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The morphology of plant fossils from the Rhynie chert has generated long-
standing questions about vascular plant shoot and leaf evolution, for
instance, which morphologies were ancestral within land plants, when did
vascular plants first arise and did leaves have multiple evolutionary origins?
Recent advances combining insights frommolecular phylogeny, palaeobotany
and evo–devo research address these questions and suggest the sequence of
morphological innovation during vascular plant shoot and leaf evolution.
The evidence pinpoints testable developmental and genetic hypotheses relat-
ing to the origin of branching and indeterminate shoot architectures prior to
the evolution of leaves, and demonstrates underestimation of polyphyly in
the evolution of leaves from branching forms in ‘telome theory’ hypotheses
of leaf evolution. This review discusses fossil, developmental and genetic
evidence relating to the evolution of vascular plant shoots and leaves in a
phylogenetic framework.

This article is part of a discussion meeting issue ‘The Rhynie cherts: our
earliest terrestrial ecosystem revisited’.
1. Introduction
Today’s biota includes ca 375 000 species of vascular plant that generate over
90% of terrestrial productivity, and variation in shoot and leaf form are major
components of vascular plant biodiversity [1–3]. The earliest land plants
arose about 470 million years ago and are evidenced in the fossil record as
spores or spore masses [4–7]. Speculatively, these plants lacked shoots and
leaves, instead having tiny fertile axes that entered reproductive development
straight away or elaborated a small axis terminating in sporangium formation
[8–10], and similar forms remain evident among living bryophyte relatives of
the earliest land plants, which comprise ca 20 000 species [1]. Around 430
million years ago [11,12], the innovation of shoots and leaves underpinned
an explosive radiation of vascular plant form analogous to the Cambrian
explosion of animals. The origin of vascular plants precipitated a 10-fold
increase in plant species numbers [1], promoted soil development [13] and
led to an 8–20-fold atmospheric CO2 drawdown [5,14], significantly shaping
Earth’s geosphere and biosphere [15–17]. Many pro-vascular and early vascu-
lar plant forms in the fossil record look very different to modern vascular plants
and exhibit traits that suggest stepwise changes in form from a bryophyte-like
evolutionary starting point [9–11,18]. Unlike vascular plants, bryophytes have
gametophyte-dominant life cycles in which the photosynthetic body of the
plant is haploid; vascular plant shoots and leaves evolved in the diploid spor-
ophyte phase of the life cycle [19]. In this review, we aim to give an overview of
the stages in vascular plant shoot and leaf evolution evident in the fossil record,
explain how developmental and genetic findings in bryophytes and non-seed
vascular plants illuminate these steps and identify future research avenues
that will tell us more about how vascular plant shoots and leaves arose. The
origin of vascular plants with shoots and leaves has intrigued biologists for
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over 100 years, e.g. [19,20], and the new tools and fossil evi-
dence that we have at our disposal offer the possibility to
generate knowledge that will fundamentally advance our
understanding of vascular plant form and evolution [10,21–23].
lsocietypublishing.org
Phil.Trans.R.Soc.B

373:20160496
2. Identifying the direction of evolutionary trait
change

To understand the evolution of plant form, we need to know
which traits have been gained or lost through time in the
plant lineages that concern us. This aim can be fully realized
in studying closely related plants where divergence times are
recent and traits of interest are distributed among taxa whose
evolutionary relationships are well resolved. For instance,
archaeology, dated molecular phylogenies and developmen-
tal genetics all support strong branch suppression in the
monophyletic origin of maize from its wild relative teosinte
around 9000 years ago [24–27]. However, the lineage diver-
gence times involved in leaf evolution are ancient, spanning
a period of around 440 million years [11]. Comprehensive
sampling of the fossil record is not possible owing to incom-
plete deposition and taphonomic degradation, and extinct
taxa are not open to experimentation in the way that living
plants are. These features make it hard to identify the direc-
tion of trait change involved in vascular plant shoot and
leaf evolution. Nevertheless, a combination of phylogenetic
and fossil data illuminates some of the steps involved in
the evolution of leafy forms, and these are outlined below.
3. Morphological transitions during the origin of
vascular plant shoot systems

