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Abstract

Aircraft structural damage detection is becoming of increased importance. Technologies such as acousto-ultrasonic have

been suggested for this application; however, an optimization strategy for sensor network design is required to ensure a
high detection probability while minimizing sensor network mass. A methodology for optimizing acousto-ultrasonic

transducer placement for adhesive disbond detection on metallic aerospace structures is presented. Experimental data

sets were acquired using three-dimensional scanning laser vibrometry enabling in-plane and out-of-plane Lamb wave
components to be considered. This approach employs a novel multi-sensor site strategy which is difficult to achieve with

physical transducers. Different excitation frequencies and source–damage–sensor paths were considered. A fitness

assessment criterion which compared baseline and damaged data sets using cross-correlation coefficients was developed
empirically. Efficient sensor network optimization was achieved using a bespoke genetic algorithm for different network

sizes with the effectiveness assessed and discussed. A comparable numerical data set was also produced using the local

interaction simulation approach and optimized using the same methodology. Comparable results with those of the
experimental data set indicated a good agreement. As such, the numerical approach demonstrates that acousto-

ultrasonic sensor networks can be optimized using simulation (with some further refinement) during an aircraft design

phase, being a useful tool to sensor network designers.
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Introduction

There is increasing pressure on the aviation industry to

reduce greenhouse emissions resulting from airline

operations. Although the aerospace industry is not cur-

rently the greatest contributor,1 historical trends show

that global air travel and hence potential emissions are

doubling every 15 years.2

Emissions can be lowered by reducing the mass of

the primary structure leading to lower overall fuel burn

throughout the aircraft’s operational lifecycle. This can

be achieved using adhesive bonding techniques in place

of traditional mechanical fastening methods which have

increased strength to mass ratios while having improved

structural performance and integrity.3,4 Despite the

mass, cost and manufacturing benefits of bonded

joints,5 there is lack of engineering confidence in their
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use,6 particularly in the hostile environments that the

bond will experience (i.e. varying temperatures, water

ingress and high levels of humidity).7–9 This has led to

over engineered, heavy design solutions10 typically

using adhesives combined with arrestment fasteners.11

Past failures of in-service adhesively bonded

joints12,13 have demonstrated that regular monitoring

of the bonded joints is required to ensure structural

integrity. It is proposed that an ‘as required’ inspection

program could be employed through the installation of

a structural health monitoring (SHM) sensor network

which has many advantages over traditional non-

destructive testing (NDT) techniques14 as well as deli-

vering mass savings if designed concurrently with the

aerostructure.15

Acousto-ultrasonic (AU) induced Lamb waves are a

long-established technique for detecting damage in

structures.16,17 The technique involves exciting a trans-

ducer mounted to the structure, inducing a Lamb wave

which is sensed by another transducer mounted else-

where on the structure. If damage occurs at any point

in the source-sensor path, the wave propagation is

altered resulting in a quantifiable difference in the sig-

nal received.

Sensor network design is an important consideration

for ensuring a high probability of damage detection and

structural integrity while ensuring additional weight

penalties (from redundant sensors), power demands

and computational requirements are minimized.

Many studies to optimize SHM sensor networks

have been conducted but few use an empirical

approach, particularly for the optimization of AU

sensor networks. Genetic algorithms (GAs) have been

widely used for optimizing the placement of sensors

because of their ability to converge on the global

optima.18–20 Guo et al.21 used an improved GA to

assess the fitness derived from a Fisher information

matrix for placing strain gauges on truss structures to

identify changes in stiffness caused by damage in a

finite element model. Worden and Burrows19 applied a

neural network technique to classify damage and opti-

mize sensor locations from a finite candidate set on a

cantilever plate. Optimization was achieved using cur-

vature algorithms, simulated annealing and GAs which

showed consistent agreement, although it was stated

that the GA showed greatest potential. A Bayesian

approach to minimize type I or type II (false positive

or false negative) errors was applied to optimal sensor

placement of an active SHM system by Flynn and

Todd22 for simplistic structures. A GA was used to

search the global optimality criterion achieving sensor

networks which maximized the probability of detection

and reduced the probability of a false alarm. Gao and

Rose23 used a covariance matrix adaptation evolution-

ary strategy to optimize sensor locations for ultrasonic

guided wave networks on realistic aircraft structures.

This novel technique showed performance gains over

random networks, identifying areas of high probability

of damage producing a sensor network that provided a

suitable trade-off between miss-detection probability,

number of sensors and performance.

Downey et al.24 developed an optimal placement

strategy for the placement of strain gauges within a

hybrid dense sensor network to monitor local changes

of in-plane strain over a global area. A multi-objective

approach was taken to reduce the occurrence of type I

and type II error which was formulated as a single

objective problem by linear scalarization. This was

interrogated by a learning gene pool GA and the opti-

mal placement of the sensors was verified experimen-

tally for known load cases.

Fang et al.25 tackled the problem of optimal modal

sensor placement for wireless sensors using a cluster-

based approach with the objective of reducing power

used by the network for monitoring truss structures.

Studies were conducted both experimentally and

numerically with the network optimized by a GA.

Using this approach, the power demands of the system

were able to be reduced when compared to previous

approaches.

Huang et al.26 applied GAs to find the optimal num-

ber of temperature and strain sensors for monitoring

structures in harsh environments. The network was

optimized for numerical and experimental scenarios

with considerations for a trade-off between cost and

measurement accuracy. A good agreement was found

between the numerical and experimental studies.

This article begins by presenting a description of an

experimental investigation into AU sensor location for

the monitoring of an adhesively bonded stiffener with

and without a disbond. The results of an optimization

study based on the use of a GA are then presented with

consideration of both the out-of-plane and in-plane

components of the Lamb waves. With a view to devel-

oping a network design technique to be used as part of

the component design process, a computational model

of the same adhesively bonded component is conducted

using a local interaction simulation approach (LISA).

