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Abstract 

 

Hypoxic environments in the core of tumors can give rise to resistance against anti-cancer 

therapeutics. Oxygen producing biomaterials may be able to improve chemotherapeutic 

efficiency by locally disrupting the hypoxic environment. We hypothesized that gellan gum 

hydrogels could be loaded with both a solid peroxide and the chemotherapeutic drug 

doxorubicin, to release both oxygen and doxorubicin simultaneously. We show that calcium 

peroxide physically crosslinks gellan gum into a hydrogel which, when loaded with catalase, 

raises the dissolved oxygen content of media for up to 64 hours. Additionally doxorubicin 

could be loaded into the hydrogel in situ, allowing release in well-defined quantities.     

 

Main Text 

 

Gellan gum is an FDA approved food additive that has more recently been analyzed for 

hydrogel applications in tissue engineering and regenerative medicine. These applications 

include bone regeneration,
1
 cartilage repair,

2
 intervertebral disc regeneration,

3-4
 neuronal cell 

culture
5-7

 and spinal cord injury therapies.
8
 The divalent calcium cation derived from calcium 

chloride is typically used to physically crosslink gellan gum into a hydrogel structure.
9
 From 

this starting point, we wanted to assess whether calcium peroxide could be used instead of 

calcium chloride, to from physically crosslinked hydrogels capable of releasing oxygen to 

cells in culture without causing toxicity.  

 

Oxygen producing biomaterials are a relatively recently developed phenomenon, which have 

largely focused on the incorporation of solid peroxides for applications in tissue 

engineering
10-11

 or cell transplantation.
12

 The solid peroxide relies on the presence of water to 

produce hydrogen peroxide as an intermediate followed by water and oxygen.
12

 Other oxygen 

producing materials have encapsulated liquid hydrogen peroxide
13

, but both methods rely on a 

catalyst (commonly catalase) to ensure complete conversion to the final oxygen product 

without peroxide induced toxicity. For biological applications solid peroxides must be 

encapsulated in a surrounding matrix because a basic by-product is formed during the reaction 

(Ca(OH)2 in the case of calcium peroxide). Encapsulating materials have consisted of 

polydimethylsiloxane (PDMS),
12

 methacrylated gelatin
14

 or poly(d,l-lactide–co–glycolide).
10-

11
 These materials effectively hold the solid peroxide and byproduct in place and can limit 

water diffusion to the peroxide to try and slow the oxygen release rate.  
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To date, the natural polysaccharide gellan gum has not been investigated for encapsulating a 

solid peroxide for oxygen delivery. Additionally, oxygen producing biomaterials for use in 

anticancer applications has been largely overlooked. Since hypoxia plays an important role in 

cancer drug resistance,
15-16

 oxygen producing materials may potentially be effective at 

disrupting the hypoxic environment of a tumor core. We were therefore interested to see if 

gellan gum hydrogels could also be used to simultaneously deliver oxygen and the 

chemotherapeutic drug doxorubicin.  

 

The aim of this study was to create a dual delivery system that could either deliver oxygen or 

peroxide in conjunction with a model anti-cancer drug, doxorubicin. We hypothesized that 

calcium peroxide could be used to physically crosslink gellan gum into a hydrogel instead of 

the commonly used calcium chloride. Additionally, we hypothesized that doxorubicin could 

be incorporated during the gelation process and be released in defined quantities. The specific 

objectives of this study were to compare gellan gum hydrogels crosslinked with calcium 

chloride (termed control) and calcium peroxide (termed oxyGG) in terms of rheological 

properties and oxygen production. The cytotoxicity of oxyGG with and without catalase and 

with and without prior loading of doxorubicin was also performed.   

