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ABSTRACT 

Blood flow rheology is a complex phenomenon, and the study of blood flow 

in the human body system under normal and pathological conditions are considered 

to be of great importance in biomedical engineering. Consequently, it is important to 

identify the key parameters that influence the flow behaviour of blood. The 

characterisation of blood flow will also enable us to understand the flow parameters 

associated with physiological conditions such as atherosclerosis. Thrombosis plays a 

crucial role in stopping bleeding when a blood vessel is injured. Developing tools 

that can successfully study the influences of hemodynamics on thrombus formation 

in arteries and vessels are considered to be essential.  

This thesis describes the steps taken to develop computational tools that focus 

on using the meshless particle-based Lagrangian numerical technique, which is 

named the smoothed particle hydrodynamic (SPH) method, to study the flow 

behaviour of blood and to explore flow condition that induces the formation of 

thrombus in blood vessels. A weakly-compressible SPH method is used here to 

simulate blood flow inside vessels. The basic governing equations solved in the SPH 

are the mass and momentum conservation equations. Due its simplicity and 

effectiveness, the SPH method is employed here to simulate the process of 

thrombogenesis under the influence of various blood flow parameters. In the present 

SPH simulation, blood is modelled by particles that have the characteristics of 

plasma and platelets. To simulate a 3-dimensional coagulation of platelets which 

form a thrombus, the adhesion and aggregation process of platelets are modelled by 

an effective inter-particle force model. With these models, platelet motion in the 

flowing blood and platelet adhesion and aggregation are effectively coupled with 

viscous blood flow. In this study, the adhesion and aggregation of blood particles are 

performed inside vessels with various geometries and with different flow velocity 

scenarios. The capabilities of this strategy were evaluated by comparing the 

simulation results with existing numerical and experimental results. All of these 

cases realistically model the formation of thrombus including thrombus collapse and 

partial separation. This thesis is considered to be the first work that is dedicated to 

the SPH simulation of thrombus formation inside blood vessels with various 

geometries and under different flow conditions. 
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1.1 Introduction 

Various diseases can be considered as the major cause of human death worldwide. 

The cardiovascular is one of those diseases that leads to large number of fatalities 

every year. Basically, cardiovascular diseases (CVD) involve the heart and vessels in 

human body, in which heart attacks and strokes are considered as the most common 

accidents. Moreover, these diseases may occur without any symptoms and can cause 

sudden death. 

Thrombosis has been proved, through various studies, as a major cause of CVD. 

Thrombosis may occur in different parts of human body. This might cause plug in 

the artery or vessel and restrict blood flow. Therefore, it is vital to understand the 

correlation between thrombus formation and hemodynamic to identify the causes of 

thrombosis. 

A number of experimental and theoretical studies have been carried out to 

understand and to interpret the causes of thrombosis and to find how it is influenced 

by the haemodynamics of blood flow. To overcome the obstacles that may be 

encountered in an experimental study, numerous computational models have been 

introduced to investigate the process of thrombogenesis. The computational 

modelling of thrombus formation provides us with a wide range of tools that can be 

considered as non-invasive and more conducive for repetitive analysis.  

Numerical simulations have significantly expanded our knowledge of physical 

phenomena in many areas including science and engineering. In comparison with 

analytical techniques, computational methods generally need less unrealistic 

assumptions and suppositions. Computational modelling is also considered to be a 
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good substitute for experimental studies, which are in most cases considered to be 

more expensive and time consuming. Consequently, numerical simulations have 

been widely used to uncover wide range of physical phenomena in many emerging 

fields of research. 

Biomedical engineering is an emerging multidisciplinary field that integrates 

engineering and medical sciences. It involves several academic disciplines and 

professional specialisations, and it aims to develop better quality of healthcare 

diagnosis and methods of treatment. It combines the design and problem solving 

skills of engineering with medical and biological expertise. 

The study of blood flow system under normal and pathological conditions is of great 

importance in the field of biomedical engineering. It is well-known that incessant 

blood circulation is very important for the healthy functioning of bodily organs. 

Therefore, hemodynamics is considered to be one of the major systems in the human 

body. It is, therefore, essential to develop tools that can successfully study the 

hemodynamic of arteries or blood vessels to investigate the hemodynamic 

complications encountered with cardiovascular diseases. In addition, the developed 

tools can explore alternative surgical procedures and evaluate their clinical impact on 

the hemodynamic condition of the patient. Furthermore, it can help one to understand 

any specific process associated with thrombosis and can raise the awareness of blood 

components involved in this process. At present, a large number of clinical 

researchers are forced to depend on personal experience and in vitro facilities. 

It is, therefore, important to develop in silico tools that are capable of simulating 

hemodynamic of blood. Despite the significant improvements in computational 

methods and computer capabilities, solving these problems using conventional mesh-
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based methods is complex. However, these methods have demonstrated good 

capabilities in simulating hemodynamic flows and have generated interesting results 

with considerable clinical and practical implications. 

The main ingrained limitation of mesh-based methods is their dependence on the task 

of mesh generation. In addition, some important characteristics of hemodynamic 

flows, mainly under pathological conditions, are considered to be difficult to capture 

using mesh-based methods, including flow in complex geometries, tracking history 

of fluid properties, thrombus formation, the break-up of red blood cells 

(microcirculation) and so on. The simulation of such characteristics can be easily 

modelled with computational fluid dynamic (CFD) methods that are based on a 

Lagrangian approach instead of an Eulerian approach. Considering these facts, it is 

envisaged that simulating blood flow using Lagrangian meshless particle methods 

may alleviate a number of obstacles encountered by traditional mesh-based methods. 

As the name suggests, meshless methods do not require significant efforts with 

generation or regeneration of the mesh network or creation of connectivity between 

the nodes, which are challenging tasks in the case of flow domains with complex 

shapes. 

Due to its simplicity and robustness, Smooth Particle Hydrodynamics (SPH), a fully 

Lagrangian mesh-free method, is chosen in this thesis to model blood flow 

simulation and thrombosis. SPH was originally used in astrophysical simulation in 

the late-1970s. Since the early-1990s, the SPH method was progressively used in 

modelling various engineering applications. The SPH method has several 

advantages, including a truly mesh-free nature, simplicity in handling complex 

geometries and it is naturally convenient for parallel computation. 



Chapter 1                                                                                                                                Introduction 

 
5 

 

In the SPH method, a continuum will be discretised into a set of particles. Each 

particle is assigned relevant individual physical properties. Numerical discretisation 

interpolates the value of a physical property for a given particle based on the 

properties of its neighbouring particles using an interpolating function. More details 

regarding the SPH method are provided in the later chapters. 

1.2 Research Objectives 

The aims of this thesis are as follows: 

Traditional mesh-based methods generally encounter a number of obstacles in 

modelling flow process within complicated geometries due to their limitations 

associated with mesh generation. In contrast to mesh-based methods, the mesh-free 

or meshless methods can be easily used in discretising complicated geometries. 

Given that arteries and veins in human body have complicated geometries, meshless 

methods can serve as an efficient tool to model such complicated geometries. SPH is 

a true meshless method that is both robust and simple. The overall aim of this thesis 

is to explore the application of SPH method in simulating blood flow and thrombus 

formation. This research is primarily focused on developing suitable computational 

procedures to fully exploit the attractive properties of SPH method in modelling 

blood flow and thrombus formation. To achieve this overall objective, this research 

is subdivided into following tasks: 

• To model the behaviour of the blood flow using SPH method and to 

investigate the accuracy of the employed numerical procedure. 

• To study the influence of flow parameters for various flow conditions and 

vessel geometries. 
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• To investigate the applicability and efficiency of SPH method for modelling 

thrombus formation during blood flow inside vessels with different 

geometries. 

• To assess the influence of various parameters, such as flow velocity and 

vessel geometry, on thrombus formation and separation. 

 

1.3 Research Methodology 

To achieve the above objectives, research is undertaken in the following stages: 

• First, the relevant mathematical models and related governing equations to be 

adopted for the numerical simulation of blood flow were investigated. 

• Second, a two–dimensional Lagrangian flow model, based on SPH method, 

was developed to understand the blood flow behaviour.  

• Third, the developed code was validated in various flow simulation cases to 

explore the accuracy and stability of the numerical method. 

• Fourth, the SPH blood flow model with thrombus formation algorithm was 

developed and evaluated using both two and three-dimensional flow test 

cases. 

1.4 Outline of This Thesis 

The work reported in this thesis mainly focuses on the SPH simulation of 

hemodynamic flows in arteries or vessels with various flow characteristics. A brief 

overview of the structure of this thesis is outlined below: 
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Chapter 2 presents a brief overview of properties and constituents of blood flow. A 

literature review on analytical and computational methodologies developed in the 

past for modelling blood flow is also provided in this chapter.  

Chapter 3 highlights a suitable modelling strategy for blood flow simulations. In 

addition, SPH method is introduced in this chapter by providing the justifications for 

choosing the method in this work to simulate blood flow. The definition and 

mathematical formulations of SPH method are also presented.   

Chapter 4 describes the fundamental governing equations to be used for numerical 

modelling. Moreover, this chapter details the SPH discretisation of the governing 

Navier-Stokes equations, time integration technique and the overall numerical 

procedure adopted.  

Chapter 5 validates the accuracy of the numerical methodology developed in Chapter 

4. Primarily, the accuracy and convergence characteristics of the proposed 

methodology is verified in standard numerical tests, which are generally used in 

computational fluid mechanics. Following these numerical experiments, the 

developed methodology is then applied to study the blood flow in human bifurcation 

artery. In this test, the results of the numerical simulations are compared with the 

experimental observations reported in literature. 

Chapter 6 explores the feasibility of modelling the formation of thrombus using SPH 

method. First, the computational methods used in the past to model thrombus 

formation are highlighted. Next, a computational model which is adopted in the 

present work to simulate the thrombus formation is described. Finally, the results of 
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the numerical simulations are compared with experimental and numerical results 

reported in the literature. 

Chapter 7 presents overall concluding remarks and points out possible future 

research directions for this work. 
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2.1 Introduction 

It is believed that the concept of circulation of blood was first described by William 

Harvey in 1628. A large number of researchers have since tried to understand the 

mechanism of blood circulation in the human body, and they have proposed 

numerous physical and mathematical models to study the blood flow phenomena. 

This chapter presents a brief overview of physiological characteristics of blood flow 

and thrombosis. In this section also provides a comparison between the 

computational mesh-based and mesh-free method. Finally, various mathematical 

models adopted in the past to understand and simulate blood flow and thrombosis are 

presented.  

2.2 Characteristics of Blood flow 

The circulatory system in the human body consists of a continuous circular network 

of blood vessels, the heart, and blood itself. William Harvey considered that the 

blood moves in a loop inside the human body (Harvey 1957). Blood flow in normal 

physiological conditions as well as in diseased conditions is an important field of 

study. Blood is a complex mixture of cells, proteins, lipoproteins, and ions which 

transports nutrients and wastes within the human body. In order to understand the 

behaviour of blood flow, it is essential to investigate the main role of blood in the 

human body. The circulatory or cardiovascular system circulates the blood in order 

to distribute oxygen (O2), carbon dioxide (CO2), nutrients, hormones etc. 

Oxygenated blood is transferred from the lungs to the tissues primarily via the 

arteries. Generally, there are three major types of blood vessels in the human body: 

the first type is called the arteries, which are part of the circulatory system, and their 
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task is to carry the blood away from the heart; the second is capillaries, which are the 

smallest of the blood vessels and are part of the microcirculation; and, the third is the 

veins. In addition, the arteries are further divided into smaller arterioles and then into 

the smallest blood vessels, the capillaries. The principal exchange of nutrients and 

oxygen from the blood to the tissues takes place in the capillaries. Thereafter, the 

primarily deoxygenated blood can be transferred from the capillaries to the venules, 

the veins, and in the last stage to the heart. The heart is considered to be the main 

part of the circulatory system and it pumps the blood around the body. In a healthy 

adult human, about 5 litres of blood are transported per minute through this process 

or over 7,000 litres per day. While the measurement of the diameter of the veins and 

arteries is in the cm to mm range, the arterioles and venules have diameters in the 

order of tens of μm, and the capillaries are only a few μm wide. Consequently, blood 

circulation in arterioles, venules and capillaries is called microcirculation (Pocock et 

al. 2013). Blood is mostly made of plasma, which amounts to about 55% of the blood 

volume and contains basically water (95% by volume). In addition, blood contains 

three types of so-called formed elements, red blood cells (RBCs), white blood cells 

(WBCs), and platelets (see Figure 2.1). Blood also includes proteins and other 

solutes (e.g., nutrients and hormones) (Pocock et al. 2013).  
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Figure 2.1 Blood elements: (a) blood cell (left), and (b) blood flow inside an artery (right) 

RBCs, or erythrocytes, represent the majority of blood cells and account for about 5 

× 106 per μl. The volume fraction of RBCs, called the haematocrit, is 37% to 54%, 

which varies between males and females, respectively (Pocock et al. 2013). 

 
Figure 2.2 Scanning electron microscopy (EM) images of formed blood elements: (a) RBC (left), 

activated platelet (middle), and WBC (right) and (b) non-activated platelet. Source of the image 

(a): The National Cancer Institute at Frederick (NCI-Frederick). The image (b after (Michelson 

2007) Copyright (2007) 

 

RBCs are cells without a nucleus and they consist of water and haemoglobin, which 

gives blood its red colour.  Normally, the RBCs are generated in the bone marrow 

and they remain in the blood for 100 to 200 days. Basically, RBCs transport O2 from 

the lungs to the tissue and they then transfer part of the CO2, a waste product from 

cell metabolism, back to the lungs. Their discocyte (biconcave disc-like) shape (see 

the EM image in Figure 2.2 (a)) is appropriate for the fast exchange of O2, which is 
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performed by diffusion. The large surface area to volume ratio increases the speed of 

the O2 uptake and release (Jones 1979; Vandegriff and Olson 1984). On average, the 

RBCs have 7.5 μm diameter and 2 μm height, which allows them to pass through the 

small capillaries, with a typical diameter of 5 μm to 8 μm. The elasticity of RBCs is 

considered to be one of their most important characteristics (Pocock et al. 2013). The 

viscous membrane of RBC basically consists of a lipid bilayer and a cytoskeleton, 

which is a network formed from spectrin proteins linked by short actin filaments to 

the inner monolayer (see Figure 2.3). The lipid bilayer is area preserving and the 

non-compressible inner cytosol is volume preserving. Because of the attached 

spectrin network and the lipid, the RBC membrane is considered to be a viscoelastic 

membrane (Fung 2013). WBCs, or leukocytes, represent about 7 × 103 per μl 

(Pocock et al. 2013). WBCs have a nucleus and are almost spherical, as shown in 

Figure 2.1 (a). WBCs vary in diameter vary from 6−20 μm, depending on the 

category. WBCs have the ability to recognise foreign substances and infectious 

agents, and are considered to be part of the immune system (Springer 1995; Pocock 

et al. 2013).  As illustrated in Figure 2.1 (b), the platelet or thrombocyte is considered 

to be the smallest formed element in blood. The platelets are thin cellular fragments 

without a nucleus and with a disc-like shape. Their diameters vary between 2 μm and 

4 μm and they possess a thickness of about 0.5 μm (Pocock et al. 2013). After 

platelets are produced from the megakaryocyte cell in the bone marrow, they can 

stay in the blood for a short period from 7 to 10 days. In addition to their outer 

membrane, they have an internal cytoskeleton, which is composed of polymers of 

actin and tubulin. In contrast to RBCs, platelets are stiffer (Michelson 2007; Zhao 

and Shaqfeh 2011). The average number of platelets in the human body is 150× 103 
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− 400 × 103 per μl.  The platelets are considered to be one of the most important 

elements for haemostasis (Broos et al. 2011; Nuyttens et al. 2011).  

 
Figure 2.3 Illustration of a spectrin network. (a) Electron micrographs of RBC membrane 

skeleton from mice. The bar gives the reference length of 200 nm. (after ((Moyer et al. 2010). (b) 

Illustration of a spectrin network structure 

 

 A thrombosis is characterised as a pathological consequence of the normal 

haemostatic process, which leads to the formation of a thrombus in diseased vessels 

that prevents blood flow. A thrombus can be defined as a coagulated mass of blood 

corpuscles that stops bleeding or atherosclerosis in arteries. In other words, a 

thrombus can cause a blockage of blood vessels as a result of haemostasis 

dysfunction. Haemostasis is considered to be a necessary reaction to prevent and stop 

blood loss. However, malfunctioning of the haemostatic system can lead to 

potentially deadly accidents, such as myocardial infarction or ischemic stroke when 

the damaged arteries are the coronary or the carotids, respectively (Fuster et al. 1988; 

Epstein et al. 1992; Naylor et al. 2002).  

There are two distinct types of thrombi. The first is called a red thrombosis and is 

found in areas with low shear rate and very low flow, usually in the veins (Bark Jr 

2007). A coagulation cascade can be developed in these regions resulting in a 
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thrombus, which mostly consists of platelets and fibrin reticulum trapping many 

RBCs. A red thrombus is usually formed in the recirculation region of the vein 

valves. The name red thrombus is derived from the fact that it contains a significant 

amount of RBC in the thrombus. The second is called a white thrombosis and it 

occurs in areas with high shear rate, usually in the arteries (Bark Jr 2007). This type 

of thrombus can be formed under high shear stress, unlike red thrombus, and its 

constituents are densely packed. The contents of the white thrombus essentially 

consist of platelets, fibrin and plasma proteins. This is called a white thrombus 

because it contains very few RBCs. A thrombus is normally assumed as white 

thrombus when it is not classified. Meanwhile, a red thrombus is referred to as a 

coagulation (Bark Jr 2007). 

In the normal condition of blood circulation, the platelets have no intent to adhere to 

the wall of the blood artery/vessels, to other cells, or to each other. In other words, 

they act as inert particles. The platelets or thrombocytes are considered to be the 

smallest formed element in blood. If the wall of a blood vessel is damaged, then 

platelets will rapidly adhere and accumulate on the damaged wall. Physiologically, 

this process of increase in the adhesiveness of platelets describes normal 

haemostasis. Pathologically, it may cause an acute thrombosis, particularly in larger 

arteries which are diseased but likewise in small arterioles which supply tissue grafts 

(Begent and Born 1970). The aggregation of platelets and blood coagulation is 

considered to be an intricate process (Panteleev et al. 2014). Haemostasis can be 

divided into three different phases. In the first stage, the vascular phase is aroused by 

damage in the blood vessel wall, which leads to smooth muscle contraction and this 

decreases the diameter of the vessel at the damaged area. The second stage is called 

the platelets phase, which starts when the platelets are attached to the damaged area 
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(see Figure 2.4 (a)) and is activated due to many factors, such as adenosine 

diphosphate (ADP) and tissue characteristics. The last stage is called the coagulation 

phase, which can begin 30 seconds or more after damage to the wall (Flannery 

2005). A thrombosis is a disordered arrangement of platelets and plasma proteins. To 

understand the mechanism of thrombus formation inside the human body, 

development of thrombus is portrayed by three platelet deposition phases namely 

adhesion, activation, and collection Wootton and Ku (Wootton and Ku 1999). 

Furthermore, Wootton and Ku (Wootton and Ku 1999) reported that platelets 

deposition could be presented in three phases, as shown in Figure 2.4(b), based on an 

experimental study performed by (Markou et al. 1993).  

There are many factors and biological conditions affect the process of thrombosis. 

For example, the local mechanics of flow can influence the process of thrombosis by 

affecting the diffusion of the materials in the blood which can disrupt the platelet 

aggregation and clotting and the supply of platelets and other cells to a site of 

thrombosis. Similarly, it was observed that hemodynamics could extremely affect the 

formation and growth of thrombus as well as thrombogenesis (Aarts et al. 1983; 

Cadroy and Hanson 1990; Reasor et al. 2013).  

 (a) 
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Figure 2.4 (a) Adhesion and platelet aggregation   (b) Rate of platelet deposition characteristics 

(Markou et al. 1993) 

 

 

Figure 2.5 (a) schematically describes the platelets adhesion, activation and 

aggregation phases and illustrates the dominating factors involved in thrombus 

formation. The platelets are activated under the agonists and shear stress. They are 

bounded by vWF and fibrinogen, in addition to more permanent binding to the vessel 

surface by vWF. Figure 2.5(b) shows agonist production from activated platelets.  

As it can be noted from the description above, that the blood contains various 

elements in addition to so-called formed elements. A brief summary of factors 

involved in thrombus formation is presented above. However, for the purpose of 

conciseness, only the main and relevant elements are described in this chapter. More 

details on blood composition can be found in the plethora of literature (Bronzino 

1999; Caro 2012; Fung 2013; Pocock et al. 2013). 

 

(b) 
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Figure 2.5 Diagram of platelet adhesion and aggregation (a) Platelet adhesion and aggregation 

vWF and fibrinogen attach to the collagen and activated platelets (b) Agonist production near 

activated platelets. Platelets entering the region can become activated 

2.3 The Review of Existing Methodologies in Blood Flow 

Simulation 

A vast amount of research has been focused on the study of understanding and 

measuring the characteristics of blood flow. At the eighteenth century, a 

mathematical model was applied by Bernoulli and Euler, which was the first attempt 

to describe the blood flow phenomenon. They proposed the idea of conservation of 

momentum and energy of blood flow. Euler tried to simulate blood as an 

incompressible and inviscid fluid through an elastic conduit. He used a mathematical 

model to simulate blood flow in an arterial segment. The pressure and flow wave 

transmission in the arterial system can be calculated by Euler’s equations. However, 

he could not find a suitable close form solution (Stergiopulos 1990). Following that, 

an experimental investigation was performed by a French physician named J. L. M. 
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Poiseuille introduce one of the most famous equations in hemodynamics (fluid 

mechanics in general) which is known as Poiseuille's law, to calculate the pressure 

drop of blood through blood vessels and capillaries. Steady laminar flow through 

cylindrical and rigid conduits was proposed by Hagen and Poiseuille. In 1846, they 

developed Poiseuille's law, which was a well-known equation in hemodynamics and 

fluid mechanics, in general. Poiseuille's law states that: 

∆𝑝

𝑙
=

8𝜇

𝜋𝑅4
𝑄                                                                                                      (2.1) 

where 
∆𝑝

𝑙
  is the pressure drop over an arterial segment of length 𝑙, 𝜇 is the dynamic 

viscosity of the fluid, 𝑅 is the internal radius of the artery, and 𝑄 is the volume rate 

of flow. Poiseuille's law was extensively used in the past to model blood flow. This 

provides an accurate model that relates mean pressure and flow values to the 

frictional resistance of the arterial segment. The effects of viscous resistance which 

was not addressed by the Euler equations (Stergiopulos 1990) were modelled by 

Poiseuille’s law. The Navier-Stokes equations were introduced by Navier (1785-

1822) and by Stokes (1819-1845), which were the most important equations of 

motion of a viscous fluid. These non-linear differential equations that are derived 

from the Navier-Stokes equations are written in, as follows: 

𝜌 (
𝜕𝐯

𝜕𝑡
+ (𝐯. ∇)𝐯) = −∇𝑃 + ∇. 𝛕 + 𝐅 .                                                                          (2.2) 

And along with the continuity equation, 

∇. 𝐯 = 0                                                                                                                              (2.3) 
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In the above equations, 𝜌, 𝑡, 𝐯, 𝑃, 𝐅 and 𝛕 represent the fluid particle density, time, 

velocity, pressure, external body force, and shear stress, respectively. The term 𝐯. ∇ is 

called the convective derivative which represents the physical term of the time rate of 

change where the fluid element moves from one place to another in the flow field. 

In the general case of arterial flow the non-linear form of the Navier-Stokes 

equations is applied. Researchers then simplified the assumptions of the Navier-

Stokes equations to obtain analytic solutions for reduced forms of the Navier-Stokes 

equations (Stergiopulos 1990). 

The first endeavours to model flow in blood vessels were made during the 1950s. 

The equation of viscous, laminar flow of a Newtonian and incompressible fluid 

within a long and circular pipe was solved by Womersley (Womersley 1955). Where, 

he calculated the flow rate and velocity in arteries which were based on using  the 

gradient pressure that was developed by Hale et al. (Hale et al. 1955), which used 

Fourier series to obtain the velocity profile. Hypotheses that were adopted in this 

study assumed large arteries as rigid circular tubes and introduced periodic pressure 

gradient to obtain pulse wave velocity. The wall distensibility was used in the same 

model (Womersley 1957) to describe a thin, uniform, and linearly elastic wall. A 

two-dimensional and straight sided model of the trifurcation to study the flow in 

renal arteries was reported by O'Brien and Ehrlich . (O'Brien and Ehrlich 1977). 

