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Abstract 

X-ray photoelectron spectroscopy (XPS) studies of Au/Co/Au(0.3 nm)/MgO and 

Au/Co/MgO systems were conducted in order to monitor the electronic structure modification at 

Co/MgO interface with/without gold interlayer. A detailed analysis of Co 2p states revealed that the 

amount of minor oxygen contribution at Co/MgO interface decreased after the Au interlayer was 

added. The obtained XPS results together with density functional theory (DFT) allowed explanation 

of the increase of surface anisotropy energy in the sample with the gold interlayer in terms of (i) noble 

and transitional metal d-d orbital hybridization; (ii) interfacial Co 3d and O 2p; and (iii) interface 

imperfection.  

 

A phenomenon of perpendicular magnetic anisotropy (PMA) in Co films combined with Pd, 

Pt, Au multilayers [1] has opened an exciting field of research inquiring the fundamental origin of 

PMA and a role of interfacial orbital hybridization [2, 3]. Other systems where PMA is noticed are 

systems based on F/MOx interfaces, where F represents a ferromagnetic metal, M stands for a 

diamagnetic metal, and MOx marks a nonmagnetic oxide (i.e. isolator). The PMA appears when the 

interface anisotropy energy overcomes the magnetostatic and volume energy contributions to the free 

energy of the magnetic layer. This type of magnetic anisotropy, a so-called interface or surface 

anisotropy, was predicted already in 1954 by Néel and is a result of lowering symmetry at the surface 

or interface. Up to now, many PMA materials have been advanced and implemented in magnetic 

tunnel junctions (MTJs) [4, 5]. However, the development of PMA in materials based on F/MOx 

interfaces is still problematic due to incomplete understanding of its causes. Some researchers declare 
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that PMA can be created only through a hybridization of F 3d and O 2p orbitals at the F/MOx 

interface, while others show that placing an appropriate underlying nonmagnetic material is critical 

for developing PMA [6-10]. Studies of the electronic structures of F/MOx linked together with 

magnetic measurements and theoretical studies should, hopefully, lead to a full understanding of 

PMA in such systems.  

XPS is one of the primary tools used to analyze the interfaces utilizing either conventional x-

ray tubes or complex synchrotron sources. These studies are frequently accompanied by sputtering to 

investigate depth dependence of XPS signals. That, however, may lead to unambiguous results due 

to the fact that an interpretation of XPS data for buried interfaces recorded in combination with ion 

sputtering procedure should be performed with special care as sputtering itself can seriously affect 

the interlayer structure [11]. One should remember that ion sputtering, even when using noble gas 

ions, generates a large number of artifacts in subsurface region, as for instance, atomic mixing and 

knock-on implantation, preferential sputtering, bond breaking, phase formation, segregation, 

radiation-enhanced diffusion, roughness formation, etc. Such effects have been studied over the last 

decades and critical reviews of their influences on surface analytical techniques were published [12-

16]. Taking into account the knowledge gathered within experimental observation of electronic 

structure modification due to sputtering procedure, it was decided to abandon it and study potential 

electronic structure modification at Co/MgO interface after addition of the thin layer of Au without 

sputtering procedure.  

The samples containing Co/MgO interface with and without a thin gold interlayer in-between 

were grown onto a-plane sapphire substrate at room temperature by molecular beam epitaxy (MBE). 

Complete details of their growth procedure can be found in [6]. The thicknesses of each layer in the 

samples were identified as Mo(20 nm)/Au(20 nm)/Co(1.8 nm)/Au(0.3 nm)/MgO(2 nm) (Sample 1) 

and Mo(20 nm)/Au(20 nm)/Co(1.8 nm)/MgO(5 nm) (Sample 2).  

Ferromagnetic resonance (FMR) measurements were performed at room temperature with a 

conventional X-band (f = 9.38 GHz) Bruker EMX spectrometer. A quartz rod was used as a sample 

holder and the FMR resonance field (Hres) was recorded as a function of the angle (θH) between 

direction of the external magnetic field (Hext) and normal to the sample's surface. In case of Sample 2 

(with Co/MgO interface) a maximum (μ0Hres = 0.73 T) and minimum (μ0Hres = 0.17 T) of Hres were 

observed for perpendicular and parallel orientations of the external magnetic field, respectively. 

