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Abstract

Assimilating Gravity Recovery And Climate Experiment (GRACE) data into land hydrological1

models provides a valuable opportunity to improve the models’ forecasts and increases our knowl-2

edge of terrestrial water storages (TWS). The assimilation, however, may harm the consistency3

between hydrological water fluxes, namely precipitation, evaporation, discharge, and water storage4

changes. To address this issue, we propose a weak constrained ensemble Kalman filter (WCEnKF)5

that maintains estimated water budgets in balance with other water fluxes. Therefore, in this6

study, GRACE terrestrial water storages data are assimilated into the World-Wide Water Re-7

sources Assessment (W3RA) hydrological model over the Earth’s land areas covering 2002 – 2012.8

Multi-mission remotely sensed precipitation measurements from the Tropical Rainfall Measuring9

Mission (TRMM) and evaporation products from the Moderate Resolution Imaging Spectrora-10

diometer (MODIS), as well as ground-based water discharge measurements are applied to close the11

water balance equation. The proposed WCEnKF contains two update steps; first, it incorporates12

observations from GRACE to improve model simulations of water storages, and second, uses the13

additional observations of precipitation, evaporation, and water discharge to establish the water14

budget closure. These steps are designed to account for error information associated with the15

included observation sets during the assimilation process. In order to evaluate the assimilation re-16

sults, in addition to monitoring the water budget closure errors, in-situ groundwater measurements17

over the Mississippi River Basin in the US and the Murray-Darling Basin in Australia are used.18

Our results indicate approximately 24% improvement in the WCEnKF groundwater estimates over19

both basins compared to the use of (constraint-free) EnKF. WCEnKF also further reduces imbal-20

ance errors by approximately 82.53% (on average) and at the same time increases the correlations21

between the assimilation solutions and the water fluxes.22
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1. Introduction23

Terrestrial water storage plays an important role in both human life and environment all24

around the world. Quantifying this major water resource is, therefore, essential and can be done25

using different tools including ground-based in-situ measurements, satellite remote sensing data,26

and hydrological models. In the last few decades, hydrological models have extensively been used to27

determine and monitor stored water and fluxes in different forms within landscapes such as ice and28

snow, glaciers, aquifers, soils, and surface waters (e.g., Chiew et al., 1993; Wooldridge and Kalma,29

2001; Döll et al., 2003; Huntington, 2006; van Dijk, 2010). The models have been designed to reflect30

the behavior of a system of interest while satisfying known physical properties reliably (Smith et31

al., 2011). However, various sources of uncertainty, due for example, imperfect modeling, data32

limitations on both temporal and spatial resolutions, errors in forcing fields, as well as empirical33

model parameters, limit the accuracy of hydrological models (Vrugt et al., 2013; van Dijk et al.,34

2011, 2014). Assimilating accurate observations into models is an effective approach to overcome35

these limitations (e.g., McLaughlin, 2002; Zaitchik et al., 2008; van Dijk et al., 2014; Gharamti et36

al., 2016).37

Data assimilation is a procedure for incorporating observations of one or more variables (ac-38

cording to their uncertainties) into a numerical (physical) model to increase consistency of model39

simulations of a certain variable with its changes in the ‘real world’ (Bertino et al., 2003; Hoteit et40

al., 2012). Therefore it has been widely applied in hydrological studies to improve different water41

compartments, such as soil moisture (e.g., Reichle et al., 2002; Brocca et al., 2010; Renzullo et al.,42

2014), surface water (e.g., Alsdorf et al., 2007; Neal et al., 2009; Giustarini et al., 2011), and snow43

storages (e.g., Liu et al., 2013; Kumar et al., 2015). During past few years, some studies have44

assessed the capability of Gravity Recovery And Climate Experiment (GRACE) data, available45

since March 2002, to improve terrestrial water storages (TWS) (e.g., Zaitchik et al., 2008; Eicker46

et al., 2014; Tangdamrongsub et al., 2015; Schumacher et al., 2016; Tangdamrongsub et al., 2017;47

Khaki et al., 2017a,b; Tian et al., 2017) simulated by land (surface) hydrological models.48

The water balance equation is applied in land hydrological models to describe the relationships49
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between changes in water storage (∆s), evaporation (e), precipitation (p), and discharge (q), i.e.,50

∆s = p − e − q (Sokolov and Chapman, 1974). However, the application of data assimilation51

may destroy the dynamical balances between water fluxes and water storage changes (Pan and52

Wood, 2006). In another words, models water storage states are in balance since model structure,53

e.g., its equations, governs variations in the water state changes due to the incoming and outgoing54

hydrological water fluxes. An assimilation of water storage states (e.g., GRACE data) does not55

constraint the assimilated state to be balanced. Eicker et al. (2016) found distinct changes in the56

linear rates and seasonality of water storage from GRACE and the flux deficit (p−e−q) even over57

large-scale river basins. Therefore, after assimilation, one can expect mismatches between the model58

estimation of ∆s and the flux deficit after each assimilation cycle. This issue must be mitigated59

to better interpret model derived water storage changes after implementing data assimilation (see,60

e.g., Roads et al., 2003; Pan and Wood, 2006; Sahoo et al., 2011).61

In order to enhance the estimation of model water storages (e.g., for ∆s), it is important that62

the water variables satisfy the water closure equation. One way to do this is to impose a balance63

constraint based on the water budget equation after each assimilation cycle (Pan et al., 2012).64

Few assimilation schemes have been proposed in this context. Pan and Wood (2006) developed a65

constrained ensemble Kalman filter (CEnKF) based on the ensemble Kalman filter (EnKF; Evensen,66

1994) to solve the disclosure of the water balance equation after implementing a data assimilation67

over the southern Great Plains region of the United States. In addition to using CEnKF, Sahoo et68

al. (2011) and Pan et al. (2012) applied a data merging algorithm to prepare the datasets for data69

assimilation and to check for imbalance over various major river basins. They merged data from70

different sources (e.g., in situ observations, remote sensing retrievals, land surface model simulations,71

and global reanalyses) so that their errors can be used to achieve optimal weights leading to the72

best estimates for each terrestrial water cycle. These data were then used to resolve water balance73

errors by applying CEnKF (see also Zhang et al., 2016). In these studies, information about the74

uncertainties associated with water balance observations, however, have not been incorporated75

during data assimilation. The strong constraint imposed by assuming observation to be perfect is76

unrealistic and can cause estimation errors such as over-fitting issues (Tangdamrongsub et al., 2017).77

