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Abstract 20 

Inflammatory reactions are the most critical pathological processes occurring after 21 

spinal cord injury (SCI). Activated microglia/macrophages have either detrimental or 22 

beneficial effects on neural regeneration based on their functional polarized M1/M2 23 

subsets. However, the mechanism of microglia/macrophages polarization to M1/M2 at 24 

the injured spinal cord environment remains unknown. In this study, wild type (WT) 25 

or aldose reductase (AR) knockout (KO) mice were subjected to SCI by spinal crush 26 

injury model. The expression pattern of AR, behavior tests for locomotor activity, and 27 

lesion size were assessed at between 4 hours and 28 days after SCI. we found that the 28 

expression of AR is upregulated in microglia/macrophages after SCI in WT mice. In 29 

AR KO mice, SCI led to smaller injury lesion areas compared to WT. AR 30 

deficiency-induced microglia/macrophages induce the M2 rather than the M1 31 

response and promote locomotion recovery after SCI in mice. In vitro experiments, 32 

microglia cell lines (N9 or BV2) were treated with AR inhibitor (ARI), Fidarestat. AR 33 

inhibition caused 4-Hydroxynonenal (HNE) accumulation, which induced the 34 

phosphorylation of cAMP-responsive binding element (CREB) to promote Arg1 35 

expression. KG501, the specific inhibitor of phosphorylated CREB could cancel the 36 

upregualtion of Arg 1 by ARI or HNE stimulation. Our results suggest that AR works 37 

as a switch which can regulate microglia by polarizing cells to either the M1 or the 38 

M2 phenotype under M1 stimulation based on its states of activity. We suggest that 39 

inhibiting AR may be a promising therapeutic method for SCI in the future. 40 
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Introduction 43 

Spinal cord injury (SCI) is one of the most debilitating diseases with poor prognosis 44 

worldwide. Traumatic damage triggers a complex local inflammatory response, a 45 

critical pathophysiological process following a secondary injury after SCI. At the 46 

spinal cord lesion site, microglia/macrophages derived from both residential microglia 47 

and hematogenous macrophages or from activated microglia and infiltrated 48 

macrophages, respectively, cannot be distinguished based on their morphology or 49 

specific molecular markers [13]. Microglia/macrophages have either detrimental or 50 

beneficial effects on neural regeneration based on their two extreme functional 51 

polarized subsets, “classically activated” pro-inflammatory (M1) or “alternatively 52 

activated” anti-inflammatory (M2) cells [6-8, 18, 23]. In response to 53 

lipopolysaccharide (LPS) and the pro-inflammatory cytokine interferon-γ (IFN-γ), 54 

macrophages undergo M1 polarization characterized by the expression of 55 

pro-inflammatory cytokines [interleukin (IL)-12, IL-1β and tumor necrosis factor 56 

(TNF)-α] and cytotoxic mediators (reactive oxygen and nitrogen species), as well as 57 

increase their phagocytic and antigen-presenting capacity. In contrast, activating 58 

macrophages in the presence of IL-4 or IL-13 undergo M2 polarization characterized 59 

by the expression of anti-inflammatory cytokines such as transforming growth factor 60 

(TGF)-β and IL-10, which contribute to the termination of inflammation [13, 28, 45]. 61 

Kigerl et al. reported that most microglia/macrophages are polarized to M1 cells, with 62 

only a transient and small number in M2 polarization [23]. In vitro, they showed that 63 

M1 macrophages are neurotoxic and possess only moderate axon growth-promoting 64 
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effects. In contrast, M2 macrophages can promote long-distance axon growth, even in 65 

the present of potent growth inhibitory substrates [23]. 66 

One of the well-characterized pathological processes occurring early after SCI is the 67 

formation of reactive nitrogen species (RNS) and reactive oxygen species (ROS) [9, 68 

30]. RNS and ROS cause lipid oxidation as well as nitrative and oxidative damage to 69 

proteins and nucleic acids, leading to neuronal loss by necrosis or apoptosis [30, 54]. 70 

Microglia/macrophages are the major cells that produce neurotoxic RNS and ROS 71 

after SCI [14]. Oxidative stress-induced inflammation is a major contributor to 72 

secondary injury after SCI [9]. ROS-mediated activation of redox-sensitive 73 

transcription factors, such as nuclear factor-kappa B (NF-κB) and activator protein 74 

(AP)-1, as well as subsequent expression of pro-inflammatory cytokines, chemokines, 75 

and growth factors, are characteristics of inflammatory diseases [5, 48]. The 76 

pro-inflammatory cytokines TNF-α and IL-1β, which are up-regulated immediately 77 

after SCI combining with the ligands of pattern recognition receptors (PRRs), such as 78 

high mobility group box protein (HMBG1) and LPS, can cause 79 

microglia/macrophages to enter an overactive state and begin releasing ROS [13, 14, 80 

23]. Cytokines and LPS cause oxidative stress to form toxic lipid aldehydes such as 81 

4-hydroxynonenal (HNE), which triggers multiple signaling cascades that variably 82 

affect cell growth, differentiation, and apoptosis through lipid peroxidation [36]. 83 

Aldose reductase (AKR1B1, AR) belongs to the aldo-keto reductase (AKR) 84 

superfamily, which includes several enzymes that catalyze oxidation and reduction 85 

reactions involved in various cellular processes [48]. AR is the only enzyme 86 
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responsible for reducing glucose to sorbitol in the polyol pathway of glucose 87 

metabolism and identified as the chief facilitator of hyperglycemic injury in secondary 88 

diabetic complications such as cataractogenesis, retinopathy, neuropathy, nephropathy, 89 

and cardiovascular diseases [39]. Recent studies have suggested that glucose may be 90 

an incidental substrate of AR, which appears to be good at catalyzing the reduction of 91 

a wide range of aldehydes generated from lipid peroxidation. Several reports showed 92 

that AR, in addition to reducing glucose, efficiently reduces the lipid 93 

peroxidation-derived aldehydes such as HNE, were thought to be the preferred 94 

physiological substrates with higher affinity than glucose [48]. AR catalyzes the 95 

reduction of lipid aldehydes and their reduced glutathione (GSH) metabolites both in 96 

vitro and in vivo [47]. Pharmacological inhibition or small interfering RNA (siRNA) 97 

ablation of AR prevented the biosynthesis of TNF-α, IL-1β, IL-6, 98 

macrophage-chemoattractant protein (MCP)-1, cyclooxygenase-2 (Cox-2), and 99 

prostaglandin E2 (PGE2) in LPS-activated RAW264.7 murine macrophages. AR 100 

inhibition or ablation significantly attenuated LPS-induced activation of protein 101 

kinase C (PKC) and phospholipase C (PLC), nuclear translocation and 102 

phosphorylation of NF-κB, and proteolytic degeneration of IκBα in macrophages [38]. 103 

These results indicate that AR can promote LPS-induced inflammatory signals in 104 

macrophages by promoting NF-κB-dependent expression of inflammatory cytokines 105 

and chemokines. Whether AR plays a role in M1 or M2 polarization of 106 

microglia/macrophages and in neuroinflammation after SCI remains unclear. In this 107 

study, we found that mRNA and protein levels of AR increased in a time-dependent 108 
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manner after SCI. In AR−/− mice, activated microglia/macrophages at the injured site 109 

were prone to M2 rather than M1 polarization during early stages of SCI. HNE, the 110 

substrate of AR, accumulated in microglia treated with AR inhibitor inducing 111 

transcript factor cAMP-responsive element-binding protein (CREB) upregulation and 112 

phosphorylation, which promoted microglia polarization to M2.  113 

Materials and Methods 114 

Animals and SCI model  115 

AR-/- mice generated previously and backcrossed to C57BL/6 mice for more than 10 116 

generations, which are considered to be congenic with C57BL/6 mice, were used 117 