Phylogenetic evidence places bryophytes as a monophyletic
sister group or paraphyletic sister grade to the vascular plants
[28–30], and bryophytes all have uni-axial sporophytes termi-
nating in reproductive sporangium formation (morphologies
1–3 in figures 1 and 2a–d), an ancestral characteristic of land
plants [10,33]. The first step in shoot evolution involved the
innovation of a branching habit with sporangia at the tips of
each branch (morphology 4 in figure 1). Partitatheca is among
the earliest branching fossils. It has small axes (ca 3 mm tall)
that possess a combination of bryophyte and tracheophyte char-
acters, including an apparent lack of vasculature, production
of dyad spores, stomata and branching axes with at least
one dichotomy (figures 1 and 3a) [5,9,44,45]. Aglaophyton
(morphology 5 in figures 1 and 3b) shows similar composite
features with no vasculature, production of trilete monad
spores and a higher order of branching [31]. Cooksonia fossils
(morphology 6 in figure 1; figures 3c and 4a) exemplify the ear-
liest known vascular plants, and range in height from 1.8 mm
to 6 cm [5,48–50]. Some Cooksonia fossils have axes that are
considered too narrow to contain much photosynthetic
tissue and, as in bryophytes, their sporophytes were most
likely to have been nutritionally dependent on photosynthe-
tic gametophytes [51]. Their repeated equally branching
habit with each branch terminating in sporangium formation
(figure 3c) suggests repetition of a developmental module
that pre-existed in bryophytes and pro-vascular plants
such as Partitatheca. Similar isotomously branching forms
with terminal sporangia are manifest among vascular plants
of the Rhynie chert assemblage [18], suggesting that this
developmental module was a plesiomorphy of early vascular
plants and their precursors (figure 1). Therefore, the earliest vas-
cular plants had a system of equally branching axes with
terminal sporangia but no leaves, and such forms are known
as polysporangiophytes.
4. Stage 1. The origin of bifurcating forms
(a) Patterns of development in bryophyte sporophytes
The nature of morphological, developmental and genetic
change generating polysporangiophyte branching forms has
been a source of scientific speculation for over a century, and
still remains an open question [5,10,11,20,30,46,49,52–60]. It is
now widely accepted that polysporangiophyte forms arose
from uni-axial bryophyte-like precursors [5,56–58,60]. How-
ever, the uni-axial form of liverworts, mosses and hornworts
(figure 2a–d) arises by distinct embryonic trajectories both
within and between lineages (table 1) [33,57]. In brief, liverwort
and moss zygotes undergo a first division to form apical and
basal cells, and with the exception of Riccia, the sporangium
differentiates from the apical end of the embryo [33]. Axial
development occurs by apical differentiation into the foot and
seta in liverworts or by distinct apical cell and intercalary
proliferative activities and differentiation in mosses [33]. Horn-
wort sporophytes show a divergent pattern of development in
which the first embryonic division is vertical and subsequent
transverse divisions pattern the embryo. The basal cells arising
by transverse divisions differentiate into a foot region, an
intercalary proliferative region and a short seta [33]. The bifur-
cating architectures of early polysporangiophytes are thought
to reflect the activity of apical meristems with a single apical
stem cell [57,58], and the transient embryonic apical cell activity
of mosses may offer the closest living proxy.

(b) A note on bryophyte phylogeny and trait change
inference

The extent to which inferences from mosses are transferable
up the plant tree of life is unclear owing to variability in
developmental patterns and currently unresolved phylogenetic
relationships among bryophytes. While morphological phylo-
genies resolve mosses as the sister lineage to vascular plants
(implying homology betweenmosses and early polysporangio-
phytes), molecular phylogenies are inconclusive or imply
non-homology (reviewed in [10]). Growing support for the
latter scenario will necessitate identification of developmen-
tal mechanisms that are shared among bryophytes as well
as among vascular plants to understand the developmental
transitions occurring as polysporangiophytes arose.

