 2. The research presented in 

this thesis has been carried out through the investigation of the ability of fourteen 

DWSs for the adsorption of selected HM that have been found in landfill leachate. 

This was carried out using laboratory experiments, principally kinetic and equilibrium 

analysis. Characterisation of the DWSs is presented alongside the analysis of their 

metal adsorption characteristics in chapter 3. Not only the adsorption capacity and 

kinetics should be investigated, but also the way that HM are bound is necessary as 

it can be used to predict the heavy metals availability, mobility and toxicity.  Therefore, 

the study of adsorption mechanism is carried out in chapter 4.  From the results of 

chapters 3 and chapter 4, the selected DWS was used as the main media in CWs 

which was designed and operated in Cardiff University School of Engineering. Influent 

and effluent analysis was carried out over a period of 400 days to obtain a 

comprehensive dataset concerning the treatment performance of the CWs, and to 

determine the effect of the design and operation variables. Chapter 5 provides details 

of the experimental setup and procedure used to investigate the performance of the 

CWs for OM, NH4-N and HM removal.  Chapter 6 explores the application of HYDRUS 

2D, a software package that simulates water, heat and solute transport through 

variably saturated media, to enhance the understanding of the removal processes of 

OM and NH4-N occurring in the CWs. Modelling of HM removal in CWs is also 

important with regards to understanding the HM behaviour in the integrated treatment 

processes. The fate of HM in the CWs was investigated through the development of 

a mathematical model using the STELLA as presented in chapter 7. Finally, the main 

conclusions of the project and recommendations for further work are presented in 

chapter 8.
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Issues 
 CWs is focussed separately on biodegradable organic matters and nutrients on the one hand; and toxic pollutants on the other. 
 Inevitable coagulants use in water treatment works generates annually more than 2 million tons in the US and 131,000 tons in the UK. 
 Variable DWS characteristics can impose different behaviour for HM retention when use it as a low cost substrate in CWs.  

Conclusion and future work 

Aims: 
 To develop a novel engineered system to contribute to a better understanding of the use of CWs for sustainable landfill leachate treatment. 

Chapter Three 
Characterization & HM 
adsorption by DWSs  
 

- Evaluate the physicochemical 

properties of different DWSs 
that are relevant to HM 
removal. 
 

- Investigate the characteristics 
of Pb, Cr, Cd and Fe removal 
by DWSs through batch 
experiments investigating the 
equilibrium and kinetics of 
adsorption. 
 

- Study the effect of pH, 
adsorbent dose and contact 
time on the removal of HM. 

Chapter Four 
Mechanistic study of Pb, Cr and 
Cd uptake by DWSs 
 

- Using PCA and CCA to 

evaluate the relationship 
between physicochemical 
properties of different DWSs and 
heavy metals attenuation. 
 

- Study the nature of the 
interactions established between 
the HM and the surfaces of 
DWSs. 
 

- Ascertain the role of the 
inorganic and organic fractions of 
DWSs in the HM attenuation 
processes. 
 

Chapter Five  
 General performance of 
engineered wetland system 
 

- Overall performance of CWs- 
ferric- based sludge in HM, OM 
and TN removal and assess 
the impact of their relative 
concentrations. 
 
- Investigation of the effect of 
high pollutant loading rate and 
different operational conditions 
(anoxic condition and tidal flow) 
on the treatment performance. 

Chapter six 
Modelling OM & N removal 
using HYDRUS CW2D 
 

- To develop and validate a 
numerical model of the 
constructed wetland system 
with emphasis on pollutant 
prediction. 
 

- To increase understanding of 
the fundamental processes of 
transformation and elimination 
of pollutants in the system and 
contribute to unravelling the 
(black box) approach to these 
systems. 
 

 

 Chapter seven 
Modelling HM transformation 
in VF CWs 
 

- To develop a dynamic model 
for simulating adsorption, plant 
uptake and growth from the VF 
CWs, which uses ferric 

dewatered sludge (HH) as main 
substrate. 
 

- To calibrate the model using 
the available experimental data. 
 

- Apply the model to simulate 
the fate of HM in the VF CWs. 



 

  

Chapter 2  

 

 

 

 

 

 

Literature Review: Constructed 

wetlands for landfill leachate 

treatment 
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2.1 Introduction 

This chapter provides a literature review of previously undertaken research of 

relevance to the field of study. In recognition of the significant opportunity offered by 

CWs for landfill leachate management, this review aims to provide a concise appraisal 

of the application of CWs for the treatment of high strength  wastewater such as landfill 

leachates, focusing on the design, performance, retrofit issues and design guidelines. 

Firstly, landfill leachate and its characterization is reviewed, and the treatment in 

various form and associated limitation is explored. Thereafter, the review focussed on 

the application of CWs for landfill leachate management.  The use of vertical flow 

CWs for high strength wastewater treatment,   such as landfill is then investigated, 

highlighting the benefits and shortcomings that have influenced this research.  

The key objectives of this review are: 

• To review the development and state of the art of the application of CWs for 

high-strength wastewater treatment, 

• To collate information on the design, performance challenges faced in the use 

of CWs for high strength wastewater treatment, 

• To identify gaps in knowledge, research and practice for the use of CWs for 

landfill leachate treatment; and offer recommendations as to how to advance the 

uptake of CWs for such high strength wastewater treatment. 

2.2 Landfill leachate 

Landfill leachate is generated as a mixture of rainwater percolated through wastes, 

surface runoff, underground water infiltration water produced from the biodegradation 

of wastes and the inherent water of the wastes themselves (Bou-Zeid and El-Fadel 

2004; Renou et al. 2008). Due to the complicated solid waste deposited in landfills, 

leachate contains a variety of pollutants which can be classified into four groups: (i) 

dissolved organic matter expressed as total organic carbon, including methane, 

volatile fatty acids and biorecalcitrant compounds such as fulvic and humic 

substances; (ii) metallic ions such as Ca, Mg, Na, K, NH3, Fe, Mn and the anions Cl−, 

SO4 2−, S2
−, CO3 2− and potentially toxic ion metals such as Cd, Cr, Pb, Ni, Cu, Zn and 

As; (iii) xenobiotic organic compounds, which can include a huge variety of 
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halogenated and phenolic compounds, alcohols, aldehydes, and ketones; and (iv) 

trace compounds (Kulikowska and Klimiuk 2008). 

Landfill leachates are difficult to characterise because their compositions and 

concentrations depend on a variety of factors such as waste composition, age of 

landfill site, geology, temperature, moisture content and other seasonal and 

hydrological factors (Christensen et al. 2001; Abdul Aziz et al. 2004). Table (2.1) 

summarises the range of leachate constituent concentrations in different countries. 

Table 2. 1 Summary of the characteristics of landfill leachate in different countries. 

Parameter 
(mg L-1) 

References 

1 2 3 4 

BOD 4- 57,700 0- 4,000 - 834.3- 1,000.7 

COD 31- 89,520 150- 6,000 <10- 33,700* 1,105- 1,906 

TOC 0- 28,500 - 2.8- 5,690* - 

Nitrate nitrogen (as N) 0- 51 < 1- 0.5 - 9.4- 21.2 

Ammonia nitrogen (as N) 0- 1,966 5- 100 1,029- 1,977 467.5- 676.5 

Total phosphates 0.2-130 1- 10 - 13.53- 19.93 

Total solids 0- 59,200  - - 

Total dissolved solids 584-44,900 0- 42,300 - - 

pH 3.7- 8.8 3.7- 9 5.95- 7.65 7.66- 8.01 

Calcium 60- 7,200 100- 1,000 62- 3,646 - 

Magnesium 17- 15,600 16.5- 15,600 92- 555 - 

Sodium 0- 7,700 0- 7,700 1,340- 2,039 - 

Chloride 4.7-4,816 20- 2,500 1,965- 2,705 817.7- 3,154 

Sulfate 10- 3,240 < 1- 300 52- 1,173 54.95- 270.4 

Chromium 0.2- 18 < 0.01-0.5 <0.04- 0.56* 0.17- 0.78 

Cadmium 0.3- 17 < 0.01 2.65 0.01- 0.6 

Copper 0.005-9.9 < 0.008- 10 0.39* 0.18- 1.85 

Lead 0.001- 2 0- 5 <0.04- 0.28* 0.23- 11.39 

Nickel 0.2- 79 0.4-3 4.34 0.06- 0.512 

Iron 4- 2,820 0.2- 5,500 2.2- 448 1.94- 38.67 

Zinc 0.6-370 0- 1,350 2.25 17.21- 1,311 

1- (Ray et al. 1986) In USA;  2- (Rong 2009) In Finland; 3- (Thornton et al. 2000) In UK; 
4- (Zhang et al. 2013) In China.   * (Baun and Christensen 2004) In UK. 

Landfill leachates can cause severe environmental impacts especially in water bodies 

such as aquifers and surface waters. These effects may include eutrophication or 

toxic effects on aquatic organisms resulting from ammonia, heavy metals or organic 

compounds. Ammonium nitrogen concentrations often present more of a long-term 

problem than the leaching of degradable organic substances such as volatile fatty 

acids. This is because nitrifying bacteria are autotrophic microorganisms that have a 
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slow respiration rate, and require a considerable amount of oxygen to function. 

Moreover, the presence of a large amount of carbonaceous substrates in these strong 

effluents often prevents oxygen being used for nitrification. It is generally recognized 

that landfill leachate contains relatively low concentration of degradable organic 

material but high levels of NH4-N, up to 5000 mg L-1 (Li and Zhao 2001). Such high 

NH4-N levels together with enormous quantities of leachates, poses a serious 

pollution threat to the water environment, and the removal of NH4-N has become a 

critical issue in landfill leachate treatment. 

Landfill leachates might contain among many other constituents, heavy metals in 

considerable concentrations. The heavy metals which are usually present in 

concentrations ranging from micrograms to milligrams per litter (Christensen et al. 

2001), may constitute environmental problem, if the leachate migrates into surface or 

groundwater. Thus, in recent decades, monitoring of heavy metals in landfill leachate 

has been commonly been required by the authorities and routinely performed by 

landfill operators (Abdul Aziz et al. 2004). 

Ray et al. (2007) found that heavy metal concentrations are generally low in the 

leachate formation stage and highest during the acid formation stage. However, 

complexation reactions with humic and other organic substances attenuate the metal 

concentration towards the later stages of the landfill stabilization process. Martensson 

et al. (1999) had expressed a similar view about the complexing capacity of heavy 

metals such as cadmium, nickel, zinc and dissolved organic carbon. In addition, an 

investigation by Baun (2004) into heavy metal distribution in landfill leachate showed 

that significant fractions of heavy metals were associated with municipal solid waste 

derived dissolved organic matter, suggesting that dissolved organic matter plays an 

important role in heavy metal speciation and migration.  

2.2.1 Landfill leachate treatment- systems and limits 

The treatment of landfill leachate depends on its composition and characteristics  

(Alvarez-Vazquez et al., 2004), the nature of the organic matter present as well as the 

age and structure of the landfill. Different technologies including biological treatments, 

physico-chemical treatments,  as well as natural systems such as constructed 

wetlands (Klomjek and Nitisoravut 2005) and leachate recirculation (Reinhart 1996; 

Reinhart & Al-Yousfi 1996; Warith et al. 2009) have been developed in recent years, 
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not only to minimize the generation of toxic contaminants from leachate, but also to 

comply with the increasingly stringent discharge standards in different countries. 

Physico-chemical treatments have been found to be suitable not only for the removal 

of refractory substances from stabilized leachate, but also as a refining step for 

biologically treated leachate. Prior to discharge, additional effluent refining using 

physico-chemical treatments such as chemical precipitation, activated carbon 

adsorption, and ion exchange can be carried out on-site. However, the drawbacks of 

these techniques include the high cost of operation due to the high chemical 

consumption, the sensitivity of the process to pH and the generation of sludge. 

Biological purification processes are classified as aerobic or anaerobic depending on 

whether or not the biological processing medium requires an O2 supply. In aerobic 

processing, organic pollutants are mainly transformed into CO2 and solid biological 

products (sludge) by using the atmospheric O2 transferred to the wastewater. In 

anaerobic treatment, organic matter is converted into biogas, a comprising chiefly CO2 

and CH4 and in a minor part into biological sludge. Biological processes have been 

shown to be very effective in removing organic and nitrogenous matter from immature 

leachates when the BOD/COD ratio has a high value (>0.5). With time, the major 

presence of refractory compounds (mainly humic and fulvic acids) tends to limit 

process's effectiveness (Lema et al., 1988). Even if aerobic processes proved to be 

effective for the removal of organic carbon, nutrients and ammonia content, a number 

of drawbacks identified below have shifted the focus to others technologies 

(Wiszniowski et al. 2006): 

 Relatively high capital costs. 

 High energy consumption. 

 Requires skilled personnel and regular monitoring. 

 Susceptible to hydraulic overloads. 

 The settling property of sludge is not always easy to control. 

 High production of sludge that must be thickened. 

On the other hand, Wiszniowski et al. (2006) reported the drawbacks of anaerobic 

treatment systems which include: 

 Heavy metals which can hamper digestion. 

 Ammonia toxicity from ammonia remaining in the effluent. 

 Susceptibility to pH and temperature changes. 

CWs treatment of landfill leachate is an attractive alternative method of water quality 

improvement (Loer et al. 1999). The use of CWs 
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 for landfill leachate treatment began to develop in the late 1980s through to the mid 

of 1990s, with both subsurface flow (Trautmann et al. 1989; Staubitz et al. 1989; 

Birkbeck et al. 1990) and surface flow ( Trautmann et al. 1989; Martin et al. 1993).  

Typical types of CWs applied in organic matter, nitrogen and HM removal include 

surface flow CWs and subsurface flow CWs; these can be further divided into 

horizontal subsurface and vertical subsurface flow systems. In recent years, new 

types of CWs with enhanced TN removal performance have emerged; these include 

tidal flow, effluent recirculation and saturated up-flow and down-flow CWs. The 

configuration performance (capacity and efficiency), and limitations of these CWs are 

summarized and discussed in the following sections. 

2.3 CWs definition  

Constructed wetland system are engineered (man-made) wastewater treatment and 

purification systems that include chemical (adsorption, precipitation), physical 

(sedimentation, filtration), and biological (plant uptake, microbial processes) 

processes. These processes are similar to the processes that occur in natural wetland 

systems (Vymazal 2014; Song et al. 2015). The use of CWs for wastewater treatment, 

particularly domestic wastewater, has grown in recent years due to their very effective 

removal of pollutants, low energy requirements, ease of maintenance and relatively 

cheap construction and operating costs. CWs are applied all over the world to treat 

several kinds of wastewater such as storm run-off, domestic wastewater, industrial 

wastewater, agricultural drainage, acid mine waste and landfill leachate (Vymazal et 

al. 2015; Wu et al. 2015; Vymazal & Brezinova 2016).  

There are three main types of CW: free water surface; horizontal subsurface-flow and 

vertical subsurface-flow. These designs are described in the following sections. 

2.3.1 Free water surface constructed wetlands 

Free water surface (FWS) CWs are distinguished by an area of open water when the 

water slowly flows above a surface with few centimetres’ column depth. Where rooted 

macrophytes are incorporated, they grow in soil or an alternative media at the base 

of the CW. Water depths are usually shallow, and this, along with the presence of 

vegetation helps to control the flow through the CW with the aim of creating plug-flow 
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conditions (Reed et al. 1995). Plug-flow conditions serve to maximise contact 

between the wastewater and the biological surfaces on which pollutant removal take 

place. 

 

Figure 2. 1 Typical arrangement of a FWS CW (adapted from Kadlec and Wallace 2008) 

FWS CWs are commonly used to treat less concentrated wastewaters, e.g. effluent 

from secondary or tertiary treatment and storm water runoff. They are also commonly 

used for mine water, groundwater and leachate treatment (Kadlec & Wallace 2008). 

Figure 2. 1 shows an example of a FWS CW with emergent vegetation. 

FWS CWs is effective in removing SS and OM, but the area requirements are more 

stringent when it is used for reducing nutrient (Kadlec 1995).  

2.3.2 Horizontal subsurface-flow constructed wetlands 

Subsurface-flow CWs differ from FWS CWs in that they do not feature a body of water 

on the surface. All flow moves through the porous substrate media. A typical 

horizontal subsurface-flow (HF) CW is shown in Figure 2.2. 

Often referred to as “reed beds”, HF CWs are typically constructed using gravel and/or 

soil as substrate media (Kadlce and Wallace 2008). The bed of the CW is slightly 

inclined (gradient 1-3%) to promote gravitational water flow from the inlet to the outlet 

(Bryan et al. 2003). The wastewater is treated as it passes through various aerobic, 

anoxic and anaerobic zones (Cooper et al. 1996). Since the system is constantly 

saturated, aerobic zones are confined to the roots of the macrophytes in the CW. 

Thus, oxygen transfer and therefore aerobic treatment processes (e.g., nitrification) 

are usually low in HF CWs. 
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Figure 2. 2 Typical arrangement of a HF CWs (adapted from Cooper et al. 1996) 

HF-CWs is effective in reducing suspended solids and OM (chemical oxygen demand 

(COD), biochemical oxygen demand (BOD)) as shown in Table 2.2. All these results 

indicate that oxygen transfer into HF CWs is limited and anoxic/anaerobic conditions 

are predominant in HF-CWs (Vymazal 2002; Kadlec & Wallace 2008; Albuquerque, 

Oliveira et al. 2009; Albuquerque, Arendacz et al. 2009). 

2.3.2.1 Vertical subsurface-flow constructed wetlands 

Vertical subsurface-flow (VF) CWs receive influent wastewater in intermittent batches, 

thus they are not constantly saturated as in HF CWs. A typical VF CW is shown in 

Figure (2.3). 

VF CWs typically consist of layers of gravel/sand, with the wetland vegetation planted 

at the top of the bed (Stefanakis et al., 2014). In most VF CWs, the influent wastewater 

is fed in batches onto the bed surface, flooding the surface and then travelling 

vertically by the gravity through the substrate media before it is collected at the bottom 

of the system from a gravel drainage layer. The driving force for the development of 

VF CWs is to achieve fully-nitrified effluents (Cooper 1999). Till now, it has become a 

well-established technology known as a compact treatment wetland system due to its 

high treatment capacity compared to FWS CWs and HF CWs (Weedon 2010).  

Unlike HF CWs, the wetland medium in VF CWs is not water-saturated due to the 

intermittent loading, and therefore oxygen transfer is enhanced (Brix 1994b; Cooper 

1999). 
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Figure 2. 3 Typical arrangement of a VF CWs (adapted from Kadlec and Wallace, 2008) 

As a result, VF CWs has the ability to produce nitrified effluents from municipal or 

domestic wastewater, or even more concentrated wastewater such as landfill 

leachates and food processing wastewater (Kadlec & Wallace, 2008). Table 2.2 

shows that VF CWs can achieve nearly complete nitrification (>90%). The general 

NLR adopted is below 10 g m-3d-1, but high loading rates above 10 g m-3d-1 have also 

been applied in some cases, with effective nitrification performance (>80%) achieved.  

On the contrary, denitrification in VF CWs is restricted due to the predominating 

aerobic condition in the bed media. The TN reduction rarely exceeds 50%, 

consequently all these results suggest that a single stage VF CWs may not be capable 

of delivering tertiary effluent with regard to TN removal. 

2.3.2.2 Tidal flow CWs 

TF CWs are VF systems with alternative hydraulic operating conditions (Figure 2.4). 

Instead of the influent wastewater simply percolating through the CW and leaving the 

system in one pass, the wastewater is held in the system and then released after a 

set period of time. As the CW is filled, influent NH4-N is adsorbed to the media and 

influent organic matter is degraded by the CW biofilm (Kadlec and Wallace 2008). 

Subsequently, as the water is drained from the CW, it acts as a “passive pump”, 

drawing air into the system (Sun et al. 2005). Atmospheric diffusion then oxidized 

biofilm causing the nitrification processes. As the CW is refilled, the oxidised N is 
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released from the media as oxidation has transformed the positive NH4
+ ion into 

negative nitrite (NO2
-) and nitrate (NO3

-) ions, which are repelled by the negative 

charge of the soil media. Influent organic matter provides a C supply for denitrification 

processes to occur in anoxic zones in the inner layer of the CW biofilm, where a high 

oxygen diffusion resistance allows heterotrophic denitrifies to survive (Hu et al. 2014). 

Due to TF treatment advantages, it has been mainly tested for high contamination 

loads such as agricultural wastewater (Zhao, Y.Q. et al. 2004b) and a mixture of 

landfill leachate and activated sludge (De Feo 2007). A positive result can be obtained 

when combining TF and effluent recirculation (Sun et al. 2003; Y Q Zhao et al. 2004b). 

Table 2.2 clearly demonstrates the greatly enhanced oxygen transfer and treatment 

capacity with the TF operation. Although NH4-N reduction was incomplete in the 

studies with high strength wastewater, significant reduction was achieved under 

extremely high organic loading rate (OLR, kg COD m-3 day-1) up to 11 kg COD m-3 

day-1. When the wastewater strength was reduced to the domestic level, effective OM 

and NH4-N reduction (>80%) were achieved simultaneously under OLR of 0.2 kg m-3 

day-1 and NLR of 38 g m-3 day-1 (Wu et al. 2011). The oxygen transfer rate was 

estimated as high as 203 and 473 g O2 m-2 day-1 based on the oxygen consumption 

rate in Sun et al. (1999,2005) respectively. In Wu et al., (2011) the oxygen transfer 

rate was directly measured as 350 g O2 m-2 day-1. This has been demonstrated with 

the highly nitrified effluent and limited TN reduction in Sun et al. (1999, 2005), and Wu 

et al. (2011).  
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Table 2. 2 Treatment performance of CWs in OM and N removal 

Wastewater Influent 
OM  
(mg L-1) 

Influent 
N 
(mg L-1) 

Removal efficiency 
% 

Configuration Reference 

COD NH4-N TN 

Industrial  
Wastewater 
  

170 32 61 22-  
56 

- FWS (Chen et al. 
2006) 

Landfill 
leachate 

4360 46 20 44 13 FWS (Ogata et al. 
2015) 

Agricultural 
runoff 
 

103- 132 7- 9 - 48- 69 55- 
65 

FWS (Lu et al. 
2009) 

Landfill 
leachate 
 

5850- 
12820 

144- 360 97 - 43 HF (Chiemchaisri 
et al. 2009) 

Landfill 
leachate 
 

4770 2865 36 38 - HF (Yalcuk and 
Ugurlu 2009) 

Synthetic 587 66 89 72 77 HF with step 
feeding 

(Stefanakis et 
al., 2011) 
 

Landfill 
leachate 

1108 176 53 40 - HF (Nivala et al. 
2007) 
 

Landfill 
leachate 
 

202 86 84 83 74 VF (De Feo 
2007) 

Diluted 
leachate 
 

35- 301 8-103 86 79 68 VF (De Feo, 
2007) 

Gray water 270 37 84 92 - VF CWs with 
recirculation 

Sklarz et al., 
2009 
 

Piggery 2464 121 77 62 - Four stages 
TFCWs with 
effluent 
recirculation 
 

(Zhao et al., 
2004b) 

Artificial 
wastewater 

300 60 90 55 70 TFCWs with 
effluent 
recirculation 
 

Chang et al., 
2014 

Synthetic 
domestic 

193- 366 34- 75 84 81 44 Single stage 
TFCW with 
recirculation 

(Wu et al., 
2011) 

2.4 Pollutant removal mechanisms in constructed wetlands 

Removal of pollutants from wastewater is essential for the protection and 

maintenance of receiving aquatic environments. In order to avoid depreciation of 

water resources, regulatory agencies are setting increasingly stringent effluent 

discharge standards. In an attempt to meet licensed discharge criteria, the 

wastewater industry realises that the use of cost-effective and environmentally 

friendly technologies such as constructed wetlands play an important role. 

The following sections will highlight some major pollutant removal mechanisms in 

constructed wetlands with a focus on organic matter, nitrogen and heavy metals which 

are commonly found in landfill leachate. 
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2.4.1 Development of CWs for organic matter removal 

Treatment wetlands may receive large amounts of external organic carbon. 

Degradable carbon is decomposed or transformed by a variety of reactions depending 

on the conditions present in the wetland (Figure 2.6). 

 

 

 

 

 

  

 

 

Figure 2. 4 Organic matter transformation and removal process in VF CWs (adapted 

from Stefanakis et al. 2014) 

Some studies indicated that organic matter removal in constructed wetlands is mainly 

through aerobic, anaerobic, adsorption, filtration, and microbial metabolism 

(Karathanasis et al. 2003; Song et al. 2006; Stefanakis et al. 2014), and can be 

assessed by the change in COD and BOD concentrations in the wetlands. 

Furthermore, the removal of soluble organic substances is accomplished by the 

growth of microorganisms on the media, adhered on the rhizomes and roots of the 

macrophytes (Song et al., 2006). The function of constructed wetlands is largely 

dependent on organic matter accretion, dissipation and cycling. Organic matter 

accumulation in wetlands supplies energy to microorganisms for denitrification by 

providing a long-term source of carbon and sustainable source of nutrients. Bacteria 

and fungi are decomposers in CWs and through mineralization and gasification have 

been reported (Choudhary et al. 2011) to play the main role of organic matter 

elimination. Additionally, these microorganisms synthesize biomass and form organic 

metabolic by products. Moreover, it has been noted (Hong et al. 2001; Ma and Burken 

2003) that further to phytovolatilization, some wetland plants release contaminants to 
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the atmosphere by absorbing them in their roots first and subsequently transpire them 

via their transpiration stream. 

2.4.2 Development CWs in nitrogen removal 

Nitrogen is an essential nutrient for all living organisms, being present in the form of 

proteins, nucleic acids, adenosine phosphates and pigments. (Hagopian and Riley 

1998). Yet, nitrogen compounds are among the main pollutants of concern in 

wastewater because of their role in (along with other nutrients such as phosphorus) 

contributing to eutrophication, favouring algal blooms, and depreciation of dissolved 

oxygen levels in receiving water bodies. Furthermore, unionised ammonia (NH3) and 

nitrite (NO2) are toxic to fish and other aquatic organisms in low concentrations. In 

wastewater, the most important inorganic forms of nitrogen are NH4, NO3, NO2 and 

dissolved nitrogen gas (N2). N removal is usually achieved biologically by   nitrification, 

denitrification and ammonification processes as shown in Figure 2.7 

 

  

 

 

 

 

 

 

 

Figure 2. 5 Nitrogen transformation and removal process in VF CWs (adapted from 

Stefanakis et al., 2014) 

Organic nitrogen compounds in wastewaters originate from food, faeces and urine, 

these high molecular weight compounds (proteins, urea, amino acids) are proteolised 

and deaminated to ammonia. The overall multi step biochemical process in the N 

transformation chain called ammonification. The organic nitrogen is converted to 
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ammonia by this process. The rate of ammonification is related to the oxygen- rich 

layer. This process is also affected by temperature, pH, C/N ratio, nutrient content 

and soil condition. 

2.4.2.1  Nitrification  

Nitrification has been typically referred to as two separate strictly aerobic processes 

carried out by chemoautotrophic bacterial, although it is now recognised that 

heterotrophic nitrification (Keeney 1973) and archaeal nitrification (Wuchter et al. 

2006) occur and can be of global significance. In the first step of nitrification ammonia 

is oxidized to nitrite by Nitrosomonas, Nitrosococcus, Nitrosolobus and Nitrosospira 

bacteria, and then to nitrate by Nitrospira, Nitrospina, Nitrococcus and Nitrobacter  

(Vymazal et al. 1998; Vymazal 2007; Kadlec and Wallace 2008; Faulwetter et al. 

2009; Lee et al. 2009; Saeed and Sun 2012). In this processes CO2 is utilized as 

carbon sources and inorganic source as energy source. The two process stages are 

as follows (Metcalf and Eddy 2003): 

𝑵𝑯𝟒
+ + 𝟏. 𝟓𝑶𝟐  →  𝟐𝑯+ +  𝑵𝑶𝟐

− + 𝑯𝟐𝑶                                                                     (2. 1) 

𝑵𝑶𝟐
− + 𝟎. 𝟓𝑶𝟐  → 𝑵𝑶𝟑

−                                                                                          (2. 2) 

As shown in Equation (2.1), during respiratory activities of the nitrifier, two moles of 

H+ are released into the environment lowering the pH of the water. Nitrification of 

ammonia to nitrate consumes approximately 4.6 mg O2, 8.64 mg HCO3
- for each 

milligram of ammonia nitrogen nitrified (Vymazal 2007; Faulwetter et al. 2009; Saeed 

& Sun 2012). 

This process seems to be the most important ammonia removal process in VF CWs, 

compared to other process, due to the good aeration condition (Cooper 1999; 

Vymazal 2007; Faulwetter et al. 2009).                        

2.4.2.2  Denitrification 

Under anoxic conditions and when easily biodegradable carbon is available 

heterotrophic organisms reduce NO3
- → NO2

- → NO → N2O → N2, and acetate is used 

as the electron donor in this case. Denitrification requires an organic carbon source, 

and this is usually lacking at the end of the nitrification stage in most types of 

wastewater where the organic matter has already been oxidised. The carbon (energy) 

requirements for denitrification are 2.68 g of acetate per gram of nitrate nitrogen 



Chapter 2: Literature Review: Constructed wetland for landfill leachate treatment  

 
22 

 

(Kadlec and Wallace 2008). For methanol and glucose, the requirements are 1.90 g 

and 2.67 g, respectively, per gram of nitrate nitrogen (Kadlec and Wallace 2008). 

Bernet et al. (1996) indicated an optimum carbon level of 2.85 g COD (g NO3-N)-1. 

In soils and wetlands where both aerobic and anaerobic zones coexist, nitrification 

and denitrification are known to occur simultaneously in a process called 

simultaneous nitrification and denitrification (SND). In particular, when there is organic 

carbon in anoxic zones of CWs where nitrate is present, it can represent a limiting 

factor for denitrification (Zhao et al. 1999). The addition of a commercially available 

carbon source to enhance denitrification can represent a critical cost to the treatment 

process. The opposing DO requirements for nitrification and denitrification mean that 

by lowering DO concentration to improve denitrification, nitrification rates are reduced. 

The oxygen gradient seems to be the most important factor which affected SND 

phenomena. According to Bakti and Dick (1992) the dissolved oxygen gradient is 

controlled by several factors, such as bulk dissolved oxygen level, the particle size of 

floc, the loading of organic substrate and aeration cycle. 

2.4.2.3  Other N removal pathways 

Other possible N transformation pathways in CWs such as plant uptake, adsorption 

and volatilization. NO3-N and NH4-N are the two form of N that are absorbed by plants, 

with the latter being more favoured compared with the former (Stefanakis and 

Tsihrintzis 2012). However, plant uptake can take place during the growing season 

(spring and summer).  

Ammonia can be adsorbed to the surface of the media in CWs, but this process mainly 

depend on the characteristic of the porous media used and the surface charge. In 

addition, in VF CWs with intermittent loading, there is relatively short contact time 

between wastewater and the media, and adsorbed NH4-N can nitrify during resting 

time (Kadlce and Wallace 2008). 

With pH > 9.3, ammonia converts to NH3 gas by volatilization process and losses 

through water surface to the atmosphere (Vymazal 2007; Saeed and Sun 2012). 

Anaerobic ammonia oxidation (ANAMMOX) is a recently discovered process which is 

anaerobic conversion of nitrite and ammonium to nitrogen gas in the absence of 

organic carbon (Faulwetter et al. 2009). Because of the reduced carbon and oxygen 

requirements, less than half the oxygen and no carbon, as compared to conventional 
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routes, anammox is particularly suited to the treatment of high strength industrial 

wastewaters in which the ammonium content is high and the organic carbon content 

very low (Mulder et al. 1995). Another recent pathway of N transformation is the 

CANON (complete autotrophic nitrogen removal over nitrate) process. The process 

relies on the simultaneous interaction of aerobic and anaerobic ammonium oxidisers 

(Third 2003). However this process need more investigation to identify the optimal 

operation condition (Stefanakis et al. 2014). 

2.4.3 Development of CWs for HM removal 

Leachate mainly consists of heavy metals, organic and inorganic matters such as 

ammonia, sulphate and cationic metals (Christensen et al. 1994). Constructed 

wetlands have been used extensively for the removal of heavy metals. Moreover, they 

can remove heavy metals from wastewater and leachate through different 

mechanisms such as physical, chemical and biological processes (Vymazal et al. 

2007; Terzakis et al. 2008; Danh et al. 2009; Bang et al. 2015). According to 

Marchand et al. (2010), HM in CWs can be removed via four main mechanisms: (1) 

adsorption to substrate, sediments and organic matter; (2) precipitation as insoluble 

salts (mainly sulphides and oxyhydroxides); (3) absorption and induced changes in 

biogeochemical cycles by plants and bacteria; and (4) filtration and sedimentation. All 

these reactions which lead to accumulation of metals in the substrate of wetlands, will 

be summarized and discussed in the following sections.  

2.4.3.1  HM adsorption in CWs 

Adsorption which is the transfer of ions from a soluble phase to a solid phase, is one 

potential treatment process that can be used to remove metals in CWs. It may result 

in short-term retention or long-term stabilization. Metals are adsorbed to particles 

either by ion exchange, depending on factors such as the type of element and the 

presence of other elements competing for adsorption sites (Seo et al. 2008), or 

chemisorption. Sheoran and Sheoran (2006) found that of Pb, Cu, Cr, Zn, Ni and Cd 

retention by adsorption. 

Freundlich and Langmuir models may be used to determine maximum metal 

immobilization and their retention capacity over time (Behnamfard and Salarirad 

2009; Božić et al. 2013; Coelho et al. 2014; Tan et al. 2015; Cheng et al. 2013). In 

order to quantify the retention capacity of substrates over time, column experiments 
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may be used. Various media have been assessed as adsorbents for heavy metals, 

and the process could be made more attractive if the sorbent is inexpensive and does 

not require complicated pre-treatment or regeneration. In this regards, DWS can be a 

potential adsorbent for heavy metals removal from wastewater in particular landfill 

leachate. DWSs are low-cost and easily available worldwide; and they are generated 

during the drinking-water treatment process. They are primarily composed of Fe/Al 

hydroxides which are often amorphous species, and they contain sediment and humic 

substances from the raw water.  

In recent year, the ability of DWS to remove HM from wastewater has been 

recognized (Zhou & Haynes 2011; Chiang et al. 2012; Coelho et al. 2014; Castaldi et 

al. 2015).  

Table 2.3 lists the maximum adsorption capacity of DWSs and other active by-

products to HM determined under room temperature (R.T.). As can be seen, DWSs 

exhibited very high HM adsorption capacity. However, HM adsorption capacity is not 

the only factor to be considered in selecting DWSs for CWs. The availability of this 

material is another key factor. The material is easily and locally available in large 

amount. Furthermore, there should not be any release of hazardous substances 

during the application. From this point of view, DWSs have some other advantages 

over other industrial by- products. 
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Table 2. 3 Maximum HM adsorption capacity of different industrial by-products 

Materials Study conditions Maximum capacity Reference 

DWS 

Particle size < 125 µm; pH 
2- 9; initial Pb (207.2 mg L-

1), Cr (III) and Cr (VI) (52 
mg L-1); R.T.  
 

 

Pb (53.8- 62.2 mg g-1) 
Cr (III) (19.24- 26.5 mg g-1) 
Cr (VI) (11- 11.44 mg g-1) 

(Zhou and Haynes, 
2011) 

DWS 

Particle size < 3.15 mm; pH 
5.5; initial As, Cd, Pb and Zn 
200 mg L-1; R.T. 
 

As (40 mg g-1), Cd (9.7 mg g-

1), Pb (120 mgl g-1) and Zn 
(40 mg g-1) 

(Chiang et al., 
2012) 

DWS 

 pH 4.5; initial Pb (165.76 mg 
L-1) and Cu (50.8 mg L-1); 
R.T. 
 

Pb (7.67- 40.2 mg g-1) 
Cu (4.13- 6.7 mg g-1) 
 

(Castaldi et al., 
2015) 

Cashew 
nut shell 

Particle size between 0.212 
mm to 1.18 mm; pH 5- 7; 
initial Pb, Cr and Cd 200 mg 
L-1; R.T. 
 

Pb (28.653 mg g-1), Cr 
(8.4211 mg g-1) and Cd 
(11.233 mg g-1) 

(Coelho et al., 
2014) 

beech 
sawdust 

Particle size < 1 mm; pH 1.6- 
5.3; initial Cu, Ni and Zn 200 
mg L-1; R.T. 
 

Cu (4- 4.5 mg g-1), Ni (4- 4.5 
mg g-1) and Zn (2 mg g-1) 

(Bozic et al., 2013) 

A dried 
biomass 
wasted 
from 
biotrickling 
filters 
 

Particle size < 250 µm; pH 2- 
5; initial Pb 200 mg L-1. 

Pb (160 mg g-1) 
(Cheng et al., 
2013) 

biochar 
derived 
from 
municipal 
sewage 
sludge 

Particle size < 0.45 mm; pH 
1- 6; initial Cd 200 mg L-1. 

Cd (42.8 mg g-1) 
(Tan et al. 2015) 
 

2.4.3.2  Precipitation and co-precipitation of HM in CWs 

 Metals, such as Fe, Al and Mn, can form insoluble compounds through hydrolysis 

and/or oxidation. This leads to the formation of a range of oxides, oxyhydroxides and 

hydroxides (Sheoran and Sheoran, 2006). The amounts and forms of Fe in solution 

strongly affect metal removal. Fe (II) is soluble and dominates under reduced 

condition in CWs, and it represents an important bioavailable fraction. Fe(III) is the 

dominant form under aerobic conditions (Jönsson et al. 2006). This form of Fe can 

precipitate to produce oxides, hydroxides and oxyhydroxides with which other metals 

may coprecipitate. Fe(II) can also precipitate as oxides (Jönsson et al. 2006) or co-

precipitate with other metals such as Zn, Cd, Cu or Ni (Matagi et al. 1998) However, 

Fe oxide is very dependent on DO variations, therefore the binding of metals with Fe 

oxide cannot be considered as a long- term removal mechanism. Moreover, Fe oxide 

has high affinity to metals that have similar size to Fe such as Zn, Cd, Cu, and Ni 
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(Dorman et al. 2009). However, the co-precipitation is limited when there is sufficient 

amount of SO4 which reduces the potential of metal removal (Sung and Morgan 1980).  