 

Four oxygen producing gellan gum hydrogels (oxyGG)(always 1% w/v) were produced using 

varying degrees of calcium peroxide content (w/v) from 0.1% (oxyGG 0.1%), 0.5% (oxyGG 

0.5%), 1% (oxyGG 1%) and 2% (oxyGG 2%). Since divalent cations are required for the 

physical gelation of gellan gum, control hydrogels were produced using 0.5% w/v calcium 

chloride (CaCl2). The hydrogels consisted of gellan gum (Gelzan™ CM, Sigma) dissolved in 

deionized water at 90°C. After cooling to 60°C, HEPES buffer and HCl were added to 

maintain a pH of 7.4 upon the addition of calcium peroxide. Catalase (10 units per gel) was 

then added and lastly the calcium peroxide was added immediately prior to hydrogel casting. 

The reaction solution formed a hydrogel upon cooling to room temperature in a cylindrical 

mold of 8 mm in diameter and 1 mm deep (detailed methods are available in the supporting 

information). The schematic diagram in figure 1 shows a depiction of the five component 

system which relies on the influx of aqueous solution (in this case phosphate buffered saline 

(PBS) or cell culture media) to react with the calcium peroxide to produce hydrogen peroxide 

and in turn oxygen. The presence of catalase within the hydrogel ensures the hydrogen 

peroxide is converted to molecular oxygen and the water byproduct, and is essential of 

maintaining high cellular viability.  

 

The hydrogel is formed via Ca
2+

 ions physically crosslinking the gellan gum network. The 

stiffness of the hydrogel networks (G’ in figure 1c and supporting information figure S1) 

was measured by rheology and it was shown the that all hydrogels formed from CaO2 were 

much less stiff than those formed from 0.5% w/v CaCl2. The lower solubility of CaO2 (only 

1.72g/L at 20
o
C) results in less free Ca

2+
 ions for crosslinking the gel. Simply cooling gellan 

gum back to room temperature without the addition of either CaO2 or CaCl2 did not result in 

hydrogel formation. Upon analysis of the structure of the dehydrated gels by scanning 

electron microscopy (SEM), a distinct difference could be observed between those gels that 

contained calcium peroxide and those containing CaCl2 (figure 1b). The difference in surface 

morphology was particularly apparent for the highest amount of calcium peroxide tested (2% 

w/v), which showed a highly porous structure, presumably due to the large amount of gaseous 

oxygen produced throughout the structure. This change in structure could account for the 

reduced stiffness of the oxyGG 0.5% hydrogels compared to the hydrogels formed with 0.5% 

w/v CaCl2. 
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Figure 1. Oxygen producing gellan gum hydrogels have variable stiffness. A schematic 

depiction (a) of the multi-component hydrogel, containing gellan gum, calcium peroxide 

(CaO2), and catalase which is neutralized and buffered by hydrochloric acid and HEPES 

buffer respectively. SEM images (b) of control hydrogels where calcium chloride is used 

instead of calcium peroxide (CaCl2 (0.5% wt/vol)), in comparison with the oxygen producing 

CaO2 0.5% w/v, and 1% w/v hydrogels showing the change in morphology due to oxygen 

production. Rheological analysis (c) of the different gel compositions showing that control 

hydrogels with CaCl2 (0.5% w/v) are stiffer than all other formulations (n=5, error bars 

removed for clarity). See supporting information for further SEM and rheological analysis.  

 

Oxygen production was analyzed for hydrogels composed of 0.1%, 0.5% and 1% calcium 

peroxide using a PreSens non-invasive oxygen sensor. Catalase is used for the decomposition 

of H2O2 via the Fe
2+

/Fe
3+

 within the catalase, to avoid unwanted side reactions and cellular 

damage.
17 

Catalase was incorporated directly into the gellan gum hydrogel during gelation 

and was not added to the surrounding medium. Oxygen production was analyzed in open 

cuvettes in both normoxic and hypoxic conditions, by first allowing PBS to equilibrate before 

adding the oxyGG hydrogel disks into the cuvette. The oxygen release profile was clearly 

dependent on the amount of calcium peroxide within the hydrogel, and was similar for both 

conditions, but with greater values reached in normoxia (figure 2). In normoxic conditions the 

oxyGG (0.5%) caused a 220% rise in dissolved oxygen content, therefore more than double 

that of PBS left in atmospheric conditions. The oxyGG (1%) hydrogel caused an even greater 

increase in oxygenation (485% rise). The oxyGG (0.5%) and oxyGG (1%) hydrogels resulted 

in oxygen levels that stayed elevated above the PBS control for between 24 and 64 hours, and 

both were longer above the PBS control baseline in hypoxic conditions. The pH of the PBS 

was analyzed over the entire release period in order to check that the hydrogels buffered with 