(n=53) [21]. Age-matched normal C57BL/6 (n=55) (SLAC, Shanghai, China) were 118 

used as control wild-type mice (AR+/+). Mice were housed in a specific pathogen-free 119 

(SPF) environment at the animal facility of Department of Neurobiology, the Fourth 120 

Military Medical University. All procedures were conducted under guidelines 121 

approved by the Fourth Military Medical University Animal Care and Use 122 

Committee. Anesthetized mice with 1% sodium pentobarbital (Sigma-Aldrich, 40 123 

mg/kg) received a severe spinal crush injury as described previously with certain 124 

modifications [33]. Briefly, a laminectomy was performed at vertebral midthoracic 125 

level T8-T10 leaving dura intact. SCI was made at the level of T8 by compressing the 126 

cord laterally from both sides for 20 s with Number 5 Dumont forceps (Fine Science 127 

Tools) modified with a spacer of 0.25 mm to produce severe injury. Sham group was 128 

generated by only performing laminetomy but no compressing the cord. 129 
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Postoperatively, mice received manual bladder evacuation twice a day to prevent 130 

urinary tract infections until normal voiding reflexes returned. 131 

Behavioural assessment 132 

Gross locomotor recovery after SCI was assessed using the Basso Mouse Scale  133 

(BMS) hindlimb locomotor test for mice [2]. For 1 week before surgery, mice were 134 

acclimated to the testing field. At 0, 3, 5, 7, 14 and 28 day post injury (dpi), mice were 135 

placed in this field and observed with video record for 4 min. Each hind limb was 136 

scored by two investigators blinded to the treatment protocol.  137 

Estimation of lesion area 138 

Spaced serial 10 μm thick sections 100 μm apart were stained with Luxol Fast Blue 139 

(LFB, Sigma-Aldrich) [4]. Briefly, the sections were dehydrated and incubated in 140 

0.1% LFB dissolved in 95% ethanol at 60°C overnight. Stained sections were cooled 141 

at RT and differentiated in 0.05% lithium carbonate and 70% ethanol. Sections were 142 

then counterstained with 0.1% Cresyl Violet (Sigma-Aldrich) at 60°C for 10 min and 143 

mounted in neural resin . Digital images were acquired using a DP70 digital camera 144 

(Olympus) mounted on a BX51 Olympus microscope equipped with a 10× objective. 145 

Five random sections were quantified per mouse and three mice of each kind were 146 

measured per group. Quantification of LFB stained areas was performed using 147 

Photoshop CS3 software. 148 

Cell cultures 149 
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Microglial cell lines culture 150 

The murine microglial cell line N9 (keeping in our lab) or BV2 was cultured in 151 

Dulbecco's Modified Eagle's medium (DMEM) (Gibco) supplemented with 5% Fetal 152 

Bovine Serum (FBS; Gibco), 2 mM L-Glutamine 100 U/ml penicillin and 100 μg/ml 153 

streptomycin. 5×105 cells were seeded onto 12-well plates. To detect the polarization 154 

of N9 microglia, cells were treated with LPS (100 ng/ml; Sigma-Aldrich) or IL-4 (20 155 

ng/ml; R&D Systems), respectively, combined with Fidarestat 20 μM (Lot. 308002, 156 

Sanwa Kagaku Kenkyusho, Nagoya, Japan) following two strategies. One was first to 157 

stimulate N9 cells with the above cytokines for 24 h, respectively, and then add ARI 158 

for another 24 h. The other was first to treat N9 cells with ARI for 24 h and then add 159 

the cite cytokines, respectively, for another 24 h. After those treatments, N9 cells was 160 

washed with D-Hank’s solution for 3 times and harvested for further analysis with 161 

qPCR or Western blot. 162 

Primary cortical neurons cultures 163 

Primary cortical neurons were prepared from wild type (C57BL/6) and AR deficient 164 

mouse at E15 [15]. Using aseptic technique, the fetal brains were removed and 165 

transferred into ice-cold D-Hank’s medium without Ca2+ and Mg2+. After, bilateral 166 

cortices were mechanically separated and the meninges were carefully removed using 167 

fine forceps (Sigma-Aldrich, style #7). Then the cerebral cortex was minced using 168 

sterile iridectomy scissors. These pieces were incubated in Ca2+ and Mg2+ free 169 

D-Hank’s balanced salt solution with 0.125 % trypsin and 0.1% DNase at 37 °C for 170 
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15 min. The enzymatic digestion was followed by a brief mechanical trituration using 171 

polished Pasteur pipettes and centrifuged at 800 rpm for 5 min. Cells were suspended 172 

in Neurobasal A (Gibco) supplemented with B27 (Gibco) and 2 mM L-glutamine. Cell 173 

suspension were seeded in poly-L-lysine (25 μg/ml, Sigma) coated 6-well culture 174 

plates at a density of 4 × 104 cells/cm2 at 37 °C/5% CO2 for 7-14 d culture. The cell 175 

populations consisted of >95% neurons before used, which was determined by 176 

immunocytochemical stain with anti Neuron- specific β-tubulin Ⅲ (data not shown) 177 

[46]. 178 

Primary astrocytes cultures 179 

Primary astrocytes were cultured from the cerebral cortex of 1-2 d postnatal mouse 180 

pups [17]. The cerebral cortices were dissected and trypsinized as indicated above for 181 

the primary neurons cultures. Cells were suspended in DMEM medium supplemented 182 

with 10% FBS (Gibco), 2 mM glutamine, 50 U/ml Penicillin and 50 μg/ml 183 

Streptomycin (Glibco). Cells were plated on PLL coated 75 cm2  culture flasks at a 184 

density of 1 × 105 cells/cm2 and cultured in 5% CO2 at 37 °C. After 7-10 d incubation, 185 

cultures were purified by shaking for 20 h on an orbital shaker (180 rpm) at 37°C, 186 

resulting in cultures of 95% GFAP-positive cells. Purified astrocytes were digested by 187 

trypsinization, and cells were again plated at the density of 5×105/cm2 onto PLL 188 

coated 6-well plates and incubated in 5% CO2 at 37 °C for two days before used. 189 
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Oligodendrocyte cultures 190 

Oligodendrocyte precursor cells (OPC) were generated from primary mixed glial 191 

cultures above mentioned as described previously [49, 55]. Briefly, after ten days 192 

culture in DMEM medium with 10% FBS (Gibco) and supplemented with 2 mM 193 

glutamine, 50 μg/ml Streptomycin and 50 U/ml Penicillin. Oligodendrocyte precursor 194 

cells were shaking off based on the different adhesion properties of different glial cell 195 

types. Cell cultures were shaken first at 200rpm, 37°C for 30min and rinced with fresh 196 

DMEM medium with 10% FBS (Gibco) and supplemented with 2 mM glutamine, 197 

50 μg/ml Streptomycin and 50 U/ml Penicillin. After cells were cultured for another 198 