Under anaerobic conditions and the presence of sufficient carbon source, sulphates 

can be reduced to sulphides by sulphate reducing bacteria (Sheoran and Sheoran, 

2006). These can combine with various elements, i.e., As, Hg, Se, Zn and Pb to 

formation of highly insoluble metal sulphides (Murray-Gulde et al. 2005) as shown in 

equations below: 

𝟐𝑪𝑯𝟐𝑶 + 𝑺𝑶𝟒
−𝟐 → 𝑯𝟐𝑺 + 𝟐𝑯𝑪𝑶𝟑                                                                          (2. 3) 

𝑴+𝟐 +  𝑯𝟐𝑺 + 𝟐𝑯𝑪𝑶𝟑 → 𝑴𝑺 + 𝟐𝑯𝟐𝑶 + 𝟐𝑪𝑶𝟐                                                           (2. 4) 

where CH2O represents organic matter and M stands for metals. 

Sulphate reduction is considered to be one of the most important processes for 

removal of HM in CWs (Kosolapov et al. 2004). For instance, in CWs that have 

received diluted landfill leachate, nearly all Pb and Cd in this leachate were present 

in the sediment as sulphide (Kosolapov et al. 2004).  

Metals may also form metal carbonates. Although carbonates are less stable than 

sulphides, they can contribute to initial trapping of metals (Sheoran and Sheoran, 

2006). Carbonate precipitation is especially effective for the removal of Pb and Ni (Lin 

1995). According to Maine et al. (2006), the influent alkalinity of wastewater, 

carbonate and calcium concentrations favoured the metal retention in the sediment.  

2.4.3.3  Plant uptake 

CWs plants play a key role in assimilating dissolved HM from wastewater (Brix 1994a; 

Vymazal et al. 1998; Cheng et al. 2002; Marchand et al. 2010; Sheoran and Sheoran 

2006). Compared to the other pollutants (nitrogen and phosphorus), the HM removal 

by plants is up to 5% of total HM removed in CWs (Stottmeister et al. 2003; Lee and 

Scholz 2007). HM are taken up by roots and distributed to the other parts of plants. 

However, a small portion is translocated to the other plant parts (e.g. shoots and 

leaves) (Khan et al. 2009; Bonanno and Lo Giudice 2010). Therefore, harvesting of 

the aboveground plant contributes only a small percent of the total HM removal in 

CWs (Cheng et al. 2002; Kosolapov et al. 2004; Marchand et al. 2010). Although a 

small portion of HM is removed by plant, studies comparing planted and unplanted 

systems often lead to conflicting results regarding the importance of plants (Lee and 
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Scholz 2007). A key point that is often overlooked is the supply of organic matter 

through the decay of dead plant material (Stottmeister et al. 2003). Plant-derived 

organic matter in wetlands over time continuously support sites for metal sorption and 

precipitation, as well as carbon sources for microbial population, thus promoting long-

term functioning (Beining and Otte 1996; Beining and Otte 1997; Jacob and Otte 

2003; Jacob and Otte 2004; Batty and Younger 2007). In addition, plants can 

contributed to HM removal through other processes such as filtration, sedimentation 

and adsorption, and through ensuring enhanced aeration of the bed (Kosolapov et al. 

2004). 

2.4.3.4  Filtration and sedimentation 

CWs act as active filter for HM, as wastewater passes through the pores of substrate 

and the extensive plant root, HM becomes trapped in the system. Plants, such as 

Phragmites australis, promote the retention of precipitated metal hydroxide particles 

(Cooper et al. 1996; Vymazal et al. 1998).  Retention times increase with increasing 

vegetation density, thus enabling better sedimentation. The wastewater flow velocity, 

the particles settling velocity, the pore volume of the bed media and wetland length, 

all these are factors that can affect the filtration efficiency (Sheoran and Sheoran 

2006).  

Sedimentation, another physical process for HM removal, follows other process such 

as precipitation or after floc-formation. Flocs may adsorb other types of suspended 

materials, including metals which can sink or trapped within media grains.  

In conclusion, CWs help to treat different types of wastewater loaded with heavy 

metals, and thereby prevents the spread of metal contamination in surface and 

subsurface waters. High metal removal rates close to 100% have been reported in 

both natural and CWs. Understanding the basic mechanisms and processes 

controlling the metal removal increases the probability of success of the treatment 

wetland application. However, in most cases studies focused on HM removal in CWs 

without taking in their consideration the effect of HM on removal of other pollutant 

such as OM and NH4-N.  



Chapter 2: Literature Review: Constructed wetland for landfill leachate treatment  

 
28 

 

2.5 The problem of bed clogging in CWs  

Clogging is defined as the developed process over operational time that leads to the 

blockage of substrate pores, and the subsequent losses in permeability because of 

the accumulation of solids or excessive formation of microbial biofilms, which build-

up from pollutants degradation inside the pore space within the wetland substance 

(Knowles et al. 2011; Stefanakis et al. 2014; Song et al. 2015). However, clogging 

processes are complicated phenomena and no specific factors were stated to be the 

actual causes of the clogging in the systems. In general, clogging affected not only 

the efficiency but it can also reduce the useful operational lifetime. 

2.5.1 Clogging Mechanism and contributing factors 

Wetland scientists have recently reported various processes that influence the 

hydraulic conductivity of the wetland bed. The recognized mechanisms that contribute 

to clogging include: (Yao et al. 1971; Platzer and Mauch 1997; Winter and Goetz 

2003; Langergraber et al. 2003; Molle et al. 2005) 

 Accumulation of organic and inorganic solid: it has been reported that clogging 

developed as a result of substrate pore blockage by accumulation of both 

organic and inorganic matter. Suspended solids are gradually deposited onto 

the bed surface, leading to outer bed blockage. The other scenario is that 

these solids could be filtered and retained by subsurface flow via the 

mechanisms of transport and attachment, thus leading to inner blockage. The 

outer blockage limits the oxygen supply and impacts on organic solids removal 

where the organic can be decomposed by aerobic bacteria. Thus, the increase 

of outer blockage can lead to increase of the inner blockage. The use of 

sedimentation tank as a pre-treatment stage can remove the major portion of 

incoming solids. This is found to be a crucial step for the effective and long- 

term operation of the system.  

 Biomass production: In subsurface CWs, most biomass forms as biofilms on 

the surface of the porous media grains, leading to clogging of the subsurface 

pores.  Several studies conclude that greater biofilm development occurs at 

the inlet region where the nutrient content is greatest and microorganism 

metabolize them for their growth. Biofilm can develop webs across pore 

spaces and plug the pores between aggregates, as a result hydraulic 

conductivity is reduced. Other studies also reported that biological clogging 
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can be noted particularly when nutrient loadings are relatively high. In order to 

prevent this type of clogging, the biomass growth rate has to be in equilibrium 

with the decay rate. 

 Composition of clogging material: The biodegradability of accumulated matter 

affect the clogging process. Organic composition of the total matter 

accumulated in the pores plays an important role in causing clogging, 

especially when CWs are applied for the treatment of high strength organic 

wastewater.   

 Rootzone effect: The role of plants in subsurface CWs clogging is an on- going 

debate. Many researchers reported that root growth would counteract media 

clogging (Coleman et al. 2001; Brix 1994). However, a dense root and 

attached biofilm could affect the hydraulics of the flow and contribute to pore 

clogging. On the other hand, decomposition of the dead root parts and 

continuous new root development can create channels in the substrate for 

water movement downward (Vymazal et al. 1998).  

 Chemical processes: Chemical treatment processes, such as adsorption and 

precipitation may play a role in clogging development. These processes are 

associated with the removal of metals, petroleum, synthetic hydrocarbons, 

ammonia-nitrogen and phosphorous. Chemical precipitation of heavy metals 

as hydroxide and sulphide may form film-like coatings on media surfaces 

(Sheoran and Sheoran 2006). Clogging may occur when the system treat 

industrial wastewater with high concentration of heavy metals (Kadlce and 

Wallace 2008).  

2.6 Modelling VF CWs 

CWs are still described as black box (Pastor et al. 2003; Tomenko et al. 2007) and 

only little effort has been made to understand the main processes leading to 

wastewater purification, where interaction between soils, vegetation, water and 

microorganisms are active in parallel and mutually influence each other (Kadlec & 

Wallace 2008). For the same reason, almost all the available design guidelines are 

based on empirical rules of thumb, such as those using the specific surface area 

requirements or simple first-order decay models.  
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The main objective of numerical and mathematical modelling is to obtain a better 

understanding of the processes governing the biological and chemical transformation 

and degradation processes occurring in CWs (Langergraber 2008).  

The current status of CWs modelling focus on HYDRUS- CW2D and STELLA and are 

presented in sections 2.6.1 and 2.6.2, whilst Table 2.4 reviews the main model 

development in CWs. 

Table 2. 4 Review of main model development in CWs. 

Model Description  Comments References 

Regression 
models 

Mainly been focused on input- 
output data rather than on internal 
process data. 

Multivariate linear regression 
equations were successfully 
employed for effluent 
benzene prediction in a 
study of benzene removal in 
vertical-flow CWs. 
 

(Tang et al. 
2009) 

First-order 
models 

Focus on individual wetland 
processes such as mass 
transport, volatilization, 
sedimentation and sorption. 

This approach has been 
used for design and to 
predict almost all major 
pollutants such as organic 
matter (OM), suspended 
solids (SS), nitrogen (N) and 
RP. 
 

(Mitchell and 
McNevin 
2001) 

Artificial neural 
networks 

A mathematical or computational 
model that tries to simulate the 
structure and/or functional aspects 
of biological neural networks. 

A design equation had been 
driven through Neural 
networks for the removal of 
TN in CWs. 
 

(Akratos et 
al. 2009) 

Self-
Organizing 
Maps 

Algorithm model that implements 
a characteristic non-linear 
projection from the high-
dimensional space of sensory or 
other input signals onto a low 
dimensional array of neurons. 

 - This approach applied to 

predict of the outlet 
concentration of BOD5, NH3-
N and P in the integrated 
constructed wetlands 
treating farmyard runoff. 
- It can also be applied to 
predict the HM removal in 
CWs. 
 

- (Zhang et 
al. 2008; 
Zhang et al. 
2009). 
 
 
-(Lee and 
Scholz 
2006). 

FITOVERT 
model 

Mathematical model for vertical 
sub-surface flow, VSSF CWs.  

It has to be pointed out that 
most of the values were 
obtained for FITOVERT 
model based on an extended 
literature analysis. 
 

(Kumar and 
Zhao 2011). 

PHWAT 
software 

A modular modeling tool was 
presented to be suitable for 
simulating the clogging process in 
1, 2 and 3D. 

This numerical model is able 
to simulate the effect of 
biomass growth on the 
hydraulic properties of 
saturated porous media, i.e. 
bioclogging. 
 

(Brovelli et 
al. 2009). 

2D 
mechanistic 
model 

A two- dimensional (2D) 
mechanistic mathematical model. 
 

This model applied to 
evaluate the relative 
contribution of different 
microbial reactions to 
organic matter removal (in 
terms of COD) in HSSF-CWs 
that treated urban 
wastewater. 

(Ojeda et al. 
2008) 
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2.6.1  HYDRUS- CW2D model 

HYDRUS-2D was used as a starting point for the CW2D implementation.  According 

to Langergraber and Simunek (2005), this model can simulate system receiving high 

pollutant load and oxygen transport through the plant root. It can also solve Richards’s 

equation for saturated and unsaturated conditions and it includes equation for 

convection and dispersion of heat and mass transport. The main drawback of this 

model is that up until now, only dissolved pollutants are considered and the model 

cannot predict pollutant degradation during dry periods. 

Langergraber (2003) used CW2D module to study the hydraulic behaviour of CWs. 

The system that he used consists of different layers of various sized gravel planted 

with Arundo donax. The result showed that the simulated and measured data 

exhibited close fit for the pilot scale CWs. The simulation result of Toscano et al. 

(2009) also showed close fit between the measured data when they modelled the 

pollutant removal in pilot scale two stage subsurface flow CWs. Morvannoua 2014 

studied the fate of nitrogen through a VF CWs  using gravel, treating directly domestic 

raw wastewater. Their results showed that NH4-N   was significantly adsorbed onto 

organic matter and was then converted to NO3-N, and that heterotrophic biomass was 

mainly present in the sludge layer (first 20 cm). However all these study tested the 

hydraulic behaviour of CWs and pollutant removal using sand and gravel as main 

media in VF CWs

2.6.2 STELLA model 

STELLA is a graphical programing language developed for system dynamic study to 

better understand the nonlinear dynamic system in CWs. Pimpan & Jindal (2009) 

explained the adsorption, desorption and plant uptake in the FWS CWs planted with 

bulrush for cadmium removal using STELLA software. They explained the adsorption, 

desorption and plant uptake in clay loam soil and sand mixture. The simulated and 

measured average Cd removal values were in good agreement.  

The model was also developed for nitrogen removal by Ouyang et al. (2011). The 

major nitrogen removal mechanism in VF CWs include: deposition and hydrolysis of 

organic nitrogen, nitrification and denitrification processes, leaching through 

substance zone and plant uptake. Kumar et al. (2011) employed dewatered alum 

sludge modelling phosphorus fate in VF CWs. Their result showed about 72% of 
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phosphorus was removed by adsorption, while 20% was through plant uptake. 

However the use of STELLA model for understanding the fate and transformation of 

HM in VF CWs using ferric sludge is not investigated yet.  

2.7 Chapter summary 

As a ‘green’ system with lower energy consumption and low cost of construction, 

operation and maintenance; constructed wetlands have become a popular technical 

alternative worldwide for the treatment of various wastewaters over the past three 

decades (Brix 1999; Healy et al. 2007; Vymazal 2007; Babatunde et al. 2008; 

Vymazal 2011). Anaerobic and aerobic reactions in CWs were utilized to break down, 

immobilize or incorporate OM, TN and HM effluent (Batzias and Siontorou 2008). 

Therefore, CWs are effective in reducing organic components and nitrogen of landfill 

leachate (Chiemchaisri et al. 2009). However, NH4-N is more difficult to remove in 

CWs than organic matter as nitrification bacteria are autotrophic microorganisms that 

have a slow respiration rate and require a considerable amount of oxygen to function.  

Another challenge facing researchers in CWs is the presence of large amount of 

carbonaceous substrates in landfill leachate which often prevents oxygen being used 

for nitrification in the wetland. In addition, the presence of HM at high concentrations 

in landfill leachate usually causes toxic effects to microbes and inhibits ammonia 

oxidation (Metcalf and Eddy 2003).   

Tidal flow is the alternative strategy identified in literature to have excellent 

applicability for enhance oxygen transfer and the treatment capacity (Zhao et al. 

2004a; Sun et al. 2005).  

Overall, CWs is limited in oxygen transfers, and FWS and HF CWs seem less suitable 

for the autotrophic processes than VF CWs and TF CWs. On the other hand, partial 

nitrification could become the rate-limiting step for the denitrification process in these 

CWs due to the low oxygen transfer. Consequently, the overall nitrogen removal rate 

via autotrophic nitrogen conversion in CWs is still very low. On the other hand, TF 

CWs design does not allow for the anoxic condition required for denitrification to 

occur. A method that can maintain persistently low dissolved oxygen (DO) in the CWs 

bulk water is of great importance to achieve high rate autotrophic nitrogen removal 

with CWs.  
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No previous study has investigated the use of CWs for the tidal flow and anoxic 

condition to treat landfill leachate.  

This thesis was examine in detail the use of tidal flow and anoxic condition by fixed 

retention time to improve the removal of OM and TN. In addition, DWS was used as 

main media in CWs to improve the removal of HM from artificial landfill leachate by 

adsorption process. Adsorption is a known process for metals removal in CWs, but it 

is not possible to ascertain whether adsorption is taking place in a CW simply from 

measuring influent and effluent concentrations. Therefore, HM adsorption capacity 

and the way the metals are bound to the DWS is necessary to investigate. 
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3.1 Introduction 

This chapter investigated the ability of fourteen DWSs for the adsorption of selected 

heavy metals that have been found in landfill leachate i.e. lead (Pb), chromium (Cr), 

cadmium (Cd) and iron (Fe). Adsorption is a known process for metals removal in 

CWs, but it is not possible to ascertain whether adsorption is taking place in a CW 

simply from measuring influent and effluent concentrations. This is because metals 

can be removed in other ways such as sedimentation, precipitation and plant uptake. 

Therefore, the DWSs proposed for use in the CWs in this study were further 

characterised in order to determine their capacity for adsorption. The main objectives 

of this chapter were:  

1)  To determine the physicochemical properties of the different DWSs which are 

relevant to heavy metals removal, 

2) To investigate the characteristics of Pb, Cr, Cd and Fe removal by the DWSs 

through batch experiments investigating the equilibrium and kinetics of adsorption, 

3) To study the effect of pH, adsorbent dose and contact time on the removal of heavy 

metals by DWSs. 

The chemical and physical characteristics of the sludges were determined, and this 

provided valuable data regarding the constituents of DWSs. It also helps to 

understand some of the pollutant removal patterns. 

3.2 Materials and Methods 

3.2.1 General physicochemical characterization 

DWSs were collected from fourteen drinking water treatment works located in the 

United Kingdom. The treatment plant locations were kept anonymous on request, and 

samples obtained were simply labelled using a sequential alphabetic code generated 

from the location names. The dewatered waterworks sludge samples were air-dried 

 

Part of this Chapter has already been published as ‘Attenuation of metal contamination in 
landfill leachate by dewatered waterworks sludges’ ,(2016),  A. Mohammed; T. Al-Tahmazi; 
A.O. Babatunde, J Ecological Engineering, 94,  656-667. 
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and ground to pass a 2-mm mesh sieve, and then used for the characterization and 

adsorption tests. Elemental metal composition of the sludges was determined using 

inductively coupled plasma optical emission spectroscopy (ICP–OES), after digestion 

in a microwave with 15.8M of HNO3 and 11.65M of HCL (1:1 HCl: HNO3). The 

digested solution was then analysed for the concentrations of Al, Fe, Mn, Mg, Ca, K, 

Zn, Cl, P, Na and SO4. The sludges were also subjected to X-ray diffraction analysis 

using a Phillips PW3830 x-ray diffractometer in order to determine their mineralogy. 

 The chemical and physical characteristics of the sludges were determined as follows: 

3.2.1.1 pH 

The method of heavy metals sorption in sludges are different at different sludge pH 

values, and the sludge’s ability of to retain them depends on its resistance to any 

change in sludge pH.  

pH value of the sludges were determined according to the standards BS ISO 

10390:2005 (ISO 1994). 

3.2.1.2 Point of zero charge (PZC) 

Determination of point of zero charge (PZC) is an important element in the 

characterization of adsorbents. This is mainly because the PZC defines the affinity of 

the adsorbent surface to the ionic species.  Therefore,  knowledge of PZC can help 

in the selection of adsorbent for removal of specific wastewater pollutants (Castaldi 

et al. 2014). 

PZC was determined using the solid addition method (Mohan and Gandhimathi 2009) 

as described herewith: 45 mL of 0.1M KNO3 solution was measured into series of 100 

mL conical flasks. For each series of the test, the pH0 (pH0= initial pH of the solution) 

was adjusted to 2, 4, 6, 8 and 10 by adding either HNO3 or NaOH. Thereafter, the 

total volume of the solution in each flask was made up to 50 mL by adding KNO3 

solution. The pH0 of the solutions were then accurately noted. 1g samples of the 

sludges were then added to each flask and manually agitated. The pH values of the 

supernatant were noted. The difference between the initial and final pH (pHf) values 

(ΔpH = pH0 - pHf) was plotted against the pH0. The point of intersection of the fitted 

line with the pH0 axis gave the PZC Figure (3.1). 
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Figure 3. 1 Point of zero charge (PZC) of HH sludge. 

3.2.1.3 Determination of Specific surface area (SSA) 

Specific Surface Area (SSA) refers to the area/unit mass of sludge and is usually 

expressed as m2 g-1. SSA may be exhibit a significant influence on controlling the 

fundamental behaviour of many fine-grained sludges. It varies greatly between 

sludges because of differences in mineralogy, organic composition and particle-size 

distribution (Cerato and Lutenegger 2002). 

In this study, specific surface area was determined using Ethylene Glycol Monoethyl 

Ether (EGME) method (Cerato and Lutenegger 2002). DWSs which passed a #40 

sieve were placed in an oven at 60°C. This lower temperature content need longer 

drying periods which set for 48 h, and check weighing have been made at 2 to 4 hour 

intervals to reach a constant mass to prevent oxidation of organic content. After oven 

drying, approximately 1 g of DWS was placed in an aluminium tare, and the mass of 

the sample was determine using an electronic analytical balance with an accuracy of 

0.001 g. Approximately 3 mL of EGME was added to the DWS with a pipette and 

mixed together with a gentle hand swirling motion to create a uniform slurry. It was 

important to cover all sample particles with the EGME in order to obtain an accurate 

surface area measurement. The tare was then placed inside a standard laboratory 

glass sealed vacuum desiccator and was allowed to equilibrate for 20 min. The 

desiccators were then evacuated using a vacuum pump which provided a vacuum of 

630 mm Hg (30 in). After 24 h, the tares were removed from the desiccator and 

weighted using analytical balance. The weight was taken again after 16 h and then 

after 24 h. This method was considered sufficiently accurate, since the mass did not 
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vary more than 0.001 g. Therefore, the specific surface area was calculated using 

Equation 3.1. 

𝑺𝑺𝑨 =  
𝑾𝒂

𝟎.𝟎𝟎𝟎𝟐𝟖𝟔𝑾𝒔
                                                                                           (3. 1) 

where SSA is Specific Surface Area in m2 g-1, Wa is weight of ethylene glycol 

monoethylether (EGME) retained by the sample in grams (final slurry weight- Ws), 

0.000286 is the weight of EGME required to form a monomolecular layer on a square 

meter of surface (g m-2), Ws is weight of sample added initially (g). 

3.2.1.4 Aluminium and iron oxalate 

Amorphous Al and Fe oxalate of soils are often extracted by an ammonium oxalate 

solution. In this study, Al and Fe oxalate in sludges were determined following the 

method of McKeague and Day (1966). 10 mL of 0.2 M acidified ammonium oxalate 

were added to the DWS (250 mg) in a 15 ml tube which was stoppered tightly. 

Thereafter, and in order to keep the samples in darkness, the tubes were covered 

using aluminium foil.  The tubes were then shaken on a rotary shaker at 50 rpm for 4 

h and centrifuged at 1800 rpm for 20 min. An aliquot of the extract was digested with 

HNO3 and H2SO4 and Fe and Al were determined. 

3.2.2 Adsorption study - Kinetic and Equilibrium tests 

3.2.2.1 Kinetics of heavy metals adsorption by DWSs 

Information on the kinetics of metals uptake by DWSs is required to select the 

optimum condition for full- scale batch metals removal processes. Kinetic studies were 

carried out in batches using synthetic metals solution, different dosage of sorbent and 

different time as described below: 

3.2.2.1.1 Synthetic metal solution 

To examine the kinetics of heavy metals adsorption by the DWSs, batch experiments 

were used to investigate the kinetics of the adsorption process. Initial metal 

concentration for individual solutions were taken as 500 mg L-1 for Fe, 5 mg L-1 for Cd, 

1 mg L-1 for Cr and 0.5 mg L-1 for Pb. The concentrations of the heavy metals used 
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were chosen based on their typical concentration in young landfill leachate in the UK 

(Thornton et al. 2000; Baun and Christensen 2004).The solutions for each heavy 

metal was prepared in the laboratory using FeSO4.7H2O salt, CdSO4. 
8

3
 H2O salt, 

Cr(SO4)2.12H2O salt and PbCl2 salt, respectively for Fe, Cd, Cr and Pb. 

3.2.2.1.2 Optimum dosage and time experiment 

To investigate the effect of adsorbent dosage and equilibration time, different masses 

of the sludge samples (0.1, 0.5 and 1.0 g) were equilibrated with 100 mL each of 

heavy metal solutions (500 mg L-1 for Fe, 5 mg L-1 for Cd, 1 mg L-1 for Cr, and 0.5 mg 

L-1 for Pb), contained in 250 mL polyethylene bottles for 1– 96 hr using a rotary shaker. 

The mixture at each specified time was withdrawn, filtered and analysed for each 

heavy metals using an Optima 210 DV ICP OES, and the uptake of those metals were 

determined using Equation 3.2. 

𝒒𝒆 =
(𝑪𝟎− 𝑪𝒆)

𝒎
 𝒗                                                                                                  (3. 

2) 

where C0 and Ce (both in mg L−1) are the initial (t= 0) and final heavy metals 

concentrations at equilibrium (qe), respectively (mg g-1),  v is the volume of the solution 

(L) and  m is the mass of DWSs used (g).   

3.2.2.1.3 Kinetic models 

The kinetics of the adsorption process for each metal ion by the sludges was analysed 

by fitting the kinetic data to the pseudo first-order equation, pseudo second-order 

equation, and the intraparticle diffusion models, the linear form of which are given 

below, respectively as Equations 3.3- 3.8 (Babatunde and Zhao 2010).  

𝒅𝒒𝒕

𝒅𝒕
= 𝑲𝟏 (𝒒𝒆 − 𝒒𝒕)                                                                                  (3. 3)     

 2

2 te
t qqK

dt

dq
                                                                                        (3. 4)                                                                                                                                                      

ctkq d  5.0
                                                                                                        (3. 5) 
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After integration and applying the initial conditions qt=0 at t = 0, and qt = qt, at t = t. 

t
K

qqq ete
303.2

log)log( 1                                                                            (3. 6) 
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






                                                                                                         (3. 7)                                                 

where qt is the amount of adsorbate adsorbed at time t (mg g−1), K1 is the pseudo-first-

order rate constant (min−1) and t the contact time (min), K2 is the pseudo-second-order 

rate constant (g mg−1 min−1), Kd and C is the rate constant for intraparticle diffusion in 

(mg g−1 min−1/2) and the intercept, respectively.  

The initial rates of intraparticle diffusion can be obtained by linearization of Eq. (3.5). 

The values were further supported by calculating the pore diffusion coefficient  𝐷̅ (cm2 

s−1) using Eq. (3.8), where 𝑡1
2⁄  (min) is the time for half of the adsorption and r is the 

average particle radius of the adsorbent particles. 

21

203.0

t

r
D                                                                                                             (3. 8) 

Data from the kinetic adsorption experiments can be found in Appendix B (Tables B.1-

B.3). 

3.2.2.1.4  Validation of the kinetic models 

The applicability of the kinetic models to describe the adsorption process, apart from 

the correlation coefficient (R2), was further investigated and validated using the 

normalized standard deviation (NSD), and average relative error (ARE), all of which 

are defined as: 
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where 
exp

tq and 
cal

tq (mg g-1) are experimental and calculated amount of heavy metals 

adsorbed on the sludges at time t and N is the number of measurements made. The 

smaller the NSD and ARE values are, the more accurate is the estimation of qt values 

(Behnamfard and Salarirad 2009). 

3.2.2.2 Adsorption isotherm 

In order to optimize the design of an adsorption system for the removal of metals, it is 

important to establish the most appropriate conditions. Therefore, the fit of the 

adsorption models was investigated at different pHs as describe below:  

3.2.2.2.1 Effect of initial pH solution  

For the equilibrium experiments, a contact time of 48 h and an optimal dosage of 10 

g L−1 were used as predetermined from the batch experiments. To obtain equilibrium 

data for determining the heavy metals adsorption capacity, and to investigate the 

effect of solution pH, 1g of the sludges was equilibrated with 100 mL of heavy metals 

solution (with initial pH ranging from 2 to 9). The range of concentrations of the heavy 

metals used were 0.05-1 mg Pb L−1; 0.05-1 mg Cr L−1; 0.05-5 mg Cd L−1 and 5 -500 

mg Fe L−1. This wide range of heavy metals concentration was chosen to study the 

variability in heavy metals adsorption capacity values and its dependence on the initial 

concentration of the heavy metals, and to investigate the effect of low initial metal 

concentration on the adsorption, giving the low concentration of heavy metals typically 

found in UK landfill leachates (Thornton et al. 2000; Baun and Christensen 2004). A 

possible reason for the low concentration is that the heavy metals in landfill leachate 

have been found to be bound in or onto particulate matter; this, settles in the settling 

tank and reduces the concentration of the heavy metals in the landfill leachate 

(Øygard et al. 2007). After the set equilibrium time (48 h), the mixtures were 

withdrawn, filtered and analysed for residual heavy metal concentration using ICP–

OES. The amount of heavy metals adsorbed by the sludges from the solution at 

equilibrium, eq in mg g−1, was computed using Equation 3.2.  

3.2.2.2.2 Adsorption models 

The equilibrium data was fitted with the Langmuir, Freundlich, Temkin, Frumkin and 

Harkins–Jura adsorption isotherm models. Data from the adsorption experiments can 
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be found in Appendix B (Tables B6-B9). Table 3.1 gives the adsorption isotherm 

equations and their corresponding linear forms used in this study. The constant 

parameters obtained from the regression plots of the linear forms of the equations are 

summarized in Appendix B (Tables B.6- B.9). These parameters are useful for 

estimating the maximum adsorption capacity of the adsorbent material used in this 

study. 

Table 3. 1 Adsorption isotherm model equations and corresponding linear forms. 

Isotherm equation Equation Linear plot 

Langmuir 

e

em
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
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q
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11
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

 

Where eq  and  eC  are as previously defined, b is the Langmuir adsorption constant 

(L mg-1), which is related to the energy of adsorption, and mQ signifies the adsorption 

capacity (mg g-1). 
FK  is the Freundlich constant (g-1) related to the bonding energy; 

and 
n

1
is the heterogeneity factor, in which n  is a measure of the deviation from 

linearity of the adsorption. 
1BbRT  ; R  is the gas constant (8.31 J mol-1 K-1), T  is 

the absolute temperature in K. 
Tk  is the equilibrium binding constant (L mg-1) and 

1B  

is related to the heat of adsorption, where   is the fractional occupation (  = me qq

; eq  is the adsorption capacity in equilibrium (mg g-1), mq  the theoretical monolayer 

saturation capacity (mg g-1) which is determined from the Dubinin-Radushkevich 

isotherm equation). The parameter a is the interaction coefficient, it is positive for 
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attraction and negative for repulsion; its zero value indicates no interaction between 

the adsorbate species, in this case, the Frumkin equation coincides with Langmiur 

one.  

3.2.3 Statistical analysis 

Statistical analysis was carried out using the Kruskal-Wallis test. The test is a 

nonparametric statistical test that assesses the differences among three or more 

independently sampled groups on a single, non-normally distributed continuous 

variable. All data fitted with linearized Langmuir isotherm model at pH4 were 

examined using this test to compare Qm among adsorbents at 95% significance; and 

to determine if there was a difference between the adsorbents. 

3.3 Results and Discussion 

3.3.1 General physicochemical characterization 

The elemental composition of the sludges is presented in Tables 3.2 and 3.3. All Al 

and Fe- based sludges, with exception of HU sludge, were slightly acidic, the pH 

values ranging from 6.05 to 7.06 for Al-sludges and 4.09 to 6.64 for Fe-sludges. The 

pH values of the sludges can have an effect on their adsorption of heavy metals. As 

the pH of the sludges decreases, ion exchange becomes the dominant process for 

heavy metals retention (Elzahabi and Yong, 2001). The range of values of the pHpzc 

were 4.76- 6.77 and 3.77- 6.95, respectively for Al- and Fe- based sludges (Tables 

3.2 and 3.3). The pHpzc plays a key role in the adsorption process. When the pH > 

pHpzc, the surface of the sludges becomes dominantly negatively charged and the 

adsorption of metal ions will be facilitated by electrostatic attraction (Babatunde et al., 

2009). The mean specific surface area (SSA) was 327.90 ± 115.50 and 184.80 ± 

95.21 m2 g-1 for AL- and Fe- based sludges respectively. In comparison with other 

studies e.g. Babatunde et al., 2009, the SSA were found to be higher. A reason for 

this could be due to the fact that the total surface area was measured by the 

adsorption of polar liquid (EGME) (Cerato and Lutenegger, 2002), whilst other studies 

measured the external surface areas by the BET-N2 method. The high surface area 

of DWSs is a positive attribute when they are being used as adsorbent. X-ray 

diffraction analysis (Appendix A- Figures A.3 and A.4) reveal the amorphous nature 

and poorly ordered particles within the DWSs. The diffraction patterns did not reveal 
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any sharp diffraction characteristic peak over a broad range of d-spacings (10-80°, 

2𝜃) for most samples of the sludges (Figures 3.2). However, some of the sludges 

(GU,OS, HU, BS, AR, HO, and CA) showed  peaks of crystallized materials such as 

quartz, graphite, lithium boride and lithium phosphate (Figures A.3 and A.4); and this 

can have an effect on the heavy metals adsorption process. For instance, graphite 

which is a result of the conversion of organic matter may reduce the adsorption 

capacity. This is because the organic matter play important role in adsorption of heavy 

metals through complexation. On the other hand, the presence of quartz that develops 

a negative charge on the sludges can contribute to adsorption of the heavy metals 

through ligand complexation (Tahir and Naseem 2007). Results also reveal that 85% 

(mean value) of the total Al in the Al- based sludges is oxalate Al, while 53% (mean 

value) of the total Fe in the Fe- based sludges is oxalate Fe. This confirms the 

amorphous nature of the sludges (McKeague and Day, 1966). 

 

 

 

 

 

 

 

 

 

Figure 3. 2 XRD patterns of the DWS (figure shown pattern for the HH sludge used as 

an example). 
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Table 3. 2 Physicochemical properties of the aluminium- based sludges (n=3). 

Properties GU WD OS HU WA 

Al 

_
_

_
_

_
_

_
_
_

_
_

_
_

_
_
_

_
_

_
m

g
 L

-1
_

_
_

_
_
_

_
_
_

_
_

_
_

_
_
_

_
_

_
 

112.81 104.22 105.34 151.88 108.78 

Fe 17.00 9.75 28.73 8.25 5.94 

Mn 0.33 0.29 0.40 0.66 0.43 

Mg 0.25 0.27 0.30 0.97 0.28 

Ca 0.79 1.52 0.53 3.12 0.60 

Na 0.04 0.06 0.10 0.19 0.11 

K 0.47 0.36 0.72 1.47 0.43 

P 0.15 0.71 0.45 4.78 0.44 

Zn 0.03 0.04 0.12 0.12 0.07 

Cl 0.81 1.88 1.19 2.72 0.33 

SO4 0.81 1.88 1.19 2.72 0.33 

TC 119.6 119.6 170.6 75.21 154.4 

OC 118.9 119.1 170.1 74.2 154 

Al-OXL 110.12 95.28 88.26 105.51 96.02 

Fe-OXL 13.35 3.68 14.42 2.52 4.64 

SSA m2 g-1 364.1 468 206.9 390.4 210.1 

pH -- 6.26 6.27 6.05 7.06 6.31 

pHpcz -- 5.75 6.61 4.91 6.77 4.67 



 

 

Chapter 3: Characterization and metals adsorption by DWSs 

 
46 

 

 

Table 3. 3 Physicochemical properties of ferric- based sludges (n=3). 

Properties BS FO HH AR MO HO WY CA BU 

Al 

_
_

_
_

_
_

_
_
_

_
_

_
_

_
_
_

m
g
 L

-1
_

_
_
_

_
_

_
_
_

_
_
_

_
_

_
_

 

4.59 21.16 5.16 5.87 3.89 65.35 4.84 6.80 5.80 

Fe 298.10 241.69 193.85 277.72 257.80 143.29 287.34 255.46 212.09 

Mn 0.94 2.32 0.37 0.52 0.79 0.57 1.28 0.45 0.17 

Mg 0.47 0.25 0.28 0.28 0.20 0.53 0.23 0.43 0.21 

Ca 6.54 2.77 2.49 22.34 1.28 1.74 0.83 3.52 2.39 

Na 0.14 0.13 0.22 0.12 0.15 0.12 0.09 0.16 0.07 

K 0.75 0.28 0.75 0.31 0.62 1.40 0.50 1.22 0.41 

P 0.61 0.43 0.31 0.35 0.39 0.62 0.77 0.29 0.44 

Zn 0.19 0.09 0.15 0.08 0.39 0.15 0.16 0.09 0.13 

Cl 4.06 4.26 4.51 6.32 6.93 3.86 8.55 7.45 2.81 

SO4 4.06 4.26 4.51 6.32 6.93 3.86 8.55 7.45 2.81 

TC 110.8 137 161.9 88.62 117.4 105.2 113.7 115.9 154 

OC 110.8 137 161.9 88.62 117.4 105.2 113.7 115.9 153.6 

Al-OXL 1.14 17.36 1.36 2.99 1.85 58.63 3.46 1.02 4.67 

Fe-OXL 143.08 121.33 121.38 113.63 149.52 72.41 146.37 144.48 138.48 

SSA m2 g-1 203.4 120.3 131.9 97.02 186.4 414.5 132.3 219.8 157.2 

pH -- 5.47 5.49 4.55 6.64 4.48 5.49 4.3 4.09 4.75 

pHpcz -- 4.79 4.23 4.33 6.95 3.77 4.26 3.81 3.8 3.94 
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3.3.2 Optimization of factors influencing metals uptake 

3.3.2.1 Effect of adsorbent dosage 

The adsorption of heavy metals by different masses of the sludges (1g, 0.5g and 0.1g) 

was studied as a function of contact time. Determining the optimum dosage and 

equilibration time is crucial for determination of the adsorption capacity and the 

influencing factors. Although the different sludge masses exhibited the same trends 

in adsorption behaviour, it is clear that increasing the adsorbent (sludge) mass 

increases the heavy metals removal. This is possibly due to the fact that there is more 

surface area available when there is increase in adsorbent mass (figure 3.3). 

