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Abstract

The mediation formula for the identification of natural (in)direct effects has facilitated mediation 

analyses that better respect the nature of the data, with greater consideration of the need for 

confounding control. The default assumptions on which it relies are strong, however. In particular, 

they are known to be violated when confounders of the mediator–outcome association are affected 

by the exposure. This complicates extensions of counterfactual-based mediation analysis to 

settings that involve repeatedly measured mediators, or multiple correlated mediators.

VanderWeele, Vansteelandt, and Robins21 introduced so-called interventional (in)direct effects. 

These can be identified under much weaker conditions than natural (in)direct effects, but have the 

drawback of not adding up to the total effect. In this article, we adapt their proposal in order to 

achieve an exact decomposition of the total effect, and extend it to the multiple mediator setting. 

Interestingly, the proposed effects capture the path-specific effects of an exposure on an outcome 

that are mediated by distinct mediators, even when – as often – the structural dependence between 

the multiple mediators is unknown; for instance, when the direction of the causal effects between 

the mediators is unknown, or there may be unmeasured common causes of the mediators.

Introduction

The introduction of counterfactual-based distribution-free definitions of direct and indirect 

effects in epidemiology9,10 – so-called natural (in)direct effects – has spurred a major 

revival of mediation analysis5,14,20. It has led to a renewed and improved understanding of 

the ignorability assumptions required to identify (in)direct effects. It has moreover enabled 

the development of a formal framework for mediation analysis that is applicable to nonlinear 

models. These developments have facilitated applications of mediation analysis that better 

respect the nature of the data and reflect greater consideration of the need for confounding 

control. Notwithstanding these advances, mediation analysis based on natural (in)direct 

effects has been the subject of recent critiques. The usefulness of natural (in)direct effects 
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has been called into question because they are not directly informative about real-life 

interventions8,11. Concerns have moreover been raised about the impossibility to conduct 

experiments in which the identification assumptions for natural (in)direct effects are 

guaranteed to be satisfied3,6,11. Remaining concerns arise from the difficulty or 

impossibility of identifying these effects in realistic settings that involve multiple and/or 

repeatedly measured mediators2,4,15, and settings that involve exposure-induced 

confounding of the mediator–outcome association1,21,22. These concerns all originate from 

the fact that natural (in)direct effects are defined in terms of so-called cross-world 

counterfactuals11 that are unobservable, even from experimental data; they call for 

alternative effect measures that are less remote from the observed data.

In this article, we revisit and refine so-called interventional (in)direct effects, previously 

introduced by VanderWeele, Vansteelandt and Robins21. These are not defined in terms of 

cross-world counterfactuals. They can therefore be identified under weaker conditions, but 

have the drawback of not always adding up to the total effect. We will adapt this proposal to 

overcome this, and then extend it to the case of multiple mediators. Interestingly, our 

proposal decomposes the total effect into different path-specific effects via the different 

mediators, even when – as often happens – the structural dependence between the multiple 

mediators (for instance, the direction of the causal effect, or the possible presence of 

unmeasured common causes) is unknown. It thus opens avenues towards a flexible and 

realistic mediation analysis with multiple mediators.

Single mediator models

Effect measures

Let A, M, and Y denote the exposure, mediator, and outcome. Let C represent baseline 

covariates not affected by the exposure. We let Ya and Ma denote respectively the values of 

the outcome and mediator that would have been observed had the exposure A been set to 

level a; let Yam denote the value of the outcome that would have been observed had A been 

set to level a, and M to m. Throughout, we make the consistency assumption17 that Ya = Y 
and Ma = Y when A = a, and that Yam = Y when A = a and M = m.

Suppose a and a* are two values of the exposure we wish to compare, e.g. a = 1 and a* = 0. 

The corresponding average controlled direct effect, fixing the mediator to level m, is then 

defined by E(Yam − Ya*m). It captures the effect of exposure A on outcome Y, intervening to 

fix M to m10,14; it may be different for different levels of m. The natural direct effect, 