(c) Developmental innovations during
polysporangiophyte evolution

The patterns of axial development among early polysporan-
giophytes remain speculative. Some authors have proposed
that the bryophyte seta is homologous to the axes of poly-
sporangiophyte forms [57,58] and others have argued that
while the bryophyte seta arises from sporangial tissues,
a distinct, well-established apical meristem generated early
polysporangiophyte forms [52]. Rare natural liverwort and
moss variants have branching sporophytes (figure 4), and
such variants have received attention in light of hypotheses
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Figure 1. Hypothetical phylogenetic tree for land plants plotted against time in the Palaeozoic, based on the stratigraphic ranges of key taxa and major groups of land
plants from the fossil record (thick grey bars) with minimum implied range extensions (thin lines) (modified after Kenrick & Crane [11,31]). Starred taxa or groups were
present in the Rhynie chert assemblage. The first appearances of permanent, regularly arranged cryptospores, trilete monads and an unequivocal embryophyte body are
indicated against the time-scale. The timing of divergence and inter-relationships between the bryophyte and tracheophyte lineages are not yet resolved so relation-
ships within the grey oval are uncertain; here we follow Kenrick & Crane [11,31]. The maximum age for the origin of the embryophytes is estimated around the mid
Ordovician based on the first appearance of tetrahedral cryptospore tetrads [32]. Numbered illustrations indicate the phylogenetic position of key innovations in plant
form, with a focus on shoot and leaf evolution. Innovations included 1–3: uni-axial, leafless sporophyte forms (see also figure 2a–d), 1: permanent tetrads and dyads,
similar to those produced by some extant liverworts [32], 2: stomata (stomatophytes), 4–6: isotomous branching, 4: cryptospores, 5: trilete monads, 6: vascular tissue
(tracheophytes), 7: increased branching complexity (anisotomy), 8–10: indeterminate growth with lateral insertion of bivalved sporangia, 9: non-vascularized enations,
10: vascularized lycophylls and positioning of sporangia behind leaves, 11: simple lateral branching systems with sporangia arranged in trusses, 12: complex lateral
branching systems with dichotomies lateral to first or second order branches, 13: planar fronds with laminae (in grey) and sporangia positioned on abaxial surfaces, 14:
increased complexity in lateral branching systems with dichotomies lateral to first or second order branches and terminal sporangia, 15: planar euphylls on lateral
branching systems (in grey) with sporangia positioned on adaxial surfaces, 16: seeds arising on lateral branches.
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of polysporangiophyte evolution as they demonstrate that
bryophytes can branch, and provide a potential entry point
into the evolution of the polysporangiophyte habit [5,20,46].
In mosses, some variants undergo sporangial duplication
(figure 4b) while others undergo amore extensive apical dupli-
cation to produce two sporangia subtended bya portion of seta
(figure 4c–e) and both of these patterns are represented in the
fossil record [5,20,46,61]. Speculatively these variants arise by
early or later division of an embryonic apical cell, with an
early duplication preceding intercalary proliferative activity
and later duplication succeeding intercalary proliferation
(figure 4f ), and the latter form is similar to the form of early
polysporangiophyte fossils.
(d) Experimental evidence for the origin of
polysporangiophytes

Reverse genetic data are starting to pinpoint genes thatmay have
been involved in the evolution of polysporangiophyte apical
meristem functions. In Arabidopsis, PIN and TCP genes regulate
branch initiation [62,63] and suppression of axillary bud activity
[64,65] to determine plants’ overall branching form. PIN-
mediated polar auxin transport is conserved betweenArabidopsis
and moss sporophytes [66], and disruption of PIN function in a
moss induces at low penetrance a branching form that closely
resembles early polysporangiophyte fossils (figure 4) [47,60]
and PpTCP5 disruption similarly induces branching [67].
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Figure 2. The range of shoot and leaf morphologies among major clades of living land plants (images not to scale). (a–d) Thalloid liverwort (a), leafy liverwort
(b), hornwort (c) and moss (d ) sporophyte forms are somewhat similar, comprising a single axis (white arrows) that terminates in sporangium formation and
capsule development ( pink arrows). Hornwort sporangia run most of the length of the sporophyte and are not labelled. While liverwort sporophytes are fully
dependent on gametophytes for food, moss and hornwort sporophytes contain some photosynthetic tissues. (e–g) Clubmosses (e), spike mosses ( f ) and quillworts
(g) derive from deep divergences within the lycophyte lineage as outlined in figure 1, and have lycophylls. Sporangia are borne laterally on specialized reproductive
shoots termed strobili, as framed in (e). (h–m) Living monilophytes comprise horsetails (h), polypod ferns (i,j ), whisk ferns (k), ophioglossid ferns (l ) and filmy
ferns (m), which have diverse leaf morphologies reflecting different patterns of development. White or black arrows and the frame in (m) indicate leaves or fronds,
and pink arrow indicates sporangium. (n–r) A selection of leaf morphologies represented among gymnosperms. The familiar pine needle leaf form of conifers
represents a narrow aspect of gymnosperm leaf morphology. (s,t) Simple and compound flowering plant leaves. Photographs contributed by (a,b) David Long,
(c,d,e,m) Jeff Duckett and Silvia Pressel, ( f– l,n–t) Jill Harrison and (g) Joshua Mylne.
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Disrupting the functionof twoother gene classes inPhyscomitrella
can also induce sporophyte branching. Pplfy mutants have
defective early embryonic divisions that impede sporophyte
development, but in rare instances sporophytes are able to
develop and they are branched [68]. However, in Arabidopsis,
LEAFY activates the reproductive transition, and gene pathways
for floral development [69], and LEAFY and PpLFY have
divergent DNA binding capacities [70]. There are no PpLFY
gain-of-function mutants and the downstream targets of PpLFY
are not yet known, so it is hard to interpret the Physcomitrella
Pplfy mutant phenotype in light of the evolution of branching.
Similarly the low penetrance branching mutant phenotype of
Pptelmutants is hard to interpret because TEL encodes an RNA
binding protein, and the specificity of PpTEL action is not
known [71]. The cellular and developmental basis of branching
in themutants above remains an open question, but the lowpen-
etrance of branching phenotypes suggests that an element of
stochasticity is involved in the development of moss sporophyte
branching, potentially in early embryonic cell fate specification.
5. Stage 2. The origin of indeterminate forms
(a) Patterns of axial development in early vascular plants
Early divergences in the vascular plant lineage gave rise to inde-
terminate forms with lateral sporangia or sporangia on simple