However, beyond certain doses, the removal plateaus with no significant increase in 

the percentage of heavy metals removal. Accordingly, the result in Figures A.5 – A.12 

(Appendix A) shows that there were no significant difference in total removal 

percentage of heavy metals especially for Pb, Cr and Cd, for most of the DWSs 

beyond 5 g L-1 and 10 g L-1. Table 3.4 also shows that the optimum sludge dosage to 

remove more than 90% of Pb and Cr was 5 g L-1 for most of the Al- and Fe-based 

sludges. This may be attributed to the metal-vacant sites on the sludges at 5g L-1 

which are available for Pb and Cr ions in solution when the concentration of these 

metals were low (i.e. 0.5 mg L-1 and 1 mg L-1 respectively). For Fe, when the 

concentration was 500 mg L-1, the removal percentages were 38% and 93%, 

respectively at the 5 g L-1 and 10 g L-1 doses. Moreover, the ratio of metal ions to the 

adsorbent is low, so the adsorption involves much higher energy site. When this ratio 

increases, as in Fe at 5 mg L-1, the energy sites becomes saturated and the adsorption 

of lower energy sites begins with a decrease in removal efficiency (Ferreira et al. 

2014). 

3.3.2.2 Effect of contact time 

The amount of metal ions adsorbed is controlled by the velocity with which the 

adsorbate is transported from the external surface to the internal surface of active 

sites on the adsorbent’s particles (Makris et al. 2006; Ferreira et al. 2014). Figure A.5 

– A.12 (Appendix A) indicates a sharp rise in the heavy metals removal within the first 

hour, indicating the instant at which the adsorption process takes place. This can be 

adduced to the excess of binding sites on highly accessible surfaces like particles and 

macropores. Over time, the curves start to plateau because the rate of removal is 
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much slower. This is due to the accumulation of metal ions on the binding sites until 

it reaches equilibrium; and thereafter sorption would be via intraparticle diffusion in 

meso- and micropores and/or sorption by the organic matter (Makris et al. 2006; Zhou 

and Haynes 2011). In general, these findings are in agreement with those reported in 

other similar studies using water treatment residuals for heavy metals removal such 

as: Zhou and Haynes (2011) who reported that about 90% of Pb and Cr removal 

occurred within 120 minutes, and Castaldi et al. (2015) who showed that 72% and 

85% of Pb, respectively adsorbed by Fe- and Al-based sludge after 1 h. In this study, 

the removal of Pb, Cr, Cd, and Fe reached, respectively, 98% , 92%,18%, and 84% 

for Al-based sludges; and 97%, 89%, 70%, and 42%, respectively, for Fe-based 

sludges, within the first hour of contact for most sludges. However, the optimum time 

to remove more than 90% of heavy metals for both types of sludges was 48 hour as 

shown in Table 3.4. 

3.3.2.3 Initial pH effect 

Initial pH solution is a crucial factor in metal adsorption by adsorbents. In the lower 

pH ranges, the solution pH can affect the adsorption process in different ways. The 

pHpzc of the sludges ranged from 3.8 to 7.1, while the pH ranged from 4.09 to 7.06. 

Thus, at pH values less than the pHpzc, the sludges will have net positive charge due 

to the presence of the OH group (alum oxalate and iron oxalate) which are positively 

charged at low pH (Bradl, 2004). As the pH rises above the pHpzc, the surface of 

sludges become predominant negatively charged (Babatunde et al., 2009). The 

positive charge at low pH weakens the adsorption performance for the heavy metals. 

In addition, at low pH there is a huge amount of H+ ion competing with the metal ions 

and this negatively impacts the adsorption process for heavy metals (Chen et al. 

2015b). The optimum pH to reach the maximum adsorption in this study was pH 4 for 

the removal of Pb, Cr and Cd and pH 2 for removal of Fe (Table 3.4). 
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Figure 3. 3 Removal efficiency of heavy metals by HH sludge at different contact times and three different sludge dosages.
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Table 3. 4 Optimum values of key adsorption parameters used in heavy metals removal. 

 

 

 

 

 

  

 

 

  

 

 

  

Key adsorption 
parameters 

Heavy 
metals 

GU WD OS HU WA BS MO HO CA FO HH AR WY BU 
Optimum values 
used 

Time(h) at which 
>90% removal 

Pb 24 12 24 12 48 6 6 24 24 12 1 6 48 - 48 

Cr 24 12 24 12 48 24 12 24 48 48 48 48 48 48 48 

Cd - - - - - - - - - - - 24 - - - 

Fe 24 24 24 24 24 - - 48 - - - - - - 48 
 

 
Sludge dosage (g L-1) at 
which 
>90% removal 

Pb 5 5 5 5 5 1 5 5 1 5 5 1 5 - 5 

Cr 5 5 10 5 5 5 10 5 5 5 5 10 5 5 5 

Cd - - - - - - - - - - - 10 - - 10 

Fe 10 5 10 5 10 - - 10 - - - - - - >10 
 

 
pH at maximum uptake 
(Qm) 
from Langmuir model 

Pb 2 4 7 4 4 7 2 7 4 4 4 7 7 4 4 

Cr 4 4 4 7 4 4 2 7 4 2 2 4 2 4 4 

Cd 7 7 4 4 4 4 7 4 4 4 7 7 4 9 4 

Fe 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
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3.3.3 Adsorption study 

3.3.3.1 Adsorption kinetics modelling 

Studies of the kinetics of adsorption is important to understand the transference 

velocity of metal ions from aqueous solution to the adsorbent surface, and the time to 

reach the equilibrium (Božić et al. 2013). In this study, the pseudo first-order, pseudo 

second-order and intraparticle diffusion models were employed to fit the experimental 

data. From Tables B2- B5 it can be seen that the pseudo second-order model 

exhibited better fit for Cr for all the sludges, with the exception of WD, WA and CA 

sludges. The correlation coefficient, NSD and ARE of the pseudo-second order model 

fit ranged, respectively from 0.99%- 1%, 1.43%- 21.06% and 0.85%- 9.79%. 

Furthermore, the calculated qe values through this model is close to the experimental 

values. This strongly suggests that the sorption kinetics of Cr onto DWSs is well 

described by a pseudo-second order kinetic model. It also implies that the rate-limiting 

step is chemisorption, which involves sharing of valence forces or electron exchange 

between Cr ion and the DWSs, rather than diffusion or ion exchange between the 

sorbent and the sorbate (Akhtar et al. 2008). Zhou and Haynes (2011) reported similar 

trend for Cr adsorption onto Al- based sludges and they suggested that chromium  

have been shown to form strong, inner sphere complexes with Al and Fe oxide 

surfaces by predominantly bidentate bonding.   

The kinetic data for Pb was well described by pseudo first-order model with correlation 

coefficient, NSD and ARE ranging, respectively from 0.662%- 1%, 7.6 X10-5%- 

17.15% and 2.6 X10-5%- 6.11%. In addition, the qe value determined from the model 

is close to the experimental value (Table B1, B4 and B5). Several authors have shown 

that the adsorption of Pb is well fitted with the pseudo second-order model rather than 

the first order (Ngah and Fatinathan 2010; Zhou and Haynes 2011; Cheng et al. 

2015).  

Diffusion as opposed to chemical reaction can also be the rate-limiting step in the 

case of Cd (except for HH, AR and WY sludges) adsorption where the correlation 

coefficients ranged from 0.86 to 0.98, indicating  a good fit of the intraparticle diffusion 

model with the kinetic data (Table B3). However, the plot as shown in Figure 3.4c is 

nonlinear, indicating that intraparticle diffusion is not the only rate-limiting step. 

Furthermore, this figure also reveal, that the plots did not pass through the origin, and 



Chapter 3: Characterization and metals adsorption by DWSs  

 
52 

 

this implies that other mechanisms might also be involved in the kinetics of adsorption 

all of which could be operating simultaneously (Hameed 2008). According to Ferreira 

et al. (2014), the interception is related to the thickness of the limiting layer. The larger 

the intercept, the greater is the amplitude of the surface diffusion in the rate-limiting 

stage. Based on the intraparticle diffusion model, the values of pore diffusion 

coefficient ( 𝐷̅) were determined to be between 4.8 x10-8 - 58 x10-7 cm2 min-1 for Cd 

indicating that the process is governed by diffusion, however; pore diffusion is not the 

only rate limiting step.  

The correlation coefficients of Fe kinetic adsorption were high (0.82- 0.99), but high 

NSD (27%- 1214%) and ARE (27.82%- 705.7%) confirm that the removal of Fe is by 

precipitation and not by adsorption as discussed in section 3.3.3.3. In addition, the qe 

values obtained from fitting with the kinetic models are not close to the experimental 

values, with the exception of GU and HU which follow first-order model with high 

correlation coefficient and low NSD and ARE as shown in Tables B4 and B5. 
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Figure 3. 4 Sorption kinetics of heavy metals onto HH sludge using: a) first order, b) 

second order and c) intraparticle diffusion model (secondary axis in Figures b and c, 

represent the data for Fe). 
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3.3.3.2 Adsorption isotherm modelling 

Fourteen samples of DWSs were investigated in this study as adsorbents for heavy 

metals in landfill leachate. It is important to understand the adsorption process of the 

heavy metals (Pb, Cr, Cd, and Fe) by the sludges from various sources in order to 

reveal any significant influence of their physicochemical characteristics on the 

adsorption behaviour. Several adsorption isotherm models including Langmuir, 

Freundlich, Temkin, Frumkin and Harkins-Jura were used to fit the experimental data. 

3.3.3.2.1 Langmuir isotherm model 

Langmuir model relates the coverage of molecules on a solid surface to concentration 

of a medium above the solid surface at a fixed temperature. This isotherm model is 

based on three assumptions: adsorption is limited to monolayer coverage; all surface 

sites are the same and can only accommodate one adsorbed atom; and the adsorbed 

molecule on a given site is independent of its neighboring sites occupancy. 

 Langmuir model was found to fit the adsorption data of Pb and Cr quite well with R2 

= 0.79- 0.93 and 0.71- 1, respectively, with the exception of WA and MO sludges 

for Pb, and GU for Cr. Results presented in Table B6 and B7 also reveal that for some 

sludges, the maximum adsorption capacity for Pb and Cr were at pH 4. This could be 

because when the pH > 4, Pb and Cr start to form hydroxides species such as Pb 

(OH)2, Cr(OH) or Cr(OH)3. These hydroxides have less ability to adsorb than Pb+2 and 

Cr+3 (Babatunde et al., 2009; Makris et al., 2006). On the contrary, the other sludges 

(WD, HU, WA, MO, FO and HH) in Pb adsorption and (GU, WD, OS, WA, BS, CA, 

FO and AR) in Cr adsorption presented different behaviour. This may be due to the 

effect of pHpzc as discussed in 3.3.1, where the pHpzc > pH of the solution, therefore 

the surface of those sludges becomes dominantly positive charged. In addition, the 

presence of silica that develop a negative charge on the sludges can contribute to 

adsorption of metal cations. These characteristics can be the reason for the observed 

adsorption behaviour for Pb and Cr. 
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Figure 3. 5 Sorption isotherm of heavy metals onto DWS using Langmuir isotherm 

model at different pHs (data refers to the HH sludge used as an example). 

3.3.3.2.2 Freundlich isotherm model 

Another widely used model for describing heavy metals sorption is the Freundlich 

model. It is an empirical equation that is widely used for the description of adsorption 

equilibrium. The equation is useful for describing the adsorption of organic and 

inorganic compounds on a wide variety of adsorbents including DWSs. 
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Freundlich isotherm model was particularly well fitted to describe the multilayer 

formation of Cr, Cd and Pb on the heterogeneous surfaces of the DWSs (see Tables 

B6- B8). However, this was not the case for the adsorption of Pb onto the WA sludge 

as shown in Table B6. The constant Kf and n are, respectively the adsorption capacity 

and adsorption intensity. The n values for Cr were generally >1 and ranged from 1.33- 

2.31, indicating favourable adsorption. Higher n value imply stronger interaction 

between DWSs and heavy metal ions (Hameed, 2008). However, the n values for Pb 

were <1 for most of the sludges, this suggests that precipitation reaction may well be 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 6 Sorption isotherm of heavy metals onto DWS using Freundlich isotherm 

model at different pHs (data refers to the HH sludge used as an example). 
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occurring in addition to adsorption (Hua et al. 2015). The n values for Cd adsorption 

for some sludges were <1 and ranged from 0.38- 0.97, indicating that precipitation 

reaction may occur in these cases, whilst for others, the n value was >1 and ranged 

from 1.07- 1.52 indicating favourable adsorption. 

3.3.3.2.3 Temkin isotherm model 

With the exception of Fe, the Temkin isotherm model was able to describe the 

adsorption data well for all the heavy metals. The derivation of the Temkin isotherm 

considers that the heat of adsorption of all the molecules in the layer would decrease 

linearly with coverage. This decrease in heat is linearly rather than logarithmically 

related to sorbate/sorbent interactions (Vijayaraghavan et al. 2006). The Temkin 

isotherm-binding constant increased with increasing pH and reached maximum 

values of 334.1 L mg-1 and 31.72 L mg-1, respectively for Pb and Cd (see data in 

Tables B6- B8). In contrast with Cr, there was decrease in the constant B1 which is 

related to the heat of adsorption, and it decreased with increase in pH. This may 

suggest that the adsorption activity increases at low pH. However, the model was 

unable to describe all data, as there were some low correlation coefficients as shown 

in Tables B6- B8. 
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Figure 3. 7 Sorption isotherm of heavy metals onto DWS using Temkin isotherm 

model at different pHs (data refers to the HH sludge used as an example). 
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3.3.3.2.4 Frumkin isotherm model 

The Frumkin isotherm model, which takes into consideration the interaction between 

adsorbed species, was found to give better fit for adsorption of Pb than for the other 

metals. The parameter a (interaction coefficient) was positive for all the sludges and 

this indicates that there is attractive interaction between Pb molecules and the sludges 

(Babatunde and Zhao, 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 8 Sorption isotherm of heavy metals onto DWS using Frumkin isotherm 

model at different pHs (data refers to the HH sludge used as an example). 
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3.3.3.2.5 Harkins- Jura isotherm model 

The Harkins- Jura model gave the lowest R2 values and this shows that the model 

could not describe any of the adsorption data. The model implies multilayer adsorption 

with the existence of a heterogeneous pore distribution (Başar 2006). However, the 

R2 for Pb (except the R2 of GU and WD sludges) ranged from 0.72 to 0.97 (see data 

in Tables B6, B7 and B8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 9 Sorption isotherm of heavy metals onto DWS using Harkins- Jura model at 

different pHs (data refers to the HH sludge used as an example). 
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3.3.3.3 Fe removal 

The correlation coefficients for all the isotherm models for Fe removal were low. In 

addition, Qm from Langmuir model was negative, this could possibly be explained by 

the fact that the removal of Fe was by precipitation and not by adsorption (Table B9). 

Since in an oxygenated environment and in acidic condition, Fe can either be in 

insoluble oxyhydroxide (FeOOH) form (Equation 3.11 and 3.12), or joined with the 

hydroxide ion to form Fe(OH)3, which gives the water reddish-brown colour. This 

formation of iron then either settles or remains in suspension (Kadlce and Wallace, 

2008). 

Fe2+ + 
𝟏

𝟒
O2 + H+→ Fe3+ +  

𝟏

𝟐
 H2O                                                                            (3. 11) 

Fe3+ + 2H2O → FeOOH + 3H+                                                                             (3. 12) 

3.3.4 Differences in heavy metals removal by DWSs 

To assess the difference between the two main types of waterworks sludges for heavy 

metal removal, kinetic studies were carried out by equilibrating 1g of each sludge 

sample in individual solutions of Pb, Cr, Cd at different contact times (1- 96h). Results 

as presented in Figures A.5- A.12 reveal that both Al and Fe-based sludges exhibited 

the same trend for the removal of the heavy metals. The removal of Pb and Cr reached 

98% and 90%, respectively, during the first hour; and then increased to 99% after 24 

h for the two sludge types. This indicates that there was no difference in removal of 

these metals between the two main types of DWSs. Kruskal-Wallis analysis of the 

equilibrium data at pH 4 also shows that there was no significant difference in 

maximum adsorption capacity for Al- and Fe-based sludges (𝜌 > 0.05). Accordingly, 

both types of sludges performed similarly at adsorbing Pb, Cr, and Cd. The WD, WA, 

CA, MO and WY sludges were excluded from the analysis of Pb adsorption, whilst 

the two Al-based sludges (GU, HU) and the two Fe-based sludges (MO, HH) were 

used for the analysis of Cd adsorption. Whereas all sludges were used with the 

exception of AR to explain the differences in Qm for Cr adsorption. The sludges that 

were not used in the Kruskal-Wallis analysis had a low R2 in the fitting with the 

Langmuir model, indicating that the adsorption was onto a heterogeneous surface 

(where R2 for Freundlich isotherm were high, see Tables B6- B8), and not monolayer 

adsorption on active sites, and therefore the model coefficients (Qm, b) do not give an 

accurate representation of the data. 
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3.4 Conclusion 

The adsorption of heavy metals (Cr, Cd, Pb and Fe) on fourteen samples of alum and 

ferric dewatered water treatment sludges was investigated in this chapter. The main 

conclusions were: 

i. DWSs can be used as effective adsorbent for heavy metals (Cr, Cd and Pb) 

removal from landfill leachate. 

ii.  Langmuir, Freundlich and Temkin adsorption isotherm models fitted the 

adsorption data for Cr and Pb quite well, and Temkin model fitted the Cd data quite 

well too. However, low R2 values were obtained from the fit of the models to the Fe 

data, indicating that Fe removal was by precipitation rather than adsorption. 

iii.  Adsorption capacities in mg g-1 as determined by the Langmuir model were 

between (0.01- 0.02) ;( 0.03- 0.16) and (0.01- 0.13), respectively for Pb, Cr and Cd, 

and these were generally found to be maximum at pH 4. 

iv. Kinetic data was well fitted with the pseudo first-order model for Pb, pseudo 

second-order model for Cr indicated that the rate-limiting step for Cr adsorption is 

chemisorption, while intraparticle diffusion model was more applicable to the kinetic 

behaviour of Cd. 
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4.1 Introduction 

This chapter investigates the heavy metal attenuation capabilities of fourteen 

dewatered waterworks sludges towards selected individual heavy metals found in 

landfill leachate (Pb, Cr and Cd).  Adsorption is a major process responsible for 

attenuation of heavy metals contaminants in wastewater. Not only total content of 

heavy metals in sorbent are important for an estimation of environmental risk, but also 

information about the way the metals are bound is necessary as it can be used to 

predict the heavy metals availability, mobility and toxicity.  Therefore, the study of 

adsorption mechanism is of utmost importance for the understanding of how heavy 

metals are transferred from a liquid mobile phase to the surface of a solid phase 

(Castaldi et al. 2015). Whilst dewatered waterworks sludges have been shown to have 

large surface areas and high affinity for heavy metals such as Cd, Cr, Cu, Hg, Zn, Pb 

and Se (Chiang et al. 2012), there are limited studies on the removal of heavy metals 

using dewatered waterworks sludges from various sources, at typical concentration 

found in landfill leachate, and their potential effectiveness at decreasing the solubility 

of divalent metal cations such as Pb, Cr and Cd. Likewise, the role of the inorganic 

and organic fractions of DWSs in the adsorption processes of metals is unknown. 

Moreover, the relation between physicochemical characterization of sludges and the 

removal mechanisms of these heavy metals is unclear. Therefore, the main objectives 

of this chapter are:  

1)  To Use principal component analyses (PCA) and canonical correlation analysis 

(CCA) to evaluate the relationship between physicochemical properties of different 

DWSs and heavy metals attenuation, 

2) To study the nature of the interactions established between the metal ions and the 

surfaces of dewatered waterworks sludges, and 

3) To ascertain the role of the inorganic and organic fractions of dewatered 

waterworks sludges in the metal attenuation processes. 

 

Part of this Chapter has already been published as ‘Attenuation of metal contamination in 
landfill leachate by dewatered waterworks sludges’ - A. Mohammed; T. Al-Tahmazi; A.O. 
Babatunde, (2016), J Ecological Engineering, 94, 656-667. 
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4.2 Material and Methods 

4.2.1 Total extraction carbon (TEC) 

In order to investigate the role of organic matter on metal sorption dewatered 

waterworks sludges, total extractable carbon (TEC) was separated from the sludge 

samples using the protocol proposed by Ciavatta et al. (1990). 

2 g of dewatered waterworks sludge was placed in a 150-mL centrifuge tube with 100 

mL of 0.1 M sodium hydroxide plus 0.1 M Na4PZO7 (NaOH + PP). Nitrogen bubble 

was passed through the solution for 2 min and, the tube was plugged immediately. 

Thereafter, a rotary shaker was used for 2 h at 160 rpm at room temperature, then 

centrifuged at 13000 g for 20 min. After centrifugation and filtration through a 0.45~pm 

Millipore filter using a vacuum pump, the sludge on the 0.45~pm Millipore filter was 

collected, air dried and stored. A 25 mL of the extract (total extract, TE) was 

transferred into a centrifuge tube (usually 40 mL) and acidified to pH < 2 by adding a 

small volume (0.3-0.5 mL) of 50% sulphuric acid. This was centrifuged at 5000 g for 

20 minutes, thereafter the precipitate (apparent humic substance, HS) was then 

collected and stored. 

4.2.2 Sequential extraction of Pb, Cr and Cd sorbed by DWSs 

Sequential extraction is an analytical process that chemically leaches metals out of 

sludge samples. The purpose of sequential extraction is to mimic the release of the 

selective metals into solution under various environmental conditions. One commonly 

used sequential extraction procedure is designed to partition different trace metals 

based on their chemical nature. In this study, the chemical forms of Pb, Cr or Cd 

bound to the dewatered waterworks sludges were determined using the sequential 

extraction procedure of Castaldi et al. (2015). The sludge samples saturated with Pb, 

Cr, and Cd at pH 4 (i.e. those deriving from the last point of the isotherms in Chapter 

3 (3.2.2.2.1.)) were washed with 25 mL of distilled water, in order to remove the salts 

deposited in the sorbents, thereafter they were agitated  for 2 mins. Washings were 

repeated three times. 

Subsequently, the solid samples (0.1 g) were placed in 50 mL centrifugation tubes, 

treated with 25 mL of distilled water and shaken for 2 h to extract soluble metal 

(Castaldi et al., 2015). Samples were then treated with 25 mL of 0.1 N Ca(NO3)2 to 
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extract the exchangeable phase, and subsequently with 25 mL of 0.02 M EDTA to 

extract the complexed phase (Castaldi et al., 2015). After each step of the extraction 

process, the samples were centrifuged at 7000 rpm for 10 min, filtered to completely 

separate the liquid and solid phases, and the content of Pb, Cr and Cd was analysed 

using inductively coupled plasma optical emission spectroscopy (ICP–OES). 

The same procedures were repeated for the sludges after total extracted carbon. 

4.2.3 FTIR spectroscopy 

Fourier transform infrared spectroscopy (FTIR) is a technique which is used to obtain 

an infrared spectrum of absorption or emission of a solid, liquid or gas. An FTIR 

spectrometer simultaneously collects high spectral resolution data over a wide 

spectral range. FTIR is an important technique in organic chemistry.  It is an easy way 

to identify the presence of certain functional groups in a molecule.  Also, one can use 

the unique collection of absorption bands to confirm the identity of a pure compound 

or to detect the presence of specific impurities. 

The FTIR spectra of the HH- sludge (ferric sludge) samples were recorded at room 

temperature using a Shimadzu IR Affinity-1s spectrophotometer. The samples 

included HH sludge and HH sludge after total extracted carbon, doped and not doped 

with Pb, Cr or Cd at pH 4, together with humic substance (HS) extracted from HH 

(relative to the last point of the batch).  The FTIR spectra were recorded in the 4000–

500 cm−1 range, and were collected after 320 scans at 4 cm−1 resolution. 

4.2.4 Statistical analysis 

Multivariate statistical analysis is a useful technique for identifying common patterns 

in data distribution, leading to a reduction of the initial dimension of data sets and 

facilitating its interpretation (Janos et al. 2004). In order to evaluate the relationship 

between physicochemical characterisation of the dewatered waterworks sludges and 

the maximum uptake of heavy metals by these sludges, correlation analysis, PCA and 

CCA were used. 

All statistical analysis were performed using software package IBM SPSS 20.   
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4.2.4.1  Principal component analyses  

PCA is widely used to reduce data and to extract a small number of latent factors 

(principal components, PCs) for analysing relationships among the observed 

variables. 

PCA was used to obtain an overview of the relationships between the 

physicochemical characteristics of dewatered waterworks sludges. PCA was 

performed with Varimax rotation, while Pearson correlation coefficient, R, measures 

the strength of a linear relationship between two quantitative variables. 

4.2.4.2 Canonical correlation analysis  

Canonical correlation analysis is a multivariate statistical model that facilitates the 

study of linear interrelationships between two sets of variables. One set of variables 

is referred to as independent variable and the others are considered dependent 

variables (Hair et al. 2010). 

CCA was applied to quantify correlations between maximum uptake of heavy metals 

(Pb, Cr and Cd) which is derived from the Langmuir model in Chapter 3 (3.3.3.2.1), 

and the principal components of physicochemical characteristics of dewatered 

waterworks sludges. 

4.3 Results and Discussions 

4.3.1 Sequential extraction 

Sequential extraction of Pb, Cr and Cd from DWS samples loaded with the HM using 

distilled water to extract soluble metal. Thereafter, using Ca(NO3)2 to extract the 

exchangeable phase. Finally, using EDTA to extract the complexed phase before and 

after extract total carbon from DWSs is discussed below: 

4.3.1.1 Sequential extraction before total extraction carbon 

Fourteen samples of Fe and Al DWSs loaded with Pb, Cr and Cd were subjected to 

sequential extraction following the procedure proposed by Castaldi et al. (2015). The 

aim was to determine the pathway of their metal binding, thus allowing the prediction 



Chapter 4: Mechanistic study of Pb, Cr and Cd uptake by DWSs 

 
68 

 

of the metals’ availability, mobility and toxicity. The metals’ extraction efficiencies 

obtained with the single extraction procedures are presented in Figure 4.1a. The 

amount of Pb, Cr and Cd soluble in H2O were respectively 2%, 0.4-7.3% and 1-15.9% 

in Fe- based sludges; and 2-17%, 2-19% and 5-19.5% respectively in the Al- based 

sludges. The concentration of the water-soluble metals correlates with the dissolved 

organic matter, and this suggests the formation of soluble complexes between the 

dissolved organic matter and the heavy metals (Bradl 2004). The extractabilities of 

Pb and Cr obtained with Ca(NO3)2 were generally lower than 4% of total metals 

sorbed, whilst 27% of the Cd was extracted by Ca(NO3)2. Such pattern seems not 

only governed by the charge density of divalent metals cations (especially for Cd), but 

also by the tendency of Pb and Cr to form inner sphere complexes with Fe- or Al- 

(oxy)hydroxides and organic matter (Garau et al. 2014).  

The metal fractions which were not readily bio-available or leachable i.e. those 

extracted with EDTA, were in the ranked order Pb (71%) > Cd (35%) > Cr (30%) in 

Fe-sludges; and Cd (49%) > Pb (34%) > Cr (12.5%) in the Al-sludges. These high 

percentages extracted by EDTA may be because of the acidic condition of the 

experiment, where pH of initial solution was 4, as EDTA method was originally 

developed for acidic soils (Chen et al. 2009). Additionally, the metal cations are 

bushed out with the H+ from certain kind of binding site by ion exchange mechanism 

(Janos et al. 2004).  

The residual fractions of Pb and Cr in the dewatered waterworks sludges were high 

especially in the ferric sludge, reaching 85% and 99% respectively, whilst the range 

of non-extractable Cd ion from the two species of DWSs was between 28% and 80%. 

This indicates specific strong and irreversible adsorption. With the exception of WD, 

all the DWSs showed strong binding with the metal ions. This is due to the different 

interaction mechanisms involving organic and inorganic component of the DWSs. The 

high affinity of amorphous Fe- or Al- (oxy) hydroxide (inorganic fraction) to heavy 

metals may result in fixation into the micropore wall in subsurface (Axe and Trivedi 

2002). For instance, the adsorption capacity of Fe- based sludges  for Cr can reach 

up to 0.1M of Cr/ M of Fe at pH <5.5 (Zachara et al. 1987),  reflecting the high capacity 

of Fe- based sludges to retain this metal ion since it has low solubility and high sorptive 

capacity (Kantar et al. 2013). On the other hand, there is a complexation reaction 

between metal ions and organic matter such as humic acids occurring in macro and/or 

micropores.  
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4.3.1.2 Sequential extraction after total extraction carbon 

Organic matter content can significantly influence metal solubility and bioavailability. 

To study the effect of organic fraction on the HM retention capacity of the water 

sludges, samples of DWSs doped with Pb, Cr and Cd were subjected again to 

sequential extraction after removal of total organic matter from the sludges. The main 

difference between DWSs before and after TEC is the decrease of water-soluble 

fraction and exchangeable metal (i.e. extraction with H2O and Ca(NO3)2)) for Pb and 

Cd after TEC (Figures 4.1 b and 4.3 b), this confirms the formation of soluble Pb or 

Cd organic complex.  Whilst there were increases of immobile fraction (i.e. extraction 

with EDTA) for both of these metals reaching up to 70% and 64% for Pb and Cd 

respectively. EDTA is a strong chelating reagent and can extract metals from DWSs 

(Bermond et al. 1998).  However, the more striking difference between DWSs and 

DWSs after TEC was in Cr where no fraction was extracted with Ca(NO3)2 and EDTA. 

This result can be due to the available number of inorganic sites, after extraction of 

the organic matter which can interact electrostatically with metal ions (Castaldi et al., 

2015). 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Mechanistic study of Pb, Cr and Cd uptake by DWSs 

 
70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 1 Percentage distribution of lead between various fractions determined by 

the sequence extraction test (a) before total extraction carbon (b) after total extraction 

carbon. 
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Figure 4. 2 Percentage distribution of chromium between various fractions determined 

by the sequence extraction test (a) before total extraction carbon (b) after total 

extraction carbon. 
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Figure 4. 3 Percentage distribution of cadmium between various fractions determined 

by the sequence extraction test (a) before total extraction carbon (b) after total 

extraction carbon.  
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4.3.2 FTIR spectroscopy 

4.3.2.1 FTIR spectroscopy before total extracted carbon 

To investigate the involvement of the organic and inorganic components of the HH 

dewatered waterworks sludge in the sorption process of the metal ions, HH- sludge 

loaded and not loaded with Pb, Cr and Cd were analysed, together with humic 

substances (HS) extracted by the sorbent through FTIR spectroscopy. The HH- 

sludge was chosen among the fourteen sludges because it had the highest adsorption 

capacity for the heavy metals studied, and so it can be used for practical application 

such as main media in constructed wetland.  The FTIR spectra of HH sludge (Figure 

4.4a) showed a broad band in the 3600–700 cm−1 region, which could likely be the 

result of the superposition of several bands deriving from the heterogeneity of 

dewatered waterworks sludge which, as final residues of the water treatment process, 

they would incorporate organic and inorganic substances. From Figure 4.4 a, the 

broad band as derived from the FTIR spectra of the humic substances can be 

considered as the result of the overlapping of a band at ∼1610 cm−1 which refers  to 

C═O stretching of carboxylic group (
asCOO

v
) (Lambert et al. 1987). Moreover, the 

band at ∼1400 cm−1 referred to COO− group in carboxylic acid salts (
sCOO

v
) (Lambert 

et al. 1987). The FTIR spectra of the HH- sludge doped with Pb, Cr and Cd showed 

a shift and an increase of the intensity of bands in the ∼1610 cm−1 and ∼1400 cm−1 

which are attributable respectively, to the asymmetric and symmetric stretching of the 

carboxylate group of the humic fraction as reported above. 

The difference between the frequencies of 
asCOO

v
and 

sCOO
v

 ( v ) gives useful 

information about the type of interaction between the carboxylate groups and the 

metal ions (Castaldi et al. 2015). If the v value of the complex is lower than that 

recorded for the HS, a bidentate chelating mode can be assumed; while a 

monodentate chelating mode is proposed if the v  of the complex is higher than that 

of the HS (Castaldi et al., 2010). A v value of 198, 187 and 180 is measured for the 

spectra of HH- sludge doped with Pb, Cr and Cd respectively, and 204 for the 

extracted HS. These values of v suggest a bidentate chelating mode of these HM 

with the carboxylate groups of the HS. 
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The band at ∼1660 cm−1 which refers to the OH bending mode of H2O associated 

with the Fe surface (Castaldi et al. 2015) disappeared after heavy metals adsorption. 

On the other hand, the peaks attributed to the Si–O–Si antisymmetric stretch at 1107 

cm−1  and 1036 cm−1 overlapped into one sharp peak at ∼1020 cm-1 (Lambert et al. 

1987); this suggests that silica develops a negative charge on the sludge and this 

contributes to adsorption of the HM. 

The peak attributed to sulfonyl chlorides (C–S stretch) in the HH- sludge reduced and 

shifted from 754 cm-1 to 777 cm-1, 743 cm-1 and 748 cm-1 respectively, after Pb, Cr 

and Cd adsorption. This indicates that sulfonyl halide groups participates in the heavy 

metals adsorption (Lambert et al. 1987). Figure 4.4 a also showed a sharp band in 

the HH- sludge at 2972 cm-1 which was caused respectively by the asymmetric 

vibration of –CH and the symmetric vibration of –CH (Cheng et al. 2015). This band 

disappeared after HM adsorption suggesting that metal ions could form surface 

complexes with aliphatic compounds. Finally, the intensity of the broad band of the –

OH stretching vibration at the wavenumber ∼3250 cm-1 in HH- sludge decreased due 

to the HM adsorption (Lambert et al. 1987). 

4.3.2.2 FTIR spectroscopy after total extracted carbon 

The FTIR spectra of HH- sludge after TEC, loaded and not loaded with Pb, Cr and Cd 

were very similar to those of amorphous Fe-hydroxides (Goldberg and Johnston 

2001) (Figure 4.4 b). The broad band at 2160 cm-1 decreased and shifted to 2156 cm-

1, 2156 cm-1 and 2181 cm-1 after Pb, Cr and Cd adsorption respectively. This suggests 

that the ansymetric stretch of N in azides group contributed to the adsorption of these 

heavy metals (Lambert et al. 1987). The strong band ∼1560 cm−1 assigned to the NO2 

in aliphatic nitro compounds group (Lambert et al. 1987), shifted to lower frequencies 

1553 cm-1, 1584 cm-1  and 1539 cm-1 respectively after the sludge was loaded with 

Pb, Cr and Cd.  A wave number ∼890 cm-1 bending mode assigned to Fe surface and 

to the stretching vibrations of FeOOH (Balasubramaniam and Kumar 2000) shifted to 

907 cm-1 after Cd sorption, suggesting the involvement of the Fe–O and OH stretching 

sites in the coordination of Cd. The HH- sludge loaded with Cr showed increase in 

vibrational frequencies at band ∼ 3600 cm-1- 3900 cm-1, and this suggests that the -

OH groups in alcohols and phenols (OH stretch mode) participated in the Cr 

adsorption (Lambert et al. 1987). 
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Figure 4. 4 FTIR spectra of HH dewatered waterworks sludge (a) before and (b) after 

total carbon extraction loaded ad not loaded with Pb, Cr and Cd at pH 4. 
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4.3.3 Statistical analysis 

4.3.3.1 Principal component analysis 

Pearson’s correlation coefficients for the physicochemical characteristics of the 

sludges are presented in Table 4.1. The highest positive correlation pairs of total 

carbon and organic carbon (TC-OC (1.0)) at 95% confidence level indicates that most 

of the total carbon in the sludges is organic carbon. The other high correlation pairs 

were oxalate aluminium and aluminium (Al-Oxl-Al (0.973)), and oxalate iron and iron 

(Fe-Oxl-Fe (0.986)). These high correlations may be due to the fact that 85% of the 

total Al in the Al-sludges is oxalate Al, whilst 53% of the total Fe in the Fe-sludges is 

oxalate Fe (table 1). The pairing of Fe-SO4 (0.83) and Al-SO4 (-0.756) suggests a 

common origin, such as using aluminium and iron sulphate as coagulants during the 

water purification process. The pairings between aluminium and specific surface area 

(Al-SSA (0.726)); and iron and specific surface area (Fe-SSA (-0.642)) relates to the 

Al and Fe hydroxides in the sludges, and this is mainly due to the amorphous nature 

of the sludges resulting in relatively high surface areas.  

By extracting the eigenvalues and eigenvectors from the correlation matrix, the 

number of significant factors and the percentage of variance explained by each of 

them were calculated and the results are presented in table 5. The results in table 5 

showed that only two eigenvalues were >1.00 and they both explain 79.9% of total 

variance. 

Table 6 shows the two factor loadings with a varimax rotation. The first factor (PC1) 

explains about 54.8% of the total variance and loads heavily on Fe-Oxl, Fe, Al-Oxl, 

Al, SSA, pH and SO4. The source for this factor may be coagulants used during the 

water treatment processes. The second factor (PC2) is loaded primarily by TC and 

OC, and this can be adduced to impurities attached to the suspended particles in the 

raw water. This factor accounted for 25.1% of the total variance. 

