
CHEMOENZYMATIC SYNTHESIS OF 
ISOTOPICALLY LABELLED FOLATES

A thesis submitted to Cardiff University for the degree of 

Doctor of Philosophy by

Antonio Angelastro

Supervisor: Prof. Rudolf K. Allemann

2017



i

DECLARATION

This work has not been submitted in substance for any other degree or award at this or 
any other university or place of learning, nor is being submitted concurrently in 
candidature for any degree or other award.

Signed ………………………………………… (candidate)   Date …………………………

STATEMENT 1

This thesis is being submitted in partial fulfilment of the requirements for the degree of 
Doctor of Philosophy

Signed ………………………………………… (candidate)   Date …………………………

STATEMENT 2

This thesis is the result of my own independent work/investigation, except where
otherwise stated, and the thesis has not been edited by a third party beyond what is 
permitted by Cardiff University’s Policy on the Use of Third Party Editors by Research 
Degree Students. Other sources are acknowledged by explicit references.  The views 
expressed are my own.

Signed ………………………………………… (candidate)   Date …………………………

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available online in the University’s 
Open Access repository and for inter-library loan, and for the title and summary to be 
made available to outside organisations.

Signed ………………………………………… (candidate)   Date …………………………

STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS

I hereby give consent for my thesis, if accepted, to be available online in the University’s 
Open Access repository and for inter-library loans after expiry of a bar on access
previously approved by the Academic Standards & Quality Committee. 

Signed ………………………………………… (candidate)   Date …………………………



ii

ABSTRACT
Dihydrofolate reductase (DHFR) is a key enzyme in cellular anabolism. It 

catalyses the reduction of 7,8-dihydrofolate (H2F) to 5,6,7,8-tetrahydrofolate 

(H4F) via hydride transfer from the C4 position of NADPH to the C6 position of 

H2F accompanied with protonation at the N5 position of H2F. Due to the 

importance of DHFR as an anticancer and antimicrobial target, the catalytic 

mechanism of DHFR has long been the focus of intense research. Kinetic isotope 

effect (KIE) measurements can provide insight into the mechanism of DHFR 

catalysis and guide the rational design of novel anti-DHFR drugs. However, 

because of a lack of a practical strategy to introduce heavy atoms (15N, 13C) into 

H2F, current research is mostly restrained to the study of hydrogen isotope 

effects. In this thesis, a fourteen step, one-pot chemoenzymatic synthesis of 

labelled H2F is reported. The flexibility of this synthetic approach enables the 

production of various isotopically enriched H2Fs from simple starting materials 

such as D-glucose. The labelled substrates were used to measure, for the first 

time, heavy atom KIEs and to derive information about the transition state of the 

chemical step during DHFR catalysis. This methodology is widely applicable to 

other biochemically important substrates and cofactors and it can be used for a 

wide variety of in vitro and in vivo investigations.
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1.1 The role of enzymes in biology and drug discovery

Life is defined as a “condition that distinguishes animals and plants from inorganic 

matter, including the capacity for growth, reproduction, functional activity, and 

continual change preceding death” (1). Chemistry underpins all the phenomena 

observed in life. A countless number of finely tuned chemical reactions occur at

precise points inside a living cell. Nucleic acid and protein biosynthesis,

production and storage of energy, CO2 fixation and glucose metabolism are a few 

examples of all chemistry that takes place inside an organism. For life to be 

sustainable, a chemical reaction must also occur within a reasonable time scale. 

Hence, as catalysts designed by nature, enzymes are the foundation of the 

hierarchy of life. Whereas under neutral conditions the half-times of chemical 

reactions that have biological importance range between 5 s (CO2 hydration) and

1.1 billion years (amino acid decarboxylation), enzymes are capable of 

accelerating the reaction rates up to a factor of 1019 with an average turnover 

number (kcat) of ~10 s-1 and a catalytic efficiency (kcat/KM) of ~105 M-1 s-1 (2, 3) by 

providing a reaction path that has a lower overall energy barrier (Figure 1.1). 

Considering that nearly all fundamental cellular events with tight spatial and 

temporal control are dictated by enzymes, it is not surprising that nearly half 

(47%) of the drugs currently employed in medicine are enzyme modulators 

(Figure 1.2) (4, 5). Depending on the source (human, bacterial, parasitic, viral) 

and role of an enzyme in a determined physio-pathological condition, small-

molecules modulating enzymatic activity can be used to address a broad range 

of disorders. Some examples include inflammatory, cancerous, cardiovascular 

and neurodegenerative diseases as well as bacterial, parasitic and viral infections 

(Table 1.1). 
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Figure 1.1. Reaction coordinate diagram of an uncatalysed chemical reaction compared 

to its enzyme-catalysed counterpart. In an enzyme-catalysed reaction, the free energy 

barrier is lowered by providing an alternative pathway where the activation energy 

needed to reach the transition state (S‡) is stabilised by the enzyme through the 

formation of the enzyme-substrate active complex (ES‡) which collapsed to yield the 

product (P).