E(YaMa* − Ya*Ma* ), differs from the controlled direct effect in that the intermediate M is set 

to the level Ma*, the level that it would have naturally been under some reference condition 

a* for the exposure10,14. By subtracting it from the total effect, E(Ya − Ya* ), one obtains 

the average natural indirect effect, E(YaMa − YaMa* ); this compares the effect of the 

mediator at levels Ma and Ma* on the outcome when exposure is set to A = a. Finally, we 

define the interventional direct effect as
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It differs from the controlled direct effect in that the intermediate is set for each subject to a 

random draw from the conditional distribution of Ma*, given the observed covariates C for 

that subject (a related definition21 uses P (M = m|a*, C) in lieu of P (Ma* = m|C)). It may 

thus be viewed as the controlled direct effect of comparing exposure levels a versus a* under 

a stochastic intervention, Ga*|C, which controls the mediator for each subject at some value 

randomly drawn from the distribution of Ma*, given the observed covariates C. We will 

moreover call

the interventional indirect effect. For this effect to be non-zero, the exposure would have to 

change the mediator, which in turn would have to change the outcome, thus confirming that 

it captures a notion of mediation. For instance, VanderWeele et al. 16 investigate pack-years 

of smoking as a mediator of the effect of genetic variants on lung cancer. The interventional 

indirect effect expresses the change in lung cancer risk that would be seen if the distribution 

of pack-years of smoking were shifted from what it would be if all subjects carried two risk 

alleles to what it would otherwise be. Arguably, this effect is more relevant than the 

corresponding natural indirect effect, as it is informative about the effect of particular 

interventions on smoking. One could alternatively define interventional (in)direct effects 

with respect to a mediator distribution other than P(Ma = m|c). This can be of interest when 

interventions on the exposure are not conceivable. For instance, changing P(Ma = m|c) to 

P(M = m|a, c) would change the interpretation to the average change in lung cancer risk that 

would be seen if the distribution of pack-years of smoking were shifted from what it is in 

subjects with two risk alleles to what it is in the remaining subjects21. In the remainder of 

the article, we choose not to do this because unmeasured confounding may render P(M = m|
a, c) dependent on a, even when the exposure has no effect on the mediator.

Assumptions

Controlled direct effects can be identified when:

(i) the effect of exposure A on outcome Y is unconfounded conditional on C (i.e., 

Yam ⫫ A|C, where X ⫫ Y|Z denotes that X is independent of Y conditional on 

Z);

(ii) the effect of mediator M on outcome Y is unconfounded conditional on A, C and 

possibly some additional covariate vector L that may be affected by A (i.e., Yam 

⫫ M|{A = a, C, L}).

Average interventional (in)direct effects are identified if, in addition to these 

assumptions,

(iii) the effect of exposure A on mediator M is unconfounded conditional on C (i.e., 

Ma ⫫ A|C).
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Randomisation of the exposure (possibly conditional on C) ensures the validity 

of this additional assumption as well as assumption (i). Under (i)-(iii), the 

interventional direct and indirect effect can be identified as21

(1)

(2)

These expressions reveal a major weakness that we will attempt to overcome: 

the sum of the effects (1) and (2), which is sometimes called the ‘overall effect’ 

21, may differ from the total effect. One exception is when assumptions (i) and 

(iii) hold, and in addition, assumption (ii) holds with L empty. In that case, the 

direct and indirect interventional effects sum to the total effect E(Ya − Ya* ), 

even when there are interactions and non-linearities.

Natural direct and indirect effects always sum to the total effect. However, their 

identification requires much stronger assumptions. It requires that assumptions 

(i) and (iii) hold, that assumption (ii) holds with L empty (thus excluding the 

possible presence of exposure-induced confounders), and in addition that a 

technical cross-world independence assumption9 holds, which places an 

independence restriction on the joint distribution of the variables Yam and Ma* :

(iv) Yam ⫫ Ma* |C.

Under these assumptions, these effects reduce to expressions (1) and (2) 

obtained for average direct and indirect interventional effects, but with L empty. 

It thus follows that in single mediator models without post-treatment 

confounding, natural (in)direct effects obtained under assumption (iv) can also 

be interpreted as interventional (in)direct effects (even when that assumption is 

violated).

Natural versus interventional (in)direct effects

Average interventional direct effects encode the exposure effect that would be realised while 

controlling the mediator distribution to be fixed. This is realised by setting the mediator for 

each subject to a random draw from the distribution of the mediator at exposure level a*, 

given covariate values c. Natural direct effects adopt a similar notion, but fixing the mediator 

at the counterfactual mediator value (corresponding to exposure level a*) itself. This may 

yield a direct effect of a different magnitude, in part because the counterfactual level of the 

mediator may depend on much more than the considered covariates c. Both measures would 

thus be relatively close if the covariate set c were so rich as to leave little variation in Ma* for 

Vansteelandt and Daniel Page 4

Epidemiology. Author manuscript; available in PMC 2017 June 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



a given c (beyond the variation due to causes unrelated to Yam), but not necessarily 

otherwise. While the natural direct effect may thus more closely capture the notion of 

mechanism, this need not lead us to prioritise them. First, natural direct effects employ 

cross-world counterfactuals like YaMa* about which information cannot be obtained even 

from experimental data. The data analyst who reports natural direct effects is thus obligated 

to make strong untestable assumptions like (iv) (and/or to conduct a sensitivity analysis12), 

under which these effects reduce to the interventional direct effect (1) (with L empty). 