4.3.3.2 Canonical component analysis 

When performing the CCA, two PCs each from the predictor variables (i.e the 

physicochemical characteristics of the sludges) and the predicted variable (i.e. the 

maximum uptake of heavy metals at pH 4 from unpublished data) were used. The 

result showed high correlation between PC1 and maximum uptake of Cd (0.93). This 
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result indicates that the sorption of Cd could be by Fe- or Al-(oxy) hydroxides and this 

is in agreement with similar study by Janos et al. (2004). The authors found that most 

of the Cd was bound to Fe oxides when sequential extraction was used to extract 

heavy metals from the iron humate. The second higher correlation was between PC2 

and maximum uptake of Cr (-0.64) followed by maximum uptake of Pb (0.46). These 

indicate that the adsorption of these heavy metals is influenced by the presence of 

organic carbon. In a study by Bradl (2004), it was shown that the adsorption of Cr and 

Pb increased with an increase in the organic matter in the soil, whilst the presence of 

dissolved organic carbon could restrict the adsorption of Cd. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 4: Mechanism study of Pb, Cr and Cd uptake by DWSs 

 
78 

 

 

Table 4. 1 Correlation matrix for the physicochemical characterization of the DWSs. 

Element 
TC SSA pH pHpcz OC Al Fe Al-Oxl Fe-Oxl SO4 Mn 

TC 1.000 -0.355 -0.293 -0.481 1.000 0.003 -0.046 0.030 0.058 -0.411 -0.306 

SSA  1.000 0.451 0.443 -0.362 0.726 -0.642 0.672 -0.674 -0.352 -0.296 

pH   1.000 0.866 -0.300 0.735 -0.714 0.730 -0.762 -0.580 -0.111 

pHpcz    1.000 -0.488 0.491 -0.553 0.465 -0.635 -0.270 -0.208 

OC     1.000 -0.006 -0.036 0.021 0.068 -0.403 -0.301 

Al      1.000 -0.892 0.973 -0.892 -0.756 -0.208 

Fe       1.000 -0.854 0.986 0.830 0.358 

Al-Oxl        1.000 -0.849 -0.750 -0.184 

Fe-Oxl         1.000 0.745 0.304 

SO4          1.000 0.418 

Mn           1.000 
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Table 4. 2 Principal component analysis of physicochemical characterisation of DWSs (n=14). 

Component  Initial Eigenvalues  Extraction Sums of Squared Loadings  Rotation Sums of Squared Loadings 

 Total % of Variance Cumulative %  Total % of Variance Cumulative %  Total % of Variance Cumulative % 

1 
 6.030 54.820 54.820  6.030 54.820 54.820  6.030 54.816 54.816 

2 
 2.759 25.083 79.903  2.759 25.083 79.903  2.760 25.087 79.903 

3 
 0.907 8.246 88.149         

4 
 0.769 6.899 95.137         

5 
 0.230 2.090 97.227         

6 
 0.178 1.616 98.843         

7 
 0.086 0.784 99.627         

8 
 0.023 0.209 99.836         

9 
 0.017 0.156 99.992         

10 
 0.001 0.007 100.000         

11 
 1.513E-005 0.000 100.000         

Extraction method: principal component analysis. 
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Table 4. 3 Varimax rotated loadings for the dewatered waterworks sludges 

(N=14) 

 Principal Component 

1 2 

Fe-Oxl -0.961  

Fe -0.953  

Al 0.945  

Al-Oxl 0.919  

pH 0.843  

SO4 -0.781 -0.517 

SSA 0.732  

pHpcz 0.684 -0.483 

TC  0.979 

OC  0.977 

Mn -0.345 -0.407 

Extraction Method: Principal 
Component Analysis. Rotation Method: 
Varimax with Kaiser Normalization. 

4.4 Conclusion 

The mechanisim of HM (Pb, Cr and Cd) attenuation by fourteen samples of alum and 

ferric DWSs was investigated in this chapter using sequential extraction, FTIR spectra 

and statistical analysis (PCA and CCA). The main conclusions were: 

(i)The sequential extraction procedure showed that low concentrations of the HM 

sorbed by DWSs were in the form of water-soluble and exchangeable fractions, while 

the greatest concentrations of the metals sorbed were strongly bound and would not 

be expected to be readily released under natural conditions. 

(ii) The FTIR spectra of HH- sludge doped with Pb, Cr and Cd suggested a 

predominant bidentate chelating mode for these HM with the carboxylate groups of 

the humic substances.  

(iii)The correlation analysis, PCA and CCA showed high correlation between Cd 

uptake and Fe- or Al-(oxy) hydroxide while Cr and Pb uptake correlated with organic 

carbon. 
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5.1 Introduction 

Landfill leachate is highly contaminated with organic contaminants, ammonia and HM. 

The presence of HM and OM at high concentrations in landfill leachate usually causes 

toxic effects to microbes and inhibits ammonia oxidation (Metcalf 2003; Sun et al. 

2005).  In most cases, the evaluation of the treatment potential of CWs is focussed 

separately on biodegradable organic matters and nutrients on the one hand, and toxic 

pollutants on the other, without considering the effect of the presence of the latter type 

of pollutants on the removal efficiency of the former. Little work has been carried out 

to date to investigate the effect of HM on the removal efficiency of biodegradable 

pollutants in CWs. 

Aluminium- sludge based CW tidal flower presents a recent development in treatment 

wetlands. Initiated at University College Dublin (UCD), aluminium- sludge based CW 

tidal flow uses dewatered alum sludge as the main wetland medium instead of the 

generally applied medium-gravel (Babatunde et al. 2007; Zhao et al. 2008). However, 

the results from Chapters 3 and 4 show that HH sludge (ferric-based sludge) can 

serve as the sorbent for HM adsorption which is not expected to be readily released 

under natural conditions, therefore it can be used for engineering applications, such 

as constructed wetlands. 

Tidal flow operation greatly enhances the oxygen transfer into the wetland matrix, and 

this enables the CWs to achieve effective nitrification under a high nitrogen-loading 

rate, such as those for found in landfill leachate treatment. 

In addition, anoxic conditions can be established to prolong HM- ferric-based sludge 

contact and which favours the adsorption process on the one hand, and the 

denitrification process on the other hand. Therefore, objectives of this chapter are:  

1. To assess the overall performance of ferric- sludge based CWs for HM, OM, 

and nitrogen removal and of the impact of their relative concentrations. 

 

Part of this Chapter has already been published as ‘Understanding Integrated 
Removal of Heavy Metals, Organic Matter and Nitrogen in a Constructed Wetland 
System Receiving Simulated Landfill Leachate’ by A. Mohammed;  A. Babatunde, 
International Journal of Environmental, Chemical, Ecological, Geological and 
Geophysical Engineering, Presented at the Conference on ICWTWQ 2017, Dubia, 
Volume 11, Issue 4,  April 2017, 279- 285. (This paper was selected as the best 
paper in the conference) 
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2.  To evaluate the effect of high pollutant-loading rate and different 

operational conditions (anoxic condition and aerobic condition) on the 

treatment performance.  

5.2 Materials and Methods 

5.2.1 System configuration 

Experiments were conducted in two periods. The first period, which lasted for 220 

days, consisted of four stages while the second period, which lasted for 185 days, 

consisted of the same four stages as period 1 in addition to column B, which was 

added to enhance the operation of system this is discussed further in 5.5.3. A 

photograph of the outdoor setup at Cardiff University School of Engineering is shown 

in Figure 5.1.  

The CWs were operated as sub-surface vertical down-flow systems, and different 

operating conditions were applied depending on the variables that each individual unit 

was being used to investigate (see Tables 5.1 and 5.2). 

Table 5. 1 Operating scheme for the first period constructed wetland system. 

Stages Input points Distribution ratio 
(%) 

Cycle time 
(h) 

Wet/dry (h) 

Stage A Influent  100 4 3.83: 0.17 
Stage C Stage A 100 4 1.00 : 3.00 
Stage D Stage C, Effluent 50:50 4 1.00 : 3.00 
Stage E Stage D 100 4 3.90: 0.10 

 

Table 5. 2 Operating scheme for the second period constructed wetland system. 

Stages Input points Distribution ratio 

(%) 

Cycle time 

(h) 

Wet/dry (h) 

Stage A Influent  100 4 3.83 : 0.17 

Stage B Stage A 100 4 3.83: 0.17 

Stage C Stage B 100 4 1.00 : 3.00 

Stage D Stage C, Effluent 50:50 4 1.00 : 3.00 

Stage E Stage D 100 4 3.90: 0.10 
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Figure 5. 1 Constructed wetland system showing: (1) first period of operation on the 

left, and (2) second period of operation on the right. 

5.2.1.1 Perspex columns 

Each stage consist of a single lab-scale CW constructed with Perspex columns of 100 

mm in diameter and 1100 mm in height. The pipes were sealed off at one end with a 

plastic cap, thus providing the base of the CW. A main outlet valve was fitted on the 

base in the centre of the sealed end, and four more valves were fitted along the length 

of the media in the pipe every 15 cm, 10 cm from the top of the media, to allow 

wastewater samples to be taken at different depths. An additional three holes were 

fitted for media (ferric sludge) to be taken if required at depths of 15 cm, 30 cm and 

45 cm from the bottom of the CW.  A schematic of a single CW can be seen in Figure 

5.2.  

 

A 

C 

D 
E 

A C D 
E B 
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Figure 5. 2  Schematic of a single Stage CWs for the landfill leachate treatment 

5.2.1.2  Media and plants 

Ferric-based sludge is a by-product that can be used as an adsorbent for HM removal 

from landfill leachate. It is low cost and easily available worldwide, and it is generated 

during the drinking-water treatment process. The HH-sludge used in this study is 

primarily composed of Fe oxy-hydroxides, which are often amorphous species, and it 

contains sediment and humic substances from the raw water. HM are one of the major 

pollutants in landfill leachate, and they can affect the removal other pollutants, such 

as organic matter and ammonia. In addition, HH-sludge has been shown to have a 

high affinity and strong bonding toward selected HM (Pb, Cr and Cd) found in landfill 

leachate (Chapters 3 and 4). Therefore, HH-sludge was selected as the main medium 

for the CWs in this study.  

The columns were filled with 22±3 mm round gravel to a depth of 150 mm as a 

drainage layer. Air-dried HH-sludge (particle size 1-3 mm) was used as the main 

medium layer (350 mm), followed by 7±2 mm washed gravel with a depth of 150 mm, 

giving an average porosity value of 0.43. The gravel layer (150 mm top layer) was 

employed to enhance air diffusion to the second layer (ferric-based sludge). Zhao et 

al. (2004c) reported that the coarse layer can provide relatively wide pore channels to 

15 cm gravel (4-9 mm) 

35 cm HH sludge (1-3 mm) 

15 cm gravel (20-25 mm) 
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allow the rapid and strong diffusion of O2 during the tidal flow operation strategy. This 

strong O2 flux may enhance pollutant removal. Moreover, this layer facilitates the 

distribution of wastewater and the growth of plants. 

Phragmites australis, known as common reed, was planted on the top layer of each 

stage, and good growth with lush vegetation was observed after 2 months. 

Phragmites australis is used at it is the main reference plant for CWs in Europe (Brix 

1994; Sun et al. 2005; Kadlec and Wallace 2008).  This plant can withstand extreme 

environmental conditions, including the presence of toxic contaminants, such as HM 

and nutarians (Baldantoni et al. 2004; Quan et al. 2007). Therefore, the plant was 

selected to be used in the CWs. 

5.2.2 Synthetic wastewater 

In order to minimize variability in the experiment, all systems in this study were fed 

with synthetic landfill leachate, which was prepared using C2H3NaO2 and (NH4)2SO4 

for COD and NH4 respectively, and CdSO4. 
8 

3
H2O salt, Cr(SO4)2.12H2O salt 

FeSO4.7H2O and PbCl2 salt, respectively for Cd, Cr, Fe (II) and Pb dissolved in tap 

water. Artificial landfill leachate was synthesised in the laboratory to simulate young 

landfill leachates in the UK, as identified in the literature review (see Table 2.1) 

Several pollutants were not selected for the experiment due to the lack of data 

regarding their typical concentrations in landfill leachate in the UK, for example 

phosphorus.  

5.2.3 System operation 

The wetland system consisted of four stages in the first period and five stages in the 

second period. The system was operated under the anoxic conditions and tidal flow 

strategies. 

Four parallel laboratory scale CWs (A, C, D and E) were operated under different 

operating conditions for 220 days in the first period, this started from 10 May 2015 to 

20 December 2015. Cycles of wet/dry periods were generated by a peristaltic pump 

(333.33 mL min-1) and controlled by a timer. Synthetic wastewater was batch loaded 

to the first stage and sequentially passed through the other stages, generating wet/dry 

periods in the individual stages. About 2 litres of synthetic wastewater was pumped 
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into the system in each cycle, giving 12 litres per day going into the system. Before 

starting the experiment and loading the synthetic wastewater, the system was 

inoculated with activated sludge obtained a local municipal wastewater treatment 

plant to let the bacterial communities become attached the media (HH-sludge). 

Anoxic conditions were employed for stages A and E. This enabled prolonged HM- 

ferric-based sludge contact in stage A, and it enhanced the denitrification process in 

stage E. The wet period started as the wastewater began to fill the column, whereas 

the dry period was between the wastewater being pumped to the next stage, 

according to the settings of the timer, and a new batch of wastewater arriving from 

the preceding stage. The wet period for anoxic conditions was 3 hours and 50 

minutes, giving a 10-minute unsaturated period for stage A while for stage E, the wet 

period was 3 hours and 54 minutes.  

The tide, that is cycles of wet/dry periods, was generated in stages C and D.  The 

cycle was set to take place every 4 hours, giving each wetland 1 hour of wastewater-

media contact and 3 hours of aeration in each cycle. Air was drawn into the porous 

space of the wetland from the top when the wastewater began to drain until the 

wetland was completely drained during the wet/dry cycle of the tidal flow operation. In 

addition, the recirculation (recirculation flow rate: feed flow rate) from the effluent tank 

to stage D at a ratio of 1:1 was employed (Tables 5.1 and 5.2). Kantawanichkul & 

Neamkam (2003) found that this ratio (1:1) is optimum to allow the highest nitrogen 

removal. 

The second period (185 days) started from 20 December 2015 to 26 June 2016. As it 

will be explained in more detail later in section 5.3.2, a clogging problem was 

encountered during this period in stage C, therefore an additional stage (column) was 

added to the system as a second stage (B) to enhance the removal of HM through 

the media (Figure 5.1). When the clogging phenomenon occurs, the active void 

volume of the medium is blocked, resulting in a reduction in the infiltration rate. 

Consequently, the O2 supply is reduced and the treatment efficiency decreases.  

5.2.4 Sampling and process 

Inflow and outflow sampling were conducted once per week. Weekly sampling was 

sufficient to conduct a comprehensive analysis due to the extensive period of time 

over which the experiment was run. Inflow sampling was conducted from the feed 
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tank, while outflow samples were taken from the outlet at the bottom of each stage. 

Additional, samples were collected from the effluent tank. 

The parameters measured were chemical oxygen demand (COD), total nitrogen (TN), 

ammonium-nitrogen (NH4-N), nitrite-nitrogen (NO2-N), nitrate-nitrogen (NO3-N), Fe, 

Pb, Cd, Cr, pH, dissolved oxygen (DO) and temperature T. 

In-situ measurements were taken for DO, pH and temperature from four collection 

points (i.e. from each valve on the column), as shown in Figure 5.2, while all other 

pollutant concentrations were determined in the laboratory using the samples taken 

at the time of dosing (for influent) or release (for effluent).  Samples were collected in 

300 mL polyethylene bottles. For metal analysis, 40 mL volumes were acidified with 

nitric acid and stored at <4°C, as recommended in the standard methods (APHA 

2012).  

Measurements for DO, pH and temperature were recorded using a HANNA HI 991301 

probe.  HM were determined using an Optima 210 DV ICP OES while COD, TN, NH4-

N, NO2-N and NO3-N concentrations were measured with a Hach Lange DR3900 

benchtop spectrophotometer. 

COD, TN and NH4-N were measured using Hach Lange’s cuvette tests, for which all 

the required analytical reagents are provided, along with vessels for analysis. 

Digestion at 148°C and 100°C was required, respectively for COD and TN prior, by 

using a Hach Lange LT-200 thermostat. NO2-N and NO3-N were determined using 

powder pillow reagents (diazotization and cadmium reduction methods, respectively). 
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Figure 5. 3 Schematic of CWs in first period (0-220 days) 

 

 

Figure 5. 4 Schematic of CWs in second period (220-405 days) 

5.3 Results and Discussion 

5.3.1 Overall performance of CWs  

The experiment was carried out over 14 months (from May 2015 to July 2016) 

including the start-up period, and it was divided into two periods.  
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The overall treatment performance under different conditions i.e., anoxic conditions 

(stage A, B and E) and tidal flow (stage C and D), is summarized in Figure 5.5 and 

5.6, while the mean influent and effluent of the parameters and pollutant 

concentrations from each stage are represented in Tables 5.3 and 5.4 for period 1 

and period 2 respectively. From these Tables, the average values for pH were 

between 6.52 and 7.88 for period 1 and between 6.42 and 7.58 for period 2. These 

pH values indicate that the wastewater was slightly alkaline. The organic matter 

degradation, nitrification and denitrification processes were affected by temperature 

values, which in this study remained at around 15°C (Tables 5.3 and 5.4). Not only 

did temperature affect these processes, but also these process were affected DO 

concentrations. The influent DO concentrations in this study were in the  range of 0.85 

mg L-1- 5.67 mg L-1  in period 1, and 0.83 mg L-1- 6.26 mg L-1 in period 2.    

The results show that the HM studied were effectively removed in the CWs; however, 

the removal efficiency was more pronounced in stage A reaching 62%, 75% and 66%, 

for Pb, Cr and Cd respectively in period 1; and 74%, 71% and 72% for Pb, Cr and Cd 

respectively in period 2. Fe was totally removed in the influent tank by the 

oxidation/precipitation basins’ technique where the wastewater was left for 24 h in an 

open influent tank, in order to provide aeration for iron precipitation as recommended 

by Kadlce and Wallace (2008). The overall removal efficiency of COD across the four 

stages was significant; however, there was a sharp decline in COD removal efficiency 

in period 1 between days 80 and 100 due to clogging. Figures 5.6 also show that the 

pollutant removal was almost stable in period 2. Tables 5.3 and 5.4 show clearly that 

a significant reduction in NH4-N was achieved during the operation of the system, 

especially in stage D in the first and second period, when the 1:1 recirculation was 

employed.  Moreover, there was evidence of nitrification taking place, as the values 

of nitrite and nitrate in the wastewater increased, as shown in Tables 5.3 and 5.4. 

Denitrification processes occurred simultaneously with nitrification in all stages, and 

especially in stage E in both periods in the CWs.  
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Figure 5. 5 Dynamics of HM concentrations in the influent and effluent and HM removal in CWs during period 1 to the left and period 2 to the right. 
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Figure 5. 6 Dynamics of pollutant concentrations in the influent and effluent and pollutant removal in CWs during period 1 (left) and period 2 (right). 
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Table 5. 3 Characteristics of influent and effluent of the CWs for the four stages (Mean ± SD) 

Parameter Influent Stage A Stage C Stage D Stage E 

DO (mg L-1) - 1.67 ± 0.45 5.13 ± 0.67 5.67 ± 0.89 0.85 ± 0.12 

pH 7.88 ± 0.23 7.81 ± 0.23 6.52 ± 0.38 7.14 ± 0.26 7.42 ± 0.24 

Temperature °C 16.25 ± 4.15 15.85 ± 4.2 15.7 ± 4 15.23 ± 4.1 16.1 ± 4.21 

Pb (µg L-1) 489 ± 84 185 ± 48 33 ± 8.9 8 ± 2.3 1.87 ± 1.0 

Cr (µg L-1) 488 ± 86 123 ± 64 11.8 ± 5.6 1.65 ± 0.6 0.1 ± 0.3 

Cd (µg L-1) 589 ± 95 200 ± 70 41 ± 17.2 4.7 ± 2.4 1.24 ± 0.1 

COD (mg L-1) 639 ± 64 561 ± 62 405 ± 102 281 ± 111 241 ± 109 

NH4-N (mg L-1) 125 ± 32 106 ± 28 77 ± 26 35 ± 15 21 ± 20 

NO2-N (mg L-1) 0.19 ± 0.39 0.30 ± 0.75 0.28 ± 0.20 0.32 ± 0.20 0.23 ± 0.14 

NO3-N (mg L-1) 0.39 ± 0.42 2.47 ± 1.18 3.42 ± 1.8 3.60 ± 1.6 2.52 ± 1.4 

TN-N (mg L-1) 135 ± 36 118 ± 33 96 ± 27 56 ± 24 27 ± 2 

Table 5. 4 Characteristics of influent and effluent of the CWs for the five stages (Mean ± SD) 

Parameter Influent Stage A Stage B Stage C Stage D Stage E 

DO (mg L-1) - 2.59 ± 0.36 1.63 ± 0.07 6.26 ± 0.58 5.19 ± 0.38 0.76 ± 0.07 

pH 7.11 ± 0.15 7.47 ± 0.18 7.53 ± 0.17 6.42 ± 0.25 7.39 ± 0.10 7.58 ± 0.17 

Temperature °C 14.5 ± 2.8 14.3 ± 2.9 14.13 ± 2.7 14.2 ± 2.4 14.5 ± 2.1 14.2 ± 2.3 

Pb (µg L-1) 544.4 ± 28.8 173.2 ± 34 47.7 ± 13.4 6.88 ± 1.46 3.6 ± 3.6 0 

Cr (µg L-1) 536.8 ± 15.9 191.2 ± 20 16.5 ± 4.8 3.4 ± 1.3 0.24 ± 0.42 0 

Cd (µg L-1) 551.6 ± 26.2 205.6 ± 28.8 57.3 ± 13.3 6.36 ± 2.3 3.04 ± 1.5 0.36 ± 0.62 

COD (mg L-1) 704 ± 27.5 596 ± 40.5 487 ± 39.4 253.5 ± 28.4 132.1 ± 20.4 98.5 ± 13.9 

NH4-N (mg L-1) 117 ± 5.1 89 ± 5 75 ± 5.6 60.4 ± 4.6 18.6 ± 1.9 11.1 ± 2.5 

NO2-N (mg L-1) 0.009 ± 0.004 0.043 ± 0.04 0.082 ± 0.06 0.11 ± 0.05 0.094 ± 0.047 0.009 ± 0.0002 

NO3-N (mg L-1) 0.34 ± 0.18 1.33 ± 0.68 3.3 ± 1.2 4.59 ± 1.2 6.32 ± 1.4 4.33 ± 1.42 

TN-N (mg L-1) 126 ± 37 107 ± 33.8 89.5 ± 28 71.2 ± 25 51.4 ± 9.6 22.64 ± 2.6 
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5.3.2 Heavy metals removal in CWs 

Unlike other pollutants, such as nutarian and toxic organic components, HM are not 

degradable. Therefore, HM accumulate in the environment and in the long term, part 

of the HM can reach humans through the food chain. The main HM of interest in this 

study are Fe, Pb, Cr and Cd, all of which were present in the CWs in dissolved form. 

The main removal mechanisms are adsorption, co-precipitation with iron 

oxyhydroxide, and plant uptake. Tables 5.3 and 5.4 show that the HM were effectively 

removed during both periods. However, the removal efficiency was more pronounced 

in stage A, as mentioned above, leaving remaining HM to be removed in stage C 

during period 1, as shown in Figure 5.7. 

 

Figure 5. 7 HM concentrations in each stage and removal efficiency (Mean ± SD) for 

period 1 

Stage A was operated to be fully saturated for 3 hours and 50 minutes and 

unsaturated for 10 minutes. Due to a limitation of DO diffusion within HH-sludge 

(Wang et al. 2008), there are aerobic and anaerobic conditions along the height of the 

column, as shown in Figure 5.8.  
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Figure 5. 8 Vertical DO distribution (Mean ± SD) at different depth (from top layer to 

bottom) in all stages of CWs 

Under aerobic conditions and within first 25 cm depth in stage A, precipitation as Fe 

oxide could occur. However, Fe oxide is highly dependent on DO variations, so the 

binding of metals with Fe oxide cannot be a long-term removal mechanism, as metals 

may be released back into the system. Moreover, Fe oxide has a high affinity to metals 

that have a similar size to Fe, such as Cd; however, the co-precipitate is limited when 

there is a sufficient amount of SO4 which reduces the potential for metal removal 

(Marchand et al. 2010). In this study, the source of SO4 was from the sulphate salts 

used to prepare most of pollutants in the synthetic landfill leachate as described in 

section 5.2.2. Another source for SO4 is HH-sludge; Table 3.3 (Chapter 3) shows that 

there is about 4.51 mg g-1 of SO4 in HH-sludge.    

In addition, under anaerobic conditions when the DO < 0.5 mg L-1, our hypothesis is 

that precipitation as metal sulphides cannot occur. This could be because there is no 

sufficient carbon source (CH2O), which is required by sulphate-reducing bacteria to 

produce sulphides since the carbon source used in this study was sodium acetate 

(C2H3NaO2), which restricted the growth of the sulphate-reducing bacteria (Webb et 

al. 1998). Moreover, these bacteria cause a reduction in the sulphate concentration 

and as a result, the pH value decreases (Kosolapov et al. 2004). However, in this 
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study, there was no significant reduction in the pH value between the influent and the 

effluent for stage A (Table 5.3). This confirms our hypothesis. 

It seems that adsorption is the main process for HM removal in this stage where there 

is a high contact time between the landfill leachate and HH-sludge (Stefanakis et al. 

2011). However, the influent pH plays an important role in adsorption (Stefanakis et 

al. 2011). The mean value of the influent pH for this stage was 7.88 (Table 5.3). The 

maximum adsorption capacity of HH-sludge for HM at pH 7 was found to be 20 µg g1, 

130 µg g-1 and 30 µg g-1 for Pb, Cr and Cd respectively, using the Langmuir isotherm 

model (Tables B6- B8 in Appendix B).   

The rest of the HM, which had not been removed in stage A were introduced in stage 

C. The removal of HM in this stage reached up to 98% for Cr and 93% for Pb and Cd 

(Figure 5.7). In this stage, the aerobic condition was the dominant condition along the 

depth of the column where DO > 0.5 mg L-1 as shown in Figure 5.10. The oxygenated 

environment promotes HM oxidation and subsequent hydroxylation, and this causes 

metal precipitation (Kosolapov et al. 2004). In addition, the presence of iron in the HH-

sludge, (Table 3.3 in Chapter 3) and sulphate in the wastewater and the HH-sludge 

as described above, can enhance the precipitation of metals. Iron in the aerobic 

environment can oxidise and hydrolyse, and consequently this results in the removal 

of metals by co-precipitation (Marchand et al. 2010), or the precipitation of iron 

oxyhydroxide could absorb the metals (Kosolapov et al. 2004). The process of iron 

oxyhydroxide can lower the pH of the wastewater (Kosolapov et al. 2004). The pH 

value in this stage had been reduced from 7.81 in the influent to 6.52 in the effluent. 

It seems that the removal of HM in this stage was dominated by precipitation or co-

precipitation, and this caused the clogging problem in this stage, as discussed below 

in section 5.3.3. Stage B had been added to the system on 20 of December to solve 

the clogging problem. The operation of this stage was similar to stage A to enhance 

HM removal by the adsorption process.  The removal of HM was up to 91%, 97% and 

90% for Pb, Cr and Cd respectively in stage B, as shown in Figure 5.9 leaving 

insignificant amounts of HM to produce in stage C, thus solving the clogging problem.  

The uptake of HM by plants was insignificant compared to the total amount of HM 

removed in CWs. The HM removed by plants in this study was found to be 6%, 5.1% 

and 5.2% for Pb, Cr and Cd respectively as shown through the STELLA simulation 

result in Section 7.3.3 (Chapter 7). Garcia et al. (2010) and Stefanakis and Tsihrintzis 

(2011) reported that up to 5% of HM can be assimilated by plants. However, the 

presence of a high concentration of HM in synthetic landfill leachate may inhibit the 



Chapter 5: General performance of engineered wetland system 

 
97 

 

growth of plants (Batty and Younger 2004). This was seen as a reduction in shoot 

height as shown in Figure 5.1 in both stages A and C. 

However, plants make an indirect contribution to HM removal in CWs; for example, a 

plant’s roots provide an attractive attachment area for microbial populations (Brix 

1997) and enhance aeration of the bed (Brix 1994), while plant roots release organic 

carbon as well as oxygen (Brix 1997).      

 

Figure 5. 9 HM concentrations in each stage and removal efficiency (Mean ± SD) for 

period 2 

5.3.2.1 Iron removal  

The concentration of Fe was found to be up to 448 mg L-1 in young landfill in the UK 

(Table 2.1 in Chapter 2), mostly in soluble form because of the anaerobic conditions 

of the leachate in the landfill. At such high concentration, iron precipitation causes 

serious clogging threat in CWs. Consequently, Hoover et al. (1998) and Loer et al. 

(1999) recommended pre-treatment of the leachate using aeration and precipitation 

steps to produce a clear water discharge to the CW. In this study, the concentration 

of Fe was 500 mg L-1 and the synthetic wastewater was left in open basin for 24 h.  

Fe3+ is dominant in the oxidized condition and at pH > 6.5; Fe3+ then joins with 

hydroxide ions to form reddish-brown ferric hydroxide (Fe(OH3)). After ferric hydroxide 

precipitation, the clear water was discharged to stage A. The influent tank was rinsed 

after the wastewater was used to remove ferric hydroxide before the next filling. It 

seems that this ferric hydroxide can adsorb other metals in the wastewater solution 
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(i.e. Pb, Cr and Cd). Therefore, the concentrations of these HM were low during first 

20 days, and were about 250 µg L-1 for Pb and 240 µg L-1 for Cr and Cd as shown in 

Figure 5.5. Thereafter, the concentrations of the HM increased to around 550 µg L-1. 

5.3.2.2 Lead removal 

Lead was completely removed in both periods, and the removal efficiency was more 

pronounced in stage A. The removal of Pb in this stage could be by adsorption to the 

HH-sludge, to the carboxylate groups of the humic substances in this sludge, or to the 

Fe-oxyhydroxide, as described in section 4.3.2.1. In the aerobic zone, such as in 

stage C, Pb can form insoluble compounds with sulphate, as shown in Equation (5.1). 

𝑺𝑶𝟒
𝟐− + 𝑷𝒃𝟐+ → 𝑷𝒃𝑺𝑶𝟒                                                                                                            (5. 1) 

The removal efficiency of Pb in the CWs was up to 100% higher than the 50% and 

81% reported in the literature by Khan et al. (2009) and Lesage et al. (2007) 

respectively. This can be attributed to the use of HH-sludge as the main medium in 

this study to enhance the adsorption and removal of HM.   

5.3.2.3 Chromium removal 

Chromium was also completely removed in the CWs, compared to  86% and 89% 

removal achieved, respectively by Maine et al. (2009) and Khan et al. (2009). The 

adsorption process to the HH-sludge was through the carboxylate groups of the humic 

substances or to the Fe-oxyhydroxide, as shown in Chapter 4 (Section 4.3.2.1). 

Chromium can also undergo co-precipitation with iron oxyhydroxide and especially at 

pH > 6 (Coelho et al. 2014).  

5.3.2.4 Cadmium removal 

In this study, the removal of cadmium from CWs could either be by adsorption or by 

co-precipitation with iron oxyhydroxide, as discussed in section 4.3.3.1. However, 

cadmium precipitation can occur at pH > 8 (Chen et al. 2015a), and in this study, the 

pH value was up to 7.88 (Tables 5.3 and 5.4). In addition, the adsorption of cadmium 

could be by carboxylate groups of the humic substances in the HH-sludge, as 

described in section 4.3.2.1. The removal of Cd in this study reached up to 99.7% in 

period 1 and 99.9% in period 2 (Figures 5.9 and 5.11). In general, this value is in 
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agreement with the findings of previous studies (Yang 2006; Kanagy et al. 2008; Khan 

et al. 2009). 

5.3.3 Clogging Phenomena in stage C 

Clogging is defined as the process that develops over the operational time of CWs, 

and which leads to the blockage of substrate pores, and the subsequent diminution 

of the corresponding hydraulic conductivity, as induced by the accumulation of solids 

within the wetland (Stefanakis et al. 2014). Clogging can obstruct the oxygen transport 

and consequently decrease the treatment performance of CWs. Over the past two 

decades, there has been a motivation to understand and control clogging, and so the 

desire to mitigate clogging has directly influenced the design evolution of CWs 

(Murphy and Cooper 2010).  

In this study, it was visually observed during the system operation that stage C 

experienced clogging. In addition, there was a drop in the wastewater treatment 

performance in stage C in the period between 26/07/2015 to 14/08/2015. It was noted 

that there was ponding of wastewater on the surface of this stage leading to bypass 

of untreated wastewater. To solve this problem, the stage was firstly left to rest for 

two weeks (from 14/08/2015 to 28/08/2015) as shown in Figure 5.10. This is because 

it was thought that the clogging was due to excessive microbial growth. When this did 

not work, backwash was used. Thereafter, the wastewater treatment was enhanced 

until 18/12/2015 when it was noticed that there was a reduction in both treatment 

performance and wastewater infiltration. It seemed that the chemical treatment 

process (adsorption and precipitation) could be the main factor in clogging. However, 

the adsorption films did not become thick enough to create the clogging problem, as 

adsorption was limited in this stage. Chemical precipitation as HM hydroxide or co 

precipitation with iron oxyhydroxide may form a film-like coating on the media surface 

(Knowles et al. 2011). The additional stage (stage B) was added to the system on 

20/12/2015 and was designed to work in anoxic conditions to enhance the removal of 

the rest of the HM which had not been removed by the adsorption process in stage 

A.  

 

 

 

 

 



Chapter 5: General performance of engineered wetland system 

 
100 

 

       Figure 5. 10 COD removal in stage C in first period  

5.3.4 Organic matter removal in CWs 

Chemical oxygen demand (COD) is a major pollutant in wastewater and decomposes 

both aerobically and anaerobically. The aerobic decomposition of organic matter 

demands a high oxygen supply which is utilized as an electron acceptor. It is also 

reported that most organic matter is removed within the first 10 - 20 cm of the bed 

since the top layer is dominated by aerobic conditions and higher microbial density 

(Stefanakis and Tsihrintzis 2012; Kadlce and Wallace 2008). Anaerobic degradation 

takes place in the absence of oxygen by acid- or methane-forming bacteria. 

The overall removal efficiency of COD across the stages is presented in Figure 5.11 

for period 1 and Figure 5.12 for period 2. These Figures indicate that a shorter 

saturated time and a longer unsaturated time resulted in greater COD removal 

efficiency. It is noted from Figures 5.11 and 5.12 that the removal percentages of COD 

are enhanced during continuous runs under the same operating conditions. It can be 

suggested that enhanced aeration by convection and diffusion during the unsaturated 

time may have played a key role in the removal of COD in stages C and D. The 

removal efficiency in stage C reached up to 69% within the first 20 days; and 

thereafter a sharp reduction in COD removal occurred due to clogging, as described 

in section 5.3.3. When the cogging problem was solved, the removal of COD started 

to increase up to 36% in this stage until 18 December 2015, when this stage began 

to experience clogging problems again. While the COD removal in this stage for 

period 2 was almost stable and reached up to 52%, stage D also was responsible for 

COD removal, with the removal efficiency reach the up to 61% and 59% in this stage 
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in period 1 and period 2 respectively. The significant aerobic COD removal obtained 

during these two stages is predominantly due to the enhanced oxygenation ability of 

the tidal flow strategy that was employed in these two stages (Zhao et al. 2004b; Hu 

et al. 2012; Chang et al. 2014). The time of filling and draining of these two stages 

ensured that oxygen was present in the system beds, where the DO concentrations 

ranged from 0.55 mg L-1 to 5.13 mg L-1 and 0.69 mg L-1 to 5.67 mg L-1 in stages C and 

D respectively in period 1 (Figure 5.10). In period 2, the DO concentrations ranged 

from 0.39 mg L-1 to 5.21 mg L-1 and 0.65 mg L-1 to 6.25 mg L-1 in stages C and D 

respectively, indicating good oxygen conditions within these stages. In such prevailing 

aerobic conditions, organic matter is oxidized by heterotrophic bacteria that uses 

oxygen as an electron acceptor (Garcı́a et al. 2010). 

Anaerobic COD removal was achieved in stage E; the removal efficiency in this stage 

was up to 30% and 33% during period 1 and period 2 respectively, as shown in 

Figures 5.11 and 5.12. Denitrification is the most important process in removing 

organic matter in CWs and especially with a depth of 0.27 m (Garcı́a et al. 2010). 

Under anoxic conditions, heterotrophic bacteria have the ability to oxide organic 

matter that uses nitrate as an electron acceptor (Garcı́a et al. 2010). 

In this study, the average concentration of DO at a depth of 25 cm was 0.43 mg L-1 

and 0.42 mg L-1 in periods 1 and 2 respectively, which means denitrification can occur 

at this depth. The concentration of DO is not the only important factor for COD removal 

in anaerobic conditions, such as in stage E, but the abundantly available NO3-N in 

this stage could directly lead to more denitrification with simultaneous consumption of 

COD as a required organic source (Fan et al. 2013a). However, the first and most 

significant nitrogen transformation that occurred in stage D was nitrification (NH4-N → 

NO3-N), and this did not contribute to COD consumption. Nitrification was also the 

rate-limiting step for providing NO3-N for denitrification and COD consumption.  