HEPES did not cause a rise in pH over time. Unlike pure calcium peroxide that caused a rise 

in pH to 10.7 over 72 hours, oxyGG 0.1%, 0.5% and 1% cause no increase in pH over this 

time (see supporting information figure S2). These data show that oxyGG hydrogels can 

deliver large amounts of oxygen into solution for two days without causing a rise in pH. The 

level of oxygen in tumors is highly variable but to give some context for the oxygen 

production herein, primary brain tumors have an oxygen partial pressure of 13 mmHg (≈ 



     

4 

 

0.718 mg/L O2)(normal brain is estimated at 35 mmHg (≈ 1.933 mg/L O2).
18

 It is clear that 

the rise in dissolved oxygen to 15mg/mL by the oyxGG (0.5%) formulation under extreme 

hypoxic conditions represents a large oxygen production, and so was used for further studies 

for cytotoxicity analysis and oxygen delivery in vitro.    

 

 
 

Figure 2. Tunable release of either oxygen or doxorubicin can be achieved from gellan gum 

hydrogels. Oxygen release profiles of oxygen producing gellan gum hydrogels (oxyGG) with 

varying percentage (w/v) of calcium peroxide (indicated in brackets), showing that the oxygen 

release profile can be tuned by varying the calcium peroxide content. The oxygen release in 

normoxic conditions (a) shows higher peak oxygen values for all groups than when the 

oxyGG hydrogels are analyzed in severe hypoxic conditions (0.1% oxygen) (b). The control 

group is a hydrogel formed with calcium chloride for both analyses. Doxorubicin is released 

from the hydrogels over a period of ~ 2 hours, as shown in a representative release curve (c) 

and the final concentration closely corresponds to the initial amount loaded in the hydrogels 

(d) (n=3, error bars represent +/- standard deviation).For oxygen release curves for oxyGG 

hydrogels without catalase please see supporting information figure S8 and S9. 
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Aside from the predominant mechanism of doxorubicin action (intercalating with DNA base 

pairs causing DNA damage (including mitochondrial DNA)),
19

 doxorubicin can also bind cell 

membrane proteins directly causing the production of highly reactive species of hydroxyl 

radicals.
20

 Hypoxia has been shown to reduce the cytotoxic action of doxorubicin via HIF 

related pathways, the induction of MAX dimerization protein 1 (Mad1)
21

 or the induction of 

the multidrug resistance-associated protein 1 gene (MRP1).
22

 It was therefore desired to 

analyze whether doxorubicin could be loaded to the oxyGG hydrogels during gelation and 

what amount of it would be released into the surrounding media. Hydrogels were formed with 

different amounts of doxorubicin varying from 0.635 µg to 5 µg and placed into 1 mL of 

phosphate buffered saline (PBS) and kept at 37
o
C in a sealed cuvette. Cumulative doxorubicin 

release was measured by UV absorbance at 490 nm for 1000 minutes. An example set of 

release curves are shown in figure 2c. The majority of the doxorubicin is released from the 

hydrogels in the first two hours of incubation, probably due to the inert and uncharged 

polysaccharide structure of gellan gum. The final concentrations from three such experiments 

were averaged and plotted in figure 2d which shows that the amount of doxorubicin released 

corresponds almost exactly to the amount loaded during gelation.   