The results from optimization using the modelled data

are then presented and explored, drawing comparisons

between the experimental and computational investiga-

tions. A series of recommendations are then made on

how the methodology presented could be used for the

concurrent design of a structure and sensor network.

Experimental setup

3D scanning laser vibrometry was used to obtain the

experimental data set to optimize AU sensor locations

on a stiffened aluminum panel.
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Panel manufacture and geometry

A 3 mm 6082-T6 aluminum alloy plate was bonded

using commercially available Araldite� 420 adhesive to

a 6082-T6 aluminum alloy unequal angle stiffener to

construct the stiffened panel, as shown in Figure 1.

The dimensions of the panel were chosen to reduce

the effects of edge reflections. The film thickness of the

adhesive was regulated using 0.1 mm copper wire

gauges, achieving optimal shear strength following

manufacturer’s recommendations.27

A geometrically similar second panel with an

induced disbonded region of 25.4 mm in length at the

centre of the stiffener, across its width, was also manu-

factured. PTFE tape was installed to induce the dis-

bonded region prior to applying the adhesive. The tape

was removed once the adhesive had cured. A square

region of 625 mm 3 625 mm in the centre of each

panel on the face with the stiffener was designated the

investigation region, as shown in Figure 2.

A commercially available PANCOM Pico-Z (resonant

band 200–500 kHz) transducer was acoustically coupled

to the panel using Loctite� Ethyl-2-Cyanoacrylate adhe-

sive at the five excitation sites on the left-hand boundary

of the investigation region shown in Figure 1. Multiple

excitation sites enabled the effectiveness of the

transducer-disbond path to be investigated, in effect

simulating different disbond positions relative to a single

transducer site. The distance of the left-hand boundary

to the stiffener was selected to reduce the effects of edge

reflections on the transmitted wave while also allowing

sufficient distance from the measurement, ensuring

Lamb waves had fully formed.28 The transducer used

was selected because of its flat, broadband response in

the frequency range under investigation (200–500 kHz)

and its relatively small face, making it more representa-

tive of a point source. A photograph of the experimental

setup is presented in Figure 3.

Experimental parameters

A 10-cycle sine burst was generated by Mistras Group

Limited (MGL) WaveGen function generator software

Figure 1. Dimensions of the stiffened panel, excitations sites

and scan area (all dimensions in millimeter).

Figure 2. Layout of the area of investigation.

Figure 3. Experimental setup.

Marks et al. 3



connected to MGL mdisp/NB-8 hardware. A 160 V

peak-to-peak excitation amplitude was used to create

high velocity Lamb wave oscillations. Three excitation

frequencies were selected for this experiment: 100, 250

and 300 kHz, to investigate the interaction of a range

of wavelengths (presented in Table 1) with the defect.

Although the 100 kHz excitation fell outside of the

resonance range of the sensor, it had previously demon-

strated useable results.29 A 10 V peak-to-peak signal

was also generated and used as a reference for trigger-

ing the acquisition of the vibrometer. A repetition rate

of 20 Hz was used, giving sufficient time for the

induced wave energy and reflections to fully dissipate

before taking the next measurement.

A Polytec PSV-500-3D-M vibrometer with three laser

heads was used to measure the in-plane and out-of-plane

vibration components at each scan point. As measure-

ments are taken by three heads, it is less important for

the laser heads to be perpendicular to the structure under

test than with a 1D system. A sampling frequency of

2.56 MHz per channel was used which gives sufficient

resolution for reconstructing the wave with a high level

of fidelity (hence excitation frequencies above 300 kHz

were not considered due to the constraint of the maxi-

mum sampling frequency of the vibrometer). To increase

the signal-to-noise ratio, 200 measurements at each point

were taken and the signals were averaged.

825 vibrometer measurement points were set up

within the investigation region (as shown in Figure 2)

which was coated with retro-reflective glass beads to

improve the back-scatter of the laser light and hence

the quality of the signal. No measurement points were

positioned within a 25 mm wide region on either side of

the stiffener due to the positioning of the laser heads

which resulted in the stiffener casting a shadow where it

was impossible for all three lasers to align. There were

also no measurement points positioned in a 78 mm

wide region to the right of the excitation sites as shown

in Figure 1 to save acquisition time as preliminary tests

had demonstrated insignificant findings in this region.

During testing, each panel was laid on ‘bubble wrap’

to acoustically uncouple it from the floor. Measurements

were taken on each panel using the laser vibrometer to

produce two data sets, with and without the induced dis-

bonded region. Positioning relative to laser head was

ensured by a series of markers laid within the laboratory

and on the panels. A low-pass front end filter was set at

20 kHz above the excitation frequency to filter out high-

frequency noise.

Signal processing

In order to determine the presence of damage, and

hence develop a metric to establish the optimal sensor

positions, the signals measured by the vibrometer were

post-processed using a comparative technique.

Integration

The laser vibrometer measures the velocity of the wave

whereas sensors bonded to the structure typically mea-

sure the displacement. In order to make this optimiza-

tion study more representative of the input received by

sensors bonded to the structure, all velocity signals were

integrated to obtain the displacement signals.

Cross-correlation

The cross-correlation technique has been proven to be a

successful statistical method for quantifying differences

between two waveforms and is therefore well suited to

identifying the presence of damage in an AU system.30

Typically, a value of unity for the cross-correlation

coefficient indicates that the received waves are identi-

cal, and hence, there is no damage present. A value less

than unity identifies differences in the waveforms and

thus the likely presence of damage.

By calculating the cross-correlation coefficient for

the out-of-plane component of the Lamb wave for each

measurement point (with and without the induced dis-

bonded region – example waveforms presented in

Figure 4), it was possible to produce five data sets (one

for each excitation site). It is evident from visual inspec-

tion of the waveforms in Figure 4 that they are differ-

ent; thus, a cross-correlation coefficient of 0.7445 was

calculated due to the presence of the disbonded region.