This motivates the new filtering technique, which is proposed in this study to involve observation78

errors in the assimilation procedure.79

In this study, a new constrained ensemble Kalman filter, which we refer to as weak constrained80
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ensemble Kalman filter (WCEnKF), is introduced that satisfies the closure of the water balance81

equation while taking the uncertainties in datasets into the account. WCEnKF is formulated based82

on the EnKF and imposes the closure constraint as a second update step, where the EnKF analysis83

members are updated to remain in balance with other variables (hereafter called pseudo-observation,84

and includes p, e, and q through the water balance equation). Water storages are therefore first85

updated using GRACE observations as in the EnKF in the first step, and the broken water balance86

is then mitigated using the pseudo-observations in the second EnKF update step. The novelty of87

the proposed scheme is that it accounts for the uncertainties in the pseudo-observations so that88

the budget closure is not strongly imposed. Moreover, in contrast to existing schemes, the filter89

does not seek to redistribute the imbalance between all compartments (i.e., ∆s, p, e, and q) and90

only adjusts the already estimated water storage (∆s). WCEnKF treats p, e, and q and their91

uncertainties as a new set of observations, similar to any other observation in a standard EnKF.92

The imbalance problem requires a particular formulation of the state-space system, for which the93

process does not only depend on the state at the filtering time but also on the previous time.94

The proposed WCEnKF with the dual update steps is used to assimilate GRACE TWS data95

into the World-Wide Water Resources Assessment (W3RA) hydrological model globally during96

2002 – 2012. In addition to GRACE TWS data, remotely sensed measurements of p and e are also97

used to constrain the water balance in the filter estimates. For this purpose, we use the Tropical98

Rainfall Measuring Mission (TRMM-3B43; Huffman et al., 2007) precipitation products for p, the99

Moderate Resolution Imaging Spectroradiometer (MODIS) evaporation data (MOD16; Mu et al.,100

2007) for e, and the water discharge measurements from various ground stations for q. Although101

the imbalance constraint is spatially limited to locations, where ground-based discharge data are102

available, the Kalman-like second update step of WCEnKF spreads the imbalance adjustments to103

all model grid points. For a better presentation of results, we choose eight globally distributed104

major basins with a dense network of water discharge measurements and analyze the assimilation105

solution separately over each basin. Among these basins, the Mississippi River Basin and the106

Murray-Darling Basin are selected subject to the availability of ground-based data to evaluate the107

performance of WCEnKF against in-situ groundwater measurements.108

The remainder of this paper is organized as follows. We first describe the model and data in109

Section 2. The filtering technique and the data assimilation setup are then described in Section110

3. Section 4 presents the assimilation results, analyses the filter estimates and water budget clo-111
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sure (Subsection 4.3), and evaluates the estimates against in-situ data (Subsection 4.2). Finally,112

summary and conclusions are provided in Section 5.113

2. Model and Data114

2.1. W3RA Hydrological Model115

We use a grid distributed biophysical model of W3RA from the Commonwealth Scientific116

and Industrial Research Organisation (CSIRO). The model is designed to simulate landscape water117

stored in the vegetation and soil systems (van Dijk, 2010). The 1◦×1◦ version of W3RA is applied118

to represent the water balance of the soil, groundwater and surface water stores, in which each cell119

is modeled independently from its neighbors (van Dijk, 2010; Renzullo et al., 2014). The model120

parameters include effective soil parameters, water holding capacity and soil evaporation, relating121

greenness and groundwater recession, and saturated area to catchment characteristics (van Dijk et122

al., 2013). Forcing datasets consist of the daily meteorological fields of minimum and maximum123

temperature, downwelling short-wave radiation, and precipitation by Princeton University (Sheffield124

et al., 2006). The model state is composed of storages of the top, shallow root and deep root soil125

layers, groundwater storage, and surface water storage. The simulation covers the period from126

April 2002 to December 2012.127

W3RA represents the storage of water in small river channels and consequently surface water128

storage changes in reservoir and lakes are not simulated by the model. Therefore, it is necessary to129

remove surface water storages from GRACE TWS data before assimilation even though it has much130

lesser effects than other water storages such as groundwater and soil moisture. For this purpose, we131

use the WaterGAP Global Hydrology Model (WGHM; more details on Döll et al., 2003) surface132

storage estimations. WGHM models the vertical and horizontal water fluxes on a 0.5◦×0.5◦ grid133

resolution and describes the major hydrological components, such as snow accumulation, runoff,134

and the lateral transport of water within the river networks (Forootan et al., 2014). The surface135

water storages from WGHM are removed from the GRACE TWS before assimilation. Note that136

after updating the model states using the adjusted GRACE data (first update step in WCEnKF),137

the removed surface water storages are added to the filtered TWS estimates before applying the138

water budget closure step (second update step).139
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2.2. Terrestrial Water Storage (TWS) Data140

Monthly TWS derived from GRACE level 2 (L2) gravity field data are used in the first step141

of the proposed filtering scheme to update the summation of the model derived water storage simu-142

lations including top soil, shallow soil, deep soil water, snow, vegetation, and groundwater. GRACE143

data are provided in terms of the gravity potential Stokes’ coefficients, truncated at spherical har-144

monic degree and order 90, together with their full error information from the ITSG-Grace2016145

gravity field model (Mayer-Gürr et al., 2014). Some post-processing steps are applied on the coeffi-146

cients before converting them into TWSs. Degree 1 and degree 2 (C20) coefficients are replaced by147

more accurate coefficients that are calculated by Swenson et al. (2008) and the Satellite Laser Rang-148

ing solutions (Cheng and Tapley, 2004), respectively. We also apply DDK2 (Kusche et al., 2009)149

to mitigate colored/correlated noise in the coefficients. The L2 gravity fields are then converted to150

1◦×1◦ TWS fields following Wahr et al. (1998). The mean TWS is taken from the model for the151

study period and is added to the GRACE TWS change time series to obtain absolute values in ac-152

cordance with W3RA (Zaitchik et al., 2008). We further exploit the provided full error information153

of the Stokes’ coefficients to construct an observation error covariance matrix for data assimilation.154

This is done by converting GRACE spherical harmonic error coefficients to error covariances asso-155

ciated with TWS data as suggested by Eicker et al. (2014) and Schumacher et al. (2016). Eicker156

et al. (2014) showed that applying GRACE TWS data on a 1◦×1◦ grid resolution results in a rank157

deficiency problem during data assimilation (see also Khaki et al., 2017b). However, as shown by158

Khaki et al. (2017b), the application of local analysis (LA) successfully mitigates this problem by159

spatially limiting the use of ensemble-based covariance information in high-dimensional systems.160

Therefore, here, we follow Khaki et al. (2017b) and apply LA to cope with rank deficiency problem161

(see details in Section 3.3).162

2.3. Water Fluxes163

Precipitation data of TRMM-3B43 products (TRMM, 2011; Huffman et al., 2007) is used.164

This dataset is limited spatially between 50◦N and 50◦S in latitude, and −180◦ to +180◦ in longi-165

tude. The data is re-sampled from 0.25◦×0.25◦ to a monthly 1◦×1◦ spatial resolution. We also use166

the relative error available for each gridpoint and different times (Huffman et al., 1997).167

