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Abstract  

This paper reports a study towards enhancing the throughput of the Atomic Force 

Microscopy (AFM) tip-based nanomachining process by increasing the cutting speed 

at the interface between the tool and the workpiece. A modified AFM set-up was 

implemented, which combined the fast reciprocating motions of a piezoelectric 

actuator, on which the workpiece was mounted, and the linear displacement of the 

AFM stage, which defined the length of produced grooves. The influence of the feed, 

the feed direction and the cutting speed on the machined depth and on the chip 

formation was studied in detail when machining poly(methyl methacrylate). A 

theoretical cutting speed over 5 m/min could be achieved with this set-up when the 

frequency of the piezoelectric actuator reciprocating motions was 40 kHz. This is 

significantly better than the state of the art for AFM-based nanomachining, which is 

currently less than 1 m/min. 
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1. Introduction 

Machining nano-scale features with the tip of an Atomic Force Microscope 

(AFM) probe has been extensively studied in the past two decades and has been 

reported in recent reviews on nanofabrication techniques enabled by AFM 

instrumentation [1-3]. From a manufacturing perspective, the AFM tip-based 

nanomachining process exhibits a number of attractive advantages, which can be 

summarised as follows. Firstly, the approach does not rely on capital-intensive 

equipment. Secondly, it can be applied on a wide range of workpiece materials. 

Finally, it is relatively straight-forward to implement since successive exposure and 

etching steps can be avoided, which are otherwise needed with 

photolithography-based approaches. Thus, it could be argued that AFM tip-based 

nanomachining represents a potential alternative to current vacuum and mask-based 

fabrication techniques, which are the de facto standard when producing 

nano-electro-mechanical systems components and related semi-conductor devices.  

Despite these advantages, this mechanical machining approach is not yet 

considered as a serious competitor for nano-scale manufacturing. This is partly due to 

its relatively low processing speed [4]. Indeed, the vast majority of AFM tip-based 

nanomachining investigations are reported to operate at cutting speeds below 1 
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mm/min [5-7]. In an effort to overcome this limitation, researchers from the micro- 

and nano-manufacturing community have recently attempted to increase the speed of 

this particular process. As will be described below, these advances essentially rely on 

the development of specific solutions for the generation of the relative motion 

between the AFM tip and the workpiece. In spite of these recent developments, to the 

best knowledge of the authors, the highest cutting speed achieved at the tip-workpiece 

interface to date is still less than 1 m/min. This is in contrast to values routinely 

reached with single point diamond turning (SPDT), where cutting speeds of 10-100 

m/min [8, 9] and even over 500 m/min [10] are reported. Despite the differences in 

the type of structures produced by AFM tip-based nanomachining and SPDT as 

mentioned in [11], it is of interest to compare these two processes as they share 

similarities in terms of the mechanics of the cutting process at the tool-workpiece 

interface. While AFM nanomachining is currently limited to less than 1 m/min, it 

should be noted that the state-of-the-art in AFM imaging has demonstrated tip 

scanning speed values over 10 m/min. Indeed, the pioneering work of Humphris et al 

(2005) [12] and Picco et al (2007) [13] has enabled the development of the so-called 

“high-speed atomic force microscopy” technique for recording AFM images with 

high acquisition rates.  

Thus, it is argued that there remains scope to further accelerate the AFM tip-based 

nanomachining process. An early effort in this direction was presented by Yan and 

co-workers [14] who achieved a machining speed of 6 mm/min by retrofitting an 

ultra-precision stage in a commercial AFM instrument. A few years later, Bourne et al 
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developed a custom AFM head assembly, which could be set-up on a five-axis 

microscale machine tool platform in place of the spindle assembly [5]. Using this 

platform, a cutting speed of 25 mm/min was reported. Recently, Brousseau et al 

achieved a cutting speed of 32 mm/min by implementing a hybrid process that 

combined roll-to-roll and AFM technologies [15]. Despite the potential of this 

particular solution to reach higher cutting speeds, its limitation is that it is only able to 

machine polymer sheets a few tens of micrometres thick and to cut long grooves, 

rather than produce discrete features.  

Based only on the dimensions of produced grooves, the highest cutting speed 

achieved at the tip-workpiece interface to date is estimated to be 301 mm/min. This 

was realised in the study from Gozen and Ozdoganlar [16]. It should be noted that, as 

with Bourne et al, this work was not implemented on a standard AFM instrument. In 

this case, a customised system was developed where the AFM probe was used as a 

rigid cutting tool and where piezoelectric actuators enabled the generation of 

rotational motions, either in-plane or out-of-plane, between the tip and the workpiece. 