http://rstb.royalsocietypublishing.org/


Figure 3. (Overleaf.) Shoot system architectures of fossil pro-vascular and vascular plant lineages included in figure 1. These fossils illustrate evolutionary transitions
contributing to polyphyletic leaf origins including bifurcation, sterilization, indeterminacy, overtopping, planation and webbing. (a,b) Partitatheca (a) and Aglao-
phyton (b) represent part of an early pro-vascular or vascular plant grade with bifurcating shoot systems and terminal sporangia. (c–e) Among basal vascular plants,
increases in shoot size (Cooksonia) and developmental complexity are evidenced by sterile and reproductive branch fate acquisition (Rhynia) or unequal branch
growth to produce an overtopped form (Renalia). ( f– i) Fossil lycophytes have sterile indeterminate axes with lateral sporangia (Zosterophyllum) or lycophylls
(g– i). Branching is isotomous (h,i) or overtopping ( f,g), and some fossil isoetaleans such as Lepidodendron attained tree forms more than 30 m tall. ( j,k)
Stem group euphyllophytes such as Psilophyton and Pertica had overtopped shoot systems with bifurcating lateral branches that were sterile or terminated in
sporangial clusters. (l–n) Monilophyte fossils include horsetail-like sphenopsids such as Paracalamitina (l ), in which leaves were iterated in whorls, and sporangia
differentiated from modules of the main axis or branches. Fern-like plants such as Rhacophyton (m) had partially planar lateral branches with multiple branchlets
and some webbing at the distal tips. Cladoxylopsids such as Eospermatopteris (n) had a tree-like habit with terminal clusters of flattened lateral branches and
multiple dichotomizing branchlets. (o,p) Progymnosperms such as Rellimia (o) and Archaeopteris ( p) had planar lateral branches with multiple branchlets, and
in some instances laminar tissue. Reconstructions were (a) drawn by Jennifer Morris, (b) redrawn from Edwards [34] and reproduced from Edwards [18] by per-
mission of the Royal Society of Edinburgh, (c) reproduced from Gerrienne et al. [35] by permission of Elsevier, (d ) redrawn from Edwards [36] and reproduced from
Kenrick & Crane [11] with permission from Paul Kenrick, (e) redrawn from Gensel [37] and reproduced from Stewart & Rothwell [38] with permission from Cam-
bridge University Press, ( f ) reproduced from Walton [39] with permission from the International Society of Plant Morphologists, (g) reproduced from Edwards [18] by
permission of the Royal Society of Edinburgh, (h) reproduced from Bonamo et al. [40] by permission of the Botanical Gazette, (i–k) reproduced from Stewart & Rothwell
[38] with permission from Cambridge University Press, (l ) reproduced from Naugolnykh [41] with permission from Cambridge University Press, (m) reproduced from
Stewart & Rothwell [38] with permission from Cambridge University Press, (n) reproduced from Stein et al. [42] with permission from Nature Publishing Group,
(o) reproduced from Bonamo & Banks [43] with permission from the Botanical Society of America, ( p) reproduced from Stewart & Rothwell [38] with permission
from Cambridge University Press.
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Figure 4. Origins of a polysporangiophyte habit. (a) A pro-tracheophyte fossil Cooksonia spp. sporophyte. Scale bar, 1.8 mm. (b) A rare natural variant of Bryum radi-
culosum showing duplicated sporangia subtended by a portion of seta ( photo by Alison Reed reproduced from Edwards & Kenrick [5]). Scale bar, 5 mm. (c) A rare natural
moss variant showing sessile duplicated sporangia, as described in the classical literature [20,46] ( photo by Alison Reed). Scale bar, 5 mm. (d ) Wild-type sporophyte
morphology in the moss Physcomitrella. Scale bar, 0.2 mm. Reproduced from Bennett et al. [47]. (e) Physcomitrella pinb mutants have a low penetrance branching
phenotype. Scale bar, 0.2 mm. Reproduced from Bennett et al. [47]. ( f ) Embryonic development in Physcomitrella involves a transverse division to form apical
(blue) and basal (green) identities. Apical (dark blue) and basal cells iterate the embryonic axis, and this embryonic development is followed by sporangium differentiation
(blue circles) and intercalary proliferation. Speculatively, the branching morphologies of (b) and (c) involve early and mid-stage division and duplication of the apical cell,
respectively. pin mutations in a moss-like sporophyte provide one possible entry point into the evolution of polysporangiophyte forms.
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lateral branch systems (figures 1 and 3d–f) [31,72]. Thus, a
second step in the evolution of shoots with leaves involved dis-
placement of sporangia away from their previously terminal
position and the innovation of indeterminacy. Understanding
of the origin(s) of indeterminacy currently rests on comparative
analyses of axial development in living bryophytes and vascu-
lar plants as the cellular basis of axial elongation in extinct
polysporangiophytes is unknown. However, the meristematic
activities that generate axial elongation in these two groups
are widely disparate. In bryophytes, axial elongation occurs
with little cell proliferation (liverworts), by intercalary prolifer-
ation beneath sporangia (hornworts) or by embryonic
proliferation from an apical cell coupled with later intercalary
proliferation (mosses). Given phylogenetic caveats above (see
section 4b), the moss proliferative pattern may be the closest
living proxy to that of early polysporangiophytes, but apical
cell and intercalary proliferative activities in mosses are separ-
ated temporally by developmental stage and spatially by
sporangium formation (figure 4). In contrast, living vascular
plants have shoot apices with juxtaposed stem cell and
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proliferative activities [73]. The size of the stem cell pool varies
between plant groups from a single cell, as in some lycophytes
and monilophytes [74,75], through to many in other lycophytes
and seed plants [18,76–82], and the coordinated activity of stem
cellswithin the stem cell pool and between the stem cell and sub-
tending zones is required to maintain shoot apex integrity
during growth [83]. Thus, comparative development suggests
that the displacement of sporangia away from shoot tips
and juxtaposition of stem cell and more general proliferative
activitieswere pre-requisites for the origin of indeterminacy [10].