We also acquire MOD16 evaporation data from the University of Montana’s Numerical Ter-168

radynamic Simulation group with eight days temporal resolution and one km spatial resolution169
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(Mu et al., 2011). The gridded data is converted to a monthly temporal scale and 1◦×1◦ spatial170

resolution. Following Aires (2014) and Munier et al. (2014), 10 mm uncertainty is considered for171

the evaporation data.172

Different data sources are used to provide water discharge data with a maximum global coverage.173

In this regard, the largest part of runoff products (1970 globally distributed stations) is acquired174

from the Global Runoff Data Centre (GRDC). Over Africa, 83 stations are obtained from SIEREM175

(Systeme d’Informations Environnementales sur les Ressources en Eau et leur Modelisation), an176

environmental information system for water resources (Boyer et al., 2006). In additions, two dense177

networks of discharge stations over the United State (3800 stations), Southeast Asia (1700 stations),178

and Australia (1250 stations) are provided from the United States Geological Survey (USGS), China179

Hydrology Data Project (Henck et al., 2010; Schmidt et al., 2011), and the Australian Bureau of180

Meteorology under the Water Regulations (2008). In addition, a number of discharge stations181

are also obtained from the National River Flow Archive (NRFA), Department of Hydrology and182

Meteorology of Nepal, the Hydrology and Geochemistry of the Amazon basin (HYBAM) for the183

Amazon, Orinoco, and Congo basins. Figure 1 shows the locations of discharge stations distributed184

globally.185

As mentioned, the water budget closure relies on p, e, and q. Wherever a discharge station is186

located, it is possible to impose water budget closure adjustment. At each 1◦×1◦ grid point we use187

the nearest discharge stations to spatially interpolate the observations q. To this end, an average188

of data from discharge stations located within 0.5◦ radius of each grid point is assigned to this189

grid point. Since no straight information on the data uncertainty is available, two approaches are190

applied here to specify errors on the data. Sheffield et al. (2009) suggested that the standard errors191

in the gauge-based data are 5% to 10% of the discharge values and Pan et al. (2012) proposed a192

formula to estimate the discharge error for a basin within a given area A as,193

RelativeError (%) = 5
(A1 −A)

(A1 −A2)
+ 5, (1)

where A1 and A2 are the areas of Amazon Basin (4.62× 106km2) and Ural Basin (0.19× 106km2),194

respectively. Here we use eq. (1) to assign errors to discharge stations located in the major basins195

of Amazon, Indus, Mississippi, Orange, Danube, St. Lawrence, Murray-Darling, and Yangtze, and196

10% of discharge value for any station outside of these areas as suggested by literature (e.g., Pan197
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et al., 2012; Aires, 2014; Munier et al., 2014).198

FIGURE 1

2.4. In-situ Measurements199

In addition to monitoring water budget closure errors using the water fluxes observations,200

we use in-situ groundwater measurements over the Mississippi Basin and Murray-Darling Basin201

to evaluate the performance of the proposed filter. The distribution of groundwater well stations202

is presented in Figure 2. In the Mississippi Basin, independent data are collected from USGS.203

Additional measurements are provided for the Murray-Darling Basin by the New South Wales204

Government (NSW) groundwater archive. Monthly well measurements are acquired and time series205

of groundwater storage anomalies are generated. Generally, a specific yield is required to convert206

well-water levels to variations in groundwater storage regarding equivalent water heights (Rodell207

et al., 2007; Zaitchik et al., 2008). This information, however, is not available in our case, so TWS208

variation from GRACE and Global Land Data Assimilation System (GLDAS) soil moisture are209

used to calculate the specific yield and scale the observed headwater by modifying the magnitude210

of groundwater time series (Tregoning et al., 2012; Tangdamrongsub et al., 2015). As Tregoning et211

al. (2012) showed, the GW component can be extracted by removing the soil moisture component212

from GRACE TWS data while other compartments like biomass and surface water variations can213

be excluded due to their small contribution to regional scale mass variations. The calculated specific214

yields range between 0.08 and 0.16 over the Murray-Darling Basin, falling within the 0.05–0.2 range215

suggested by the Australian Bureau of Meteorology (BOM) and Seoane et al. (2013), and range216

between 0.15 and 0.22 over the Mississippi Basin along with those suggested by Gutentag et al.217

(1984) (i.e., 0.1 to 0.3), thereby justifying the application of the method. Using extracted yield218

factors, one can extract the groundwater components from the measured well-water levels. The219

scaled groundwater time series are then used to evaluate the data assimilation results over each220

basin. To this end, we compare groundwater estimates after data assimilation with ground-based221

groundwater measurements. Details of the datasets used in this study are outlined in Table 1.222

FIGURE 2
223

TABLE 1
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3. The Weak Constrained Ensemble Kalman Filter (WCEnKF)224

3.1. Problem Formulation225

Let {xt}Tt=0 ∈ Rnx denote the (unknown) system state process formed by top soil, shallow226

soil, deep soil water, snow, vegetation, and groundwater. Note that except for groundwater, all227

the other components are simulated with two hydrological response units (HRU) of tall, e.g., deep-228

rooted vegetation and short, e.g., shallow-rooted vegetation, which leads to 11 state variables229

(5× 2 + 1) of W3RA at each grid cell (24509 cells in total). Although in general, t refers to model230

time steps, for the sake of simplicity, we assume that the model time step is equal to the assimilation231

time step (monthly scale). {yt}Tt=0 ∈ Rny represents the GRACE TWS observed process. The state232

and observed processes are related through a dynamical state-space system of the form,233 xt = Mt−1(xt−1) + νt,

yt = Htxt + wt,
(2)

for which the state transition operator, M(.), is nonlinear. H is the (observation) design matrix234

containing 11 ones in each of the 24509 rows, representing the sum of the individual compartments235

to TWS at each grid cell with all the other elements of the rows being zero (total 269599 columns).236

The proposed scheme can be easily extended to the case of nonlinear observation operator (i.e.,237

in which Htxt is replaced by ht(xt)), as for example discussed in Liu and Xue (2002). The state238

transition noise process, ν = {νt}t, and the observation noise process, w = {wt}t, are assumed239

to be independent, jointly independent, and independent of the initial state, x0. Furthermore, x0,240

νt, and wt are assumed to be Gaussian; νt and wt with zero mean and covariances Qt and Rt,241

respectively.242

Data assimilation can destroy the balance between water fluxes. It is therefore essential to243

incorporate the water balance equation by imposing an equality constraint to restore the balance244

problem. Changes in monthly mean water storage at two different time steps (e.g., t and t − 1)245

should be equal, up to uncertainties in the involved data, to the difference between the monthly246

mean input (p) and output (e and q) water storages. This can be formulated as:247

dt = −xt + xt−1 + pt − et − qt + ξt, (3)

where {ξt}t is the noise process accounting for errors associated with the different water fluxes248
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data. Here we assume ξt Gaussian white noise with zero mean and covariance Σt, and independent249

of x0 and {wt}t. Defining zt = dt − pt + et + qt, the constraint eq. (3) is rewritten as,250

zt = Gxt + Lxt−1 + ξt, (4)

where G, in general, is the nx × nx (with nx being the length of x) identity matrix while in this251

study G = H to aggregate different water compartments at each grid point and L = −G.252