For further comparison of the waveforms and the

influence of the stiffener, the reader is referred to the

authors’ previous work.29

Figure 5 shows the cross-correlation coefficients at

each measurement point for the 100 kHz excitation at

excitation site 3, demonstrating areas of low cross-

correlation coefficient resulting from the presence of the

disbond. The out-of-plane component of the Lamb

wave was primarily considered as it is the principle com-

ponent being excited and sensed by bonded transducers.

Three-component cross-correlation

The x, y and z components of the wave at each mea-

surement point were acquired. In order to enable the

Table 1. The calculated wavelengths for each excitation

frequency.

Frequency (kHz) A0 wavelength (mm) S0 wavelength (mm)

100 15 55
250 9 22
300 8 18
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optimization algorithms to consider all three compo-

nents, the vector sum of the cross-correlation coeffi-

cients was calculated and divided by O3, as shown in

equation (1), making the results comparable with the

out-of-plane results

CCMag =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ccxð Þ2 + ccy
� �2

+ cczð Þ2
q

ffiffiffi

3
p ð1Þ

Time window

The data sets (with and without the induced disbonded

region) were originally correlated for the entire sample

length of the measurements (1.6 ms). This however

produced low cross-correlation coefficient values at all

measurement points due to the reflections and refrac-

tion patterns caused by the disbond. To improve the

correlation, a 200 ms time window was used, capturing

mainly the transmitted wave, reducing effects of reflec-

tion. The start of the time window was determined by

an amplitude threshold value of 40% of the maximum

amplitude value in the first 700 ms of the entire sample

length for each respective measurement point of the

data set without the disbonded region. The 40%

threshold level was determined by assessing the peak of

the first wave received (the first wave received was

lower than the peak due to transducer inertia) while

ensuring that it was not triggered by any background

noise which was found to work well. A 14% pre-trigger

was applied at the point which the wave amplitude

crossed the threshold, ensuring that the start of the

transmitted wave was captured, to determine the start

of the window as demonstrated in Figure 6.

Optimization

Using each cross-correlation data set for each excitation

site, it was now possible to form a methodology for the

optimization of the sensor locations. On reviewing the

literature, the authors are not aware of any studies that

adopt an optimization strategy using waveforms from

healthy and damaged structures based on empirical AU

data, as presented.

One fundamental issue with any optimization prob-

lem is the design of the fitness function (also known as

a cost function, or objective function) to interrogate

when seeking optimal solutions. In this case, the fitness

function needed to assess the performance of a sensor

placed at a discrete location to detect damage from any

excitation site.

Fitness function

Each sensing location had five cross-correlation coeffi-

cient values (one for each excitation site). In the case of

a one-sensor network, it was possible to calculate the

fitness of a sensor location using the fitness function

shown in equation (2)

Figure 4. Comparison of out-of-plane waveforms from a measurement point to the right of the stiffener, in-line with excitation site

3: (a) healthy panel and (b) panel with the disbonded region.

Figure 5. Cross-correlation plot for excitation site three

(100 kHz excitation). The location of the excitation is denoted

by the blue circle.
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where s is the standard deviation and x is the cross-

correlation coefficient.

The aim of the fitness function was to find a sensing

location that had low and consistent cross-correlation

coefficients regardless of excitation site and hence the

greatest sensitivity to damage regardless of source–

damage–sensor wave path, representing damage being

at different locations on the stiffener relative to the

source and the sensor.

To consider multi-sensor networks, a ‘pseudo-

sensor’ was created by selecting the lowest cross-

correlation coefficients from the sensors in a proposed

network for each excitation site and then combining

them. This ‘pseudo-sensor’ was then used to calculate

the fitness for that particular sensor network as demon-

strated in the case of a two-sensor network in Table 2.

To avoid redundant sensors (i.e. sensors that do not

contribute any cross-correlation coefficients to the

‘pseudo-sensor’), each network was checked to ensure

all sensors in the network were used. If redundant sen-

sors were found, an artificially low fitness was assigned

to that sensor network which ensured it would not be

identified by the optimization algorithm.

Optimization problem

The number of possible sensor network combinations

increases with the network size by a multiple of the

respective binomial coefficient. In this study, the num-

ber of candidate sensor locations was 825, arranged in

a regular square grid within the investigation region

shown in Figure 2. The number of possible sensor com-

binations is shown in Table 3 for networks of up to five

sensors. Evaluating the effectiveness of every possible

solution would have been computationally expensive,

ruling out simplistic techniques such as an exhaustive

search.

GAs

GAs are an optimization technique developed by

Holland31 based on the theory of evolution. Each ‘gen-

eration’ of solutions includes more suitable and less

suitable solutions. The less suitable are discarded in a

manner analogous to Darwinian evolution.

GAs have advantages over other optimization tech-

niques as they have the ability to interrogate the whole

search space to find the global minimum or maximum

rather than converging on local minima or maxima.

The algorithm, which is outlined in Figure 7,29 interro-

gates a relatively low proportion of the total search

Figure 6. Example out-of-plane waveform to demonstrate how the time window was determined.

Table 2. Cross-correlation coefficient for a two-sensor network.

Excitation sites

1 2 3 4 5

Sensor A 0.8087 0.6007 0.7355 0.6502 0.8791
Sensor B 0.6412 0.9576 0.6435 0.8222 0.5681
Pseudo sensor 0.6412 0.6007 0.6435 0.6502 0.5681

The numbers in bold are used to create the pseudo sensor.
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space and therefore is not as computationally expensive

as other techniques.33 A brief overview of a GA is pre-

sented here. For further explanation, the reader is

referred to Haupt and Haupt.33

GA configuration. For this study, binary encoding was

used. Each candidate sensor location was assigned a

numerical value (i.e. locations 1-825) which was

encoded into a binary string (known as a ‘gene’). Each

sensor in the network contributed to the full binary

string (known as a ‘chromosome’) which described one

candidate sensor network within the population of

solutions as shown in Figure 8. The chromosomes were

used by the algorithm for mating and mutation when

producing the next generation of solutions.