14-16 h, cell cultures were shaken at 280 rpm, 37°C for 18-20 h to collect the OPC. 199 

Precursor cells were obtained by sequential dislodging procedure. Purified OPC were 200 

plated onto PLL coated 6-well plates at the density of 4× 104 cells/cm2 and cultured  
201 

in Satomedium ( DMEM/F12 supplemented with 4 mM Glu, 0.1 mM sodium 202 

pyruvate, 0.1% BSA, 50μg/ml transferrin, 5μg/ml Insulin, 30 nM sodium selenate, 10 203 

nM Vitamin H and 10 nM hydrocortisone ) supplemented with 10 ng/ml PDGF-AA 204 

and 10 ng/ml bFGF to promote cell growth. OPC were cultured in above expansion 205 

medium for 2-3 d and passaged with DMEM/F12 supplemented with 0.01% EDTA，206 

0.2 mg/ml DNase and 5 μg/ml insulin. The supernatant was collected and NG2+ cells 207 

were plated onto PLL coated 6-well plates at the density of 8× 104 cells/cm2  in 208 

differentiation medium which contains Satomedium supplemented with 15 nM 209 

triiodothyronine (T3), 10 ng/ml ciliary neurotrophin factor (CNTF), and 5 μg/ml 210 

N-acetyl-l-cysteine (NAC) for 6 days before used. 211 
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Primary microglia cultures 212 

Primary microglia cultures were also obtained from the cerebral hemispheres of 213 

newborn mouse brains (P1-2) as previously described [3, 24]. In brief, mixed glial 214 

cells were seeded onto PLL coated culture flasks at a density of 1 × 105 cells/cm2. Two 215 

weeks later, microglia were shaken off at 200 rpm for 30min. Highly enriched 216 

microglial suspension were collected and filtered through 41 μm cell strainer. After 217 

centrifugation at 800 rpm for 5 min, cells were resuspended in DMEM medium with 218 

10% FBS, and plated onto 6-well plates at a density of 2 × 105 cells/cm2. The purity of 219 

cells obtained was harvested > 95% based on staining with Iba-1 antibody before 220 

used.  221 

When the purified neural cells reached 80% confluence, TNF-α+IFN-γ or LPS 222 

were pulsed into culture medium for another 24 h incubation. Purified neural  were 223 

harvested for AR level detection with qPCR.  224 

Immunohistochemistry 225 

Mice were killed by injection of an overdose of 2% sodium pentobarbital. The 226 

animals were transcardially perfused with ice-cold saline followed by 4% 227 

formaldehyde in 0.1 M phosphate buffer, pH 7.4, for at least 15 min at room 228 

temperature (RT). After perfusion, the spinal cords were dissected out and postfixed 229 

4-6 h at 4°C in the same solution used for perfusion. Spinal cord tissue was then 230 

immersed into 20% sucrose solution in 0.1 M phosphate buffer, pH 7.3, at 4°C for 231 

cryoprotection. Tissues were embedded in Tissue Tek (Sakura Finetek, Zoeterwoude, 232 

The Netherlands), cut transversely or longitudinally into 10-μm slices in a cryostat, 233 
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mounted onto glass slides, and store at -20 °C for further processing.  234 

   The sections were blocked with 1% bovine serum albumin containing 0.3% triton 235 

X-100 for 1 h. Sections were then incubated with primary antibodies (see Table 1) 236 

overnight at 4 °C. Then sections were incubated with appropriate secondary antibody 237 

for 2 h at room temperature. Images were acquired by using FV 1000 confocal system 238 

(Olympus, Japan). 239 

To detect the accumulation of HNE after given ARI, we treated cultured BV2 and 240 

N9 microglia with Fidarestat at 0, 20, 30, and 40 μM for 24 h. After washing 3 times 241 

with PBS, the cells were fixed with 4% formaldehyde for 10 min at RT. Cells were 242 

incubated with rabbit anti-HNE pAb (abcam) overnight at 4 oC. After washing with 243 

PBS 3 times, the FITC labeled anti-rabbit IgG were incubated for 2 h. The density of 244 

fluorescence were judged under BX53 microscopy (Olympus, Japan) with same 245 

expose time or with fluorescent density scan（excitation wavelength 493 nm and 246 

emission wavelength 518 nm）  by Infinite M200 PRO (TECAN, Swiss). All 247 

antibodies and their dilutions used in IHC in this study were listed in Table 1.  248 

Table 1. Antibodies for IHC and WB 249 

   Dilution 

Antibodies Host Vendor IHC WB 

AR Mouse Santa 1:200 1:1000 

β-actin Mouse Sigma N/A 1:8000 

iNOS Rabbit abcam 1:500 1:500 

Arginase 1 Goat Santa 1:100 1:1000 
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 250 

Quantitative Real-time PCR 251 

The method of QRT-PCR was carried out as our previously description with slight 252 

modifications [56]. Brifely, mice were sacrificed 1, 3, 7, 14 and 21 days after SCI 253 

with an overdose of 2% pentobarbital sodium intraperitoneal injection. An 1cm spinal 254 

cord segment containing the injured site in the middle was removed quickly for RNA 255 

isolation. Controled mice were sacrificed after the operation as well. 256 

Total RNA was extracted using TRizol reagent (Invitrogen) according to the 257 

manufacturer’s instructions. The concentration of RNA was measured by UV 258 

absorbance at 260 and 280 nm (260/280) while the quality was checked by gel 259 

NF-κB 

pNF-κB 

CREB 

Rabbit 

Rabbit 

Rabbit 

Anbo 

Cell Signaling 

Epitomics 

N/A 

N/A 

N/A 

1:1000 

1:1000 

1:1000 

pCREB Rabbit Epitomics N/A 1:500 

F4/80 Rabbit AbD 1:100 N/A 

Iba 1 Rabbit Wako 1:1000 N/A 

GFAP Rabbit Dako 1:1000 N/A 

NeuN 

NG2 

MBP 

HNE 

Mouse 

Mouse 

Rat 

Rabbit 

Chemicon 

Millipore 

Millipore 

abcam 

1:200 

1:400 

1:400 

1:300 

N/A 

N/A 

N/A 

N/A 



 

 15 / 40 

 

electrophoresis. Equal amount of RNA from each group was used for Poly(A) tailing 260 

and quantitative reverse transcription consisted of 4 μl 5 × reaction mix, 2 μl 10 × 261 

SuperScript enzyme mix, and 200 ng total RNA in a final volume of 20 μl. Then real 262 

time PCR was performed using the NCodeTM EXPRESS SYBR GreenERTM 263 

microRNA qRT-PCR Kit (Invitrogen) containing 1 μl of the RT product, 10 μl 264 

EXPRESS SYBR green qRT-PCR SuperMix, 0.4 μl microRNA-specific forward 265 

primer (10 μM), and 0.4 μl universal qPCR primer (10 μM) in a final volume of 20 μl. 266 

PCR cycling began with template denaturation and hot start Taq activation at 95°C for 267 

2 min, followed by 40 cycles of 95°C for 15 sec, and 60°C for 1 min performed in a 268 

CFX96 Real-Time PCR System (BioRad). Beta-actin was used as the internal 269 

standard reference and normalized expressions of targeted genes were calculated 270 

using the comparative CT method and fold changes were derived from the equation 271 