In the constrained state-space system eqs. (2) – (4), we focus on the filtering problem, say,253

on the estimation, at each time t, of the system state, xt, conditional on both GRACE TWS254

observations, y0:t
def
= {y0,y1, · · · ,yt} and “pseudo-observations” z0:t. Let rt = [yT

t , z
T
t ]T . As255

known in the Bayesian estimation theory, the computation of any estimator of xt from r0:t is based256

on the so-called posterior (filtering or analysis) probability density function (pdf), p(xt|r0:t). For257

instance, the posterior mean (PM) estimator, x̂t|t, which minimizes the mean squared error, is given258

by259

x̂t|t = E[xt|r0:t],

=

∫
xtp(xt|r0:t)dxt. (5)

The conditional independence property of the system eqs. (2) – (4) enables for efficient recursive260

computation of this analysis pdf. Indeed, starting at time t−1 from p(xt−1|r0:t−1), one can compute261

p(xt|r0:t) following forecast and update steps as follows:262

• Forecast step. The state transition pdf, p(xt|xt−1), is first used to compute the forecast pdf263

as (e.g., Ait-El-Fquih et al., 2016),264

p(xt|r0:t−1) =

∫
p(xt|xt−1)p(xt−1|r0:t−1)dxt−1. (6)

• Update step with the GRACE TWS data. Once available, the observation yt is first used to265

update forecast pdf, p(xt|r0:t−1) as,266

p(xt|r0:t−1,yt) ∝ p(yt|xt)p(xt|r0:t−1), (7)

10



  

and267

p(xt−1|r0:t−1,yt) ∝ p(yt|xt−1)p(xt−1|r0:t−1). (8)

While the likelihood p(yt|xt) in the update (7) is given through the observation model,268

p(yt|xt−1) in (8) is not known and needs to be computed beforehand as,269

p(yt|xt−1) =

∫
p(yt|xt)p(xt|xt−1)dxt. (9)

By ignoring the pseudo-observations, z0:t−1, in eqs. (7) – (8), these equations translate270

as a one-step-ahead (OSA) smoothing process, which computes the OSA smoothing pdf,271

p(xt−1|y0:t), from the previous analysis pdf p(xt−1|y0:t−1) (Ait-El-Fquih et al., 2016). For272

simplicity, we refer to pdf p(xt−1|r0:t−1,yt) as the OSA smoothing pdf (note that the actual273

OSA smoothing pdfs are p(xt−1|r0:t), p(xt−1|y0:t) or p(xt−1|z0:t)).274

• Update step with zt. The pdf p(xt|r0:t−1,yt) that stems from the update of the forecast pdf275

with yt (eq. (7)) is in turn updated with zt based on the Bayes’ rule, leading to the analysis276

pdf of interest:277

p(xt|r0:t) ∝ p(zt|xt,yt, r0:t−1)p(xt|r0:t−1,yt). (10)

The unknown likelihood p(zt|xt,yt, r0:t−1) is computed beforehand as,278

p(zt|xt,yt, r0:t−1) ≈
∫
p(zt|xt,xt−1)p(xt−1|r0:t−1,yt)dxt−1. (11)

3.2. The WCEnKF algorithm279

In this section, the WCEnKF algorithm is described in three stages. The definition starts280

with the forecast step, in which the previous analysis ensemble state is integrated forward with281

the model to obtain the forecast ensemble. Two analysis (update) steps are then performed. The282

first updates, following a Kalman filter-like correction, the forecast ensemble based on the GRACE283

TWS data; the second update uses information of the water budget closure to perform a second284

Kalman filter-like correction, leading to the analysis ensemble of interest.285

From previous section, it is not possible to analytically compute the integrals in eqs. (5) – (11)286

because of the nonlinearity of the model M(.). We therefore derive an EnKF solution (Evensen,287

1994; Hoteit et al., 2015) by applying the standard random sampling properties 1 and 2 listed in288
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Appendix A. Starting at time t − 1 from an analysis ensemble, {xa,(i)
t−1 }

n

i=1
, the analysis ensemble289

at next time (t), {xa,(i)
t }

n

i=1, can be computed by the following cycles of forecast and update steps.290

• Forecast step. A forecast ensemble, {xf,(i)
t }

n

i=1, is first computed by integrating {xa,(i)
t−1 }

n

i=1
,291

forward in time with the model:292

x
f,(i)
t =Mt−1(x

a,(i)
t−1 ) + ν(i), (12)

where ν(i) is a random sample from the Gaussian N (0,Qt).293

• Update with GRACE TWS data (first update). Once a new observation yt is available, new294

ensemble {x̃a,(i)
t }

n

i=1 and {x̃s,(i)
t−1 }

n

i=1
are then computed using an EnKF update of the forecast295

ensemble and the previous analysis ensemble:296

y
f,(i)
t = Hx

f,(i)
t + w(i); w(i) ∼ N (0,Rt), (13)

x̃
a,(i)
t = x

f,(i)
t + P

xf
t
HT [HP

xf
t
HT + Rt]

−1[yt − y
f,(i)
t ]︸ ︷︷ ︸

µ
(i)
t

, (14)

x̃
s,(i)
t−1 = x

a,(i)
t−1 + P

xa
t−1,x

f
t
HTµ

(i)
t . (15)

The covariance matrices P
xf
t

and P
xa
t−1,x

f
t
, are evaluated beforehand from the previous anal-297

ysis and forecast ensembles as,298

P
xf
t

= (n− 1)−1S
xf
t
ST
xf
t

, (16)

P
xa
t−1,x

f
t

= (n− 1)−1Sxa
t−1

ST
xf
t

, (17)

where Sxa
t−1

and S
xf
t

are the perturbation matrices (i.e., matrices with n columns formed by299

the ensemble members minus the ensemble mean). Eqs. (14) and (15) are EnKF updates of300

x
f,(i)
t and x

a,(i)
t−1 , respectively. These updates are achieved based on yt, with Kalman gains301

P
xf
t
HT [HP

xf
t
HT +Rt]

−1 (eq. (14)) and P
xa
t−1,x

f
t
HT [HP

xf
t
HT +Rt]