Figure 1.2. Pharmacological target families according to Imming et al. (4).
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Table 1.1. Enzymes as pharmacological targets and their modulators in clinical use

(shown in bold) (6).

HUMAN

Acetylcholinesterase (Physostigmine), Aldehyde dehydrogenase (Disulfiram), 
Angiotensin-converting enzyme (Captopril), Carbonic anhydrase (Dorzolamide),
Dihydrofolate reductase (Methotrexate), Hydrogen potassium ATPase

(Omeprazole), Lipase (Orlistat), GABA transaminase (Valproic acid), DOPA 

decarboxylase (Levodopa), Tyrosine kinase (Imatinib), Phosphodiesterase III

(Milrinone), Phosphodiesterase V (Sildenafil), DNA polymerase (Fluorouracil), 
HMG-CoA reductase (Lovastatin), Vitamin K epoxide reductase (Warfarin), 
Cyclooxygenase (Aspirin), Lipoxygenase (Mesalazine), 5α-testosterone reductase

(Finastereide)

BACTERIAL

Alanine racemase (D-cycloserine), Enoyl reductase (Isoniazid), Serine protease

(Amoxicillin), Dihydrofolate reductase (Trimethoprim), Peptidyl transferase

(Phosphomycin), Dihydropteroate synthase (Sulphamethoxazole), 
Phosphoenolpyruvate transferase (Chloramphenicol), DNA gyrase

(Fluoroquinolones)

VIRAL

Aspartyl protease (Darunavir), Reverse transcriptase (Efavirenz), Glycosidase

(Zanamivir), RNA polymerase (Sofosbuvir), DNA polymerase (Acyclovir)

PARASITIC

Δ14-Sterol reductase (Amorolfin), Dihydrofolate reductase (Proguanil)

To transform an enzymatic modulator into a drug, there are three 

pharmacological requirements: efficacy, tolerability and safety. Ideally, a drug 

must be specific acting only on its biological target and restoring homeostasis

from a pathological condition (efficacy). Any side (tolerability) or toxic (safety) 
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effects arising from the disruption of other concomitant biological processes must 

be avoided. In other words, selectivity is an exceptionally crucial issue in drug 

development, as it dictates whether or not a biologically active compound will be 

a potential drug candidate (7, 8). In early stages of drug discovery (Figure 1.3), 

efforts are primarily focused on optimising an active molecule’s selectivity and 

suppressing its undesirable off-target effects through the design, synthesis and 

screening of compound libraries. This is in general a cost-demanding process 

with low success rate (8). To reduce the costs and increase the probabilities of 

developing a drug suitable for the pharmaceutical market, a detailed knowledge 

on how the target enzyme functions in its own physiological framework by 

physical, chemical and biological investigations is fundamental. 

Figure 1.3. The process of drug discovery. Small molecules are tested in vitro on a 

suitable biological entity (e.g. enzyme) for therapeutic intervention. Compounds showing 

the best selectivity/activity profile progress into in vivo studies as drug candidates. 

Eventually, the drug candidate will be approved and launched on the market. 

In modern drug discovery, inhibition is the most common approach to modulate 

enzymes for therapeutic intervention. Linus Pauling in 1946 was first to point out 

that “many chemotherapeutic agents exercise their activity by acting as inhibitors 

to an enzymatic reaction through competition with an essential metabolite of 
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similar structure” (9). Today, this remark has matured into the general concept

that a small-molecule mimicking the transition-state of an enzyme-catalysed 

reaction provides both powerful inhibition and high selectivity required for a drug 

candidate that is suitable to progress throughout clinical investigations (10, 11).

In the reaction pathway from substrate (S) to product (P) of an enzyme-catalysed 

reaction (Figure 1.1), the transition-state (ES‡) represents the highest energy and 

most unstable transient structure involved. Enzyme active sites, by providing the 

optimal shape and electrostatic environment, bind to S‡ structure to form the ES‡

complex with high selectivity and dissociation constants estimated between 10-14

and 10-23 M, significantly lower than those for S and P (12). Consequently, a 

stable molecule that is most structurally and electrostatically similar to S‡ is

expected to bind tightly to the enzyme’s active site.