While a linear form of the Navier-Stocks equation was used by Avolio (Avolio 

1980), who used a multi-branched model in a human arterial system to model wave 

propagation in arteries. He made a very good  advancement in this work (Avolio 

1980) when he compared it with previous studies performed by other researchers 

(Noordergraaf et al. 1963; Westerhof and Noordergraaf 1970).   
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Numerical simulations were also used in the past to describe the behaviour of 

blood flow under both normal and pathological conditions. Many researchers tried to 

develop a perfect method to simulate blood flow. For example, a study of pulsatile 

flow in elastic arteries with one-dimensional wave propagation was reported by 

Reuderink et al. (Reuderink et al. 1989), who used linear and non-linear theory in 

blood vessels. The results obtained were compared with the experimental data. Their 

linear model was found to be more convenient and was able to compute the damping 

of the waves. Meanwhile, the non-linear term used in the formulation was proved not 

to be very beneficial. In addition, a number of clinically relevant models were 

qualitatively and quantitatively estimated the blood flow field using the Finite 

Element Method (FEM) models developed by Taylor et al. (Taylor et al. 1998a, b). 

In these models, it was found that the velocity profiles could be acquired under 

resting and exercise conditions. 

Pries et al. (Pries et al. 1990) developed a theoretical model to simulate blood flow 

and tested it through a large microcirculatory network, which assessed the 

consistency of viscosity of blood flow in vessel diameter and haematocrit (i.e. the 

ratio of the volume of RBCs to the total volume of blood). Following that, a 

numerical study was presented by Henry and Collins (Henry and Collins 1993) to 

create a general model for the flow in large arterial vessels. They focused on 

modelling artificial ventricles and included the effect of wall distensibility of blood 

vessels. They fixed the values of pressure at a certain value and compared their 

results with an analytical solution.  

 At the same period, Fung (Fung 1993) described the phenomenon of atherosclerosis 

by reducing arterial lumen size through plaque formation and arterial wall 
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thickening, which occurs at specific arterial sites. This is related to hemodynamics 

and to wall shear stress (WSS) distribution. Perktold and Rappitsch (Perktold and 

Rappitsch 1995) examined the effect of the distensible artery wall and calculated the 

mechanical stresses within it using a theoretical procedure based on FEM. This 

method uses three-dimensional framework with an incompressible and non-

Newtonian fluid model. The aim of this work was to use a numerical method to 

determine the influence of the principle stresses in the artery and to simulate pulsatile 

flow in a carotid bifurcation. A numerical analysis for an axisymmetric domain was 

presented by Rappitsch and Perktold  (Rappitsch and Perktold 1996) to describe the 

impact of  flow patterns, such as WSS and reversed flow on the mass transport. 

Meanwhile, Steinman et al. (Steinman et al. 1996) observed a good agreement 

between measurement of blood velocity profile by magnetic resonance imaging 

(MRI) and numerical simulation performed from their study. After that,  Ku (Ku 

1997) showed that the RBCs were small and semisolid particles that can increase the 

viscosity of blood, which in turn can influence the behaviour of the blood flow. He 

observed that the viscosity of blood can be approximately equal to four times that of 

viscosity of water. Furthermore, blood can appear as a non-Newtonian fluid in the 

microcirculatory system because the viscosity of blood is not constant at all flow 

rates. The blood in small branches and capillaries are considered to behave as a non-

Newtonian fluid. Meanwhile, blood is shown to behave as Newtonian fluid in most 

arteries (Ku 1997). Bathe and Kamm (Bathe and Kamm 1999) modelled pulsatile 

flow in stenotic arteries by using an iterative method over each time step. They used 

stenosis with varying degrees (i.e. various sizes and shapes) within arteries for their 

study. They concluded that the pressure drop across stenosis of the artery would 

depend on the severity of stenosis. Nevertheless, some studies in the past focused on 
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the influence of non-Newtonian properties of blood flow in large arteries. For 

example, Gijsen et al. (Gijsen et al. 1999) studied the influence of shear thinning on 

the velocity distribution by using laser Doppler anemometry experiments and FE 

simulation of steady flow in a three-dimensional model of the carotid bifurcation. 

However, properties such as the viscoelasticity of blood were overlooked in this 

study. Gijsen et al. (Gijsen et al. 1999) concluded that there was a high level of 

agreement in observed velocity profiles for both Newtonian and non-Newtonian 

fluids. The hemodynamic in a carotid bifurcation was further investigated by Botnar 

et al. (Botnar et al. 2000), who compared numerical simulation and in vitro MRI 

measurements. This study demonstrated the importance of numerical simulations to 

predict complex flow behaviour in vessels where atherosclerotic plaques may form. 

In recent years, there have been a significant amount of three-dimensional studies 

performed to investigate blood flow behaviour. For instance, the relationship 

between the fluid forces acting on walls and development of intimal thickening in 

grafts was investigated in blood vessel by a number of researchers (Hofer et al. 1996; 

Keynton et al. 2001; Loth et al. 2002; Giordana et al. 2005). Normally, blood flow is 

classified as a laminar flow but due to some specific physiological conditions, a part 

of the cardiac cycle can produce blood flow of turbulent nature. He and Jackson  (He 

and Jackson 2000) focused on this type of flow and demonstrated that turbulence 

power is reduced in accelerating phases and is increased in decelerating phases of the 

cardiac cycle, which is mainly associated with the radial propagation of turbulence. 

In addition, Darbeau et al. (Darbeau et al. 2000; Stangeby and Ethier 2002) tried to 

interpret deposit formation in terms of local WSS variations by analysing the 

transport and accumulation of macromolecules. 
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In recent years, computational methods have been increasingly applied to predict the 

blood flows in vessels. Initial computational methods were mostly limited to one or 

two-dimensional models. The transition to three-dimensions was needed to know the 

capability of computational hardware which had ability to understand the problems 

more than two-dimensions. An approach to mix between one-dimensional and three-

dimensional models of blood flow were reported by Formaggia et al. (Formaggia et 

al. 2001, 2002). The influence of Newtonian fluid and non-planarity of an arterial 

bifurcation on the flow and WSS was studied by Lu et al. (Lu et al. 2002). They 

concluded from this study that haemodynamic within the vessel considered above 

was useful in vascular biology and pathobiology. Taylor et al. (Taylor et al. 2002) 

presented an investigation on exercise, which was considered as one of the most 

important mechanisms to increase blood flow and WSS, and which could protect 

from atherosclerosis. Lee and Chen (Lee and Chen 2002) used a different way to 

simulate the flow in the abdominal aorta and its peripheral based on the finite volume 

method (FVM). Meanwhile, Dzwinel et al. (Dzwinel et al. 2003) focused their 

research more specifically on the properties of blood. Some numerical studies also 

examined the turbulent flow in a stenosed pipe to predict the flow profile in the 

stenosis region. For instance, Varghese and Frankel  (Varghese and Frankel 2003) 

used a numerical study to analyse the pulsatile turbulent flow in the rigid wall of a 

stenosed tube. The authors investigated the influence of stenosis on WSS values at 

both upstream and downstream of the stenosis.  

Grotberg and Jensen  (Grotberg and Jensen 2004) found that arterial wall 

deformation can be governed by WSS; such that arteries enlarge in response to high 

shear stress. It can be concluded that the formation of atherosclerotic plaques was 

especially limited to the locales of low shear stresses but not in the regions of higher 
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shear stresses. Therefore, decreased shear stress induces intimal thickening in vessels 

which have adapted to high flow. In addition, Chen and Lu  (Chen and Lu 2004) 

performed a similar analysis for non- Newtonian fluid and non-planarity by using 

FEM in a three-dimensional model. Modelling of arterial wall to examine the 

relationship between arterial wall stress and vessel wall diseases  (Tafazzoli-

Shadpour 1999; Matsumoto et al. 2004) was another important topic of research in 

the past. In another study that was performed to describe the characteristics of blood 

flow, Yokoi et al.(Yokoi et al. 2005) used a numerical algorithm to compute flows in 

blood vessels with complex geometries. An algorithm based on regular Cartesian 

grid was proposed in this study. The results showed that the flows in complex 

geometries, such as a bifurcation and multiple aneurysms, could be dealt with by this 

method. Tsubota et al. (Tsubota et al. 2006) compared the geometry of the pulsatile 

flow and steady flow, and analysed the motion of a deformable RBC in flowing 

blood plasma. For this study, they used a mesh-free technique named moving particle 

semi-implicit method (MPS). The purpose of this study was to describe the motion of 

a deformable RBC and its interaction with blood flow by using a particle method for 

blood flow simulation. In this study, a two-dimensional simulation of blood flow 

between parallel plates was performed. Meanwhile, other researchers have used the 

Lattice Boltzmann method to achieve a suitable accuracy in a human abdominal 

aorta such as Artoli et al. (Artoli et al. 2006). 

A large number of studies have tried to understand the major cause for 

atherosclerosis in the human body. For example, some researchers (Bharadvaj et al. 

1982; Zarins et al. 1983; Gnasso et al. 1997) presented a study to examine the 

relationship between plaque location and WSS by analysing blood flow. Meanwhile, 

efforts were also made to calculate the circumferential stress distribution in 
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atherosclerotic vessels, which concentrated on correlation between maximal stress 

and plaque rupture (Tang et al. 2005; Baldewsing et al. 2006). A simulation model 

with realistic boundary conditions in vessels with different degrees of stenosis was 

explored by Li et al. (Li et al. 2007) , using fluid-structure interaction (FSI) and a 

turbulent model. Carneiro et al. (Carneiro et al. 2008) presented a numerical study 

that calculated the effect of blood properties in the abdominal aorta bifurcation. They 

believed that their study play an important role in the atherosclerosis lesions. Some 

studies were also performed to investigate blood flow in different parts of the human 

body. For example, Bernsdorf and Wang  (Bernsdorf and Wang 2009) simulated the 

blood flow in cerebral aneurysms in domains created from medical image. The 

objective of this research was to perform an accurate numerical simulation of flow 

properties, particularly the difference in WSS between Newtonian and non-

Newtonian fluids. Additionally, a three-dimensional FE simulation was developed by 

Kim et al. (Kim et al. 2010) that predicts blood flow in epicardial coronary artery. 

They discovered that their research could be useful in predicting cardiovascular 

diseases. While, Obidowski and Jozwik (Obidowski and Jozwik 2010) compared the 

computer simulation results of the hydrodynamics of blood flow through three 

different kinds of vertebral artery geometries with ultrasonography measurements to 

obtain a better insight into the flow behaviour. Their study showed that a good 

agreement for results obtained in the central region of the artery. 

A parallel two-level method for simulating blood flows in branching arteries with the 

resistive boundary condition was introduced by Wu and Cai (Wu and Cai 2011). 

Notably, the zero-traction outflow boundary condition was enhanced by the presence 

of a resistive boundary condition. This was further examined in a report on the 

simulation of blood flow using subject-specific geometry and spatial varying wall 
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properties by Xiong et al. (Xiong et al. 2011), who investigated image segmentation 

dealing with braces, including a deformable model and the level set method. In their 

study, Xiong et al. (Xiong et al. 2011) applied an idealised cylindrical model and two 

subject-specific vascular models with thoracic and cerebral aneurysms. The results 

from this study demonstrated the possibility of obtaining blood properties in 

deformable models.   

 According to a numerical study by Sousa et al. (Sousa et al. 2012), some 

enhancements of blood flow were achieved by using bypass systems with different 

geometries. Further,  Montecinos et al. (Montecinos et al. 2014) modelled blood flow 

in vessels with walls having viscoelastic properties and solved a time dependent, 

one-dimension system. Additionally, Chnafa et al. (Chnafa et al. 2014) computed a 

human-specific left heart flow using a numerical framework which described the 

blood flow by its transition nature to generate a complex cyclic flow. 

Reorowicz et al. (Reorowicz et al. 2014) improved the modelling of blood flow 

based on computer tomography images. Their objective was to analyse the 

hydrodynamics of blood flow in cerebral region, or Circle of Willis (COW), using 

three different patient-specific artery anatomies. In this study, the physicians 

diagnosed patients of different ages and various anatomical arterial structures.  

In the past, a number of different approaches were used to analyse blood flow. Many 

researchers studied the flows of fluids in tubes of more complex sections while only 

a few studies considered multilayer flows in rectilinear and circular tubes of various 

cross-sections. Khomasuridze and Zirakashvili  (Khomasuridze and Zirakashvili 

2015) considered stationary multilayer flows of a viscous incompressible fluid in 

tubes. The results of this study demonstrated that the model was able to determine 
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the critical parameters in micro vessels which are caused by friction, such as: liquid 

viscosity (more exactly, apparent viscosity), dynamical haematocrit, and resistance 

force. Jahangiri et al. (Jahangiri et al. 2015) concentrated on the turbulent pulsatile 

blood flow through stenosed arteries considering the elastic property of the wall. 

Their results were compared with experimental data and they showed that the flow 

was laminar up to 70% stenosis, while for 80% stenosis the flow became turbulent. 

Nevertheless, Marth and Voigt .(Marth and Voigt 2015) reported a numerical study 

that investigated the margination of WBCs. In this study, Marth and Voigt .(Marth 

and Voigt 2015) dealt with a mesoscopic hydrodynamic Helfrich-type model and 

found that the margination of WBCs was less significant with increasing Reynolds 

number of the flow.  

It is also worth noting other research work carried out using computational modelling 

to investigate blood flow in bio-mechanical systems (Peskin 1977; Cho and Kensey 

1991; Chen and Lu 2004; Johnston et al. 2004; Morris et al. 2005; Duraiswamy et al. 

2007; Mukundakrishnan et al. 2008; Sultanov and Guster 2008; Sultanov et al. 2008; 

Sultanov and Guster 2009; Nithiarasu 2016; Shi et al. 2017).  

This section has attempted to provide an overview of various methodologies adopted 

for modelling blood flow in general. As one of the aims of this thesis is to model 

thrombus formation, the next section intends to provide a literature review on the 

simulation of thrombus formation. The next section will serve as a preamble for the 

novel numerical techniques to be introduced in Chapter 6 to perform numerical 

simulation of thrombus formation in this thesis. 
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2.4 The Simulation of Thrombus  

As discussed above thrombogenesis plays a crucial role in human physiological 

condition which occurs in blood vessels according to certain mechanical and 

chemical stimuli and it is vital to understand how thrombus formation is related to 

hemodynamic. There are a wide variety of computational models that have been used 

in the past to simulate and investigate the process of thrombogenesis.  

Many Eulerian based studies (Stubley et al. 1987; Eckstein and Belgacem 1991; 

Sorensen et al. 1999; Woodside et al. 2001; Goodman et al. 2005) have analysed the 

role of a hemodynamics in thrombogenesis. However, capabilities of these studies 

were limited and not adequate to fully describe platelets motion and their behaviour. 

A continuum model of platelet aggregation to analyse platelet-mediated 

thrombogenesis, while considering platelet transport activation by a single lumped 

agonist and bulk aggregation, was introduced in Fogelson (Fogelson 1992), which 

was extended in (Fogelson 1993) by introducing the capability for modelling 

multiple platelet agonists as described by (Stubley et al. 1987; Eckstein and 

Belgacem 1991; Sorensen et al. 1999; Woodside et al. 2001; Goodman et al. 2005). 

Moreover, Merten et al. (Merten et al. 2000) used a Lagrangian descriptions to 

investigate and demonstrate how platelets are adapted and activated. Meanwhile, 

Kuharsky and Fogelson (Kuharsky and Fogelson 2001) presented a model which 

takes into account plasma-phase, subendothelial-bound and platelet-bound enzymes 

and zymogens as well as activated and unactivated platelets. They considered the 

physical and chemical process associated with platelet motion and coagulation events 

that occur in a thin layer called the reaction zone, and its location just above a small 

vascular injury. A numerical study which is based on combining the discrete element 
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method (DEM) and Stokesian dynamics method (SDM) was presented by Miyazaki 

and Yamaguchi (Miyazaki and Yamaguchi 2002) to analyse the mechanism of 

platelet adhesion. Tamagawa and Matsuo  (Tamagawa and Matsuo 2004; Ouared and 

Chopard 2005) used a Lattice Boltzmann method to model red thrombus formation 

that depended on transport phenomenon which can be used to deal with shear stress 

dependent thrombogenesis probability. Ding and Aidun (Ding and Aidun 2006) used 

the Lattice Boltzmann method to model red cell motion, including the formation and 

degradation of particle clusters. A three-dimensional thrombus formation model was 

introduced by Pivkin et al.(Pivkin et al. 2006), who treated each platelet as a 

spherical object and the suspension of RBCs was treated as a continuum. Meanwhile, 

Immersed-boundary-type models were reported in Fogelson and Guy (Fogelson and 

Guy 2008) to demonstrate the effect of thrombus development on the flow and the 

influence of fluid forces on thrombus growth. A study presented in Xu et al. (Xu et 

al. 2008) set out to explain the blood  flow  influenced platelet aggregation and the 

size/geometry of the thrombus using two-dimensional multi-scale model. Mori et al. 

(Mori et al. 2008) used Stokesian dynamics to deal with the effect of RBCs on 

thrombus formation. Leiderman Gregg and Fogelson (Leiderman Gregg and 

Fogelson 2009) presented a spatial-temporal model which coupled partial differential 

equations to describe multiple spatial and temporal processes, including coagulation 

biochemistry. The motivation behind this model was to investigate how the impact of 

the wall shear rate and near-wall enhanced platelet concentration affect the growing 

thrombi. 

Recently, a new class of Lagrangian technique called particle-based methods were 

developed to investigate the behaviour of corpuscles and their interactions in blood 

flow (Boryczko et al. 2003; Filipovic et al. 2008). A mechanical model is proposed 
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in Filipovic et al. (Filipovic et al. 2008) that uses the dissipative particle dynamics 

(DPD) method to demonstrate the accumulation of platelets and their behaviour in 

blood flow. Meanwhile Kamada et al. (Kamada et al. 2010; Kamada et al. 2011) used 

a particle-based technique described as moving particle semi-implicit (MPS) method 

to simulate the formation of thrombogenesis in both two and three-dimensional 

settings.  Fogelson and Neeves (Fogelson and Neeves 2015) presented an overview 

to describe the thrombus stability and factors regulating the hindered transport 

through thrombus. 

Researchers showed the presence of stenosis, stent, and grafts plays an important role 

in the thrombus formation. They found through  the experimental and numerical 

examinations of platelet deposition in stenosed vessels that normally the highest level 

of platelet accumulation exists near the stenosis apex (Ku et al. 1985; Lassila et al. 

1990; Strony et al. 1993; Mailhac et al. 1994; Siljander and Lassila 1999; Wootton 

and Ku 1999; Goodman et al. 2000; Longest and Kleinstreuer 2003; Liu et al. 2008; 

Bark et al. 2012; Bark and Ku 2013; Para and Ku 2013; Casa and Ku 2014; Stiehm et 

al. 2016). 

In summary, this literature review demonstrates the importance of numerical 

simulation of thrombus formation and various techniques used in the past to 

overcome the difficulties associated with accurate modelling of such processes. 

Hence, this study proposes to use meshless particle-based Lagrangian numerical 

technique, named the smoothed particles hydrodynamic (SPH) method to study the 

flow behaviour of blood and to explore the flow condition that induces the formation 

of thrombus in a blood vessel. Due to its simplicity and effectiveness, SPH has been 

chosen as a better alternative to simulate blood flow and thrombus formation. As a 
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Lagrangian particle-based method, SPH can provide a number of advantages in 

modelling including ease of point generation (i.e. mesh generation) for complicated 

geometries.   

2.5 Concluding Remarks 

This chapter has provided an overview on the properties of blood and various 

methodologies adopted to understand and model blood flow and thrombus formation. 

The discussion presented in the previous sections highlighted only a number of key 

approaches used in modelling blood flow and thrombus formation. The list of 

methodologies presented above is by no means complete and more computational 

methodologies and related information can be found in the literature. The next 

chapter will focus on the numerical methodology adopted in the present work to 

model blood flow. 
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3.1 Introduction 

Computational modelling of any physical or biological system must have a suitable 

and logical strategy to produce successful numerical simulations that can replace 

expensive experimental and save time, efforts and materials. As highlighted in the 

previous chapters, modelling blood flow to explore flow conditions has increasingly 

become an important tool in investigating the human body system to improve the 

understanding and treatment of dangerous diseases, such as thrombosis. Due to the 

complex geometries of arteries and vessels involved in the blood circulation, it is 

assumed that a simple and robust technique based on SPH meshless method would 

be an ideal computational method for modelling blood flow and thrombosis. This 

chapter outlines the essential concepts, mathematical formulations, and numerical 

implementation of the SPH method. 

3.2 SPH Method 

The SPH method is a fully Lagrangian mesh-free method which is considered to be 

one of the computational methods that is widely used to describe the hydrodynamics 

of a fluid. The SPH was originally developed to study non-axisymmetric phenomena 

in astrophysics. In this method, a set of particles are used to discretise the physical 

domain, in which the physical properties of the domain are represented by these 

particles. The neighbouring particles of any given particle are used in numerical 

discretisation to approximate the physical properties of each particle. The SPH 

method was first developed in the late-1970s to understand the behaviour of the 

astrophysical system, for which the (Eulerian) mesh-based methods were found to be 

quite unsuitable due to the lack of defined boundaries (Gingold and Monaghan 1977; 

Lucy 1977). During the early developmental stage, the SPH methods was used to 
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simulate viscous and heat conducting flow by Monaghan (Monaghan 1983). 

Following, Monaghan (Monaghan 1994) then introduced the SPH method in a free 

surface incompressible or nearly compressible flow and developed an appropriate 

boundary treatment to represent rigid boundaries that avoid the fluid particles from 

crossing solid boundaries. These applications further demonstrated the potential of 

SPH method in simulating fluid flow and have since been used without any 

difficulties for many applications in free surface flows. Later, the consistency and 

accuracy of SPH discretisation techniques were improved by using symmetrisation 

of formulations (Monaghan 1982; Monaghan and Lattanzio 1985; Monaghan 1992). 

Following these early developments, numerical simulations of various engineering 

and physical problems were undertaken using the SPH method (Takeda et al. 1994; 

Koshizuka 1995; Welton 1998; Monaghan and Kos 1999). The consistency and 

accuracy of the SPH method were further improved by various numerical algorithms 

(Swegle et al. 1995; Dyka et al. 1997; Bonet and Lok 1999; Chen et al. 1999; Dilts 

1999; Bonet and Kulasegaram 2000a, b; Monaghan 2000; Dilts 2000a). 

Due to the improved accuracy and stability, the application of SPH method has 

been extended to the simulation of industrial die casting processes (Cleary et al. 

2002; Kulasegaram et al. 2002), multi-phase flows(Ritchie and Thomas 2001; Hu 

and Adams 2006), viscoelastic flows (Ellero et al. 2002) and interfacial fluid 

flows(Monaghan and Kos 1999; Colagrossi and Landrini 2003). The SPH simulation 

of free surface flows was also introduced in coastal engineering (Shao and Gotoh 

2004; Dalrymple and Rogers 2006; Ting et al. 2006; Violeau and Issa 2007). 

A brief overview of SPH literature above highlights some of the early research work 

carried out in the development of SPH method. To avoid any distraction, only fluid 

flow simulations performed using SPH method are highlighted here. In recent years, 
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the SPH method has been used in a significant number of challenging scientific and 

engineering fluid flow applications (Shahriari et al. 2012), (Kulasegaram and 

Karihaloo 2012), (Deeb 2013), (AL-Rubaye et al. 2017). The use of SPH in the 

literature is ever-growing and, therefore, only the literature relevant to the present 

work will be cited in this thesis. 

3.2.1 The Concept Of SPH 

Fluid continuum in SPH is described by a finite number of particles, N, each particle, 

‘a’ carries various properties of the fluid, including mass ma, velocity va, position xa, 

density ρa, pressure Pa, temperature Ta and internal energy Ea depending on the fluid 

and the type of flow. Every physical quantity will be updated in every time step, 

although the mass will be kept constant. These properties are integrated by functions 

called ‘kernel functions’, which use the particles to express a physical property by 

replacing the integration of the field variable with the summation for the same 

property of the particles in a local domain, which is called a support domain, as 

shown in Figure 3.1. This means that any physical property at any particle (particle 

‘a’ in the case of Figure 3.1) can be obtained by summing the same property of 

particles that are inside the support domain Ω, as follows:  

• Adaptive: The particle summation is executed at every time step and the 

contributions of the particles are based on their current locations which 

govern the weighting factor of the kernel function. 