(b) Genetic pathways for indeterminacy and
sporangium development in Arabidopsis

There is currently very little experimental evidence of mechan-
isms involved in the innovation of indeterminate shoot apex
functions, but indeterminacy iswell characterized inArabidopsis,
where two overlying genetic pathways promote cell prolifer-
ation and axial elongation. Class I KNOTTED-like homeobox
(KNOX) transcription factors are necessary for meristem
establishment andmaintenance [84,85], acting via cytokinin bio-
synthesis to promote meristematic cell proliferation [86,87], and
WUSCHEL-like homeobox (WOX) transcription factors act in a
feedback loop with CLAVATA (CLV) genes to promote stem cell
identity andmaintain the size of themulticellular stem cell pool
during growth [83]. The genetic basis of sporangium (in angio-
sperms the pollen sac and nucellus) development is less
well understood than mechanisms for indeterminacy [88], but
RETINOBLASTOMA cell cycle regulatory proteins suppress
WUSCHELactivity topromote entry intogerm line specification
and meiosis during female germ line development [89], and
SPOROCYTELESS MADS-like transcription factors act down-
stream of the floral organ identity-determining protein
AGAMOUS to promote sporogenesis in both male and female
germ line development [90,91].

(c) Genetic bases for the evolution of indeterminacy
and sterilization

Meristematic KNOX activities are conserved within the vascu-
lar plants [92,93], and KNOX activity also promotes axial
elongation in moss sporophytes [94]. While the activities of
KNOX genes in liverworts and hornworts are not yet known,
these data identify potential homology between mechanisms
for intercalary proliferation in bryophytes and apical pro-
liferation in vascular plant meristems (see also [10]).
Physcomitrella has three globally expressedWOX13-like homol-
ogues and loss-of-function sporophytes are unable to grow, so
conditional or gain-of-function mutants will be required to
identify any roles in meristem activity [95] (and also see [96,
97]). CLAVATA functions remain unreported or are reportedly
absent for non-flowering plants [98,99]. The patterns and
position of sporangial development are very variable among
non-seed plants (figures 1–3), and the extent to which path-
ways for sporangial development are conserved among land
plants is unknown [100]. Physcomitrella knox mutant defects
in sporangium development [94,101,102] suggest that KNOX
genes are upstream regulators of sporangial development
in mosses, and provide a potential mechanistic link between
sterilization and indeterminacy during shoot evolution [10].
A comparative analysis showed that the transcriptomes of
lycophyte, horsetail and flowering plant shoot apices are lar-
gely distinct, supporting the ancient divergence time of these
lineages and suggesting that the innovation of indeterminate
meristem functions may be polyphyletic [59,103,104].
6. Stage 3. Leaf evolution
(a) Lycophyte leaves (lycophylls)
Shoots with leaves first appeared in the fossil record following
the innovation of shoots with sterile indeterminate apices, lat-
eral branching systems and lateral sporangia (figures 1 and
3d–f ). Deep evolutionary divergences within the vascular
plant lineage gave rise to today’s lycophyte and euphyllophyte
flora (figure 1) [11,30,105,106], and living representatives of
these lineages all have shoots with leaves (figure 2e–t). Early
divergences within the lycophyte lineage gave rise to leafless
zosterophylls (e.g.Zosterophyllum) and lycopsidswith partially
vascularized leaf-like enations (Asteroxylon), with an indeter-
minate dichotomizing habit (morphologies 8 and 9 in
figures 1 and 3f,g) [9,30]. Both forms are evident in the fossil
Rhynie chert flora [17,18,106]. Later lycophyte divergences
gave rise to leafy lycopsids (morphology 10 in figure 1), includ-
ing the extinct order Protolepidodendrales (e.g. Leclercqia)
(figure 3h) and extant groups such as the Lycopodiaceae (club-
moss), sister lineage to Selaginellales (spike mosses) and
Isoetalales (quillworts) [11,31]. While living lycophytes are
small (figure 2e–h), isoetaleans include extinct lycopsid trees
such as Lepidodendron (figure 3i) that were a major component
of Carboniferous forests that later fossilized to form coal
[107,108].