These values indicate an easy axis of magnetization in the plane of the magnetic layer, i.e. in-plane 

magnetic anisotropy (IMA), see Figure 1 (d). However, the structure with the gold incorporated at 

Co/MgO interface (Sample 1) has a maximum (μ0Hres = 0.41 T) and minimum (μ0Hres = 0.13 T) of 

Hres for parallel and perpendicular orientations of the Hext, respectively: easy axis of magnetization is 

perpendicular to the plane now, see Figure 1 (c). A significant enhancement of the surface anisotropy 
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energy of cobalt layer (dCo ~ 1.8 nm) occurs due to insertion of a gold monolayer between Co and 

MgO, such that it overcomes the shape and magnetocrystalline magnetic anisotropy leading to PMA. 

In order to understand the origins of this effect, the samples were studied by XPS using a 

Scienta/Prevac spectrometer system with monochromatic Al Kα radiation (hν = 1486.6 eV) from an 

x-ray source (ScientaVG, MX650) irradiating a spot size of 6x2 mm2 while operating at 300 W. The 

high resolution (HR) XPS spectra were collected with the hemispherical analyzer (ScientaVG R4000) 

at two different take-off angles (0°, and 60° to the surface's normal) with a pass energy of 100 eV and 

an energy step size of 0.15 eV. Let us note that for the used spectrometer a set-up FWHM of Ag 3d 

line is about 0.6 eV. The slit of the analyzer has a curved shape with the dimension 0.5x25mm2 (width 

vs. length), whereas angular aperture had 2 mm diameter which sets the acceptance angle to ±7°. 

Only the surface of the reference sample (Co film) was cleaned from carbon contamination and native 

cobalt oxides using the Ar ion source (Prevac IS40E) at 0.8-1.4 kV. The incident angle of the Ar ion 

beam is 69° from sample normal and the sputter area was 10x10 mm2. A charge compensation for the 

investigated multilayers was achieved using a low energy electron flood gun (at ~ 1.1-6.7 eV). 

Binding energies of the photoelectrons were calibrated using gold 4f7/2 line (84 eV). The CasaXPS 

software (version 2.3.17) [17] was used to evaluate the XPS data. Simulation of Electron Spectra for 

Surface Analysis (SESSA) software [18] was used to estimate thicknesses and composition of 

examined layers. The details of such analysis could be found in [16]. 

The HR XPS spectra for Sample 1 (with the gold interlayer) are shown in Figure 1 (a, b). As 

it was mentioned above, the Au 4f7/2 photopeak maximum, located at 84 eV, was taken for calibration 

of energy scale (see Figure 1 (a)). The Au 4f5/2 peak is overlapped with the Mg 2s states 

corresponding to various oxides of magnesium (marked as “3” and “4”) with binding energies (BE) 

of 88.6 and 89.3 eV. The obtained values agree well with the data presented in literature [19], in 

which the Mg 2s peak positions of Mg(OH)2, MgCO3, and MgO are listed at the energies 89.2 eV, 

89.3 eV, and 88.6 eV, respectively. Motivated by the uniqueness of peak shapes and positions within 

Auger spectra, which is useful for both elemental identification and chemical state analyses, a detailed 

analysis of Auger Mg KLL line in conjunction with Mg 1s XPS peak was performed (XPS spectra in 

the BE ranges 300-360 and 1300-1310 eV are not shown here). So-called Auger parameters (α) that 

can be used without interference of surface charging were identified. For each of the samples two 

Auger parameters for magnesium were found to be 998.6 and 997.7 eV. According to [20] the 

estimated values represent MgO and Mg(OH)2&MgCO3 species, respectively. Consequently, the 

electronic states corresponding to the mentioned above species reflect interaction of originally pure 