• Lagrangian: The particle approximation is executed on all terms related to 

the field variables to make a set of ordinary differential equations (ODEs) in a 

discretised form with respect to time. 
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3.2.2 SPH Support Domain 

The support domain for a particle ‘a’ is considered as the domain where all the 

information (properties or field variables) of all particles inside this domain are used 

to calculate the information at the point ‘a’ (see Figure 3.1). This means that any 

physical property of any particle ‘a’ is obtained by summing the same property of the 

particles that is inside the support domain Ω (which lies within a radius kh of the 

particle ‘a’). While computing the property of particle ‘a’ the contribution of 

neighbouring particles are multiplied by a suitable weighting (kernel or smoothing) 

function before the summation. The parameter k represents a scaling constant related 

to the smoothing function. Generally, the smoothing length, h, is small for a high-

density region and large for a low-density region. Usually the average number of the 

neighbouring particles with in a support domain varies between 30 to 80 depending 

on the size of  the problem domain (Kalssen 2002). 
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     Figure 3.1 The support domain and smoothing function in two dimension for a particle a 

(after (Williams et al. 2011)) 

The smoothing radius kh is considered to be a key parameter in SPH interpolation. 

Given that the distance between particles which interact with each other is known or, 

in other words, the distance with a non-zero value of the smoothing kernel is known, 

the value of the constant, k, is then calculated by the choice of the smoothing kernel. 

In general, the value of k is chosen as 2. This means that particles which are 

separated by a distance greater than two times of smoothing length h will have no or 

very little influence on the parameters at the current particle.  

Figure 3.1 presents the support domain of any particle ‘a’ and all of the neighbouring 

particles that share the same support domain. Logically, the particles which are 

closer to centre (or particle ‘a’) have a greater contribution to the property of particle 

‘a’ compared to the particles which are located far from particle ‘a’. Therefore, the 

influence area of each particle will be defined using the kernel function. 

Neighbouring Particle b 
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There are two main steps to obtain the SPH formulation and discretisation (which 

will be described in more detail in the subsections that follow): 

 Kernel approximation can be included in the integral representation of a 

function and its derivatives. 

 Discrete or particle interpolation. 

3.2.3 Kernel Approximation  

The SPH uses the following identity to represent any arbitrary function 𝜙(𝐱) in an 

integral form, 

𝜙(𝐱) = ∫ 𝜙(𝐱′) 𝛿(𝐱 − 𝐱′)𝑑𝐱′                                                                                (3.1)
Ω

        

Where the integral is evaluated over the volume Ω and 𝛿(𝐱 − 𝐱′) is the Driac delta 

defined by,    

𝛿(𝐱 − 𝐱′)   = {1       𝐱 = 𝐱
′

0       𝐱 ≠ 𝐱′
                                                                                        (3.2)       

The Dirac delta can be replaced by an interpolation function   𝑊, so that the integral 

representation of 𝜙(𝐱) can be approximated as, 

   𝜙(𝐱) ≈ ∫ 𝜙(𝐱′)𝑊(𝐱 − 𝐱′, ℎ)𝑑𝐱′                                                                       (3.3)
Ω

   

where, 𝑊 is the so-called kernel (interpolation or smoothing) function which should 

be differentiable, satisfy the unity condition and converge to Delta function.   

Kernel 𝑊 has the following properties: 

1. Normalisation or unity condition states that; 
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              ∫ 𝑊(𝐱 − 𝐱′, ℎ)𝑑𝐱′ = 1                                                                                  (3.4)
Ω

  

2. Dirac delta property is observed when the smoothing length approaches zero 

             lim
ℎ→0

𝑊(𝐱 − 𝐱′, ℎ) = 𝛿(𝐱 − 𝐱′)                                                                        (3.5) 

3. Compact condition 

             𝑊(𝐱 − 𝐱′, ℎ) = 0   𝑖𝑓 │𝐱 − 𝐱′│ > 𝑘ℎ                                                           (3.6) 

where 𝑘 is a scaling factor, as defined earlier. This parameter defines the domain 

where the smoothing function is effectively non-zero. This effective area is called the 

support domain and is given by 

              │𝐱 − 𝐱′│ ≤ 𝑘ℎ                                                                                                  (3.7) 

Here, the length parameter ℎ has a similar interpretation to that of element size in the 

FEM. 

3.2.4 SPH Kernel 

The choice of the smoothing or kernel function is considered to be very important in 

SPH, and is used to determine the accuracy of the interpolated functions and the 

overall computations. A wide range of kernel functions, ranging from Gaussian to 

polynomial functions, have been used in SPH method. The kernels can be mainly 

classified into four types of kernels: bell shaped, parabolic shaped, hyperbolic 

shaped, and double hump shaped. Figure 3.2 illustrates some of the kernel functions 

and their derivatives. Approximately 20 types of kernel were investigated by Fulk 

and Quinn (Fulk and Quinn 1996) to assess their accuracy and it was concluded that 

the bell shaped kernels performed better than the other types of kernel. 
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Figure 3.2 General and different shapes of kernels studied after (Fulk and Quinn 1996)  

The most commonly used kernel functions are defined below: 

Gaussian kernel: This is a very stable and accurate kernel. As this function 

asymptotically approaches zero, it is not considered to have a compact support 

domain. Due to this, Gaussian kernel is computationally more expensive. Equation 

(3.8) represents the Gaussian kernel function: 

   𝑊(𝐱 − 𝐱′, ℎ) =

{
 
 

 
   

1

√2𝜋ℎ
𝑒−𝜉

2                                                    

1

2𝜋ℎ2
𝑒−𝜉

2                   ; 𝜉=
‖𝐱−𝐱′‖

ℎ
            

1

(√2𝜋ℎ)
𝑛 𝑒−𝜉

2                                              

                     

   

where, d is the dimension, and h is the smoothing length of the Gaussian kernel. As 

shown in Figure 3.3. 

1d 

2d 

nd 

(3.8) 
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Figure 3.3 The Gaussian kernel 

Cubic spline kernel: This is much narrower and has compact support. The outer 

edges are well defined at a distance h from the particle at the centre; therefore, 

outside these edges kernel function is defined as zero. Using the spline kernel 

function, Equation (3.9) represents the kernel function: 

 

𝑊(𝐱 − 𝐱′, ℎ) =
𝑐

ℎ𝑑

{
 

 1 −
3

2
𝜉2 +

3

4
𝜉3              𝜉 ≤ 1

1

4
(2 − 𝜉)2               1 < 𝜉 ≤ 2

0                                       𝜉 > 2

    ; 𝜉 =
‖𝐱−𝐱′‖

ℎ
             (3.9)      

where d is the number of dimensions of the problem, c is a scaling factor for 

normalising the kernel function and h is the length parameter (smoothing length), 

which has a similar interpretation to that of element size in FEM. Figures 3.4 and 3.5 

shown the cubic kernel and its derivative. 
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Figure 3.4 The Cubic Spline Kernel 

 

Figure 3.5 Cubic kernel derivatives 

The quartic spline: This is a higher order kernel function. The quartic spline was 

introduced by Morris et al. (Morris et al. 1997) and is defined here in Equation 

(3.10).  The quartic spline is more stable and closely approximates the Gaussian 

kernel. Unlike Gaussian, quartic spline has a compact support. 
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𝑊(𝐱 − 𝐱′, ℎ) = 𝑐

{
 

 

  

(𝜉 − 2.5)4 − 5(𝜉 + 1.5)4 + 10(𝜉 + 0.5)4       0 ≤ 𝜉 < 0.5

 (2.5 − 𝜉)4 − 5(1.5 − 𝜉)4                                   0.5 ≤ 𝜉 < 1.5

(2.5 − 𝜉)4                                                                1.5 ≤  𝜉 < 2.5
0                                                                                           𝜉 ≥ 2.5

 (3.10)   

    Where, c is a scaling factor.  

The quintic spline: The most commonly used kernel function in SPH is a quantic 

spline function. This is very similar to cubic spline function, however has higher 

order of accuracy. 

𝑊(𝐱 − 𝐱′, ℎ) =
𝑐

ℎ𝑑
{

(2 − 𝜉)5 − 16(1 − 𝜉)5       𝜉 ≤ 1

(2 − 𝜉)5                          1 < 𝜉 ≤ 2
0                                                𝜉 > 2

                                             (3.11) 

where, d is the number of dimensions of the problem, c is a scaling factor for 

normalising the kernel function and h is a length parameter. 

3.2.5 Particle Interpolation 

The particle approximation in SPH involves discretising the entire domain of the 

given problem into a number of particles N, and then approximately calculating all 

the field variables on these particles. First, the infinitesimal volume 𝑑𝐱′ at the 

location of particle ‘b’ can be approximately replaced by the finite volume of the 

particle Vb where, 𝑉𝑏 =
𝑚𝑏

𝜌𝑏
. This embodiment of the density 𝜌𝑏 and mass 𝑚𝑏 makes 

SPH the ideal numerical solution to simulate the dynamic fluid flow applications. 

Moreover, the continuous integral in Equation (3.3) can be converted to a discretised 

form of summation over all the particles N in the support domain Ω. 
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    Figure 3.6 particle approximation of function 𝝓(𝐱) (after (Kulasegaram et al. 2002) 

Therefore, the discretised numerical equivalent to Equation (3.3) is obtained by 

approximating the integral interpolation into a summation approximation given as: 

𝜙(𝐱) = ∑𝑉𝑏𝜙𝑏𝑊(𝐱 − 𝐱𝑏 , ℎ)

𝑁

𝑏=1

                                                                             (3.12) 

Where 𝑏 is taken over all the particles, and 𝑉𝑏  is the volume attributed implicitly to 

particle 𝑏, 𝐱𝑏 is the position, and 𝜙𝑏 is the value of any quantity 𝜙 at 𝐱𝑏. The 

following relation between volume, mass, and mass-density is assumed, 

𝑉𝑏 =
𝑚𝑏

𝜌𝑏
                                                                                                                           (3.13)        

where 𝑚𝑏 is the mass and 𝜌𝑏 the mass-density of particle ‘b’. Replacing the volume 

of particle 𝑏 in Equation (3.12) by Equation (3.13) yields the basis formulation of the 

SPH method as; 

𝜙(𝐱) = ∑𝜙𝑏
𝑚𝑏

𝜌𝑏

𝑁

𝑏=1

𝑊(𝐱 − 𝐱𝑏 , ℎ)                                                                          (3.14) 

The gradient of any quantity 𝜙 can be approximated using SPH discretisation in the 

following form, 

a 
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∇𝜙(𝐱) = ∑𝑉𝑏

𝑁

𝑏=1

𝜙(𝐱𝑏)∇𝑊𝑏                                                                                       (3.15) 

where, the quantity ∇𝑊𝑏 denotes the gradient of the kernel. The application of 

Equation (3.12) to calculate the approximate value for the density of a continuum 

leads to the classical SPH equation: 

𝜌(𝐱) = ∑𝑚𝑏𝑊𝑏(𝐱)                                                                                                    (3.16)

𝑁

𝑏=1

 
             

3.2.6 Corrected SPH Integration 

The basic SPH approximations as given by Equation (3.14) and (3.15) do not 

accurately reproduce or approximate the function 𝜙(𝐱)  and its derivative ∇𝜙(𝐱). 

Therefore corrected SPH equations were developed to address these issues (Bonet 

and Lok 1999; Bonet and Kulasegaram 2000a).The main aim of the correction 

techniques is to satisfy the conservation of angular momentum which, unlike the 

linear momentum, is not automatically satisfied. In order to correct the SPH 

algorithms, some work was done on the gradient of the kernel directly (Bonet and 

Lok 1999; Bonet and Kulasegaram 2000a), whereas others have modified the kernel 

function itself (Liu and Liu 2003). Another possible way is to mix the kernel and 

gradient corrections (Bonet and Lok 1999; Bonet and Kulasegaram 2000a). 

Using the corrected gradient of the corrected kernel, the SPH equations (3.14) and 

(3.15) can be re-written as: 

𝜙(𝐱) = ∑𝑉𝑏

𝑁

𝑏=1

𝜙(𝐱𝑏)𝑊̃𝑏(𝐱)                                                                                    (3.17)         
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∇𝜙(𝐱) = ∑𝑉𝑏

𝑁

𝑏=1

𝜙(𝐱𝑏)∇̃ 𝑊̃𝑏(𝐱)                                                                              (3.18) 

where, 𝑊̃𝑏(𝐱) refers to the kernel function that is corrected to fully satisfy the 

consistency conditions (see Appendix A), and b is the neighbouring particle of 

position ‘𝐱’ within the support domain. In addition, ∇̃ in Equation (3.18) indicates 

that the gradient is corrected to reproduce the linear consistency. The gradient 

correction of the kernel used in the present work is adopted from the mixed kernel 

and gradient correction to minimise the computational efforts associated with 

evaluating corrected gradients of relevant field variables. More details on corrected 

SPH integration can be found in the Appendix A. 

3.2.7 The Nearest Neighbour Search 

One of the most important factors in the SPH method is to identify the particles 

which interact with the others. At each time step, for every particle ‘a’, a list of the 

entire neighbouring particles should be defined. This procedure is considered to be 

computationally demanding when searching for the neighbouring particles at every 

time step during the numerical simulation (Bayraktar et al. 2009). Therefore, it is 

essential to adopt efficient searching algorithms to minimise the computational 

efforts at this step. Many attempts were made in the past to reduce the time spent in 

the search of neighbouring particles. For instance, Wróblewski et al. (Wróblewski et 

al. 2007) compared two methods of neighbourhood search for the SPH algorithm, the 

Constant Cut-off Radius method and the Constant Number of Neighbours; the 

simulation results obtained by both methods were practically indistinguishable, while 

the computational costs favoured Constant Cut-off Radius. Many other methods have 
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been also reported such as Bucket Sort Algorithm method (Monaghan and Lattanzio 

1985), All Pair search and Linked-List methods (Liu and Liu 2003). The method 

adopted here is the Alternating Digital Tree (ADT) which was used by Bonet and 

Peraire (Bonet and Peraire 1991) for geometric searching algorithms and shown to be 

efficient for three-dimensional problems.  

3.2.8 Treatment of Boundary Conditions 

The SPH method has suffered from particle deficiency near or on the boundary 

which affects the accuracy of the kernel estimation of field variables. Due this, 

imposing boundary conditions in SPH method is not straight forward as that of 

traditional mesh-based methods. In SPH, boundary conditions should be imposed to 

ensure balancing the inner particle forces thus preventing those particles from 

penetrating the wall. A number of approaches to enforce boundary conditions have 

been proposed in the SPH method so far. These methods mainly aimed to solve the 

issues associated with particle deficiency along the boundaries. For example, the 

repulsive force method (Monaghan 1994), mirror (or ghost) particles method 

(Takeda et al. 1994);(Cummins and Rudman 1999)  and dummy particles method 

(Dalrymple and Knio 2000; Shao and Lo 2003); (Lee et al. 2008); (Amini et al. 

2011) are some of the most commonly used numerical techniques to implement 

boundary conditions in SPH method. Figure 3.7 illustrates the aforementioned 

procedures for implementing boundary conditions in SPH method.  
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Figure 3.7 (a) Repulsive force (b) Mirror particles and (c) Dummy particles  

Repulsive forces: In this method one layer of particles is added on the boundary to 

represent the boundary conditions (Monaghan 1994). These particles constitute the 

boundary that exerts high fictitious central forces on the fluid particles to prevent the 

particles from penetrating the wall (Zheng and Duan 2010). One of the disadvantages 

of this method is that it lacks accuracy when representing the interaction between the 

fluid and the solid. In spite of this, this method is considered to be easier to 

implement (Amini et al. 2011). 

Mirror particles: The boundaries will be represented by set of particles with equal 

velocity to the fluid velocity but in an opposite direction i.e. vfluid = -vmirror, as 

proposed by Cummins and Rudman (Cummins and Rudman 1999). These mirror 

particles can be placed symmetrically or asymmetrically to fluid particle positions. 

One of the disadvantages of this method arises when dealing with different shapes 

such as curved, or cornered boundaries, because the spacing between the particles 

will change as a result; and this leads to a variation in density (Robinson 2009). 

However, (Morris et al. (Morris et al. 1997) presented a new method to deal with the 

curve boundary condition that used artificial velocity for the boundary particles to 

simulate a no-slip boundary condition. 



Chapter 3                                                                                                       Introduction of SPH method 

 
50 

 

Dummy particles: This type of boundary treatment is generally used to impose non-

slip boundary condition. In this method, several layers of fixed particles which are 

identical to the moving ones but with zero velocity are added (Dalrymple and Knio 

2000; Robert A. Dalrymple 2000). Dalrymple et al. (Dalrymple and Knio 2000; 

Robert A. Dalrymple 2000) used two rows of dummy particles to represent 

boundaries in their study. Shao and Lo (Shao and Lo 2003) in their popular 

approach, indicated that boundaries in dummy particles could be represented by 4 

lines of static particles. The velocity of these particles is set to be zero representing 

non-slip boundary conditions. The pressure on the particles along the boundary edge 

and normal to the boundary wall surface are identical to the pressure at the fixed 

particles. This approach does not need any extra computational or programming 

steps especially when dealing with irregular boundary contours (Lee et al. 2008). The 

dummy particles based boundary treatment can satisfy all the fluid flow equations 

(momentum and continuity equations), but they retain their positions at the end of the 

loop if the problem involves a fixed boundary, or they change their positions in a 

prescribed manner if the boundary is moving, for instance at a gate (Amini et al. 

2011). The accuracy of dummy particle approach can be improved by increasing the 

number of dummy particles increases.   

Surface Particles: Along the free surface boundaries, when the support domain is 

truncated as shown in Figure 3.8, the number of neighbouring particles representing 

the support domain will be smaller. In this case pressure boundary condition is 

imposed where, the pressure of the surface particles will be assumed to be equal to 

atmospheric pressure (Lee et al. 2008). 
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Figure 3.8 Free Surface Particles 

3.2.9 Pressure Evaluation in SPH Approach 

In the SPH method, the incompressibility of fluid flow is enforced generally by two 

different methods namely weakly or quasi compressible (WCSPH) method  

(Monaghan 1994; Lee et al. 2008) and fully or truly incompressible (ISPH) method 

(Shao and Lo 2003). Both of these approaches have their own merits and demerits. 

The next chapter will detail the methodology adopted in the present work to enforce 

the incompressibility of the fluid under investigation. 

3.3 Conclusions 

This chapter has defined and described the SPH numerical methodology which is to 

be used for modelling blood flow in the present work. The simplicity and Lagrangian 

nature of SPH method together with its recent developments make it an encouraging 

candidate to be applied in blood flow modelling in the present research. A suitable 

and efficient computational strategy using the SPH method will be introduced in 

Chapter 4 to set up the computational procedures for simulating blood flow and 

thrombus formation in two-dimensional and three-dimensional scenarios. It is, 

however, important that the developed computational techniques are able to identify 
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the influence of different parameters on thrombosis within arteries or vessels with 

various geometrical shapes and sizes. 



 

 

 

 

Chapter 4  

 

 

 

 

 

SPH for Modelling Blood Flow  

 

 

 

 

 

 



Chapter 4                                                                                                    SPH for modelling blood flow 

 
54 

 

4.1 Introduction  

This chapter will focus mainly on the concepts relating to discretization of the 

governing equations using SPH method and their application on modelling blood 

flow and thrombus formation. Firstly, the governing equations of the mass and 

momentum conservation will be discussed in this Chapter. Next, the governing 

equations will be cast in discretised form using SPH method. Finally, the treatment 

of the boundary conditions and the computational procedure adopted in the present 

work will be outlined.  

  

4.2 The Governing Equations 

 The mass and momentum conservation laws were introduced by Navier and Stokes, 

and they represent the fundamental physical principles of fluid flow. The governing 

equations of fluid flow can be described in either Eulerian form or Lagrangian form. 

Both of these descriptions have a number of advantages and disadvantages. 

However, due to numerous advantages, the Lagrangian description is a natural choice 

for discretisation technique used in the present work. Therefore, in this section, the 

mass and momentum conservation equations in the Lagrangian frame of reference 

will be used (see appendix B). Normally, the derivations of governing equations 

utilise either the concept of finite control volume or the concept of an infinitesimally 

small element moving with the fluid. To obtain the governing equations in 

Lagrangian form, from physical principles, it is convenient to use the concept of 

infinitesimally small element moving with the fluid. The sections 4.2.1 and 4.2.2 

focus on the derivation of governing equations.  
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4.2.1 The continuity equation 

Let us consider an infinitesimal moving fluid element with fixed mass 𝛿𝑚 and 

volume, so that 

𝛿𝑚 = 𝜌𝛿𝑉                                                                                                                        (4.1) 

where,  𝜌 is the mass-density of the fluid.  

Since the mass is conserved, we can state that the time-rate-of-change of the mass of 

the fluid element is zero as the element moves along with the flow, i.e.  

𝐷(𝛿𝑚)

𝐷𝑡
= 0.                                                                                                                        (4.2) 

The substantial derivative in Equation (4.2) can be expanded using Equation (4.1) as  

𝐷(𝛿𝑚)

𝐷𝑡
=
𝐷(𝜌𝛿𝑉)

𝐷𝑡
= 𝛿𝑉

𝐷𝜌

𝐷𝑡
+ 𝜌

𝐷(𝛿𝑉)

𝐷𝑡
= 0                                                             (4.3) 

Rearranging Equation (4.3) gives:  

 

𝐷𝜌

𝐷𝑡
+ 𝜌

1

𝛿𝑉

𝐷(𝛿𝑉)

𝐷𝑡
= 0                                                                                                     (4.4) 

The second term in Equation (4.4) is the divergence of the velocity ∇. 𝐯 which is the 

time rate of change of the volume of a moving fluid element per unit volume (see 

Appendix B). Hence, the Equation (4.4) can be re-written as, 

𝐷𝜌

𝐷𝑡
+ 𝜌∇. 𝐯 = 𝟎                                                                                                                  (4.5) 

Equation (4.5) expresses the continuity equation or the mass conservation equation in 

the Lagrangian form. 
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4.2.2 The momentum equation 

The momentum equations are the fundamental governing equations that 

describe flow of fluids by applying Newton’s second law of motion which states that 

the total force on a fluid element is equal to its mass m times the acceleration of the 

considered fluid element. From this equation of motion, the necessary governing 

equation for conservation of momentum can be obtained in the Lagrangian form (see 

Appendix B).  

Thus, the momentum conservation equations can be given as  

𝐷𝐯

𝐷𝑡
= −

1

𝜌
∇𝑃 +

1

𝜌
∇. 𝛕 + 𝐅 .                                                                                             (4.6) 

where 𝜌, 𝑡, 𝐯, 𝑃, 𝛕 and 𝐅 represent the fluid particle density, time, velocity, pressure, 

shear stress, and external body force (e.g. gravity) , respectively. 

For the complete description of physical principles of flow, the governing equations 

for conservation of energy in the Lagrangian form can also be added to the system of 

governing equations. However, as in the present work only isothermal flows are 

considered, governing equations concerning conservation of energy are ignored. 

In the present work, the blood flow is regarded as a viscous Newtonian fluid. The 

fundamental flow equations to be used for modelling the blood flow is isothermal, 

Lagrangian mass and momentum conservation equations introduced above. It is 

believed that the assumptions proposed above are reasonable for the flow problems 

addressed here.  
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These Equations represent both Newtonian and non-Newtonian fluid flows. Since 

blood contains a high percentage of water, as indicated above, the blood flow is 

assumed as a Newtonian fluid in the present work.  

For Newtonian fluids, the shear stress is generally written as; 

𝝉 = 2𝜇𝒅                                                                                                                            (4.7) 

where 𝜇 is viscosity  𝒅  is the rate of deformation tensor given by, 

𝒅 =
1

2
(∇𝒗 + ∇𝐯T) ;   ∇𝐯 = ∇⨂𝐯                                                                                 (4.8) 

Where, ∇𝐯 is the velocity gradient and superscript T denotes a transpose. In Cartesian 

co-ordinate system 𝒅  can be written as,  

𝒅 =

(

 
 
 
 

𝜕𝑣𝑥
𝜕𝑥

1

2
(
𝜕𝑣𝑥
𝜕𝑦

+
𝜕𝑣𝑦

𝜕𝑥
)

1

2
(
𝜕𝑣𝑥
𝜕𝑧

+
𝜕𝑣𝑧
𝜕𝑥
)

1

2
(
𝜕𝑣𝑦

𝜕𝑥
+
𝜕𝑣𝑥
𝜕𝑦
)

𝜕𝑣𝑦

𝜕𝑦

1

2
(
𝜕𝑣𝑦

𝜕𝑧
+
𝜕𝑣𝑧
𝜕𝑦
)

1

2
(
𝜕𝑣𝑧
𝜕𝑥

+
𝜕𝑣𝑥
𝜕𝑧
)

1

2
(
𝜕𝑣𝑧
𝜕𝑦

+
𝜕𝑣𝑦

𝜕𝑧
)

𝜕𝑣𝑧
𝜕𝑧 )

 
 
 
 

                                 (4.9) 

 

The mass and momentum conservation Equations can be further simplified and 

presented in Cartesian co-ordinate system.  