2-ΔΔCt for each gene. All primers were used in this study are list in Table 2. 272 

Table 2. Primer sequences for QRT-PCR analysis 273 

 Accession    

Gene number Forward primer (5’-3’) Reverse Primer (5’-3’) 

AR NM_009658.3 ACGGCTATGGAACAACTA TGTGGCAGTATTCAATCAG 

Arg 1 NM_007482.2 GAACACGGCAGTGGCTTTAAC TGCTTAGCTCTGTCTGCTTTGC

iNOS NM_010927.2 CCCTTCAATGGTTGGTACATGG ACATTGATCTCCGTGACAGCC 

NF-κB NM_008689.2 CCTACGGTGGGATTACATTC CTCCTCGTCATCACTCTTGG 

CREB NM_001037726.1 AGAAGCGGAGTGTTGGTGAGT GGTTACAGTGGGAGCAGATGA

CD86 NM_019388 TTGTGTGTGTTCTGGAAACGGAG AACTTAGAGGCTGTGTTGCTG
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CD206 NM_008625.1 TCTTTGCCTTTCCCAGTCTCC TGACACCCAGCGGAATTTC 

β-actin NM_007393.3 AGAAGGACTCCTATGTGGGTGA CATGAGCTGGGTCATCTTTTCA

Western blotting 274 

Tissue samples about 1 cm of spinal cord with the injured site in middle were lysed by 275 

homogenizing per 100 mg tissues in 1ml RIPA (50 mM Tris-HCl, pH 8.0, 150 mM 276 

NaCl, 1% NP-40, 0.5% Sodium deoxycholate, 0.1% SDS) buffer or the cells in 6-well 277 

plates were lysed in 300μl RIPA buffer containing 1 mM PMSF. Lysates were 278 

centrifuged at 12,000 rpm for 10 min, and the supernatant was collected and added 279 

same volume sample buffer. The protein amount was determined using BSA Protein 280 

Assay Kit (Pierce). Samples with equal amounts of protein were then separated by 281 

10% SDS-PAGE, and electrotransferred onto (300mA for 60min) Polyvinylidene 282 

Fluoride (PVDF) Membranes (Millipore, 0.45μm) with Transblot Turbo (Bio-Rad, 283 

USA). Membranes were incubated with 5% nonfat milk in Tris buffer containing 284 

Tween 20 (TBST; 10 m M Tris-HCl, pH 8.0, 150 mM NaCl, and 0.1% Tween 20) for 285 

2h at RT and incubated with the primary antibodies which listed in Table 1 at 4°C 286 

overnight. Membranes were then washed three times for 10 min with TBST and 287 

probed with relative 2nd antibodies conjugated with horseradish peroxidase (abcam) at 288 

RT for 2 h. Membranes were finally washed three times for 10 min with TBST to 289 

remove unbound 2nd antibodies and visualized using enhanced chemiluminescence 290 

(Thermo Scientific). The density of specific bands was measured using ImageJ 291 

densitometry software and normalized against a loading control (β-actin). 292 
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 293 

Statistical analysis 294 

All statistical analyses were conducted using GraphPad Prism 5.0 (GraphPad 295 

Software). All data are expressed as group mean ± SEM unless otherwise noted. 296 

Comparison of the two groups were performed using independent t tests. Results were 297 

considered statistically significant at p < 0.05. 298 

 299 

Results  300 

Time-course changes in mRNA and protein levels of AR after 301 

SCI 302 

We analyzed time-dependent changes in the expression profiles of AR transcript and 303 

protein between 4 hours and 14 days postinjury (hpi or dpi) using qPCR and WB in 304 

C57BL/6 mice. Starting at 4 hpi, the AR mRNA level began to increase, with a 305 

significant increase 1 dpi and was maintained until 14 dpi according to qPCR results 306 

(Fig. 1a). This result was subsequently confirmed by WB (Fig. 1b, c). The AR protein 307 

was also upregulated in a time-dependent manner after injury (Fig. 1b). The 308 

densitometric ratio of AR/β-actin showed that AR protein clearly increased from 1 dpi 309 

to 14 dpi (Fig. 1c). These results suggest that AR expression was temporally 310 

upregulated after SCI in normal mice. 311 

We next investigated the types of neural cells showing upregulated expression of 312 
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AR following SCI in mice. Based on the above results showing that both mRNA and 313 

protein levels of AR reached a peak 3 dpi in the injured spinal cord, we used the 314 

immunoflorescence double-labeling method to immunostain AR bound to other neural 315 

cell markers, such as NeuN (for neuron), GFAP (for astrocyte), Iba-1 (for 316 

microglia/macrophages), and MBP (for oligodendrocyte), respectively. Neurons 317 

adjacent to the lesion site presented both AR- and NeuN-positive signals (Fig. 1d). 318 

Microglia/macrophages that were Iba-1 positive were also highly expressed AR 319 

adjacent to the lesion site [10, 23] (Fig. 1e). The distal area from the lesion site of the 320 

spinal cord, however, expressed a low level of AR and Iba-1 (Fig. 1e). We also 321 

evaluated AR expression in astrocytes and oligodendrocytes, but no double-labeled 322 

astocytes or oligodendrocytes were observed in injured spinal cord (data not shown). 323 

These results suggest that an injured, and not a healthy spinal cord, induces AR 324 

expression in microglia, macrophages, and neurons, but not in astrocytes or 325 

oligodendrocytes. 326 

M1 polarized microglia/macrophages, which mainly secret pro-inflammatory 327 

cytokines, such as INF-γ and TNF-α, are dominant at early stages in SCI [10, 23]. We 328 

suspected that the pro-inflammatory cytokine environment was likely to cause neural 329 

cells to upregulate AR. We isolated primary neural cells, including astrocytes, 330 

oligodendrocytes, neurons, and microglia, and cultured these cells with cytokines 331 

IFN-γ+ TNF-α stimulation for 24 h in vitro, respectively. Next, we extracted RNA 332 

from the cells and measured AR expression using qPCR. Primary neurons and 333 

microglia (Fig. 1h and i), but not astrocytes or oligodendrocytes (Fig. 1f and g), 334 
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expressed high levels of AR transcripts under proinflammatory cytokine stimulation 335 

(Fig. 1f). In addition, under LPS stimulation, microglia expressed much higher levels 336 

of AR mRNA compared to that under proinflammatory cytokine stimulation (Fig. 1i). 337 

A previous study showed that both IFN-γ and LPS can induce macrophage 338 

polarization to the M1 phenotype via IFN-γR and TLR4, respectively [13, 25, 45]. 339 

Thus, our results suggest that AR may play a role in polarization of 340 

microglia/macrophages after SCI. 341 

 342 

AR deficiency promoted locomotor recovery after SCI  343 

AR-deficient mice showed no apparent development, reproductive, or nervous system 344 

abnormalities except for a partially defective urine-concentrating ability [21]. 345 

However, whether AR plays a role in recovery after SCI remained unclear. We 346 

evaluated locomotor recovery based on the BMS locomotor rating scale after SCI 347 

with a severe crush model in AR−/− mice [22, 33]. AR-deficient mice exhibited 348 

significant higher BMS scores beginning at 3 dpi (Fig. 2a). After 21 dpi, hind limb 349 

locomotion appeared to reach a plateau in both AR+/+ and AR−/− mice. At the end of 350 

the 28 dpi assessment period, AR+/+ mice showed a mean score of approximately 4 (n 351 