−1 (eq. (15)). The x̃
a,(i)
t302

is based on yt only, and a second update with zt is still required. The index ‘∼’ is used for303

the first update to distinguish it from the second one.304

• Adjustment with the water budget constraint (second update). The pseudo-observation, zt,305

is then used to update {x̃a,(i)
t }

n

i=1, again using an EnKF update, leading to the actual state306

12



  

analysis ensemble of interest:307

z
f,(i)
t = Gx̃

a,(i)
t + Lx̃

s,(i)
t−1 + ξ

(i)
t ; ξ

(i)
t ∼ N (0,Σt), (18)

x
a,(i)
t = x̃

a,(i)
t + P

x̃a
t ,z

f
t
[NPηtN

T + Σt]
−1[zt − z

f,(i)
t ], (19)

with N = [G,L], the cross-covariance P
x̃a
t ,z

f
t

is evaluated from the ensembles {x̃a,(i)
t }

n

i=1 and308

{zf,(i)t }
n

i=1, as in eq. (17), and the covariance Pηt is computed from the augmented state309

ensemble {η(i)
t }

n

i=1, where η
(i)
t = [(x̃

a,(i)
t )T , (x̃

s,(i)
t−1 )T ]T , as in eq. (16). As one can see, eq.310

(19) translates an EnKF update of x̃
a,(i)
t , based on the pseudo-observation zt, where gain is311

P
x̃a
t ,z

f
t
[NPηtN

T + Σt]
−1, leading to x

a,(i)
t , the state analysis ensemble of interest.312

The PM eq. (5) estimate is then approximated by the sample mean of the resulting analysis313

ensemble. As discussed in the introduction, the pseudo-observations are only available at the314

discharge observations locations, but the Kalman update eq. (18) spreads the information to315

the whole state vectors. A schematic illustration of the filter algorithm is presented in Figure316

3.317

Similarly to the standard CEnKF of Pan et al. (2012), the proposed WCEnKF involves one318

forecast step and two successive update steps. The two filters have the same forecast and first319

update (with observation yt) steps, and only differ in their second update (adjustment with pseudo-320

observation zt)). The state update mechanism eqs. (18) – (19) is more general than the one in Pan321

et al. (2012), as the latter does not involve the OSA smoothing ensemble, {x̃s,(i)
t−1 }i in eq. (18), eq.322

(19) and assume no noise (ξ
(i)
t = 0) in eq. (18) and its covariance Σt = 0 in eq. (19). As such,323

CEnKF can be considered as a direct particular case of WCEnKF. As stated above, accounting for324

uncertainties in the constraint allows avoiding a perfect pseudo-observation model scenario, which325

should help mitigating for over-fitting issues. The OSA smoothing terms (e.g., x̃
s,(i)
t−1 in eq. (18))326

come from the fact that the pseudo-observation, zt, in the constraint eq. (4) is not only function327

of xt but also of xt−1.328

FIGURE 3
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3.3. Experimental Setup329

All the water fluxes data (including p, e, and q) are accumulated to a monthly scale and330

used in the monthly assimilation processes. The monthly increment (i.e., the difference between331

the monthly averaged GRACE TWS and simulated TWS) can be added to each day of the current332

month, which guarantees that the update of the monthly mean is identical to the monthly mean of333

the daily updates. In practice, the differences between the predictions and the updated states are334

added as offsets to the state vectors at the last day of each month to generate the ensembles for335

the next month assimilation step. Given that not enough information are available to accurately336

estimate the pseudo-observation error covariance Σ, especially for q, to test the sensibility we337

consider the error values mentioned in Section 2.3 as reference errors and test with three different338

Σ: (1) the reference errors values minus 5% of observation values, (2) reference errors, and (3)339

the reference errors plus 5% of observation values. We further assume the observation errors to be340

spatially uncorrelated. This test allows us to analyze the influence of the pseudo-observations on341

the final results.342

To generate an initial ensemble to start the filtering process, we follow Renzullo et al. (2014)343

and perturb the meteorological forcing fields. To this end, we assume a Gaussian multiplicative344

error of 30% for precipitation, an additive Gaussian error of 50Wm−2 for the shortwave radiation,345

and a Gaussian additive error of 2◦C for temperature (Jones et al., 2007; Renzullo et al., 2014).346

The initial ensemble is then computed by sampling the above Gaussian distributions (see details347

in Renzullo et al., 2014). We, then, integrate the resulting ensemble (with 30 members) forward348

with the model from January 2000 to April 2002 to generate the initial ensembles at the beginning349

of the study period. An ensemble of 30 members is selected as it was found large enough to obtain350

sufficient ensemble spread at reasonable computational cost.351

We further apply ensemble inflation and localization to enhance the filters performances (e.g.,352

Anderson et al., 2007). These techniques were proven to be useful in dealing with neglected un-353

certainties in the system and small ensembles (e.g., Hamill and Snyder, 2002; Bergemann and354

Reich, 2010). Ensemble inflation with a best case coefficient factor of 1.12 (after testing different355

values) is applied here to increase the ensemble deviation from the ensemble-mean (Anderson et356

al., 2007). Local Analysis (LA) (Evensen, 2003) is used to restrict the impact of the measurements357

in the update step to variables located within a certain distance only (5◦ as suggested by Khaki et358

al., 2017b). By spatially limiting the influences of observations over large distances in the sample359
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covariance, LA can help mitigating spatial correlation errors and rank deficiency problem during360

the assimilation (see Khaki et al., 2017b, for more details). This is particularly useful to account361

for the spatial correlation errors in satellite products, particularly GRACE (Khaki et al., 2017b;362

Tangdamrongsub et al., 2017).363

4. Results364

We first investigate the effects of different scenarios applied for errors associated with the365

fluxes in Section 4.1. In Section 4.2, we evaluate the performance of WCEnKF against in-situ366

groundwater measurements over the Mississippi River Basin in the US and the Murray-Darling367

Basin in Australia. To further assess the behavior of the proposed WCEnKF, we compare its368

results with the standard EnKF for predicting water storages. Then, in Section 4.3, we analyze the369

assimilation results and the performance of the proposed filter in enforcing the balance between370

water fluxes, e.g., we assess the behaviour of the filters in dealing with water balance problem.371

4.1. Error Sensitivity Analysis372

We first analyze the effects of the different datasets, i.e., both the GRACE TWS and pseudo-373

observations on the filter estimates. The incorporation of the pseudo-observations in the second374

update step of the filter modifies the contribution of GRACE TWS data on the state estimations.375

As such, the three different covariance error matrices (cf. Section 3.3) of p, e, and q would cause376

that both the GRACE TWS and pseudo-observations contribute differently. For each grid point,377

we calculate the correlations between the filter estimations of TWS and the water fluxes p, e, and378

q as well as the assimilated GRACE TWS data. The results along with the average imbalance379

errors (from the water balance equation) are presented in Table 2. It can be seen that applying380

the first case with minimum error values, as it is expected, leads to a higher correlation between381

the filter estimates and other water fluxes. The least imbalance error is also achieved in this case.382