A 10-digit binary string was required in order to

assign each candidate location. As 825 is not the maxi-

mum 10-digit binary number, it was possible for the

GA to create a solution outside of the range of physical

locations. To resolve this, penalty values were assigned

to binary values representing locations greater than 825

hence assigning poor fitness to solutions containing

these genes, leading to them being discarded by the GA.

The initial population used was 40 times the number of

sensors in the network ensuring a suitable subset of the

population was considered without having a detrimen-

tal effect on the optimization algorithm’s performance,

based on prior experience. The initial population size

was increased as the size of the search space increased

in order to ensure sufficient sampling.

A simple pairing technique where the two best solu-

tions in the population were selected for mating, fol-

lowed by the next best two until the whole mating pool

had been paired up was used. A randomly assigned

cross-over point was used for each mating pair giving a

good ability to carry forward the best attributes of the

solution without continuously producing poor solu-

tions which can be a drawback of fixed point cross-over

schemes.33

An allele mutation was adopted for this GA to

explore the search space and prevent convergence on a

local maxima. A uniform probability of mutation of

0.1 was used for this problem as good results in a previ-

ous, preliminary study demonstrated search space

exploration with convergence on the global maxima.34

The fittest 10% of solutions were made immune from

allele mutation which prevented good solutions being

mutated into poorer solutions, and hence being

discarded.

As with all GAs, confirmation of convergence can

prove difficult as there is no indication that the optimal

solution has been reached; a drawback of a GA as every

solution is not exhaustively considered. In this study, a

solution was deemed to be optimal when the fittest solu-

tion had not been improved upon for 2000 generations,

an approach previously found successful.29

Optimization results from experimental

data

Out-of-plane Lamb wave component

The optimal fitness against sensor network size for the

out-of-plane component at each excitation frequency is

presented in Figure 9.

It is apparent that as the excitation frequency

increases, there is a significant increase in fitness

Table 3. The number of sensor network combinations for a

given number of sensors in the network.

Number of sensors
in network, Ns

Number of possible sensor
network combinations

1 825
2 339,900
3 93,245,900
4 1.92 3 1010

5 3.15 3 1012

Figure 7. Schematic representation of a GA (recreated from

Clarke and Miles32).

Figure 8. Definition of the terms used in binary encoded

genetic algorithms.

Marks et al. 7



demonstrating greater damage sensitivity of higher fre-

quency waves due to the shorter wavelengths (the

wavelengths of both modes reduce as the frequency

increases as shown in Table 1). At 300 kHz, the wave-

length of the S0 mode is comparable to that of the A0

mode of the 100 kHz excitation, meaning both modes

are more sensitive to the damage.32 This is supported

by the visual representations in the authors’ earlier

work29 However, as the excitation frequency increases,

the received signal is more susceptible to noise due to

the material’s microstructure scattering the wave.35

Random noise would reduce the cross-correlation coef-

ficient though not to the extent presented here – hence

damage has been detected. Attenuation of the wave

increases with excitation frequency resulting in a

greater reduction of amplitude as the wave propagates

which is an important consideration for sensor network

design and selecting appropriate excitation frequencies.

These results also show that fitness increases as the

number of sensors in the sensor network increases

demonstrating that more sensors in the network

improve damage sensitivity. With the 100 kHz excita-

tion, the fitness more than doubles as the network size

increases from one to two. Fitness increases at a con-

stant rate as the network size increases from two to

four where maximum fitness is achieved. A small

reduction in fitness is observed with the addition of a

fifth sensor due to the optimization algorithm being

forced to use five independent sensors.

A large increase in fitness is achieved with the

250 kHz excitation over the 100 kHz excitation.

Comparing the respective one-sensor networks, a fit-

ness over three times greater is achieved. Improvements

in fitness are observed as the network size increases to

two and again to three. However, minimal increases in

fitness are observed in larger sensor networks

indicating a three-sensor network to be sufficient for

this particular application.

The best fitness was achieved with the 300 kHz exci-

tation. Small improvements in fitness were achieved by

increasing the network size from one to two. However,

marginal gains were achieved with larger network sizes

indicating that a two-sensor network was sufficient

when using a 300 kHz excitation frequency.

Sensor location results

The locations for each optimal sensor network are pre-

sented in Figure 10. The excitation locations (denoted

by the black dots on the left-hand side), the stiffener

(denoted by the dashed line) and disbonded region

(denoted by the thick black square) are included for

completeness.

Sensors were positioned by the optimizer to the right

of the stiffener either above or below the disbond for

each excitation frequency for a one-sensor network.

Previously published results33 indicate that Lamb wave

interaction with the disbonded region produces a dif-

fraction pattern and as such would result in low cross-

correlation coefficients in the regions where these sen-

sors have been placed.34

The placement of the two-sensor network places the

majority of the sensors in-line with the disbonded

region. One sensor for the 100 kHz excitation was

placed in the lower right-hand corner which is likely to

be due to the diffraction pattern. A similar case is

observed with the 250 kHz excitation. Considering the

300 kHz excitation, a sensor was placed in-line with the

disbonded region either side of the stiffener which was

likely to be caused by reflections from the disbonded

region causing differences in waveforms.

The three-sensor networks produced a much wider

spread of sensor placement. The 100 kHz excitation

results saw a spread of sensors along the length of the

stiffener which is likely to be due to differing diffraction

patterns from the different excitation sites. A similar

distribution of sensors was also placed for the 250 kHz

excitation, although one sensor was placed on the left

of the stiffener, most likely resulting from reflection

fringes. The placement of the sensors for the 300 kHz

excitation positioned all three sensors in the lower right

quadrant which is unconventional but thought to be

the result of complex interaction fringes.