= 10), while the AR−/− mice had a score of 6.5 (n =8) on the BMS scale (Fig. 2a). To 352 

evaluate the lesion sizes after SCI, we performed LFB staining in spinal cord sections 353 

of AR+/+ and AR-/- mice, respectively. First we compared the lesion areas, which was 354 

evidenced by reduced LFB staining, between AR+/+ and AR−/− mice at 3, 7, and 14 dpi 355 
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(Fig. 2b). At all three time-points, AR−/− mice showed much smaller lesion areas 356 

compared to AR+/+ mice after SCI (Fig. 2c). Thus, these results suggest that AR 357 

deficiency can promote functional recovery after SCI in mice. 358 

 359 

M1/M2 ratio decreased significantly during early stages of 360 

SCI 361 

Microglia/macrophages are critical inflammatory cells which significantly contribute 362 

to the pathological environment in SCI. They can be detrimental or beneficial to 363 

functional recovery after SCI based on their polarized subsets, M1 or M2 [10, 13, 44]. 364 

In fact, there are both M1 and M2 microglia/macrophages present at the injured spinal 365 

cord despite whether it is an early stage or late stage in SCI. The M1/M2 ratio 366 

determines the outcome of microglia/macrophages, which is detrimental or beneficial 367 

for recovery after SCI [10, 23]. We stained injured spinal cord sections with 368 

antibodies of the M1-specific marker iNOS and M2-specific marker Arg1 combined 369 

with microglia and macrophage-specific marker F4/80 or Iba1 in AR+/+ and AR−/− 370 

mice, respectively. In AR−/− mice, the number of iNOS+/F4/80+ cells were less than 371 

those in AR+/+ mice after SCI (Fig. 2d). In contrast, there was a larger number of 372 

Arg1+/Iba1+ cells in AR−/− mice compared with AR+/+ mice after SCI (Fig. 2e). These 373 

results show that more Arg1+, but not iNOS+, microglia/macrophages were present at 374 

the injured site in AR−/− mice after SCI. 375 

In AR+/+ mice, the iNOS mRNA increased rapidly and reached its highest level 376 
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at 1 and 3 dpi. At 14 dpi, iNOS mRNA had nearly returned to normal levels in AR+/+ 377 

mice (Fig. 3a). In AR−/− mice, however, iNOS mRNA showed no significant change 378 

at all time-points compared to the sham group after SCI (Fig. 3a). Comparison of 379 

iNOS mRNA level at 4 hpi and 1, 3, and 7 dpi in AR+/+ with AR−/− mice showed that 380 

iNOS mRNA was clearly higher in AR+/+ mice than in AR−/− mice (Fig. 3a). Another 381 

M1 cell marker, CD86, was also detected after SCI by qPCR. The CD86 mRNA level 382 

differed from the iNOS transcription profile at 14 dpi in AR+/+ mice, which displayed 383 

clear upregulation compared to AR−/− mice (Fig. 3b). In AR+/+ mice, Arg1 mRNA 384 

level increased rapidly over a short period of time post-injury and reached its highest 385 

expression at 3 dpi (Fig. 3c). Arg1 mRNA level decreased suddenly at 7 dpi and 386 

recovered to its normal expression level at 14 dpi in AR+/+ mice Fig. 3c). The Arg1 387 

expression pattern in AR−/− mice was similar to that in AR+/+ after SCI, in which Arg1 388 

mRNA was upregulated rapidly after SCI, reaching its highest expression level at 1 389 

dpi and followed by a decrease in expression; however, the pattern was quite different 390 

for Arg1 mRNA expression between the two types of mice (Fig. 3c). In AR−/− mice, 391 

the Arg1 mRNA level was also decreasing, but it decreased slowly comparing to in 392 

AR+/+ mice at same time-point after SCI (Fig. 3c). The mRNA of CD206, another M2 393 

cell marker, also increased significantly at 1, 3, 7, and 14 dpi in AR−/− mice compared 394 

to in AR+/+ mice after SCI (Fig. 3d).  395 

iNOS protein level was downregulated rapidly after SCI in AR−/− mice, while it 396 

was upregulated post-injury in AR+/+ mice (Fig. 3e and f). In contrast, Arg1 was 397 

rapidly upregulated and then decreased at 14 dpi both in AR+/+ and AR−/− mice (Fig. 398 
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3e and g). However, AR−/− mice expressed more Arg 1 than AR+/+ mice at same 399 

checkpoint post-injury (Fig. 3g). Interestingly, we found that both iNOS and Arg1 400 

levels were higher in AR−/− mice than in AR+/+ mice in the sham groups. It is unclear 401 

whether these results suggest that AR-deficient microglia indicate higher basic 402 

activity. Densitometric analysis showed that iNOS/β-actin was much lower in AR−/− 403 

mice than in AR+/+ mice at same checkpoint post-injury (3f). While densitometic 404 

analysis Arg1/β-actin and the ratio of Arg1/iNOS protein expression was much 405 

higher in AR−/− mice than in AR+/+ mice at same checkpoint post-injury (Fig. 3g and 406 

h). The characteristic markers of M2 macrophages, such as Arg1 and CD206, were 407 

upregulated rather than M1 cell markers, such as, iNOS and CD86, after SCI in AR−/− 408 

mice. This suggests that macrophages and microglia may be polarized to M2 cells at 409 

the lesion site after SCI in AR−/− mice. 410 

 411 

AR deficiency caused NF-κB downregulation and CREB 412 

upregulation after SCI in mice 413 

Several key transcription factors that translate signals in the microenvironment into a 414 

polarized macrophage phenotype are produced according to several reports [25, 45]. 415 

TLR engagement can activate NF-κB and produce inflammation mediators associated 416 

with M1 macrophages [25, 45]. In addition, the CREB-C/enhancer binding protein 417 

(EBP) axis plays an important role in macrophage polarization and induces M2 418 

macrophage-specific gene expression [43]. AR-mediated LPS-induced inflammatory 419 
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signals in macrophages promote NF-κB dependent expression of inflammatory 420 

cytokines and chemokines [37-40]. AR also regulates LPS-mediated inflammation 421 

through the cAMP/PKA/CREB pathway [42]. Thus, we focused on the expression 422 

profiles of NF-κB and CREB after SCI in AR+/+ and AR−/− mice. The mRNA of the 423 

p65 subunit of NF-κB increased gradually postinjury, with AR+/+ mice showing 424 

higher mRNA levels of p65 at 1, 3, and 7 dpi compared with AR−/− mice at same 425 

time-point after SCI (Fig. 4a). Additionally, mRNA levels of CREB were higher at 4 426 

hpi and 1, 3, and 7 dpi in AR−/− mice (Fig. 4b). At 14 dpi, however, the mRNA level 427 

of CREB was lower in AR−/− mice compared to in AR+/+ mice (Fig. 4b). In AR+/+ 428 

mice, the protein level of p65 gradually increased at 1, 3, 7, and 14 dpi (Fig. 4c and e).  429 

In AR−/− mice, however, the profile of p65 continued decreasing after SCI (Fig. 4d 430 

and e). The other transcription factor studied, CREB, also showed a different 431 

expression pattern after SCI in AR+/+ mice and AR−/− mice. In AR+/+ mice, the peak of 432 