Second, the relevance of natural (in)direct effects has been questioned on the basis that they 

do not connect to the effect of particular policies8.

In contrast to natural (in)direct effects, interventional (in)direct effects are policy-relevant18: 

they are relevant about a policy that involves fixing the mediator distribution, or shifting it to 

the extent that it is affected by the exposure. They continue to be meaningful, even when 

assumptions (i) and (iii) fail or when the exposure is not manipulable (e.g. when the 

exposure is race19), so long as assumption (ii) is satisfied. For instance, when L is empty, 

then the interventional direct effect (1) reduces to

since E(Y |a, m, c) = E(Ym|a, c) under assumption (ii). This can be interpreted as the average 

outcome difference that would remain between exposure groups A = a and A = a* if the 

mediator distribution in the former group were shifted to equal that in the latter group19. 

Similar comments are relevant for indirect effects.

Multiple mediator models

Review

For pedagogic purposes, we consider a setting with two mediators M1 and M2, and defer 

more general results to the eAppendix. VanderWeele and Vansteelandt (2013) define the 

natural direct effect of A on Y, not mediated by either or both mediators, as E(YaM1a*M2a* − 

Ya*M1a*M2a* ). The remaining indirect effect via both mediators is then E(YaM1aM2a − 

YaM1a*M2a* ). These effects can be identified as

(3)

and

(4)

when
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(i’) the effect of exposure A on outcome Y is unconfounded conditional on C (i.e., 

Yam1m2 ⫫ A|C);

(ii’) the effect of both mediators M1 and M2 on outcome Y is unconfounded 

conditional on A and C (i.e., Yam1m2 ⫫ (M1, M2)|{A = a, C});

(iii’) the effect of exposure A on both mediators is unconfounded conditional on C 
(i.e., (M1a, M2a) ⫫ A|C);

(iv’) the cross-world assumption holds that Yam1m2 ⫫ (M1a*, M2a* )|C.

Unfortunately, these effects provide no insight into the distinct pathways that may exist 

between exposure and outcome.

When the mediators are sequential (i.e., M1 may affect M2 but not vice versa), further 

progress15,21 can sometimes be made by supplementing the previous analysis with a single 

mediator analysis with respect to M1. In particular, if assumptions (i)-(iv) hold with M1 in 

lieu of M, one can additionally identify the natural direct effect E(YaM1a* − Ya*M1a* ). This 

can be decomposed as

where the first component represents the effect mediated by M2 but not M1, and the second 

component can be identified as detailed in the previous paragraph. Such sequential analysis 

thus enables one to infer the direct effect that is not mediated by either M1 or M2 or both, i.e. 

E(YaM1a*M2a* − Ya*M1a*M2a* ), the effect that is mediated by M1, i.e. E(YaM1a − YaM1a* ) 

(including any effect mediated by both M1 and M2), and the effect that is mediated by M2 

but not M1, i.e. E(YaM1a* − YaM1a*M2a* ). However, one important limitation is that the 

causal structure between M1 and M2 (i.e. whether M1 affects M2, or vice versa) is often not 

known when different mediators are assessed at the same time. Moreover, even when 

assumptions (i’)-(iv’) hold, assumptions (i)-(iv) (with M1 in lieu of M) will often not be 

satisfied15. For instance, when both mediators share an unmeasured common cause, as in 

the causal diagram of Figure 1, then M2 confounds the association between M1 and Y, 

thereby inducing a violation of assumption (ii). In that case, the effect mediated via M1 is 

not identified because the data carry no information about the effect of M1 on M2. 

Regression adjustment for M2 provides no remedy because M2 is an exposure-induced 

confounder so that adjusting for it would violate assumption (iv). This problem is important 

because the mediators are strongly related in many applications; for instance M1 and M2 

may represent realisations of a repeatedly measured mediator, or be manifestations of an 

underlying latent process.