Information derived from mechanistic studies of enzyme catalysis has been 

directly used in the design of clinically used drug molecules. This includes the 

development of HIV-protease inhibitors (e.g. darunavir) (13, 14). Being used 

during the maturation of essential viral enzymes from their inactive polyprotein 

precursors, including reverse transcriptase, RNase H and integrase (15), HIV-

protease has a pivotal role in the progression of the life cycle of HIV and hence 

is an anti-viral target (16). This enzyme is an aspartyl protease that cleaves a 

peptide bond through a general acid-base mechanism where a water molecule, 

activated by an aspartate residue, performs a nucleophilic attack at the carbonyl 

group of the peptide bond (Figure 1.4) (14). The consequential tetrahedral

intermediate collapses to yield a carboxylate and amine as hydrolysis products.

In the rational design of HIV-protease inhibitors, the sp3 carbon of the oxyanion 

intermediate can be mimicked by replacing it with noncleavable isosteres such 

as hydroxyethylene, reduced amide and dihydroxyethylene moieties (14).
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Figure 1.4. Mechanism of peptide bond hydrolysis catalysed by HIV-protease and 

examples of non-cleavable isosteres employed in the development of HIV-protease 

inhibitors. Figure adapted from ref (14) and (17).

The transition-state analysis approach has also been used in the development of 

zanamivir and oseltamivir which target neuraminidase (NA) from influenza virus 

(18, 19). NA is a glycosidase (or sialidase) needed to remove sialic acid from 

glycoproteins through the cleavage of an α-ketosidic bond (Figure 1.5). Because 

this reaction is fundamental to spread virions from infected cells to healthy hosts, 

inhibition of NA eventually results in halting of the influenza virus life cycle. 

Zanamivir and oseltamivir are proposed to mimic the NA oxocarbenium ion 

transition-state intermediate the existence of which was first hypothesised based
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on the results obtained from kinetic isotope effect (KIE) measurements, nuclear 

magnetic resonance (NMR) and molecular dynamics studies (19, 20).

Figure 1.5. Sialic acid cleavage catalysed by neuraminidase (NA). Zanamivir and 

oseltamivir are proposed to mimic the NA oxocarbenium ion transition-state 

intermediate. Figure adapted from ref (19).

The discovery of immucillin-H (Forodesine), a powerful purine nucleoside 

phosphorylase (PNP) inhibitor with picomolar affinity, is a classic example of the 

full potential of inventing drug candidates by combining fundamental enzymology

with drug discovery (21, 22). PNP catalyses the phosphorolysis of 

ribonucleosides (e.g. inosine) or deoxyribonucleosides (e.g. deoxyguanosine) to 

ribose- or deoxyribose-1-phosphate and the respective purine base (23). It was 

established that a complete inhibition of PNP in human T-cells causes an 

accumulation of deoxyguanosine, which eventually leads to cell death due to 

altered DNA metabolism (24). Because in human tissues only T-cells undergo 

apoptosis upon PNP inhibition, this represents an opportunity to address the 
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treatment of malignant and autoimmune diseases including T-cell lymphomas

(25). However, PNP inhibition must be exceptionally tight for deoxyguanosine to 

reach toxic intracellular concentrations (26). To this end, Schramm and co-

workers, guided by a detailed transition-state map of PNP structural and 

electronic features, designed the transition-state analogue immucillin-H, which 

inhibits human PNP with a pM inhibition constant (Ki) (Figure 1.6) (22).

Immucillin-H showed a good safety and tolerability profile even at high dosage

during phase I and II clinical trials (27, 28), providing an important proof of 

concept about the potential applications of transition-state analysis to drug 

design.

Figure 1.6. PNP-catalysed phosphorolysis of inosine and its corresponding transition-

state analogue, Immucillin-H.
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1.2 Kinetic isotope effect: a powerful tool to dissect transition-states on an 

atomic scale.

The transition-state of an enzyme-catalysed reaction is a metastable, short-lived 

species with a lifetime of ~10-14 s (12), and thus its characterisation is a non-trivial 

task. Its features, including the structural and electronic rearrangements

occurring in the ES‡ complex, need to be experimentally verified under nearly 

physiological conditions. Because of these strict requirements, the measurement 

of kinetic isotope effects (KIEs) is the physical technique that can provide 

accurate information about the transition state species. KIE is defined as “the 

effect on the rate constant of two reactions that differ only in the isotopic 

composition of one or more of their otherwise chemically identical components”

(29). This difference in reaction rates reflects the different contribution to the 

stabilization of the transition state between “light” (e.g. 1H, 12C, 14N) and “heavy” 

(e.g. 2H, 13C, 15N) isotopes in terms of vibrational energies at the zero point

(Figure 1.7), and it is defined as:

where kL and kH denote the reaction rate constants for the light and heavy isotope, 

respectively. When reactants approach the transition state, there is progressive

distortion of their atomic framework with altered bond lengths and electrostatics.