The implementation of in-plane rotational displacements of the workpiece based on 

piezoelectric actuation has also recently been investigated by other researchers [17, 

18]. In this way, Zhang and Dong achieved a cutting speed of 254 mm/min [17] while 

Park and co-workers reported experimental trials, which reached values of 

approximately 50 mm/min [18]. Interestingly, both of these studies demonstrated the 

possibility to integrate a customised stage based on piezoelectric actuation onto a 

commercial AFM instrument. The advantage of such an approach is that it can be 
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transferred relatively easily to standard AFM equipment.  

In this context, the motivation behind the research reported in this paper is to 

attain cutting speed values at the tip-workpiece interface in excess of 1 m/min, i.e. 

about one order of magnitude higher than the state-of-the-art. In a similar way to a 

number of previous studies, it is proposed to exploit piezoelectric actuation to 

generate rapid and high frequency motion of the workpiece. It is also proposed to 

implement this approach on a commercial AFM instrument, such that the solution 

may be realised relatively easily by a large number of AFM practitioners.  

The paper is organised as follows. The next section describes the experimental 

set-up employed in this study to perform the AFM tip-based nanomachining 

experiments and also to conduct the dynamic characterisation of the piezoelectric 

actuator utilised. Then, nanomachining outcomes observed when processing a 

poly(methyl methacrylate) (PMMA) substrate are reported and discussed in light of 

the different parameters used. In particular, the influence of the feed, the feed 

direction and the cutting speed on the machined depth and on the chip formation is 

examined in detail. Finally, conclusions and outlook for future work are presented in 

the last section.  

 

2. Experimental methodology 

2.1. Nanomachining set-up and procedure 

 Figure 1 (a) shows a schematic view of the modified AFM set-up which was 
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implemented in this work to realise tip-based nanomachining operations with 

increased cutting speed. The developed set-up relied on a commercial AFM (XE-100, 

Park Systems, Korea) and on a unidirectional shear-type piezoelectric actuator 

(NAC2402-H2.3, Noliac, Denmark). This actuator was placed on the original stage of 

the AFM system, which had a maximum displacement range of 45 μm by 45 μm. The 

purpose of the shear-type actuator was to generate linear reciprocal displacements of 

the workpiece at high frequency (i.e. until 40 kHz). This defined the scratching 

direction and the amplitude of this reciprocating motion defined the groove width. At 

the same time, the tip followed a predefined linear trajectory along the length of a 

groove to be machined. This trajectory was controlled via the motion of the AFM 

stage and established the feed direction.  

 A diamond three-sided pyramidal AFM tip (DNISP, Bruker, Germany) was used 

for all nanomachining operations in this work. The normal spring constant of the 

cantilever, on which the tip is mounted, was specified to be 221 N/m by the 

manufacturer. Due to the non-axisymmetric geometry of the tip, different feed and/or 

scratching directions can lead to various machining outcomes. The typical relative 

directions of the tip motion found in conventional AFM tip-based nanomachining are 

shown in Figures 1 (b)-(d). When considering the addition of reciprocating motions as 

implemented in this study, three typical combinations of feed and scratch directions 

can be studied:  

(i) The linear movement of the AFM stage is parallel and towards the cantilever of the 
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probe. The relative motion of the tip related to the sample is denoted as Vtip and is 

shown in Figure 1 (b). In this study, such a configuration is defined as the 

‘edge-forward’ feed direction. 

(ii) The linear movement of the AFM stage is parallel and away from the probe. In 

this case, the relative motion of the tip related to the sample, i.e. Vtip, is as shown 

in Figure 1 (c). This configuration is denoted as the ‘face-forward’ feed direction. 

In cases (i) and (ii), the reciprocating motion of sample generated by the 

piezoelectric actuator is conducted in a direction that is perpendicular to the long 

axis of the cantilever, which is denoted as Vsample as shown in Figures 1 (b) and 

(c).  

(iii) The movement of the AFM stage is perpendicular to the cantilever. This means 

that the relative motion of the tip to the sample can be described by Vtip as 

illustrated in Figure 1 (d). This case is defined as the ‘side-forward’ feed direction. 

In this configuration, the reciprocating motion of the sample, Vsample, is carried 

out along the long axis of the cantilever. 
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Fig. 1 (a) Schematic of the nanomachining set-up and typical relative movements 

between the AFM tip and the sample (b) edge-forward, (c) face-forward and (d) 

side-forward. 