In view of these limitations, we will next propose novel definitions of interventional 

(in)direct effects for the multiple mediator setting, which do not have the disadvantage that 

they do not sum to the total effect. The proposed formalism will decompose the total effect 

of exposure on outcome into various path-specific effects. It can be used even when the 

causal structure between the mediators is unknown or when various mediators share 

unmeasured common causes.

Vansteelandt and Daniel Page 6

Epidemiology. Author manuscript; available in PMC 2017 June 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Proposal

We define the interventional direct effect of exposure on outcome other than via the given 

mediators as

(5)

This expresses the exposure effect when fixing the joint distribution of both mediators (by 

controlling the mediators for each subject at a random draw from their counterfactual joint 

distribution with the exposure set at a*, given covariates C). This corresponds to the effect A 
→ Y in the causal diagrams of Figures 1, 2, and 3.

We define the interventional indirect effect of exposure on outcome via M1 as

(6)

This expresses the effect of shifting the distribution of mediator M1 from the counterfactual 

distribution (given covariates) at exposure level a* to that at level a, while fixing the 

exposure at a and the mediator M2 to a random subject-specific draw from the counterfactual 

distribution (given covariates) at level a* for all subjects. The latter is chosen independently 

of M1, so as to avoid assumptions on the joint distribution of the counterfactuals M1a and 

M2a* corresponding to different exposure levels.

The effect (6) corresponds to the effect A → M1 → Y in the causal diagrams of Figures 1 

and 2, and to the combination of the effects A → M1 → Y and A → M2 → M1 → Y in 

Figure 3. The latter can be seen upon noting that the difference P(M1a = m1|c) − P(M1a* = 

m1|c) encodes the combination of the effects A → M1 and A → M2 → M1. The 

interventional indirect effect of exposure on outcome via M1 thus captures all of the 

exposure effect that is mediated by M1, but not by causal descendants of M1 in the graph. 

Interestingly, this interpretation holds regardless of the underlying causal structure.

We define the interventional indirect effect of exposure on outcome via M2 similarly as

(7)

This corresponds to the effect A → M2 → Y in the causal diagrams of Figures 1 and 3, and 

to the combination of the effects A → M2 → Y and A → M1 → M2 → Y in Figure 2. It 

thus captures all of the exposure effect that is mediated by M2, but not by causal descendants 
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of M2 in the graph; again, this interpretation holds regardless of the underlying causal 

structure.

The difference between the total effect and these three effects equals

8

This captures the indirect effect resulting from the effect of exposure on the dependence 

between the counterfactuals M1a and M2a, given C. This effect would be zero when both 

mediators are conditionally independent7, given exposure and covariates, but also under 

much weaker conditions. Under linear models, for instance, this effect can only be non-zero 

when both mediators interact in their effect on the outcome and, moreover, one of the 

mediators interacts with the exposure in its effect on the other mediator. Because of this, we 

would often expect (8) to be much closer to zero than the other components (6) and (7) of 

the indirect effect, though not always (see Section 4).

In some cases, the effect (8) may be of primary scientific interest. For instance, consider the 

mediating roles of cancer stage at diagnosis and treatment in the effect of socioeconomic 

status (SES) on 1-year survival in breast cancer patients. Suppose that the treatment decision 

process takes cancer stage into account in a manner that may be different for women with 

high versus low SES. The resulting effect of SES on 1-year survival that is mediated by this 

possibly differential decision process is encoded in (8).

Regardless of whether the component (8) is of scientific interest, it is important to consider it 

when expressing how much of the exposure effect is explained by specific pathways. For 

instance, in utero tobacco smoke exposure M1 is known to have an effect on asthma and 

wheeze only in children with the GSTM1-null genotype M213. If an intervention to reduce 

smoking during pregnancy were only effective in mothers of infants without the GSTM1-

null genotype, then the intervention would have no indirect effect via smoking. Yet, the 

indirect effect (6) would be non-zero because it would consider the characteristics M1 and 

M2 independently. Only by acknowledging that part of the indirect effect via M1 is also 

expressed by the term (8) may valid conclusions be drawn.