In general, atoms directly involved in the formation and/or breakage of chemical 

bonds during the transition-state yield relatively high KIE values and they are

therefore defined as “primary”. Although to a lesser extent, atoms directly 

adjacent to the reaction centre contribute to stabilization as well, and they are 

defined as “secondary”. Hydrogen KIEs are measured by replacing 1H with either 
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deuterium (2H) or tritium (3H), and they are relatively easy to measure because 

of the significant mass difference between the isotopes. Isotope effect involving 

12C/13C, 14N/15N, 16O/18O are generally referred to as heavy-atom KIEs and they 

are more difficult to detect compared to hydrogen KIEs (30).

Figure 1.7. Reaction coordinate diagram illustrating the difference in vibrational energy 

between light (black) and heavy (red) isotopes to reach the transition-state.

In the transition-state analysis of the PNP-catalysed reaction, hydrogen and 

heavy-atom KIEs were measured for each atomic position participating to the 

formation of the transition state with an accuracy of better than 0.5% (Figure 1.8)

(31). This required the synthesis of isotopically labelled substrates to probe the 

KIE for each position. Although KIE values do not represent a direct observation 

of the transition-state, they can be used to construct a computational model, using 

both quantum mechanical and semi-empirical approaches, by matching bond 

length and atoms to the experimental KIEs. The electronic distribution at the van 

der Waals surface was computed for the resulting structure, which has eventually 

been used in the design of immucillin-H (22, 32).
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Figure 1.8. Kinetic isotope effect map for the reaction catalysed by human PNP. Isotope 

effects were measured for the PNP-catalysed arsenolysis of inosine. Atoms for which 

the isotope effects were measured are highlighted in blue (N) and red (C and H), 

respectively. Figure was adapted from ref (32).

In addition to the construction of transition-state models, results obtained from 

KIE measurements can provide a diverse range of information that is useful in 

drug discovery. The investigation of neuraminidinase (NA) by KIE measurements 

has revealed that the substrate contains significant oxocarbenium character 

during the chemical transformation; based on these findings, an oxocarbenium 

intermediate, zanamivir, was designed (18-20). KIE measurements are also

valuable in understanding mechanistic aspects related to drug resistance. 

Resistance against HIV-protease inhibitors is an emblematic example. More than 

10 HIV-protease inhibitors with a Ki between nano- and picomolar concentration 

have been developed and marketed from 1995. However, because of the high 

viral replication rate combined to a poor proof-reading ability of HIV reverse 

transcriptase (33), the use of these inhibitors has selected HIV-protease variants 

that are resilient to inhibition (34). It is estimated that mutation of approximately 

37 residues out of the 99-residue sequence can yield an HIV-protease variant 

resistant to protease inhibitors (35). Most importantly, these mutations may be 
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additive, implying an impressive combination of possible cross mutations. Hence, 

it has become difficult to define a common mechanism of resistance on a 

molecular level (35). Although X-ray crystallography studies helped to spot

altered inhibitor-enzyme interactions (34), comparing transition-state maps 

between wild-type HIV-protease and its mutants based on KIE measurements 

showed that resistance is not related to the catalytic mechanism itself, but rather 

to a different stabilization of intermediates along the reaction pathway (17).

1.3 The role of dihydrofolate reductase (DHFR) in pharmacotherapy and 

drug design.

Though often found to be useful in drug discovery, rational design of enzymatic 

inhibitors aided by KIE interpretation and transition-state analysis remains an

underexploited approach (36, 37), mainly because the synthesis of specifically 

isotopic labelled substrates needed for KIE measurements is challenging.

Accordingly, this render to the use of inhibitors not resembling the transition-state

or not capturing any transition-state binding energy; instead, they are small-

molecules occupying the active site with an affinity constant higher than the 

natural substrate. Although a systematic and scientifically acceptable approach 

to the discovery of new drugs began in the early 1900s (38, 39), the use of rational 

design for drug development is relatively recent. In 1980s, when protein 

crystallography and computational chemistry were established methodologies, 

the design of a small-molecules using enzyme’s active sites as a footprint

became the dominant strategy to the discovery of new drugs by structure-based, 

computer-aided and fragment-based drug design approaches (40-42). Before

these advancements, drugs were mostly discovered either serendipitously or
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through blind screening, that is without any useful knowledge about the enzymatic 

target to allow a rational design approach (43).