 

With the capacity for dual delivery of both oxygen and doxorubicin we wanted to see if the 

high amount of oxygen released from the oxyGG hydrogels could improve the action of 

doxorubicin against C6 cells in vitro. C6 cells are a rat glioblastoma cell line which have 

previously been used to study the induction of hydroxyl radical (HO
•
) due to treatment with 

doxorubicin.
23

 However, first we analyzed whether the oxGG hydrogels would be inherently 

toxic due to the high level of oxygen production. For this study, primary astrocytes extracted 

from the newborn rat 
24

 were used as a test platform to represent a predominant cell type of 

the brain. Toxicity analysis was performed using a combination of the PrestoBlue assay 

(which measures cell metabolic activity), the Quant-iT PicoGreen assay (which measures total 

DNA content) and light microscopy. Interestingly the cell metabolic activity was far higher 

for astrocytes that are incubated with the oxyGG hydrogels than of those without (hypoxic 

conditions - figure 3a/ supporting information figure S3, and normoxic conditions - 

supporting information figure S4). Since this strong effect was present even after one day, 

an increase in proliferation was unlikely. Indeed, the total DNA content of the wells was not 

increased, but instead was slightly decreased for the oxyGG treatment group for all time 

points except day 6 (figure 3b). Microscopy analysis generally showed little or no changes in 

cell morphology between the groups except that a few patches of cells containing extended 

processes could be observed in the oxyGG group (figure 3c).  

 

Having established that the oxyGG hydrogels appear nontoxic to astrocytes, the dual delivery 

study with C6 was carried out in both hypoxic conditions (figure 3d-f/ supporting 

information figure S5) and normoxic conditions (supporting information figure S6). The 

toxicity of various oxyGG formulations was carried out in comparison to untreated C6 cells 

and doxorubicin treated cells (“Free Dox” group – a concentration of 4 µg/mL was used 

which has previously been shown to be quite toxic to a variety of cancer cells in culture
25

). 

Formulations were also made without catalase (oxyGG – cat) with doxorubicin (+ dox) and 

without doxorubicin (– dox). Similarly to the astrocyte experiment oxyGG (henceforward 

termed oxyGG + cat) caused a significant rise in metabolic activity (figure 3d), reduced total 

DNA content (figure 3e) but did not affect cell morphology (figure 3f). Doxorubicin added to 

the media reduced the cellular metabolic activity to 33% after 1 day in culture. A far larger 

decrease could be obtained by both formulations of oxyGG without catalase indicating that 

they are releasing the reaction intermediate hydrogen peroxide to the cells. By the second and 
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third day, the differences in metabolic activity between the free doxorubicin and the oxyGG – 

cat formulations were smaller. No difference in total DNA content (figure 3e) was observed 

between doxorubicin and the dual delivery groups.  

 

 

 
 

Figure 3. In vitro analysis of the cytotoxicity of various formulations of calcium peroxide 

crosslinked gellan gum (oxyGG). Astrocyte cell metabolic activity (a) is increased by the 

addition of oxyGG, whilst the total DNA content is reduced until day 6 (b). Light microscope 

images of each time point are shown in the supporting information figure S3 with part (c) 

above showing untreated astrocytes (top) and oxyGG treated cells (bottom). The same trend 

is shown for C6 glioma (d + e) and the addition of free doxorubicin vastly reduces the 

cellular viability. Hydrogels formed without catalase (oxyGG – cat) show a further reduction 

in cell metabolic activity at all time points due to hydrogen peroxide release (supporting 

information figure S10). Light microscope images (f) show C6 glioma exposed to various 

treatment groups. All scale bars represent 100 µm, n=4 for all experiments, error bars 

represent +/- standard deviation. Asterisks (*) represent a statistically significant difference 

between cells alone and oxyGG hydrogels (unpaired student t test), whilst daggers (†) 
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represents statistically significant differences between free doxorubicin and the other toxic 

treatment groups (one way ANOVA, with Tukey’s multiple comparisons test).  

 

We had hypothesized that the additional oxygen generated by the oxyGG could enhance the 

toxicity of the doxorubicin. However, the cytotoxic effect of oxyGG + cat + dox group was 

either not different to that of the free doxorubicin group (day 1 and day 3) or even slightly less 

toxic (day 2). We have instead shown that oxyGG hydrogels without catalase are highly 

effective at killing C6 glioma cells in vitro due to the lack of conversion of hydrogen peroxide 

to oxygen. An additive effect of the dual delivery of both peroxide and doxorubicin was 

unfortunately impossible to observe since the oxyGG – cat hydrogels completely killed all the 

cells even after one day in culture.  