Multiplying both sides of Equation (4.5) by 𝜌 and noting that the essential derivative 

(or total time derivative) of density, 
𝐷𝜌

𝐷𝑡
 can be decomposed into the normal 

derivative 
𝜕𝜌

𝜕𝑡
 and the convective derivative 𝐯. ∇𝜌. This can be written as: 

(
𝜕𝜌

𝜕𝑡
) + 𝐯. ∇𝜌 + 𝜌∇. 𝐯 = (

𝜕𝜌

𝜕𝑡
) + ∇. (𝜌𝐯)                                                                    (4.10) 
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For a steady-state flow, 𝜌 does not change with respect to time and, hence, the term 

𝜕𝜌

𝜕𝑡
 vanishes. Therefore, in Cartesian co-ordinates, Equation (4.10) can be rewritten as 

𝜕(𝜌𝑣𝑥)

𝜕𝑥
+
𝜕(𝜌𝑣𝑦)

𝜕𝑦
+
𝜕(𝜌𝑣𝑧)

𝜕𝑧
= 0                                                                                 (4.11) 

Additionally, if the flow is incompressible, 𝜌 is constant and does not change with 

respect to space; therefore, Equation (4.11) is further simplified into: 

𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑦

𝜕𝑦
+
𝜕𝑣𝑧
𝜕𝑧

= 0                                                                                                     (4.12)   

 

Now, by multiplying both sides of Equation (4.6) by 𝜌 and noting that the essential 

derivative (or total time derivative) of velocity 
𝐷𝐯

𝐷𝑡
 can be decomposed into a normal 

derivative 
𝜕𝐯

𝜕𝑡
 and a convective derivative (𝐯. ∇𝐯), the Equation (4.6) can be re-written 

as: 

𝜌 (
𝜕𝐯

𝜕𝑡
) + 𝜌(𝐯. ∇𝐯) = −∇𝑃 + 𝜌𝐅+ ∇. 𝝉′                                                                  (4.13) 

where, in Cartesian co-ordinates, three vector components of Equation (4.9) can be 

written explicitly as 

𝜌 (
𝜕𝑣𝑥
𝜕𝑡

+ 𝑣𝑥
𝜕𝑣𝑥
𝜕𝑥

+ 𝑣𝑦
𝜕𝑣𝑥
𝜕𝑦

+ 𝑣𝑧
𝜕𝑣𝑥
𝜕𝑧
)

= −
𝜕𝑃

𝜕𝑥
+ 𝜌F𝑥 + 𝜇 (

𝜕2𝑣𝑥
𝜕𝑥2

+
𝜕2𝑣𝑥
𝜕𝑦2

+
𝜕2𝑣𝑥
𝜕𝑧2

)                                 (4.14) 

𝜌 (
𝜕𝑣𝑦

𝜕𝑡
+ 𝑣𝑥

𝜕𝑣𝑦

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑦

𝜕𝑦
+ 𝑣𝑧

𝜕𝑣𝑦

𝜕𝑧
)

= −
𝜕𝑃

𝜕𝑦
+ 𝜌F𝑦 + 𝜇 (

𝜕2𝑣𝑦

𝜕𝑥2
+
𝜕2𝑣𝑦

𝜕𝑦2
+
𝜕2𝑣𝑦

𝜕𝑧2
)                                (4.15) 
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𝜌 (
𝜕𝑣𝑧
𝜕𝑡

+ 𝑣𝑥
𝜕𝑣𝑧
𝜕𝑥

+ 𝑣𝑦
𝜕𝑣𝑧
𝜕𝑦

+ 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑧
)

= −
𝜕𝑃

𝜕𝑧
+ 𝜌F𝑧 + 𝜇 (

𝜕2𝑣𝑧
𝜕𝑥2

+
𝜕2𝑣𝑧
𝜕𝑦2

+
𝜕2𝑣𝑧
𝜕𝑧2

)                                 (4.16) 

Where, as defined earlier, 𝜇 is the dynamic viscosity of the fluid which is constant in 

the case of a Newtonian fluid.  

4.3 Discretisation of The Governing Equations in SPH   

In the SPH method, a group of variables and their gradients are generally 

interpolated from values at a discrete set of particles by using the standard 

approximations as in Equations (3.17) and (3.18). The governing equations of flow 

(i.e. Equations 4.5 and 4.6) should now be discretised in the SPH formulation to 

perform the numerical simulations. The numerical discretisation of individual terms 

in the governing equations are detailed below. 

4.3.1 Divergence of velocity 

The divergence of the velocity field can be obtained by identifying 𝜙(𝐱) in 

Equation (3.18) (see Chapter 3) with the velocity term, where   

(∇. 𝐯)𝑎 =∑𝑉𝑏𝐯𝑏

𝑁

𝑏=1

. ∇̃𝑊̃𝑏(𝒙𝑎)                                                                                        (4.17) 

   In the above equation, ‘a’ and ‘b’ denote the particle (or node) at which the 

divergence of velocity is numerically computed and its neighbouring particle, 

respectively. 𝑉𝑏 is the volume of material assigned to particle ‘b’. The ∇̃𝑊̃𝑏(𝒙𝑎) here 

denotes the corrected gradient of the corrected kernel (see Chapter 3 and Appendix 
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A) evaluated at particle ‘a’ with respect to neighbouring particle ‘b’. The accuracy of 

the approximation depends on the selection of the differentiable kernel function, 

especially on its closeness to the Delta function. In the present work, the higher order 

quantic-spline kernel function was chosen for numerical computations. 

4.3.2 Gradient of pressure 

Following the procedure described above, the gradient of pressure in the 

momentum equations can be written in the discretised form as: 

(∇𝑃)𝑎 =∑𝑉𝑏𝑃𝑏∇̃𝑊̃𝑏(𝒙𝑎)

𝑁

𝑏=1

                                                                                        (4.18) 

 

4.3.3 Viscous term  

The viscous term 
1

𝜌
∇. 𝝉 in the momentum conservation equation can, also, be 

calculated in a similar style, as follows: 

(
1

𝜌
∇. 𝝉)

𝑎

=∑
𝑚𝑏

𝜌𝑏
2 𝝉𝑏∇̃𝑊̃𝑏(𝑥)

𝑁

𝑏=1

                                                                               (4.19) 

The above discretised equations will be coupled with suitable numerical procedures 

to model blood flow.  
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4.4 Pressure Evaluation in SPH Method  

4.4.1 Weakly or quasi-compressibility in the SPH (WCSPH) 

Enforcing incompressibility in SPH can be pursued using two different approaches - 

the weakly or quasi-compressible SPH will be referred to as WCSPH(Monaghan 

1994; Lee et al. 2008) and the truly incompressible SPH as ISPH (Kulasegaram et al. 

2011). Although both strategies achieve the incompressibility, each has their own 

advantages and drawbacks. In the present work, due its simplicity, the WCSPH 

methodology is chosen to enforce incompressibility.  

The WCSPH method was developed based on using state equations for computing 

the pressures of compressible fluids. Monaghan (Monaghan 1994) proposed a 

methodology to treat a real fluid as a weakly compressible material. This approach 

leads to the replacement of a real fluid by an artificial quasi-compressible fluid 

having a small, user-defined, fluctuation in the density. As it is easy to implement, 

this approach was widely used in many fluid mechanics applications to enforce 

incompressibility. WCSPH is truly explicit and, consequently, features a simple and 

efficient algorithm. It can yield sufficient accuracy for a wide range of problems. The 

WCSPH method can also be easily applied to problem with complex boundaries and 

various fluids. However, WCSPH does have some drawbacks due to the small-time 

step associated with a numerical speed of sound which must be at least 10 times 

larger than the maximum velocity to reduce the density fluctuation down to 1%.  

In WCSPH method, the fluid pressure can be obtained using the equation of state 

described by Bachelor (Batchelor 1970; Monaghan 1994) for sound waves and 
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modified later by Monaghan (Batchelor 1970; Monaghan 1994) to suit the simulation 

of bulk fluid flow as, 

𝑃 = 𝐵 ((
𝜌

𝜌0
)
𝛾

− 1)                                                                                                         (4.20) 

where, 𝜌0 is the reference density and 𝛾 is a power coefficient that depends on the 

material properties. Cole and Weller (Cole and Weller 2009) experimentally found 

that the value of parameter 𝛾 for seawater is approximately 7.15 . Meanwhile, in 

WCSPH the value of 𝛾 is largely assumed to be 7 for fluids.  To determine the 

constant B which governs the relative density fluctuation 
∆𝜌

𝜌
 with ∆𝜌 = 𝜌 − 𝜌0, 

Becker and Teschner (Becker and Teschner 2007) demonstrated that the 

compressibility effects (the density variation in fluid flow) scale with  𝑀2 where 𝑀 

denotes the Mach number of flow, this results in the following relation,  

|∆𝜌|

𝜌0
∝
|𝑣𝑓|

2

𝑐𝑠2
                                                                                                           (4.21) 

where 𝑐𝑠 is the speed of sound in the fluid flow and 𝑣𝑓 is the speed of fluid flow. The 

speed of sound can be assumed to be large such that 
|𝑣𝑓|

2

𝑐𝑠
2   is typically 0.01 allowing 

the density variations of the order of 1%. To enforce this condition, B is chosen as: 

𝐵 =
 𝜌0𝑐𝑠

2

𝛾
                                                                                                                 (4.22) 

A small density fluctuation leads to a large pressure fluctuation because of the power 

coefficient 𝛾. For free surface water flows, different choices of 𝛾 (𝛾 =1 - 7) generally 

have a very small influence on the results, as shown by (Morris et al. 1997; Molteni 
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and Colagrossi 2009). For example, when 𝛾 = 1, the equation of pressure will be as 

follows:  

𝑃 =  𝑐𝑠
2(𝜌 − 𝜌0)                                                                                                       (4.23)    

The above equation of state has been widely applied in liquid acoustics (Wylie et al. 

1993).  

4.5 Time step 

The WCSPH method is generally implemented via explicit time stepping 

scheme. Therefore, the time step ∆𝑡 is selected based on the relevant stability 

condition. In the present work time step is estimated following Bonet and Lok (Bonet 

and Lok 1999) as:  

                 ∆𝑡 = 𝐶𝐹𝐿
ℎ

max (𝑐 + ‖𝐯‖)
                                                                      (4.24) 

where 0 < 𝐶𝐹𝐿 ≤ 1 is Courant number, 𝑐 = √𝛾𝐵 𝜌⁄   is the speed of sound. To avoid 

extremely small-time steps or to reduce computational time, an artificial smaller bulk 

modulus is typically used. This is obtained by choosing a small ratio between the 

maximum speed of the fluid and the speed of sound and then evaluating 𝐵 as: 

    𝐵 =
𝑐𝑚𝑎𝑥
2 𝜌

𝛾⁄  , where     𝑐𝑚𝑎𝑥 = 𝑚 ‖𝐯‖𝑚𝑎𝑥                                               (4.25) 

values of m between 10 and 1000 are used. 
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4.6 Treatment of Boundary Condition 

 This sub-section will describe the implementation of boundary conditions. Two 

types of boundary treatment methods namely Dummy particle boundary and periodic 

boundary were employed in the present computations. The implementation of these 

boundary conditions are detailed below. 

4.6.1 Dummy boundary  

This type of boundary treatment was employed to represent rigid (or wall) boundary 

with no-slip boundary condition. To enforce no-slip wall boundary, four layers of 

dummy particles are used (see Figure 4.1), where the velocity of these dummy 

particles is set to zero. As described in Chapter 3, the dummy particles based 

boundary treatment can satisfy all the fluid flow equations (momentum and 

continuity equations), but they retain their positions at the end of the loop in the case 

of a fixed boundary. The pressure on the particles along the boundary edge and 

normal to the boundary wall surface are identical to the pressure at the fixed 

particles. 

 
Figure 4.1 SPH discretisation of fluid with boundary dummy particles 

Edge & Boundary dummy particles Fluid Particles  
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4.6.2 Periodic boundary 

The periodic boundary condition are used to keep the size of the problem domain 

small. In the periodic boundary treatment, a fluid particle that moves out of the 

computational domain through an outlet boundary is immediately inserted back 

through the opposite or inlet boundary. Figure 4.2 schematically illustrates the 

implementation of periodic boundary condition.  

 
Figure 4.2 Schematic diagram of Periodic boundary conditions  

4.7 The Numerical Solution Procedure 

The numerical solution procedure undertaken to solve the governing 

equations in weakly-compressible SPH method is detailed below. 

There are many possible forms of the time integration methods which can be 

used to update the position of SPH particles during the numerical simulation. The 

simple and the most commonly used time stepping method is leap-frog explicit 

scheme (Monaghan 1985)    

Fluid particles   
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To integrate the momentum equation using leap-frog explicit scheme, the 

intermediate velocities at point ‘a’ are first evaluated as, 

  𝐯𝑎
𝑛+

1
2 = 𝐯𝑎

𝑛−
1
2 + ∆𝑡̅̅ ̅ [−

1

𝜌
∇𝑃 +

1

𝜌
∇. 𝝉 + 𝐅]

𝑎

𝑛

                                                    (4.26) 

then the particle positions are updated as, 

𝐱𝑎
𝑛+1 = 𝐱𝑎

𝑛 + ∆𝑡𝑛+1 𝐯𝑎
𝑛+

1
2                                                                                         (4.27) 

where ∆𝑡̅̅ ̅ =  
1

2
(∆𝑡𝑛 + ∆𝑡𝑛+1) and [−

1

𝜌
∇𝑃 +

1

𝜌
∇. 𝝉 + 𝐅]

𝑎

𝑛

 indicates that all the 

quantities inside the bracket are computed at point or particle ‘a’ at step n. 

And from the continuity Equation (4.5) the density is updated as, 

   𝜌𝑎
𝑛+1  =    𝜌𝑎

𝑛 − 𝜌𝑎
𝑛 (∇ ∙ 𝐯𝑎

𝑛+1) ∆𝑡𝑛+1                                                                      (4.28) 

 

Finally, the pressure at all the particles at step n+1 can be estimated using the state 

equation defined by Equation (4.20). A flowchart describing the overall numerical 

computational procedure is illustrated in Figure 4.3.  
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Figure 4.3 Numerical procedure for SPH flow modelling 
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4.8 Conclusion   

This chapter has detailed the governing equations and has outlined the key 

numerical procedures to be used in Lagrangian SPH modelling of Newtonian flow. 

The next chapter will focus on evaluating the accuracy of numerical methodology 

developed in this chapter and, will investigate the application of proposed 

methodology in blood flow simulation.  

 



 

 

 

 

Chapter 5  

 

 

 

 

 

 

Benchmarking of SPH Numerical Simulations 
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5.1 Introduction 

This chapter aims to validate the accuracy of the SPH numerical methodology that 

was developed in Chapter 4. It also aims to demonstrate the ability of the 

computational code that was developed to simulate the steady and oscillatory flows 

under flow conditions similar to those found in the human body. The effect of 

particle resolution on the accuracy and order of convergence of the SPH simulations 

will also be discussed. It is essential to assess and demonstrate that the flow model 

proposed is able to yield sufficient accuracy before it is used to simulate blood flow. 

For this purpose, the accuracy and convergence characteristics of the proposed 

methodology are first verified in the standard numerical tests that are used in 

computational fluid mechanics. These examples are chosen so that the various 

characteristics of fluid flow can be assessed under different flow conditions. In 

addition, these standard numerical tests can also confirm the applicability of the 

numerical methodology to blood flow in human body systems, such as 

cardiovascular systems. Finally, the numerical techniques that are developed will be 

used to study the blood flow in human bifurcation artery. In this test, the results of 

the numerical simulations are compared with the experimental observations reported 

in the literature. A convergence study of the numerical results is also performed to 

assess the computational efficiency of the proposed numerical procedure.  

5.2 Test Cases 

Most fluid flow phenomena in science and engineering vary with time at different 

locations along the flow path and they are characterised by a wide range of Reynolds 

numbers. For instance, cardiovascular flows can be characterised as unsteady flows 
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with moderate Reynolds numbers due to oscillatory nature of the driving forces. 

First, the accuracy of the SPH numerical model was assessed by simulating the 

transient behaviour of Poiseuille flow for different Reynolds numbers up to 1500. 

The capability of SPH to simulate unsteady flows produced by an oscillating 

pressure difference for various of Womersley (Wo=1,10 and 16) and amplitudes 

were then tested. 

Lid-driven cavity flow is chosen in the next example. This case is considered to be 

very useful due to the similarity between flow characteristics observed in this test 

and blood flow inside the human heart during the filling phase. In particular, the 

appearance of a recirculation zone in the lid-cavity test is similar to that observed in 

the human heart. Moreover, the exam of this case is also considered as a benchmark 

for numerical simulations because reference data are available up to high Reynolds 

numbers. The simulation of steady flow for different Reynolds numbers has been 

reported in the SPH literature (Ting et al. 2006; Lee et al. 2008; Basa et al. 2009). In 

this study, flows with different Reynolds numbers (Re=400 and Re=1000) are 

considered. These values are selected to show the ability of SPH to simulate this kind 

of flow in a laminar regime. During this simulation, the effect of particle resolution 

on the results of the SPH is also demonstrated. 

Flow over a cylindrical obstacle is analysed next to assess the accuracy of the 

developed model in such scenarios. These scenarios are commonly encountered in 

blood vessels. For example, the flow characteristics observed in this example will be 

similar to those observed in the human when the blood vessel contains internal 

surface variations.  
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Finally, a downstream-Facing Step Flow case is presented to investigate the transient 

blood flow phenomena with a variation of vessel geometry along the flow field. This 

type of geometry is close to that of arteries or vessels that are commonly found in the 

human body circulatory systems, such as curvature and bifurcation artery. These tests 

are considered to be very interesting because of the most major medical problems in 

the arterial system, such as atherosclerosis and thrombosis, happen in arteries that 

have different shapes, such as bends and bifurcations. 

The following subsections will detail the various numerical test cases that were 

performed to investigate the accuracy and characteristics of the SPH based 

simulations.  

5.2.1 Poiseuille Flow 

 In general, the Poiseuille flow consists of two infinite parallel plates and the 

movement of fluid between the plates is represented as the flow in channels or pipes. 

Figure 5.1 describes the boundary conditions and the characteristics of the Poiseuille 

flow. In this flow, the fluid is driven by an axial pressure difference. There is no 

applied pressure difference in the vertical or 𝑦 direction; thus, the flow is mainly 

directed parallel to the plates. The fluid can be accelerated due to a directional 

pressure difference and this can be interpreted as the effect of an external body force 

in the momentum equation. A body force causing acceleration, a of a fluid element 

can be given as 

𝒂 =
𝒇𝒃

𝝆
                                                                                                                  (5.1) 
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where   𝒇𝒃 is the body force per unit volume of the fluid element and 𝜌 is the density, 

which is the so-called force density.  

In this case, the plates are located at 𝑦 = 0  and 𝑦 = 𝐿  as illustrated in Figure 5.1. 

The fluid will start moving from rest until it reaches a steady state. The analytical 

solutions for axial velocity as a function time 𝑡 and position 𝑦 is given by (Morris et 

al. 1997). 

𝑉𝑥(𝑦, 𝑡) =  
𝒇𝒃

2𝜈 
𝑦(𝑦 − 𝐿) +

                    ∑
4 𝒇𝒃𝐿

2

𝜈 π3(2n+1)3
sin (

𝜋𝑦

𝐿
(2n +)) exp (−

(2n+1)2π2𝜈 

𝐿2
𝑡)∞

n=0                   (5.2)                      

where 𝑉𝑥  is the flow velocity in the 𝑥 direction, 𝑡 is the time, and 𝜈  is the kinematic 

viscosity. The force applied here in 𝑥 direction is given as:  

𝒇𝑏 = −
1𝑑𝑝

𝜌𝑑𝑥
=
8𝜈 𝑉

𝐿2
                                                                                             (5.3) 

where, 
𝑑𝑝

𝑑𝑥
 is the pressure gradient in 𝑥 direction and 𝑉 is the maximum steady state 

velocity.  

In this test, the parametric values of 𝜌, 𝐿 and 𝜈 are assumed as 1000 kg m3⁄ ,

0.005 m  and   1 x 10−6  m2s−1 respectively. 

The simulations were performed for two different geometrical cases, with the 

distance L between the plates 0.005 m and 0.0025 m, to investigate the flow with 

two different Reynolds numbers. A uniform spacing between particles (i.e. ∆x =

∆y = 0.0001m and 0.00005m) corresponding to 50 particles across the span 
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between the plates were used in the case of both Reynolds numbers. The results of 

the simulation are shown in Figure 5.2. 

 
Figure 5. 1 Schematic diagram of Poiseuille flow 
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 Figure 5. 2 Velocity profiles of Poiseuille flow at various stages for (a) Re=1500 and (b) Re=0.05 

The difference between the numerical simulation results and the analytical solution is 

determined using the Relative error equation which defines as, 

Relative error = √
∑ (𝐴𝑖,𝑆𝑃𝐻 − 𝐴𝑖,𝐸𝑥𝑎𝑐𝑡)

2𝑖=𝑁
𝑖=1

∑ (𝐴𝑖,𝐸𝑥𝑎𝑐𝑡)
2𝑖=𝑁

𝑖=1

                                                   (5.4) 

where, 𝐴𝑖,𝑆𝑃𝐻 , 𝐴𝑖,𝐸𝑥𝑎𝑐𝑡  are the SPH and exact analytical solution for parameter A at 

particle ‘i’ and N is the total number of particles used to calculate the relative error. 

The results are compared with the existing analytical solution. The numerical results 

are in close agreement with the analytical solution. For the case of Re=1500, the 

maximum relative error is 0.42% for the peak velocity during the simulation and the 

average relative error over all the particles in the domain at steady state is 0.40%. 
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5.2.2 Internal Flow Driven by Oscillating Pressure Difference 

In this example, the pressure gradient induced in the axial direction of the 

flow  does not remain constant (as in Poiseuille flow) but varies with time. This type 

of flow is usually found in large arteries and the industrial piping systems due to 

changes in the direction of pressure waves. The flow direction of the fluid between 

two parallel plates oscillates due to periodically varying pressure gradient, applied 

axially. The equation of employed pressure gradient is given by, 

𝑑𝑝

𝑑𝑥
= −𝐴 cos(𝜔𝑡)                                                                                         (5.5) 

where ω is the oscillation frequency (𝜔 =
2π

T
), T is the period of oscillation,  𝐴  is the 

amplitude of the imposed pressure gradient, and 𝑡 represents time. The analytical 

solution for axial velocity is given as (Loudon and Tordesillas 1998): 

𝑉𝑥(𝑦, 𝑡) =
A

ωργ
{[sinh∅1(𝑦)sin∅2(𝑦) + sinh∅2(𝑦)sin∅1(𝑦)] cos(ω𝑡) +

                      [−cosh∅1(𝑦)cos∅2(𝑦) − cosh∅2(𝑦)cos∅1(𝑦)] sin(ω𝑡)}                (5.6)                            

where, 

∅1(𝑦) =
Wo

√2
(1 +

2𝑦

d
) , ∅2(𝑦) =

Wo

√2
(1 −

2𝑦

d
)                                                       (5.7) 

And, 

γ = cosh(√2Wo) + cos(√2Wo)                                                                            (5.8) 

Here, Wo is the Womersley number, which is a dimensionless quantity representing 

the ratio of the oscillatory inertial effort (or pulsatile flow frequency) to the viscous 

effect and is defined as:  
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Wo =
d

2
√
ω

ν
                                                                                                      (5.9) 

Figure 5.3(a) and (b) present the simulation results obtained for oscillating pressure 

gradient with two different amplitudes of 0.09 N/m3 and 0.9 N/m3. The density (𝜌) 

and viscosity (𝜈) of the fluid were chosen as 1000 kg m3⁄  and 1 x 10−6  m2s−1. The 

value of Wo for the flows presented in Figure 5.3 is equal to 1. Period T was chosen 

as 0.61s. In this simulation, the distance d between the plates was assumed to be 

0.0025m and, 20 particles were used across the span between the plates. The initial 

particle spacing in both directions (i.e. ∆𝑥 and ∆𝑦) was 0.000125m. It is evident 

from Figure 5.3 that the numerical results are in good agreement with the analytically 

estimated velocity profiles During this simulation, the relative error for velocities 

along the centreline between the plates has a maximum value of 0.69% and the 

average value of the relative error considering all the particles in the domain is 

0.33%.  
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Figure 5. 3 Velocity profile of oscillating flow (Wo = 1) at various stages  

for (a) A = 0.09 𝐍/𝐦𝟑  and (b) A = 0.9 𝐍/𝐦𝟑 
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Figure 5.4 (a) and (b) illustrate the simulation results obtained with larger 

Womersley numbers (i.e. W𝑜 = 10 and  Wo = 16) where the distance between the 

parallel plates was assumed to be 0.01m. The amplitude of pressure gradient used in 

this simulation was 0.3N/m3. Here, the fluid domain was discretised by regular grid 

with initial particle spacing of 0.0002 m in both directions (∆𝑥 and ∆𝑦). The 

numerical results are again closer to analytical estimation of the velocity profiles. 