(b) Monilophyte fronds
The euphyllophyte stem group included leafless trimerophytes
(figure 3j,k) such as Trimerophyton, Pertica and Psilophyton,
which have forking lateral branches with clusters of elongated
terminal sporangia [30,38,108], and the euphyllophyte diver-
gence subsequently gave rise to living monilophytes and seed
plants (figure 2h–t) [38,106,108,109]. The modern monilophyte
clade comprises horsetails and ferns (figure 1), and ancient
divergenceswithin the fern lineagegave rise to leptosporangiate,
marrattioid, ophioglossid and whisk ferns which have widely
divergent leaf morphologies (figure 2i–l) [109–112]. Living
monilophyte lineages are interspersed with extinct relatives
(figures 1 and 3l–n), and fossil ferns and fern-like shoots have
a wide variety of lateral branch arrangements and forms
[38,105,106,108]. These are exemplified by Eospermatopteris
(figure 3n), a 3 m tall tree with a crown of spirally arranged flat-
tened first order branches giving rise to multiple dichotomizing
branchlets [42], andRhacophyton (figure 3m), a 1 m tall plantwith
partially planar lateral branches and multiple branchlets with
some webbing at the distal tips [108,113].

(c) Seed plant leaves
The modern seed plant lineage (figure 2n–t) arose from pro-
gymnosperms (figure 3o,p) such as Aneurophyton and
Archaeopteris (figure 1) [30,108]. Aneurophyton has three orders
of spiralling lateral branches fromwhich leaves or distinct fertile
axes with adaxial sporangia arise, and Archaeopteris has planar
lateral branching systems with spirally arranged simple leaves
or fertile terminal axes (figure 3p) [108]. While fossil and
phylogenetic data do not fully resolve ancestor–descendant
relationships in vascular plant evolution, they demonstrate
that lycophytes, monilophytes and seed plants all have leafless
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fossil precursors and therefore that there were multiple inde-
pendent origins of vascular plant leaves [105]. Polyphyletic
modification of lateral branching systems is considered to
have given rise to euphyllophyte leaves in as many as seven
to nine independent instances, one in seed plants with the
remainder in living and extinct monilophytes [105]. However,
the extent of homology in developmental traits such as leaf
initiation pattern, determinacy, dorsiventrality and lamination
is currently unclear.

(d) Patterns of leaf development in living vascular
plants

Polyphyletic leaf origins are reflected in diverse patterns of leaf
development among living vascular plants, reviewed by group
in: Ambrose, lycophytes [114]; Tomescu et al., horsetails [75];
Schneider and Vasco et al., ferns [111,112]; Stevenson, gymno-
sperms [115]; and Tsukaya, angiosperms [116]. Shared
properties of vascular plant leaf development include initiation
in a regular phyllotactic pattern at a distance fromstemcells that
propagate the shoot axis, establishment of proximodistal,
mediolateral and dorsiventral axes of symmetry, vein inser-
tion, laminar development, proliferation and growth, but the
sequence and extent to which these events occur and are com-
bined vary, leading to diversity in leaf form [105]. The apical
functions of different vascular plant lineages are also distinct
[76,117,118]. While many vascular plants generate branches
subapically (horsetails) [119], on axes at a distance from
leaves (some ferns) [111] or in leaf axils (seed plants) [120], lyco-
phytes and other ferns have shoot apices that periodically
bifurcate to generate the overall branching form [76–78,114],
and a requisite for bifurcationmay affect the position of leaf pri-
mordia. Patterns of lycophyll development have been identified
in a living exemplar of the lycophyte lineage, Selaginella kraussi-
ana (figure 2f ). A clonal analysis showed that two epidermal
cells initiate each lycophyll, and that mediolateral cell divisions
precede divisions that generate leaf dorsiventrality and tissue
layers [77]. However, lycophylls arise from multiple cell
layers in Lycopodiaceae (figure 2e) and Isoetaceae (figure 2g)
and patterns of cell proliferation are also divergent among
lycophytes [114]. In horsetails, apical cell derivatives divide to
attain leaf or intercalary meristem fate [75]. The small leaves
(figure 2h) have a single vein and emerge in a ring beneath
the intercalary proliferative regions that generate the modular
shoot axis [75]. Monilophyte fronds (figure 2i,j) are typified
by a shoot-like, tip-down pattern of development with lamina
developing by edge-in divisions, and these features may be
monilophyte synapomorphies [74,111]. However, there were
multiple origins of fronds or leafy forms within the monilo-
phytes and these are reflected in shape diversity [58,112].
Whisk ferns (figure 2k) have very small bifid leaves subtending
sporangia, ophioglossid ferns (figure 2l ) have a single entire
leaf, and filmy ferns (figure 2m) have leaves comprising
partially webbed bifurcating axes, with lamina a single cell
layer thick [112]. Gymnosperm leaves (figure 2n–q) are simi-
larly diverse and range from small and scale-like to large
multipinnate forms [115].