 

Due to the highly undesirable side effects of chemotherapy, there is currently much research 

into better delivery of chemotherapeutic agents. Biomaterial delivery systems such as 

nanotubes,
26-27

 nanoparticles,
28-29

 micelles,
30

 and drug eluting devices
31

 are being developed to 

reduce the dose required with the aim of reducing side effects and thus improving 

effectiveness. Herein, our approach has been to develop a material that delivers a defined 

quantity of drug along with oxygen or peroxide in an attempt to improve the efficiency of 

chemotherapeutic drug action. Whilst macroscale implants have been used for controlled drug 

release following brain tumor resection
32

, downscaling this gellan gum hydrogel for injection 

would be highly desirable, though the oxygen and drug release profiles would likely differ 

from the bulk material described herein. Whilst the killing effect of doxorubicin was not 

enhanced via the addition of oxygen to 2D in vitro culture of C6 glioma, it would be 

interesting to investigate whether additive effects are observed in 3D cancer spheroid models. 

Spheroid culture within hydrogel matrixes show higher resistance to doxorubicin treatment, 

even at doses of 4 µg/mL,
25

 and spheroid cultures have been shown to have hypoxic cores, 

which are effected by surrounding oxygen levels.
33-34

 Furthermore, such materials hold the 

potential to affect the efficiency of more oxygen dependent anti-cancer therapy strategies such 

as radiotherapy and photo-dynamic therapy, both of which require oxygen as a means of 

action.
35-36

 Since both radiotherapy and photo-dynamic therapy have been reported to be less 

effective in oxygen partial pressures of 25-30 mmHg (≈ 1.381 mg/L - 1.657 mg/L O2) and 15-

35 mmHg (≈ 0.892 mg/L - 1.933 mg/L O2) respectively, 
37

 oxygen producing materials may 

be able to increase the local oxygen concentration for more effective therapy. 

 

In conclusion we have developed an oxygen producing hydrogel based on the FDA approved 

natural polysaccharide gellan gum. This hydrogel encapsulates the solid peroxide calcium 

peroxide, catalase and doxorubicin if required. The oxygen release profile from the hydrogel 

disks showed elevated oxygen levels for up to 48 hours in normoxic conditions and 64 hours 

in hypoxic conditions, which was highly dependent on the amount of calcium peroxide 

embedded. The hydrogels were non-toxic towards C6 rat glioma cells and primary rat 

astrocytes if cultured in either normoxic or hypoxic conditions. The hydrogels could deliver a 

well-defined amount of doxorubicin to the C6 cells but the cytotoxic effect was not enhanced 

by the simultaneous release of oxygen. By omission of catalase during the gelation step, the 

gellan gum hydrogels become highly toxic due to the lack of conversion of the produced 

peroxide to oxygen. This work shows the first use of calcium peroxide as a crosslinking agent 

for gellan gum. By adjusting a variety of parameters such as the calcium peroxide to catalase 

ratio one could envisage tunable peroxide/oxygen release. Future plans aim to assess the use 

of these materials in three dimensional in vitro models for applications in photodynamic 

therapy where high oxygen/peroxide production may greatly enhance the therapeutic effect.   

 

Supporting Information 
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Supporting Information contains experimental method details and additional data. 
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Oxygen producing gellan gum hydrogels for dual delivery of either oxygen or peroxide 

with doxorubicin 

 

Ben Newland*, Marcel Baeger, Dimitri Eigel, Heike Newland, and Carsten Werner 

 

 

Experimental Section 

 

Materials: 

Gellan gum (Gelrite®) (henceforth termed GG) and all other reagents were purchased from 

Sigma Aldrich unless otherwise stated. Doxorubicin was purchased from LC Laboratories, 

USA. Water used throughout this water was deionized and filtered via the MilliQ ultrapure 

purifier system.  