  

 The piezoelectric actuator utilised in this study was driven by a signal amplifier 

(2100HF, Trek, USA) and a signal generator (WaveStation 2012, Teledyne LeCroy, 

USA). The voltage output produced by the signal generator was multiplied 50 times 

by the amplifier. A sinusoidal waveform was employed to control the amplitude and 

the frequency of the reciprocating motion of the piezoelectric actuator. The workpiece 

considered was an injection moulded PMMA sample with dimensions 10 mm x 10 

mm x 3 mm. The arithmetical mean roughness, Ra, of the sample surface was less than 

1 nm. This was measured from an AFM scan over a 20 μm by 20 μm area. It could be 
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reasonably assumed that, when machining PMMA, the wear of the diamond tip is 

negligible.  

 Based on this set-up, the procedure adopted to carry out the nanomachining of a 

groove on the surface of the PMMA workpiece was as follows: 

(i) The AFM tip was first approached towards the sample to be machined until 

contact was made and a pre-set normal load of 20 μN was attained. This normal 

load corresponds to a given voltage output from the position sensitive 

photodetector (PSPD) of the AFM instrument. This value was then maintained 

throughout via the feedback loop of the AFM system by adjusting the vertical 

motion of the fixed end of the probe.  

(ii) Next, in order to machine a groove, the stage of the AFM instrument was 

controlled to describe a linear trajectory, which was 36 μm in length and 

perpendicular to the reciprocating motions of the actuator. The speed of the stage 

during this step defined the feed value of a machining operation. 

(iii) After cutting a groove, the normal load was reduced to 20 nN and the AFM stage 

was actuated to reach the starting position of the next groove to be cut. Once the 

tip was in the correct position to machine this subsequent groove, the normal load 

was increased again to 20 μN.   

The applied normal load, FN, the machining speed, v, and feed, Δ, could be 

determined based on the following expressions: 
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where KN is the cantilever normal spring constant, S is the vertical sensitivity of the 

PSPD and VA-B is the pre-set target voltage value for the vertical signal on the PSPD. 

The velocity of the AFM stage is vstage. Finally, the variables f and b are the frequency 

and the amplitude of the workpiece movement, respectively.  

 Following the completion of the machining trials, the 3D topography of the 

fabricated grooves was recorded using non-contact mode AFM scanning. For this, a 

new silicon probe (NSG30, NT-MDT, Russia) with a tip radius less than 10 nm was 

utilised. In addition, in order to provide additional data to analyse the machining 

results, the voltage output “A-B” and “C-D” on the PSPD and the signal sent by the 

controller to the AFM stage were also recorded. More specifically, the “A-B” and 

“C-D” signals provide information about bending and torsional motions, respectively, 

at the free end of the cantilever. A NI 9223 device from National instrument was 

employed to collect these signals through a signal access module (SAM) from Park 

Systems. A specially developed software was used to connect to the SAM and to 
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record the signals during the nanomachining experiments. 

  

2.2. Characterisation of the piezoelectric actuator motions 

 The unidirectional piezoelectric actuator utilised is a critical component of the 

AFM set-up developed. Thus, the dynamic characterisation of its motion under a 

range of drive frequencies and voltages was studied first. This was carried out using a 

one-dimensional laser doppler vibrometer (LDV) (OFV-303, Polytec, Germany) when 

the PMMA sample was mounted on the actuator, as shown in Figure 2 (a). The LDV 

system operated with a laser wavelength of 633 nm and its resolution, stated by the 

manufacturer, was 32 nm when measuring the amplitude of the piezoelectric actuator 

motion under the experimental conditions used in this study. The laser beam of the 

LDV was directed onto the upper edge of the actuator in a direction parallel to its 

shearing motion. The amplitude of the reciprocating displacements was recorded 

online as voltage values by the controller of the LDV. Then, this voltage signal was 

converted into actual displacements based on the knowledge of the sensitivity of the 

controller. In this way, it was possible to determine the amplitude of the motion of the 

actuator as a function of the driving frequency and voltage, prior to the start of the 

nanomachining experiments. 

 Figure 2 (b) shows the measured amplitude of the piezoelectric actuator as a 

function of the driving frequency for an input peak-to-peak voltage of 225 V. Based 

on these data, the theoretical machining speed could be calculated for each frequency 
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value based on Eq. (3). In this study, the displacements of the actuator were measured 

in a configuration, where the mass of the PMMA workpiece was considered but the 

cutting loads were not taken into account. However, during tip-based nanomachining 

of polymers, such loads are typically less than 100 μN [18, 19] and thus can be 

assumed to be relatively small. For this reason, it can be assumed that the cutting 

loads could have only a minor effect on the dynamic characteristics of the 

piezoelectric actuator during actual nanomachining operations. 