CREB expression occurred at 14 dpi, while CREB level was highest at 3 dpi and 433 

decreased at 14 dpi in AR−/− mice (Fig. 4d and f). Amounts of pCREB were always 434 

higher at same time-point after SCI in AR−/− mice compared with in AR+/+ mice (Fig. 435 

4g). Consistent with the higher baseline level of iNOS and Arg 1 (Fig. 3e), the levels 436 

of NF-κB, CREB, and pCREB were also higher at baseline in AR−/− mice (Fig. 4c and 437 

d). These results showed that there were lower levels of the p65 subunit of NF-κB and 438 

higher CREB and pCREB during early stages after SCI in AR−/− mice compared to 439 

those in AR+/+ mice. 440 

 441 
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HNE and CREB were upregulated in microglia following AR 442 

inhibition. 443 

   HNE is one of the products of lipid peroxidation. It undergoes glutathione 444 

S-transferase (GST)-catalyzed conjugation to form GS-HNE, which is further reduced 445 

to GS-DHN (1, 4-dihydroxynonene) by AR [36]. To confirm whether HNE increases 446 

after ARI Fidarestat treatment, we measured the concentration of HNE in the BV2 447 

microglia cell line based on fluorescence using in vitro immunohistochemistry. 448 

Compared with untreated ARI cells, HNE significantly increased in cells following 449 

ARI treatment (Fig. 5A). The concentration of ARI from 20 μM to 40 μM did not 450 

obviously increase the HNE level in a dose-dependent manner (Fig. 5a). We next 451 

detected changes in HNE levels of under 20 μM Fidarestat over time using fluorescent 452 

density scanning with an Infinite M200 PRO (Swiss). HNE level was significantly 453 

increased at 12 h after Fidarestat treatment (Fig. 5b). From 12 h to 48 h after 454 

Fidarestat stimulation, HNE levels were stable at a high level (Fig. 5b). We also 455 

confirmed this phenomena using the microglial cell line N9 (data not shown). These 456 

results suggest that AR inhibition can cause HNE accumulation in microglia.   457 

   Our results described above also showed that AR plays a role in the polarization 458 

process of microglia/macrophages after SCI. To further detect the mechanism of AR 459 

in the regulation of microglia polarization, we used the murine microglial cell line N9 460 

in vitro. N9 cells were treated with dimethylsulfoxide as controls (Fig. 5c, d). 461 

Following LPS stimulation, N9 cells were polarized to the M1 phenotype 462 

characterized by high iNOS and low Arg1 levels with p-NF-κB upregulation (Fig. 5c). 463 
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In contrast, N9 cells following IL-4 stimulation were polarized to the M2 phenotype 464 

characterized by low iNOS and high Arg1 levels similarly to macrophage polarization 465 

(Fig. 5d) [25, 45]. N9 cells were treated with HNE, a substrate of AR, resulting in 466 

upregulation of Arg1 and p-CREB and downregulation of iNOS (Fig. 5c). The ARI, 467 

Fidarestat, which has been examined in phase III clinical trials for diabetic neuropathy, 468 

may also effectively upregulate Arg1 and downregulate iNOS in N9 cells, similarly to 469 

HNE (Fig. 5c) [26, 39, 41, 50]. When N9 cells were stimulated with LPS+ARI, iNOS 470 

and p-NF-κB levels were significantly downregulated, while Arg1 was upregulated 471 

(Fig. 5c). N9 cells were pulsed with a combination of LPS+HNE, and Arg1 and 472 

p-CREB were clearly upregulated, while iNOS was downregulated (Fig. 5c). Thus, 473 

these results suggest that HNE and ARI could induce microglia to upregulate Arg1 474 

and downregulate iNOS, which may occur via the p-CREB pathway.  475 

N9 cells that had been treated with a combination of LPS+ARI, LPS+HNE, and 476 

LPS+HNE+ARI all showed an increase in Arg1 expression. iNOS levels slightly 477 

increased following stimulation with these compounds compared to HNE or ARI 478 

stimulation alone, but decreased significantly compared with LPS stimulation (Fig. 479 

5c). Additionally, the level of p-CREB was clearly increased. However, the level of 480 

p-NF-κB was clearly decreased following stimulation with a combination of these 481 

compounds (Fig. 5c). These results further indicate that HNE and ARI can induce 482 

Arg1 expression through the CREB pathway.  483 

To confirm whether HNE- and ARI-induced Arg1 expression occurred via the 484 

p-CREB pathway, we used the p-CREB-specific inhibitor KG501, which can block 485 
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phosphorylation of CREB, to treat N9 cells in vitro. In N9 cells treated with KG501, 486 

the expression of Arg1 and p-CREB were similar to in cells treated with 487 

dimethylsulfoxide (Fig. 5d). The upregulation of Arg1 induced by HNE and ARI was 488 

stopped in presence of KG501. The p-CREB expression level was also decreased in 489 

the presence of KG501 compared with treatment with HNE or ARI alone (Fig. 5d). 490 

IL-4, which is the prototypical cytokine that polarizes macrophages into the M2 491 

phenotype, significantly induced Arg1 upregulation and slight iNOS downregulation 492 

in N9 cells (Fig. 5d). Combining IL-4 with KG501 to stimulate N9 cells, however, a 493 

slight decrease of Arg1 was observed compared with IL-4 stimulation alone (Fig. 5d). 494 

These results suggest that the HNE and ARI induced Arg1 expression in microglia 495 

occurred through a p-CREB transcriptional factor, but IL-4 did not stimulate 496 

expression through this mechanism.  497 

 498 

Discussion 499 

Inflammation appears to be the most important pathological process during 500 

secondary injury after SCI. Residential microglia and hematogenous macrophages, 501 

which are the main inflammatory subpopulations, from surrounding tissues arrive at 502 

the injury site within hours after the primary injury [14, 34]. The inflammatory 503 

response after SCI is thought as a ‘double-edged sword’, with both neuroprotective 504 

and neurotoxic properties based on the polarized states of microglia/macrophages [10, 505 

23, 44]. In the first few days after injury, iNOS and pro-inflammatory cytokines such 506 
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as TNFα, IL-1β, and IL-6 are upregulated by microglia/macrophages in SCI-induced 507 

aseptic conditions [27, 32]. These proinflammatory cytokines and other mediators 508 

including HMBG1, which are released from dead cells, activating 509 

microglia/macrophages through Toll-like receptors (TLRs), result in NF-κB-mediated 510 

production of proinflammatory cytokines and iNOS activation, the hallmarks of M1 511 

macrophage and microglia activation during early stages of SCI [13, 23, 44]. The 512 

reports of M2 polarization in SCI are controversial. In the contused spinal cord of 513 

mouse, most microglia/macrophages are M1 cells, with only a transient and small 514 

number showing M2 polarization. The expression of one of the classic M2 markers, 515 

Arg1, was transient and returned to normal levels by 14 days post-injury [23]. A 516 

recent study reported accumulation of two distinct subsets of macrophages with 517 

different kinetics. The Ly6chiCx3cr1lo macrophages, which express characteristic M1 518 

markers (IL-1β and TNF-α), are present at 1 dpi and peaked at 3 dpi at the injury site 519 

after SCI. Subsequently, Ly6cloCx3cr1hi macrophages, which express characteristic 520 