However, in general, increasing the impact of water fluxes in the second step of the filter decreases383

the correlation between the estimates and GRACE TWS data. This suggests, as we expected, a384

trade-off between the effects of observations in the first and second step of the filter according to the385

values of Σ. In the third scenario, for example, applying pseudo-observations with larger errors leads386

to smaller correlations with the water flux observations and larger correlation to the GRACE TWS387

data. Note that we also applied a similar test for p, e, and q with zero error (such that CEnKF),388
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which resulted in the least imbalance error. Nevertheless, this case leads to larger errors compared389

to groundwater measurements compared with the three scenarios above. Therefore, hereafter, we390

only present the results associated with the second scenario (with no additional errors on those that391

are initially assumed). This case is found to lead to better results when groundwater estimates from392

each scenario are compared to independent groundwater in-situ measurements (details in Section393

4.2).394

TABLE 2

4.2. Assessment against In-situ Data395

The estimated groundwater storage obtained from each filter is compared to the post-396

processed in-situ measurements of groundwater changes (cf. Section 2.4) over the Mississippi Basin397

and Murray-Darling Basin. To this end, the estimated groundwater storages, as well as model-free398

run (without data assimilation) are spatially interpolated to the location of the in-situ measurements399

using the nearest neighbour (the closest four grid values). The groundwater misfits (errors) between400

the in-situ measurements and those of the EnKF and WCEnKF are then computed. Figures 4401

and 5 plot the resulting bias, namely, differences between groundwater estimated by the filters402

and in-situ measurements, and STD (of the calculated differences) for the Mississippi Basin and403

Murray-Darling Basin, respectively.404

FIGURE 4
405

FIGURE 5

For both basins, the estimated biases are significantly decreased when the proposed WCEnKF406

filter is applied. The average estimated bias using WCEnKF is 23.14 mm for the Mississippi Basin407

and 26.89 mm for the Murray-Darling Basin, indicating an average of 22.10% and 26.38% bias im-408

provements compared to the EnKF. Despite this, we found that the correlation between the filters’409

estimated groundwater and in-situ groundwater time series are large for both basins. An average410

of 0.76 (at 95% confidence interval) for both basins is achieved, which means that assimilating only411

GRACE data (as in the EnKF) is good for estimating annual and inter-annual variations, but not412

enough to accurately recover their amplitudes. The error reduction using WCEnKF is also notice-413
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able in the STD. WCEnKF decreases the uncertainties in the Mississippi Basin and Murray-Darling414

Basin by 48.87% and 35.19%, respectively.415

For every grid point within each basin, we calculate the Root-Mean-Squared Error (RMSE) and416

also the correlation between in-situ measurements and filters results. Note that cross-correlation is417

applied to account for lag differences between the time series. We further undertake a significance418

test for the correlation coefficients using t-distribution. The estimated t-value and the distribution419

at 0.05 significant level are then used to calculate a p-value. The calculated p-values for the420

correlations in Table 3 lie under 5% indicating coefficients are significant. Table 3 summarizes421

these results. The Assimilation of the GRACE data using WCEnKF increases the correlation from422

0.72 (EnKF) to 0.84 over the Mississippi Basin and from 0.68 to 0.79 for the Murray-Darling Basin.423

While both filters significantly improve groundwater estimates with respect to model-free run (48.13424

on average), the larger RMSE improvements of 15.02% and 16.71% for the Mississippi Basin and425

the Murray-Darling Basin, respectively, suggest the enhancement gained from the proposed two-426

updates filter against the one-update filter.427

TABLE 3

Furthermore, two analyses are undertaken on the forecast steps to investigate which filter is428

more efficient in keeping observations effects within the system states. Generally, a filter with better429

forecasts can perform better during an experiment. We calculate average RMSE of groundwater430

estimates at forecast steps for the Mississippi and Murray-Darling Basins and compare them with431

those of model-free run (Table 4). It can be seen that both filters reduced RMSE values, while432

WCEnKF outperforms the EnKF scheme (approximately 12%). We also compute correlations433

between TWS forecast estimates, both by filters and model-free, and water fluxes (i.e., p, e, and434

q). A similar analysis as Table 3 is done to control the significance of correlation coefficients.435

Average correlations over the basins of Amazon, Indus, Mississippi, Orange, Danube, St. Lawrence,436

Murray-Darling, and the Yangtze (cf. Figure 1) are listed in Table 4. Based on the correlation437

values, it is evident that WCEnKF achieves larger correlations with respect to the EnKF. The438

proposed filter obtains improved agreement between the assimilation results and the fluxes.439

Furthermore, to statistically investigate the difference between average correlation values, ANOVA440

(analysis of variance; Nelson, 1983; Ullman, 1989) method is applied. The method shows how mean441
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values are different. For every flux correlation, the null hypothesis is that the average correlation442

for the model-free, EnKF, and WCEnKF are equal. ANOVA tests the above hypothesis at 0.05 sig-443

nificance level. Our experiment indicates that the means are not equal, thus, ANOVA in the second444

step determines which correlations are different (to the level of significance). After implementing445

the later step, the EnKF result demonstrates a significantly larger difference from the model-free446

and WCEnKF. In sum, Table 4 shows that WCEnKF successfully assimilates data sets into the447

system, which also leads to a better forecast.448

TABLE 4

4.3. Water Balance Enforcement449

In the following, we analyze the results of the filter estimates using the second scenario450

from Section 4.1 in terms of their relationship to the observations and more importantly water451

budget closure. Figure 6 shows the results for the comparison between the assimilation results452

and GRACE TWS data. For each grid point, we calculate the average discrepancy and correlation453

between the two TWS time series. Results indicate that the error between the model and GRACE454

data is about 26 mm, which is 69% less than those resulting from the free-run (model runs without455

assimilation) and 13% higher than data assimilation results using the (one-update) EnKF scheme.456

This means that the application of the second update step, in some cases, decreases the effects of457

GRACE data by enforcing the balance between water fluxes. Figure 6b, in general, suggests a high458

correlation between the filter estimates and observations. Nevertheless, again, smaller correlations459

are found in places with a denser discharge stations corresponding to better imbalance control (e.g.,460

central to northern of Asia). Much smaller correlations are observed between GRACE TWS and461

the model-only results (0.47 on average). Nevertheless, the EnKF provides 11% higher correlation462

to observations. This is due to the effects of the second update step of the proposed filter.463

FIGURE 6

The above results could be explained by the correlations between the filter estimates and two464

water fluxes data, i.e., precipitation and evaporation. Indeed, as one can see in Figure 7, the465

locations where a high correlation is achieved, are places where the second step of the filter affects466
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more due to the availability of discharge data (cf. Figure 1). Approximately 33% and 44% larger467

correlation coefficients for p and e, respectively, are achieved in the areas where water balance468

adjustment is used compared with other areas. This illustrates that forcing water balance condition469

into the assimilation process increases the agreement between model outputs and other water fluxes470

on the one hand, and may change the effects of the GRACE data on the model on the other hand.471