Estimation

Under assumptions (i’), (ii’) and (iii’), the effects (5), (6), (7) and (8) can be identified upon 

substituting E (Yam1m2 |c) by E (Y|a, m1, m2, c) and P (Mja = mj|c) for j = 1, 2 by P (Mj = 

mj|a, c) in the above expressions. Suppose for instance that the outcome obeys model
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and that the mediators (M1, M2), conditional on A and C, have means

with residual variances  j = 1, 2, and covariance σ12. Then the interventional direct effect 

(5) is given by

It equals θ1(a − a*) in the absence of exposure–mediator interactions. Upon fitting the 

appropriate regression models to the observed data, thus obtaining estimates of the above 

parameters, these estimates can be plugged in to the expression above to obtain an estimate 

of the interventional direct effect. The interventional indirect effect (6) via M1 equals

which is θ2β11(a − a*) in the absence of exposure–mediator and mediator–mediator 

interactions. The interventional indirect effect (7) via M2 is

Finally, the indirect effect (8) resulting from the effect of exposure on the mediators’ 

dependence is θ4σ12 − θ4σ12 = 0. The total effect can thus be decomposed into the direct 

effect and the two indirect effects defined above. If instead, A and M1 interacted in their 

effect on M2 in the sense that

then (8) would evaluate to .

This regression approach has the drawback that it requires a new derivation each time a 

different outcome or mediator model is considered. This can be remedied via a Monte-Carlo 

approach, which involves sampling counterfactual values of the mediators from their 

respective distributions. For instance, to evaluate the first component

of (6), one may take a random draw M2a*,i for each subject i from the (fitted) distribution 

P(M2|a*, ci). Next, one takes a random draw M1a,i for each subject i from the (fitted) 
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distribution P(M1|a, ci). Finally, one may predict the outcome as the expected outcome under 

a suitable model with exposure set to a, M1 set to M1a,i, M2 set to M2a*,i, and covariate Ci. 

The average of these fitted values across subjects then estimates the above component. Its 

performance can be improved by repeating the random sampling many times and averaging 

the results across the different Monte-Carlo runs. In practice, we recommend the bootstrap 

for inference.

A health disparity analysis

We illustrate our proposal using data for all 29,580 women diagnosed with malignant, 

invasive breast cancer from 2000 to 2006 in the Northern and Yorkshire Cancer Registry 

Information Service (NYCRIS) – a population-based cancer registry covering 12% of the 

English population – who have information on cancer stage at diagnosis recorded. Our 

analysis is covered by approval PIAG 1-05(c)/2007 entitled ‘Linkage of National Cancer 

Registry data to national Hospital Episode Statistics (HES) data’ held by the Cancer Survival 

Group (LSHTM) which supported this research.

Our aim is to investigate possible explanations for the disparity in breast cancer survival 

between women of higher and lower SES; 95.9% (64.7%) of women with higher SES 

survive to one (five) year(s) after diagnosis, compared with 93.2% (54.1%) in the lower SES 

group. One possible explanation is that women with lower SES are less likely to attend 

screening and as a result, are more likely to be diagnosed when the disease is already more 

advanced. A difference in treatment choice is another possible explanation.

Our analyses are included mainly for illustration and some caution is warranted, as they 

involve several simplifications. In particular, we consider a binary SES exposure (A) which 

is whether or not the woman resides (at diagnosis) in an affluent area. The mediator M1 

comprises age at diagnosis and cancer stage at diagnosis, classified as early (tumor-node-

metastasis [TNM] stage 1/2) or advanced (TNM stage 3/4). The mediator M2 is a treatment 

variable that classifies women either as having ‘major surgery’ or ‘minor or no surgery’. The 

outcome (Y ) is one-year survival from the date of diagnosis. Calendar year at diagnosis and 

region are considered as baseline confounders (C).

All analyses assume that the causal diagram of Figure 4 holds, and are based on 6 million 

Monte-Carlo draws in total (to ensure that the results were free of Monte-Carlo error to the 

number of decimal places given), with the distribution of the two confounders equal to their 

empirical distribution. Standard errors are obtained using the nonparametric bootstrap, with 

1,000 bootstrap samples. Stata code is given in eAppendix D.

Sequential mediation analysis

Details on the sequential mediation analysis of Section 3.1 are given in the eAppendix. The 

results in Table 1 suggest that, of the 2.8% (95% CI 2.3%–3.4%) total difference in survival 

probability, about half of this (1.4%, 95%CI 1.1%–1.6%) is mediated by some combination 

of age and stage at diagnosis and treatment. Assuming that there are no unmeasured 

common causes of age/stage at diagnosis and treatment (i.e. no U in Figure 4), we can 

further decompose this indirect effect into an effect through age/stage (some of which may 

also act through treatment) (1.0%, 95% CI 0.8%–1.2%) and an effect through treatment 
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alone (0.3%, 95% CI 0.2%–0.5%), thus indicating that only a small proportion of the effect 

is through the treatment variable alone.