During the simulation, the relative error for velocities along the centreline between 

the plates for Wo = 16 has a maximum value of 0.66% and the average value of the 

relative error considering all the particles in the domain is 0.34%.   
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Figure 5. 4 Velocity profile of oscillating flow at various stages  

with  (a) 𝐖𝒐 = 𝟏𝟎 and  (b)   𝐖𝐨 = 𝟏𝟔  
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Another important parameter to be examined in the above oscillatory flows is the 

phase shift between the applied pressure gradient and the resulting velocity. Figures 

5.5(a) and 5.5(b) show the applied pressure gradient and corresponding velocity 

profile obtained over a period for two different Womersley numbers (i.e. W𝑜 = 10 

and  Wo = 16). As revealed by Figure 5.5, the numerical results produced by SPH 

method compare well with analytical solutions.  

 

 
 

Figure 5.5 Computed centreline velocity and pressure gradient (A= 0.3 𝐍/𝐦𝟑)  

of oscillating flow for  (a)   𝐖𝐨 = 𝟏𝟎 and  (b)   𝐖𝐨 = 𝟏𝟔  
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Figure 5.6 illustrates the results of numerical convergence study performed in this 

example. In this study, three different particle mesh with 20, 39 and 77 SPH particles 

across the span (d = 0.01 m) between the plates were used. The results in Figure 5.6, 

corroborate that the numerically computed velocities converge to the analytically 

determined values. 

 
 
Figure 5.6 Computed centreline velocity and applied pressure gradient for Oscillating flow over 

a period (Wo=16 and A= 0.3 𝐍/𝐦𝟑 )  

 

5.2.3 Lid-Cavity Flow 

Flow inside closed boundaries is encountered in cardiovascular systems. 

Therefore, this lid-cavity flow test is chosen here to assess the accuracy and 

efficiency of the proposed method. In this example, the flow inside a square cavity is 

examined using SPH method. The motion of the fluid is induced here by a moving 
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lid, which is on the top side of the cavity. Figure 5.7 illustrates the configuration of 

the lid-cavity test with relevant boundary conditions. The Reynolds number is 

defined here as, 𝑅𝑒 =
𝑉𝑜𝐿

𝜈
, where 𝑉𝑜  is the velocity of the lid, which is in the x-axis 

direction as indicated by Figure 5.7. The length (𝐿), viscosity (𝜈) and density (𝜌) 

were chosen as 1 m, 0.0025 m2s−1 and 1 kg m3⁄  respectively. Initially the 

Reynolds number (𝑅𝑒) of the flow was assumed as 400. Four different meshes with 

total number of particles 40 x 40, 70 x 70 ,100 x 100 and 200 x 200 were used to 

discretise the square region of the lid-cavity. In this simulation, the speed of sound 

(𝑐) was assumed to be equal to 100𝑉0. Figure 5.8 shows the velocity profiles 

obtained by the numerical simulations, at the mid-vertical and mid- horizontal cross 

sections of the cavity with different particle spacing (or resolution).  The results are 

compared with the results of Ghia et al. (Ghia et al. 1982). The effect of different 

particle resolution is clearly visible in the figure 5.8.   

 
Figure 5. 7 Configuration of the Lid-Cavity Test 
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Figure 5. 8 Velocity profiles (Re = 400) at (a) mid-horizontal (b) mid-vertical cross-sections 

To explore the effect of Reynolds number on the numerical results, the lid-cavity 

with Reynolds number 1000 was tested. For this purpose, the length (𝐿), viscosity (𝜈) 

and density (𝜌) were chosen as 1 m, 0.001 m2s−1 and 1 kg m3⁄  respectively. Figure 

5.9 shows the velocity profiles at mid-vertical and mid- horizontal cross–sections of 

the cavity at different particle resolutions. The results are again compared with the 

(a) 

(b) 
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results from Ghia et al. (Ghia et al. 1982). Similar to the previous case, the effect of 

different particle resolutions can be clearly noticed from the figure 5.9. 

 

 

Figure 5. 9 Velocity profiles (Re=1000) at (a) mid-horizontal and (b) mid-vertical cross-sections 

From the numerical results of the lid-cavity tests, it is evident that the velocity 

profiles obtained with SPH simulations are converging towards the results from Ghia 

et al. (Ghia et al. 1982). However, the results of flow with higher Reynolds number 

demonstrate better convergence rate. It can be noted from figures 5.8 and 5.9 that the 

(b) 

(a) 
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numerical results of the simulation converge towards the reference data with 

increasing particle resolution. 

5.2.4 Flow over a Cylindrical Obstacle 

This example is chosen to investigate the accuracy of the numerical simulations 

during the flow over obstacles. Especially, the effect of interaction between the flow 

and obstacle, on the accuracy of the numerical simulation to be explored in this test.  

In this numerical simulation, two-dimensional flow over a cylindrical obstacle was 

investigated. The geometry, as illustrated in Figure 5.10 (Morris et al. 1997) was 

chosen, where the radius of the cylinder is 0.02m, and the length (L) of the domain is 

0.1m. Flow with two different Reynolds numbers 0.03 and 1 were simulated in this 

study. The particle spacing in both directions (∆𝑥 and ∆y) was 0.002 m. The Table 5-

1 lists the various parameters used in each test case. 

Table 5. 1 Reynolds number (𝑹𝒆), velocity scale (𝑽𝒐), viscosity (𝝂) and Speed of sound (𝒄)  

Case 𝑅𝑒 𝑉𝑜m s⁄  𝜈 m2s−1             𝑐 m s⁄   

1 1 5  X 10−5 1 X 10−6 5.77 X 10−4 

2 0.03 1.5  X  10−4 1 X 10−4 1  X 10−2 

In Figure 5.10, 𝒇𝒃 is the body force which drives the fluid flow over the cylindrical 

obstacle. The body force values used in case 1 and case 2 are 1.5 x 10−7m s2⁄  and 

5 x 10−5m s2⁄   respectively. Periodic boundary conditions (see Chapter 4) were 

applied at the two opposite sides (inlet and outlet regions) of the domain. Aim of this 
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numerical test is to obtain horizontal velocity (𝑉𝑥 ) distribution along the 

discontinuous lines 1-1 and 2-2 (depicted in the Figure 5.10). 

 

 
Figure 5.10 Flow past a single cylinder within a periodic lattice from (Morris et al. 1997)  

 

The Figures 5.11 and 5.12 show the numerical results obtained for Reynolds 

numbers 1 and 0.03 respectively. In these figures, SPH results are compared with 

standard FEM results.  As it can be noted from Figures 5.11 and 5.12, the SPH 

results compare well with that of FEM. The average value of the relative error 

considering all the particles in the domain with Re=1 is 0.42%. While the average 

value of the relative error for Re=0.03 is 0.54%. Therefore, the results obtained with 

higher Reynolds number demonstrates better comparison with FEM results. 

𝒇𝒃 
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Figure 5. 11 Comparison of velocity distributions (Re = 1) along sections 1-1 and 2-2  

 

 
 

Figure 5. 12 Comparison of velocity distributions (Re = 0.03) along sections 1-1 and 2-2 
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5.2.5 Downstream-Facing Step Flow Channel 

This test is an important benchmark example as it contains sudden change of cross-

sectional area at the step, in combination with channel flow characteristics away 

from the step. Therefore, successful simulation of this benchmark can further 

establish the accuracy and applicability of the developed methodology for simulating 

blood flow in arteries. The geometrical domain adopted  (Denham 1974) for 

downstream-facing step flow is illustrated in Figure 5.13. In this numerical 

simulation, a constant body force is applied to drive the flow at the entrance of the 

channel, where the body force is set to obtain a mean bulk velocity in the channel 

above the step at two different Reynolds numbers (i.e. Re = 73 and Re = 229) were 

simulated. Here, the Reynolds number is given by 𝑅𝑒 =
𝑉𝑜ℎ

𝜈
, where ℎ is the height of 

the channel entrance, 𝑉𝑜 is the velocity at entrance of the channel (𝑉𝑜 = 

2.4  X 10−3ms−1 and 𝑉𝑜 = 7.6  X 10−3ms−1). The density and dynamic viscosity of 

the numerical simulations were chosen as 1000 kg m3⁄   and 1 x 10−6  m2s−1 

respectively. At the start of the simulation, fluid domain was discretised with 

uniform spacing between particles (∆x = ∆y = 1 mm). The velocity distribution at 

two different locations (x = -20mm and x = 90mm) along the downstream are 

depicted in Figures 5.14 and 5.15. It can be noted from these figures that the 

numerical results compare well with the experimental results presented in (Denham 

1974). In addition, Tables 5.2, 5.3, 5.4, and 5.5 give the numerical values of 

corresponding convergence velocities at chosen positions along each location (x = -

20mm and x = 90mm). 
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Figure 5.13 Geometrical configuration of problem domain 
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Figure 5.14 Comparison of the velocity profiles (Re=73) at (a) x=-20mm and (b) x = 90mm 

 

 

 

 

 

 

(b) 
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Figure 5.15 Comparison of the velocity profiles (Re = 229) at (a) x=-20mm and (b) x = 90mm  

 

 

 

 

 

                              Table 5. 2 Converge velocities (Re=73) at x=-20 

Position (y) % different in velocities with 

 respect to Experiment                 

0.015 0.80 

0.02 0.016 

0.025 0.026 

0.03 0 

 

 

 

 

 

(b) 

(x10−3) 
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                              Table 5. 3 Converge velocities (Re=73) at x=90 

Position (y) % different in velocities with 

 respect to Experiment                 

0.025 1.62 

0.03 2.15 

0.035 3.66 

0.04 3.43 

 

 

 

 

                              Table 5. 4 Converge velocities(Re=229) at x=-20 

Position (y) % different in velocities with 

 respect to Experiment                 

0.015 0.92 

0.02 0 

0.025 0.0093 

0.03 0 
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                              Table 5. 5 Converge velocities (Re=229) at x=90 

Position (y) % different in velocities with 

 respect to Experiment                 

0.025 1.160 

0.03 0.65 

0.035 0.018 

0.04 0.054 

 

The numerical simulations of benchmark test cases that have been presented in this 

chapter so far have demonstrated the capability of the computational model 

developed. In addition, the effect of particle resolutions on the accuracy of the 

computed results was promising. The next sub-section focuses on the application of 

SPH methodology for blood flow simulation. For this purpose, the blood flow 

through a bifurcation artery is considered. This simulation is performed here to 

explore the accuracy of the proposed SPH method in modelling blood flow through 

arteries. 

5.3 Flow Inside a Bifurcation Artery 

It is known from the clinical diagnosis that some regions in the artery are 

considered to be very susceptible to the formation of an atherosclerotic lesion. The 

predilection to form the atherosclerotic plaques in regions of a vessel bifurcation, 

ostia and curvature is an important recognised fact. Clinical studies can confirm that 

atherosclerosis chooses different locations in the vascular system, such as primarily 

sited in the carotid arteries, coronary arteries, and in vessels supplying the lower 
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extremities in the arterial system(Yazdani 2003). Atherosclerosis is one of the 

vascular pathologies that is considered to be a prominent disease. Atherosclerosis can 

affect medium-sized or large arteries (Waite and Fine 2007). Therefore, the 

hemodynamic phenomenon can be considered to be an important factor among the 

list of possible initiating factors in the formation of atherogenesis.  The local 

hemodynamic can be viewed as having a vital effect on the expansion of the 

atherosclerotic lesion in the sinus of the carotid bifurcation (Caro et al. 1971; 

Friedman et al. 1981; Zarins et al. 1983; Nerem 1992). Although the exact 

mechanism of this disease is indistinct, a number of hypotheses have been suggested 

to relate hemodynamical forces to the location of atherosclerotic lesions. For 

instance, the high and low shear stress theories respectively of Caro et al. and Fry 

(Caro et al. 1971; Fry 1973; Caro 1982) provide various descriptions. It has been 

suggested that local variations in the samples of the blood flow behaviour, 

specifically boundary layer separation, takes an important role in atherogenesis (Fox 

and Hugh 1966). Then, Caro et al. (Caro et al. 1971) modified Fox and Hugh’s 

theory (Fox and Hugh 1966) and showed that the early lesions are more likely to 

develop in regions with low shear stress because of the shear-dependent mass 

transport mechanism for atherogenesis. Meanwhile, Fry (Fry 1973) showed that the 

early atherosclerotic lesions appear in the regions with high shear stresses, which 

were found to induce endothelial injury. In addition, Friedman et al. (Friedman et al. 

1993) explained that the disease begins with a thickening of the intimal layer in 

locations that connect with the shear stress distribution on the endothelial surface. 

Atherosclerosis is a disease that classifies one of the diseases of the arterial wall 

which refers to be influenced by hemodynamics (Bronzino 1999). The rheological 

properties of the blood flow are not simply controlled by pressure pulse, the 
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properties of the arterial wall, and the geometry of the bifurcation, but they are also 

controlled by the local hemodynamic (Gijsen 1998). Bronzino (Bronzino 1999) 

showed the outer walls of bifurcations and the inner walls of curvatures have 

localised regions that are characterised by relatively low blood phase transport rates 

in which leads to accumulation of lipid in the arterials thus causing atherosclerosis. 

Clinical and postmortem anatomical studies have also discovered that atherosclerotic 

lesions in humans increase along the inner wall of the curved artery and the outer 

walls of bifurcations of relatively large arteries (Kerber et al. 1996; Malek et al. 

1999). This happens because the blood flow is changed by the appearance of flow 

separation and creation of complex recirculation flows (Motomiya and Karino 1984; 

Wada and Karino 2002). Where observed, the disturbed flow in the regions of the 

separation and reattachment points has a major effect on atherosclerosis (Yazdani 

2003). A large number of publications in the scientific community indicate that there 

is a strong interest in understanding the flow behaviour in arteries. In particular, the 

flow behaviour in a bifurcation artery is considered to be of great interest when 

studying the atherosclerosis diseases with respect to both the genesis and the 

diagnostics of atherosclerotic diseases. Thus, a deeper understanding and explanation 

of the flow behaviour in that area would be an important chance to support the early 

discovery of many diseases. In addition, low shear stress areas are related to the 

development of atherosclerotic diseases. Despite the importance of other factors, 

such as chemical and physiological factors, the localised atherosclerotic lesions must 

be connected to the local flow conditions, as is the case for another factor can be 

considered in a well-mixed condition; that is, uniformly distributed along the vessels. 

Furthermore, the flow of blood through healthy vessels can influence the formation 

of deposits, where the appearance of plaques will lead to a change of the 
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hemodynamics in the vicinity of the lesion. Many studies have dealt with the flow 

inside the artery using either experimental or numerical simulations (Bharadvaj et al. 

1982; Perktold and Hilbert 1986; Rindt et al. 1990; Rindt and Steenhoven 1996; 

Palmen et al. 1997). Meanwhile,(Kleinstreuer 1989; Jou and Berger 1998) presented 

a study to investigate the effects of pulsatility and bifurcation angle. The numerical 

simulations dealing with the flow inside the bifurcation artery were mostly based on 

conventional mesh-based methods: such as finite elements (Perktold and Rappitsch 

1995; Gijsen et al. 1999; Chen and Lu 2004), while an experimental and numerical 

review of bio-fluid dynamic studies of the arterial bifurcation was presented by (Lou 

and Yang 1991). Most of the numerical studies were performed by treating the walls 

of the bifurcation artery as rigid walls. Meanwhile, a few numerical studies (Perktold 

et al. 1991; Reuderink 1991; Perktold et al. 1992; Perktold and Rappitsch 1993) have 

considered the distensibility of the wall in their simulations. Coupling and integration 

of models with different dimensionality were applied (Formaggia et al. 1999; 

Quarteroni 2001). These researchers worked to link the lumped models with 3D 

models of the arterial tree.  Another study has investigated the pulsatile flow of non-

Newtonian fluid in a bifurcation model with a non-planar daughter branch (Chen and 

Lu 2006). These authors used the Carreau–Yasuda model to examine the shear 

thinning behaviour of the analogue blood fluid. Moreover, a numerical study 

examined the effects of Newtonian and Non- Newtonian blood flow on local 

hemodynamics in a multi-layer carotid artery bifurcation (Nikparto and Firoozabadi 

2011). These previous studies have demonstrated that the flow behaviour is sensitive 

to the geometry of the bifurcation artery, such as the complex geometry of the 

branch, flow division between the branches, pulsatile nature of the flow, 
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distensibility of the arterial wall, and Newtonian or non-Newtonian characteristics of 

blood. 

As a mesh-free method, the SPH can be used in simulating a flow inside complex 

geometrical domains. This example was chosen to explore the fluid dynamics 

phenomena in a bifurcation artery and to explore the accuracy of the proposed SPH 

method, in simulating blood flow through complex arterial geometry.  

A 2-D model was used in this numerical test and the simulations were executed 

under pulsatile flow conditions similar to that of physiological conditions. The 

geometrical configuration of a bifurcation artery described by (Gijsen et al. 1999) is 

illustrated in Figure 5.16. The geometry of bifurcation artery consists of three main 

regions namely, common carotid, internal carotid, and external carotid. It can be 

noted from Figure 5.16 that the cross-sections of common and external carotid artery 

do not change during the flow. However, the cross-section of the internal carotid 

artery changes considerably during the flow. Therefore, the flow characteristics of 

the fluid moving within the internal carotid can vary over the time. It is important to 

study the effect of these variations on the flow characteristics to understand the 

physiological conditions associated with local hemodynamic. For this purpose, the 

axial flow through cross-sections located at A, B, C and D are investigated in this 

numerical simulation.  The cross-section A is located in the middle of the common 

carotid artery. Meanwhile, the cross-sections B, C and D are located at different 

positions along (x'-axis) the internal carotid as shown in Figure 5.16.  

To study the accuracy and convergence of the computed parameters, the numerical 

simulations were performed by discretising the fluid domain using three different 

particle resolutions (1000, 2000 and 5000 particles). The fluid was accelerated by a 
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pulsatile pressure variation to mimic realistic blood flow. The applied pulsatile 

pressure gradient can be interpreted as the effect of an external body force in the 

momentum equation. The equation of a pulsatile pressure gradient can be presented 

as (Aroesty and Gross 1972); 

𝑑𝑝

𝑑𝑥
= 𝐴𝑜(1 + 𝐴𝑠𝑖𝑛𝜔𝑡)                                                                                     (5.10)  

Where, 𝜔 is the imposed pulse frequency, 𝐴𝑜 is component the pressure gradient, A 

is the amplitude of the imposed pulsatile pressure gradient, and t represents time. In 

the present simulations, A and 𝜔 were chosen as 0.3 and 2𝜋/T,  T = 0.72𝑠 is the 

period. And the viscosity and density of the fluid were assumed to be 

2 x 10−6  m2s−1 and 1410 𝑘𝑔 𝑚3⁄  respectively (Gijsen et al. 1999). And, the 

diameter of the common carotid was chosen as 8 mm. In the numerical simulations, 

no-slip boundary condition was imposed at the rigid walls and the periodic boundary 

treatment was used between inlet and outlet boundaries. 

 
Figure 5.16 Geometry of the bifurcation artery (Gijsen et al. 1999) 
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During the numerical simulations, the velocity distributions across locations A, B, C 

and D were plotted at 𝑡 = 0.2s (i.e. 𝑡 = T 4⁄ ). Figure 5.17 shows the velocity profile 

across the common carotid at location A. The axial velocity computed across the 

common carotid at location A exhibited a parabolic distribution. In Figure 5.17, the 

results obtained from SPH simulations are compared with the experimental 

observations reported in (Gijsen et al. 1999).  

The flow in the internal carotid sinus artery is considered to be very complex due to 

its geometry. Figures 5.18, 5.19 and 5.20 illustrate the comparison between velocity 

profiles obtained numerically and experimentally at locations B, C and D across 

internal carotid sinus artery. All the figures confirm that the numerical results agree 

well with the velocity distribution obtained from previous experiments (Gijsen et al. 

1999). In addition, these figures also illustrate the effect of SPH particle resolution 

(i.e. number of points used) on the convergence of the numerical results. 

As predicted, the flow inside the internal carotid sinus artery was observed to 

be very complex due to its geometry. It can also be noted from Figure 5.16 that the 

cross-sectional area of the internal carotid artery gradually increases from location B 

till location C and then gradually decreases from location C till location D. The effect 

of this variation in the cross-sectional area of the velocity distribution can be seen 

from Figures 5.18, 5.19 and 5.20. As revealed by the figures, till location C, the 

velocity of the flow inside the internal carotid artery was decreased because of the 

increase in cross-sectional area and the maximum value of the velocity was reached 

at location D. Further, the Figure 5.18 exhibits high gradients of velocity distribution 

due to the change of cross-sectional area at location C. It is clearly evident from the 

figures that the numerical results compare well with the experimental observations 
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reported in (Gijsen et al. 1999). In addition, Tables 5.6, 5.7, 5.8, and 5.9 provide 

numerical values of corresponding convergence velocities at chosen positions along 

each cross-section A, B, C and D. 

 

 

Figure 5. 17 Comparison of the velocity profile at location ‘A’ across common artery 
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Figure 5. 18 Comparison of the velocity profile at location ‘B’ across internal artery  

 

Figure 5. 19 Comparison of the velocity profile at location ‘C’ across internal artery 
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Figure 5. 20 Comparison of the velocity profile at location ‘D’ across internal artery 

 

           Table 5. 6 Converge velocities at section A 

Position (r/D) % different in velocities with respect to Experiment 

SPH (1000) SPH (2000) SPH (5000) 

0.4 0.29 0.29 0.19 

0.2 
2.73 

1.67 0.35 

0 
3.84 

2.09 0.34 

-0.2 2.73 1.67 0.35 

-0.4 0.29 0.29 0.19 
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          Table 5. 7 Converge velocities at section B 

Position (r/D) % different in velocities with respect to Experiment 

SPH (1000) SPH (2000) SPH (5000) 

0.4 
0.14 0.13 0.13 

0.2 
0.13 0.12 0.12 

0 
0.10 0.10 0.09 

-0.2 
0.06 0.06 0.06 

-0.4 
0.03 0.03 0.02 

 

 

           Table 5. 8 Converge velocities at section C 

Position (r/D) % different in velocities with respect to Experiment 

SPH (1000) SPH (2000) SPH (5000) 

0.4 0.09 1.63 0.0005 

0.2 0.05 6.99 0.002 

0 0.01 0.01 0.01 

-0.2 0.006 0.05 0.27 

-0.4 0.0005 0.09 0.13 
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                Table 5. 9 Converge velocities at section D 

Position (r/D) % different in velocities with respect to Experiment 

SPH (1000) SPH (2000) SPH (5000) 

0.4 0.13 0.12 0.12 

0.2 0.10 0.10 0.09 

0 0.09 0.08 0.08 

-0.2 0.09 0.08 0.08 

-0.4 0.09 0.08 0.08 

 

5.4 Conclusion  

This chapter focused on the application of numerical procedures proposed in 

Chapter 4 in simulating fluid flow under various physical and boundary conditions. 

The numerical test cases were chosen such that the accuracy of the proposed 

methodology could be assessed under various flow conditions. In addition, the 

selected cases have similarities with geometries and flow characteristics commonly 

found in the human circulatory systems.  