 

Preparation of the gellan gum hydrogels: 

First 200 mg GG was dissolved in 20 mL water under constant stirring for 30 minutes in order 

to gain a solid content of 1% (w/v). Next, different amounts of CaCl2/CaO2 (Table S1) were 

added to the solution to adjust for different cross linking degrees. In order to buffer the basic 

gels to physiological pH (7.4), 0.1 M HEPES was added before the addition of CaO2 and 

different amounts of HCl (37%) as a 1.2 molar excess (obtained empirically) was added 

afterwards and the pH was checked before any further usage. Beginning with the lowest 

concentration, 2 mL of solution was taken and 100 µL gels were formed in plastic molds 

(cylindrical, ø8 mm). The gels formed when they were allowed to cool down to room 

temperature.  

 

 

 

 

Table S1: Production of the different cross linking degrees 
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Desired solid content 

of CaCl2/CaO2 

Initial solution  Mass of 

CaO2 added 

Vol. removed for 

gel formation 

Added volume of 

HCl (37%) 

0.1% (w/v) 20 mL 1%GG  

 

20 mg 2 mL 30 µL 

0.5% (w/v) 18 mL 1%GG 

0.1% CaCl2/CaO2 

72 mg 2 mL 108 µL 

1% (w/v) 16 mL 1%GG  

0.5% CaCl2/CaO2 

80 mg 2 mL 119 µL 

2% (w/v) 14 mL 1%GG  

1% CaCl2/CaO2 

140 mg 2 mL 209 µL 

 

To produce catalase containing gels, a 5 µL drop of catalase at 2 mg/mL was pipetted into the 

plastic mold before adding the other gellan gum hydrogel components. OxyGG – cat 

hydrogels received 5 µL of water instead (carrier solution for catalase). 1 µL of a 0.5 mg/mL 

doxorubicin stock solution (in water with 0.1% DMSO) was added to the plastic mold before 

addition of the gellan gum to create the oxyGG + dox groups. Experiments with the “free 

doxorubicin” groups received 1µL of the same doxorubicin stock solution directly into the 

cell culture medium.    

 

Rheological Analysis: 

8mm diameter disks of hydrogel were punched from the mold, and placed in PBS prior to 

rheological measurement. The storage modulus (G’) was measured by performing oscillatory 

shear experiments on an ARES LN2 rotational rheometer (TA Instruments, Eschborn, 

Germany). The distance between the oscillatory plates was reduced to 90% of the original gel 

height and then frequency sweeps were performed from 1 to 100 rad/s, at 25 °C with a strain 

amplitude of 2 %. A minimum of six independent experiments were performed and an 

average was calculated.   

Scanning Electron Microscopy (SEM) Analysis: 

The formed GG hydrogels were removed from the molds directly onto specimen stubs, dried 

in a vacuum oven at 37
o
C and sputter-coated with gold for 60 seconds (BALZERS SCD 050 
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Sputter Coater) before imaging. SEM studies were performed using a XL30 ESEM-FEG 

microscope (Philips) in high vacuum mode using accelerating voltages of 5 kV.  

 

Analysis of the Effect of the GG Hydrogels on pH: 

Gels of 0.1%, 0.5% and 1% CaO2 were made up as described and added to 1 ml of PBS in a 

24 well plate. The pH of the PBS was measured over three days using a VARIO
®
 Cond pH 

meter. The equivalent mass of CaO2 which corresponds to a 1% CaO2 hydrogel was used as a 

positive control. 

 

Measurement of Oxygen Release: 

In order to measure the oxygen production of the CaO2 cross-linked gels, the oxygen sensor 

(Presens Oxy-4) was firstly calibrated. The 0% point was set by measuring the O2 level of a 

1% (w/v) sodium sulfite aqueous solution and the 100% point was set by measuring water 

which was oxygenated before by bubbling through air for 30 minutes. The medium in which 

the gels were analyzed was 700 µL PBS which was added to the measuring vial (fitted with a 

Presens spot sensor) one hour before addition of the gel to allow equilibrium to be reached. 

The oxyGG hydrogels were added directly into the measuring vial and analyzed by taking 

measurements every 5 minutes for 72 hours. Studies in severe hypoxia were performed via the 

same set up as described above, but carried out within a hypoxia chamber (Biospherix) set to 

0.1% oxygen held at 37 
o
C.  