The development of inhibitors of the pharmacological target dihydrofolate 

reductase (DHFR) highlights the need of producing isotopically labelled 

substrates for KIE measurement. Found in almost all organisms – from bacteria 

and protozoa to mammals – DHFR catalyses the reduction of dihydrofolate (H2F) 

to tetrahydrofolate (H4F) via hydride transfer from C4 of NADPH to C6 of H2F and 

protonation of N5 of H2F (Figure 1.9) (44). 

Figure 1.9. Reduction of 7,8-dihydrofolate (H2F) to 5,6,7,8-tetrahydrofolate (H4F) 

catalysed by dihydrofolate reductase (DHFR). The pro-R hydride from C4 of NADPH is 

transferred to the Re-face on C6 accompanied with protonation of N5 of H2F.

H4F is the source of a series of structurally-related coenzymes involved in the 

one-carbon metabolism, in which single carbon units activated in different 

oxidation states are shuttled within a cell to sustain fundamental anabolic 

processes (Figure 1.10) (45). 5-Methyl-tetrahydrofolate (5-methyl-H4F) is the 

cofactor needed by methionine synthase (MS) to regenerate methionine from 

homocysteine, which is required for S-adenosylmethionine (SAM) biosynthesis. 

In the cell, SAM acts as donor for methyl group transfer reactions, including DNA 
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and histones methylation (46). Folate metabolism also has an important role in 

keeping a balanced pool of serine and glycine amino acids (47). Because

cancerous cells are highly dependent on serine, it is hypothesised that carbon 

units shuttled in the folate metabolism are mainly provided by this amino acid

(48). Notably, the one-carbon cycle is essential to sustain nucleic acid production. 

5,10-Methylene-tetrahydrofolate (5,10-methylene-H4F) is needed in pyrimidine 

biosynthesis by thymidylate synthase (TS) to generate deoxythymidine

monophosphate (dTMP) from deoxyuridine monophosphate (dUMP). 10-Formyl-

tetrahydrofolate (10-formyl-H4F) is employed in two biochemical reactions

catalysed by glycinamide ribonucleotide (GART) and aminoimidazole 

carboxamide ribonucleotide (AICART) formyltransferases for the de novo

biosynthesis of purines. Given the central importance of the one-carbon 

metabolism in sustaining cellular proliferation, disruption of the DHFR catalytic 

cycle has life-threatening consequences for a cell.
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Figure 1.10. Folate coenzymes constituting the one-carbon metabolism. Connections to 

key metabolic pathways are highlighted.  1, Dihydrofolate reductase (DHFR); 2, 10-

Formyl-H4F synthetase (FTHFS); 3, 10-Formyl-H4F dehydrogenase (FDH); 4, 5,10-

Methenyl-H4F cyclohydrolase (MTHFC); 5, 5,10-Methylene-H4F dehydrogenase 

(MTHFD); 6, 5,10-Methylene-H4F reductase (MTHFR); 7, Methionine synthase (MS); 8, 

Serine hydroxymethyltransferase (SHMT); 9, Thymidylate synthase (TS); 10, 5,10-

Methenyl-H4F synthetase (MTHFS); 11, Formimino-H4F cyclodeaminase (FTCD). Figure 

adapted from ref (49).

Inhibition of human or microbial DHFR is an effective strategy to stem

uncontrolled cellular growth typical of malignancies as well as eradicate microbial 

infections. Indeed, DHFR was the first enzymatic target to be exploited in cancer 

therapy, since aminopterin was reported in 1948 to reverse childhood acute 
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leukaemia (50). A decade later, methotrexate (MTX) was introduced to treat

choriocarcinoma (51, 52), and it remains one of the most used anticancer drugs 

to date. A series of small-molecules targeting parasitic DHFRs were reported as 

well. Proguanil, developed through a British research programme during the 

Second World War, was shown to have antimalarial properties (53, 54); this was

followed by the discovery of pyrimethamine in 1951 (55). Trimethoprim, 

introduced in the late 1960s, preferentially inhibits bacterial DHFRs (56). It is 

worthwhile to point out that all antifolate drugs (aminopterin, MTX, proguanil, 

pyrimethamine, trimethoprim) discussed here (Figure 1.11) are neither the result 

of rational drug design nor was their mechanism of action fully understood at the 

time of their discovery (57). It was only during 1990s, with the aim to tackle 

resistance to MTX, that a “next generation” antifolates, including pemetrexed,

were (at least in part) rationally designed (58-61). 

Figure 1.11. Antifolate drugs employed in the treatment of cancer, malaria and bacterial 

diseases.



Introduction

18

Drug resistance is one of the socioeconomic and health challenges that drives 

the scientific community to design new antifolate drugs (60, 61). Unfortunately, 

this issue is not only related to the increasing failure of MTX in treating cancer, 

but it is common to all anti-DHFR drugs. While in the last decades there has been 

a satisfactory output of novel antifolates for anticancer therapy (60), new 

generation of drugs targeting malarial and bacterial DHFRs has yet to come (62). 