Anaerobically COD removal can also be achieved through iron and sulfate redaction 

when acetate is used as substrate. In stage E and at depth 60 cm, the DO 

concentrations were respectively 0.14 mg L-1 and 0.12 mg L-1 for period 1 and 2. Fe3+ 

from HH- sludge can be reduced as in Equation below: 

𝑪𝑯𝟑𝑪𝑶𝑶− + 𝟖𝑭𝒆+𝟑 + 𝟑𝑯𝟐𝑶 → 𝟖𝑭𝒆+𝟐 +  𝑪𝑶𝟐 + 𝑯𝑪𝑶𝟑
− + 𝟐𝑯𝟐𝑶 + 𝟖𝑯+              (5. 2) 
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In addition, the sulfate from the synthetic wastewater can also be removed as per the 

Equation below: 

 𝑪𝑯𝟑𝑪𝑶𝑶− + 𝑺𝑶𝟒
−𝟐 +  𝟐𝑯+  →  𝟐𝑪𝑶𝟐 + 𝟐𝑯𝟐𝑶 + 𝑯𝑺−                                           (5. 3) 

During the operation (220 days), the system achieved average COD removal 

efficiency of 62% ± 14% in period 1 and 86% ± 2% in period 2, respectively for COD 

loading rates of 977 g m-2 day-1 and 1076 g m-2 day-1 for period 1 and period 2.  To 

our knowledge, the COD removal efficiency in period 1 was lower than those used to 

treat landfill leachate in vertical flow CWs. The typical removal efficiencies of 96% 

(Lavrova and Koumanova 2010) and 77% (De Feo 2007). However, the COD removal 

reached up to 84% after 20 days of operation in period 1, as shown in Figure 5.6, and 

especially in stage C, as shown in Figure 5.11.  

  

Figure 5. 11 Variation and removal efficiency of COD in the four stages of CWs during 

period 1. 
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Figure 5. 12 Variation and removal efficiency of COD in the four stages of CWs during 

period 2. 

5.3.5 Nitrogen removal in CWs 

There is great interest in removing nitrogen from wastewater. When released into 

surface water, nitrate constitutes a major risk for eutrophication and reduced water 

quality through altering the DO balance to insufficient levels for living organisms in 

water.  

Usually, analytical methods include the determination of NH4, oxidized nitrogen (NO2 

and NO3) and TN (organic nitrogen, NH4 and oxidized nitrogen). 

The focus of the design of the CWs in this study was to treat nitrogen-rich synthetic 

wastewater. Figures 5.13 and 5.14 present variations of nitrogen forms including NH4-

N, NO2-N, NO3-N and TN-N, across the CWs in period 1 and period 2 respectively. 

The transformation and removal of nitrogen in CWs could be accomplished by 

nitrification–denitrification, plant and microbial uptake, adsorption, ammonia 

volatilization etc. (Fan et al., 2013; Chang et al. 2014). 

Nitrogen removal through plant uptake was considered to be negligible due to the 

high nitrogen loading rate applied, as shown in Tables 5.3 and 5.4 (205.7 gN m-2 day-

1 and 192.6 gN m-2 day-1, respectively for periods 1 and 2).  
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The amount of nitrogen removed by adsorption in stage C and D will be discussed in 

Chapter 6 (section 6.4.3).  The Frenudlich constant Kf (L mg-1), which is used as 

adsorption isotherm coefficient in the HYDRUS software, is found to be equal to 0.047 

L g-1. In practical terms, the ammonia adsorbed by HH-sludge could enhance 

nitrification to nitrate during the resting time between loadings.  

Volatilization, the process by which unionized ammonia (NH3) diffuses to the 

atmosphere from the water surface, depends mainly on pH. The pH value for this 

process is higher than 8 and for pH .9.3, the conversion of NH4-N to NH3 gas increases 

(Vymazal 2007; Saeed and Sun 2012). In this study, the maximum value of pH in both 

periods was 7.88 (Tables 5.3 and 5.4); thus the extent of ammonia volatilization can 

be considered negligible. 

From the above, it seems that the classical route of nitrification, coupled with 

simultaneous nitrification and denitrification, is the major removal process for nitrogen 

retention in this study. 

 

Figure 5. 13 NH4-N, NOx-N and TN-N profile and removal efficiency of NH4-N and TN-N 

across the four stages of the CWs in period 1 
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Figure 5. 14 NH4-N, NOx-N and TN-N profile and removal efficiency of NH4-N and TN-N 

across the five stages of the CWs in period 2 

5.3.5.1 NH4-N removal 

Nitrification is probably the major removal process for NH4-N removal in this study. 

First, NH4-N is oxidized to NO2-N under aerobic conditions and then to NO3-N. The 

two processes can be written as (Metcalf and Eddy 2003):  

𝑵𝑯𝟒
+ + 𝟏. 𝟓𝑶𝟐 →  𝟐𝑯+ + 𝑵𝑶𝟐

− +  𝑯𝟐𝑶                                                                  (5. 4)                                                         

𝑵𝑶𝟐
− +  𝟎. 𝟓𝑶𝟐  →  𝑵𝑶𝟑

−                                                                                         (5. 5)                                                                                      

From these equations, nitrification is seen to be an oxygen-consumption process. 

Complete NH4-N oxidation requires about 4.6 mgO2 (mgN)-1 (optimum DO 

concentration of 3-4 mg L-1) and consumes 8.64 mgHCO3 (mgNH4-N)-1 (Vymazal 

2007; Saeed and Sun 2012; Faulwetter et al. 2009). Other parameters that can affect 

nitrification are temperature, pH value, moisture, alkalinity of water, microbial 

population and NH4-N concentration (Vymazal 2007; Lee et al. 2009). The optimum 

temperature range for nitrification is 25°C to 35°C, and the process is inhibited at 

temperatures 4-5°C, while the optimum pH values vary from 6.6 to 8 (Vymazal 2007). 

Figures 5.13 and 5.14 show clearly that a significant reduction in NH4-N was achieved 

during the operation of the system (83.2% ± 2.4%) and (90.5% ± 2.1%) in periods 1 

and 2 respectively. Other studies reported the removal of NH4-N to be higher than 

these values. Fan et al. (2013a) achieved 99% when they used a sufficient carbon 

source of COD/N =10 and Hu et al. (2014) recorded 96% of NH4-N removal when 
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they extended the resting time to 1 hour. Meanwhile, a study by Chang et al. (2014) 

showed just 55% of NH4-N removal in tidal flow CWs with 3:3 hours of feed:dry period.   

Intermittent aeration of 1 hour per 3 hours in stages C and D led to a well-developed 

aerobic condition where NH4-N nitrifies. The removal of both these stages reached an 

average of 56.2% and 48.9% for the first and second period respectively. The DO 

concentrations were > 3 mg L-1 within 25 cm depth in both stages (Figure 5.8). The 

pH values were 6.5 - 7.14 and 6.42 - 7.39, while the temperature values were 15.7 - 

15.2 and 14.2 - 14.5 (Tables 5.3 and 5.4) for periods 1 and 2 respectively. In addition, 

there was the availability of a carbon source from aerobic COD removal when oxygen 

was utilized for carbon oxidization; all of these enhanced the nitrification process in 

both these stages. However, the removal efficiency was more pronounced in stage 

D, which employed a 1:1 recirculation, this resulted in prolonged wastewater-biofilm 

contact. Nitrification of NH4-N by autotrophic nitrifying bacteria, which have a lower 

respiration rate, is slower than the decomposition of organic matter (Sun et al. 

2005).Thus, by recirculation, the nitrifying bacteria will have enough time to convert 

NH4-N to NO2-N and NO3-N. In addition, there will be a reduction in organic load. The 

NH4-N removal increased from 34% to 72% (Figure 5.13) with an organic loading rate 

reduction from 619 gCOD m-2 day-1 to 430 gCOD m-2 day-1 in this stage in period 1 

(Table 5.3). Meanwhile, the NH4-N removal in period 2 increased from 53% to 84% 

(Figure 5.14) with an organic loading rate decreased from 387 gCOD m-2 day-1 to 202 

gCOD m-2 day-1 in stage D (Table 5.4).  

5.3.5.2 Total nitrogen removal 

Denitrification is considered as a combined process with nitrification for TN removal. 

The process involves heterotrophic bacteria when N oxide or oxygen serve as 

electron acceptors and organic materials serve as electron donors (Vymazal et al., 

1998; Kadlec and Wallace 2008; Saeed andSun 2012). 

The main factors that affect this process include redox potential, the availability of 

nitrate and organic source, pH value, the concentration of DO, moisture content and 

temperature (Vymazal 2007; Faulwetter et al. 2009; Lee et al. 2009). The optimum 

temperature for the denitrification process is between 60°C and 75°C, and the process 

is inhibited at temperatures below 5°C. DO concentration should be maintained at 

<0.3- 0.5 mg L-1 while the pH value ranges from 6 to 8 (Lee et al. 2009; Saeed and 

Sun 2012; Stefanakis et al. 2014). 
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In all stages, nitrification and denitrification processes may have occurred 

simultaneously in the CWs, resulting in a decrease in NO2-N and NO3-N levels; this 

phenomenon is termed as simultaneous nitrification and denitrification (SND) 

(Lavrova and Koumanova 2010). The intermittent aeration strategy creates anaerobic 

and aerobic conditions in CWs and facilitates nitrification and denitrification 

simultaneously (Fan et al. 2013b).  

Total nitrogen losses of up to 30% and 60% have been noted in aerobic conditions in 

stages C and D respectively in period 1, and 43% and 59% in these stages 

respectively in period 2. These losses may be due to denitrification occurring in the 

anoxic microzone inside the sludge floc. However, autotrophic nitrification may occur 

on the surface of the flocs, and this could be because of high oxygen diffusion 

resistance within the sludge flocs (Hu et al. 2014).  According to Bakti & Dick (1992), 

the dissolved oxygen gradient is controlled by several factors such as bulk dissolved 

oxygen level, the particle size of the floc (HH-sludge), the loading of organic substrate, 

and the aeration cycle. This phenomenon emphasises the denitrification developed 

in aerobic conditions using both oxygen and nitrate as a terminal electron acceptor 

(Hu et al. 2014). Several studies have shown aerobic denitrification in wastewater 

treatment processes and natural sediment (Gao et al. 2009; Zhang et al. 2011). 

Moreover, there is sufficient organic carbon (COD/N) of 4.2 and 5 in stages C and D 

in period 1, and 3.6 and 2.6 in these stages in period 2 respectively. This ratio is 

essential as an electron donor for nitrate reduction, and it provides an energy source 

for denitrifying microorganisms (Fan et al. 2013a). Zhao et al. (2010) found that high 

nitrogen removal efficiency occurred at COD/N ratio ranging from 2.5- 5. In addition, 

the pH values for both these stages were within the optimum value. The pH values in 

period 1 ranged from 6.5 to 7.14 while in period 2, they were from 6.42 to 7.39, as 

shown in Tables 5.3 and 5.4. 

The effective TN-N removal in stage E (up to 91% in period 1 and 85% in period 2) 

could be attributed to the remaining carbon source in stage E (Figures 5.13 and 5.14). 

The influent COD/N ratios of 9 in period 1 and 4.5 in period 2 were sufficient to support 

the full denitrification of the nitrified nitrogen. Nitrification was shown to be a limiting 

factor for TN elimination. In this stage, about 10% of NH4-N had been removed. Other 

studies have shown a high efficiency of nitrification and denitrification occurring 

simultaneously at COD/N = 5 (Fan et al. 2013a; Hu et al. 2014). Chang et al. (2014) 

demonstrated a significant improvement in TN-N removal efficiency, which increased 

from 25% to 70% when COD/N ratio increased from 2.5 to 10. Moreover, anoxic 
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conditions were applied in this stage, whereas the dissolved oxygen was less than 1, 

as shown in Figure 5.8, and pH values were 7.42 and 7.58 in periods 1 and 2 

respectively. All these factors could enhance the TN removal in this study. However, 

the average TN removal in this study was 82% in both periods, which is lower than 

the 90% reported by Fan, et al. (2013a) and the 85% achieved by Hu et al. (2014). In 

the studies, the authors used intermittent aeration combined with a high influent 

COD/N ratio up to 20 and multiple tides respectively.  

5.4 Conclusions 

Overall, this study has demonstrated the effectiveness of combining anoxic conditions 

and the tidal flow strategy in CWs using ferric sludge as main media to achieve 

enhanced pollutant removal from high strength wastewater (landfill leachate). 

Sufficient bed resting time promotes COD removal and nitrified NH4-N while anoxic 

conditions were shown to be the key factor in maintaining effective HM and total 

nitrogen removal. The main conclusions were as follows:  

(i) High removal rate of HM was obtained by adsorption in anoxic conditions 

and precipitation to ferric dewatered sludge in oxidizing conditions.  

(ii) Clogging problems in stage C in period 1 seem to occur due to the 

chemical precipitation of HM hydroxide and co-precipitation of HM with iron 

oxyhydroxide. The problem was solved by enhancing HM removal by the 

adsorption process. 

(iii) The removal efficiency of COD in this study could be ascribed to aerobic 

conditions in stages C and D, and anoxic microbial processes for 

denitrification in stage E. However, bed clogging was observed to be a 

serious problem, which affects COD removal in stage C in period 1. 

(iv) An intermittent aeration strategy can effectively develop alternate aerobic 

and anaerobic conditions in vertical flow CWs, so simultaneous nitrification 

and denitrification could occur under a sufficient COD/N ratio range from 

2.5 to 10. 
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6.1 Introduction  

This chapter focuses on the development of a numerical model for the CWs treating 

landfill leachate. CWs is a complex system that is difficult to understand where the 

interaction between soil, vegetation, water and microorganisms are active in parallel 

and were they mutually influence each other (Kadlce and Wallace 2008). Because of 

this complexity, the design guidelines of CWs are mostly based on empirical rules of 

thumb, such as using specific surface area requirement (Brix and Johansen 2004), 

maximum nitrogen loading rate (Molle et al. 2008), simple first order decay models 

(Kadlce and Wallace 2008) or as black box (Pastor et al. 2003; Tomenko et al. 2007).  

 Numerical simulators can represent valuable tools for analysing and improving our 

understanding of the processes governing the biological and chemical transformation 

and degradation process in CWs. CW2D module allows further investigation with 

transport and reaction in vertical flow subsurface flow CWs, and implemented it into 

HYDRUS variably saturated flow and solute transport program (Langergraber and 

Šimůnek 2006). 

In this study, we use Version 2 of HYDRUS was used and this includes the biokinetic 

model formulation CW2D that considers aerobic and anoxic transformation and 

degradation process for organic matter. Although this model was mostly tested for 

sand or gravel vertical flow CWs, in this study it had been evaluated for ferric 

dewatered sludge (HH- sludge) vertical flow CWs. The main aims were: 

 To develop and validate a numerical model of the CWs with emphasis on 

nutarian prediction.  

 To increase our understanding of the fundamental processes of 

transformation and elimination of pollutants in the system, understanding of 

the system, and contribute to unravelling the (black box). 

6.2 HYDRUS 

The software selected to develop the numerical model was HYDRUS 2D. HYDRUS 

was selected because of its ability to simulate water flow and solute transport in 

variably-saturated porous media and, importantly, because of the availability to 

incorporate with a multi- components reactive transport module (CW2D), this allows 
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for the simulation of aerobic and anoxic transformation processes for organic matter, 

nitrogen and phosphorus removal.  

In the following sections, the water flow, unsaturated soil hydraulic properties and 

solute transport capabilities of HYDRUS used, and the governing equations through 

which the program carries out the modelling processes are described. In addition, the 

descriptions of the numerical analysis techniques used in the HYDRUS and the 

components and processes of the CW2D module are defined. 

6.2.1 Water transport in HYDRUS 

The governing equation for transient variably saturated flow used in the CW2D 

module is based on the modified Richards Equation (Equation 6.1), which assumes 

two-dimensional isothermal Darcie flow of water in a rigid porous media, with 

insignificant role from the air phase of the liquid flow.  

𝝏𝜽(𝒉)

𝝏𝒕
=

𝝏

𝝏𝒙𝒊
[𝑲(𝒉) (𝑲𝒊𝒋

𝑨 𝝏𝒉

𝝏𝒙𝑱
+ 𝑲𝒊𝒛

𝑨 )] − 𝑺                                                 (6. 1) 

where: θ(h) is volumetric water content (L3 L-3), h is pressure head (L), S is sink term 

(T-1), xi are the spatial coordinates (i = 1,2) (L), Kij
A are components of the 

dimensionless anisotropy tensor KA. For an isotropic medium the diagonal elements 

of Kij
A are one and the off-diagonal elements are zero, t is time (T), K(h) is unsaturated 

hydraulic conductivity function (L T-1), L is length unit after preference, T is time unit 

after preference.  

6.2.2 The unsaturated soil hydraulic properties  

The unsaturated soil hydraulic properties θ(h) and K(h) for Equation 6.1. are nonlinear 

function of the pressure head. HYDRUS uses van Genuchten’s analytical models 

(1980) to calculate these parameters and as shown in Equations 6.2 and 6.3. 

𝜽(𝒉) = {
𝜽𝒓 +

𝜽𝒔−𝜽𝒓

[𝟏+|𝜶𝒉|𝒏]𝒎 , 𝒉 < 𝟎

𝜽𝒔, 𝒉 ≥ 𝟎
                                                                         (6. 2) 

𝑲(𝒉) = 𝑲𝒔𝑺𝒆
𝒍[𝟏 − (𝟏 − 𝑺𝒆

𝟏

𝒎)
𝒎

]𝟐                                                                       (6. 3) 

Where: 
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𝑺𝒆 =
𝜽−𝜽𝒓

𝜽𝒔−𝜽𝒓
                                                                                                         (6. 4) 

𝒎 = 𝟏 −
𝟏

𝒏
, 𝒏 > 𝟏                                                                                         (6. 5) 

Ks is saturated hydraulic conductivity.  

The following parameters are the van Genuchten (1980) parameters: 

θr is Residual water content (L3 L-3), θs is Saturated water content (L3 L-3), α is Inverse 

of air-entry value or bubbling pressure (L-1), n is pore size distribution index and l is 

pore connectivity parameter. 

6.2.3 Solute transport in HYDRUS 

The theory of the solute transport in HYDRUS CW2D module is similar to that of an 

activated sludge reactor. Thus, the mathematical structure of the CW2D multi-

component solute transport module is based on the structure of activated sludge 

models (ASMs) proposed by Henze et al. (2000). The governing equation for the 

macroscopic transport of component i is as below with major assumptions of: (a) 

constant pH value, (b) constant coefficients in the rate equations and (c) constant 

stoichiometric factors.  

𝝏𝜽

𝝏𝒕
𝒄𝒊 +

𝝏𝝆

𝝏𝒕
𝒔𝒊 = 𝛁(𝜽𝑫𝒊𝛁𝐜𝒊) − 𝛁(𝒒𝒄𝒊) + 𝑺𝒄𝑺,𝒊 + 𝒓𝒊                              (6. 6) 

where: i is 1, 2, 3,…etc: No. of components, ci is concentration in the liquid phase (M 

L-3), si is concentration in the solid phase (M M-1), ρ is soil bulk density (M L-3), Di is 

effect dispersion tensor (L2), q is volumetric flux density (L3 L-2T-1), cS,i is 

concentration of source/sink (M L-3), ri is reaction time (M L-3T-1) and M is mass unit 

after preference. 

In addition, HYDRUS assume non-equilibrium interaction between the liquid (c) and 

solid phase (s) concentrations. The adsorption isotherm relating 𝑠𝑘 and 𝑐𝑘  is 

described using nonlinear Equation of the form: 

𝒔𝒌 =  
𝒌𝒔,𝒌𝒄𝒌

𝜷𝒌

𝟏+ 𝜼𝒌𝒄𝒌
𝜷𝒌                                                                                           (6. 7) 
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where 𝑘𝑠,𝑘 (L3 M-1), 𝛽𝑘 (-) and 𝜂𝑘 (L3 M-1) are empirical coefficients. The linear 

equations of Langmuir and Freundlich isotherm adsorption are special cases of 

Equation (6.7).  When 𝛽𝑘 =1, then Equation (6.7) becomes Langmuir equation and 

when 𝜂𝑘  =0, Equation (7.6) becomes Freundlich equation. 

6.2.4 Numerical solution to governing flow and solute Equations 

 The flow Equation (6.1) is solved numerically via Galerkin finite element method with 

linear basis functions. Depending upon the size of the problem and the type of matrix 

utilised from the discretisation of the governing equations, HYDRUS implements 

direct Gaussian elimination method, the conjugate gradient method. While for solute 

transport using, the ORTHOMIN method is used (Mendoza et al. 1991). 

6.2.5  CW2D solute transport: components and processes 

There are 12 components (pollutants and bacteria) and 9 processes (biochemical 

transformations and degradation processes) that can be simulated in the CW2D 

module. Tables 6.1 and 6.2 define the components and processes (respectively). 

Organic P and Organic N are modelled as P and N content of the COD components. 

Table 6. 1 Components simulated in CW2D multi-component solute transport 

(Langergraber and SImůnek 2005) 

Symbol Unit Description 

O2 mgO2 L-1 Dissolved oxygen  

CR mgCOD L-1 Readily biodegradable chemical oxygen demand  

CS mgCOD L-1 Slowly biodegradable chemical oxygen demand 

CI mgCOD L-1 Inert chemical oxygen demand 

XH mgCOD L-1 Heterotrophic microorganism 

XANs mgCOD L-1 Nitrosomonas spp. (autotrophic bacteria 1) 

XANb mgCOD L-1 Nitrobacter spp. (autotrophic bacteria 2) 

NH4N mgN L-1 Ammonia, 𝑁𝐻4
+ 

NO2N mgN L-1 Nitrite, 𝑁𝑂2
− 

NO3N mgN L-1 Nitrate, 𝑁𝑂3
− 

N2N mgN L-1 Dinitrogen gas, 𝑁2 

IP mgP L-1 Inorganic phosphorus 
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Table 6. 2 Processes simulated in CW2D multi-component solute transport 

(Langergraber and Šimůnek 2006). 

Processes Description 

Hydrolysis Conversion of CS into CR, with a small fraction being 

converted into CI. 𝑁𝐻4
+ and IP are released during this 

transformation process. 
 

Aerobic growth of XH This process consumes O2 and CR while 𝑁𝐻4
+ and IP 

are incorporated in the biomass. 
 

Anoxic growth of XH This process produces 𝑁2 (due to denitrification on 

NO2) and consume CR, 𝑁𝐻4
+ and IP. 

 

Anoxic growth of XH This process produces 𝑁2 (due to denitrification on 

NO3) and consume CR, 𝑁𝐻4
+ and IP. 

 

Lysis of XH Produces organic matter (CR, CS and CI), 𝑁𝐻4
+, and 

IP 
Aerobic growth of XANs This process consumes 𝑁𝐻4

+ and O2, and 

produces𝑁𝑂2
−. IP and a small portion of 𝑁𝐻4

+ are 
incorporated in the biomass. 
 

Lysis of XANs  Produces organic matter (CR, CS and CI), 𝑁𝐻4
+, and 

IP. 
 

Aerobic growth of XANb This process consumes 𝑁𝑂2
− and produces𝑁𝑂3

−. IP 
and 𝑁𝐻4

+ are incorporated in the biomass. 
 

Lysis of XANb Produces organic matter (CR, CS and CI), 𝑁𝐻4
+, and 

IP. 

6.3 Materials and Methods 

6.3.1 Physical models 

Three of the five columns used for the CWs were selected as the physical models 

which would be simulated by HYDRUS. These stages (C, D and E) were chosen 

because they were designed to remove organic matter and ammonia in the 

experiment. In the two periods, stage C was used to model organic matter, while 

stages D and E were chosen to simulate ammonia, nitrite and nitrate.  Further details 

on the dimensions, configuration, components and loading regimes of the systems 

can be found in chapter 5 (Section 5.2). 

6.3.2 Initial modelling considerations 

Two sets of input data, hydraulic properties and solute transport parameters are 

essential to model CWs to study nutrient behaviour using HYDRUS-2D/                                                                                                                                                    

CW2D. Hydraulic parameters include the inflow volume, inflow rate and hydraulic 

properties of the CW media. The media hydraulic properties were obtained by 
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laboratory tests (hydraulic conductivity (𝐾𝑠), moisture content (𝜃)) and the use of the 

soil water characteristics curve to find the other hydraulic properties of HH sludge. 

Further laboratory tests were carried out to obtain bulk density and Freundlich 

adsorption parameter for ammonia. 

Solute transport parameters include the pollutant concentrations of the inflow 

synthetic landfill leachate in the CWs. The inflow solute concentrations were obtained 

from the measurements taken from each inflow dose of synthetic landfill leachate, 

carried out over the length of the experiment during the two periods. 

6.3.2.1 Soil laboratory tests and hydraulic properties 

Two of the most important soil hydraulic parameters, 𝐾𝑠 and θS, were obtained from 

laboratory tests carried out on the air dried HH sludge. Further laboratory tests were 

carried out to obtain the other hydraulic properties of the media and bulk density.   

The 𝐾𝑠 value of the air dried HH sludge was determined by undertaking a permeability 

test using the constant head method in accordance with clause 5 of BS 1377-5:1990. 

The 𝐾𝑠value was calculated using 4 different flow rates (4.31 cm3 sec-1, 14.92 cm3 

sec-1, 16.94 cm3 sec-1 and 18.18 cm3 sec-1) and their respective hydraulic gradients 

(4.2, 21.8, 26.6 and 31.4).  

The undisturbed sample was used to determine the bulk density (ρ) of the air dried 

HH sludge samples, adhering to BS 1377-2:1990. This method introduces a risk of 

human error in the physical measurement of sampling tube dimensions (necessary to 

determine the dimensions of the soil sample), thus an uncertainty of ± 2 mm was 

applied. This uncertainty equates to an approximate error of ± 0.05 g cm-³ in the final 

values of ρ. A mean value from five readings was taken in order to minimise the effect 

of the error.  

The soil water characteristic curve was used to find the hydraulic properties of air 

dried HH sludge using Van Genuchten model (Equation 6.2). A series of specimens 

are prepared at different volumetric water content, measured soil suction(𝜓) using 

chilled- mirror hygrometer. Firstly, six samples of air dried HH sludge were prepared 

at different moisture content (10%, 20%, 30%, 40%, 50% and 60% of samples 

weight), and allowed to equilibrate for 24 h. After equilibration, part of the samples 

was used to measure gravimetric moisture content while, about 8 cm3 of each 
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specimen was used for the total suction measurement. The measurement 

environment of the device was set to 25°C.  

Gravimetric moisture content (𝓂) values of the air dried HH sludge samples were 

determined using oven drying in accordance with ASTM D2216. A drying temperature 

of 60°C was specified for the samples to prevent oxidation of organic content. This 

lower temperature needed longer drying periods which was set to 48 h, and check on 

the mass was made at 2 to 4 h intervals to until a constant mass is reached.  

In order to calculate the volumetric moisture content (𝜃) value of the air dried HH 

sludge, the bulk density (ρ), water density (𝜌𝜔) and 𝓂 are required. The volumetric 

moisture content was calculated using Equation 6.8. 

𝜽 =
𝝆

𝝆𝝎
𝓶                                                                                                                (6. 8)                                                                           

Under the conditions of available measured data of the soil suction and volumetric 

water content, the other parameters of Van Genuchten model have been estimated. 

Therefore, it is required to quantify the amount by which the measured value differs 

from an estimated value. Such quantification was made using the root mean square 

error (RMSE) to evaluate how well the estimator described the measure value as 

below: 

𝑹𝑴𝑺𝑬 = √(
𝟏

𝒏
(∑ 𝑷𝒊 − 𝑴𝒊

𝑵
𝒊=𝟏 )𝟐)                                                           (6. 9) 

Here Pi and Mi are, respectivelly the predicted and measured values of the i-th 

measured data (Yang and You 2013). 

6.3.2.2 Influent pollutant concentrations 

Influent pollutant concentration values of the synthetic landfill leachate were 

measured throughout the experiment during the two period for columns C, D and E. 

These concentrations were thus available as input values for HYDRUS. 

The CW2D module models 12 components in its solute transport equations. These 

are shown in Table 6.1. Values for all 12 components are required prior to running the 

model. Of the 12 components, NH4-N, NO2-N, NO3-N, and O2 were measured in the 

CWs experiment, while N2N was set to zero.  Because the concentration of 
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phosphorus was negligible in young landfill leachate in the UK as mentioned in 

chapter 2 (Table 2.1), therefore the HYDRUS input parameter of PO4-P is set to 1 mg 

L-1 as it used as nutrient for growth of microorganisms. Concentrations of CR, CS, CI, 

XH, XANs and XANb (see Table 6.1) were not recorded in the experiment. Influent 

concentrations of heterotrophic (XH) and autotrophic (XANs and XANb) bacteria were 

set to zero, as HYDRUS assumes that they are immobile. 

Values for CR, CS and CI were estimated. According to the Contrera et al. (2015), 

the major part of the organic compounds in leachates is volatile fatty acids. This 

component is readily biodegradable substrate (Pasztor et al. 2009), therefore in this 

study the COD fraction used is 60:20:20 for CR:CS:CI. 

The full list of CW2D solute transport components and the selected input values is 

shown in Tables 6.3 and 6.4 for periods one and two, and Table 6.5 for one cycle 

period (4 h).  

Table 6. 3 CW2D solute transport component input concentrations for period 1. 

Stage
s 

O2 CR CS CI XH 
XAN

s 
XAN

b 
NH4

N 
NO2

N 
NO3

N 
N2
N 

IP 

C 5.1 336 112 112 0 0 0 106 0.30 2.47 0 1 
D 5.7 215 71 71 0 0 0 76 0.28 3.42 0 1 
E 1.8 183 60 60 0 0 0 35 0.31 3.59 0 1 

 

Table 6. 4 CW2D solute transport component input concentrations for period 2. 

Stage
s 

O2 CR CS CI XH 
XAN

s 
XAN

b 
NH4

N 
NO2

N 
NO3

N 
N2
N 

IP 

C 6.2 261 87 87 0 0 0 75 0.08 3.31 0 1 
D 5.2 154 52 51 0 0 0 60 0.11 4.59 0 1 
E 0.8 96 32 32 0 0 0 19 0.09 6.13 0 1 

 

Table 6. 5 CW2D solute transport component input concentrations for one cycle 

Stage
s 

O2 CR CS CI XH 
XAN

s 
XAN

b 
NH4

N 
NO2

N 
NO3

N 
N2
N 

IP 

C 5.1 450 150 150 0 0 0 85 0.08 2.7 0 1 
D 5.2 186 62 62 0 0 0 27 0.06 5.2 0 1 
E 0.8 126 42 42 0 0 0 17 0.02 7.5 0 1 

6.3.2.3 Ammonia adsorption isotherm 

The adsorption of NH4-N on HH sludge was carried out using the batch method. 

According to Langergraber and Šimůnek (2006), ammonia adsorption is assumed as 
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a kinetic process. The batch experiments was conducted using the procedure by 

Karadag et al. (2006). The optimum conditions for the adsorption batch study, such 

as equilibrium time and adsorbent dosage, were taken from previous study (Karadag 

et al. 2006). A different initial concentration of ammonia solutions (50 ml) ranging from 

20 mg L-1 to 200 mg L-1 were equilibrated with 0.5 g of HH sludge. Synthetic ammonia 

solutions were prepared by dissolving (NH4)2SO4 salt in deionised water. The bottles 

were placed in shaker for 60 minutes and then centrifuged at 200 rpm. After the set 

equilibrium time, the mixtures were withdrawn, filtered and analysed for residual 

ammonia concentration using Hach DR/3900 spectrophotometer according to its 

standard operating procedures. Ammonium uptake (qe) was calculated using the 

following Equation: 

 

𝒒𝒆 =
(𝑪𝒐−𝑪𝒆) 𝒗

𝒎
                                                                                                               (6. 10) 

where oC  and eC (both in mg L−1) are the initial (t=0) and final ammonia concentrations 

at equilibrium ( eq ), respectively, eq is the mass of ammonia adsorbed on the 

adsorbent (HH sludge) at equilibrium (mg g-1), v is the volume of the solution (L) and 

m  is the mass of HH sludge used (g).   

6.3.3 HYDRUS modelling 

Modelling in HYDRUS was conducted in 3 stages. These were: 

1. Simulation of the columns C, D and E CWs. Model calibration was conducted 

hydraulically using soil water characteristic curve to estimate values of the HH 

sludge hydraulic properties  

2. Simulation of the validated model to test nutrient (COD and NH4-N) removal 

efficiencies against real data for two cycles (8 h).  

3. Further investigation of the use of the validated model to test nutrient (COD 

and NH4-N) removal efficiencies against real data within first period (220 days) 

and second period (185 days).  

The 2D finite element meshes of 96 nods and 120 triangle finite elements were used 

for simulation as shown in Figure 6.1. In particular, the vertical rectangular transport 

domain 65 cm deep and 10 cm width (2 columns and 30 raw) was constructed in 
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HYDRUS similar to the dimensions of the column CWS (dimensions described in 

chapter 5 section (5.2.1.1)).  

Time steps were discretized for the numerical simulation using initial, minimum and 

maximum time steps of 0.001 h, 0.0001 h and 1 h respectively for the flow simulation.  

 

Figure 6. 1 Finite element mesh as displayed in HYDRUS 

The model was firstly run over a 24 h simulation period. Water flow parameters were 

initially calculated by selecting sand soil. Sand from soil catalogue was chosen 

because the value of KS for HH sludge was within the range of the sand soil. 

 The KS and θS values were then replaced with the value obtained from experiments 

to increase model accuracy. Finally and for improved model accuracy, the values of 

θr, α and n for HH sludge were then replaced with the values obtained from 

experiments (soil water characteristic curve).  

The influent flow rate (as determined in chapter 5) was converted to a precipitation 

rate: 255 cm h-1 applied over 0.1 h over the surface of the C, D and E CW model. 

Variable flow (for 0.1 h) was set to same number as top and bottom boundary 

conditions to guarantee that the same amount of water that is loaded comes out for 

column C and D. Here, the inflow and outflow was set in such a way that the top of 

the columns remain unsaturated. While for column E, the upper boundary of the CW 
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profile was designated an atmospheric boundary condition and the lower boundary 

was designated as constant head to create fully saturated condition in this column.  

The model was run for a simulated time of 24 hours, with the inflow being applied at 

time t = 0. After the simulation, the final modelled boundary flux values throughout the 

CW was checked and due to unstable boundary flux, the result was saved and 

imported into a duplicate model. This duplicate model was then run with the same 

flow parameters as the original and its final water conditions were saved and imported 

into a second duplicate model. The process was repeated until steady state behaviour 

for water flux was achieved. 

The same iterative process was used to establish the initial background solute 

concentrations in the model media. In the first iteration, the pollutant concentrations 

were set to the concentrations found in the synthetic landfill leachate (Table 6.3 for 

first period, Table 6.4 for second period and 6.5 for one cycle). The maximum time 

step for solute transport was set to 0.02 due to fast oxygen consumption.  

6.4 Results and Disscutions  

6.4.1 Results of soil laboratory tests 

The saturated hydraulic conductivity analysis gave a result of Ks = 39.6 cm h-1 while 

average bulk density was calculated as ρ = 723 Kg m-3. 

The result of gravimetric and volumetric moisture content was calculated using 

Equation 6.8 shown in Table 6.6 where 𝜌𝜔 assume equal to 1 g cm-3. 

Table 6. 6 Gravimetric and volumetric moisture content for HH sludge. 

Sample no. 𝓂 % 𝜃 % 

1 7.60 5.50 

2 16.60 12.00 

3 26.86 19.42 

4 38.00 27.45 

5 61.10 44.22 

6 66.22 47.88 
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6.4.2 Hydraulic properties  

The hydraulic properties of HH sludge were determined using Van Genuchten model 

and soil water characteristic curve. Under the condition of variable measured data of 

the sludge water content and water potential, the Van Genuchten parameter can be 

estimated by trial and error method. The difference between estimated and measured 

values were quantified using root mean square error (Equation 6.9) as shown in Table 

6.7 and Figure 6.2. The summation value of root mean square error = 7.47 × 10-4. 

Table 6. 7 Measured and predicted values of volumetric water content at different 

section. 

Sample no. Section 𝝍 
(Kpa) 

Measured 

𝜽 (cm3 cm-3) 

Predicted 

𝜽 (cm3 cm-3) 

RMSE 

1 121450 0.05500069 0.053526 2.18 × 10-6 

2 4300 0.1203552 0.117204 9.93 × 10-6 

3 2100 0.1941557 0.174895 3.72 × 10-4 

4 1000 0.2705056 0.264202 3.97 × 10-5 

5 120 0.442215 0.449853 5.83 × 10-5 

6 60 0.478754 0.462488 2.65 × 10-4 

From Table 6.7 and Figure 6.2 and with exception of 𝑙 value, the hydraulic properties 

of HH sludge are summarised in Table 6.8, whilst the hydraulic properties for other 

layers (15 cm of gravel on the top and 10 cm of drainage layer (Chapter 5 section 

5.2.1.1)) and  𝑙 value were obtained using literature values (Langergraber and 

SImůnek 2005; Langergraber 2008). Table 6.8 shows the soil hydraulic parameters 

for three layers in column C, D and E. 
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Figure 6. 2 Soil water characteristic curve 

Table 6. 8 Van Genuchten – Mualem soil hydraulic parameters for column C, D and E. 

Layers Residual 
water  

Content 𝜽𝒓  
(m3 m-3) 

Saturated 
water  

Content  𝜽𝒔  
(m3 m-3)  

Parameter Saturated 
hydraulic 
conductivity 

𝒌𝒔 (cm h-1) 

  
(cm-1) 

n  l  

Top layer  0.045 0.41 0.145 5 0.5 600 
Main layer  0.051 0.47 0.0015 1.48 0.5 39.6 
Drainage layer 0.056 0.289 0.126 1.92 0.5 840 

6.4.3 Freundlich isotherm model for ammonia adsorption 

The linear form of Freundlich Equation is shown in Table (3.1) chapter 3. The isotherm 

equation and correlation coefficient are given in Figure 6.3. From this figure, the 

Frenudlich constant Kf (L mg-1) which was used as adsorption isotherm coefficient in 

the model, is equal to 0.047 L g-1.  
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Figure 6. 3 Freunlich plot for ammonia adsorption 

6.4.4 HYDRUS modelling result 

6.4.4.1 Water flow  

The flux effluent results from the measured and HYDRUS software are shown in 

Figure 6.4 for column C and D, and Figure 6.5 for column E.  The results of the step-

by-step adjustment through the use of Ks and 𝜃𝑠 values and then other hydraulic 

parameter is also shown. It was apparent that the calibration of the hydraulic 

parameters of the model sand soil was required through the use of soil water 

characteristic curve as described in 6.4.2. The simulation results using these 

parameters showed good match with measured effluent flux as shown in Figures 6.4 

and 6.5. These results indicate that a good calibration of the flow model requires 

measurement of at least the Ks and 𝜃𝑠 of the main layer. 
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Figure 6. 4 Flux effluent results of measured data and HYDRUS model output, per 

calibrated parameter for column C and D. 