MgO phase (in the top layer) with atmosphere and following carbon contamination. According to 

SESSA calculations the thicknesses of that sub-layer and the following MgO one are ~ 20 ± 2 Å. The 

estimated thickness agrees well with the nominal one predicted from the growth process. 
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As our interest focuses on the top Co/MgO interface let us discuss the results for Co 2p line 

represented in Figure 1 (b). The parameters of deconvolution of Co 2p3/2 lines for Samples 1 and 2 

are summarized in Table 1. The presented in Figure 1(b) data are background subtracted and 

normalized to maximum of Co0 2p3/2 peak intensity for clarity. They are compared to metallic cobalt 

film (reference sample) before and after surface cleaning. On the pristine reference sample one can 

distinguish two distinctive components corresponding to the metallic cobalt (Co0, BE of 

2p3/2: 778.0±0.15 eV) and cobalt monoxide (Co(II)O, BE of 2p3/2: 780.2±0.15 eV). The observed 

‘chemical shift’ is an effective indicator of the charge transfer between O 2p and Co 3d states. 

Furthermore, one observes an Auger peak (Co LMM: 777±0.15 eV) and satellite structures (marked 

„S” in Figure 1(b)) at higher binding energy for the reference sample before and after sputtering. An 

explanation of Co 2p XPS spectral shape of cobalt dihalides and CoO was developed in [21, 22] 

taking into account the 3d-multiplet coupling and the covalency hybridization among 3d7, 3d8L, and 

3d9L2 configurations (here L denotes a hole in the ligand orbital). According to such interpretation, 

the main peaks are ascribed to the d8L final states and the satellite structure is a mixture of the d7 and 

d9L2 final states. Note also that multiplet splitting of 3d7 states in the 2p3/2 spectrum is so remarkable 

that its higher binding energy end almost reaches the 2p1/2 spectrum. 

After 60 min of surface cleaning of the reference Co film the contribution of CoO disappears 

and pure metallic phase of cobalt with 2p spin-orbit splitting 14.97 eV is clearly observed 

(Figure 1 (b)). The observed asymmetric Co0 peak shape of sputter-cleaned cobalt surface (cyan line 

in Figure 1 (b)) is due to the interaction of the emitted photoelectron with the conduction electrons 

available in conductive/metallic samples. These shake-up like events generate a tail on the higher 

binding energy side of the main peak instead of discrete shake-up satellites [23]. The comparison of 

the Co 2p states of Sample 1 to reference sample (with varied geometry of the XPS signal acquisition) 

manifests overlaying of minor cobalt oxide component with the major contribution of metallic cobalt. 

By deconvolution of the Co 2p3/2 peak, the fraction of Co(II) in Sample 1 is determined to be 9.8% 

[24]. This indicates that despite a thin gold interlayer between cobalt and magnesium oxide layers 

some amount of cobalt atoms is bonded to oxygen. This observation allowed us to suggest that gold 

layer grown on the cobalt top interface is in the form of non-coalescing islands, in other words, the 

top gold interlayer is not continuous. Thus, during deposition of the MgO layer, oxygen atoms from 

the MgO combine with the neighboring Co atoms, leading to a formation of CoO at the Co/MgO 

interface in areas between the gold islands. Estimated by SESSA software thickness of CoO at 

metallic cobalt interface is ~ 7 ± 2 Å. 

Before general discussion of the influence of gold interlayer (between Co/MgO) on magnetic 

anisotropy of Sample 1 let us briefly present XPS the results concerning the sample without gold 

interlayer between cobalt and magnesium oxide layers. The obtained XPS results for Co 2p3/2 line are 
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also listed in Table 1. The main conclusion is that the fraction of cobalt oxide phase in this sample is 

about two times larger compared to the sample with gold interlayer. That means that oxygen atoms 

from MgO combine with the neighboring Co atoms leading to a formation of CoO at the Co/MgO 

interface. Estimated by SESSA software thickness of CoO interlayer at metallic cobalt interface for 

that sample is bigger compared to Sample 1 and is equal to ~ 10 ± 2 Å.  