As the network size increases to four, the sensors

tend to be distributed along the length of the stiffener.

The 100 kHz excitation reuses all sensors from the

three-sensor network, demonstrating the strength of

these sensing locations. The addition of the fourth

sensor however significantly improves the fitness as

shown in Figure 9. A similar distribution of sensors was

also achieved with the 250 kHz results with sensors

widely spread and two sensors carried over from the

Figure 9. Calculated fitness for each number of sensors in a

sensor network at the three excitation frequencies for the

out-of-plane component of the Lamb wave.
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three-sensor network. The 300 kHz excitation gave near

uniform distribution along the length of the stiffener with

all but one sensor placed on the right of the stiffener.

Expanding the network to five sensors draws some

similarities between the excitation frequencies. The

100 kHz excitation places three sensors in a triangular

array mimicking a diffraction fringe similar to that seen

in Figure 5 with additional sensors placed above and

below these sensors, albeit one on the left of the stif-

fener. A contrasting triangular placement array was

produced with the 250 kHz excitation, although a good

distribution of sensors was placed along the length of

the stiffener. Increasing excitation frequency to

300 kHz produced three groups of sensors: two above,

two below and one in-line with the disbonded region.

The sensor placed in-line was placed on the left of the

stiffener further demonstrating good sensitivity to the

damage in this region.

Three-component magnitude of the Lamb wave

The fitness against sensor network size for the three-

component magnitude is presented in Figure 11 for each

excitation frequency. As with the out-of-plane results,

increasing the excitation frequency improved the fitness.

As previously stated, this is likely due to the smaller

wavelengths being more sensitive to the damage.

For all excitation frequencies, there is a trend that as

more sensors are added to the network, the fitness

Figure 10. Optimized sensor locations based on the out-of-plane component for all three excitation frequencies.

Figure 11. Calculated fitness for each number of sensors in a

sensor network at the three excitation frequencies for the

three-component magnitudes of the Lamb waves.
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improves. For the 100 kHz excitation, a 64% improve-

ment in fitness can be achieved as the network size is

increased from one to two. A more linear trend is

observed as the network size is increased from two to

five, although the improvement in fitness is not as sig-

nificant as the improvement from one sensor to two. It

is likely that further increasing the network size would

deliver ever diminishing improvements in performance.

As the network size is increased from one to two for

the 250 kHz excitation, there is a 9% increase in fitness.

The single-sensor solution fitness is further improved

by 16% as the network size increases to three sensors.

As the network size is further increased, the improve-

ment in fitness reduces somewhat, with a minimal fit-

ness improvement achieved with a five-sensor network

over a three-sensor network.

A similar trend was observed with the 300 kHz exci-

tation as the 250 kHz excitation. A fitness improve-

ment of 15% was achieved by increasing the network

size from one to two. This was further improved by the

three-sensor network which achieved an increase of

21% over the one-sensor network. Although the best

fitness was achieved with the five-sensor network, mini-

mal improvement was achieved over a three-sensor net-

work indicating that this as a sufficient network size in

this case.

Discussion

It is evident that increasing the excitation frequency

improves the fitness of the sensor networks for both

the out-of-plane and three-component magnitude cases.

300 kHz delivered the fittest solutions although, due to

experimental constraints, excitation frequencies greater

than this were not considered so therefore it is not pos-

sible to determine whether higher excitation frequencies

would yield further improvements in fitness. It could be

inferred however that diminishing fitness improvements

may be achieved as a large improvement was observed

between the 100 and 250 kHz excitations but not so

large an improvement was seen between 250 and

300 kHz excitations. This may be representative of the

increments between the excitation frequencies being

different.

Although higher excitation frequencies have been

shown to perform better, attenuation should also be

considered as part of the sensor network design as

higher frequency Lamb waves exhibit higher attenua-

tion. This will require a higher density of sensors in

order to cover a large structure. This creates a problem

of determining the optimal excitation frequency versus

the minimum defect size detectable. This promotes the

requirement for concurrent design of the structure and

sensor network as it may be viable to make the struc-

ture damage tolerant in more critical areas while

focusing monitoring to areas where there is a high

probability of damage.

Computational and power overheads also need to

be considered for an installed sensor network when

selecting the excitation frequency as a higher sampling

rate will be required to reconstruct the wave. This con-

sideration falls outside the scope of this study but is

nevertheless important for sensor network design, par-

ticularly for a self-powered system.

Considering all three components of the wave

improved the sensor network performance with a 72%

improvement in fitness of the 100 kHz single-sensor

network when compared with the corresponding out-

of-plane results. Less significant improvements were

observed when using the higher excitation frequencies

with fitness improvements of 8% and 11% for the 250

and 300 kHz excitations, respectively, over those of the

corresponding out-of-plane five-sensor networks.

Performance has been shown to improve when con-

sidering in-plane components; however, sensors tend

not to sense solely either in- or out-of-plane due to

Poisson’s ratio but do tend to be biased. To improve

the methodology presented, it would be useful to model

a sensor with known characteristics. It may be advanta-

geous in some scenarios for instance to sense primarily

in-plane to reduce the number of sensors while still

enabling the same sensitivity to damage.

Disbond damage has only been considered in this

study, whereas in-service structures are subjected to

many damage events such as fatigue, impacts and cor-

rosion. It would be beneficial for any optimization algo-

rithm to take into account within its fitness function the

likelihood of such an event occurring within different

regions of the structure enabling a much more robust

sensor network to be created.

With both result sets, diminishing returns are

achieved as the sensor network increases to a point

where there are insignificant gains in fitness. The out-

of-plane results suggest that insignificant gains are made

by increasing the sensor network sizes beyond four,

three and two sensors for 100, 250 and 300 kHz excita-

tions, respectively. Although one-sensor networks in

each case detected the presence of damage, improved

sensitivity was achieved with additional sensors as well

as establishing some redundancy in the system.