FIGURE 7

The average imbalance at each grid point is plotted in Figure 8. The figure clearly demonstrates472

how the water budget enforcement spatially influences the imbalance between ∆s and fluxes. It473

can be seen that wherever a dense network of water discharge stations exists (cf. Figure 1), e.g.,474

North America, Southeast Asia, and West Australia, a smaller imbalance between all compartments475

occurs. For other areas, the imbalance is much larger because the second analysis step of WCEnKF476

cannot be applied due to the lack of discharge data and the method simply performs as the EnKF.477

Therefore, this highlights the effect of the second step of WCEnKF in dealing with imbalances.478

This confirms the previous results that the second update step in WCEnKF increases the agreement479

between the assimilation outputs and the water fluxes, which results in water imbalance decreases.480

FIGURE 8
481

TABLE 5

Table 5 summarizes the average correlations between the estimated TWS data and water fluxes,482

p, e and q, and the average estimated imbalance errors as suggested by the EnKF and WCEnKF.483

Note that we only compare the filters’ performances over the points in which discharge data is484

available. WCEnKF successfully increases the correlation between the results and water variables485

of p, e and q with average improvements of 33%, 44%, and 45%, respectively. This leads to a486

significant imbalance reduction of approximately 82% (suggesting an error of 18.31 mm compared487

to 62.17 mm for the EnKF).488

Next, in order to further investigate the data assimilation results, we focus on the major basins489

of Amazon, Indus, Mississippi, Orange, Danube, St. Lawrence, Murray-Darling, and the Yangtze490

(cf. Figure 1). Due to variability of various water fluxes over different areas, these have different491
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characteristics and behaviors with various contributions through the second update of the filter492

(Figure 9). Figure 9 illustrates the contribution of each water flux in the water budget closure of493

the basins. This shows how each variable incorporates in the water balance equation differently494

over each basin. Generally the larger contributions are found for p and e for all basins. q has a495

larger contribution over the Amazon Basin and relatively small impacts on the Orange Basin and496

St. Lawrence Basin. The estimated water storage change (∆s) effects, however, vary significantly497

between the basins. It is shown in Figure 9 that ∆s has larger influences over Mississippi, Danube,498

and Murray-Darling Basins. The share of ∆s in each basin is affected by incorporating p, e and499

q into the second step of WCEnKF, which is significantly different from the one estimated by the500

EnKF.501

FIGURE 9

Figure 10 presents the average ∆s as they result from the EnKF and WCEnKF over each basin.502

It can be seen that the application of water balance adjustment in the filtering process results in503

a considerable difference between the estimated TWSs. The larger correlations between the two504

solutions in the Mississippi Basin (0.50) and St. Lawrence Basin (0.47) indicate less influence of505

the water budget constraint in these basins. However, the weak agreements between the EnKF506

and WCEnKF results, with about 0.34 correlation on average, suggest a large impact of water507

balance enforcement on the process. This remarkable difference is expected to have a large effect508

on imbalance issue for each basin (Figure 11).509

FIGURE 10

The spatial average time series of imbalance between ∆s and fluxes for each basin are shown510

in Figure 11 for the EnKF and WCEnKF. In all the cases, the new filter successfully decreases the511

imbalance in comparison to the EnKF. The EnKF results in larger water balance problem in the512

Mississippi and Danube basins, while the proposed WCEnKF suggests the best performances over513

these two basins with average imbalance reductions of 87% and 84%, respectively. We also compute514

the standard deviation (STD) of each time series (cf. Figure 11). The large range of calculated515

STD in the EnKF (10.9 mm) is reduced to 5.64 mm by applying WCEnKF. Furthermore, the516

proposed filter appropriately improves disagreement between all compartments, both in terms of517
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magnitudes and STDs. Figure 11 further suggests the importance of implementing the water518

balance adjustment. The absolute (average) imbalance without using this approach is 67.08 mm,519

and a large part of it is directly connected to the estimated TWS. The WCEnKF data assimilation520

decreases this value to approximately 14.45 mm, which leads to both better estimation of TWS521

and higher agreement with the other water fluxes.522

FIGURE 11

5. Summary and Conclusions523

GRACE TWS data are assimilated into W3RA covering 2002 – 2012 to improve model524

outputs and satisfy the terrestrial water budget balance. For that purpose, we propose a two-update525

weak constrained EnKF (WCEnKF) scheme that enforces water budget closure using the water526

fluxes. WCEnKF shows a good performance in integrating GRACE TWS data into the system527

(first update) and constraining the water balance equation (second update). Larger correlations528

in terms of groundwater estimates are found between assimilation results using the two-update529

filter (14.10% average) and ground-based observations, compared with those of the model-free. We530

also achieve 21.12% (on average) groundwater RMSE reductions using WCEnKF compared with531

EnKF. The application of the proposed filter shows an ability in imposing the water budget closure532

constraint as demonstrated by higher correlation of the estimated TWS changes to the p, e, and533

q (0.33, 0.44, and 0.45, respectively), as well as an imbalance reduction, i.e., from 62.17 mm using534

the traditional EnKF, to 18.31 mm (82.53% improvement).535

There are some key factors that affect the performance of WCEnKF. Most importantly errors536

associated with pseudo-observations can largely alter the results. It is very difficult to achieve537

spatio-temporal variations of error characteristics of each water budget component. This study538

assesses three different error scenarios and investigates their impact on the results. However, the539

assumptions that are made, especially using a fixed uncertainty, might be inappropriate or some-540

times strong since various data sets have performed differently within different areas. Therefore,541

more investigations are still needed to fully assess the filter’s capability in terms of data uncertain-542

ties, applying multiple data sets for each variable (e.g., p, e), and using other types of observations543

such as soil moisture for data assimilation.544
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Appendix A. Some useful properties of random sampling550

Property 1 (Hierarchical sampling; Robert, 2006). Assuming that one can sample from p(x1)551

and p(x2|x1), then a sample, x∗2, from p(x2) can be generated by drawing x∗1 from p(x1) and then552

x∗2 from p(x2|x∗1).553

Property 2 (Conditional sampling; Hoffman et al., 1991). Consider a Gaussian pdf, p(x,y), with554

Pxy and Py denoting the cross-covariance of x and y and the covariance of y, respectively. Then555

a sample, x∗, from p(x|y), can be generated as, x∗ = x̃ + PxyP
−1
y [y − ỹ], where (x̃, ỹ) ∼ p(x,y).556