At first, the developed SPH based methodology was used in a number of 

standard computational fluid dynamics test cases to assess accuracy and convergence 

characteristics. The results of the numerical simulations confirmed that the proposed 

methodology was successful in yielding sufficient accuracy. In addition, the 

convergence of the numerically computed results towards either analytical or 

experimental result was successfully demonstrated. Finally, blood flow through an 
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artery was simulated using the proposed numerical methodology. To investigate the 

flow through a realistic blood vessel, a bifurcation artery geometry was chosen as the 

flow domain. During the simulation of flow through the bifurcation artery, the results 

of the numerical simulation were compared with experimentally observed data. The 

numerical results compared well with the experimental results and demonstrated that 

the SPH method could be applied to flow simulation with complex boundaries. 

Although the blood flow simulations in this chapter were performed under 2-D 

geometrical setting, the proposed methodology can be extended to the 3-D 

framework. This chapter has demonstrated that the developed SPH methodology is 

able to accurately capture the salient features of blood flow dynamics within various 

vessel geometries. Given that fluid dynamics play an important role in thrombus 

formation, the numerical implementation can now focus on developing a suitable 

computational procedure to simulate thrombus formation. The next chapter delves 

into the simulation of thrombus formation using the developed SPH method to 

investigate the influence of flow parameters on thrombus formation. 
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6.1 Introduction  

The formation of thrombus in blood vessels is a process that influences various 

pathological conditions, including cardiovascular ischemia, cerebrovascular 

accidents and prevention of bleeding (due to the damaged vessel). This chapter 

explores the feasibility of modelling thrombus formation using smoothed particles 

hydrodynamic (SPH) method and investigates the influence of blood flow on 

thrombus growth. First, a brief introduction of thrombus and elements involved in its 

formation are presented in this chapter. Next, a computational model which is 

adopted in the present work to simulate the formation of a thrombus is described. 

Finally, the results of the numerical simulations performed to investigate the 

formation of thrombus within vessels of different wall geometries and for various 

blood flow velocities are presented.  

As described in Chapter 2, a thrombosis is the formation of a blood clot inside a 

blood vessel, which can cause an obstruction to the circulatory system. Over the 

years, many studies have tried to analyse or explain thrombogenesis, beginning in the 

1840s with the investigations of Rudolf Virchow. A thrombosis can appear at many 

different locations in the circulation and it is strongly influenced by the local fluid 

mechanics (Caro 2012). Thrombosis is considered to be one of the important causes 

of cardiovascular diseases. Arterial thrombosis is one of the thrombus diseases that 

have been found to overlay ruptured atherosclerotic plaques. According to a study 

conducted by the World Health Organization (WHO), approximately 17.7 million 

people worldwide die due to cardiovascular diseases every year, in which heart 

attacks and strokes have the most occurrences. Around 50% of sudden deaths are due 

to cardiac causes (Kochanek et al. 2004). Studies have shown that there is a link to 
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acute myocardial infarction caused by coronary thrombosis or to an arrhythmia 

arising within a scarred left ventricle (Davies et al. 1989). Acute ventricle 

tachyarrhythmia accounts for 80% of sudden deaths, which is caused by acute 

coronary events (Huikuri et al. 2001). Most of these deaths occur in persons without 

prior cardiac symptoms or signs (Myerburg et al. 1998). These studies reveal that 

sudden death can be caused by a mural thrombosis, which plugs the lumen and 

restricts blood flow distally. Consequently, the blood flow is decreased and the heart 

muscles reach a low oxygen state. Due to ischemia, there is no return flow of blood. 

This can then lead to an irreversible infarct in the myocardium. During this time, the 

tissue that is ischemic does not introduce electrical signals to enable contractions in 

the heart ventricles and leads to an arrhythmia, which causes heart arrest and 

consequently results in death (Flannery 2005). A total of 70% of cardiac deaths 

around the globe are due to thrombosis (Panteleev et al. 2014). Thrombosis in the 

deep veins is considered to be one of the main global health problems (Tapson 2008). 

Thrombosis is considered as the most distinguished of the haemostatic disorders, 

which is exhibited by the formation of a blood clot that blocks the blood flow in the 

vessels. Thrombus formation causes many types of diseases and conditions, such as 

atherosclerosis, trauma, stroke, infarction, cancer, sepsis and others. The formation 

of a thrombus depends on platelet activity, such as the transport to denuded 

subendothelium, a formation of membrane tethers, adhesion to the subendothelium, 

and aggregation. (Ruggeri 2002; Ruggeri 2003). In blood circulation, the platelets do 

not normally adhere to the wall of the blood artery or vessels, to other cells, or to 

each other. However, if the wall of the vessel is damaged, then platelets will rapidly 

adhere and accumulate on the damaged wall.  



Chapter 6                                                                         Numerical Simulation of Thrombus Formation 

 

 
110 

 

In physiological conditions, platelets are considered to be one of the most important 

elements for causing haemostasis (Broos et al. 2011; Nuyttens et al. 2011).When an 

imperfection or damage is recognised, the platelets react with adhesion. The 

procedure of initial platelet-plug generation is called primary haemostasis. Low 

platelet numbers may impede the primary haemostasis and this can lead to an 

extreme increment of cessation times (Reininger 2008). Platelets play an important 

role in primary haemostasis, which has three functions: adhesion, activation, and 

aggregation. Adhesion of platelets occurs on the subendothelium. Many receptors 

can interact with subendothelial components, such as collagen, to facilitate adhesion 

to the damaged vessel wall. Then, the platelets change to activated phase thanks to 

different chemical agonists, such as thrombin, collagen and ADP. The last stage is 

the aggregation phase, which indicates the accumulation of platelets. This is 

considered to be an essential requisite for the formation of a platelet-plug (Flannery 

2005; Broos et al. 2011; Nuyttens et al. 2011). During secondary haemostasis, the 

accumulation of aggregation platelets results in a plug. This is then further settled by, 

for example, fibrinogen fibres compared to the primary thrombosis (Müller 2015).  

Thrombosis is principally connected to hemodynamics because blood transports cells 

and proteins to the thrombus, which upholds stresses that may disturb the thrombus 

(Wootton and Ku 1999). Many parameters are affected by the formation of 

thrombogenesis, which are either fluid mechanical factors or one of many 

physiological reactions. For example, platelet membrane glycoprotein (GP) is 

activated by the shear rate of blood flow (Andrews et al. 1997), which will affect the 

quantity of the adhesion of platelets to the subendothelium (Begent and Born 1970; 

Ruggeri et al. 1999). Thrombosis is extremely influenced by blood flow (Bronzino 

1999). The blood flow is considered an active contributor to creating a thrombus 
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through platelets and their interaction with other materials in the blood. Therefore, 

thrombus formation is affected by the blood flow velocity (Tosenberger et al. 2012).  

  Following this brief account of the factors involved in thrombus formation, 

the following sections of this chapter will focus on using meshless particle-based 

Lagrangian numerical technique named SPH method to explore the blood flow 

behaviour and flow conditions that determine thrombus formation and its 

characteristics. Due to its simplicity and effectiveness, the SPH method is employed 

here to simulate the process of thrombogenesis under the influence of various blood 

flow parameters. In the present SPH simulation, blood is modelled by particles that 

have the characteristics of plasma and platelets. Flow simulations were conducted 

with different Reynolds numbers. The results obtained from the numerical 

simulations are compared with experimental results to validate the accuracy of the 

proposed methodology. 

6.2 Modelling Thrombus Formation 

This section aims to detail the modelling techniques adopted for platelet motion and 

aggregation during the various phases of thrombus formation. To model platelet 

motion and aggregation, a suitable numerical procedure has to be coupled with flow 

equations developed in Chapters 3 and 4.  

The platelets tend to adhere and aggregate when a blood vessel is damaged. 

This can lead to the formation of primary thrombus. Inside thrombus, the neighbour 

platelets link together, which are then bound by vWF fibrinogen in plasma and 

collagen in the subendothelial tissue (Savage et al. 1996; Schmugge et al. 2003). To 

numerically model such platelet motion, an algorithm based on a penalty or spring 
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force mechanism is adopted (Kamada et al. 2010). This model dictates the 

interactions between platelets and plasma inside the blood vessel. When the platelets 

are within a distance 𝑑𝑎𝑑 from the damaged area, the platelets move towards 

damaged area and adhere to the wall by an adhesive force defined by Eq. (6.1). The 

platelets that adhered to the wall are activated and attract other platelets which are 

within a distance of 𝑑𝑎𝑔 from them, as illustrated in Figure 6.1. This attractive force 

is called an aggregation force and is defined by Eq. (6.2). This aggregation force is 

algebraically similar to that of the adhesive force on the platelets but has a different 

spring constant compare to adhesive force. 

𝑭𝑎𝑑 = {
𝐾𝑎𝑑(|𝒓𝑖𝑗| − 𝑟𝑜)𝒏𝑖𝑗    (|𝒓𝑖𝑗| ≤ 𝑑𝑎𝑑)

   0                                (|𝒓𝑖𝑗| > 𝑑𝑎𝑑)
                                                     (6.1) 

𝑭𝑎𝑔 = {
𝐾𝑎𝑔(|𝒓𝑖𝑗| − 𝑟𝑜)𝒏𝑖𝑗    (|𝒓𝑖𝑗| ≤ 𝑑𝑎𝑔)

   0                                (|𝒓𝑖𝑗| > 𝑑𝑎𝑔)
                                                     (6.2) 

where  𝑭𝑎𝑑 , 𝑭𝑎𝑔 are the adhesive and aggregate forces, respectively, and 𝐾𝑎𝑑, 𝐾𝑎𝑔 

are the corresponding spring constants. In addition, 𝒓𝑖𝑗 here is the distance between 

activated platelet and vessel wall (or other non-activated platelets),  𝑟𝑜  is the original 

or natural length of the spring and 𝒏𝑖𝑗 is a unit vector linking platelet and damaged 

wall (or linking activated platelet and other surrounding platelets). During the 

numerical simulations, the forces defined above are introduced in equation (4.2) as 

the external forces acting on platelet particles which are within the regions of 

influence of adhesion and aggregation forces. 

Unless specified otherwise, the numerical procedure used for solving basic 

flow equations (4.1) and (4.2) are as described in Chapter 4. For example, the 

estimation of pressure and treatment of boundary conditions are performed in the 
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same manner as detailed in Chapter 4. The main addition to the solution procedure is 

the introduction of penalty forces which act on platelets those are subjected to 

adhesion and aggregation forces. 

 
 

Figure 6.1 Method of platelet adhesion and aggregation at a damaged area of a vessel Blood 

Flow Model of Straight Vessel 

In the following sections, a number of simulation test cases are investigated to 

determine the characteristics of thrombus formation based on the numerical 

algorithm proposed above. For this purpose, simulations of thrombus inside vessels 

of different geometries were also considered. The simulation results are compared 

with the experimental and analytical results. First, the simulations were performed 

inside a straight blood vessel. The influence of modelling parameters such as spring 

stiffness on thrombus shape and its formation was explored. Following this, 

thrombus formation inside the curved vessel, stenosis vessel and rectangular/tubular 

three-dimensional vessels were also investigated.  
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6.2.1 Straight Vessel Test 

In this numerical test, the blood flow simulations were performed inside a straight 

blood vessel with different flow velocities between 100, 500 and 700 μm/s, which 

were defined at the inlet of the vessel. The total length of the vessel (L) and the width 

between two walls (D) are, respectively, 130μm and 40μm. The length of the 

damaged wall (Li) is 30μm, and the distance from the inlet to the damaged wall (Lo) 

is 40μm (see Fig.6.2). The total number of particles used in the simulation was 5371. 

The initial distance between particles in both directions is 1.0 μm. The density 𝜌 and 

kinematic viscosity 𝑣 of the plasma and platelets were set as 𝜌 = 1x103kg/

m3 and 𝑣 = 1x10−6m2𝑠−1. The boundary conditions were a uniform velocity at the 

inlet, zero pressure at the outlet and non-slip condition at the walls enforced by 

dummy boundary particles. The amount of platelet particles used is approximately 9 

% of the plasma which is higher than normal physiological condition to reduce 

simulation time for thrombus formation. The time step of the simulation was set 

5x10−7s to ensure the stability of numerical integration scheme. After performing 

systematic repetitive simulations to achieve numerical results that were consistent 

with reported experimental observations (Begent and Born 1970), appropriate spring 

constant values were determined for adhesion and aggregation. The determined 

spring constant values for  𝐾𝑎𝑑 and the  𝐾𝑎𝑔 were 9.0x109 N/m and 4.5x109 N/m, 

respectively, while 𝑑𝑎𝑑= 2.0 μm  = 𝑑𝑎𝑔, and 𝑟𝑜 = 2.0 μm. Figures 6.2(a) and (b) 

show the initial configuration of the two- dimensional vessel model and the 

arrangement of the platelets and plasma in the fluid domain.  
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Figure 6.2 Schematic diagram of (a) a straight vessel (b) arrangement of particles  

(P- pressure, vn - normal velocity) 

Normally, a thrombus is formed by adhesion and aggregation of platelets which are 

transported by the blood flow through different geometries of arteries or vessels, 

where the growth rate of thrombus formation varies with the stenosis and the flow 

rate of blood. Figure 6.3 illustrates the formation of thrombus at four different stages 

of the flow in a straight vessel. In these figures, for clarity, plasma and platelet 

particles are denoted by light and the dark grey, respectively. The platelets are 

(a) 

(b) 

𝒗𝑛 = 0 
𝜕𝑃

𝜕𝑛
= 0 
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activated when they are within 𝑑𝑎𝑑 distance from the damaged region and form a 

primary thrombus. Meanwhile, the aggregation force acts between an adhered 

platelet and a neighbouring platelet particle that are separated by a distance less than 

the value of 𝑑𝑎𝑔 (as shown in Figure 6.1). During the course of time, a thrombus is 

developed to cover the whole damage area by forming several layers of platelets. 

When thrombus grows to a certain volume, a part of the thrombus is separated and 

transported downstream by the blood flow. Figures 6.3, 6.4 and 6.5 depict the growth 

of thrombus at different times for velocities 100, 500 and 700 μm/s of the blood 

flow. From the figures below, various stages of thrombus growth on the damaged 

area of the wall are clearly evident. Figures 6.3(d), 6.4(d) and 6.5(d) illustrate that, a 

part of the thrombus is separated from the primary thrombus once the primary 

thrombus grows to a substantial volume. It is interesting to observe that the volume 

of the primary thrombus and the time at which separation of the thrombus takes place 

are influenced by the flow rate. From these figures, it can also be noted that when the 

flow rate was 700 μm/s the thrombus growth was thinner compared to the cases 

where the blood flow rate was 100 and 500μm/s. Further, it was observed that with 

higher flow rates the separation of thrombus takes place quicker.  

         

(a) (b) 
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Figure 6.3 The platelet aggregation for flow velocity =100 μm/s at (a) t=0.2s (b) t=0.3s (c) t=0.4s 

(d) t=0.6s 

       
(a) (b) 

(c) (d) 
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Figure 6.4 The platelet aggregation for flow velocity =500 μm/s at (a) t=0.2s (b) t=0.3s (c) t=0.4s 

(d) t=0.6s 

       

       
 

               Figure 6.5 The platelet aggregation for flow velocity =700 μm/s at (a) t=0.2s (b) t=0.3s 

(c) t=0.4s (d) t=0.6s 

(a) (b) 

(c) 

(c) 

(d) 

(d) 
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Now, to validate the accuracy of the proposed model, thrombus growth rate and 

blood flow rate were further investigated and compared with data available in the 

literature.  Figure 6.6 plots the growth rate of thrombus against various blood flow 

velocities. The growth rate of the thrombus in Figure 6.6 has been calculated by 

evaluating the ratio between the area covered by thrombus formed and the total blood 

flow area. To determine the area covered by the thrombus, or in other words the 

enveloped area surrounding the platelets that form thrombus, a built-in image 

processing tool that is available in MATLAB was used. The image processing tool 

converts the region which contains platelets that form thrombus into binary format 

and then evaluates the corresponding area which is defined by the enveloped region. 

The MATLAB tool was validated prior to use by estimating ratio between known (or 

user define thrombus) and the total area of an artificial image. 

It can be seen from Figure 6.6 that the growth rate of the thrombus gradually 

increases with blood velocity until approximately 500 μm/s. Beyond 500 μm/s, the 

thrombus growth rate drops to a lower level. The results illustrated in Figure 6.6 

qualitatively agree with the experimental observation made in (Begent and Born 

1970). Given that the results reported here are from 2-dimensional simulations, direct 

comparisons could not be made at this point. It is evident, however, from the results 

that the blood flow rate plays a crucial role in the build-up and separation of a 

thrombus. The results also indicate that the growth rate of the thrombus, its 

thickness, and formation/separation vary according to the blood flow rate and these 

results are consistent with experimental observations reported in (Begent and Born 

1970).  
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To further establish the accuracy of the model developed in this research, a 

comparative study was conducted with a 2-dimensional simulation model reported in 

the literature (Xu et al. 2008). In this study, the numbers of platelets (size of the 

clots) adhered/aggregated at different blood flow rates were compared. Figure 6.7 

illustrates the comparative results obtained with SPH model developed in this article 

and computational model reported by (Xu et al. 2008). It is evident from Figure 6.7 

that both simulation results compare well. Using equation (5.4) (Chapter 5), the 

average relative error in the numbers of platelets (size of the clots) through the 

different velocities in Figure 6.7 is 1.65%. 

 

Figure 6.6 Effect of blood flow velocity with thrombus growth rate 

 

 



Chapter 6                                                                         Numerical Simulation of Thrombus Formation 

 

 
121 

 

 

Figure 6.7 Effect of blood flow velocity on the number of platelets aggregated 

6.2.2 Blood Flow Throw Vessels with Bend 

Recent studies have suggested that fluid mechanical forces play an important role in 

the pathogenesis and pathophysiology of atherosclerosis(Berger and Jou 2000). The 

quantitative understanding of their contribution is considered to be poor, especially 

in the microvasculature with laminar flows. It was observed that atherosclerotic 

lesions might occur anywhere in the arteries but they preferentially form in arteries 

and arterioles in regions of high curvature, bifurcations, and junctions which 

experience major changes in flow structure and, thus, are subjected to large 

variations in fluid loading on the vessel wall. In addition, the phenomenon of 

atherosclerosis is known to particularly occur at different arterial sites of curvature, 

bifurcation, and branching (Texon 1960; Caro et al. 1971). The reason behind this 
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situation is the effect of pulling or suction on the arterial intima of the low-pressure 

region near the inner bend of highly curved arteries due to blood flow (Texon 1960). 

Many previous studies have shown that the wall shear stress (high or low) has played 

an important role to find the atherosclerotic (Fry 1968, 1969; Caro et al. 1971). Many 

researchers have tried to determine between these two factors. For example, 

(Friedman et al. 1981; Ku et al. 1985) compared measurements in vitro of the human 

circulatory system with physiological and anatomical data and proved that intimal 

plaque thickening was very high in regions of low, and not high, wall shear stress. 

Meanwhile, (Lutz et al. 1977) studied the velocity profiles and wall shear stresses for 

steady flow in asymmetric bifurcations. Normally, the locations of curvature in the 

human circulatory system that refer to a frequent incidence of atherosclerosis 

formation of thrombosis are the aortic arch and the cerebral and coronary arteries 

(Chandran et al. 1979). Some researchers have extended these studies to investigate 

different curvature of arteries in the human body, such as carotid siphon, distal 

femoral artery, branching of the femoral artery (Back et al. 1985; Perktold et al. 

1988; Wensing et al. 1995; Giordana et al. 2005). In addition, (Nandalur et al. 2006) 

evaluated the calcified atherosclerotic burden in the cervical carotid, which is one of 

the curved arteries, using an MDCT (multidetector CT scanner) to specify the 

relationship of scores with luminal stenosis and ischemic symptoms. (Zheng et al. 

2015) studied the human umbilical vein to show the influence of vessel curvature in 

thrombus formation. Furthermore, (Sanyal and Han 2015) investigated the effect of 

tortuous arteries with hypertension and atherosclerosis that is represented in part of the 

coronary artery. The motivation behind this simulation is to model thrombus 

formation and to investigate the effect of vessel geometry on thrombus formation and 

its growth. For this purpose, vessels with  90𝑜  and 180𝑜 bends were chosen for use 
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in the numerical simulations. Figure 6.8 illustrates the initial geometry of the two 

cases and Figure 6.9 shows the two-dimensional vessel configurations with platelets 

and plasma in the fluid model. The boundary conditions and flow parameters used in 

the simulations were same as that of straight vessel. Approximately 5000 SPH 

particles were used to model the material in the numerical simulation of bent vessel 

(see Figure 6.9). The initial distance between the particles in both directions is 

1.0 μm. The geometrical specifications of the bent vessels illustrated in Figure 6.8 

are adopted from (Liu et al. 2008).  

 

 

(a) 
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Figure 6.8 The geometry of the vessels with (a) 90 o and (b) 180 o bends 

 

(b) 

(a) 

Plasma 

Platelets 
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Figure 6.9 The distribution of platelets and plasma inside the bent vessel (a) 𝟗𝟎𝒐  and (b) 𝟏𝟖𝟎𝒐 

Figure 6.10 depicts the growth of a thrombus in a vessel that has a  90𝑜 bend. The 

fluid velocity increases marginally towards the inner side of the bend where 

maximum velocity of the flow is reached. The larger velocity in the inner vessel wall 

would carry more blood cells and more reactants to the curve wall (Tangelder et al. 

1985; Turitto and Hall 1998). Consequently, less platelets adhere and aggregate in 

the case of vessel with  90𝑜 bend (at the same instants) when compared to a straight 

vessel with the same damage area and fluid entry velocity. Figure 6.10 also indicates 

that after the thrombus developed into a substantial volume, it was destroyed by the 

blood flow and transported to the downstream of the vessel. The numerical results 

clearly indicate that the difference in velocity along the bend sections can be 

attributed to the variations in the shape of thrombus formed and its collapse or 

separation time. The separation of thrombus is triggered when the blood flow 

velocity is sufficiently high to exert fluid forces on thrombus to overcome the 

(b) 
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aggregation force. The results obtained are consistent with the results produced by 

(Liu et al. 2008). 

 

    

 

  

 

Figure 6.10 The platelet aggregation for entry velocity =100 μm/s at (a) t=0.2s (b) t=0.3s; (c) 

t=0.4s (d) t=0.6s. 

(a) 
(b) 

(c) (d) 
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Figure 6.11 describes the growth of a thrombus in a vessel that has 180𝑜 bend. It can 

be noted that, the numbers of platelets that adhere and aggregate on the damaged area 

of the vessel for 180𝑜 bend are different from those in the vessel with 90𝑜 bend. 

Given that the maximum velocity is towards the inner side of the bend, the velocity 

for the 180𝑜 bend will be larger than that in a vessel with a  90𝑜 bend, the number of 

platelets that adhere and aggregate in the case of vessel with 180𝑜 bend is less. As a 

result, in Figure 6.11(b), with fluid entry velocity 100 μm/s, the damaged area is 

covered with only a monolayer of platelets. As can be noted from Figure 6.12, with a 

higher fluid entry velocity 700 μm/s, the number of platelets adhere and aggregate 

are much fewer compared to that in the case of entry velocity 100 μm/s and the 

characteristics of thrombus growth/transportation were entirely different to that of a 

straight vessel and a vessel with  90𝑜 bend. From these computational results, it is 

apparent that the growth and separation of thrombus are significantly influenced by 

the curvature of the vessel and blood flow rate. 
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Figure 6.11 The platelet aggregation for entry velocity =100 μm/s at (a) t=0.2s (b) t=0.3s (c) 

t=0.4s (d) t=0.6s. 

 

 

(a) (b) 

(c) (d) 
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Figure 6.12 The platelet aggregation for entry velocity =700 μm/s at (a) t=0.2s (b) t=0.3s (c) 

t=0.4s (d) t=0.6s 

6.2.3 Blood Flow Through Stenosis Vessel 

The cardiovascular disease usually leads to natural death in most of the world; it is 

estimated that 50% of sudden deaths are due to cardiac causes. The high percentage 

of these sudden deaths are due to the acute ventrical tachyarrhythmias that are often 

caused by acute coronary events (Huikuri et al. 2001). According to the clinical 

diagnosis, these diseases can happen in people without previous symptoms. In many 

(a) (b) 

(c) (d) 
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cases, sudden death happens in patients with high coronary risk rather than patients 

with previous myocardial infarction (Myerburg et al. 1998). In coronary artery 

disease, the blood vessel is progressively narrowed by the enlargement of a plaque, 

called an atheroma, in the intimal layer. The atheroma consists of smooth muscle 

cells, lipids, collagen, elastin, and sometimes calcium deposits. The constriction 

caused by the atheroma is clinically referred to as a stenosis (Ku 1997). In most 

situations, sudden death is caused by a mural thrombus which occludes the lumen and 

restricts blood flow in vessels. Clinically, a thrombosis is considered to be a thrombus 

formation on the ruptured atherosclerotic plaque, which is also called atherothrombosis 

(Viles-Gonzalez et al. 2004). This expression refers to the combination of both the acute 

and chronic events in arterial disease (Ruggeri 2002). The acute thrombosis can lead to 

unstable angina or myocardial infarction due to the embolization of thrombus or the 

thrombus formation (Flannery 2005). Thrombus formation in different arteries or 

stenotic arteries is mostly referred to participate of the platelet. To analyse thrombus 

formation in a straight vessel with an internal and local geometric variation, the 

blood flow through a stenosis vessel is examined in this section. The aim in this 

simulation is to determine the modelling parameters that will reproduce qualitatively 

comparable results with respect to experimental observations reported in the 

literature.  