Therefore, a three-sensor network would provide a suit-

able level of coverage regardless of excitation frequency

for this scenario. However, more sensors may need to

be added for a more geometrically complex structure as

features on the structures may attenuate the waves,

reducing the effective area that can be monitored, hence

demonstrating the usefulness of a numerical tool.

Considering the in-plane components, a continual

improvement was observed with the 100 kHz excita-

tion, although the biggest improvement was observed

between one- and two-sensor networks. The same was
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observed with the 250 and 300 kHz excitations but with

minimal improvements achieved with networks larger

than three.

A constant time-window size was used for the

cross-correlation analysis for consistency. However,

it would be beneficial to tailor this for the shorter

duration of the higher excitation frequencies which

would reduce effects from edge reflections. A simple

thresholding technique was used to determine the

start of the time window; however, techniques such

as the Akaike information criterion (AIC) have been

shown to exhibit good performance in determining

the arrival of a wave.36 Adopting this technique

would establish a more refined window and reduce

misplacement of a sensor.

LISA

The experimental study has only considered one dis-

bond scenario (although different excitation site-

disbond paths and angles were considered by having

multiple excitation sites). On real aircraft structures

however disbonded regions vary in both shape and size

which will influence Lamb wave interaction and there-

fore sensor placement. An extensive experimental pro-

gram for each scenario would be prohibitively time-

consuming and costly; therefore, a simulation tool

would be advantageous from a design perspective by

enabling sensor network designers to model different

damage scenarios in order to determine optimal sensor

placements on the structure.

The LISA is a finite difference method which uses

sharp interface modelling to solve issues regarding

boundaries and discontinuities,37 developed in the early

nineties38–40 for the bespoke purpose of simulating

Lamb wave interaction. Since its introduction, there

has been much research assessing the accuracy and

reliability of models41–48 which have been validated in

experimental studies using laser vibrometry, particu-

larly at boundaries, structural features and defects.

LISA has been shown to be well suited to, and is now

an established method for, modelling Lamb wave inter-

action.38,49–53 For further detail regarding LISA, the

reader is referred to Lee and Staszewski.52

In recent years, with the widespread development

and use of NVIDA� CUDA parallel computing archi-

tecture, LISA has proven to be an effective way of

modelling Lamb wave interaction due to its ability to

process large simulations in minutes,54 making LISA

well suited to modelling different damage scenarios in a

short period of time.

Global mesh size

Commercially available MONIT SHM cuLISA3D

v0.8.4 was used for this study which has many

advantages including a user-friendly interface with

MATLAB. One drawback of this version is its adop-

tion of a global mesh size for the entire 3D finite differ-

ence model meaning that the model is defined by its

smallest dimension (as opposed to other numerical

techniques where the mesh can be refined in regions of

interest while adopting a coarser mesh elsewhere for

computational efficiency). To accurately model the

experimental study, the smallest dimension is the adhe-

sive film thickness (0.1 mm). However, using a 0.1 mm

global mesh size generated a very large set of cube geo-

metry data (;20 GB) which was not possible to pro-

cess on the CUDA graphics card used because of

insufficient memory (2 GB). Therefore, the model was

simplified to reduce the memory required using a glo-

bal mesh size of 0.5 mm with dimensions being

rounded to the nearest 0.5 mm.

Model setup

To reduce computational overheads, only the area of

investigation (outlined in Figure 1) was modelled with

the excitation sites modelled on the left-hand boundary

to reduce edge reflections, taking the same approach

used by Lee and Staszewski.51 The same excitation fre-

quencies were used for the model as for the experimen-

tal study.

The co-ordinates of the sensing locations were

exported from the vibrometry software to ensure con-

sistency and rounded to the nearest 0.5 mm for assign-

ment to the corresponding location on the model. The

sensing locations were modelled as points representing

the point measurements of the laser vibrometer study.

An installed sensor would have a face which covers an

area; however, this varies for different sensors and falls

outside the scope of this study.

A sampling frequency of 20 MHz was used for the

model as this had been shown to produce representa-

tive results in a previous study55 while also ensuring

that Courant stability criterion was satisfied.45 For con-

sistency, x, y, and z components for a 1.6 ms sample

length were recorded at each sensor location.

The plate and the stiffener were given the properties

of 6062-T6 aluminum alloy. Due to the global cube

edge length constraint, the adhesive layer was not mod-

elled. Instead, the plate–stiffener interface was modelled

as a continuous structure which had delivered promis-

ing results in a previous study.55

Modelling the disbonded region

Given that it was not possible to model the adhesive

layer, an alternative solution was adopted to model the

disbond. A localized area (25.5 mm 3 25.5 mm –

rounded to the nearest 0.5 mm due to the global cube

edge length constraint) of reduced stiffness in the
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structure at the location of the disbonded region was

created by removing the cubes at the plate–stiffener

interface. This technique produced representative

results which were presented in Marks et al.55

Optimization results from modelled data

The LISA model was used to generate data representa-

tive of the experimental study. This was then optimized

using the same strategy used in the previous section.

Out-of-plane component of the Lamb wave

The optimal fitness against sensor network size for the

out-of-plane component at each excitation frequency is

shown in Figure 12.

As with the experimental results, the excitation fre-

quency had a significant influence on fitness, although

the best fitness for the one- and two-sensor networks

was found with the 250 kHz excitation and not

300 kHz excitation. There was also not as significant a

fitness increase between the 100 kHz excitation and the

higher frequency excitations when compared to the

experimental results.

The poorest fitness was achieved with the 100 kHz

excitation using a single-sensor network while the best

performance was achieved with a four-sensor network.