M2 surface markers (Dectin 1, IL-4Rα and CD206), infiltrated beginning at 3 dpi and 521 

peaked at 7 dpi at the injury site after spinal cord contused injury [44]. Our results 522 

also showed that both mRNA and protein levels of Arg1 and iNOS are upregulated in 523 

early stages after SCI in AR+/+ mice. However, mRNA and protein levels of Arg1 and 524 

iNOS were expressed with diverging patterns; Arg1 was upregulated, while iNOS was 525 

downregulated during early stages after SCI in AR-deficient mice. The M2-type 526 

microglia/macrophages were dominant at the injured spinal cord in AR−/− mice, 527 

whereas M1 cells dominated in AR+/+ mice at early stages after SCI. This suggests 528 
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that AR plays a critical role in the polarization of microglia/macrophages after SCI in 529 

mice. 530 

AR was described in 1956 by Hers to have glucose-reducing activity [19]. 531 

Recent several reports have shown that AR mediates LPS-induced inflammatory 532 

signals in macrophages [36, 38, 40, 42, 48, 50]. Inhibition of AR by several ARIs 533 

such as sorbinil, tolrestat, and zopolrestat suppresses LPS-induced production of 534 

inflammatory cytokines such as TNF-α, IL-6, IL-1β, IFN-γ, and chemokine MCP-1 in 535 

murine peritoneal macrophages. Inhibition of AR also prevents the production of NO, 536 

and prostaglandin E2 (PGE2) and expression of iNOS and Cox-2 mediated by 537 

inhibiting phosphorylation of IκB-α, IKKα/β, and protein kinase C (PKC) [40]. These 538 

studies demonstrate that AR inhibition or ablation can prevent macrophages 539 

polarization into the M1 phenotype. In this study, we confirmed that AR deficiency 540 

decreases the number of microglia/macrophages with the M1 phenotype after SCI. 541 

AR mediates inflammatory signals in macrophages mainly through regulating 542 

oxidative stress responses [48]. Macrophages are polarized to the M1 response by 543 

either producing pro-inflammatory cytokines or increasing the generation of ROS [29]. 544 

ROS-induced lipid peroxidation-derived compounds such as HNE and their 545 

glutathione-conjugates (e.g. GS-HNE) are produced in large amounts in cells [39, 48]. 546 

AR efficiently catalyzes the reduction of HNE and GS-HNE to 1,4-dihydroxynonene 547 

(DHN) and GS-DHN, respectively with much lower Km values in the micromolar 548 

range (10–30 μM) than the Km value for glucose (50–100 mM) [36, 39]. 549 

Pharmacological inhibition or genetic ablation of AR prevents PLC, PKC, and NF-κB 550 
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activation caused by HNE and GS-HNE, but not by GS-DHN [36]. Thus, inhibiting 551 

AR prevent macrophages from polarizing to M1, which may be due to the reduction 552 

in HNE/GS-HNE to DHN/GS-DHN; this can active the redox-sensitive transcriptional 553 

factors NF-κB and AP-1 to upregulate expression of genes characteristic of M1 554 

macrophages [36, 39] (Fig 6a). AR inhibition can prevent LPS-induced 555 

downregulation of cAMP response element modulator (CREM), phosphorylation of 556 

CREB, and DNA-binding of CREB in macrophages [42]. Another report showed that 557 

HNE could induce ATF-2 and CREB-1 phosphorylation to regulate the secretion of 558 

some cytokines [53]. These data show that HNE and GS-HNE can trigger multiple 559 

signaling cascades to modulate inflammatory responses [36, 53]. In this study, we 560 

found that AR deficiency not only decreased M1 polarization, but also increased the 561 

M2 phenotype of microglia/macrophages after SCI. In vitro experiments showed that 562 

inhibiting AR with fidarestat upregulated HNE in microglia. HNE accumulation 563 

induced Arg1 upregulation by activating CREB, which could be specifically inhibited 564 

by KG501 in microglia. However, the upregulation of Arg1 induced by IL-4 and 565 

transcribed by STAT6 was not inhibited by KG501 [45]. Thus, we hypothesize that 566 

AR controls the switch resulting in accumulation of HNE in cells. If AR is sufficient, 567 

HNE/GS-HNE will be reduced to DHN/GS-DHN, which activates NF-κB and AP-1 568 

to polarize microglia to M1 type [38]. However, if AR is inhibited or ablated, 569 

HNE/GS-HNE will be accumulated in the cytoplasm and activate CREB to polarize 570 

microglia to the M2 type [42, 53] (Fig. 6a, b). 571 

CREB is a pivotal transcriptional factor in macrophage polarization that 572 
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promotes activation of M2-associated genes with repressing M1 activation [1, 16, 43]. 573 

CREB induces C/EBPβ expression, which specifically regulates M2-associated genes 574 

[43]. Both STAT6 and C/EBPβ have recently been shown to be essential for Arg1 575 

expression in macrophages, but in a stimulus-specific manner due to the selective use 576 

of a distinct cis-acting element in the Arg1 promoter [16]. C/EBPβ is responsible for 577 

Arg1 expression in response to TLR ligands, whereas STAT6 regulates Arg1 578 

expression in response to IL-4 and/or IL-13 stimulation [16, 45]. CREB also shows 579 

anti-inflammatory cytokine expression in macrophage in response to LPS, which is 580 

mediated by the p38 mitogen-activated protein kinase (MAPK) and mitogen- and 581 

stress-activated kinase 1 (MSK1) and MSK2 [1]. As it was shown previously, the 582 

M1-polarized microenvironment with high pro-inflammatory cytokines (e.g. IL-1β 583 

and IL-6) and TLR ligands (e.g. HMGB1) are dominant, which is preferred for 584 

polarizing microglia/macrophages into the M1 type during early stages of SCI [13, 27, 585 

32]. In this study, we found that AR deficiency could switch microglia/macrophages 586 

polarized to the M2 type rather than the M1 type even at early stages of an 587 

M1-polarized microenvironment, such as in injured spinal cord. Thus, it is reasonable 588 

that AR deficiency causes accumulation of HNE in microglia, which stimulates 589 

CREB to regulate the expression of characteristic M2 genes with the repression of 590 

M1-associated genes (Fig. 6 b).  591 

AR can be detected in a number of human and animal tissues including various 592 

regions of the eyes, testis, liver, placenta, ovary, kidney, erythrocyte, cardiac and 593 

skeletal muscle, and the brain [51]. AR is located in the cytoplasm of most cells but is 594 
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not uniformly distributed in all cell types of an organ. For example, in the kidney, AR 595 

is present in the loop of Henle, collecting tubules, outer and inner medulla, but not in 596 

the cortex [52]. In this study, we also found that although the levels of mRNA and 597 

protein of AR are both gradually upregulated after injury in time-dependent manner, 598 

AR is only distributed in microglia, macrophages, and neurons, but not in astrocytes 599 

or oligodendrocytes near the injured site after SCI. Quantitative proteomic analysis of 600 

purified in vivo retinal ganglion cells (RGCs) showed that AR is one of the most 601 

significantly elevated proteins in experimental glaucoma [12]. The roles of AR in the 602 

nervous system primarily result from diabetic complications, such as retinopathy and 603 

neuropathy [12]. Previous studies demonstrated that hyperglycemia-induced oxidative 604 

stress leads to activation of MAPK, which may contribute to neuronal pathogenesis. 605 