Appendix B. Derivation of the WCEnKF algorithm557

The equation (12), which computes the forecast ensemble {xf,(i)
t }

n

i=1 from the previous analysis558

one, is obtained by applying Prop. 1 above to the forecast step (6). Regarding the first update559

step (with yt), one first applies Prop. 1 on the following formula,560

p(yt|r0:t−1) =

∫
p(yt|xt)︸ ︷︷ ︸
N (Htxt,Rt)

p(xt|r0:t−1)dxt,

to sample the observation forecast ensemble, {yf,(i)
t }

n

i=1, as in eq. (13). Prop. 2 is then used in561

eqs. (7) to obtain the ensembles {x̃a,(i)
t }

n

i=1 (eq. (14)) and {xs,(i)
t−1 }

n

i=1
, respectively. For the second562

update step (with zt), one first uses Prop. 1 in eq. (11), with p(zt|xt,xt−1)
(4)
= N (Gxt+Lxt−1,Σt),563

to obtain the pseudo-observation forecast ensemble {zf,(i)t }
n

i=1 (eq. (18)), then Prop. 2 in eq. (10)564

to compute the state analysis ensemble {xa,(i)
t }

n

i=1 (eq. (19)).565
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Figure 1: Distribution of water discharge stations used in this study.
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(a)

(b)

Figure 2: Locations of groundwater stations within (a) the Mississippi Basin in the US (a) and (b) the Murray-Darling
Basin in Australia.
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Figure 3: A schematic illustration of the WCEnKF filter’s steps applied for data assimilation in this study.
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Figure 4: Average bias and STD of the groundwater results from the EnKF and WCEnKF data assimilation filters
over the Mississippi Basin with respect to the in-situ groundwater measurements.
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Figure 5: Average bias and STD of the groundwater results from the EnKF and WCEnKF data assimilation filter
over the Murray-Darling Basin with respect to the in-situ groundwater measurements.
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(b)

Figure 6: (a), Temporal average of misfits between the summation of TWS from WCEnKF and the GRACE TWS
time series at each grid point, and (b), The correlation between the two TWS time series.
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Figure 7: Correlation between the data assimilation results and p (a) and e (b) time series at each grid point.

39



  

mm

Figure 8: Temporal average of imbalance errors.
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Figure 9: Contributions of each water flux in water budget closure over different basins.
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Figure 10: Spatial average time series of ∆s from each filter over different basins (units are mm). Shaded areas
represent ensemble spreads of water storage change time series. Correlation values of WCEnKF and EnKF are
depicted on the figure.
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WCEnKF

Figure 11: Average imbalance error time series calculated using the EnKF and WCEnKF filters for each basin (units
are mm).
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Table 1: A summary of the datasets used in this study.

Description Platform Data access

Terrestrial water storage (TWS) GRACE https://www.tugraz.at/institute/ifg/downloads/

gravity-field-models/itsg-grace2014/

Daily accumulated precipitation (p) TRMM-3B42 http://disc2.gesdisc.eosdis.nasa.gov/data/TRMM_

L3/TRMM_3B42_Daily.7

MODIS Global Evapotranspiration (e) MOD16 http://www.ntsg.umt.edu/project/mod16

Water discharge (q) GRDC http://www.bafg.de/GRDC/EN/Home/homepage_node.

html

q http://www.hydrosciences.fr/sierem/consultation/

choixaccess.asp?lang=en

q USGS https://waterdata.usgs.gov/nwis/sw

q http://www.bom.gov.au/waterdata/

q NRFA http://nrfa.ceh.ac.uk/data/

q http://www.ore-hybam.org/

q http://www.hydrology.gov.np/new/bull3/index.php/

hydrology/home/main

Hydrological model W3RA http://www.wenfo.org/wald/data-software/

Groundwater in-situ measurements USGS https://water.usgs.gov/ogw/data.html

NSW http://waterinfo.nsw.gov.au/pinneena/gw.shtml
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Table 2: Average correlations and errors between the water storages estimated by WCEnKF and water fluxes ob-
servations of p, e and q as well as GRACE TWS data considering three different error values used in the data
assimilation process. “Ref” in table refers to the reference errors (described in Section 3.3)

Correlation

Error level p e q GRACE TWS Imbalance error (mm)

(1) Ref-5%(observation) 0.78 0.83 0.76 0.77 12.05

(2) Ref+0%(observation) 0.65 0.72 0.69 0.84 18.31

(3) Ref+5%(observation) 0.61 0.63 0.58 0.89 37.24
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Table 3: Summary of the evaluation results from each filter and model-free run against the groundwater in-situ
measurements over the Mississippi Basin and Murray-Darling Basin. For each case the RMSE average and its range
(±XX) at the 95% confidence interval is presented.

Mississippi Basin Murray-Darling Basin

Method RMSE (mm) Correlation RMSE (mm) Correlation

EnKF 56.74±6.12 0.72 41.58±6.48 0.68

Improvement (%) regarding model-free 38.41 36.11 48.96 47.06

WCEnKF 48.22±5.63 0.84 34.63±5.27 0.79

Improvement (%) regarding model-free 47.66 45.23 57.49 54.43

Improvement (%) regarding EnKF 15.02 14.28 16.71 13.92
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Table 4: Average RMSE results (with their ranges ±XX at the 95% confidence) by each filter at forecast steps and
model-free run compared to the groundwater in-situ measurements over the Mississippi Basin and Murray-Darling
Basin. Table also contains correlations between TWS estimated by the methods at forecast steps and water fluxes.

RMSE (mm) Correlation

Method Mississippi Basin Murray-Darling Basin p e q

Model-free 92.13±12.39 81.46±10.67 0.95 0.86 0.83

EnKF 74.53±8.82 62.71±9.25 0.56 0.53 0.49

WCEnKF 65.48±7.18 47.91±7.95 0.94 0.82 0.85
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Table 5: Average correlation between the assimilation results (summation of water storages) and the data of p, e
and q. The average imbalance errors provided by each filtering method are also indicated.

Correlation

Method p e q Imbalance error (mm)

EnKF 0.32 0.28 0.24 62.17

WCEnKF 0.65 0.72 0.69 18.31

Improvement (%) 50.76 61.11 65.21 70.55
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In the present study, a new constrained ensemble Kalman filter, which we refer to as 
weak constrained ensemble Kalman filter (WCEnKF), is introduced that satisfies the 
closure of the water balance equation. The proposed WCEnKF contains two update 
steps; it first incorporates observations from Gravity Recovery And Climate 
Experiment (GRACE) to improve model simulations of water storages, and second, it 
uses the additional climatic observations of precipitation, evaporation, and also 
ground-based water discharge to establish the water budget closure. 
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Highlights: 

 

 

• We propose a new data assimilation filtering technique called a weak constrained 

ensemble Kalman filter (WCEnKF) 

• We assimilate GRACE data to improve a hydrological model estimations  

• The water budget closure is impose in the filtering process 

• Independent in-situ measurements are used to evaluate the results 

• WCEnKF significantly decreased the water budget imbalance error 

 