The results previously published for Co/AlOx system [10] strongly suggest that the onset of 

PMA is related to the appearance of a significant density of interfacial Co–O bondings at the Co/AlOx 

interface. However, the here-investigated Au/Co/MgO structure (Sample 2) reveals larger fraction of 

cobalt oxide compared to the sample with gold interlayer between Co and MgO (Sample 1) but, at 

the same time, IMA instead of PMA is observed. Consequently, there should be another factor 

explaining such an effect. First principle calculations for Fe/MgO and Co/MgO systems presented in 

[9] make clear that in the case of ideal metal/isolator interfaces both systems reveal PMA with values 

of 2.93 and 0.38 erg/cm2, respectively. That obviously differs for the investigated case since Sample 2 

demonstrates IMA. The calculations for Fe/MgO showed that PMA weakens in the presence of 

interfacial disorder and lowers down to 2.27 and 0.98 erg/cm2 for under- and over-oxidized cases, 

respectively [9]. The over-oxidation of metal layer is detrimental to PMA [25-27] because the number 

of mixed states with both metal dz
2 and oxygen pz orbitals (which is critical to PMA at 

“metal/nonmagnetic oxide” interface) is reduced due to the local charge redistribution induced by 

additional oxygen atoms (see Figure 2 in [28] and its relevant discussion). This reduction is attributed 

to the split of the Co-dz
2 and O-pz hybridized states around Fermi level in the presence of an additional 

oxygen. As a surface energy is decreased, the IMA in Sample 2 is observed. 

The origin of PMA in Sample 1 could be explained as following. The fitted surface anisotropy 

constant KS [6] for Au/Co/Au(0.3 nm)/MgO heterostructure is 1.6 erg/cm2 (let us note that estimated 

value is higher than for Au/Co/MgO heterostructure (1.2 erg/cm2)) and is approximately 4 times 

larger than theoretically predicted PMA value of 0.38 erg/cm2 for ideal Co/MgO interface [9]. A 

decreased fraction of the cobalt monoxide (down to 9.8 %) and an assumption of ideal Co/MgO 

interface do not explain fully the estimated value of Ks. A possible explanation (additional factor) of 

PMA existence in Sample 1 is the interfacial hybridization, i.e. a strong spin-orbit (SO) interaction, 

between the magnetic (cobalt) and nonmagnetic (gold) metals. For instance, several theoretical 

studies [29-32] predicted that large SO coupling of Pd plays an important role for obtaining PMA in 

Co/Pd multilayers. In fact, there are plenty reports regarding Co/Pd, Co/Pt, and Co/Au films 

possessing PMA [3,33,34]. All authors share the same opinion that a strong interfacial d-d 

hybridization produces an enhanced perpendicular Co orbital momentum, which causes PMA by SO 

coupling. Consequently, it is likely that d-d hybridization increases the surface energy (0.83 erg/cm2 

for Co/Au interface [6]) and plays an important role in developing PMA, as it appears for Sample 1. 
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In other words, introduction of the gold interlayer at the Co/MgO interface induces the hybridization 

of Au 5d levels with 3d electrons of the ferromagnetic layer that generates/enhances PMA, in context 

of mixed states with both metal dz
2 and oxygen pz orbitals at Co/MgO interface.  

The results of XPS analysis presented here show clearly that some fraction of Co atoms at the 

Co/MgO interface is bonded to oxygen atoms. Moreover, an "oxidation zone" (thickness of CoO 

interlayer estimated by SESSA software) is bigger for approximately 1.5 times for sample revealing 

IMA (Sample 1, without gold interlayer). With this in mind, the reaction of Co with oxygen atom 

through oxygen migration mechanism [11,35,36] can be attributed via the redox reaction at the 

Co/MgO interface. It is clear that in Sample 1 the non-continuous gold interlayer between Co/MgO 

partially blocks the migration of oxygen atoms into the layer of cobalt. The discussed above “over-

oxidation” of the Co/MgO interface turns out to be the only reason to explain decreasing of a surface 

energy leading to IMA for the sample without gold interlayer (Sample 2). The opposite is true for the 

sample with gold interlayer (Sample 1), namely, a metal-metal SO interaction plays a leading role in 

the manifestation of PMA. It is important to note also that according to [37] other effects like interface 

roughness, magnetostriction, etc., all are not considered here, may also come into play. 