In general, mechanisms of antimicrobial resistance are classified in three main 

categories (63): (1) reduction of an antibiotic’s intracellular concentration either

by preventing its cell uptake through a reduced permeability or by increasing 

cellular expulsion through efflux pumps located in the cell’s membrane; (2) 

antibiotic metabolisation to inactive compounds via enzyme-catalysed 

biochemical modifications including hydrolysis and phosphorylation; and (3) 

mutations of the gene codifying the target enzyme.   

Resistance against microbial anti-DHFR drugs predominantly occurs by

mutations of the chromosomal gene resulting in an enzyme having decreased 

affinity to the inhibitor (62, 64). Additionally, bacteria can also acquire plasmid-

encoded resistant DHFR through the horizontal transfer of exogenous DNA (65).

To minimise the development of drug resistance, trimethoprim or proguanil are 

commonly co-administered with other drugs that act on other targets, e.g.

dihydropteroate synthase (DHPS, figure 1.13). Because DHPS is involved in the 

de novo biosynthesis of H2F (section 1.6), its inhibition causes a sharp fall of the 

intracellular H2F concentration which negatively affects the one-carbon 

metabolism. Combination of trimetroprim with DHPS-targeting sulfamethoxazole 

(Co-trimoxazole) is used in the treatment of urinary, lung and ear infections (66). 

Association of proguanil with the DHPS-targeting drug dapsone is instead a valid 

option for prophylaxis and treatment of malaria (67). 
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1.4The catalytic mechanism of DHFR from Escherichia coli

DHFR from E. coli (EcDHFR) is one of the most investigated enzymes. While the 

first X-ray crystal structure of EcDHFR was reported in 1977 (68), to date about 

90 structures, including enzyme-ligand complexes with NADP+, folic acid and 

various inhibitors (e.g. MTX, trimethoprim), are available in the Protein Data 

Bank. The wealth of structural details prompted the use of EcDHFR as a preferred 

model in the discovery of antimicrobial DHFR inhibitors, including structure-based 

drug design (69-72) and high-throughput screening campaigns of large 

compound libraries (73, 74).

EcDHFR is a monomeric protein composed of 159 amino acids (17,999 amu) 

(UniProtKB – P0ABQ4) folded into an eight-stranded β-sheet (βA - βH) and four 

α-helices (αB, αC, αE and αF) (Figure 1.12) (75). Strands βA - βG are parallel 

whereas βH is antiparallel (75). Two structural subdomains divided by the active 

site cleft, the adenosine binding domain (ABD) and loop domain (LP), were

identified (76). ABD (residues 38-88) binds the adenosine moiety of NADPH, 

while three loops, M20 (residues 9-24), F-G (residues 116-132) and G-H 

(residues 142-150), constitute overall the LD region interacting with H2F. Within 

the active site, at the interface between ABD and LP subdomains, H2F pterin ring 

lies in between helices αB and αC, close to NADPH nicotinamide moiety. 

The binding of EcDHFR to its ligands (NADPH, NADP+, H2F and H4F) was 

determined by pre-steady state kinetics studies, allowing to depict its catalytic 

cycle under physiological conditions (Figure 1.13) (77). E:NADPH:H2F is the 

catalytically productive Michaelis complex, where NADPH C4 hydride is 

transferred to H2F C6 yielding the product ternary complex (E:NADP+:H4F). After 

hydride transfer, NADP+ is first released forming the product binary complex 
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(E:H4F). Subsequently, NADPH binds to the enzyme forming the product release 

complex (E:NADPH:H4F) where H4F is thereafter discharged to produce the 

E:NADPH holoenzyme. EcDHFR holoenzyme eventually loads the next H2F 

substrate starting a new catalytic cycle.

Figure 1.12. Cartoon representation of the neutron crystal structure of EcDHFR ternary 

complex with NADP+ and folate (PDB 4PDJ). (A) EcDHFR secondary structure β-sheets 

(blue) and α-helices (orange) moieties are highlighted. (B) The adenosine binding 

domain (brown) as well as M20 (red), F-G (blue), G-H (purple) moieties from the loop 

domain are highlighted.
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Figure 1.13. EcDHFR kinetic scheme adapted from ref (77). Five intermediate species 

(Michaelis complex, product ternary complex, product binary complex, product release 

complex and holoenzyme) constituting the catalytic cycle are highlighted. E = enzyme; 

H2F = dihydrofolate.