Fidarestat, an AR inhibitor, was shown to prevent activation of MAPK and nerve 606 

conduction velocity deficits in diabetes [20, 35]. Studies using AR knockout mice [21] 607 

also demonstrated that AR deficiency could prevent diabetes-induced oxidative stress 608 

in retinal neurons [11]. Moreover, both AR deficiency and AR inhibition reduced 609 

oxidative stress in the peripheral nerves and markedly protected mice from 610 

diabetes-induced functional deficits [20]. However, there have been few reports 611 

regarding the role of AR in neuronal cells in the CNS. In this study, we found that AR 612 

was upregulated in neurons near the lesion site of the spinal cord after injury. The 613 

significance of AR upregulation in neurons after SCI remains unclear. However, we 614 

also found that AR deficiency promotes axonal regeneration of primary cultured 615 

cortical neurons in vitro (data not shown). We suggest that AR plays multiple roles in 616 
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neural and non-neural cells. 617 

AR inhibition is emerging as a promising therapeutic approach in understanding 618 

the cellular and molecular mechanisms of AR [31]. Although ARI-targeted therapies 619 

are currently being evaluated in phase I/II and III studies for diabetes and 620 

endotoxin-related inflammatory diseases, yet they have not achieved worldwide 621 

clinical use in disease management because of limited efficacy and/or unfavorable 622 

adverse effects [31]. To explore the AR-mediated signaling pathway in different 623 

tissues and cells may be critical to increase efficacy and decrease side effects of ARIs 624 

in future. In this study, we found that AR has a critical role in switching 625 

microglia/macrophages polarization after SCI. We suggest that AR inhibition may be 626 

a promising therapeutic method for treating SCI in future. 627 
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 638 

Figure legends 639 

Fig 1. The expression pattern of AR in vivo and in vitro. a, Time-course of AR mRNA 640 

level after SCI. b, Time-course of AR protein level after SCI. c. The densitometric 641 

ratio of AR in Fig. b. d, The co-localization of AR (green)- and Iba1 (red)-positive 642 

cells in the sagittal section of injured spinal cord was stained by IHC. In the first row 643 

panel, the boxed area 1, located near the epicenter of injured spinal cord, is enlarged 644 

in second row panel 1 and the boxed area 2, located at the distal area of injured spinal 645 

cord, is enlarged in third row panel 2. Bars are equal to 500 μm and 50 μm, 646 

respectively. e, The co-localization of AR (green) - and NeuN(red)-positive cells in 647 

the coronal section of injured spinal cord was stained by IHC. The boxed area in left 648 

panel is enlarged in the right panel. Bars are equal to 200 μm and 50 μm. f, The 649 

mRNA level of AR in primary cultured astrocytes with stimulation of TNF-α + INF-γ. 650 

g, The mRNA level of AR in primary cultured oligodendrocytes with stimulation of 651 

TNF-α + INF-γ. h, The mRNA level of AR in primary cultured neurons with 652 

stimulation of TNF-α + INF-γ. i, The mRNA level of AR in primary cultured 653 

microglia with stimulation of TNF-α + INF-γ and LPS, respectively. *p < 0.05, **p < 654 

0.01. Iba1= ionized calcium binding adapter molecule 1; NeuN= Neuronal Nuclei. 655 

 656 

Fig 2. AR deficiency promoted locomotion recovery after SCI and induced 657 

microglia/macrophages polarized to M2 in mice. a, BMS score to evaluate locomotion 658 

recovery at different time post injury in AR+/+ and AR−/− mice. b and c, Injured areas 659 

were judged in sagittal sections of injured spinal with LFB staining (b) and calculated 660 
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with statistical analysis in (c) in WT and AR−/− mice. Bar = 500 μm. d, Representative 661 

figures showing the amount of iNOS (green)- and F4/80 (red)-positive cells in the 662 

sections of injured spinal cord in WT and AR−/− mice. Boxed area in each pannel was 663 

enlarged at corner of each panel. Bar = 200 μm. e, The representative figures showing 664 

that the amount of Arg1 (green)- and Iba1 (red)-positive cells in the sections of 665 

injured spinal cord in WT and AR−/− mice. Boxed area in each panel was enlarged at 666 

corner of each panel. Bar = 200 μm. iNOS= inducible nitric oxide synthase; Arg 667 

1=Arginase 1. 668 

 669 

Fig 3. Time-course of the characteristic genes of M1 and M2 expression after SCI in 670 

WT and AR−/− mice. a, Time-course of iNOS mRNA levels after SCI in WT and AR−/− 671 

mice. b, Time-course of CD86 mRNA levels after SCI in WT and AR−/− mice. c, 672 

Time-course of Arg1 mRNA levels after SCI in WT and AR−/− mice. d, Time-course 673 

of CD206 mRNA levels after SCI in WT and AR−/− mice. e, Time-course of iNOS and 674 

Arg1 proteins levels after SCI in WT and AR−/− mice. f, iNOS normalized by β-actin. 675 

g, Arg 1normalized byβ-actin.  h, Time-course of the ratio of Arg1/iNOS in protein 676 

level after SCI in WT and AR−/− mice. *p < 0.05, **p < 0.01, ***p < 0.001. 677 

 678 

Fig 4. Time-course of NF-κB and CREB mRNA and protein levels after SCI in WT 679 

and AR−/− mice. a, Time-course of NF-κB mRNA levels after SCI in WT and AR−/− 680 

mice. b, Time-course of CREB mRNA levels after SCI in WT and AR−/− mice. c, 681 

Time-courses of NF-κB, CREB, and p-CREB protein levels after SCI in WT mice. d, 682 
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Time-courses of NF-κB, CREB, and p-CREB protein levels after SCI in AR−/− mice. e, 683 

NF-κB normalized by β -actin. f, CREB normalized byβ -actin. g, pCREB 684 

normalized byβ-actin. *p < 0.05, **p < 0.01, ***p < 0.001. 685 

 686 

Fig 5. Mechanism of AR in regulating M1/M2 polarization in microglia in vitro. a, 687 

Representative fluorescent photos of HNE levels in BV2 microglial cells under 688 

different dosages of AR inhibitor Fidarestat stimulation in vitro. Bar = 50 μm. b, 689 

Time-course changes of density of fluorescence of HNE in BV2 microglial cells under 690 

20-μM Fidarestat stimulation in vitro. *p < 0.05. c, analysis of the protein levels of 691 

Arg1, iNOS, pCREB, CREB, pNF-κB, and NF-κB in N9 microglial cells under LPS 692 

stimulations combined with ARI and HNE in vitro by western blotting. d, Analysis of 693 

the protein levels of Arg1, iNOS, pCREB, CREB, pNF-κB, and NF-κB in N9 694 

microglial cells under ARI and HNE stimulations combined with KG501 in vitro by 695 

western blotting. Numeric values accompany the representative samples of western 696 

blot indicate the relative expression level obtaining in control cells (treated with 697 

DMSO), normalized by β-actin. 698 

 699 

Fig 6. Schematic presentation of the mechanism of AR in regulation of M1/M2 700 

polarization. a, AR typically reduces HNE/GS-HNE to DHN/GS-DHN which 701 

activates NF-κB and AP1 to induce the M1-associated genes expression. b, In AR 702 

inhibition or AR deficiency, the reduction of AR is decreased and causes the 703 

accumulation of HNE/GS-HNE, which activated CREB to induce the M2-associated 704 
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