A small reduction in fitness occurred as the network

grew to five sensors as observed in the experimental

study. A similar trend in fitness increase was also

observed between the two- and four-sensor networks to

that seen in the experimental study albeit at a lower

overall fitness.

The fittest solutions for the 250 and 300 kHz excita-

tions were achieved with a five-sensor network. A

significant increase in fitness was achieved with the

250 kHz excitation as the network grew from one to

two sensors. The rate of fitness improvement diminished

as the network size continued to grow, although a leap

in fitness was observed between four and five sensors.

The 300 kHz excitation showed an almost linear fit-

ness increase as the network size grew from one to three

sensors when the 300 kHz excitation out-performed the

250 kHz excitation. Increasing the network size further

saw fitness improvements of diminishing returns.

Three-component magnitude of the Lamb wave

The optimal fitness against sensor network size for the

three-component magnitude at each excitation fre-

quency is presented in Figure 13.

As with the out-of-plane results, the higher fre-

quency excitations out-performed the 100 kHz excita-

tion. As the network size increased, a near linear,

gradual increase in fitness was achieved using a

100 kHz excitation with an improvement of 150%

achieved by a four-sensor network over a one-sensor

network. Increasing the network size to five sensors

saw a further increase in fitness of 29% over the four-

sensor network. The near linearity of these results does

not aid in suggesting an optimal sensor network size.

Similar fitness increment trends were observed by

both the 250 and 300 kHz excitations as the network

size grew. Progressive fitness increases were observed

for both excitations between networks of one and three

sensors; however, larger networks yielded minimal (if

any) increases in fitness demonstrating little perfor-

mance to be gained; thus, suggesting a three-sensor net-

work is optimal when considering the three-component

magnitude.

Figure 12. Fitness against the optimal network configurations

for a given number of sensors using the out-of-plane data from

the LISA model.

Figure 13. Fitness against the optimal network configurations

for a given number of sensors using the three-component

magnitude data from the LISA models.
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Experimental and model optimal locations

Despite differences in fitness from the two studies, it is

beneficial to compare the placement of the sensing loca-

tions. This is demonstrated in Figure 14 where the out-

of-plane, optimized sensor locations for the 300 kHz

excitation are presented.

There is a difference in the sensor placements for the

one-sensor networks from the two studies. Figure 10

shows that in the experimental study, sensors were

placed either above or below the disbonded region. The

model location showed a similar trend, with the sensor

placed below the disbonded region albeit closer to the

stiffener. It is possible that this sensor was located along

a diffraction pattern caused by the Lamb wave interac-

tion as previously discussed (as presented in Figure 5).

A similarity was observed in the two-sensor network

with one of the sensors being placed to the right of the

disbonded region; however, a significant difference was

observed with the placement of the second sensor. The

experimental results placed the sensor to the left of the

stiffener, in-line with the disbonded region, whereas the

model placed the sensor right of the stiffener above the

disbonded region. This was likely to be the result of the

modelled disbond differing from that of the experiment.

Some similarities can be drawn when viewing the

three-sensor placements as a symmetrical problem with

a line of symmetry at y = 312.5 mm. It is apparent that

the sensors are placed in a triangular array based on the

data from both studies, although the sensor placements

based on experimental data gave a sparser distribution.

For three of the four sensors in the three-sensor net-

work, there is good agreement. Two sensors located

using the experimental data were placed within close

proximity of sensors placed based on modelled data. If

the problem is treated again as a symmetrical problem,

a third sensor is also placed in a similar region. There is

a difference with placement of the fourth sensor with

placement based on experimental data located on the

left of stiffener, in-line with the disbonded region

whereas the sensor based on modelled data is placed to

the right above the disbonded region.

Similarities were observed between the two studies

for the placement of at least three of the five sensors

for the five-sensor network. Both data sets placed two

Figure 14. Optimized sensor locations based on the out-of-plane component for the 300 kHz excitation. The locations from the

LISA model are denoted by ‘m300 kHz’.
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sensors below the disbond, on the right of the stiffener

with one location being selected for sensor placement

by both studies. A third sensor was also placed by both

studies above the disbonded region on the right of the

stiffeners. The placement of the fourth and fifth sensors

saw some differences with the modelled data placing

two sensors in-line with the disbonded region, to the

right of the stiffener whereas the experimental data

placed one sensor in-line but to the left of the stiffener

and one sensor on the right of the stiffener but above

the disbonded region.

Although the out-of-plane 300 kHz excitation

results have been presented, these results are represen-

tative of all of the excitation frequencies. There are

some differences in the placements of the sensors which

can be attributed to differences between the model and

experiment, mostly due to computational constraints.

However, there is a general agreement between the pla-

cement of sensors from experimental and modelled

data with sensors placed on similar structural locations

of similar sensitivity.

Comparative discussion

While there are differences in the solutions derived from

the experimental study and the numerical study, there

are many plausible reasons for these differences. The

omission of the adhesive layer from the model would

influence the Lamb wave interaction with the stiffener

due to differences in acoustic impedance, thus influen-

cing the results. Quantifying the influence of including

the adhesive layer on the model results is difficult with-

out further study, although there is general agreement

in the placements of the sensors based on both data

sets. However, better agreement may be achieved by

modelling the adhesive layer.

The biggest source of the differences in the results

was most likely due to how the disbonded region was

modelled as a localized reduction in stiffness was created

which was greater than that used in the experimental

study. An ultrasonic C-scan of the region also revealed

what appeared to be a small amount of PTFE tape left

inside the disbonded region which may have influenced

the Lamb wave interaction.29 As such, the disbonded

region used in the experimental study was inadvertently

representative of a real ‘imperfect’ disbond rather than

the ‘perfect’ artificial disbond that the authors had

attempted to create. An improved LISA model with a

more representative disbonded region based on the C-

scan results was created; however, the placement of the

sensors was not improved upon due to insufficient fide-

lity when using a 0.5-mm cube edge length.