Figure 6.13(a) illustrates the initial geometry of the stenosis vessel, which is based on 

the geometrical description provided in (Kamada et al. 2011). The total length of the 

vessel is 300μm, and the stenosis area is in the middle of the vessel with the length of 

the damaged area is 30μm. The diameter of the vessel is 20μm. As per the geometry, 

the vessel contains 75% stenosis by cross-sectional area. The initial distance between 

particles is 1.0μm (= ∆𝑥 = ∆𝑦). The density 𝜌 and kinematic viscosity 𝑣 of the 
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plasma and platelets were set as 𝜌 = 1x103kg/m3 and 𝑣 = 1x10−6m2𝑠−1. The 

amount of the platelet particles used in this simulation is approximately 7 % of the 

plasma. The entry velocity of the blood flow is 500μm/s. The numerical simulations 

with various parametric values for the spring constants ( 𝐾𝑎𝑑 , 𝐾𝑎𝑔), the adhesion 

area (𝑑𝑎𝑑) and the aggregation area (𝑑𝑎𝑔) were repeated until a qualitative match is 

obtained between the numerical simulations and experimental results reported in 

literature. From the numerical experiments, the parametric values obtained for spring 

constants 𝐾𝑎𝑑 and  𝐾𝑎𝑔 were 9.0x109 N/m  and 5.0x109 N/m, respectively. 

Furthermore, the suitable parametric values for adhesion area (𝑑𝑎𝑑) and aggregation 

area (𝑑𝑎𝑔) were found to be 2.0 μm and 4.0 μm, respectively. It can be noted from 

these resulted parametric values that the aggregation area 𝑑𝑎𝑔 is doubled in this 

simulation compared to previous numerical examples to reproduce thrombus location 

and growth similar to that of experimental results (Flannery 2005). In addition, the 

spring constant for aggregation 𝐾𝑎𝑔 is also slightly modified to adjust the shape of 

the thrombus to match the observation reported in the experiment. The total number 

of particles used in the simulation to model the platelets and plasma was 8400.  

 

 

(a) 
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Figure 6.13 (a) Geometry of the two-dimensional simulation of a stenosis vessel (b) The 

distribution of the platelets and plasma particles 

Figure 6.14 illustrates the growth of a thrombus at various stages (i.e. at 240s, 320s, 

400s and 480s) during the numerical simulation of the blood flow through the 

stenosis vessel. To clearly demonstrate the effect of aggregation spring constant 𝐾𝑎𝑔, 

simulations with 𝐾𝑎𝑔= 4.5x109 N/m (previously used value) and 𝐾𝑎𝑔= 5.0x109 N/

m are presented in Figure 6.14. From the following figures, various stages of 

thrombus growth on the damaged area of the wall are clearly apparent. It can be seen 

from these figures that the growth of thrombus starts slowly from the upstream side 

of the damaged area and continues to grow along the downstream of the damaged 

area where the thrombus grows rapidly and develop into a large volume. It can be 

noted from Figure 6.14 that larger amount of thrombus formation occurs at the 

vicinity of the throat of stenosis. The results of the numerical simulations also 

indicate that the thrombus formation nearly result in complete occlusion of the 

vessel. As thrombus grows, the flow characteristics changes due to the protruding 

surface of thrombus. As a result, adhesion and aggregation of platelets will be 

influenced accordingly. Figure 6.14(d) demonstrates that for the modelling 

parameters chosen in the simulation, the occlusion of the vessel is most likely to 

occur at the vicinity of downstream of stenosis apex. It is also worth noting that there 

was no separation of the thrombus during the various stages depicted in Figure 6.14. 

(b) 
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This is due to fact that the aggregation area was increased in this simulation to obtain 

thrombus formation characteristics similar to that of experimental findings. The 

aggregation area is the only parameter subjected to a significant change in this test 

compare to simulations reported in the previous sections. The increase in aggregation 

area can be attributed to the fact that the presence of stenosis can affect 

hemodynamic of blood flow over the stenosis apex, which in turn can increase 

platelet activation as suggested in (Karino and Goldsmith 1979; Lelah et al. 1984). 

During the numerical simulation of a stenosis vessel, it was also observed that the 

thrombus tends to develop faster than in the case of straight the vessel without 

stenosis. This is due to both increase in aggregation area and reduction in flow cross-

sectional area. As the flow area is reduced due to the stenosis, more platelets will 

travel in the vicinity of the damaged area. Consequently, there is a rapid growth of 

thrombus in the case of stenosis vessel. The profile of thrombus obtained at various 

stages of the growth compare well with experimental results in literature (Flannery 

2005). In addition, the number of platelets deposited over the time as demonstrated 

by Figure 6.15 has a similar trend to that of experimental observation noted in 

(Flannery 2005). The numerical results obtained in the above simulation are 

promising and can be used when predicting valuable information, such as 

location/growth of thrombus and occlusion time. 
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Figure 6.14 The platelet aggregation for stiffness (a) 𝑲𝒂𝒈 =  𝟒. 𝟓𝐱𝟏𝟎𝟗 𝐍/𝐦   

 (b) 𝑲𝒂𝒈 =  𝟓. 𝟎𝐱𝟏𝟎
𝟗 𝐍/𝐦 

 

t=240s t=320s 

t=400s t=480s 

t=240s t=320s 

(a) 

(b) 

t=400s t=480s 
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Figure 6. 15 Number of platelets attached and/or aggregated with time 

6.3 Three-Dimensional Simulation of a Thrombus  

Predicting thrombus behaviour is very difficult, especially in the presence of various 

physiological and pathological conditions, and also with complex vessel shapes. 

However, an understanding of the plasma and platelet behaviour and the blood flow 

characteristics is crucial to describe the formation of a thrombus with a high degree 

of accuracy. Numerical simulation is considered to be the most cost-effective way to 

gain a full understanding of the behaviour of blood flow, as well as to characterise 

thrombus formation inside various vessel shapes and to reveal the distribution of 

larger aggregate particles. This section will extend the application of methodologies 

proposed in the previous chapter to the three-dimensional simulation of thrombus in 

vessels with a straight rectangular and a tubular vessel. To observe the three-

dimensional effect clearly. The three-dimensional effect is considered to be a key 

that can give an actual impression of thrombus formation during blood flow and, 

therefore, has the ability to predict the orientation of the thrombus. To investigate the 
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effect of different geometry of a blood vessel in thrombogenesis, the main aim of this 

section is to demonstrate that the numerical techniques can be extended to three-

dimensional vessels and to assess the accuracy of the SPH method under such 

conditions (i.e. velocity of blood flow, geometry, platelets interaction and the spring 

constant). It is important to emphasise that the governing equations formulated and 

the numerical procedure developed in the previous chapters are equally valid for 

simulating thrombus formation inside three-dimensional vessels. The main difference 

here is that the developed methodology is applied to three-dimensional vessel 

geometries to perform more realistic simulations. 

6.3.1 Three-Dimensional Modelling of a Straight Rectangular Vessel 

In this example, the blood flow simulations are introduced inside a rectangular 

straight blood vessel with a constant velocity of blood flow of 100 μm/s, which is 

defined at the entrance of the straight vessel. The total length of the vessel L and the 

width between two opposite walls and height are 130μm, W=50μm and H=50μm, 

respectively (see Figure 6.16). In Figure 6.16 (a), the dimensions of the damaged 

area 𝐿𝑥 x 𝑊𝑦 are  8.0x8.0 μm2 and the distance from the inlet to the damaged wall 

Lo is 40μm. The total number of particles used in the simulation is 32500. The 

resolution of particles in x, y and z directions is set as 130x50x50 μm3. The initial 

distance between particles in all three directions is 1.0 μm. The density 𝜌 and 

kinematic viscosity 𝑣 of the plasma and platelets are set as 𝜌 = 1x103kg/

m3 and 𝑣 = 1x10−6m2𝑠−1, respectively. The amount of the platelet particles used is 

approximately 8.8% of the plasma. The percentage of platelets is chosen larger than 

the normal physiological conditions to accelerate the formation of thrombus during 

the numerical simulation. In addition, the platelets are randomly distributed within 
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the fluid domain. In the numerical simulations, the parameters of spring 

constants 𝐾𝑎𝑑 and the  𝐾𝑎𝑔  are 9.0x109 N/m  and 4.5x109 N/m, respectively, while 

𝑑𝑎𝑑= 3μm = 𝑑𝑎𝑔, and 𝑟𝑜 = 2 μm. Figures 6.16(a) and (b) show the configuration of 

the three-dimensional vessel model and the randomly distributed platelets. The 

boundary conditions used here are; a uniform velocity at the inlet and non-slip at the 

vessel wall. 

 

 

Figure 6. 16 (a) configuration of three-dimensional rectangular vessel (b) arrangement of 

platelet particles 

(a) 

(b) 
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Figures 6.17 illustrates the formation of thrombus at four different stages of the flow. 

In this figure, for clarity, only platelet particles are shown. The activated and adhered 

platelet particles in the figure are denoted by dark spheres, and the rest of the 

platelets are denoted by light spheres. The Figure 6.17 clearly illustrate the gradual 

formation of thrombus and the separation of a part of thrombus (see Figure 6.17 (d)) 

over the course of time. It is evident from Figure 6.17 that three-dimensional 

simulation provides more details of the geometrical nature of formed thrombus. The 

results displayed in Figure 6.17 (a, b, c and d) further proves that the nature of flow 

significantly influences the shape, formation and separation of thrombus. Further, it 

can be noted that the instances at which formation and separation of thrombus takes 

place is also affected by flow dynamics. 

The Figure 6.17 depicts the number of platelets forming the volume of 

thrombus at various stages of the simulation. From Figure 6.17, it can be noted that 

the number of platelet particles forming thrombus increases slowly at the initial 

stages (<0.1s) and then rapidly increases at later stages. Figure 6.18 also compares 

the results obtained using SPH method to the results reported by (Kamada et al. 

2010). The results are in good agreement with those presented by (Kamada et al. 

2010). The results presented in Figure 6.18 also confirm that the average relative 

difference in particle number with respect to time is 0.69% (based on equation (5.4) 

in Chapter 5).   
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Figure 6.17 The platelet aggregation for entry velocity =100 μm/s and at (a) t=0.2s (b) t=0.3s (c) 

t=0.4s (d) t=0.6s 

 

Figure 6.18 Effect of time on the number of platelets 

6.3.2 Three-Dimensional Modelling of a Straight Tubular Vessel 

In this section, three-dimensional blood flow is performed inside a 50μm diameter 

straight tube, with 500 μm length. Three different cases with steady blood flow rates 

of 100, 500 and 700 μm/s were investigated. As shown in Figure 6.19(a) the 

dimensions of the damaged area (𝐿𝑥 x 𝑊𝑦) and the distance from the inlet to the 

damaged wall (Lo) are chosen as (8.0 x 8.0)μm2 and  40μm, respectively. The total 

(d) 
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number of particles used in the simulation is about 50,000. The particles are 

uniformly distributed with initial distance between particles in all three directions is 

 1.0 μm. The density 𝜌 and kinematic viscosity 𝑣 of the plasma and platelets are set 

as 𝜌 = 1x103kg/m3 and 𝑣 = 1x10−6m2𝑠−1. The amount of the platelet particles 

used were approximately 0.336% of the plasma (which is in line with normal 

physiological conditions). The platelet particles are randomly distributed as in Figure 

6.19(b). The boundary conditions used here are similar to the conditions used in the 

rectangular vessel. In the numerical simulations, the parameters of the spring 

constants  𝐾𝑎𝑑 and  𝐾𝑎𝑔 were 9. x109 N/m  and 5.0x109 N/m, respectively, while 

𝑑𝑎𝑑= 3μm,  𝑑𝑎𝑔 = 4.0 μm and 𝑟𝑜 = 2 μm. In this numerical test, a larger (twice as in 

the case of rectangular vessel) radius of influence is used for aggregation. This value 

of 𝑑𝑎𝑔 is chosen in order to compare the simulation results against the experimental 

results (Begent and Born 1970) in which no collapse of thrombus was observed. 

 (a) 
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Figure 6.19 (a) Configuration of three-dimensional tubular vessel (b) initial arrangement of 

platelet particles 

Figures 6.20, 6.21 and 6.22 illustrate the growth of thrombus at different times for 

flow velocities 100, 500 and 700 μm/s, respectively. As in the case of a rectangular 

tube, only platelets particles are shown in the figures. Figures 6.20, 6.21 and 6.22 

illustrate the growth of thrombus over time, and they show how the shapes and 

dimensions of the thrombi are influenced by various flow velocities. Due to the use 

of larger aggregation zone, the thrombus formed in this example does not collapse 

and separate, as observed in the case of rectangular vessels. 

(b) 
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Figure 6. 20 The platelet aggregation for entry velocity =100 μm/s and at (a) t=2s (b) t=10s 

A comparison between these three cases shows that the growth size of the thrombus 

decreases with higher flow velocities. The profile of the thrombus obtained at various 

stages of growth compares very well with the experimental results in the literature 

(Begent and Born 1970). In addition, the number of platelets deposited 

(a) 

(b) 
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(adhered/aggregated) at different blood flow rates over time, as illustrated in Figure 

6.23, is qualitatively similar to that of the experimental observation noted by (Begent 

and Born 1970). These results show that dynamic changes in velocity of blood flow 

affect the volume and characteristics of the primary thrombogenesis. Further, the 

results presented in Figure 6.23 also confirms (using equation (5.4) in Chapter 5) that 

the average relative difference in the growth rate constant with respect to velocity is 

5.49%.  

 

 

 

(a) 
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Figure 6.21 The platelet aggregation for entry velocity =500 μm/s and at (a) t=2s (b) t=10s 

 

 
(a) 

(b) 
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Figure 6.22 The platelet aggregation for entry velocity =700 μm/s and at (a) t=2s (b) t=10s 

 

Figure 6. 23 Effect of Blood flow on the number of platelets 

 

(b) 
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6.4 Conclusion 

This chapter has focused on the simulation of the thrombogenesis process using the 

SPH method. The numerical method is developed to model platelets 

adhesion/aggregation on the surface of the damaged area of blood vessels and to 

investigate the influence of blood flow rates on thrombus growth. In the numerical 

simulations, blood flow inside a vessel is discretised by particles that are assumed to 

have the characteristics of blood constituents, such as plasma and platelets. The 

platelet adhesion and aggregation processes during the blood flow are modelled by 

adopting an inter-particle penalty force method. The model proved to be efficient in 

simulating adhesion and aggregation process without rigorous computational efforts. 

The potential of the SPH method to simulate the thrombogenesis process is 

demonstrated via a number of numerical examples. The numerical simulations were 

able to indicate how blood flow velocity influenced thrombus growth rate in a 

straight vessel and vessel with a bend. The numerical results also qualitatively agree 

with experimental observations reported in the literature. This study also 

demonstrated that the thrombus formation inside vessels of various geometrical 

shapes (two- and three-dimensional) could also be modelled using the developed 

numerical procedures. In addition, the Lagrangian nature of SPH enables one to track 

the history of fluid properties and to track particles (e.g. platelets) suspended in the 

fluid. This ability of SPH provides huge potential in the modelling of blood flow and 

thrombus formation in arteries or vessels. The modelling technique presented here 

can be further developed in to a more sophisticated patient-specific computational 

tool to predict formation and characteristics of thrombus and to understand the 

corresponding medical conditions. 
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7.1 Conclusions 

The major conclusions can be embodied from this work as follows: 

 This work attempted to apply a corrected smooth particle hydrodynamics 

(SPH), a fully Lagrangian meshfree method, to study hemodynamics of blood 

flow. This method demonstrated significant consistency as a numerical 

methodology to accurately simulate hemodynamics in the arteries/vessels and 

was able to capture some interesting flow characteristics.  

 The accuracy and convergence of the developed SPH method were evaluated 

via a number of numerical examples. These examples were chosen in order to 

explore the accuracy of the methodology in simulating various characteristics 

and physical conditions. The results of these simulations were compared with 

existing analytical and experimental results. The results compared well with 

established quantities and evaluated the accuracy of the developed method. 

 SPH method proposed was applied successfully to simulate a pulsatile flow 

inside a bifurcation artery. The results of the numerical simulations revealed 

good accuracy and confirmed that the developed methodology could be 

considered as an effective substitute for traditional mesh-based methods to 

study hemodynamics inside arteries with complex geometries. The 

investigation of blood flow behaviour inside bifurcation artery is important 

from a clinical point of view and the developed method can be easily utilised 

in understanding blood flow behaviour inside patient specific arteries. 

 A numerical methodology was successfully implemented to simulate 

thrombus inside arteries and vessels, under the influence of varying blood 

flow rates. An effective algorithm based on spring (or penalty) force method 
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was developed to simulate adhesion and aggregation of platelets to form a 

thrombus. The stiffness of the spring force was determined by calibrating it 

based on platelet aggregation rate reported in the literature. The 

aforementioned model proved efficient in simulating adhesion and 

aggregation process without rigorous computational efforts. The potential of 

the SPH method to simulate thrombogenesis process is demonstrated via a 

number of numerical examples. The numerical simulations revealed how 

blood flow velocity influenced the shape and growth rate of thrombus inside 

vessels with different geometries. The capabilities and accuracy of this 

methodology were verified by comparing the simulation results with the 

experimental results. The numerical results were in excellent agreement with 

experimental results and confirmed that the SPH methodology is effective in 

accurately predicting thrombus formation inside arteries and vessels. 

 The robustness of the computational model used for thrombus formation was 

assessed in two and three-dimensional vessels with different geometries.  The 

influence of aggregation area on the collapse or separation of thrombus was 

also observed in this numerical study. In addition, the nature of thrombus 

formation in stenosis vessel was also investigated. Clinically, the formation 

of thrombus occlusion occurs in stenotic or non- stenotic arteries leads to 

irregular heart impulse which is considered one of the most consequences of 

Sudden Cardiac Death (SCD). The numerical methodology developed in the 

present work may provide a useful tool to perform such investigations. 
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7.2 Perspectives 

 The cost of computational time can be reduced either by using high-end serial 

computers or by using high-performance parallel computers. Since the 

particle methods such as SPH are very conducive for parallelisation, flow 

inside three-dimensional complex arteries or vessels can be simulated within 

a reasonable computational time by appropriately parallelising the code. 

 In this work, the formation of thrombus was modelled based on adhesion and 

aggregation of platelets only. The procedure developed can also be extended 

to other cells (e.g. red blood cell) which participate in the formation of 

thrombus. In addition, the model developed here can be enhanced by 

including other factors (e.g. chemical reactions, flow shear rate) involved in 

thrombus formation. 

 It is important to extend the developed model to handle non-Newtonian and 

turbulent nature of the blood flow. In addition, flow inside arteries with larger 

diameters (e.g. aorta, coronary arteries) can be modelled with the developed 

method and the results can be compared with realistic patient-specific data. 

 To increase the understanding of mechanisms involved in thrombus 

formation, several physiologically relevant variations can be incorporated in 

the present model. For example, the effects of pulsatile flow on the formation 

of thrombus and the effects of platelet activation by blood flow rate could be 

explored. 
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A.1 Corrected SPH Integration 

The origin equation of the SPH approximations is given by Equation (3.9). However, 

it cannot approximate the functions 𝜙(𝐱) and ∇𝜙(𝐱) accurately. Therefore, corrected 

SPH equations have been modified to address these problems (Bonet and Lok 1999; 

Bonet and Kulasegaram 2000a). The main purpose of the correction techniques is to 

investigate the conservation of angular momentum, which is not similar to linear 

momentum.  

A.1.1 Preservation of Momentum 

The total motion of the particles is preserved, such as linear and angular momentum.  

The motion of each particle can be integrated from the instantaneous acceleration vector 

𝒂. Newton's Second Law of Motion represents the particle movement: 

𝑚𝑎𝒂𝑎 = 𝑻𝑎
𝑖𝑛𝑡 − 𝑻𝑎

𝑒𝑥𝑡                                                                                                (A. 1) 

 

where 𝑻𝑎
𝑒𝑥𝑡 represents the external forces acting on a particle ‘a’, and 𝑻𝑎

𝑖𝑛𝑡
 represents the 

internal forces due to the state of stress inside the material. Meanwhile, the most 

common expression used for the internal forces is: 

𝑻𝑎
𝑖𝑛𝑡 =∑𝑉𝑎𝑉𝑏(𝑝𝑏 ± 𝑝𝑎)∇𝑊𝑎(𝐱𝑏)

𝑁

𝑏=1

                                                                  (A. 2) 

 

where the stress tensor   𝜎 = 𝑝𝐈, p is the mean stress and I is the identity tensor. 
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A.1.1.1 Linear Momentum 

The linear momentum of the particles is  

𝑮 =∑𝑚𝑎𝐯𝑎                                                                                                 (A. 3)

𝑁

𝑎=1

 

By adding the derivative of time of (A.3) with equation of (A.2), we find that the rate 

of change of the linear momentum is 

𝑮′ =∑𝑚𝑎𝒂𝑎 = −∑𝑻𝑎
𝑖𝑛𝑡                                                                       (A. 4)

𝑁

𝑎=1

𝑁

𝑎=1

 

where the condition of the preservation of the linear momentum is 

∑𝑻𝑎
𝑖𝑛𝑡 = 0

𝑁

𝑎=1

                                                                                                       (A. 5) 

Thus, the internal forces on particle a are equal to  

𝑻𝑎
𝑖𝑛𝑡 =∑𝑻𝑎𝑏                                                                                                       (A. 6)

𝑁

𝑏=1

 

 

 

Figure A. 1 The forces between two particles 
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Depending on equation (A.2), and as shown in ∇𝑊𝑎(𝐱𝑏) = −∇𝑊𝑏(𝐱𝑎), we find that 

𝑻𝑎𝑏 = −𝑻𝑏𝑎 and then the sum of the all interaction pairs will vanish and consequently 

equation (A.4) will be satisfied. 

 

A.1.1.2 Angular Momentum 

The total angular momentum of the particles is given by: 

𝑯 =∑𝐱𝑎 ∗ 𝑚𝑎𝐯𝑎                                                                                                (A. 7)

𝑁

𝑎=1

 

While the time differentiation is shown as:  

𝑯′ =∑𝐱𝑎 ∗ 𝑚𝑎𝒂𝑎 = −∑𝐱𝑎 ∗ 𝑻𝑎
𝑖𝑛𝑡                                                           (A. 8)

𝑁

𝑎=1

𝑁

𝑎=1

 

Where the angular momentum can be preserved as long as the total moment of the 

internal forces vanishes, and is:  

∑𝐱𝑎 ∗ 𝑻𝑎
𝑖𝑛𝑡 = 0                                                                                                  

𝑁

𝑎=1

(A. 9) 

The origin of the total moment of the two forces as shown in Figure (A.1) can be 

shown as: 

𝐱𝑎 ∗ 𝑻𝑎𝑏 + 𝐱𝑏 ∗ 𝑻𝑏𝑎 = −(𝐱𝑏 − 𝐱𝑎) ∗ 𝑻𝑎𝑏                                                        (A. 10) 

As above, 𝑻𝑎𝑏 = −𝑻𝑏𝑎 is used. This expression will give a chance to vanish 

whenever the interaction force is collinear with the vector (𝐱𝑏 − 𝐱𝑎) which joins two 
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particles, consequently it is not always satisfied. In this situation, more derivation is 

required to provide the preservation of angular momentum.  