 

Figure 6. 5 Flux effluent results of measured data and HYDRUS model output, per 

calibrated parameter for column E. 

6.4.4.2 Simulation result for one cycle  

6.4.4.2.1 Column C CWs Simulation result 

Since column C was designed to remove organic pollutants by employing tidal flow 

strategy as discussed in section 5.2.3 chapter 5, this section is focused on the result 

for simulated and measured COD effluent concentration. Figures 6.6 and 6.7 shows 
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main layers. During the aeration period, the DO concentration increases to reach the 

maximum value (5.5 mg L-1) within one hour for the first layer, and more than one hour 

for the second layer. This could be due to limited DO diffusion within HH sludge (Wang 

et al. 2008). Diffusion and water flow then moved oxygen through the column where 

it was consumed by heterotrophic or autotrophic bacteria. With a high concentration 

of oxygen such as in this stage, heterotrophs grow quickly until readily biodegradable 

organic matter reached a threshold low concentration. COD fate was clearly related 

to oxygen concentration, where oxygen was available COD decreased immediately 

after loading (Figure 6.7). 

Simulation result in Figure 6.7 showed a good match between simulated data and 

measured data for COD effluent concentration for two cycles, with a mean percent 

error (MPE = ((m-s)/m) ×100) of 14.7%. Where m and s represent measured and 

simulated values respectively. 

 

 

 

 

 

 

 

 

 

Figure 6. 6 Simulated time series for DO within two main layers for two consecutive 

loadings for column C 
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Figure 6. 7 Simulated and measured effluent concentration of COD for two 

consecutive loadings for column C 

6.4.4.2.2 Column D CWs Simulation result 

Column D was designed to remove NH4-N by applying tidal flow strategy and 

recirculating the effluent at ratio 1:1, as discussed in section 5.2.3 chapter 5. The 

simulation results for NH4-N and NO3-N effluent concentration are presented in 

Figures 6.8 and 6.9 respectively.  

 

Figure 6. 8 Simulated and measured effluent concentration of NH4-N for two 

consecutive loadings for column D 
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Figure 6. 9 Simulated and measured effluent concentration of NO3-N for two 

consecutive loadings for column D 

The simulation results show an initial increase of NH4-N concentration during loading. 

Thereafter, there was a sharp decrease due to nitrification process. It was also noticed 

that there was a small increase in NH4-N concentration, and this may be due to the 

lysis of heterotrophic and autotrophic bacteria, or due to the fact that the model cannot 

predict pollutant degradation during dry periods (Stefanakis et al. 2014). The 

measured data had a good match with simulated data for two consecutive cycles with 

MPE of 27%. The measured result also showed that the tidal flow column had high 

oxygen availability so all the influent NH4-N was quickly oxidized within first 20 

minutes. 

 The result from simulated and measured NO3-N effluent concentration showed the 

same trend of NH4-N (Figure 6.9). After initial increase due to loading, there was a 

sharp decrease in simulated and measured values of NO3-N which confirms that 

simultaneous nitrification and denitrification can occur as discussed in section 5.3.5.2 

chapter 5.  

6.4.4.2.3 Column E CWs Simulation result 

Column E was designed to enhance total nitrogen removal, therefore anoxic condition 

was employed in this column as explained in section 5.2.3 chapter 5.  

Figures 6.10, 6.11 and 6.12 show the time series of DO, NH4-N and NO3-N effluent 

values for two consecutive loadings to the main layers.   
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Figure 6. 10 Simulated time series for DO within two main layers for two consecutive 

loadings for column E 

 

Figure 6. 11 Simulated and measured effluent concentration of NH4-N for two 

consecutive loadings for column E 
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Figure 6. 12 Simulated and measured effluent concentration of NO3-N for two 

consecutive loadings for column E 

The simulated data for DO, NH4-N and NO3-N revealed that there is no oxygen 

consumption at depths 10 cm and 25 cm, and as a result there is no nitrification 

occurring in this depths. However, at depth 55 cm there is oxygen consumption which 
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Autotrophic growth occurred as well, but because the oxygen was quickly depleted, 

nitrification was less than in the other stages which used the tidal flow strategy. 

However there is simultaneous nitrification and denitrification occurring in this stage 

as well as in stage D where tidal flow strategy was employed. 

6.4.4.3 Simulation result for first and second periods  

6.4.4.3.1 Column C CWs simulation result 
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 Figure 6.13 highlight a good match between measured and simulated values of COD 

concentrations with a MPE of 23.42% for the first period. From Figure 6.13, it can be 

seen that the model did not simulate the high value of effluent COD concentrations at 

between 80 and 180 days. This could be due to the clogging which occurred in August 

2015 and in November 2015 as discussed in chapter 5 (Section 5.3.3). To solve the 

clogging problem, column C was firstly left to rest for 2 weeks and this may have had 

an effect on the growth of heterotrophic bacteria, and therefore affect the removal 

efficiency of COD for the next period. Thereafter backwashing was applied when the 

resting of column C did not solve the clogging problem. Finally column B had was 

added to the system in period 2 as described in chapter 5 (Section 5.2.3).  Clogging 

can cause pore size reduction and affect the hydraulic properties of the substrate 

(Langergraber and SImůnek 2005). One limitation of HYDRUS software is clogging 

phenomena, since HYDRUS software only considers the dissolved solute 

(Langergraber and SImůnek 2005).   

The result for the second period as shown in Figure 6.14 indicates that there is a very 

good match between the measured and simulated data for effluent concentration of 

COD, with MPE of 8.7% for the second period. This was expected since the problem 

of clogging had been solved by adding column B to the system as explained in chapter 

5 (Section 5.2.3). However, the model did not simulate the low values of COD. The 

influent of COD was more likely divided between readily biodegradable, slowly 

biodegradable and inert organic matter. In this study, COD fractions were estimated 

as explained in section 6.3.2.2, but it seems to be inappropriate because the 

simulation created slow biodegradation of COD rather than removing up to 268 mg L-

1 as observed in the laboratory experiments (Figure 6.14). Slowly biodegradable 

organic matter decays too slow through hydrolysis or is produced too quickly by 

biological decay (Fuchs 2009).  

6.4.4.3.2 Column D CWs simulation result 

Figures 6.15 and 6.16 show time series for NH4-N in period 1 and period 2 

respectively. The simulation result show a very good match with measured NH4-N 

effluent values with MPE of 13.3% and 6.4% for periods 1 and 2 respectively. 

However, the model did not simulate the high and low NH4-N measured values for 

both periods. It is likely that these parameters are dependent on environmental 

conditions such as temperature, soil characteristics, and wastewater constituents 

(Fuchs 2009). A second reason that the model might have underestimated nitrogen 
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removal is that it did not include the influence of plant presence and this is because 

of high nitrogen loading rate in this study which about 117 gN m-2 day-1 for period 1 

and 92 gN m-2 day-1 for period 2, which is far beyond nitrogen uptake by plant of 0.083 

gN m-2 day-1 (Kadlce and Wallace 2008).  However, plant can release DO which 

contribute in nitrification process (Brix 1994; Toscano et al. 2009).  

6.4.4.3.3 Column E CWs simulation result 

Figures 6.17 and 6.18 show time series for NO3-N effluent concentration in period 1 

and period 2 respectively. The simulation result shown a good match with measured 

NO3-N effluent values with MPE of 14.8% and 14% for periods 1 and 2 respectively.  

Initial DO was high enough causing nitrification in this stage (Figure 6.10) and 

increasing NO3-N concentration. However, there is sharp decrease in NO3-N 

concentration (Figures 6.17, 6.18) in this stage as denitrification process occur 

simultaneously as explained in Section 5.3.5.2 chapter 5. COD and NO3-N were 

balanced in the laboratory synthetic wastewater so that there would be enough carbon 

to denitrify all potential nitrate. The CR/NO3-N ratio were 50 mgCR/ mgNO3-N and 15 

mgCR/ mgNO3-N for periods 1 and 2 respectively, which means there was enough 

readily available carbon in the fractionation used in this study for denitrification.
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Figure 6. 13 Measured and simulated data of effluent COD for Column C at 215 days for period 1. 
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Figure 6. 14 Measured and simulated data of effluent COD for Column C at 185 days for period 2. 

 

 

 

 

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

C
O

D
 C

o
n
c
e
n
tr

a
ti
o
n
 (

m
g
 L

-1
)

Time (days)

simulated data

measured data



 

 

Chapter 6: Modelling organic matter and nitrogen removal using HYDRUS CW2D 

 
134 

 

 

 

 Figure 6. 15 Measured and simulated data of effluent NH4-N for Column D at 215 days for period 1. 
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 Figure 6. 16 Measured and simulated data of effluent NH4-N for Column D at 185 days for period 2. 
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 Figure 6. 17 Measured and simulated data of effluent NO3-N for Column E at 215 days for period 1. 
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 Figure 6. 18 Measured and simulated data of effluent NO3-N for Column E at 185 days for period 2. 
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6.5 Conclusion 

HYDRUS-2D/CW2D is a complex module and high-quality data was collected for 

many processes and characteristics of vertical flow wetland columns that can be 

described by the model. 

 A good match between simulated data and experimental result was achieved when 

sufficient data was available to describe the hydraulic behaviour of the HH sludge. 

Thus, the flow model was successfully calibrated in this study by using the hydraulic 

parameter derived from Van Genuchten model.    

The result for COD effluent concentration from the measured data for the first period 

showed that 55% of these data were higher than the simulated data. This is mainly 

because of clogging phenomena which is not considered by the model, and it is one 

of the limitation of the model.   

The model did not simulate the high and low values of NH4-N effluent concentration. 

A reason that the model might have underestimated nitrogen removal is that it did not 

include the influence of plant presence. Plants may increase oxygen as compared to 

the model, decrease ammonium, and decrease nitrate. In addition the model confirm 

that the removal of nitrogen in this study was through simultaneous nitrification and 

denitrification which occurred in the tidal flow and in anoxic condition. 

 

 



  

 

Chapter 7  

 

 

 

 

Modelling heavy metals 

transformation in CWs treating 

landfill leachate 

 

 

 

 

 

 

 

 



Chapter 7: Modelling heavy metals transformation in CWs treating landfill leachate 

 
140 

 

7.1 Introduction 

The efficiency of CWs systems for wastewater treatment is commonly evaluated by a 

comparison between influent and effluent concentrations. However, this is considered 

to be figurative black- box since there is no information about the biological and 

physicochemical processes occurring in the CWs. Unlike organic pollutants, HM 

cannot be degraded through biological processes. Understanding the mechanism of 

HM removal has expanded concurrently with increased adoption and usage of CWs 

(Kosolapov et al. 2004). Marchand et al. (2010) indicated that there are four main 

processes for metals removal in CWs. These include adsorption to fine textured 

sediments and organic matter; precipitation as insoluble salts (mainly sulphides and 

oxyhydroxides); absorption and induced changes in biogeochemical cycles by plants 

and bacteria; and deposition of suspended solids due to low flow rates.  However, 

adsorption represents an important mechanism for removal of metals in CWs. 

Therefore, to ensure efficient HM removal, it is important to use substrates with high 

HM removal capacity and suitable physiochemical properties. A low-cost material that 

can enhance HM removal is dewatered sludge from drinking water treatment 

processes. It is available worldwide and is mostly landfilled at huge costs since it is 

regarded as a waste with little known reuse value. Previous investigations (Table 3.3, 

in chapter 3) had identified a particular drinking water treatment sludge, HH as having 

physicochemical properties that gives it a highly reactive surface and strong affinity 

for HM. 

Plants can also play an important role in CWs for the removal of pollutants. They take 

up nutrients and  they are also able to adsorb and accumulate metals (Cheng et al. 

2002). Moreover,  Phragmites australis, known as common reed, is widely used in 

CWs for treatment of urban and industrial wastewaters containing metals (Bonanno 

and Lo Giudice 2010). 

Modelling of HM removal in CWs is important with regards to understanding the HM 

behaviour in the integrated treatment processes. Various modelling tools including 

FITOVERT, CW2D, PHWAT and CWM1 have been used to understand the 

processes in CWSs (Kumar and Zhao 2011). However, all these models have been 

used to simulate the hydraulic properties or degradation of pollutants. In this chapter,  

Part of this Chapter has already been published as ‘Modelling heavy metals transformation in 
vertical flow constructed wetlands’ - A. Mohammed;  A.O. Babatunde, Journal of Ecological 
Modelling, Volume 345,  March 2017, 62- 71. 
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the fate of Pb, Cr and Cd in a VF CWs was investigated through the development of 

a mathematical model using STELLA v9.0.2 software. STELLA’s is a quantitative 

systems modelling software that was developed to allow modellers specify system 

element, their interrelationships and whether the elements are positively or negatively 

correlated. At the same time, this model necessitate the modeller to specify exact 

values and mathematical equations to describe model elements and relationships. In 

contrast, the behaviour of individual is allowed to be controlled and tracked by the 

modeller (Jeyakumar 2013).   

Several authors have used STELLA to describe the adsorption processes in CWs 

which use different kinds of substrate and for different types of pollutant. However, 

the use of this model to study the fate of HM is limited. Pimpan and Jindal (2009) 

explained the adsorption, desorption and plant uptake in laboratory scale FWF CWs 

planted with bulrush using the STELLA software. However, they used clay loam soil 

and sand mixture as a main media.  

In this chapter the fate and transformation of HM in a VF CWs was investigated 

through the development of a model using the information on STELLA presented by 

Jørgensen & Fath (2011) and Jeyakumar (2013). The key objectives were: 

 (1) To develop a dynamic model for simulating adsorption, plant uptake and growth 

from the VF CWs, which uses ferric dewatered sludge (HH) as main substrate. 

 (2) To calibrate the model using the available experimental data.  

(3) To apply the model to simulate the fate of HM in the VF CWs. 

7.2 Material and Method 

7.2.1  Setup of HH sludge dewatered sludge VFCW 

A laboratory scale VF CWs system was set up outdoors and operated using anoxic 

condition for a first period of 220 days using one column (A), and 185 days for the 

second period using two columns (A+B) as described in chapter five (5.2.1). 
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7.2.2 Description of the model 

According to Jay Forrester’s systems dynamics language (Jeyakumar 2013), STELLA 

is a graphic and dynamic simulation software. Using iconographic modelling 

techniques made the model a flexible simulation tool that makes it easy for the user 

to make change and calibrate. The user can immediately view  the effect of  changes, 

thereby  model development time (Jørgensen and Fath 2011). 

In this chapter, a conceptual diagram illustrating the adsorption processes, plant 

uptake and plant growth are shown in STELLA diagrams (Figure. 7.1- 7.3) for Pb, Cr 

and Cd respectively. The major mechanisms for HM dynamics in CWs considered in 

this study were adsorption and plant uptake. The system was operated to be fully 

saturated for 3 hours and 50 minutes and unsaturated for 10 minutes. Such high HRT 

allow for higher contact between wastewater and HH sludge and enhance adsorption 

process (Stefanakis et al. 2014). The developed models have five state variables 

(STOCK) including dissolved HM (DISPb, DISCr and DISCd), plant HM (PLPb, PLCr 

and PLCd) which means the heavy metals that are available for plant uptake and 

those that are present as soluble components in the soil solution, plant biomass 

(PLBPb, PLBCr and PLBCd) which means certain heavy metals required for plant 

growth and upkeep, detritus HM (DETPb, DETCr and DETCd) is the HM bond to the 

organic material with a wide range of biodegradable and adsorption (ADSPb, ADSCr 

and ADSCd), all the state variables are expressed in the unit of mg of HM per days. 

In STELLA terminology, STOCK is a noun and represent anything that accumulates 

which means flows coming in or out of them. While a STOCK is a noun in the language 

of STELLA, a FLOW is a verb that has activity to change the magnitudes of a STOCK. 

The FLOW in this study includes (INPb, INCr and INCd), (OPb, OCr and OCd), Up, 

Mp, De, Ad and Gr. Converter is used in model to modify FLOWS and calculate the 

initial values of STOCK. The converters in this model are (OUTPb, OUTCr and 

OUTCd), (OBSPb, OBSCr and OBSCd), (PbP, CrP and CdP), (Pbmin, Crmin and 

Cdmin), (Pbmax, Crmax and Cdmax), C0, F, Um, Ku, Mr, Mm, T, V, Fa, TA, KF, n, 

Gm and Kr. Finally, an action connector represent relationships between two items in 

STELLA model have been transmitted an input or an output. 

Adsorbent type, HM concentration and temperature were considered as a major 

forcing function in the model. Detailed description of STELLA window responsible for 

removal and HM dynamics are presented below (Figures 7.1- 7.3). The state 
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variables, processes, parameters and auxiliary variables used in the model are shown 

in Tables 7.1- 7.3, respectively for Pb, Cr and Cd. 

 

 

Figure 7. 1  STELLA diagram for the Pb model. 

 

Figure 7. 2  STELLA diagram for the Cr model. 
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Figure 7. 3  STELLA diagram for the Cd model. 

7.2.3 Michaelis- Menten equation for plant uptake and growth 

In order to find the maximum uptake rate of plants, uptake rate of HM, maximum HM 

for growth rate of plant and plant growth rate, Michaelis- Menton half saturated 

equation was used. 

7.2.3.1 Plant germination and HM uptake 

The effects of different concentrations of Pb (0.2 mg L-1- 3 mg L-1), Cr (0.2 mg L-1- 2 

mg L-1) and Cd (0.05 mg L-1-1.5 mg L-1) on plant uptake were evaluated. The 

concentration of HM has been chosen according to the concentration of HM found in 

Phragmites australis in CWs (Kadlec and Wallace 2008). The Pb, Cr and Cd solutions 

were freshly prepared by dissolving PbCl2 salt, Cr(SO4)2.12H2O salt and CdSO4. H2O 

salt in deionized water. A total of 42 samples of rhizome fragments (14 for each HM) 

were placed in 100 mL glass flask filled with tap water. The rhizome fragments were 

then incubated in the Cardiff University’s CLEER laboratory at 20 ± 3°C for 10 days. 

Rhizome fragments were considered to have germinated when both the plumule and 

radicle growth were over 2 cm long (Figure 7.4). They were then rinsed with deionized 

water. Three germinated rhizome fragments were analysed for initial HM in the plant 

as described in (7.2.3.2). 18 germinated rhizome fragments were transferred to 100 

mL glass flasks, each flask filled with solution which have particular concentration of 

HM (6 of them with solution of Pb, and each one with concentration of (0.25, 0.5,1, 
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1.5, 2, and 3 mgPb L-1), the other 6 with solution of Cr and each one with concentration 

of (0.2, 0.5, 1, 1.25, 1.5 and 2 mgCr L-1), and the last 6 with solution of Cd and each 

one with concentration of (0.075, 0.15, 0.3, 0.75, 1 and 1.5 mgCd L-1)). The solutions 

were renewed every day to avoid any changes in the concentration. After 21 days’ 

growth, the plants from each HM solution were analysed for plant uptake. The 21 days 

were chosen based on experimental observation. The growth of plants was 

particularly slow as the experiments was run during winter and spring (from 05 of 

December 2015 to 20 March 2016). However, the plant growth started in spring but 

the high concentration of HM could have inhibited the plant growth (Batty and Younger 

2004).   

 

Figure 7. 4 Phragmites australis after ten days of growth 

7.2.3.2 Analysis of HM in Phragmites australis plants 

After 10 days’ growth, three germinated rhizome fragments were dried in oven for 2 

days at 70°C, weighted (W0) and ground to powder and then analysed for initial HM. 

The initial HM concentration in the plant was determined after mineralisation of 400 

mg of powdered dry Phragmites australis in a microwave oven (Milestone Ethos 1600) 

with 5 ml of nitric acid (69% v/v), 5 ml deionised water and 2 mL H2O2 (30% v/v). Using 

deionised water in order to make the final volume 25 ml. Thereafter, the sample was 

filtered using 0.45 µm, Millipore and then analysed for Pb, Cr and Cd using ICP/OES 

(Bragato et al. 2006). 

Following the procedure of Bragato et al. 2006; the HM concentration in plant after 21 

days of growth in different HM concentration solution (Section 7.2.3.1) was 

determined. 
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7.2.3.3 Michaelis- Menten equation for plant uptake 

Uptake rate of HM was studied as a function of HM concentration with Phragmites 

australis using Michaelis- Menten equation (Equation. 7.1).  

CKCUv umu                                                                                                 (7. 1)     

Where vu is the rate of uptake in mg (L day)-1, C is HM concentration in mg L-1, Um is 

maximum plant uptake in day-1 and Ku is Michaelis- Menten half- saturated constant 

(the concentration supporting half the maximum uptake rate) in mg (L day)-1. 

A linear transformtion of the Michaelis- Menten equation for plant uptake is given 

as: 

m

u

mu U

K

U

C

V

C
                                                                                                  (7. 2) 

The  
uv

C
 vs. C plot was used to calculate Um and Ku as shown in figure 7.5.  

 

 

Figure 7. 5 The linear regression of C0/vu vs. C0 for Ku and Um determination for Pb, Cr 

and Cd.  
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7.2.3.4 Impact of HM on plant growth 

The effect of different concentrations of Pb (0.2 mg L-1- 3 mg L-1), Cr (0.2 mg L-1- 2 

mg L-1) and Cd (0.05 mg L-1-1.5 mg L-1) on plant growth was also evaluated. After 10 

days of growth (Section 7.2.3.1), 18  of the plants were placed in 100 mL glass flasks, 

each flask filled with solution which have particular concentration of HM (6 of them 

with solution of Pb and each one with concentration of (0.25, 0.5,1, 1.5, 2, and 3 mgPb 

L-1), the other six with solution of Cr, and each one with concentration of (0.2, 0.5, 1, 

1.25, 1.5 and 2 mgCr L-1) and the last 6 with solution of Cd, and each one with 

concentration of (0.075, 0.15, 0.3, 0.75, 1 and 1.5 mgCd L-1)). The solutions were 

renewed every day to avoid any changes in the concentration. After 21 days of growth 

one plant from each HM solution was taken (0.25 mgPb L-1, 0.2 mgCr L-1 and 0.075 

mgCd L-1), dried in oven for 2 days at 70°C and weighted (W). The deference between 

initial weight W0 as described in section 7.2.3.2 and final weight W represent the plant 

growth. This procedure was repeated for the other plants at other HM concentrations 

within 21 days’ durations.  

7.2.3.5 Michaelis- Menten equation for plant growth 

Growth rate of plant was also studied as a function of HM concentration using 

Michaelis- Menten equation as given below 

CKCGv rmG                                                                                                  (7. 3) 

 Where vG is the rate of growth in g day-1, Gm is maximum plant growth in mg (L day)-

1 and Kr is Michaelis- Menten half- saturated constant (the concentration supporting 

half the maximum uptake rate) in mg (L day)-1. 

A linear transformtion of the Michaelis- Menten equation for plant growth is given as 

equation 7.4 

      
m

r

mG G

K

G

C

V

C
                                                                                           (7. 4) 

The 
Gv

C
 vs. C plot was used to calculate Gm and Kr  as shown in Figure 7.6.  
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Figure 7. 6 The linear regression of C0/vG vs. C0 for Kr and Gm determination for Pb, Cr 

and Cd Process equations 

7.2.3.6 Adsorption of HM by dewatered ferric sludge 

The adsorption process was described by the equilibrium between HM in water and 

HM in the adsorbent. Unlike other processes, this process is fast and reaches 

equilibrium in hours based on the batch results (Section 3.3.2.2 in chapter 3). 

Therefore, 0.02 delta time (DT) was selected as the time step. DT refers to the time 

interval between calculations in STELLA software, in other words, it controls how 

frequently calculations are applied each unit of time. A small DT means smoother, 

more continuous change in variables within the model. In addition, the adsorption 

process was multiplied by a factor (Fa) of 2.5, 5 and 3, respectively for Pb, Cr and Cd 

for column A; and 3.5, 14 and 5, respectively for Pb, Cr and Cd for column B. These 

factors were based on experimental results, and it is expected that they will vary 

according to the type of media, HM concentrations, type of pollutant, type of CWs, 

etc.  

Adsorption processes can be described using Equation 7.5, where Fa is a factor, 

DISHM is dissolved HM (either Pb, Cr or Cd) (mg day-1), Pe is the equilibrium 

concentration (mg L-1 day-1) and V is the volume of wastewater (L). 

 VPDISHMFaAd e                                                                                         (7. 5) 
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Pe can be calculated using Equation 7.6, where ADSHM is adsorption of HM (either 

Pb, Cr or Cd) (mg day-1), TA is the total amount of adsorbent (g), KF is the Freundlich 

constant (L g-1) and n is the heterogeneity factor. 

n

FA

e
KT

ADSHM
P 












                                                                                                    (7. 6) 

The result from chapter 3 (Section 3.3.3.2) shows that the Freundlich adsorption 

model was well fitted to describe the adsorption behaviour of Pb, Cr and Cd, with 

correlation coefficients of 0.97, 0.98 and 0.98 for Pb, Cr and Cd, respectively (Table 

B6-B9). 

7.2.3.7 Impact of HM on plant growth 

The growth of the plant, phragmites australis depends on the amount of HM in the 

plant, since the presence of high concentration of HM in wastewater have adverse 

effect on plant growth (Batty and Younger 2004). Plant growth can be described as a 

function of maximum growth rate at the optimum temperature (Jeyakumar 2013). 

Furthermore, the plant’s growth can be expressed by Michaelis-Menton equation. The 

following equation was used to describe plant growth (Jeyakumar 2013): 

   

 minmax

20

min 05.1

HMHMK

HMHMPLBG
Gr

r

T

pm








                                                             (7. 7) 

Here, Gm and Kr are maximum HM growth rate of the plant and the plant’s growth rate 

(Michaelis-Menton half saturated constant for growth); PLB is plant biomass; HMP, 

HMmin and HMmax are heavy metal in the plant, minimum heavy metal in the plant and 

maximum heavy metal in the plant, respectively; and T is temperature. 

7.2.3.8 Plant uptake 

Plant uptake (phragmites australis) is defined as a function of maximum uptake rate 

at the optimum temperature as explained in Equation 7.8, where Um and Ku 

respectively, are the maximum uptake rates of plants and the uptake rate of HM 

(Michaelis-Menton half saturated constant for uptake). 

   

   minmax

20

maxmax 05.1

HMHMKDISHM

DISHMHMHMPLBU
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T

p








                                  (7. 8) 
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7.2.3.9 Plant mortality 

The first order reaction with Arrhenius function of temperature was used to express 

the plant mortality and the detritus and as shown below. 

 2007.1  T

rMPLHMMHM                                                                            (7. 9) 

 2007.1  T

mMDETHMDe                                                                           (7. 10) 

 20

20

 TKKT                                                                                                    (7. 11) 

Here, Mr and Mm are the mortality rate and maximum HM mineralization, respectively; 

KT  is the removal rate constant at T°C; K20 is the removal rate constant at 20◦C; θ 

is dimensionless; and T is the water temperature (◦C). The value of θ is 1.05 for plant 

growth and plant uptake, whereas the plant’s mortality decomposition is more 

sensitive to temperature changes. Therefore, the θ value ranges from 1.07 to 1.08 

(Kumar et al. 2011). 

7.2.4 Calibration and sensitivity analysis 

Before applying the developed STELLA model to estimate the removal of HM, the 

model was calibrated and validated using standard trial and error procedure. In 

general, model calibration is a process of adjusting the selected parameter values to 

obtain the best fit between the observed data and simulated results. In practical 

modelling, sensitivity analysis is carried out to aid in model calibration. This is done 

by changing the parameters and observing the corresponding response on the 

selected parameters. Thus, the sensitivity (S) of a parameter (P) is defined as follows: 

PP

XX
S




                                                                                                          (7. 12) 

Here, X is the model output. The higher the value of S, the more important the 

parameter (Jørgensen and Fath 2011). The relative change in the parameter is 

chosen based on experimental knowledge as to the certainty of the parameters. 
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Table 7. 1 Summary of the state variables, processes, parameters and their associated 

units in the model development for Pb. 

Symbol Description Value Unit Source 

State variables 
ADSPb 
 
DISPb 
 
PLPb 
 
PLBPb 
 
DETPb 

                                           
Amount of Pb adsorbed in HH 
sludge 
Dissolved amount of Pb in HH 
sludge 
Amount of Pb found in plants 
Amount of Pb found in plants 
biomass 
Amount of Pb found in detritus 
and used by bacteria 
 
 

 
- 
 
- 
 
- 
 
- 
 
- 

 
mg Pb day-1 
 

mg Pb day-1 
 

mg Pb day-1 

 
mg Pb day-1 
 
mg Pb day-1 

 
Calculated 
 
Observed data 
 
Estimated 
 
Estimated 
 
Estimated 
 

Processes 
Gr 
Up 
Mp 
De 
Ad 

 
Pb requirement for growth 
Pb through plants 
Mortality of plant 
Decomposition of detritus 
Pb adsorption 

 
Eq.(7.7) 
Eq.(7.8) 
Eq.(7.9) 
Eq.(7.10) 
Eq.(7.5) 

 
mg Pb day-1 
mg Pb day-1 
mg Pb day-1 
mg Pb day-1 
mg Pb day-1 

 
- 
- 
- 
- 
- 
 

Parameters 
Pbmax 
Pbmin 
Um 
 
Ku 
Mm 
 
Pe 
Pbp 
Mr 
 
Gm 
Kr 

 
Maximum Pb in plants 
Minimum Pb in plants 
Maximum uptake of Pb from 
plants 
Michaelis Menton for uptake 
Maximum mineralization 
 
Pb equilibrium concentration 
Pb in plant 
Mortality rate 
 
Maximum growth of plant 
Michaelis Menton plant growth 
rate 
 

 
0.11 
0.001 
0.26 
 
5.24 
0.2 
 
- 
0.000024 
0.001 
 
2.08 
2.8 

 
g (100g)-1 
g (100g)-1 
day-1 
 
mg Pb (L day)-1 

day -1 
 
mg Pb (L day)-1 

mg mg-1 
mg Pb (L day)-1 
 
mg Pb (L day)-1 
mg Pb (L day)-1 

 
Estímated 
Estímated 
Calculated 
 
Calculated 
(Kumar et al. 
2011) 
Calculated 
Calculated 
(Kumar et al. 
2011) 
Calculated 
Calculated 

Others 
INPb 
C0 
T 
 
V 
F 
 
TA 

 
Inflow of Pb 
Pb concentration of inflow 
Temperature requirement of plant 
growth  
Volume of wastewater 
Flow rate of wastewater into the 
CW 
Amount of adsorbent  

 
TF 
TF 
TF 
 
12 
12 
 
2500 

 
mgPb day-1 
mgPb L-1 
°C 
 
L  
L day-1 
 
g 

 
Observed data 
Observed data 
Observed data 
 
Experiment 
Experiment 
 
Calculated 

TF is a Table function which is incorporated into the model. 

 

 

 

 

 

 

 



Chapter 7: Modelling heavy metals transformation in CWs treating landfill leachate 

 
152 

 

Table 7. 2 Summary of the state variables, processes, parameters and their associated 

units in the model development for Cr. 

Symbol Description Value Unit Source 

State variables 
ADSCr 
 
DISCr 
 
PLCr 
PLBCr 
 
DETCr 

 
Amount of Cr adsorbed in HH 
sludge 
Dissolved amount of Cr in HH 
sludge 
Amount of Cr found in plants 
Amount of Cr found in plants 
biomass 
Amount of Cr found in detritus and 
used by bacteria 
 

 
- 
 
- 
 
- 
- 
 
- 
 

 
mg Cr day-1 
 

mg Cr day-1 
 

mg Cr day-1 
mg Cr day-1 
 
mg Cr day-1 

 
Calculated 
 
Observed data 
 
Estimated 
Estimated 
 
Estimated 
 

Processes 
Gr 
Up 
Mp 
De 
Ad 

 
Cr requirement for growth 
Cr through plants 
Mortality of plant 
Decomposition of detritus 
Cr adsorption 
 

 
Eq.(7.7) 
Eq.(7.8) 
Eq.(7.9) 
Eq.(7.10) 
Eq.(7.5) 

 
mg Cr day-1 
mg Cr day-1 
mg Cr day-1 
mg Cr day-1 
mg Cr day-1 

 
- 
- 
- 
- 
- 

Parameters 
Crmax 
Crmin 
Um 
 
Ku 
Mm 
 
Pe 
Crp 
Mr 
 
Gm 
Kr 

 
Maximum Cr in plants 
Minimum Cr in plants 
Maximum uptake of Cr from plants 
Michaelis Menton for uptake 
Maximum mineralization 
 
Cr equilibrium concentration 
Cr in plant 
Mortality rate 
 
Maximum growth of plant 
Michaelis Menton plant growth rate 
 

 
1 
0.195 
0.114 
 
2.18 
0.2 
 
- 
0.00052 
0.001 
 
3 
3 
 

 
g (100g)-1 
g (100g)-1 
day-1 
 
mg Cr (L day)-1 
day -1 
 
mg Cr (L day)-1 
mg mg-1 
mg Cr (L day)-1 
 
mg Cr (L day)-1 
mg Cr (L day)-1 

 
Estímated 
Estímated 
Calculated 
 
Calculated 
(Kumar et al. 
2011) 
Calculated 
Calculated 
(Kumar et al. 
2011) 
Calculated 
Calculated 

Others 
INCr 
C0 
T 
 
V 
F 
 
TA 

 
Inflow of Cr 
Cr concentration of inflow 
Temperature requirement of plant 
growth  
Volume of wastewater 
Flow rate of wastewater into the 
CW 
Amount of adsorbent  

 
TF 
TF 
TF 
 
12 
12 
 
2500 

 
mgCr day-1 
mgCr L-1 
°C 
 
L  
L day-1 
 
 g 

 
Observed data 
Observed data 
Observed data 
 
Experiment 
Experiment 
 
Calculated 

TF is a Table function which is incorporated into the model. 
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Table 7. 3Summary of the state variables, processes, parameters and their associated 

units in the model development for Cd. 

Symbol Description Value Unit Source 

State variables 
ADSCd 
 
DISCd 
 
PLCd 
 
PLBCd 
 
DETCd 

 
Amount of Cd adsorbed in HH 
sludge 
Dissolved amount of Cd in HH 
sludge 
Amount of Cd found in plants 
Amount of Cd found in plants 
biomass 
Amount of Cd found in detritus and 
used by bacteria 
 

 
- 
 
- 
 
- 
- 
 
- 

 
mg Cd day-1 
 

mg Cd day-1 
 

mg Cd day-1 

 
mg Cd day-1 
 
mg Cd day-1 

 
Calculated 
 
Observed data 
 
Estimated 
 
Estimated 
 
Estimated 
 

Processes 
Gr 
Up 
Mp 
De 
Ad 

 
Cd requirement for growth 
Cd through plants 
Mortality of plant 
Decomposition of detritus 
Cd adsorption 
 

 
Eq.(7.7) 
Eq.(7.8) 
Eq.(7.9) 
Eq.(7.10) 
Eq.(7.5) 

 
mg Cd day-1 
mg Cd day-1 
mg Cd day-1 
mg Cd day-1 
mg Cd day-1 

 
- 
- 
- 
- 
- 

Parameters 
Cdmax 
Cdmin 
Um 
 
Ku 
Mm 
 
Pe 
Cdp 
Mr 
 
Gm 
Kr 

 
Maximum Cd in plants 
Minimum Cd in plants 
Maximum uptake of Cd from plants 
Michaelis Menton for uptake 
Maximum mineralization 
 
Cd equilibrium concentration 
Cd in plant 
Mortality rate 
 
Maximum growth of plant 
Michaelis Menton plant growth rate 
 

 
1.5 
0.016 
0.09 
 
2 
0.2 
 
- 
0.00002 
0.001 
 
0.82 
1.26 
 

 
g (100g)-1 
g (100g)-1 
day-1 
 
mg Cd (L day)-1 
day -1 
mg Cd (L day)-1 
 
mg mg-1 
mg Cd (L day)-1 
 
mg Cd (L day)-1 
mg Cd (L day)-1 

 
Estímated 
Estímated 
Calculated 
 
Calculated 
(Kumar et al. 
2011) 
Calculated 
Calculated 
(Kumar et al. 
2011) 
Calculated 
Calculated 

Others 
INCd 
C0 
T 
 
V 
F 
 
TA 

 
Inflow of Cd 
Cd concentration of inflow 
Temperature requirement of plant 
growth  
Volume of wastewater 
Flow rate of wastewater into the 
CW 
Amount of adsorbent  

 
TF 
TF 
TF 
 
12 
12 
 
2500 

 
mgCd day-1 
mgCd L-1 
°C 
 
L  
L day-1 
 
 g 

 
Observed data 
Observed data 
Observed data 
 
Experiment 
Experiment 
 
Calculated 

TF is a Table function which is incorporated into the model. 