 

 

Fig. 2 (a) Illustration of the LDV set-up employed to characterise the dynamic 

displacements of the piezoelectric actuator and (b) measured amplitude of the 

piezoelectric actuator reciprocating motion as a function of the driving frequency for 

an input peak-to-peak voltage of 225 V. 
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3.  Results and discussion 

3.1 Influence of the frequency on the machined grooves 

 Our previous investigations suggest that both the cutting speed and the feed 

direction are critical parameters as they have important effects on the machining 

response of a polymer material [20, 21]. As described in Eq. (3), the cutting speed is 

mainly dependent on the frequency of the reciprocating motion and the width of the 

groove. Thus, in the present study, two typical frequencies of 10 kHz and 40 kHz 

were selected based on the data reported in Figure 2 (b). These correspond to 

amplitude values of 1590 nm and 1120 nm, respectively. The frequency of 10 kHz 

was considered as it was twice larger than the maximum frequency used by Gozen 

and Ozdoganlar [16], which was identified earlier as state-of-the art. Based on the 

data measured with the LDV, this should correspond to a theoretical cutting speed of 

1.9 m/min. In addition, in order to push the theoretical cutting speed achieved over 5 

m/min at the tip-workpiece interface, a frequency of 40 kHz was also selected which 

corresponds to a theoretical speed of 5.6 m/min. It was decided that this would be the 

highest frequency considered since the maximum velocity considered for the motion 

of the AFM stage was 400 μm/s and higher frequencies would have led to feed values, 

which would be too small, i.e. less than 1 nm. Finally, a low frequency of 10 Hz was 

also chosen to provide comparative data when the feed is much larger than the 

amplitude of the reciprocating motions. In this case, the cutting speed was much 

lower at only 6 mm/min.  
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 When studying the influence of the frequency on the machining characteristics, 

the speed of the AFM stage was maintained constant at 100 μm/s. The average values 

for the machined depth and width as well as for the heights of the pile-up on both 

sides of the grooves are shown in Figure 3 for the range of frequencies considered. 

AFM scans of nano-scale grooves are shown in Figure 4, together with their 

cross-sections, for the case where the feed direction was ‘edge-forward’. In addition, 

Figure 5 shows the corresponding SEM images of these grooves.  

 From Figure 3, it is observed that the smallest machined depths were obtained 

with the frequency of 10 Hz. Machining with a frequency of 10 kHz and 40 kHz 

could generate grooves which were around 4 times and 1.5 times deeper than those 

for 10 Hz, respectively. One reason for this observation may be that scratching at a 

very low frequency of 10 Hz results in a small velocity of the reciprocating motions 

of the tip (around 10 μm/s), which is negligible in comparison with the velocity of the 

AFM stage, which was 100 μm/s. In this case, there is no overlap between adjacent 

lateral tip trajectories along the width of the groove. As reported in [21], such an 

overlap contributes to the formation of deeper structures as the surface at the bottom 

of a groove can be processed more than once by the tip. Based on Eq. (2), the feed 

values for 10 kHz and 40 kHz were estimated to be smaller than or equal to 5 nm, 

which is about twenty times less than the radius of the AFM diamond tip. This results 

in the overlapping of the adjacent reciprocating trajectories for these higher 

frequencies. Thus, for a low frequency of 10 Hz, it could be said that the tip is 

machining in a configuration similar to that of conventional scratching, which relies 
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on the displacement of the stage only, albeit with the small difference that the 

reciprocating motions of the actuator still led to the formation of a slightly curved 

groove, see Figure 4 (a). 

 It is also observed from Figure 3, and from the cross sections in Figure 4 (d), that 

grooves machined with a frequency of 10 kHz were deeper than those processed at 40 

kHz. Complementary SEM observations also revealed that only the grooves produced 

with 10 kHz were cut via shearing of the material with chip formation, see Figure 5 

(b). Thus, the reduction of the contact area between the tip and the sample, as a result 

of the formation of chips, would consequently lead to an increase of the machined 

depth of the grooves processed at 10 kHz. In addition, based on the work reported in 

[22], it is anticipated that the transition from viscoelastic to viscoplastic behaviour has 

already taken place for the PMMA material for both frequency values of 10 kHz and 

40 kHz. Indeed, in both cases, the cutting speed was higher than the threshold of 0.1 

m/min taken from [22]. Thus, it is also expected from data given in [22] that a higher 

elastic recovery takes place when processing at 40 kHz, further reducing the groove 

depth. Regarding the formation of chips, which occurred only when processing at 10 

kHz, it is suggested that this is a consequence of the influence of the feed. The feed 

values at a frequency of 10 kHz were four times higher than those for 40 kHz (i.e. 5 

nm and 1.3 nm, respectively). Thus, the higher undeformed chip thickness should be 

beneficial for the generation of chips in the case of 10 kHz. Moreover, when the tip is 

following a zigzag scratching trajectory and the feed is much smaller than the width 

of the machined groove, a relatively large attack angle may also be a possible reason 
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for the chip formation as discussed in [21].  