X-ray crystallography and NMR studies of the five enzyme-substrate 

intermediates participating in the catalytic cycle revealed that major 

conformational changes occur during EcDHFR catalysis (78, 79). In particular, 

the M20 loop switches from a “closed” conformation in the Michaelis complex to 

an “occluded” conformation in the product ternary complex (Figure 1.14) (79).

The M20 loop is in the closed conformation in the Michaelis complex and shields 

both substrates from solvent interference, forming a microenvironment where the 

nicotinamide moiety of NADPH and the pterin ring of H2F are juxtaposed for 

hydride transfer. The reduction of H2F to H4F concomitant to oxidation of NADPH 

to NADP+ is accompanied by a conformational change of the M20 loop from the 

closed to the occluded state, in which Met16 partially occupies the active site of 

EcDHFR by replacing NADP+ pyridine ring (78). Such conformational changes 

were shown to be essential to EcDHFR catalysis, and it has been proposed that 

M20 loop movements contribute to the stabilization of the transition state (78, 80, 

81). Because of this relationship between protein motions and catalysis, EcDHFR 

is extensively used as a model in fundamental enzymology (82).
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Figure 1.14. Closed (green) and occluded (red) conformations of the M20 loop adopted 

during EcDHFR catalytic cycle. Both holoenzyme and Michaelis complex are in the 

closed conformation, whereas the product ternary, binary and release complexes are in 

the occluded conformation. Structures representing closed and occluded conformations

are adapted from PDB 1RX2 and 1RX6, respectively. 

During EcDHFR catalysis, protonation of H2F N5 is a chemical event intimately 

connected to NADPH pro-R hydride transfer to C6 H2F Re-face, and pH-

dependency of enzymatic kinetic parameters underlines the importance of N5 

protonation for catalytic efficiency (83). Interestingly, all DHFRs contain a single 

ionisable carboxylic acid residue within their active site, being either glutamic acid 

in vertebrates or aspartic acid in bacteria (84). While H2F N5 pKa is 6.5 in 

EcDHFR Michaelis complex (77), mutation of Asp27 to Ser, the only acidic 

residue within the active site, causes a dramatic shift of the pKa value to 3.8, 
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resulting in impaired catalysis at neutral pH (85). Nevertheless, Asp27-mutated

EcDHFR can still function at a sufficiently acidic pH, suggesting that protonated 

H2F (H3F+) coming from the solvent is the active species required for catalysis

(85). This hypothesis was further supported by the increase of kcat value with 

decreasing pH for both wild-type and Asp27-mutated EcDHFRs (85). It is also 

worthwhile to note that at physiological conditions H4F release is the rate limiting 

step in EcDHFR catalysis, whilst at pH > 9 hydride transfer becomes rate limiting

(77). 

Since Asp27 is the only acidic residue inside the active site cavity, it is reasonable

to propose that this residue acts as the proton source during catalysis. However, 

X-ray crystallographic studies performed by Bystroff et al. showed that Asp27

stabilises the pterin ring of H2F via hydrogen bonding to N3 and the amino group 

attached to C2 rather than being in proximity of H2F N5 (86). In an attempt to 

explain the role of Asp27 in catalysis, an indirect protonation mechanism was 

initially proposed where Asp27 promotes enolisation of H2F pterin from keto- to 

enol-form, so that a water molecule buried within the active site can donate a 

proton to H2F N5 (86). However, energy minimisations and molecular dynamics 

simulation studies performed by Shrimpton & Allemann did not support such a 

mechanism (87). Recently, Wan et al. solved the ultra-high-resolution X-ray 

structure of the EcDHFR pseudo-Michaelis complex with folate and NADP+,

providing experimental evidences that definitely exclude the keto-enol 

mechanism proposed by Bystroff et al. (88). In Wan et al. work, Asp27 was shown 

to be negatively charged while the folate pterin ring lies within the active site in 

the keto-form. Folate N5 position was found protonated by a nearby water 

molecule, of which access into the active site is facilitated by M20 loop 

movements (Figure 1.15). To date, it is accepted EcDHFR facilitates H2F 
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protonation through the modulation of H2F N5 pKa rather than providing an acidic 

proton within the active site, and this is consistent with the fact H2F N5 pKa is 

elevated from 2.6 to 6.5 when bound to EcDHFR (89, 90).

Figure 1.15. EcDHFR reaction mechanism proposed by Wan et al. Figure readapted 

from Ref (88).