7.3 Results and Discussion 

7.3.1 Simulation of heavy metals using STELLA software 

Experiments were carried out in two periods using column A (220 days) for Period 1, 

and columns A and B (185 days) for Period 2. A comparison of the measured and 

modelled data was undertaken using Period 1 (0- 220 days) for calibration and Period 

2 (220- 405 days) for validation. During the calibration, the input parameters were 
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obtained from experimental measurements, theoretical calculations or existing 

literature (Tables 7.7- 7.9). The model was calibrated by trial and error adjustment of 

the key parameters (within a reasonable range) until predictions under similar 

conditions had good agreement with the observed data. The measured HM 

concentrations ranged from 54 µg L-1- 264 µg L-1, 21 µg L-1- 190 µg L-1 and 87 µg L-1- 

342 µg L-1, respectively, for Pb, Cr and Cd. Whereas the simulation ranged from 92 

µg L-1- 255 µg L-1, 38 µg L-1- 262 µg L-1 and 80 µg L-1-324 µg L-1, respectively, for Pb, 

Cr and Cd during the calibration period. The maximum value of the measured effluent 

concentration (OBS) for all the HM was very close to the value simulated by the 

STELLA model. However, the predicted data were slightly higher than the measured 

data for all the HM, with the exception of a few data points. In addition, the model did 

not simulate very low values for all the HM. This may be because there are other 

processes contributing to HM removal in the CWs which were not taken into 

consideration during the model built and as the removal of HM by precipitation as 

explained in section 5.3.2 chapter 5.   Figure 7.7 shows the trend of model calibration 

and validation for column A. The mean percent error (MPE = (OBS - OUT)/OBS × 

100) was 38%, 33% and 30%, respectively for Pb, Cr and Cd during the calibration 

period; and 15%, 20% and 10%, respectively, for Pb, Cr and Cd during the validation 

period. It is worth noting that the validated data for the HM was quite close to the 

observed data, despite the fact that the simulation data was higher than the 

observation data for the period of 320- 405 days in the case of Cr within the validation 

period. This slight fluctuation in the model simulation and the experimental data could 

be due to experimental error or accumulation of biomass within the CWs (growth of 

microorganism).  This could also be attributed to the fact that the plants were not 

harvested during the experimental period. The uptake of HM by plant is not significant 

(up to 6%) compared to the total amount removal in CWs. HM are taken up by roots 

and distributed to the other parts of the plant. However, a small portion is translocated 

to the other plant parts. Therefore, harvesting of the aboveground plant contributes 

only a small percent of the total HM removal in vertical flow CWs (Cheng et al. 2002; 

Kosolapov et al. 2004; Marchand et al. 2010). Another possible reason may be that 

apart from the adsorption process, the HM in CW can be removed by other processes 

such as precipitation, oxidation, ion exchange and redox reaction (Galletti et al. 2010). 

However, the system was operated to be fully saturated for 3 hour and 50 minutes 

and unsaturated  for 10 minutes; and due to a limitation of DO diffusion within HH 

sludge (Wang et al. 2008), there is aerobic and anaerobic condition along of the depth 



Chapter 7: Modelling heavy metals transformation in CWs treating landfill leachate 

 
155 

 

of the column as discussed in chapter 5 Section 5.3.2, it shows that the  precipitation 

of metals as metal sulphide cannot occur.  

 A comparison of the observed and predicted Pb, Cr and Cd concentration values in 

the effluent during the model calibration process was obtained using linear regression 

as shown in Figure 7.8. The R2 values for Pb, Cr and Cd outlet concentration values 

were 0.75, 0.69 and 0.62, respectively. The R2 values for comparisons of the observed 

and predicted Pb, Cr and Cd outlet concentration values during the model validation 

process (Figure 7.9.) were 0.78, 0.65 and 0.74, respectively for Pb, Cr and Cd 

concentration. These values represent good correlations between the model 

predictions and the experimental measurements.  

Based on these results, the mathematical model developed in this study could be 

used to describe the HM removal process in the VF CWs using HH sludge as the 

primary media. The model was run using STELLA software for a period of 185 days 

for column B. Since the results of the validation data in column A displayed a good 

match between simulated and experimental data, the calibration for column B was 

performed with the column A data. The experimental effluent HM concentrations 

ranged from 25 µg L-1 to 76 µg L-1, 8 µg L-1 to 22 µg L-1 and 24 µg L-1 to 76 µg L-1, 

respectively for Pb, Cr and Cd. On the other hand, the simulation data for Pb, Cr and 

Cd ranged, respectively from 23 µg L-1 to 63 µg L-1, 11 µg L-1 to 24 µg L-1 and 27 µg 

L-1 to 68 µg L-1, as shown in Figure 7.10. This figure shows that the mean 

concentration values of HM for the measured and simulated values were very close 

and therefore, the overall simulation is acceptable for column B. The MPEs for this 

column were 17% for Pb, 17% for Cr and 17% for Cd.  A comparison between the 

observed and predicted Pb, Cr and Cd concentrations in effluent during the model 

validation process for column B showed good correlations between the model 

predictions and the experimental measurements, with R2 being 0.82, 0.71 and 0.76, 

respectively for the Pb, Cr and Cd outlet concentrations (Figure 7.11). 
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Figure 7. 7 Model calibration and validation for (a) Pb, (b) Cr and (c) Cd removal in mg 

L-1 in the CWs using column A.  
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Figure 7. 8 Comparison of model predicted and field measured of Pb, Cr and Cd 

removal in µg L-1 in the CWs using column A during model calibration. 

 

 



Chapter 7: Modelling heavy metals transformation in CWs treating landfill leachate 

 
158 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. 9  Comparison of model predicted and field measured of Pb, Cr and Cd 

removal in µg L-1 in the CWs using column A during model validation. 
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Figure 7. 10 Model validation for (a) Pb, (b) Cr and (c) Cd removal in mg L-1 in the CWs 

using column B. 
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Figure 7. 11 Comparison of model predicted and field measured of Pb, Cr and Cd 

removal in µg L-1 in the CWs using column B during model validation. 

7.3.2 Sensitivity analysis 

Sensitivity analysis provides a good overview of the most sensitive components in the 

model. sensitivity analysis provides a measure of the sensitivity of the parameters, 

forcing functions, initial values of the state variables of the sub models, or sub model 

to the state variables of greatest interest in the model (Jørgensen and Fath 2011). 
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The sensitivity of the model was tested using the 10 parameters which were the most 

likely to be important: Gm, Kr, Um, Ku, Mm, Mr, HMmax, HMmin, n and Kf (Table 

7.10). All these parameters are related to the main processes of HM removal in this 

study (Gr, Up, Mp, De and Ad). This was done by examining the relative change in 

the model output and dividing it by the relative change in the value of the tested 

parameter. The magnitude of the changes in the parameter values may be 

proportional to the value of the parameter; this also depends on the possible range of 

the parameter. Most changes were made between -50% and +50% (Van der Peiji and 

Verhoeven 1999). In this study, changes were made at ±40%. Table 7.10 shows that 

the increase and decrease of n caused a significant change in the corresponding state 

variable of the model. Similarly, the change in Kf also caused changes in the model 

output and the corresponding state variables. This is primarily because the adsorption 

process is supposed as the main process for the removal of HM by the HH sludge in 

the CWs. The rigid structure and fixed set of parameters do not accurately reflect the 

changes in the output of the VF CW. 
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Table 7. 4 Sensitivity analysis for the selected parameters included in the model. 

Change 
of 

 Parameter 
value 

 S (+40%) 
 S (-40%) 

 Pb Cr Cd  Pb Cr Cd  Pb Cr Cd 

Gm  2.08 3 0.82  1.0810-8- 1.33

10-7 
2.1810-8- 
1.4310-7 

1.6410-7- 
3.2210-7 

 2.1010-8- 1.32
10-7 

2.1810-7- 6.23
10-7 

7.0810-8- 
2.4710-7 

 
Kr  2.8 3 1.26  1.4310-8- 2.1

10-8 
1.9810-7- 
2.1310-6 

1.0810-8- 
2.3310-8 

 1.0810-8- 1.33
10-7 

1.1110-7- 5.01
10-6 

2.0810-7- 
4.9110-7 

 
Um  0.26 0.114 0.09  1.4810-5- 3.69

10-5 
0.4110-5- 
0.5510-3 

6.6310-6- 
2.0210-5 

 1.5610-5- 3.92
10-5 

0.4110-3- 0.55
10-3 

6.6310-6- 
2.0210-5 

 
Ku  5.24 2.18 2  3.9110-6- 2.38

10-5 
0.1910-3- 
0.3310-3 

2.1410-6- 
1.0010-5 

 1.4110-5- 4.72
10-5 

0.3110-3- 0.63 
10-3 

2.7110-6- 
1.4710-5 

 
HMmax  0.11 1 1.5  2.0110-5-     

8.7510-5 
6.6710-5-     
8.9310-5 

5.0810-8- 
1.5510-7 

 1.4510-5- 6.33
10-5 

0.1910-3- 0.26
10-3 

1.1910-7- 
3.6510-7 

 
HMmin  0.001 0.195 0.016  2.3210-5-0.11

10-3 
0.1110-3- 
0.1510-3 

7.1710-8- 
2.1810-7 

 8.8310-9- 3.51
10-7 

0.1510-5- 0.12
10-3 

7.1210-8- 
2.1610-7 

 
Mr  0.001 0.001 0.001  2.4810-6-8.48

10-6 
7.7310-5-        
0.1810-3 

1.3210-6- 
5.97 10-6              

 2.6710-6- 8.61
10-6 

8.0310-5- 0.18
10-3 

1.4110-6- 
6.0910-6 

 
Mm  0.2 0.2 0.2  1.1610-5- 9.86

10-5 
1.8210-6- 
4.7210-5 

5.8410-8- 
8.6810-6 

 1.0910-7- 1.16  
10-5 

5.0510-6- 0.10
10-3 

1.4110-6- 
6.0910-6 

 
n  0.53 1.52 0.5  0.6010-1- 2.00

10-1 
2.7210-3- 
3.3610-1 

1.3210-1- 
3.2010-1 

 3.1010-1- 6.41
10-1 

4.7010-3- 5.91
10-1 

2.0310-1- 
6.7010-1 

 
Kf  43 1.7 0.43  0.1210-1- 0.54

10-1 
1.410-3- 4.44

10-1 
0.310-1- 1.43

10-1 
 0.2310-1-   1.03

10-1 
7.5010-3- 22.70

10-1 
5.0010-1- 
2.6010-1 
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7.3.3 Fate of heavy metals in VFCW 

To assess the performance of the VF CWs for the removal of HM from landfill 

leachate, a scenario was simulated to investigate the HM dynamics for the anoxic 

condition, using HH sludge as the primary media in the VF CWs. The input data of 

the HMs were inserted into the STELLA software during model calibration and 

integrated by using the second order Runge-Kutta method with a time step of 0.02 

day. Once the model finished its run (i.e. at the end of 220 days), the amount of HM 

that accumulates into the state variables, and the processes of the model show how 

much HM is removed by the individual pathways. Therefore, it is possible to calculate 

the efficiency of the individual processes, such as Ad (Eq. 7.5), Up (Eq. 7.8) and Mp 

(Eq. 7.9) and De (Eq. 7.10). A mass balance for all state variables as simulated by 

the model revealed approximately 89%, 91% and 91% for Ad; 6%, 5.1% and 5.2% for 

Up; and 1%, 1.15% and 1% for Mp and De for respectively Pb, Cr and Cd. The results 

from the mass balance show that the major HM transformation routes in this study 

were adsorption, with a small amount of uptake by the plant. The effect of various 

parameters on adsorption was studied via batch experiments (Chapter 3).  The 

adsorption results of Pb, Cr and Cd ions by HH sludge showed a slightly better fit with 

the Freundlich compared to Langmuir. The Langmuir isotherms data found that HH 

sludge had 40 µg g-1, 130 µg g-1 and 30 µg g-1 adsorption capacities, respectively for 

Pb, Cr and Cd.  On the other hand, the Freundlich isotherm results showed that a 

precipitation reaction may occur for Pb and Cd removal where n values > 1.  Lead 

and cadmium could precipitate to form insoluble compounds with sulphide in 

anaerobic zones of CWs (Kadlec and Wallace 2008). The results the from effect of 

contact time on HM removal (Section 3.3.2.2 in chapter 3) shows a sharp rise in Pb 

and Cr removal within the first hour, indicating the instant at which the removal of 

these HM takes place. This can be adduced to the excess of binding sites on highly 

accessible surfaces like particles and macropores. Over time, the curve starts to 

plateau because the rate of removal is much slower. This is due to the accumulation 

of metal ions on the binding sites until it reaches equilibrium; and thereafter, sorption 

would be via intraparticle diffusion in meso- and micropores and/or sorption by the 

organic matter (Zhou and Haynes 2011). 

The adsorption process in STELLA was described to calculate the Pe concentration 

using the Freundlich isotherm. From the model simulation, approximately 526 µg, 518 

µg and 640 µg of Pb, Cr and Cd, respectively adsorbed during the calibration stage 
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of the model run, and the corresponding inflow of these heavy metals amounts were 

591 µg, 570 µg and 712 µg for Pb, Cr and Cd, respectively. The high amount of HM 

adsorbed by the media was as a result of using HH sludge as the main substrate and 

an anoxic condition to elongate the contact time between the media and HM. The 

overall simulation of Ad is reasonably good in the STELLA model, especially for the 

adsorption process. 

Unfortunately, no data from the use of HH sludge as a substrate in CWs for HM 

removal were found in the literature. Therefore, direct comparison was not possible. 

However, several authors used the STELLA program to describe the adsorption 

process in CWs and using different kinds of substrates and pollutants. Pimpan and 

Jindal (2009) showed that the maximum cadmium removal simulated by the STELLA 

software occurred via accumulation in soil with mass fraction values of 33.6–76.6% 

at different hydraulic retention times. Kumar et al. (2011) revealed that 72% of 

phosphorus was removed via the adsorption process as simulated by the STELLA 

software using VF CWs and alum sludge as main substrate.  Accordingly, adsorption 

seems to be the main process to remove Cd and phosphorous in CWS. 

The uptake of HM by plants in this study was low. This was primarily because the 

plants in CWs contribute to HM removal through substrate stabilization, rhizosphere 

oxidation, supply of organic matter for microorganisms for their growth and the 

transportation of water to wetland soil, rather than through the direct uptake of metals 

(Kosolapov et al. 2004). 

7.4 Conclusion 

In this chapter, a dynamic model for HM transformation in a novel CWs, using 

dewatered drinking water treatment sludge as main substance was developed using 

STELLA. The mechanisms used in the modelling included adsorption, plant uptake 

and growth. The most significant pathway of HM retention was adsorption. In terms 

of the model’s sensitivity, the adsorption parameter was the most important factor. 

The model was calibrated in order to achieve predictions that were close to the 

experimental data. A reasonable agreement was obtained between the measured and 

predicted results. A mass balance showed that up to 89%, 91% and 91% of the 

removal of HM was through adsorption, which is highly significant; whereas removal 

through plants was about 6%, 5.1% and 5.2% for Pb, Cr and Cd, respectively. This 

study demonstrates that the model could be used to describe the Pb, Cr and Cd 
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removal process from landfill leachate in CWs using ferric dewatered sludge as 

substrate.
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8.1 Conclusion 

This thesis focused on the design and assessment of a novel constructed wetland 

systems for landfill leachate treatment. In the following sections, the main conclusions 

from the research are presented. Result from the adsorption kinetics and equilibrium 

tests showed that the adsorption rate of all metals to both types of DWS  (Al- based 

and Fe- based) was quick, and with the majority of the reaction taking place within the 

first hour for Pb and Cr, while the majority of the reaction for Cd  took place within 6 

hours. The reaction rate was well described by the pseudo-second-order model for 

Cr adsorption; this indicates that chemisorption was the controlling factor in the 

adsorption of Cr to DWSs. On the other hand, pseudo-first-order model showed better 

fit for Pb adsorption. Diffusion as opposed to chemical reaction can also be the rate-

limiting step in the case of Cd adsorption. The Langmuir, Freundlich, Temkin, Frumkin 

and Harkins-Jura isotherms were all found to give reliable representations of metal 

adsorption in the experiments. The HH-sludge had a particularly high capacity for 

adsorption of Pb, Cr and Cd. 

The mechanistic study using sequential extraction, FTIR spectra and statistical 

analysis (PCA and CCA) showed that low concentrations of heavy metals sorbed by 

dewatered waterworks sludges were in the form of water-soluble and exchangeable 

fractions, whilst the greatest concentrations of the metals sorbed were strongly bound 

and would not be expected to be readily released under natural conditions. In addition, 

the FTIR spectra of HH sludge loaded with Pb, Cr and Cd suggested a predominant 

bidentate chelating mode for these heavy metals with the carboxylate groups of the 

humic substances. The correlation analysis, PCA and CCA showed high correlation 

between Cd uptake and Fe- or Al-(oxy) hydroxide, while Cr and Pb uptake correlated 

with organic carbon. 

Based on these result, the suitable drinking water sludge was selected for the design 

and development of a novel CWs for landfill leachate treatment. The two design 

variables (CW media and wetting/drying regime) were found to have significant 

impacts on the removal of different pollutants. High removal rate of heavy metals was 

obtained by adsorption in anoxic condition, and precipitation to ferric dewatered 

sludge in oxidising condition. However, the removal efficiency was more pronounced 

when the anoxic condition employed, reaching up to 62%, 75% and 66% respectively 

for Pb, Cr and Cd in the first operational period,  and 74%, 71% and 72% for Pb, Cr 

and Cd respectively in the second operational period. 
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A dynamic model for HM transformation was also developed using STELLA. The 

mechanisms used in the modelling included adsorption, plant uptake and growth. The 

result from model shows that the most significant pathway of HM removal was 

adsorption. In terms of the model’s sensitivity, the adsorption parameter was the most 

important factor. The model was calibrated in order to achieve predictions that were 

close to the experimental data. A reasonable agreement was obtained between the 

measured and predicted results. Mass balance analysis showed that up to 89%, 91% 

and 91% of the removal of HM was through adsorption, which is highly significant; 

whereas the removal through the plants was about 6%, 5.1% and 5.2% for Pb, Cr and 

Cd, respectively.  

Due to the exceptional high pollutant loading rate applied, bed clogging could be a 

major problem. In this study, it seemed that the chemical treatment process for HM 

(adsorption and precipitation) could be the main factor contributing to clogging in 

stage C. Although, the adsorption films do not become thick enough to create clogging 

problem as adsorption was limited in this stage. Chemical precipitation as HM 

hydroxide or co precipitate with iron oxyhydroxide may form film like coating on media 

surface.    

It was clearly demonstrated that with a shorter saturated time and longer unsaturated 

time, the CW system was more efficient in the removal of various pollutants due to 

the enhanced oxygen supply into the CW. The removal efficiency of COD in this study 

could be ascribed to the aerobic conditions, and anoxic microbial processes for 

denitrification. Bed clogging was shown to be a serious problem which affects COD 

removal. The main removal pathway for NH4-N was through nitrification particularly 

when a 1:1 recirculation was employed, resulting in prolonged wastewater-biofilm 

contact. Total nitrogen losses were observed in the aerobic and anoxic conditions. 

The losses in the aerobic condition may be due to denitrification occurring in the 

anoxic microzone inside sludge floc. Whereas nitrification may occur on the surface 

of the flocs, and this could be because of the high oxygen diffusion resistance within 

the sludge flocs.  

The successful development of a HYDRUS model enhanced a deeper understanding 

of the landfill leachate treatment in CWs, confirming that a good match between 

simulation data and experimental result can be achieved when sufficient data is 

available to describe the hydraulic behaviour of the sludge media. Therefore, the flow 

model can be successfully calibrated, as in this study by using the hydraulic parameter 

derived from the Van Genuchten model. The result for COD effluent concentration 
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from the measured data for the long-term period were higher than simulated data 

(55% of measured data was higher than simulation data). This is mainly because of 

clogging which is not considered by the model, and it is one of the limitations of the 

model. The model also did not simulate the high and low values of NH4-N effluent 

concentration. A reason that the model might have underestimated nitrogen removal 

is that it did not include the influence of plants. 

8.2 Recommendations for further work 

1. The batch adsorption results presented in chapters 3 and 4 are based on the use 

of a single metal adsorbate solution. Therefore, it is possible that different results may 

have been produced with the use of a multi-metal adsorbate solution. This would have 

been more representative of the synthetic landfill leachate used in the CW inflow (and 

indeed real landfill leachate), but was not investigated due to time and financial 

constraints. Thus a simple series of batch adsorption tests using multi-metal 

adsorbate solution would further refine the understanding of metal adsorption to the 

media used in the CWs. 

2.   Any future experimental work carried out on pilot-scale or field-scale tidal-flow 

landfill leachate CWs would benefit from the continuous measurement of dissolved 

oxygen and redox potential in the systems. It is felt that measurement of these 

parameters would have given a greater understanding of the OM and N 

transformation process in the tidal-flow CWs, indicating the times during the 

inflow/outflow cycle at which oxygen concentrations were highest/lowest, impacting 

on oxidation, organic matter degradation and nitrification/denitrification processes. 

3. Future experimental work should also include investigating the structure of the 

microbial communities (i.e. characteristics and composition) and their impact on and 

contribution to organic matter and nitrogen removal in the system. 

4. The kinetics of OM and NH4-N adsorption and OM degradation and nitrification 

during bed resting should be further investigated. This can provide key information to 

determine the operational parameters (loading rate, contact and rest time) and 

optimize the OM and nitrogen conversion processes. 
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Figure A. 1 Point of zero charge (PZC) determination of aluminium- based sludges. 
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Figure A. 2 Point of zero charge (PZC) determination of ferric- based sludges. 
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Figure A. 3 XRD patterns of aluminum-based sludges. 
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Figure A. 4  XRD patterns of ferric-based sludges. 
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Figure A. 5  Removal efficiency of lead by aluminum- based sludges at different contact time and three different sludge dosages.  
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Figure A. 6 Removal efficiency of lead by ferric- based sludges at different contact time and three different sludge dosages.  
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Figure A. 7  Removal efficiency of chromium by aluminium- based sludges at different contact time and three different sludge dosages.  
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Figure A. 8 Removal efficiency of chromium by ferric- based sludges at different contact time and three different sludge dosages.  
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Figure A. 9 Removal efficiency of cadmium by aluminium- based sludges at different contact time and three different sludge dosages.  
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Figure A. 10 Removal efficiency of cadmium by ferric- based sludges at different contact time and three different sludge dosages. 
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Figure A. 11 Removal efficiency of iron by aluminium- based sludges at different contact time and three different sludge dosages.  
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Figure A. 12 Removal efficiency of iron by ferric- based sludges at different contact time and three different sludge dosages
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Table B. 1 Adsorption rate constant and correlation coefficients for first order model 

for adsorption of heavy metals on DWSs. 

Sludge 
 

Heavy Metal 
 

qe (mg g-1) 
K1      

(min-1) 
R2 

  

GU  Cr  0.004 0.05 0.77 

  Pb  0.002 0.06 0.91 

  Cd  0.108 0.04 0.98 

  Fe 
 
 
 
 
 

 18.70 0.14 0.98 
 
        

WD  Cr  0.029 0.03 0.97 

  Pb  0.005 0.09 0.93 

  Cd  0.023 0.03 0.95 

  Fe 
 

 21.96 0.06 0.97 

       

OS  Cr  0.012 0.05 0.83 

  Pb  0.020 0.11 0.98 

  Cd  0.207 0.08 0.90 

  Fe 
 

 22.10 0.10 0.87 

       

HU  Cr  0.009 0.09 0.93 

  Pb  0.001 0.07 0.91 

  Cd  0.105 0.04 0.99 

  Fe 
 

 4.540 0.08 0.82 

       

WA  Cr  0.071 0.09 0.88 

  Pb  0.010 0.07 0.90 

  Cd  0.112 0.06 0.85 

  Fe 
 

 7.110 0.10 0.96 

BS  Cr  0.032 0.12 0.89 

  Pb  0.001 0.09 1.00 

  Cd  0.063 0.09 0.95 

  Fe 
 

 12.08 0.09 0.88 

       

MO  Cr  0.010 0.05 0.93 

  Pb  0.001 0.08 0.66 

  Cd  0.018 0.04 0.97 

  Fe 
 

 11.58 0.06 0.90 
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HO  Cr  0.008 0.07 0.95 

  Pb  0.009 0.06 0.98 

  Cd  0.516 0.04 0.94 

  Fe 
 

 34.87 0.13 0.90 

       

CA  Cr  0.039 0.10 0.95 

  Pb  0.002 0.08 0.77 

  Cd  0.051 0.03 0.96 

  Fe 
 

 13.69 0.05 0.87 

       

FO  Cr  0.025 0.07 0.98 

  Pb  0.008 0.09 0.98 

  Cd  0.043 0.06 0.98 

  Fe 
 

 13.69 0.05 0.87 

       

HH  Cr  0.026 0.12 0.95 

  Pb  0.001 0.06 0.64 

  Cd  0.159 0.09 0.99 

  Fe 
 

 13.96 0.06 0.99 

       

AR  Cr  0.038 0.08 0.99 

  Pb  0.001 0.06 0.84 

  Cd  0.218 0.11 0.98 

  Fe 
 

 34.46 0.09 0.87 

       

WY  Cr  0.022 0.08 0.93 

  Pb  0.002 0.06 0.96 

  Cd  0.066 0.07 0.99 

  Fe 
 

 8.502 0.06 0.95 

       

BU  Cr  0.007 0.07 0.77 

  Pb  0.010 0.07 0.90 

  Cd  0.125 0.05 0.83 

  Fe  4.505 0.06 0.47 
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Table B. 2 Adsorption rate constant and correlation coefficients for second order 

model for adsorption of heavy metals on DWSs. 

Sludge 
 

Heavy Metal 
 

qe (mg g-1) 
K2  10-2  

(min-1) 
R2 

  

GU  Cr  0.08 3012 1.00 

  Pb  0.53 9.90 0.95 

  Cd  2.59 0.70 0.83 

  Fe 
 

 500 0.01 0.94 

       

WD  Cr  0.08 7.00 0.16 

  Pb  0.54 9.09 0.95 

  Cd  2.88 1.67 0.94 

  Fe 

 

 526 0.01 0.89 

       

OS  Cr  0.08 1855 1.00 

  Pb  0.59 6.26 0.97 

  Cd  0.78 1.19 0.46 

  Fe 

 

 588 4.5X10-7 0.97 

       

HU  Cr  0.08 1855 1.00 

  Pb  0.53 9.99 0.95 

  Cd  2.52 0.88 0.84 

  Fe 

 

 500 0.06 0.95 

       

WA  Cr  0.24 2.05 0.05 

  Pb  0.52 8.56 0.93 

  Cd  2.19 0.83 0.66 

  Fe 

 

 46.1 1.07 0.95 

       

BS  Cr  0.09 847.1 1.00 

  Pb  0.53 10.04 0.95 

  Cd  2.06 1.91 0.93 

  Fe 

 

 333 3.9x10-7 0.89 

       

MO  Cr  0.08 3012 1.00 

  Pb  0.53 9.92 0.95 

  Cd  1.04 3.99 0.92 

  Fe 

 

 1000 4.0x10-7 0.05 
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HO  Cr  0.08 3012 1.00 

  Pb  0.55 7.96 0.93 

  Cd  0.94 1.46 0.48 

  Fe 

 

 400 3.1x10-7 0.92 

       

CA  Cr  0.08 94.67 0.99 

  Pb  0.53 9.79 0.95 

  Cd  1.34 2.52 0.91 

  Fe 

 

 333 1.9x10-9 0.00 

       

FO  Cr  0.08 4589 1.00 

  Pb  0.54 8.54 0.95 

  Cd  1.44 1.84 0.82 

  Fe 

 

 625 3.9x10-7 0.93 

       

HH  Cr  0.08 4589 1.00 

  Pb  0.53 10.07 0.95 

  Cd  3.74 0.12 0.05 

  Fe 

 

 175 0.02 0.82 

       

AR  Cr  0.08 507.3 0.99 

  Pb  0.53 10.07 0.95 

  Cd  6.03 0.63 0.93 

  Fe 

 

 244 4.3 X10-7 0.89 

       

WY  Cr  0.08 1145 1.00 

  Pb  0.52 8.56 0.93 

  Cd  4.54 0.05 0.10 

  Fe 

 

 1250 0.4x10-7 0.55 

       

BU  Cr  0.08 4589 1.00 

  Pb  0.53 9.84 0.95 

  Cd  0.02 69.15 0.35 

  Fe  909 2.0x10-8 0.04 
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Table B. 3 Adsorption rate constant and correlation coefficients for Intraparticle 

diffusion model for adsorption of heavy metals on DWss. 

Sludge 
 

Heavy Metal 
 

D 10-7 
Kd 10-2 

(mg g-1) 
R2 

  

GU  Cr  3.48 0.08 0.59 

  Pb  290 0.02 0.76 

  Cd  48.3 1.47 0.97 

  Fe 

 

 145 150 0.87 

       

WD  Cr  0.72 0.320 0.94 

  Pb  290 0.080 0.72 

  Cd  290 0.310 0.97 

  Fe 

 

 72.5 259.4 0.96 

       

OS  Cr  1.45 0.210 0.73 

  Pb  145. 0.280 0.66 

  Cd  72.5 1.870 0.94 

  Fe 

 

 145. 342.9 0.77 

       

HU  Cr  1.45 0.150 0.60 

  Pb  580 0.010 0.83 

  Cd  48.3 1.360 0.98 

  Fe 

 

 290 87.40 0.71 

       

WA  Cr  1.45 1.190 0.68 

  Pb  72.5 0.09 0.95 

  Cd  72.5 1.150 0.90 

  Fe 

 

 580 96.11 0.66 

       

BS  Cr  1.45 0.470 0.75 

  Pb  3481 0.010 0.83 

  Cd  72.5 0.650 0.94 

  Fe 

 

 145 191.7 0.78 

       

MO  Cr  1.45 0.150 0.84 

  Pb  580 0.040 0.42 

  Cd  580 0.230 0.98 

  Fe 

 

 145 184.0 0.82 

       

HO  Cr  1.45 0.120 0.85 
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  Pb  72.5 0.110 0.94 

  Cd  72.5 6.350 0.96 

  Fe 

 

 145 382.9 0.81 

       

CA  Cr  1.45 0.480 0.84 

  Pb  290 0.040 0.62 

  Cd  72.5 0.650 0.97 

  Fe 

 

 145 423.0 0.82 

       

FO  Cr  1.45 0.360 0.84 

  Pb  145. 0.110 0.81 

  Cd  72.5 0.540 0.97 

  Fe 

 

 290 224.2 0.84 

       

HH  Cr  1.74 0.330 0.78 

  Pb  580 0.020 0.47 

  Cd  72.5 1.870 0.84 

  Fe 

 

 72.5 1.870 0.84 

       

AR  Cr  1.45 0.450 0.92 

  Pb  3481 0.010 0.65 

  Cd  145 2.160 0.89 

  Fe 

 

 145 456.3 0.84 

       

WY  Cr  0.72 0.210 0.96 

  Pb  72.5 0.090 0.95 

  Cd  72.5 0.840 0.88 

  Fe 

 

 72.5 1530 0.93 

       

BU  Cr  2.90 0.160 0.58 

  Pb  290 0.030 0.80 

  Cd  72.5 0.130 0.86 

  Fe  72.5 91.17 0.62 
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Table B. 4 Kinetic model parameters by liner regression method for pseudo first order 

model for the sorption of heavy metals by DWSs. 

Sludges 
 

Heavy Metals 
 

R2 NSD ARE qe
cal qe

exp 
  

GU  Pb  
0.92 0.512 0.339 0.052 0.052 

 Cr  
0.78 2.205 1.114 0.083 0.083 

 Cd  
0.99 3.278 2.432 0.189 0.191 

 Fe  
0.98 6.453 2.932 47.07 47.07 

    
   

  

WD  Pb  
0.93 2.134 1.197 0.052 0.052 

 Cr  
0.97 18.67 15.03 0.081 0.084 

 Cd  
0.96 36.37 33.65 0.188 0.274 

 Fe  
0.97 80.95 72.74 18.49 43.30 

    
   

  

OS  Pb  
0.99 11.29 4.692 0.052 0.052 

 Cr  
0.84 6.577 3.106 0.080 0.078 

 Cd  
0.90 503.4 232.2 0.098 0.128 

 Fe  
0.88 86.37 77.77 16.24 46.15 

    
   

  

HU  Pb  
0.91 0.251 0.209 0.052 0.052 

 Cr  
0.93 3.682 1.886 0.084 0.084 

 Cd  
0.99 201.4 180.2 0.451 0.194 

 Fe  
0.82 3.100 1.934 47.99 48.17 

    
   

  

WA  Pb  
0.91 7.160 6.115 0.052 0.049 

 Cr  
0.89 754.0 365.8 0.079 0.084 

 Cd  
0.86 43.91 33.93 0.122 0.157 

 Fe  
0.97 30.11 27.82 33.54 45.88 

    
   

  

BS  Pb  
1.00 7.6x10-5 2.6x10-5 0.052 0.052 

 Cr  
0.89 9.367 4.729 0.084 0.084 

 Cd  
0.95 52.81 48.75 0.274 0.189 

 Fe  
0.89 350.5 250.1 43.29 18.55 

    
   

  

MO  Pb  
0.66 2.644 1.077 0.052 0.052 

 Cr  
0.93 0.340 3.752 0.082 0.080 

 Cd  
0.97 23.44 21.63 0.118 0.098 

 Fe  
0.90 364.0 167.6 22.66 16.25 

    
   

  

HO  Pb  
0.99 17.157 0.804 0.052 0.052 
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 Cr  
0.95 1.030 0.874 0.083 0.084 

 Cd  
0.95 1717 799.7 0.145 0.452 

 Fe  
0.91 107.3 92.24 14.70 47.99 

    
   

  

CA  Pb  
0.78 1.620 0.810 0.052 0.052 

 Cr  
0.96 3652 1650 0.081 0.079 

 Cd  
0.96 490.9 446.4 0.541 0.122 

 Fe  
0.87 445.1 188.1 38.66 33.54 

    
   

  

FO  Pb  
0.99 0.996 0.604 0.052 0.052 

 Cr  
0.98 5.603 4.717 0.078 0.082 

 Cd  
0.989 9.892 9.059 0.128 0.118 

 Fe  
0.870 270.2 194.9 45.970 22.70 

    
   

  

HH  Pb  
0.645 1.044 0.470 0.052 0.052 

 Cr  
0.954 4.325 2.278 0.084 0.083 

 Cd  
0.991 196.2 90.72 0.194 0.158 

 Fe  
0.998 1214 705.7 48.107 14.70 

    
   

  

AR  Pb  
0.841 6.346 5.862 0.049 0.052 

 Cr  
0.995 5.367 4.585 0.084 0.081 

 Cd  
0.985 107.3 98.78 0.070 0.545 

 Fe  
0.879 191.8 133.1 12.17 38.84 

    
   

  

WY  Pb  
0.964 7.376 5.010 0.049 0.049 

 Cr  
0.932 3.720 1.931 0.084 0.084 

 Cd  
0.993 465.7 301.6 0.157 0.070 

 Fe  
0.959 756.7 533.4 45.85 12.18 

    
   

  

BU  Pb  
0.906 7.506 4.783 0.052 0.052 

 Cr  
0.772 5.293 2.349 0.084 0.084 

 Cd  
0.836 2943 1279 0.083 0.083 

 Fe  
0.475 18.47 12.83 15.00 15.02 
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Table B. 5 Kinetic model parameters by liner regression method for pseudo second 

order model for the sorption of heavy metals by DWSs. 

Sludges 
 

Heavy Metals 
 

R2 NSD ARE qe
cal qe

exp 
  

GU  Pb  
0.95 543.2 432.9 0.441 0.052 

 Cr  
1.00 8.292 3.895 0.084 0.083 

 Cd  
0.84 549.5 438.0 1.699 0.191 

 Fe  
0.95 538.6 429.6 400.8 47.07 

    
   

  

WD  Pb  
0.95 543.3 432.4 0.444 0.052 

 Cr  
0.17 93.32 85.65 0.027 0.084 

 Cd  
0.94 547.3 436.2 2.365 0.274 

 Fe  
0.89 551.9 439.6 382.1 43.30 

    
   

  

OS  Pb  
0.97 545.1 426.7 0.457 0.052 

 Cr  
1.00 8.714 3.573 0.078 0.078 

 Cd  
0.46 158.8 131.9 0.371 0.128 

 Fe  
0.98 557.3 433.7 423.2 46.15 

    
   

  

HU  Pb  
0.95 543.1 433.1 0.441 0.052 

 Cr  
1.00 15.8 11.59 0.078 0.084 

 Cd  
0.85 549.3 438.7 1.713 0.194 

 Fe  
0.96 812.9 713.5 482.6 48.17 

    
   

  

WA  Pb  
0.93 545.2 435.1 0.418 0.049 

 Cr  
0.05 58.32 48.46 0.074 0.084 

 Cd  
0.66 556.4 445.2 1.392 0.157 

 Fe  
0.95 26.08 14.77 45.12 45.88 

    
   

  

BS  Pb  
0.95 543.1 433.0 0.441 0.052 

 Cr  
1.00 9.978 5.614 0.084 0.084 

 Cd  
0.93 545.9 435.0 1.630 0.189 

 Fe  
0.89 565.6 424.8 184.1 18.55 

    
   

  

MO  Pb  
0.96 542.9 431.9 0.442 0.052 

 Cr  
1.00 7.771 6.990 0.084 0.080 

 Cd  
0.93 544.8 435.5 0.836 0.098 

 Fe  
0.05 902.3 674.8 262.6 16.25 

    
   

  

HO  Pb  
0.94 544.6 435.0 0.444 0.052 
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 Cr  
1.00 7.889 3.272 0.084 0.084 

 Cd  
0.48 64.61 37.63 0.538 0.452 

 Fe  
0.93 214.6 154.3 218.7 47.99 

    
   

  

CA  Pb  
0.95 543.0 432.5 0.442 0.052 

 Cr  
0.99 3721 1682 0.080 0.079 

 Cd  
0.91 563.0 457.0 1.023 0.122 

 Fe  
0.002 1324 1093 193.6 33.54 

    
   

  

FO  Pb  
0.95 543.8 433.3 0.446 0.052 

 Cr  
1.00 14.50 9.781 0.084 0.082 

 Cd  
0.82 533.3 418.7 1.032 0.118 

 Fe  
0.93 255.5 167.1 436.5 22.70 

    
   

  

HH  Pb  
0.95 543.0 432.6 0.441 0.052 

 Cr  
1.00 11.80 6.826 0.084 0.083 

 Cd  
0.05 352.6 253.6 1.122 0.158 

 Fe  
0.83 636.4 570.2 130.0 14.70 

    
   

  

AR  Pb  
0.95 543.0 432.8 0.441 0.052 

 Cr  
0.99 21.06 9.795 0.081 0.081 

 Cd  
0.94 546.2 435.2 4.730 0.545 

 Fe  
0.89 124.0 90.23 121.8 38.84 

    
   

  

WY  Pb  
0.93 545.2 435.1 0.418 0.049 

 Cr  
1.00 16.56 7.087 0.084 0.084 

 Cd  
0.11 623.3 449.6 0.832 0.070 

 Fe  
0.55 2128 1614 431.4 12.18 

    
   

  

BU  Pb  
0.95 543.2 432.9 0.441 0.052 

 Cr  
1.00 1.434 0.849 0.084 0.084 

 Cd  
0.35 158.6 103.8 0.015 0.083 

 Fe  
0.046 467.5 329.1 139.2 15.02 
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Table B. 6 Constant parameters, adsorption capacity and correlation coefficient for 

lead calculated for the five-adsorption models at different pHs. 