 As shown in Figure 3, the heights of pile-ups on both sides of the grooves were 

almost identical at 10 Hz and 40 kHz when scratching with the ‘edge-forward’ feed 

direction. The possible reason for this can be due to the geometrical symmetry of the 

tip along the long axis of the probe cantilever. However, the height of the pile-up on 

the left side of the groove was much larger than that on the right side in the case of 10 

kHz. Thus, the same explanation does not apply here. On the right side of the groove, 

the formation of chips should be the main reason for the decrease of the height of the 

pile-up. Thus, a slightly skewed orientation of the pyramidal base of the AFM tip and 

the inclination of the sample surface may be the possible reasons for the asymmetric 

pile-up on both sides of the groove.  

 Furthermore, it can be seen in Figure 3 that the width of the groove at 10 kHz is 

much larger than the groove width at 10 Hz or 40 kHz when scratching in the 

‘edge-forward’ feed direction. A possible reason for this observation is that the 

amplitude of the reciprocating displacement generated by the piezoelectric actuator at 

10 kHz was higher than that of 40 kHz, as shown in Figure 2 (b). In addition, at a 

frequency of 10 Hz, given that the processing condition is similar to that of 

conventional scratching, the width of the groove is only dependent on the geometry of 

the AFM tip. The second possible reason is that the machined depth at a frequency of 

10 kHz was much larger than that at 10 Hz and 40 kHz, as seen in Figure 3. In this 

case, the AFM tip would have penetrated deeper into the material, which in turn 
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should lead to a larger groove width. The third factor that may influence the width of 

the grooves is the elastic recovery of the material. Based on the discussion reported 

earlier, it is expected that the elastic recovery is increased at the higher scratching 

frequency of 40 kHz.  

 

Fig. 3 Groove depth, height of the pile-up on the left side, height of pile-up on the 

right side and groove width as a function of the selected frequency, i.e. 10 Hz, 10 kHz 

and 40 kHz. 
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Fig. 4 AFM images of machined grooves with different frequencies: (a) 10 Hz, (b) 10 

kHz, (c) 40 kHz for a stage velocity of 100 μm/s along the ‘edge-forward’ feed 

direction and (d) corresponding groove cross-sections. 

 

 

Fig. 5 SEM images of machined grooves with different frequencies: (a) 10 Hz, (b) 10 

kHz and (c) 40 kHz for a stage velocity of 100 μm/s along the ‘edge-forward’ feed 

direction. 
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3.2 Influence of the feed direction on the machined grooves 

Three feed directions were studied, namely ‘edge-forward’, ‘face-forward’ and 

‘side-forward’, as described in Section 2.1. The speed of the AFM stage was 

maintained constant at 100 μm/s in this case. The average values for the machined 

depth and width as well as the heights of the pile-up on both sides of the grooves are 

given in Figure 6 for different feed directions and frequencies. It can be observed 

from Figure 6 (a) that the machined depths of the grooves obtained along the 

‘face-forward’ feed direction are much smaller than those with the ‘edge-forward’ and 

‘side-forward’ configurations. At a frequency of 10 Hz, given that the configuration of 

the cutting process is similar to that of conventional tip-based nanomachining, the 

feed direction essentially corresponds to the scratching direction. In previous studies 

[23, 24], it was reported that this parameter has a large influence on the machining 

outcomes, such as the machined depth, cutting state and the chip formation. In 

particular, for a given set normal load, as a result of the deflection of the cantilever 

during processing and the working principle of the AFM feedback loop, scratching 

with the ‘edge-forward’ direction results in a larger actual normal load applied on the 

sample surface. On the other hand, a smaller actual normal load occurs along the 

‘face-forward’ configuration [23]. Moreover, the contact area between the tip and the 

sample is relatively large when scratching in the ‘face-forward’ case, as discussed in 