 

Analysis of Doxorubicin Release: 

Doxorubicin release from the oxyGG hydrogels (0.5% CaO2) was performed by incubating 

the samples in 1 mL of PBS at 37°C. Cumulative drug release was measured using the 

doxorubicin-associated UV absorbance at 490 nm (Beckman Coulter, DU800, USA) at 

intervals of 15 minutes. oxyGG hydrogels without doxorubicin were used to establish an 
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absorbance reference value which was subtracted from all readings. Three experiments were 

performed and the average value for each concentration of loaded doxorubicin was plotted. 

 

Cell Culture and Cell Viability Analysis: 

Primary cortical astrocytes were extracted from newborn rat brains as previously described
1
, 

and C6 glioma cells (rat) were purchased from Sigma Aldrich. DMEM + GlutaMax (Gibco) 

was used for the culture of C6 cells and DMEM/F12 (Gibco) for the astrocyte cells. Both 

types of media were supplemented with 10% fetal bovine serum (FBS), 0.5% Streptomycin 

and 0.5% Penicillin. The cells were cultured in T75 culture flasks for 3 / 7 days 

(C6/Astrocytes resepectively) in a CO2 incubator (CO2 level: 5%; O2 level: 21%; 37°C) until 

usage for the experiments. 24-well plates were seeded with 10,000 cells per well (C6 glioma) 

or 20,000 cells per well (astrocytes) and were incubated for 24 hours in normoxic or hypoxic 

conditions (Biospherix hypoxia chamber set to 0.1% oxygen) to adhere.  

To analyze the toxicity of the gellan gum hydrogels with varying compositions (i.e. with 

catalase (+ cat), without catalase (- cat), with doxorubicin (+ dox) or without doxorubicin (- 

dox) the 8mm hydrogel disks were placed into the pre-seeded wells. After 24 hours of 

incubation in either normoxic (21% oxygen) or hypoxic (0.1% oxygen), light microscopy 

images were taken (Olympus), then the hydrogels and the media were removed and replaced 

with a 10% PrestoBlue solution in media. After 1 hour incubation 100 µl was transferred to a 

96 well plate for measurement in TECAN plate reader by fluorescence analysis (excitation wl: 

540 nm; emission wl: 590 nm; gain: 70; 3 flashes; lag time: 0µs; integration time: 20µs; room 

temperature). Four replicates were performed and the measurement for blank PrestoBlue (see 

supporting information Figure S7 for variance) was subtracted and the results were 

analyzed with MS Excel and the cell viability was plotted as a percentage of the control group 

of cells receiving no hydrogel. Separate well plates were seeded for each time point of the 

experiment and analyzed as described for the 24 hour incubation. 
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Analysis of Hydrogen Peroxide Production: 

Gellan gum hydrogels of 0.5 % were made up as described above (without and with 5 µL of  

2 mg/mL of catalase) and directly added to 1 mL of PBS in a 24 well plate (n = 4). 

Additionally, four gellan gum hydrogels without catalase were placed in wells, which already 

contained 5µL of catalase (2 mg/mL) in 1 mL of PBS. All gels were then incubated at room 

temperature away from light for 2 hours. Afterwards, 800 µL of the supernatant was removed 

from each GG hydrogel sample and transferred into a new 24 well plate. In order to measure 

the hydrogen peroxide release from the GG hydrogels, a fluorimetric hydrogen peroxide assay 

kit (Sigma Aldrich (MAK 166)). 50 µL of the standard was added to a 96 well plate in 

duplicate. To the same 96 well plate, 50 µL of the removed supernatant was added in 

quadruplicate. The supernatant was diluted if necessary in a ratio of 1:1000 with PBS. 