Another option is that the invariance of the potential energy with respect to rigid body 

rotations can lead to the preservation of angular momentum. To prove this point, 

consider a rigid body rotation about the origin as described by a set of velocities which 

are given in terms of an angular velocity vector 𝒘 with the components [𝑤𝒙 𝑤𝑦 𝑤𝑧]T, 

where the vector of velocity at any point as is:  

𝐯(𝐱) = 𝒘 ∗ 𝐱                                                                                                            (A. 11) 

The gradient of the velocity can be shown by derivation to give  

∇𝐯 = 𝑾                                                                                                                     (A. 12) 

𝑾 = [

0 −𝑤𝑧 𝑤𝑦
𝑤𝑧 0 −𝑤𝑥
−𝑤𝑦 𝑤𝑥 0

]                                                                                    (A. 13) 

where the rate of deformation tensor 𝜺′ as shown in Eq. (A.14) vanishes and given the 

skew symmetric nature of 𝑾 

𝒅 =
1

2
( ∇𝐯 + ∇𝐯𝑇)                                                                                                    (A. 14) 

The total potential energy would be independent of rigid body translations. Meanwhile, 

if the SPH approximation is applied, then the gradient of the velocity can be calculated 

as: 

∇𝐯𝑎 =∑𝑉𝑏(𝑊𝐱𝑏 −𝑊𝐱𝑎)

𝑁

𝑏=1

⨂ ∇𝑊𝑏(𝐱𝑎)                                                           (A. 15)  
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The correct skew-symmetric tensor can only be obtained if the gradient of the kernel 

function investigates the following matrix condition: 

∑𝑉𝑏(𝑊𝐱𝑏 −𝑊𝐱𝑎)

𝑁

𝑏=1

⨂ ∇𝑊𝑏(𝐱𝑎) = 𝐈                                                               (A. 16) 

where 𝐱𝑎  , 𝐱𝑏 are the position vectors of particles a and b, respectively. 

Because the standard SPH algorithm does not generally accept this condition, the 

angular momentum will not be preserved. A number of correction techniques can be 

used and, therefore, can overcome this shortcoming. Either the gradient of the kernel is 

addressed directly (Bonet and Lok 1999) or the kernel function itself is modified (Li and 

Liu, 1996). Another possibility is to mix the kernel and gradient corrections (Bonet and 

Lok 1999; Bonet and Kulasegaram 2000a). 

A.2 Gradient Correction 

The kernel gradient has been modified by introducing a correction matrix L as: 

∇̃𝑊𝑏(𝐱) = 𝑳∇𝑊𝑏(𝐱)                                                                                             (A. 17) 

Every term in Equation (A.16) without subscript a is used and the term ∇𝑊𝑏(𝐱) is 

changed by its corrected one in Eq. (A.17), which is  

∑

𝑁

𝑏=1

𝑚𝑏

𝜌𝑏
(𝐱𝑏 − 𝐱)⨂𝑳∇𝑊𝑏(𝐱) = 𝐈                                                                  (A. 18) 

where, L is given by  

𝑳 = (∑
𝑚𝑏

𝜌𝑏

𝑁

𝑏=1

∇𝑊𝑏(𝐱)⨂(𝐱𝑏 − 𝐱))

−1

                                                             (A. 19) 
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A.2.1 Kernel Correction 

The kernel is corrected and modified to confirm that polynomial functions up to a given 

degree are exactly interpolated. The linear kernel correction is given by, 

𝑊̃𝑏 = 𝑊𝑏(𝐱)𝛼(𝐱){1 + 𝛃(𝐱). (𝐱 − 𝐱𝑏)}                                                                (𝐴. 20) 

The correction formulation for velocity, which represents the linear field formulation is, 

𝐯0 + 𝐯1. 𝐱 = ∑
𝑚𝑏

𝜌𝑏

𝑁

𝑏=1

(𝐯0 + 𝐯1. 𝐱𝑏)𝑊̃𝑏(𝐱)                                                             (A. 21) 

The following supplement conditions must be pleased, 

∑
𝑚𝑏

𝜌𝑏

𝑁

𝑏=1

𝑊̃𝑏(𝐱) = 1                                                                                                 (A. 22) 

∑
𝑚𝑏

𝜌𝑏
(𝐱 − 𝐱𝑏)

𝑁

𝑏=1

𝑊̃𝑏(𝐱) = 0                                                                                  (A. 23) 

by substituting (A.20) into (A.23) to get the vector parameter𝛃(𝐱), 

𝛃(𝐱) =
∑

𝑚𝑏

𝜌𝑏
𝑁
𝑏=1 𝑊̃𝑏(𝐱 − 𝐱𝑏)

∑
𝑚𝑏

𝜌𝑏
𝑁
𝑏=1 (𝐱 − 𝐱𝑏)⨂𝑊̃𝑏(𝐱 − 𝐱𝑏)

                                                         (𝐴. 24) 

The scaler parameter 𝛼(𝐱)can get from substituting (A.20) into (A.22), 

𝛼(𝐱) =
1

∑
𝑚𝑏
𝜌
𝑏

𝑁
𝑏=1 {1 + 𝛃(𝐱). (𝐱 − 𝐱𝑏)}𝑊𝑏(𝐱)

                                                   (A. 25) 

It can be seen from (A.24) and (A.25) that both 𝛼(𝐱) and 𝛃(𝐱) are functions of x and this 

will make the correction expensive in terms of computational time. It can follow that one 
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way to make the correction less time consuming is by ignoring 𝛃(𝐱); that is, the kernel is 

corrected by using a constant rather than a linear correction. Thus, the interpolation of 

the field function v(x) is, 

𝐯(𝐱) = ∑
𝑚𝑏

𝜌𝑏
𝐯𝑏

𝑁

𝑏=1

𝑊̃𝑏(𝐱)                                                                              (𝐴. 26) 

where, 

𝑊̃𝑏(𝐱) =
𝑊𝑏

∑
𝑚𝑏

𝜌𝑏
𝑊𝑏

𝑁
𝑏=1 (𝐱) 

                                                                           (A. 27) 

A.2.2 Combined Kernel and Gradient Correction 

Mixing the kernel and gradient corrections is considered to be another correction 

technique. Where the corrected gradient of the corrected kernel is shown by, 

∇̃𝑊̃𝑏(𝐱) = 𝑳∇𝑊̃𝑏(𝐱)                                                                                     (A. 28) 

Here the term 𝑊̃𝑏(𝐱) can be achieved by differentiating Equation (A.28) to give, 

𝑊̃𝑏(𝐱) =
∇𝑊𝑏(𝐱) − 𝜺(𝐱)

∑
𝑚𝑏

𝜌𝑏
𝑁
𝑏=1 𝑊𝑏(𝐱)

                                                                           (A. 29) 

where, 

𝜺(𝐱) =
∑

𝑚𝑏

𝜌𝑏
∇𝑊𝑏

𝑁
𝑏=1 (𝐱)

∑
𝑚𝑏

𝜌𝑏
𝑊𝑏

𝑁
𝑏=1 (𝐱)

                                                                             (A. 30) 

The same applies to Equation (A.19), the correction matrix L is given by, 
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𝑳 = (∑
𝑚𝑏

𝜌𝑏

𝑁

𝑏=1

∇𝑊̃𝑏(𝐱)⨂𝐱𝑏)

−1

                                                                     (A. 31) 

It is very important to note that in Equation (A.31) the term of x is not required only 

if the constant kernel is used instead of a linear kernel. By using the corrected 

gradient of the corrected kernel, the equations of the SPH such as (3.20) and (3.21) 

can be rewritten as follows, 

𝜙(𝐱) = ∑𝑉𝑏

𝑁

𝑏=1

𝜙(𝐱𝑏)𝑊̃𝑏(𝐱)                                                                                  (A. 32)         

∇𝜙(𝐱) = ∑𝑉𝑏

𝑁

𝑏=1

𝜙(𝐱𝑏)∇̃ 𝑊̃𝑏(𝐱)                                                                             (A. 33) 
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B.1 Basic concepts and assumptions 

B.1.1 Finite control volume  

The finite control volume will be considered to be a finite region of a flow field, as 

presented in Figure B.1. Let a control volume be appointed as V, and a control 

surface as S, to this flow. The control volume has two movements. The first will be 

fixed in space, and the flow passes through it. The second can move with the flow in 

such a way that a constant number of fluid particles are always inside it. The 

fundamental physical principles are applied to the fluid inside the control volume, 

which derives the equations of fluid flow in an integral form. The final form of the 

integral fluid equations will be converted to partial differential equations. The 

conservation form of the governing equations will represent the concept of a fixed 

control volume, while the non-conservation form of the governing equations will be 

shown in the concept of a moving control volume in either integral or partial 

differential form.       

 

Figure B.1 Fixed control volume (left) and moving control volume (right) 
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B.1.2 Infinitesimal fluid element 

Consider a general flow field as shown in Figure B.2. On the one hand, the 

small fluid element with a differential volume dV can be considered.  On the other 

hand, this volume has to be large enough to get a massive number of molecules in 

order to consider it as a continuous medium. It can also be considered that the 

movement of the fluid element can be fixed in space and the flow through it or it can 

move with the flow in such a way that a constant number of fluid particles are always 

inside it. This approach can directly give the partial differential equations. These 

equations can be obtained based on fixed or moving fluid elements, which yield the 

conservation and non-conservation forms of the equations, respectively. 

 

Figure B. 2 Infinitesimal fluid element approach with fixed (left) and moving control element 

(right) 

B.1.3 Material derivatives 

The substantial derivative (i.e. time rate of change following a moving fluid 

element) is an important physical concept in fluid dynamics. The infinitesimal fluid 

cell moving with the flow (right of Figure B.2) at instants, 𝑡1 and 𝑡2 can be 

considered, where the scalar density field at time 𝑡1 can be given by: 
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𝜌1 = 𝜌(𝑥1, 𝑦1, 𝑧1, 𝑡1)                                                                                                          (B. 1) 

While at the second time 𝑡2 the density will be: 

 𝜌2 = 𝜌(𝑥2, 𝑦2, 𝑧2,𝑡2)                                                                                                         (B. 2) 

The expression in Equation (B.2) can be expanded in Taylor’s series about point 𝑡1 

(Anderson 1995) to get: 

𝜌2 = 𝜌1 + (
𝜕𝜌

𝜕𝑥
)
1
(𝑥2 − 𝑥1) + (

𝜕𝜌

𝜕𝑦
)
1
(𝑦2 − 𝑦1) + (

𝜕𝜌

𝜕𝑧
)
1
(𝑧2 − 𝑧1) + (

𝜕𝜌

𝜕𝑡
)
1
(𝑡2 −

           𝑡1) + (ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠)                                                                              (B. 3)  

By dividing both sides of Equation (B.3) by (𝑡2 − 𝑡1) and neglecting the higher order 

terms, gives: 

𝜌2 − 𝜌1
𝑡2 − 𝑡1

= (
𝜕𝜌

𝜕𝑥
)
1
(
𝑥2 − 𝑥1
𝑡2 − 𝑡1

) + (
𝜕𝜌

𝜕𝑦
)
1

(
𝑦2 − 𝑦1
𝑡2 − 𝑡1

) + (
𝜕𝜌

𝜕𝑧
)
1
(
𝑧2 − 𝑧1
𝑡2 − 𝑡1

) (
𝜕𝜌

𝜕𝑡
)
1
       (B. 4) 

Usually, the left-hand side of Equation (B.4) is represented physically by the average 

time rate of change in density of the fluid element. Where it moves from point 1 to 

point 2. When 𝑡2 approaches   𝑡1, the term comes to the limit  

lim
𝑡2→𝑡1

(
𝜌2 − 𝜌1
𝑡2 − 𝑡1

) ≡
𝐷𝜌

𝐷𝑡
                                                                                                       (B. 5) 

 

Where the expression  
𝐷𝜌

𝐷𝑡
 represents the time rate of change of the fluid element 

which refers to the change of density, when it moves through point 1. Meanwhile, the 

term 
𝜕𝜌

𝜕𝑡
 represents the time rate of change of the density at a fixed point 1. Again, 

taking the limit of the other terms in the RHS of Equation (B.4) will give:  
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lim
𝑡2→𝑡1

(
𝑥2−𝑥1

𝑡2−𝑡1
) ≡  𝑣𝑥                                                                                                                                                                            

lim
𝑡2→𝑡1

(
𝑦2−𝑦1

𝑡2−𝑡1
) ≡ 𝑣𝑦                                                                                                              (B. 6)  

lim
𝑡2→𝑡1

(
𝑧2−𝑧1

𝑡2−𝑡1
) ≡ 𝑣𝑧                                                                                                                                                                               

Thus, Equation (B.4) becomes: 

𝐷𝜌

𝐷𝑡
≡ 𝑣𝑥

𝜕𝜌

𝜕𝑥
+ 𝑣𝑦

𝜕𝜌

𝜕𝑦
+ 𝑣𝑧

𝜕𝜌

𝜕𝑧
+
𝜕𝜌

𝜕𝑡
                                                                              (B. 7) 

Equation (B.7) is considered to be a general expression which can be used for 

substantial derivatives   

𝐷𝜌

𝐷𝑡
≡ 𝑣𝑥

𝜕

𝜕𝑥
+ 𝑣𝑦

𝜕

𝜕𝑦
+ 𝑣𝑧

𝜕

𝜕𝑧
+
𝜕

𝜕𝑡
                                                                               (B. 8) 

where the vector operator ∇ is defined as follows: 

∇≡ 𝑖
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘⃗⃗

𝜕

𝜕𝑧
                                                                                                    (B. 9) 

Equation (B.8) can be rewritten in the Cartesian coordinates as: 

𝐷

𝐷𝑡
≡
𝜕

𝜕𝑡
+ (𝐯. ∇)                                                                                                              (B. 10) 

Where 𝐯. ∇ is called the convective derivative, which represents the physical term of 

the time rate of change where the fluid element moves from one place to another in 

the flow field. The substantial derivative can be applied for any flow field variable 

(e.g. pressure, temperature, etc.). 
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B.1.4 Physical meaning of the divergence of velocity  

The divergence of the velocity is considered to be a term which frequently 

becomes clear when dealing with fluid dynamics problems. A moving control 

volume in a flow field can be considered as in the right side of figure  B.1. This 

control volume contains the same particles as it moves through the flow. Where the 

control volume moves to a different location of the fluid, its volume 𝑉  and control 

surface S can be changed because at its new position a different value of 𝜌 exists. 

The shape and volume of the moving control volume with a constant mass is 

constantly changed and it will depend on the characteristics of the flow. An 

infinitesimal element can be considered moving at local velocity 𝐯, with surface dS  

and volume ∆𝑉. Figure B.3 presents the change in volume of the control volume ∆𝑉 

over a time increment ∆𝑡.  

 

                  Figure B.3 Physical meaning of the divergence of velocity  

Figure B.3 shows that the change in volume is equal to the volume of the cylinder 

with the base area dS and an upturn (𝐯∆𝑡). 𝐧, where, 𝐧 is a unit vector perpendicular 

to the surface. The change in volume is equal to 

∆𝑉 = [(𝐯∆𝑡). 𝐧]dS                                                                                                           (B. 11) 
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The total volume change of the complete control volume is the integral over the total 

control surface S 

∆𝑉 = ∫ 𝐯∆𝑡. 𝐧dS                                                                                                            (B. 12) 

S

 

By dividing both sides of Equation (B.12) by ∆𝑡 and applying the divergence 

theorem yields:  

∆𝑉

∆𝑡
= ∫ ∇. 𝐯𝑑𝑉                                                                                                                (B. 13)

𝑉

 

Here, the symbol ∇ represents the divergence operator (B.9) 

The left-hand side of Equation (B.13) refers to the substantial derivative of 𝑉, which 

in this case deals with the time rate of change of the control volume as the volume 

moves with the flow.  

Equation (B.13) is written in another form if the control volume is shrunk to an 

infinitesimal fluid element with volume 𝛿𝑉, as follows 

∆(𝛿𝑉)

∆𝑡
= (∇. 𝐯)∫ 𝑑(𝛿𝑉) = (∇. 𝐯)𝛿𝑉                                                                         (𝐵. 14)

𝑉

 

Therefore, the divergence of the velocity is: 

∇. 𝐯 =
1

𝛿𝑉

𝐷(𝛿𝑉)

𝐷𝑡
                                                                                                             (B. 15) 
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The RHS of Equation (B.15) physically interprets the divergence of the velocity. In 

the real sense, it represents the fact that ∇. 𝐯 is the time rate of change of the volume 

of a moving fluid element per unit volume. 

B.1.5 The continuity equation 

A moving fluid element with a fixed mass 𝛿𝑚 and a time - dependent volume 𝛿𝑉 is 

considered, where  

𝛿𝑚 = 𝜌𝛿𝑉                                                                                                                       (B. 16) 

And 𝜌 is the mass-density of the fluid. The mass conservation law will represent the 

change rate of 𝛿𝑚, which will be zero where the element moves along the flow. The 

substantial derivative of the physical principle is introduced, where:  

𝐷(𝛿𝑚)

𝐷𝑡
= 0                                                                                                                        (B. 17) 

Here, the substantial derivative of (B.17) is by replacing the mass by the density and 

volume, i.e.  

𝐷(𝛿𝑚)

𝐷𝑡
=
𝐷(𝜌𝛿𝑉)

𝐷𝑡
= 𝛿𝑉

𝐷𝜌

𝐷𝑡
+ 𝜌

𝐷(𝛿𝑉)

𝐷𝑡
= 0                                                           (B. 18) 

After rearranging Equation (B.18) gives:  

 

𝐷𝜌

𝐷𝑡
+ 𝜌

1

𝛿𝑉

𝐷(𝛿𝑉)

𝐷𝑡
= 0                                                                                                   (B. 19) 

Where the second term in Equation (B.19) is the divergence of the velocity (see 

Equation B.15). Thus,  
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𝐷𝜌

𝐷𝑡
+ 𝜌∇. 𝐯 = 𝟎                                                                                                                (B. 20) 

Equation (B.20) expresses the continuity equation or the mass conservation equation 

in a Lagrangian form. 

B.1.6 The momentum equations 

The momentum equations can be derived here, depending on the conservation 

of momentum. Newton’s second law represents the physical principle (i.e. it is 

applied for very small fluid element moving with the flow), which states that the total 

force on a fluid element is equal to its mass times the acceleration of the fluid 

element considered. It can be treated as a moving fluid element, shown in figure B.2. 

Figure B.4 shows more details of the fluid element with the components of force in 

the x-direction.  

 
Figure B. 4 Forces applied on a fluid element with components of the force in the x-direction  
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The acceleration of the fluid element can be written as 
𝐷𝑣𝑥

𝐷𝑡
, 
𝐷𝑣𝑦

𝐷𝑡
, and  

𝐷𝑣𝑧

𝐷𝑡
  in the 

directions x, y, and z, respectively; where the components of velocity in the same 

directions are 𝑣𝑥,  𝑣𝑦, and 𝑣𝑧, respectively. 

There two sources of the force acting on the element, which is the body force (Fb) 

and the surface force (Fs).    

• Body forces (Fb) include the gravitational, electric, and magnetic forces 

which perform directly on the volumetric mass of the fluid. 

• Surface forces (Fs) act directly on the surface of the fluid element. The forces 

are divided into two types: the first type is the force of the outside fluid 

surrounding the fluid element, which is imposed by the pressure; and the 

second type is the shear and normal stress distributions on the surface, which 

are related to the time rate of change of the deformation of the element that 

results in a shear deformation and volume change, respectively.     

In Figure B.4, the face bfgc represents the negative face of x while face aehd 

represents the positive face of x, where the x value for the face dhgc is less than that 

for the face aefb. Face abed represents the negative face of y and ehgf represents the 

positive face of y. The negative and positive faces of z are hgcd and efba. It can be 

seen here that the stress on the positive face is equal to the stress on the negative face 

in addition to the rate of change of that stress multiplied by the distance between the 

faces. An agreement can be reached here, whereby a stress will be positive when it is 

on the positive face in the positive direction, and it will be negative on the negative 

face in the negative direction. In addition, the shear stress   𝜏𝑖𝑗  refers to the stress in 

the j-direction, which is exerted on a plane perpendicular to the i-axis. 
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The shear and normal stresses depend on the velocity gradients in the flow. In most 

viscous flows, normal stresses such as 𝜏𝑥𝑥 are neglected for being much smaller than 

the shear stresses; however, because the normal velocity gradients such as 
𝜕𝑣𝑦

𝜕𝑥
  are 

very large, the normal stresses have to be taken into account (such as the stresses 

inside a shock wave).  

As mentioned above, all the forces acting on the infinitesimal fluid element in the x-

direction are: 

−[(𝑃 +
𝜕𝑃

𝜕𝑥
𝑑𝑥) − 𝑃] 𝑑𝑦𝑑𝑧 + [(𝜏𝑥𝑥 +

𝜕𝜏𝑥𝑥
𝜕𝑥

𝑑𝑥) − 𝜏𝑥𝑥] 𝑑𝑦𝑑𝑧 + 

[(𝜏𝑦𝑥 +
𝜕𝜏𝑦𝑥

𝜕𝑦
𝑑𝑦) − 𝜏𝑦𝑥] 𝑑𝑥𝑑𝑧 + [(𝜏𝑧𝑥 +

𝜕𝜏𝑧𝑥

𝜕𝑧
𝑑𝑧) − 𝜏𝑧𝑥] 𝑑𝑥𝑑𝑦                        (B.21) 

= −
𝜕𝑃

𝜕𝑥
𝑑𝑥𝑑𝑦𝑑𝑧 +

𝜕𝜏𝑥𝑥
𝜕𝑥

𝑑𝑥𝑑𝑦𝑑𝑧 +
𝜕𝜏𝑦𝑥

𝜕𝑦
𝑑𝑥𝑑𝑦𝑑𝑧 +

𝜕𝜏𝑧𝑥
𝜕𝑧

𝑑𝑥𝑑𝑦𝑑𝑧 

Where P is the pressure force of the surrendering fluid.  

According to Newton’s second law, the body force in the x-direction is Fx: 

𝑚
𝑑𝑣𝑥

𝑑𝑡
= 𝜌𝑑𝑥𝑑𝑦𝑑𝑧

𝑑𝑣𝑥

𝑑𝑡
= −

𝜕𝑃

𝜕𝑥
𝑑𝑥𝑑𝑦𝑑𝑧 + 

𝜕𝜏𝑥𝑥

𝜕𝑥
𝑑𝑥𝑑𝑦𝑑𝑧  

+
𝜕𝜏𝑦𝑥

𝜕𝑦
𝑑𝑥𝑑𝑦𝑑𝑧 +

𝜕𝜏𝑧𝑥

𝜕𝑧
𝑑𝑥𝑑𝑦𝑑𝑧 + 𝐹𝑥(𝜌𝑑𝑥𝑑𝑦𝑑𝑧)                                                      (𝐵. 22)  

In addition, the momentum equation in the x-direction due to the Lagrangian 

approach is given by: 

𝜌
𝐷𝑣𝑥
𝐷𝑡

= −
𝜕𝑃

𝜕𝑥
+
𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥

𝜕𝑦
+
𝜕𝜏𝑧𝑥
𝜕𝑧

+ 𝜌𝐹𝑥   .                                                          (B. 23) 
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Similarly, the y and z components of momentum are written as: 

𝜌
𝐷𝑣𝑦

𝐷𝑡
= −

𝜕𝑃

𝜕𝑦
+
𝜕𝜏𝑥𝑦

𝜕𝑥
+
𝜕𝜏𝑦𝑦

𝜕𝑦
+
𝜕𝜏𝑧𝑦

𝜕𝑧
+ 𝜌𝐹𝑦                                                            (B. 24) 

𝜌
𝐷𝑣𝑧
𝐷𝑡

= −
𝜕𝑃

𝜕𝑧
+
𝜕𝜏𝑥𝑧
𝜕𝑥

+
𝜕𝜏𝑦𝑧

𝜕𝑦
+
𝜕𝜏𝑧𝑧
𝜕𝑧

+ 𝜌𝐹𝑧                                                              (B. 25) 

Equations (B.23) to (B.25) are called the Navier-Stokes equations. Navier and Stokes 

independently found these equations in the first half of the nineteenth century.   

The momentum Equations (B.23) to (B.25) can be written in a more compact form, 

which will consider the gravitational force on a particle only, as: 

𝐷𝑣

𝐷𝑡
=
1

𝜌

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
+ 𝐠 .                                                                                                             (B. 26) 

Here, the total stress tensor is in the first term of the RHS of Equation (B.26), which 

refers to two parts: the isotropic pressure P and the viscous stress 𝝉, as follows:  

𝜎𝑖𝑗 = −𝑃𝛿𝑖𝑗 + 𝜏𝑖𝑗  .                                                                                                           (B. 27) 

Thus, a summary of the momentum conservation equations (governing equations) 

can be given as  

𝐷𝐯

𝐷𝑡
= −

1

𝜌
∇𝑃 +

1

𝜌
∇. 𝝉 + 𝐅 .                                                                                            (B. 28) 

 