Multiple mediator analysis based on interventional effects

Without relying on any cross-world assumptions or any assumptions about the causal 

structure of the mediators, thus allowing U in Figure 4, the results in Table 2 (obtained as 

detailed in the eAppendix) suggest that, of the 2.8% (95% CI 2.3%–3.4%) total difference in 

survival probability, about a quarter of this (0.7%, 95%CI 0.5%–0.9%) is mediated by the 

dependence of treatment on stage and age at diagnosis, i.e. (8). Recall that we expected this 

effect to be small, except when there are particular interactions present, as is the case here 

(see eTable 2). Among women of a lower SES, there is a strong negative association 

between stage and treatment, meaning that those diagnosed at an advanced stage are less 

likely to receive major surgery. One possible interpretation would be that doctors and/or 

patients decide that treatment is not likely to be beneficial for patients with advanced 

disease, or that surgical treatment is substantially delayed for these patients due to tumor-

reducing treatments such as chemotherapy being prioritised first. We see from eTable 2 that 

this negative association is much less pronounced for women of higher SES. Therefore, we 

would interpret this estimated 0.7% as the increase in survival that would be expected if the 

treatment decision, as a function of stage and age at diagnosis (and baseline confounders), 

would be made for poorer women as it is currently made for higher SES women. There is 

little evidence of further mediation through the treatment variable (estimated effect 0.02%, 

95% CI: –0.05, 0.08%), and evidence of an effect through age and stage at diagnosis 

(estimated effect 0.7%, 95%CI 0.5%–0.8%). This would suggest that an additional 0.7% 

reduction in one-year mortality for lower SES women could be achieved if the distribution 

of age and stage at diagnosis (given year of diagnosis and region) were changed from that 

seen in lower SES women to that of higher SES women, a change that could perhaps be 

affected by encouraging better uptake of screening and other health-seeking behaviour 

among lower SES women.

Discussion

Most mediation analyses involve multiple mediators, either because of scientific interest in 

multiple pathways, or because certain confounders are mediators at the same time. When the 

mediators are independent7 or can be causally ordered15, but share no (unmeasured) 

common causes, then distinct pathways via those mediators can be identified. We have 

shown that progress can be made even in the likely event that mediators share unmeasured 

common causes, or when the direction of causality is unknown. This is possible by 

redirecting the focus on less ambitious interventional (in)direct effects. In this article, we 

have focused on effects defined on the additive scale. We refer to eAppendix A for similar 

result for effects on other (e.g. multiplicative) scales.

The proposed effect decomposition is relatively easy to perform via a (Monte-Carlo based) 

regression approach. It delivers effects mediated via each of the mediators separately, but 

also via the mediators’ dependence.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Causal diagram 1: M1 and M2 share an unmeasured common cause.
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Figure 2. 
Causal diagram 2: M1 affects M2.
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Figure 3. 
Causal diagram 3: M2 affects M1.
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Figure 4. 
Causal diagram 4: data example.
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Table 1

Results of sequential mediation analysis (CI: confidence interval; SE: standard error)

Effect Interpretation Estimate Bootstrap 95% CI

SE lower upper

E(Y1 – Y0) Total causal effect 0.028 0.0028 0.023 0.034

E(Y1M10M20 – Y0M10M20) Direct effect not through {M1, M2} 0.013 0.0028 0.008 0.018

E(Y1M11M21 – Y1M10M20) Indirect effect through {M1, M2} 0.014 0.0014 0.011 0.016

E(Y1M10 – Y0M10) Direct effect not through M1 0.017 0.0028 0.011 0.022

E(Y1M11 – Y1M10) Indirect effect through M1 0.010 0.0011 0.008 0.012

E(Y1M10 – Y1M10M20) Indirect effect through M2 only 0.003 0.0008 0.002 0.005
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Table 2

Results of multiple mediator analysis based on interventional effects (CI: confidence interval; SE: standard 

error)

Effect Estimate Bootstrap 95% CI

      SE   lower upper

Total causal effect      0.028       0.0028     0.023   0.034

Interventional direct effect not through {M1, M2} (5)      0.013       0.0027     0.008   0.018

Interventional indirect effect through M1 (6)      0.007       0.0008     0.005   0.008

Interventional indirect effect through M2 (7)    0.0002       0.0003 –0.0005 0.0008

Interventional indirect effect through the dependence of M2 on M1 (8)      0.007       0.0009     0.005   0.009
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