Subsequently, a so-called Master Mix was prepared, which contained 50 µL of infra-red 

peroxidase, 200 µL (20 units/mL) of horseradish peroxidase and 4.75 mL of assay buffer. 50 

µL of this Master Mix was added to each of the wells (standard, sample and blank) and mixed 

well, whereby the total volume amount in a well was 100 µL. After 20 minutes of incubation 

at room temperature protected from light, the fluorescence intensity was measured using the 

fluorescence plate reader TECAN GENios (excitation wl: 640 nm; emission wl: 680 nm; gain: 

112; 3 flashes; lag time: 0µs; integration time: 20µs; room temperature). The blank for the 

assay was the value obtained for the 0 µM hydrogen peroxide standard. This value was 

subtracted from all readings. The final hydrogen peroxide release concentration of the GG 

samples was determined from the hydrogen peroxide standard curve. 

 

 

Statistical Analysis: 
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This was performed using GraphPad Prism 5 software, using a student’s t test or one way 

analysis of variance (ANOVA). A statistical significant difference between the groups in a 

time point is represented by asterisks (*) or daggers (†) on the graph, corresponding to the 

following P values: * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, ****P≤ 0.0001. Error bars 

represent ± standard deviation.  
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Figure S1 – Rheological analysis of the hydrogels of different compositions after incubation 

in PBS at 37
o
C for 24 hours either without being buffered and neutralized (i.e. just CaO2 

added)(a) or buffered (HEPES and HCl added)(b)showing that the buffering process reduces 

the stiffness of the hydrogels (2% CaO2 gels were not analyzed as they were two fragile to 

handle properly). Corresponding scanning electron microscope images (c) of the hydrogel 

surfaces showing the effect of increasing CaO2 on surface morphology.  

 

 
 

Figure S2 – Analysis of the pH of PBS containing various compositions of oxyGG hydrogels 

in comparison to calcium peroxide (control), showing that despite the production of oxygen 

for ~44 hours (Figure 2a), no change in pH can be observed over this period or beyond.  
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Figure S3 – Representative images of the astrocytes in hypoxic conditions (0.1% oxygen) at 

each time point with (right hand side) or without (left) oxyGG (scale bars = 100 µm).  
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Figure S4 – The metabolic activity of astrocytes cultured with or without oxyGG in normoxic 

conditions as measured by the PrestoBlue assay (n=4 error bars represent +/- standard 

deviation). Representative images of the astrocytes in normoxic conditions with or without 

oxyGG (scale bars =100 µm).  
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Figure S5 – Representative light microscopy images of C6 glioma cells cultured in hypoxic 

conditions (0.1% oxygen) with a variety of oxyGG formulations or free doxorubicin in the 

medium (free dox). (Scale bars = 100 µm)  
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Figure S6 – C6 glioma cell metabolic activity in normoxic conditions after incubation for 1,3 

or 6 days with a variety of oxyGG formulations or free doxorubicin in the medium (free dox).  
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Figure S7 – Analysis of the blank measurements for the PrestoBlue assay for each condition. 

Neither the catalase, doxorubicin nor the oxyGG effect the blank presto blue reading, whether 

the they were first removed from the well (grey bars) or even left in the wells during the 1 

hour PrestoBlue incubation. This shows that they do not interact with the assay to give a false 

positive/negative.  

 

 

 
Figure S8 – Oxygen release profile of oxyGG with catalase (a) and without the addition of 

catalase into the hydrogel (b) in normoxic conditions. 
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Figure S9 – Oxygen release profile of oxyGG with catalase (a) and without the addition of 

catalase into the hydrogel (b) under hypoxic conditions. 

 

 
Figure S10 – oxyGG hydrogels formed without catalase cause hydrogen peroxide release 

whether they are buffered/neutralized (oxyGG – cat) or not buffered/neutralized (-buffer – 

cat). The addition of catalase reduces the hydrogen peroxide to baseline levels (n=4, error 

bars represent +/- standard deviation). 
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Figure S11 – analysis of the addition of the equivalent amount of hydrogen peroxide to the 

oxygen sensing cuvette to that theoretically produced by oxyGG (0.5%). Catalase was also 

added to the media (10 units) to match that contained within oxyGG (0.5%) hydrogels. There 

is a sudden burst release which drops off quickly as all the H2O2 is converted to oxygen and 

water.  
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