(e) Pathways for leaf development in Arabidopsis
Pathways for leaf development are well characterized in
flowering plants, exemplified by Arabidopsis in which leaves
initiate in regular phyllotactic patterns from the peripheral
(proliferative) zone of multicellular meristems [121,122]. The
position of leaf initiation emerges as an outcome of short-
range polar auxin transport principally in the outermost
cell layer of the meristem [123]. PIN auxin transporters dyna-
mically direct auxin to maxima on the apical dome, and
maximum formation is necessary and sufficient for leaf emer-
gence [64,123–127]. Mechanical forces also contribute to leaf
emergence [128], and cell wall loosening by pectinmethylester-
ase or expansin enzymes is sufficient to trigger emergence
[129,130]. The recruitment of a pool of meristematic cells into
determinate leaf development pathways involves downregula-
tion of meristematic KNOX gene activity andmaintenance of a
KNOX off state by ARP transcription factors [84,131,132]. Leaf
primordium dorsiventrality is partially inherited from radial
symmetries within the shoot axis as primordia emerge for
the apical dome [133,134]. HD-zipIII genes are expressed cen-
trally in the shoot axis and adaxially within leaves, and
KANADI and YABBY genes are expressed peripherally in the
shoot axis and/or abaxially within leaves; loss-of-function
mutants respectively generate adaxialized or abaxialized
leaves [133,135,136]. ARP genes are expressed adaxially, and
Antirrinum arp mutants also have abaxialized leaves, demon-
strating that juxtaposed tissue layers with distinct dorsal and
ventral identities are necessary for laminar outgrowth
[131,137,138]. Once leaf primordia are established, cell prolifer-
ation and growth contribute to leaf shape determination, and
many pathways regulating these processes have been ident-
ified as an outcome of sophisticated interdisciplinary
approaches to understanding how planar forms are attained
in plants (e.g. [139]).

( f ) Hypotheses of leaf evolution
The leaf evolution literature has widely recognized lycophylls
and euphylls as leaves with distinct evolutionary origins
[72,105,106,140–146], and disparity in their size, initiation and
venation patterns led to the ‘microphyll’ (lycophyll and horse-
tail leaves) and ‘megaphyll’ (fern and seed plant fronds and
leaves) concepts [73]. The telome theory of leaf evolution pro-
posed that transformative evolutionary processes of unequal
branching (overtopping), rearrangement of lateral branches
into a single plane (planation) and infilling of spaces between
branches with laminar tissue (webbing) generated euphyllo-
phyte leaves [142]. Lycophylls were proposed to have arisen
by reduction from a more elaborate precursor state similar to
euphyll precursors by a process of evolutionary loss (reduction)
[142], as enations by epidermal outgrowth from the stem [46] or
by sterilization of lateral branches terminating in sporangia
[143]. Zimmermann’s hypotheses are dated by the phylogenetic
framework and fossil evidence used to infer the direction and
nature of character change during leaf evolution [147,148],
and more recent literature has moved away from ‘microphyll’
and ‘megaphyll’ terminology as it under-represents the
degree of polyphyly in vascular plant leaf evolution [105].
Nevertheless, the telome, enation and sterilization hypotheses
highlight developmental processes that may have been
generally important in leaf evolution.

(g) Testing hypotheses of leaf evolution
Evo–devo studies of leaf evolution have only recently started
[149,150] and so far have largely focused on leaves with
widely disparate origins, for instance comparing lycophyll,
fern frond and Arabidopsis leaf development pathways
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[92,151–154]. Analyses of polar auxin transport and/or PIN
functions in a lycophyte and amoss suggest that PIN-mediated
auxin transport is an ancient and conserved regulator of branch
and/or organ position [47,155]. Analyses of HD-ZipIII tran-
scription factor function showed that dorsiventral HD-zipIII
and YABBY expression patterns in leaf initiation are conser-
ved among seed plants, supporting dorsiventrality as a seed
plant homology [156,157]. However, HD-zipIII activities
segregated distinctly among paralogues during gene family
evolution, with lycophyte paralogues having functions distinct
from seed plant orthologues, and roles for HD-zipIIIs and
YABBY in ferns remain to be identified [152,153,157]. An analy-
sis of ARP transcription factor function showed that ARP
proteins were independently recruited to suppress KNOX
activities during leaf initiation in lycophylls and flowering
plant leaves [92]. In contrast, KNOX activities are persistent
in fern fronds [92,154,158], in line with their late transition to
determinate fate [159]. The approaches above support the
notion of wide divergence times in vascular plant leaf evol-
ution. Testing more specific hypotheses of character state
transition and homology in leaf evolution will necessitate the
use of further species in which a particular feature is present
or absent and it is possible to do genetics.