The excitation in the LISA model was a simple point

source composed entirely of an out-of-plane compo-

nent which was not entirely representative of the 6-mm-

diameter transducer used for excitation in the

experimental study. In reality, although the excitation

would have been predominantly out-of-plane, in-plane

components would also have been present. Further

study would be required to determine the magnitude of

this in-plane excitation.

The model also assumed a perfect input source

whereas the transducer used in the experimental study

had a transfer function meaning that it is possible that

the excitation assumed in the model may have been dif-

ferent to the actual motion of the transducer. As a

result, a different frequency and envelope may have

been present which would influence sensor placement.

Fitness values from the experimental study were sub-

stantially higher than those from the LISA data. A possi-

ble reason for this is that the fitness is calculated from the

cross-correlation coefficients which can be influenced by

the presence of noise. Despite taking the average of 200

measurements and improving the signal quality by coat-

ing the surface in the experimental study, noise was still

present. The modelled data did not have any noise which

may have contributed to the lower fitness.

The experimental study required two panels to be

manufactured resulting in potentially different transdu-

cer couplings for each excitation site on each panel.

Although the coupling technique used has been proven

to produce repeatable results,56 and each coupling was

tested prior to use, coupling consistency cannot be

guaranteed. Small transducer coupling inconsistencies,

such as not being perpendicular to the panel surface or

contaminants in the surface preparation, may have

reduced repeatability of the signal.

Using two separate panels may have resulted in small

inconsistencies of the measurement points due to align-

ment despite every effort to ensure representative points

was measured on each panel. This would lead to small

differences in the waveforms measured. To reduce this,

a better setup would be to conduct the test on one panel

and induce a delamination on the panel by subjecting it

to mechanical loading, although this can also lead to

other issues such as inducing additional unwanted dam-

age to the panel.

Placement of sensors for damage detection has been

considered in this study. Although damage could be

located to a structural region by studying the change in

waveform of a particular pulse-receive path, it would

not definitively locate the damage requiring further

NDT processes. Applying a location technique to the

optimization scenario may influence sensor positioning

creating different networks. This study considered three

excitation frequencies; however, it would be beneficial

to optimize the sensor locations regardless of excitation

frequency enabling sensor networks to ‘tune’ the sensi-

tivity in order to detect different defect sizes.

The application of LISA has shown great potential

for the sensor network design. Its ease of use, quick

setup and fast computation make it suitable for running
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multiple models that cover a range of damage and struc-

tural scenarios enabling designers to consider a wide

range of damage types and defect sizes which would not

be feasible to achieve experimentally. This approach

would also enable concurrent sensor network and struc-

ture design which would be particularly useful for the

development of sensor networks on complex structures.

Conclusion

This article has presented a methodology for optimizing

an active sensor network for monitoring the structural

integrity of bonded stiffeners for aerospace applica-

tions. The methodology presented was applied to two

data sets: one experimental and one computational.

Ultrasonic Lamb waves were excited at three differ-

ent frequencies from five excitation sites on two stif-

fened panels: one panel with no defects and one with an

intentional disbonded region. The response at 825 can-

didate sensing locations was measured using a 3D scan-

ning laser vibrometer enabling measurement of both

the in-plane and out-of-plane components.

A cross-correlation coefficient was calculated for

each candidate sensing location for the out-of-plane

component of the Lamb wave as a metric for compar-

ing the received waveforms. A statistical technique was

applied to create a fitness surface which was interro-

gated using a GA to produce optimal sensor locations

for different sensor network sizes.

Excitation frequency was found to have a significant

influence on the placement of the sensors and the per-

formance of the sensor network with higher frequencies

offering the best performance. The benefits and draw-

backs of using higher excitation frequencies were dis-

cussed for use in an in-service damage detection system.

All three components of the Lamb wave were consid-

ered using a three-component cross-correlation coeffi-

cient magnitude technique where performance gains were

achieved. The independent measurement of all three com-

ponents on a real sensor network was discussed.

A LISA model was created to represent the experi-

mental study. The modelled data were used to place

sensors on the structure using the same optimization

technique where it was found that the performance of

the sensor networks was not as effective in absolute

terms as the experimental study. Factors such as noise

and the constraints of the model were discussed as to

why this was the case.

The optimized locations for the 300 kHz excitation,

out-of-plane data were presented for both the experi-

mental and computational data sets where many simila-

rities in sensor placement were observed. It was found

that the presence of PTFE tape remaining in the dis-

bonded region on the experimental setup may have

influenced some of the sensor positioning. It was

concluded that this was the most probable cause for

some difference in some sensor locations between the

two data sets. The drawback of not being able to model

the adhesive layer due to computational constraints

was also discussed.

The use of LISA as a design tool was demonstrated,

showing great potential for modelling Lamb wave inter-

action with several different damage scenarios. It was

also discussed that problems may be simplified by con-

sidering symmetry which would be useful for improving

the computational efficiency. This would have many

benefits to the design of aerostructures and SHM

sensor networks and enable a more thorough optimiza-

tion study to be conducted.

The results suggested that a three-sensor network

would be suitable for successfully detecting damage

for the structure and damage scenario considered

while delivering an acceptable level of sensitivity.

Other considerations in the design of an active SHM

system still need to be made, including power and

mass constraints. Therefore, this optimization metho-

dology should not be considered a design solution but

more of a design tool for assessing sensor network

performance.

This article has presented an in-depth study into the

optimization of sensor locations based on both experi-

mental and computationally modelled data. It has been

demonstrated that GAs have the ability to produce

optimal solutions efficiently and the ability to model

damage scenarios has many benefits for optimal sensor

network design.

Data access

Information on the data underpinning the results presented

here, including how to access them, can be found in the

Cardiff University data catalogue at http://doi.org/10.17035/

d.2017.0043078392.
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