[23]. Based on these factors, the machined depth for the ‘face-forward’ feed direction 

is expected to be the smallest among the three cases considered when processing with 

the frequency of 10 Hz. This was indeed observed experimentally (c.f. Figure 3 (a)).  
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For the frequencies of 10 kHz and 40 kHz, the machined depths obtained with the 

‘edge-forward’ and ‘side-forward’ feed directions are around 3 or 4 times larger than 

that achieved with the ‘face-forward’ feed direction. Figure 7 shows the AFM images 

and the corresponding cross-sections of the grooves obtained with different feed 

configurations at 10 kHz. The corresponding SEM micrographs are given with Figure 

8. In particular, it can be seen from this figure that chips could be generated with both 

the ‘edge-forward’ and ‘side-forward’ feed directions, while no chip was formed for 

the ‘face-forward’ operation. In this case, the change of deflection of the cantilever 

and of the contact area between the tip and sample material caused by the different 

feed directions can also be considered as a factor for the various machined depths 

reported in Figure 6. Moreover, due to the zigzag tip trajectory, different feed 

directions can lead to different cutting angles during the scratching process [19]. As 

discussed in the previous section, the relatively high cutting speed and large attack 

angle when scratching in the ‘edge-forward’ configuration can lead to chip formation. 

For the ‘face-forward’ case, the attack angle of the main cutting edge of the diamond 

AFM tip is very small [21], which can result in ploughing being the dominant 

machining phenomenon and lead to the decrease of the machined depth.  

As shown in Figure 6 (b) and (c), it can be found that the heights of the material 

pile-up for both sides of the grooves processed in the ‘face-forward’ feed direction are 

relatively small compared to the other directions. This is attributed to the 

comparatively limited volume of material removal. Furthermore, in the ‘face-forward’ 

case, the widths of the grooves scratched at 10 kHz and 40 kHz are similar, which is 
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around twice larger than that obtained by 10 Hz. The possible reason for this 

phenomenon can be explained as follows. First, the width of the groove scratched at a 

frequency of 10 Hz is mainly dependent on the geometry of the AFM tip and the 

recovery rate of the polymer material. At the frequencies of 10 kHz and 40 kHz, the 

amplitude of the reciprocating displacement generated by the piezoelectric actuator 

plays an important role in the machining process, as so the widths obtained at 10 kHz 

and 40 kHz are therefore larger. Moreover, the materials extrusion state by the AFM 

tip in the case of the ‘face-forward’ feed direction is different from that of the 

‘edge-forward’ and ‘side-forward’ feed directions, which may lead to different 

material recovery rate for different scratching speeds. Thus, this may be one of the 

factors for the similar widths of the grooves scratched using the frequencies of 10 kHz 

and 40 kHz with the ‘face-forward’ feed direction.  

Figure 6 (a) also reveals that, for the ‘side-forward’ configuration, the machined 

depth at 10 kHz is slightly smaller than that obtained in the ‘edge-forward’ case. The 

possible reason behind this observation can be due to the asymmetrical geometry of 

the AFM diamond tip. Indeed, this should result in the trace and retrace paths of the 

reciprocating motion between the tip and the sample exhibiting different cutting states. 

In particular, for the trace path of this motion, the tip is mainly scratching along the 

‘edge-forward’ direction. In this case, the deflection of the cantilever of the AFM tip 

can result in the increase of the actual normal load applied on the sample surface, 

which can lead to the formation of the chips. This hypothesis seems to be supported 

by the SEM micrograph shown in Figure 8 (c). In the case of the retrace path of the 
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reciprocating motion however, the tip is mainly scratching along the ‘face-forward’ 

direction. As a result, the actual normal load applied on the sample surface can be 

reduced [23], which, in turn, can result in less material being pushed on the right side 

of the groove as shown in Figure 7 (c). Therefore, due to the periodic occurrence of 

the ploughing and cutting machining states for the ‘side-forward’ configuration, 

ridges can be generated on one side of the groove, as shown in Figure 8 (c). Moreover, 

the intermittent extrusion of the material and the deflection of the cantilever may lead 

to the adhesion of the formed chips to one side of the groove. Thus, the height of the 

material pile up on the left side is much larger than that on the right side of the groove, 

as shown in Figure 7 (c) and observed when comparing the plots of Figure 6 (b) and 

Figure 6 (c).  

 

Fig. 6 (a) Groove depth, (b) height of the pile-up on the left side, (c) height of pile-up 

on the right side and (d) groove width as a function of the selected frequency (10 Hz, 
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10 kHz and 40 kHz) and feed direction (edge-, face- and side-forward). 