(h) Why have leaves evolved multiple times?
The evidence reviewed above demonstrates that vascular plant
leaves have evolved multiple times from branching shoot sys-
tems, and that branching forms diversified extensively in
lycophyte, monilophyte and seed plant lineages prior to ori-
gins of determinate, dorsiventral leaves. Initial constraints to
leaf evolution probably involved high atmospheric global
temperatures, low stomatal densities and low capacities for
water uptake prior to root evolution and the evolution of effi-
cient vascular transport in leaves [16,160,161]. Under these
conditions, high incident light absorption would have
‘cooked’ fully webbed leaves or led to vascular embolism in
plants’ stems [16]. Polyphyletic leaf origins were coupled
with declining atmospheric CO2 levels, declining global temp-
eratures, increasing stomatal and vein densities in leaves, the
evolution of extensive rooting systems and increasing plant
competition for space to acquire environmental resources
[15–17,162]. In other words, the selection pressures that
favour shoots with leaves in today’s environment arose at a
relatively late stage of plant body plan evolution.
7. Conclusion and avenues for future research
(a) Stages 1 and 2 of shoot and leaf evolution
Combined palaeobotanical, developmental and genetic data
are starting to reveal the basis of trait change during poly-
sporangiophyte evolution and pinpoint questions that will
reveal a much fuller picture of shoot and leaf evolution if
answered. Specific questions for the fossil record include:

— what was the apical organization of Cooksonioid forms,
— are there apical cells,
— what was the cellular basis of bifurcation,
— is there any evidence of intercalary proliferation,
— did vegetative axes develop independently of sporangia,

and
— if so, at which evolutionary juncture did such a capacity

arise?
By demonstrating the apical activities of polysporangio-
phytes, answers to these questions will reveal proliferative
capacities that predated the origin of indeterminate vascular
plant meristems. Fossils of the Rhynie chert could play a
key role because they show diversity in relevant traits
with high-quality cellular preservation, and occupy key
phylogenetic positions.

Developmental and genetic questions include:

— are apical cell and intercalary proliferation coordinated in
mosses,

— how do the branching morphologies of Physcomitrella
pinb, tel, lfy and tcp5 mutants arise during development,

— which genes regulate apical cell activity,
— how does apical cell activity cease in bryophytes,
— which genes regulate intercalary proliferation in

bryophytes,
— which genes regulate sporangium development,
— are the pathways above conserved among bryophytes,

and
— is there conservation between bryophytes and vascular

plants?

Byanswering the above questions, developmental and gen-
etic studies in bryophytes have the potential to reveal
mechanisms for apical activity that predated the evolution of
polysporangiophytes, i.e. the ancestral mechanisms for axial
development, bifurcation and sporangium development.
Such mechanisms are likely to have been modified during
the radiation of branching lycophyte and euphyllophyte forms.
(b) Stage 3 of leaf evolution
There are fewer specific questions relating to stage 3 of leaf
evolution because the phylogenetic relationships between
early diverging lycophyte, monilophyte and seed plant
lineages are not well resolved and mutants have not yet
revealed phenotypes that are intermediate between living
and fossil forms. Analyses of apical, branch and laminar
development in early diverging lycophyte, euphyllophyte,
monilophyte and seed plant fossils will be required to ident-
ify character transitions involved in vascular plant leaf
evolution and reveal structural homologies among vascular
plant branch and organ systems. While many genes with
roles in flowering plant leaf development have been ident-
ified, there are few reverse, and no forward genetic data
from other vascular plant lineages. The establishment of a
fern genetic model [99,163] will go some way to breaking
up the wide evolutionary distance between bryophyte [164]
and flowering plant [139] models of planar development,
but in-depth understanding of leaf evolution and develop-
ment will require far broader sampling among lycophytes,
monilophytes and seed plants [165]. Identifying the develop-
mental and genetic basis of shoot and leaf evolution will be
important in future efforts to engineer novel architectural
trait combinations to maintain or improve plant productivity
in the face of future global change.
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le Rhacophyton zygopteroides nov. sp. [Morphology
and anatomy of an Upper Devonian fern,
Rhacophyton zygopteroides nov. sp.]. Liège:
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