In summary, the Au 4f ,  Mg 2s, Mg 1s, and Co 2p HR XPS spectra along with Auger 

Mg KLL were probed for Au/Co/MgO and Au/Co/Au(0.3 nm)/MgO systems. The estimated by de-

convolution of 2p3/2 XPS spectrum amount of CoO phase in Au/Co/MgO is approximately 22 %. The 

split of the Co-dz
2 and O-pz hybridized states around Fermi level at the Co/MgO interface was 

predicted as result of the interface over-oxidation. The presence of an excess of oxygen atoms at the 

Co/MgO interface lowers the surface energy and the magnetization is in the sample plane. The 

analysis of Co 2p3/2 XPS line for Au/Co/Au(0.3 nm)/MgO structure indicates the presence of 

approximately 9.8 % CoO phase (the thickness of this interlayer is approximately twice smaller 

compared to the sample without Au interlayer), as an effect of introduction of the Au interlayer 

preventing the Co against oxidation. Consequently, the d-d hybridization of Co and Au increases the 

surface anisotropy energy and ensures PMA is present for thin Co layer. The low fraction of CoO at 

the interface can only slightly reduce the surface energy value. Overall, the obtained results identify 

a possibility of controlling the type of magnetic anisotropy in Co/MgO systems through addition of 

a gold interlayer, the fact that could be used in novel devices for spintronics.  

This work was partially supported by the EAgLE international project (FP7-REGPOT-2013-1, 

Project No. 316014) and the international project co-financed by Polish Ministry of Science and 

Higher Education, Grant Agreement 2819/7.PR/2013/2. 
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Table 1. Cobalt 2p3/2 spectral fitting parameters for metallic cobalt, Sample 1, and Sample 2. The 

energy calibration was done for Au 4f7/2 line at 84 eV. 
Components Description Position (eV) ± 

0.15eV 

FWHM 

(eV) 

L. Sh. % Area % St. 

Dev. 
Reference: Metallic cobalt - sputtered 

CoO 

Auger LMM 777.0 3.12 GL(30) 12.27 0.06 

2p3/2 778.0 0.75 LA(1.2,5,5) 70.75 0.05 
Plasmon 1 781.0 3.28 GL(30) 9.91 0.01 
Plasmon 2 783.0 3.28 GL(30) 7.08 0.01 

Sample 1: Au/Co/Au(0.3 nm)/MgO 

CoO  

Auger LMM 777.0 3.12 GL(30) 10.80 0.07 

2p3/2 778.0 0.75 LA(1.2,5,5) 64.86 0.15 
Plasmon 1 781.0 3.28 GL(30) 9.08 0.02 

Plasmon 2 783.0 3.28 GL(30) 6.49  0.02 

Co(II)O  

2p3/2 779.9 2.3 GL(30) 4.38 0.07 
S 1 782.2 2.6 GL(30) 2.41 0.04 

S 2 786.4 3.7 GL(30) 1.97 0.09 
Sample 2: Au/Co/MgO 

CoO 

Auger LMM 776.94 3.12 GL(30) 7.7 0.16 

2p3/2 777.94 0.75 LA(1.2,5,5) 58.05 0.21 

Plasmon 1 780.94 3.28 GL(30) 8.13 0.03 
Plasmon 2 782.94 3.28 GL(30) 5.80 0.02 

Co(II)O 

2p3/2 779.84 2.3 GL(30) 10.16 0.08 
S 1 782.14 2.6 GL(30) 5.60 0.04 

S 2 786.34 3.7 GL(30) 4.57 0.04 

 

 