 

 

Fig. 7 AFM images of machined grooves with different feed directions: (a) 

‘edge-forward’, (b) ‘face-forward’, (c) ‘side-forward’ for a stage velocity of 100 μm/s 

and a frequency of 10 kHz and (d) corresponding groove cross-sections. 

 

 

Fig. 8 SEM images of machined grooves with different feed directions: (a) 

‘edge-forward’, (b) ‘face-forward’, (c) ‘side-forward’ for a stage velocity of 100 μm/s 

and a frequency of 10 kHz. 
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3.3 Influence of cutting loads on the machined grooves 

Figure 9 shows the original (OS) and after filtering (AF) evolution of the voltage 

signals along the vertical (A-B) and horizontal (C-D) axes of the PSPD. The 

displacement signal (DS) along the moving axis of the AFM stage is also given as a 

reference to show when the AFM tip is actually moving along the groove length. The 

A-B signal of the PSPD represents the deflection of the cantilever probe in the vertical 

direction, which reflects the change of the actual normal load applied on the sample. 

The C-D signal of the PSPD shows the torsion of the cantilever, which reflects the 

change of the lateral force applied on the apex of the AFM probe. In this study, the 

AFM tip first approaches the sample surface before the piezoelectric actuator is driven 

to achieve reciprocating motions. Thus, the first inflection points of both the A-B and 

C-D signals shown in Figure 9 correspond to the AFM tip penetrating into the sample 

material until the pre-set normal load of 20 µN is reached. After this point, the 

amplitude of the A-B signal (see the OS for the A-B trace in Figure 9 (c)) increases 

quite significantly for the ‘side-forward’ feed direction. This should be the result of 

the reciprocating motion of the sample, which is along the long axis of the cantilever 

in this case. Indeed, after the increase in normal load, it is expected that there will be 

two different bending moments for one cycle of reciprocation motion. Thus, this will 

lead to different cantilever deflections for each trace and retrace path in one cycle. 

The opposite phenomenon is observed for the C-D signal (see the OS for the C-D 

trace in Figure 9 (c)). This is due to the fact that the reciprocating motion of the 

actuator, before machining starts along the groove length, has no effect on the torsion 
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of the cantilever in this configuration.  

The first inflection point along the DS signal, which records the linear motion of 

the AFM stage, shows the starting point of the scratching process along a groove. The 

second inflection point for this signal represents the end of this linear motion, which 

means that the tip has reached the end of the groove. Based on the knowledge of the 

start of the scratching process, the A-B and C-D signals then can be analysed for 

different feed directions. In this way, it is first observed that the A-B signal displays 

almost no variation for the feed directions ‘edge-forward’ and ‘face-forward’ except at 

the very beginning of the groove. This specific event occurs because the bending 

moment at the free end of the cantilever changes relatively rapidly during the short 

time interval upon the initiation of the stage motion. Following this, the amplitude of 

the OS trace of the A-B signal remains similar to that before the stage motion 

indicating that the amplitude of the bending moment keeps constant throughout the 

machining of the groove. However, for the ‘side-forward’ feed direction, it can be 

seen from Figure 9 (c) that the amplitude of both the A-B and C-D signals increases 

along the length of the groove. This coincides with the fact that a chip was formed 

only at the beginning of the groove, as seen in Figure 8 (c). Thus, once the process 

changes from being cutting-dominated to ploughing-dominated, the magnitude of the 

load acting on the tip became larger. In general, the value of the A-B signal after 

filtering (see the AF traces in Figure 9) for the three feed directions is the similar 

before and after the start of machining because the feedback loop of the AFM system 

was always switched on. 
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It can also be seen from Figure 9 that the amplitude of the C-D signal for the 

‘edge-forward’ feed direction increases upon initiation of machining along the groove, 

while it decreases for the ‘face-forward’ feed direction. The higher machined depth 

during the scratching process along the ‘edge-forward’ feed direction may lead to a 

larger torsion of the cantilever in comparison with that along the ‘face-forward’ feed 

direction. The value of the C-D signal after filtering shows no change before and after 

the scratching process for both the ‘edge-forward’ and ‘face-forward’ feed directions 

due to symmetric geometry of the diamond tip along these two configurations. On the 

other hand, for the ‘side-forward’ case, only one main cutting edge takes part in the 

process. This can result in a difference in the lateral force applied on the apex of the 

tip between the trace and the retrace paths, particularly if different machining states 

take place for each path. In addition, due to the feed direction being perpendicular to 

the long axis of the cantilever, a change of the value of the C-D signal after filtering 

can be seen with Figure 9 (c). Therefore, the behaviour of the different signals shown 

in Figure 9 agrees well with the machining states and results discussed in the previous 

sections.  
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Fig. 9 Original (OS) and after filtering (AF) evolution of the voltage signals along the 

vertical (A-B) and horizontal (C-D) axes of the PSPD and stage displacement signal 

(DS) for different feed directions: (a) ‘edge-forward’, (b) ‘face-forward’, (c) 

‘side-forward’ for a stage velocity of 100 μm/s and a frequency of 10 kHz. 
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3.4 Influence of the feed on the machined grooves 

 As shown in Eq. (2), the value for the feed utilised can be determined based on the 

frequency of the actuator reciprocating motions and on the velocity of the AFM stage. 