Sludge 
 

Model 
 

Parameter 
 

pH2 pH4 pH7 
   

GU  Langmuir   Qm   0.01 0.011 0.010 
    b   38.57 46.09 47.73 
    R2  0.78 0.869 0.76 
  Freundlich  Kf   2481 1384.5 4526 
    n  0.37 0.383 0.36 
    R2  0.98 0.972 0.96 
  Temkin  B1  0.07 0.067 0.08 
    KT   135 119.86 114.3 
    R2  0.91 0.882 0.92 
  Frumkin  a  54.97 64.785 39.9 
    ln k  -1.15 -2.181 -1.10 
    R2  0.85 0.872 0.87 
  H-J  A x10-5  1.02 0.976 1.26 
    B  -1.78 -1.703 -1.70 
    R2  0.69 0.743 0.68 
         
WD  Langmuir   Qm   0.02 0.017 0.01 
    b   22.7 29.12 36.75 
    R2  0.65 0.890 0.77 
  Freundlich  Kf   47.4 54.752 259.3 
    n  0.52 0.505 0.45 
    R2  0.98 0.980 0.95 
  Temkin  B1  0.05 0.050 0.05 
    KT   137 109.22 108.6 
    R2  0.81 0.873 0.82 
  Frumkin  a  10.57 10.930 4.12 
    ln k  -0.50 -0.693 -0.23 
    R2  0.89 0.880 0.86 
  H-J  A x10-5  1.29 1.274 1.68 
    B  -1.68 -1.534 -1.73 
    R2  0.63 0.694 0.67 
         
OS  Langmuir   Qm   0.02 0.013 0.04 
    b   31.3 37.608 29.3 
    R2  0.87 0.939 0.25 
  Freundlich  Kf   113 676.39 7.37 
    n  0.49 0.397 0.78 
    R2  0.94 0.979 0.79 
  Temkin  B1  0.03 0.062 0.05 
    KT   288 111.12 134 
    R2  0.63 0.803 0.75 
  Frumkin  a  1.22 42.945 6.26 
    ln k  0.60 -1.893 -0.31 
    R2  0.74 0.924 0.95 
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  H-J  A x10-5  2.08 0.972 1.59 
    B  -1.73 -1.644 -1.64 
    R2  0.86 0.740 0.85 
         
HU  Langmuir   Qm   0.02 0.014 0.02 
    b   28.8 39.087 42.9 
    R2  0.83 0.858 0.71 
  Freundlich  Kf   1.21 288.86 453 
    n  1.02 0.439 0.49 
    R2  1.00 0.985 0.79 
  Temkin  B1  0.05 0.059 0.05 
    KT   178 121.59 146.7 
    R2  0.74 0.897 0.83 
  Frumkin  a  7.55 27.445 4.44 
    ln k  -0.26 -1.404 -0.15 
    R2  0.89 0.870 0.90 
  H-J  A x10-5  1.29 1.145 1.79 
    B  -17.1 -1.648 -1.65 
    R2  0.91 0.715 0.85 
         
WA  Langmuir   Qm   0.06 0.024 0.03 
    b   13.52 26.654 29.90 
    R2  0.04 0.461 0.22 
  Freundlich  Kf   2.15 9.908 4.54 
    n  1.39 0.665 0.83 
    R2  0.50 0.787 0.69 
  Temkin  B1  0.03 0.035 0.02 
    KT   302.2 168.90 592.4 
    R2  0.50 0.568 0.34 
  Frumkin  a  1.07 3.837 1.56 
    ln k  0.67 0.617 -0.31 
    R2  0.77 0.874 0.31 
  H-J  A x10-5  2.03 1.512 3.92 
    B  -1.70 -1.578 -1.42 
    R2  0.91 0.968 0.77 
         
BS  Langmuir   Qm   0.01 0.014 0.02 
    b   43.3 42.181 29.53 
    R2  0.84 0.786 0.59 
  Freundlich  Kf   1382 518.56 36.52 
    n  0.40 0.436 0.56 
    R2  0.97 0.931 0.85 
  Temkin  B1  0.02 0.059 0.07 
    KT   334 152.78 141.1 
    R2  0.47 0.804 0.87 
  Frumkin  a  3.55 32.382 25.34 
    ln k  -0.03 -1.327 -0.83 
    R2  0.93 0.883 0.89 
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  H-J  A x10-5  1.40 1.108 1.37 
    B  -1.65 -1.762 -1.76 
    R2  0.86 0.847 0.79 
         
MO  Langmuir   Qm   0.01 0.014 0.01 
    b   31.41 30.81 46.99 
    R2  0.58 0.622 0.87 
  Freundlich  Kf   353 286.1 6932 
    n  0.42 0.431 0.34 
    R2  0.84 0.882 0.99 
  Temkin  B1  0.07 0.059 0.06 
    KT   126 112.1 109 
    R2  0.89 0.786 0.72 
  Frumkin  a  67.26 27.531 12.6 
    ln k  -1.27 -1.462 -0.66 
    R2  0.89 0.851 0.88 
  H-J  A x10-5  0.94 1.035 1.26 
    B  -1.76 -1.626 -1.63 
    R2  0.72 0.700 0.80 
HO  Langmuir   Qm   0.02 0.017 0.08 
    b   24.67 26.644 13.3 
    R2  0.88 0.807 0.05 
  Freundlich  Kf   43.02 86.397 1.81 
    n  0.54 0.485 0.97 
    R2  0.95 0.948 0.71 
  Temkin  B1  0.02 0.051 0.05 
    KT  334 114.9 129.9 
    R2  0.47 0.797 0.79 
  Frumkin  a  0.79 13.71 3.75 
    ln k  0.80 -0.841 -0.14 
    R2  0.75 0.902 0.93 
  H-J  A x10-5  2.35 1.203 1.78 
    B  -1.62 -1.572 -1.57 
    R2  0.97 0.698 0.78 
         
CA  Langmuir   Qm   0.04 0.027 0.04 
    b   16.99 20.35 24.72 
    R2  0.68 0.843 0.11 
  Freundlich  Kf   176.8 18.437 2.43 
    n  0.46 0.588 0.96 
    R2  0.96 0.956 0.64 
  Temkin  B1  0.02 0.041 0.04 
    KT   403 129.4 157.2 
    R2  0.44 0.762 0.73 
  Frumkin  a  0.87 5.786 1.44 
    ln k  0.85 -0.020 0.27 
    R2  0.73 0.952 0.95 
  H-J  A x10-5  2.35 1.500 2.26 
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    B  -1.71 -1.516 -1.52 
    R2  0.91 0.719 0.87 
         
FO  Langmuir   Qm   0.02 0.017 0.01 
    b   29.8 28.571 40.17 
    R2  0.94 0.867 0.84 
  Freundlich  Kf   9.92 74.319 2082 
    n  0.94 0.502 0.36 
    R2  1.00 0.936 0.90 
  Temkin  B1  0.06 0.048 0.06 
    KT   111 128.3 114 
    R2  0.70 0.745 0.79 
  Frumkin  a  32.3 11.56 8.09 
    ln k  -1.02 -0.588 -0.47 
    R2  0.92 0.936 0.94 
  H-J  A x10-5  0.85 1.205 1.42 
    B  -1.69 -1.613 -1.61 
    R2  0.84 0.878 0.88 
         
HH  Langmuir   Qm   0.04 0.021 0.02 
    b   21.07 24.551 45.11 
    R2  0.85 0.932 0.74 
  Freundlich  Kf   14.77 42.97 617 
    n  0.64 0.531 0.44 
    R2  0.95 0.975 0.94 
  Temkin  B1  0.06 0.046 0.04 
    KT   163 124.9 156 
    R2  0.86 0.798 0.75 
  Frumkin  a  16.74 9.068 1.91 
    ln k  -0.61 -0.419 0.17 
    R2  0.86 0.947 0.97 
  H-J  A x10-5  1.25 1.353 2.09 
    B  -1.79 -1.564 -1.57 
    R2  0.75 0.740 0.89 
         
AR  Langmuir   Qm   0.02 0.015 0.03 
    b   30.96 33.48 30.17 
    R2  0.77 0.919 0.25 
  Freundlich  Kf   58.84 149.6 1.82 
    n  0.54 0.473 1.26 
    R2  0.88 0.917 1.00 

  Temkin  B1  0.03 0.050 0.05 
    KT   267 136.9 153 
    R2  0.56 0.677 0.64 
  Frumkin  a  1.68 17.53 4.22 
    ln k  0.46 -0.910 -0.11 
    R2  0.78 0.967 0.96 
  H-J  A x10-5  1.81 1.123 1.65 



Appendix B: Tables of kinetic and adsorption isotherm parameters 

 
221 

 

    B  -1.76 -1.664 -1.66 
    R2  0.93 0.877 0.95 
         
WY  Langmuir   Qm   0.01 0.013 0.02 
    b   88.2 37.09 36.90 
    R2  0.51 0.871 0.78 
  Freundlich  Kf   12.5 28.75 3.21 
    n  0.64 0.557 0.84 
    R2  0.86 0.904 0.97 
  Temkin  B1  0.04 0.042 0.04 
    KT   173 131.1 155 
    R2  0.70 0.670 0.63 
  Frumkin  a  4.78 7.790 1.94 
    ln k  -0.10 -0.256 0.17 
    R2  0.93 0.957 0.94 
  H-J  A x10-5  1.37 1.348 1.98 
    B  -1.73 -1.554 -1.55 
    R2  0.94 0.762 0.92 
         
BU  Langmuir   Qm   0.02 0.008 0.02 
    b   31.1 45.77 40.30 
    R2  0.69 0.908 0.73 
  Freundlich  Kf   416 767.2 110 
    n  0.42 0.384 0.52 
    R2  0.97 0.968 0.89 
  Temkin  B1  0.05 0.065 0.07 
    KT   178 99.02 107 
    R2  0.72 0.832 0.91 
  Frumkin  a  5.62 47.44 15.06 
    ln k  -0.15 -2.083 -0.74 
    R2  0.91 0.894 0.85 
  H-J  A x10-5  1.35 0.912 1.5 
    B  -1.76 -1.610 -1.60 
    R2  0.92 0.713 0.55 

Qm in mg g-1, b in L mg-1, kf in L g-1.  
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Table B. 7 Constant parameters, adsorption capacity and correlation coefficient for 

chromium calculated for the five-adsorption models at different pHs. 

Sludge 
 

Model 
 

Parameter 
 

pH2 pH4 pH7 
   

GU  Langmuir   Qm   0.11 0.07 0.03 
    b   0.87 1.25 3.15 
    R2  0.93 0.68 0.74 
  Freundlich  Kf   0.23 0.19 0.28 
    n  1.79 1.75 1.52 
    R2  0.99 0.80 0.73 
  Temkin  B1  0.02 0.01 0.02 
    KT   671 499 471 
    R2  0.88 0.68 0.50 
  Frumkin  a  -1.34 1.07 1.73 
    ln k  4.09 -2.80 2.37 
    R2  0.59 0.36 0.56 
  H-J  A x10-5  7.21 5.24 4.00 
    B  -1.07 -1.10 -1.26 
    R2  0.71 0.80 0.92 
         
WD  Langmuir   Qm   0.14 0.10 0.10 
    b   0.65 0.87 0.90 
    R2  1.00 0.99 0.97 
  Freundlich  Kf   0.39 0.21 0.17 
    n  1.33 1.43 1.49 
    R2  0.99 0.96 0.99 
  Temkin  B1  0.02 0.02 0.02 
    KT   241 187 171 
    R2  0.95 0.95 0.93 
  Frumkin  a  0.19 0.38 0.82 
    ln k  2.40 2.26 2.10 
    R2  0.85 0.72 0.62 
  H-J  A x10-5  5.25 4.53 4.50 
    B  -1.07 -0.91 -0.82 
    R2  0.64 0.70 0.67 
         
OS  Langmuir   Qm   0.10 0.08 0.08 
    b   0.97 1.10 1.13 
    R2  0.96 0.94 0.92 
  Freundlich  Kf   0.17 0.13 0.11 
    n  1.69 1.83 2.01 
    R2  0.99 1.00 0.94 
  Temkin  B1  0.02 0.01 0.01 
    KT   284 316 406 
    R2  0.94 0.91 0.84 
  Frumkin  a  -1.15 252 0.07 
    ln k  3.35 -2.31 3.41 
    R2  0.65 0.91 0.00 
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  H-J  A x10-5  6.20 5.86 6.01 
    B  -0.90 -0.80 -0.79 
    R2  0.68 0.73 0.85 
         
HU  Langmuir   Qm   0.08 0.09 0.11 
    b   1.21 1.06 0.09 
    R2  0.99 0.99 0.98 
  Freundlich  Kf   0.13 0.21 0.24 
    n  2.31 1.60 1.49 
    R2  0.96 0.95 0.98 
  Temkin  B1  0.01 0.02 0.02 
    KT   1210 305 257 
    R2  0.93 0.96 0.94 
  Frumkin  a  -1.25 -0.06 0.26 
    ln k  4.78 2.79 2.56 
    R2  0.42 0.03 0.39 
  H-J  A x10-5  9.09 5.52 5.01 
    B  -0.86 -0.96 -0.99 
    R2  0.65 0.62 0.66 
         
WA  Langmuir   Qm   0.16 0.14 0.12 
    b   0.62 0.66 0.75 
    R2  0.92 0.95 0.99 
  Freundlich  Kf   0.54 0.34 0.33 
    n  1.36 1.34 1.39 
    R2  0.98 0.99 0.99 
  Temkin  B1  0.02 0.02 0.02 
    KT   429 239 265 
    R2  0.90 0.91 0.95 
  Frumkin  a  0.21 0.43 0.16 
    ln k  2.84 2.37 2.53 
    R2  0.21 0.60 0.53 
  H-J  A x10-5  5.46 4.60 4.87 
    B  -1.30 -1.08 -1.08 
    R2  0.74 0.71 0.63 
         
BS  Langmuir   Qm   0.10 0.07 0.07 
    b   0.93 1.22 1.31 
    R2  0.88 0.97 0.98 
  Freundlich  Kf   0.17 0.11 0.14 
    n  1.86 1.89 1.74 
    R2  0.98 0.98 0.94 
  Temkin  B1  0.01 0.01 0.01 
    KT   496 323 303 
    R2  0.84 0.91 0.89 
  Frumkin  a  -1.12 0.00 0.41 
    ln k  4.01 2.84 2.71 
    R2  0.58 0.00 0.26 
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  H-J  A x10-5  6.79 5.75 5.30 
    B  -0.94 -0.77 -0.87 
    R2  0.82 0.77 0.71 
         
MO  Langmuir   Qm   0.09 0.09 0.09 
    b   1.05 1.07 1.08 
    R2  0.99 0.98 1.00 
  Freundlich  Kf   0.20 0.19 0.21 
    n  1.87 1.88 1.77 
    R2  0.97 0.97 0.96 
  Temkin  B1  0.02 0.01 0.02 
    KT   678 721 544 
    R2  0.95 0.94 0.97 
  Frumkin  a  0.52 0.53 -0.29 
    ln k  3.46 3.34 3.37 
    R2  0.10 0.20 0.61 
  H-J  A x10-5  7.57 6.79 6.39 
    B  -1.03 -1.07 -1.05 
    R2  0.71 0.69 0.61 
HO  Langmuir   Qm   0.02 0.02 0.12 
    b   4.82 5.04 0.74 
    R2  0.77 0.71 0.75 
  Freundlich  Kf   2.80 0.45 0.47 
    n  1.17 1.53 1.50 
    R2  0.83 0.96 0.97 
  Temkin  B1  0.03 0.02 0.02 
    KT  1085 790 771 
    R2  0.91 0.96 0.95 
  Frumkin  a  0.26 -0.45 -0.40 
    ln k  3.10 3.56 3.51 
    R2  0.02 0.46 0.44 
  H-J  A x10-5  5.97 5.22 5.04 
    B  -1.84 -1.45 -1.47 
    R2  0.43 0.68 0.67 
         
CA  Langmuir   Qm   0.11 0.09 0.08 
    b   0.85 1.06 1.13 
    R2  0.98 1.00 1.00 
  Freundlich  Kf   0.31 0.23 0.22 
    n  1.67 1.68 1.70 
    R2  0.99 0.95 0.93 
  Temkin  B1  0.02 0.02 0.02 
    KT   654 309 469 
    R2  0.94 0.96 0.95 
  Frumkin  a  -0.03 -0.24 -0.30 
    ln k  3.41 3.17 3.17 
    R2  0.01 0.36 0.24 
  H-J  A x10-5  6.94 6.09 6.10 
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    B  -1.18 -1.06 -1.05 
    R2  0.68 0.62 0.58 
         
FO  Langmuir   Qm   0.11 0.11 0.02 
    b   0.81 0.81 5.84 
    R2  0.86 0.84 0.67 
  Freundlich  Kf   0.18 0.20 0.18 
    n  1.70 1.61 1.63 
    R2  0.97 0.98 0.95 
  Temkin  B1  0.02 0.02 0.02 
    KT   333 309 316 
    R2  0.83 0.84 0.80 
  Frumkin  a  -0.88 -0.01 0.73 
    ln k  3.59 2.98 2.76 
    R2  0.40 0.00 0.34 
  H-J  A x10-5  5.99 5.28 5.02 
    B  -0.92 -0.97 -0.97 
    R2  0.84 0.79 0.86 
         
HH  Langmuir   Qm   0.13 0.13 0.13 
    b   0.77 0.78 0.73 
    R2  0.81 0.97 0.91 
  Freundlich  Kf   0.35 0.48 0.28 
    n  1.59 1.52 1.44 
    R2  0.99 0.98 0.99 
  Temkin  B1  0.02 0.02 0.02 
    KT   604 741 623 
    R2  0.85 0.91 0.89 
  Frumkin  a  -0.30 -0.13 0.12 
    ln k  3.47 3.41 3.25 
    R2  0.15 0.07 0.04 
  H-J  A x10-5  6.45 5.89 5.63 
    B  -1.23 -1.39 -1.33 
    R2  0.78 0.66 0.67 
         
AR  Langmuir   Qm   0.11 0.08 0.06 
    b   0.77 0.97 1.48 
    R2  0.65 0.81 0.93 
  Freundlich  Kf   0.13 0.07 0.06 
    n  1.75 1.79 2.13 
    R2  0.93 0.92 0.99 

  Temkin  B1  0.01 0.01 0.01 
    KT   259 144 251 
    R2  0.77 0.80 0.87 
  Frumkin  a  0.93 -0.74 -2.06 
    ln k  2.59 2.31 2.18 
    R2  0.36 0.26 0.70 
  H-J  A x10-5  5.84 4.20 5.39 
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    B  -0.76 -0.54 -0.56 
    R2  0.81 0.92 0.81 
         
WY  Langmuir   Qm   0.11 0.11 0.11 
    b   0.82 0.85 0.83 
    R2  0.87 0.96 0.93 
  Freundlich  Kf   0.19 0.23 4.04 
    n  1.78 1.49 1.50 
    R2  0.97 0.98 0.99 
  Temkin  B1  0.02 0.02 0.02 
    KT   478 254 276 
    R2  0.83 0.92 0.91 
  Frumkin  a  0.26 0.56 0.58 
    ln k  3.30 2.46 2.51 
    R2  0.07 0.55 0.39 
  H-J  A x10-5  6.42 -4.98 5.20 
    B  -0.99 0.97 -1.00 
    R2  0.85 0.70 0.63 
         
BU  Langmuir   Qm   0.10 0.09 0.10 
    b   0.89 1.06 0.92 
    R2  0.92 0.99 0.95 
  Freundlich  Kf   0.17 0.17 4.55 
    n  1.65 1.78 1.71 
    R2  1.00 0.98 0.96 
  Temkin  B1  0.02 0.01 0.02 
    KT   265 435 507 
    R2  0.90 0.94 0.89 
  Frumkin  a  -0.12 -0.14 0.22 
    ln k  2.89 3.29 3.27 
    R2  0.05 0.07 0.07 
  H-J  A x10-5  5.97 6.01 5.75 
    B  -0.85 -0.96 -1.09 
    R2  0.73 0.73 0.76 

Qm in mg g-1, b in L mg-1, kf in L g-1.  
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Table B. 8 Constant parameters, adsorption capacity and correlation coefficient for 

cadmium calculated for the five-adsorption models at different pHs. 

Sludge 
 

Model 
 

Parameter 
 

pH4 pH7 pH9 
   

GU  Langmuir   Qm   0.02 0.06 0.01 
    b   1.64 0.77 2.09 
    R2  0.85 0.42 0.53 
  Freundlich  Kf   1.22 0.74 4.66 
    n  0.48 0.56 0.41 
    R2  0.96 0.96 0.98 
  Temkin  B1  0.11 0.09 0.15 
    KT   16.06 15.80 15.7 
    R2  0.55 0.76 0.67 
  Frumkin  a  1.09 0.28 1.71 
    ln k  -0.65 -0.32 -0.93 
    R2  0.96 0.27 0.67 
  H-J  A x10-5  0.83 0.34 0.00 
    B  -0.52 -0.50 -0.69 
    R2  0.74 0.55 0.56 
         
WD  Langmuir   Qm   0.52 0.66 0.10 
    b   0.11 0.09 0.58 
    R2  0.05 0.01 0.24 
  Freundlich  Kf   0.38 0.16 0.10 
    n  0.75 1.08 0.62 
    R2  0.83 0.50 0.82 
  Temkin  B1  0.08 0.04 0.12 
    KT   21.52 40.14 18.9 
    R2  0.84 0.44 0.89 
  Frumkin  a  0.74 0.30 1.10 
    ln k  -0.41 -0.05 -0.71 
    R2  0.76 0.18 0.41 
  H-J  A x10-5  0.80 0.54 0.00 
    B  -0.41 -0.30 -0.60 
    R2  0.37 0.36 0.36 
         
OS  Langmuir   Qm   0.52 0.32 0.25 
    b   0.11 0.15 0.23 
    R2  0.16 0.05 0.20 
  Freundlich  Kf   0.10 0.25 0.33 
    n  1.09 0.74 0.76 
    R2  0.92 0.83 0.92 
  Temkin  B1  0.04 0.06 0.08 
    KT   22.34 17.63 17.5 
    R2  0.78 0.91 0.89 
  Frumkin  a  -0.47 0.85 0.62 
    ln k  -0.68 -0.47 -0.46 
    R2  0.03 0.86 0.69 
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  H-J  A x10-5  1.20 0.20 0.00 
    B  -0.13 -0.37 -0.40 
    R2  0.45 0.36 0.42 
         
HU  Langmuir   Qm   0.02 0.01 0.01 
    b   1.89 2.75 3.34 
    R2  0.84 0.55 0.74 
  Freundlich  Kf   3.08 25.63 0.04 
    n  0.45 0.74 0.36 
    R2  0.97 0.95 0.96 
  Temkin  B1  0.13 0.02 0.17 
    KT   18.51 21.93 4.15 
    R2  0.62 0.95 0.54 
  Frumkin  a  1.13 3.81 2.92 
    ln k  -0.06 -1.26 -1.04 
    R2  0.94 0.57 0.71 
  H-J  A x10-5  0.67 0.22 0.00 
    B  -0.67 -0.78 -0.86 
    R2  0.63 0.50 0.65 
         
WA  Langmuir   Qm   0.70 0.13 0.19 
    b   0.06 0.35 0.23 
    R2  0.01 0.80 0.15 
  Freundlich  Kf   0.09 0.06 0.08 
    n  0.97 1.16 0.98 
    R2  0.87 0.92 0.92 
  Temkin  B1  0.05 0.17 0.04 
    KT   16.41 15.89 14.6 
    R2  0.58 0.75 0.53 
  Frumkin  a  0.01 0.16 0.09 
    ln k  -0.06 0.02 -0.29 
    R2  0.02 0.14 0.29 
  H-J  A x10-5  0.88 0.59 0.00 
    B  -0.13 -0.09 -0.13 
    R2  0.45 0.40 0.42 
         
BS  Langmuir   Qm   0.07 0.02 0.02 
    b   0.81 1.67 1.77 
    R2  0.49 0.74 0.88 
  Freundlich  Kf   1.08 1.51 1.87 
    n  0.57 0.46 0.48 
    R2  0.93 0.98 0.93 
  Temkin  B1  0.11 0.11 0.12 
    KT   19.08 15.11 16.3 
    R2  0.74 0.59 0.53 
  Frumkin  a  0.46 0.33 1.35 
    ln k  -0.34 -0.44 -0.67 
    R2  0.43 0.32 0.98 
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  H-J  A x10-5  0.68 0.11 0.00 
    B  -0.57 0.60 -0.66 
    R2  0.65 0.58 0.65 
         
MO  Langmuir   Qm   0.03 0.06 0.10 
    b   1.27 0.58 0.50 
    R2  0.77 0.22 0.24 
  Freundlich  Kf   1.21 0.26 0.60 
    n  0.51 0.65 0.62 
    R2  0.97 0.88 0.91 
  Temkin  B1  0.11 0.07 0.10 
    KT   16.63 14.6 16.0 
    R2  0.67 0.68 0.88 
  Frumkin  a  0.35 0.24 0.83 
    ln k  -0.38 -0.40 -0.66 
    R2  0.37 0.23 0.53 
  H-J  A x10-5  0.62 0.76 0.00 
    B  -0.56 0.31 -0.47 
    R2  0.57 0.46 0.40 
HO  Langmuir   Qm   0.40 0.29 0.15 
    b   0.15 0.19 0.38 
    R2  0.06 0.06 0.27 
  Freundlich  Kf   1.43 0.39 0.52 
    n  1.52 0.75 0.67 
    R2  0.87 0.76 0.93 
  Temkin  B1  0.08 0.07 0.09 
    KT  21.62 21.1 17.2 
    R2  0.90 0.91 0.87 
  Frumkin  a  0.70 0.72 0.72 
    ln k  -0.36 -0.42 -0.53 
    R2  0.78 0.52 0.64 
  H-J  A x10-5  0.99 0.58 0.00 
    B  -0.40 -0.44 -0.46 
    R2  0.31 0.39 0.48 
         
CA  Langmuir   Qm   0.17 0.08 0.08 
    b   0.36 0.54 0.68 
    R2  0.12 0.18 0.24 
  Freundlich  Kf   0.74 1.52 1.16 
    n  0.68 0.60 0.58 
    R2  0.87 0.86 0.87 
  Temkin  B1  0.10 0.09 0.12 
    KT   23.04 16.7 18.3 
    R2  0.88 0.90 0.87 
  Frumkin  a  0.78 0.86 1.05 
    ln k  -0.36 -0.54 -0.68 
    R2  0.78 0.68 0.51 
  H-J  A x10-5  1.04 0.74 0.00 
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    B  -0.50 -0.49 -0.61 
    R2  0.36 0.47 0.46 
         
FO  Langmuir   Qm   0.20 0.07 0.05 
    b   0.28 0.61 0.95 
    R2  0.11 0.22 0.28 
  Freundlich  Kf   0.58 0.59 1.62 
    n  0.67 0.59 0.53 
    R2  0.82 0.90 0.89 
  Temkin  B1  9.20 0.09 0.13 
    KT   0.73 15.6 17.1 
    R2  0.84 0.86 0.86 
  Frumkin  a  0.84 0.93 1.25 
    ln k  -0.52 -0.57 -0.78 
    R2  0.70 0.79 0.50 
  H-J  A x10-5  0.80 0.69 0.00 
    B  -0.47 -0.46 -0.62 
    R2  0.38 0.46 0.39 
         
HH  Langmuir   Qm   0.02 0.03 0.02 
    b   2.38 1.66 2.20 
    R2  0.73 0.74 0.65 
  Freundlich  Kf   8.16 1.70 5.20 
    n  0.40 0.50 0.43 
    R2  0.96 0.98 0.97 
  Temkin  B1  0.15 0.10 0.14 
    KT   18.52 18.2 18.6 
    R2  0.66 0.55 0.57 
  Frumkin  a  1.57 0.29 1.58 
    ln k  -0.80 -0.36 -0.81 
    R2  0.83 0.29 0.75 
  H-J  A x10-5  0.48 0.60 0.00 
    B  -0.75 -0.64 -0.74 
    R2  0.67 0.62 0.56 
         
AR  Langmuir   Qm   0.03 0.10 0.02 
    b   1.53 0.57 2.20 
    R2  0.54 0.28 0.65 
  Freundlich  Kf   3.58 0.92 5.2 
    n  0.45 0.60 0.43 
    R2  0.96 0.94 0.97 

  Temkin  B1  0.14 0.10 0.14 
    KT   18.31 19.1 18.68 
    R2  0.76 0.85 0.57 
  Frumkin  a  1.21 0.88 1.58 
    ln k  -0.68 -0.42 -0.81 
    R2  0.82 0.86 0.75 
  H-J  A x10-5  0.96 0.44 0.00 
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    B  -0.67 -0.57 -0.74 
    R2  0.63 0.52 0.56 
         
WY  Langmuir   Qm   0.45 0.20 0.01 
    b   0.10 0.22 3.44 
    R2  0.05 0.37 0.81 
  Freundlich  Kf   0.10 0.06 27.03 
    n  0.95 1.09 0.37 
    R2  0.88 0.86 0.92 
  Temkin  B1  0.05 0.02 0.16 
    KT   17.75 20.92 23.65 
    R2  0.59 0.91 0.44 
  Frumkin  a  0.00 0.16 2.86 
    ln k  -0.02 0.03 -0.94 
    R2  0.00 0.14 0.78 
  H-J  A x10-5  1.09 0.94 0.00 
    B  -0.16 -0.07 -0.92 
    R2  0.51 0.42 0.70 
         
BU  Langmuir   Qm   0.28 0.14 0.82 
    b   0.16 0.35 0.06 
    R2  0.15 0.54 0.03 
  Freundlich  Kf   7.54 14.79 0.10 
    n  0.87 1.07 0.98 
    R2  0.92 0.84 0.94 
  Temkin  B1  0.05 0.02 0.05 
    KT   16.86 24.06 16.18 
    R2  0.71 0.85 0.58 
  Frumkin  a  0.04 0.62 0.05 
    ln k  -0.10 -0.18 -0.14 
    R2  0.06 0.87 0.11 
  H-J  A x10-5  -18604 -26510 -0.17 
    B  -1.47 -2.02 -1.54 
    R2  0.13 0.07 0.16 

Qm in mg g-1, b in L mg-1, kf in L g-1.  
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Table B. 9 Constant parameters, adsorption capacity and correlation coefficient for 

iron calculated for the five-adsorption models at pH 2. 

Sludge  Model  Parameter  pH 2 

  

GU  Langmuir   Qm    -166 
    b    0.00 
    R2   0.00 
  Freundlich  Kf    3.35 
    n   1.44 
    R2   0.80 
  Temkin  B1   4.31 
    KT    10.19 
    R2   0.36 
  Frumkin  a   Nd 
    ln k   Nd 
    R2   Nd 
  H-J  A x10-5   46.9 
    B   0.67 
    R2   0.85 
        
WD  Langmuir   Qm    -20.7 
    b    0.00 
    R2   0.26 
  Freundlich  Kf    2.72 
    n   0.91 
    R2   0.88 
  Temkin  B1   7.35 
    KT    3.18 
    R2   0.47 
  Frumkin  a   Nd 
    ln k   Nd 
    R2   Nd 
  H-J  A x10-5   0.03 
    B   1.08 
    R2   0.19 
        
OS  Langmuir   Qm    -30.5 
    b    0.00 
    R2   0.08 
  Freundlich  Kf    2.89 
    n   1.76 
    R2   0.70 
  Temkin  B1   3.45 
    KT    14.2 
    R2   0.32 
  Frumkin  a   Nd 
    ln k   Nd 
    R2   Nd 
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  H-J  A x10-5   0.44 
    B   0.87 
    R2   0.97 
        
HU  Langmuir   Qm    -4.87 
    b    -0.02 
    R2   0.68 
  Freundlich  Kf    3.01 
    n   1.67 
    R2   0.62 
  Temkin  B1   3.14 
    KT    22.9 
    R2   0.19 
  Frumkin  a   Nd 
    ln k   Nd 
    R2   Nd 
  H-J  A x10-5   0.49 
    B   0.79 
    R2   0.82 
        
WA  Langmuir   Qm    -52.1 
    b    0.00 
    R2   0.03 
  Freundlich  Kf    2.54 
    n   1.14 
    R2   0.84 
  Temkin  B1   5.58 
    KT    4.34 
    R2   0.41 
  Frumkin  a   Nd 
    ln k   Nd 
    R2   Nd 
  H-J  A x10-5   0.15 
    B   1.06 
    R2   0.86 
        
BS  Langmuir   Qm    -0.83 
    b    -0.03 
    R2   0.85 
  Freundlich  Kf    0.28 
    n   6.31 
    R2   0.28 
  Temkin  B1   0.09 
    KT    23.3 
    R2   0.22 
  Frumkin  a   Nd 
    ln k   Nd 
    R2   Nd 
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  H-J  A x10-5   0.54 
    B   2.04 
    R2   0.79 
        
MO  Langmuir   Qm    -2.82 
    b    -0.02 
    R2   0.59 
  Freundlich  Kf    0.15 
    n   2.16 
    R2   0.83 
  Temkin  B1   0.39 
    KT    3.78 
    R2   0.32 
  Frumkin  a   Nd 
    ln k   Nd 
    R2   Nd 
  H-J  A x10-5   0.16 
    B   2.97 
    R2   0.24 
HO  Langmuir   Qm    -12.2 
    b    -0.01 
    R2   0.21 
  Freundlich  Kf    0.92 
    n   1.12 
    R2   0.76 
  Temkin  B1   5.68 
    KT   1.37 
    R2   0.41 
  Frumkin  a   Nd 
    ln k   Nd 
    R2   Nd 
  H-J  A x10-5   0.15 
    B   1.56 
    R2   0.41 
        
CA  Langmuir   Qm    -0.25 
    b    -0.04 
    R2   0.87 
  Freundlich  Kf    0.16 
    n   5.10 
    R2   0.21 
  Temkin  B1   0.01 
    KT    72.2 
    R2   0.00 
  Frumkin  a   Nd 
    ln k   Nd 
    R2   Nd 
  H-J  A x10-5   0.42 
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    B   2.14 
    R2   0.71 
        
FO  Langmuir   Qm    -7.50 
    b    0.00 
    R2   0.20 
  Freundlich  Kf    0.64 
    n   5.12 
    R2   0.44 
  Temkin  B1   0.31 
    KT    16.5 
    R2   0.40 
  Frumkin  a   Nd 
    ln k   Nd 
    R2   Nd 
  H-J  A x10-5   0.72 
    B   1.95 
    R2   0.88 
        
HH  Langmuir   Qm    -13.8 
    b    0.00 
    R2   0.01 
  Freundlich  Kf    Nd 
    n   Nd 
    R2   Nd 
  Temkin  B1   -0.82 
    KT    0.19 
    R2   0.36 
  Frumkin  a   Nd 
    ln k   Nd 
    R2   Nd 
  H-J  A x10-5   0.49 
    B   3.02 
    R2   0.37 
        
AR  Langmuir   Qm    -25.2 
    b    0.00 
    R2   0.96 
  Freundlich  Kf    0.80 
    n   1.49 
    R2   0.95 

  Temkin  B1   3.53 
    KT    0.96 
    R2   0.86 
  Frumkin  a   Nd 
    ln k   Nd 
    R2   Nd 
  H-J  A x10-5   0.01 
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    B   2.12 
    R2   0.12 
        
WY  Langmuir   Qm    -1.31 
    b    -0.18 
    R2   0.69 
  Freundlich  Kf    0.21 
    n   3.11 
    R2   0.75 
  Temkin  B1   0.19 
    KT    0.66 
    R2   0.24 
  Frumkin  a   Nd 
    ln k   Nd 
    R2   Nd 
  H-J  A x10-5   0.49 
    B   2.07 
    R2   0.67 
        
BU  Langmuir   Qm    -3.65 
    b    -0.02 
    R2   0.47 
  Freundlich  Kf    0.28 
    n   2.73 
    R2   0.70 
  Temkin  B1   0.40 
    KT    0.59 
    R2   0.33 
  Frumkin  a   Nd 
    ln k   Nd 
    R2   Nd 
  H-J  A x10-5   0.52 
    B   2.03 
    R2   0.76 

Qm in mg g-1, b in L mg-1, kf in L g-1. Please see the chapter 3 for explanation of negative 
values for Fe in section 3.3.2.  
Nd: not determined.

 