Thus, for a given frequency, the speed of the AFM stage was varied to study the 

influence of the feed on the machined groove. In particular, the stage velocity values 

of 100 μm/s, 200 μm/s and 400 μm/s were considered. In this case, the frequency and 

the feed direction selected were 10 kHz and ‘edge-forward’, respectively. The feed 

values for each stage velocity were calculated to be 5 nm, 10 nm and 20 nm, 

respectively. Besides, the theoretical cutting speed at the tip-material interface could 

be considered constant at 1.9 m/min due to the minor influence of the stage velocity in 

this processing window.  

 The depths, heights of the material pile-up and the widths of the machined 

grooves are shown in Figure 10 as a function of the feed value utilised. In addition, 

Figure 11 and Figure 12 report the corresponding AFM and SEM images of the 

obtained grooves. It can be observed from Figure 10 that the machined depth 

decreases with the increase of the feed. Consequently, the width and the pile-up 

formed should follow the same trend. This can be verified in Figure 10 although this 

result does not apply for the pile-up on the right side of the groove. The much smaller 

pile-up on this side for feed values of 5 nm and 10 nm should be due to the fact that 

continuous chips were formed along one side of the grooves as reported with Figure 

12 (a) and (b). Finally, it can be seen from Figure 12 (c) that no chips were observed 
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with the highest feed value of 20 nm but some periodic structures are found instead on 

both sides of the groove. The period of these structures is around 200 nm, which is 10 

times the feed value. This indicates that the tip scratched for 10 cycles of 

reciprocating motion to generate one such structure. Because the period of these 

structures is relatively large, it is hypothesised that the materials displaced for one 

period cannot adhere with that of another period in order to form a continuous chip. 

As a result, a large height of the material pile-up can be found on the right side of the 

groove with the feed value of 20 nm, see Figure 10. 

 

 

Fig. 10 Groove depth, height of pile-up on the left side, height of pile-up on the right 

side and width as a function of the feed (5 nm, 10 nm and 20 nm). 
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Fig. 11 AFM images of machined grooves with different feed values: (a) 5 nm, (b) 10 

nm, (c) 20 nm for the ‘edge-forward’ configuration and a frequency of 10 kHz, (d) 

corresponding groove cross-sections. 

 

 

Fig. 12 SEM images of machined grooves with different stage velocities: (a) 5 nm, (b) 

10 nm, (c) 20 nm for the ‘edge-forward’ configuration and a frequency of 10 kHz. 
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4.  Conclusions 

 In this study, a modified AFM set-up was developed to increase the speed of the 

AFM tip-based nanomachining process at the interface between the tool and the 

workpiece. This was achieved by combining fast reciprocating motions of a 

shear-type piezoelectric actuator, on which the workpiece was mounted, and linear 

displacements of the AFM stage. The motions of the actuator utilised were 

characterised using a 1-D laser doppler vibrometer prior to the nanomachining 

experiments. Based on the dynamic characterisation of the actuator, it was estimated 

that a theoretical cutting speed just over 5 m/min may be achieved for a frequency of 

40 kHz, which represents a significant increase compared to current AFM tip-based 

nanomachining. Potential future directions for work could be to investigate the 

influence of the cutting loads on the amplitude of the generated actuator 

displacements.  

 Grooves were successfully machined for all processing conditions investigated. 

The effect of different feed and cutting speed values as well as of three feed directions 

on the machined depth and on the generation of chips was also studied in detail. This 

initial investigation, which was conducted on PMMA, suggests that the chip 

formation process is sensitive to the feed and the feed direction employed, which in 

turn should influence the depth of the machined grooves. In particular, chips were 

more likely to be formed in the PMMA material along the edge forward configuration 

and when the feed was between 5 nm and 10 nm. This work provides a route for 
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adaptation of commercial AFM systems to achieve high cutting speeds for 

nano-electro-mechanical systems and related semiconductor devices. 
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