Even though the protonation mechanism has been sufficiently explained, the 

evolution of transition-state during EcDHFR catalysis needs to be further 

investigated. Based on the chronological order of protonation and hydride 

transfer, three mechanistic possibilities can be deduced (chapter 4, section 4.5, 

figure 4.19). In the simplest case, protonation and hydride transfer occur in a 

concerted fashion. Alternatively, these chemical events are separated from each 

other, where hydride transfer precedes N5 protonation of H2F or vice versa. More 

than three decades ago, Stone & Morrison provided experimental evidences that 
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support the stepwise mechanism in which H3F+ is effectively the reacting species 

during hydride transfer (83); these conclusions were mainly based on the

interpretation of primary hydrogen and solvent isotope effect (SKIE) data at pH 

values from 7.0 to 10.0. Analyses of EcDHFR catalysis by quantum 

mechanics/molecular mechanics (QM/MM) and molecular dynamics simulations

also suggest N5 protonation precedes the step of hydride transfer (91-95). Liu et 

al. has recently provided further experimental evidences supporting this model,

by probing and comparing solvent and hydrogen KIEs of Asp27- and Tyr100-

mutated EcDHFRs to the wild-type enzyme at pH values from 4.0 to 12.0 (96). 

Although experimental evidences provided by Liu et al. are more convincing than 

those by Stone & Morrison, the use of mutated EcDHFRs in the experimental 

design inevitably raises the question on whether the catalytic behaviour of these 

mutated unnatural enzymes produces an altered reaction path (97). Furthermore, 

D2O was used in the SKIE measurement and it is known to modify the enzyme 

catalytic behaviour by changing solvent viscosity (98, 99). To unambiguously 

verify the catalytic mechanism of the DHFR reaction, heavy atom KIE 

measurement is therefore essential. 

1.5 Synthesis of isotopically labelled folates

In addition to KIE measurement, isotopic labelling of natural products such as 

H2F can be used as an approach to gain insights into folate metabolism (44, 77, 

83, 90, 96, 100-125) and physiology (126-132). In a molecule, replacement of 

natural abundant atoms with their heavy counterparts confers the unique 

advantage to collect atomic-scale information on a given system under 

investigation with a negligible effect on its chemistry. This is because neutron 

number differences between isotopes reflect on their physical properties which 
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can be probed by techniques such as KIE, NMR, mass spectrometry, and IR.

While the first chemical synthesis of [14C]-folic acid ([14C]-FA) was reported in 

1951 (133), preliminary in vivo investigations of human folate metabolism with 

[3H]-FA were described nearly a decade later (126). Since then, about thirty 

synthetic procedures designated to label folates with either radioactive or stable 

isotopes have been reported (110, 112, 115-117, 134-156). Such a large number 

of procedures is justified by folate’s chemical complexity and the lack of highly 

selective reactions, as each synthetic strategy would only allow a discrete pattern 

of isotopic substitutions. Besides, these syntheses are often laborious and costly

due to the shortage of suitable labelled starting materials, and the picture is 

further complicated when reduced folates (e.g. H2F) are considered, as most of 

them are notoriously unstable towards oxygen, light, heat and non-physiological 

pH values (157-160). Consequently, despite half a century of remarkable efforts, 

only small number of folate isotopologues are easily accessible, and this perhaps 

explains why many paths of research in folate biology are still unexplored. 

1.5.1 Isotopic labelling of folate’s pterin moiety

During the reduction of H2F to H4F catalysed by DHFR, both key chemical events

(protonation and hydride transfer) and enzyme-substrate interactions occur on 

folate’s pterin moiety, particularly at positions N5, C6, C7 and C9. The use of 

folates with isotopic label specifically located in the pterin moiety is therefore 

essential in studying DHFR catalysis. However, the synthesis of labelled folates 

remains non-trivial, and isotopic enrichment of atoms constituting the pterin 

moiety (e.g. N5, C6, C7 and C9) is a challenging task.

Folate and its derivatives, in general, can be synthesised by connecting pterin, p-

aminobenzoate (pABA) and glutamate in a sequential order. To incorporate an 
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isotope label into pterin in a regio-specific manner, various synthetic strategies 

have been derived. Cocco et al. reported the synthesis of [2-13C]-FA to probe the

protonation state of  folate’s pterin moiety in complex with DHFR by 13C-NMR 

spectroscopy (116). In this synthetic procedure (Figure 1.16), 13C-guanidine is 

condensed with 2-amino-3-cyano-5-(acetoxymethyl)pyrazine (1) to yield 2,4-

diamino pteridine-6-methanol (2). 2,4-Diamino-6-(bromoethyl)pteridine (3), 

generated in situ by bromination of 2, is subsequently condensed to p-

aminobenzoyl-L-glutamic acid (pABA-Glu) yielding [2-13C]-aminopterin. Alkaline 

hydrolysis of [2-13C]-aminopterin eventually produces [2-13C]-FA with 13% overall 

yield.

Figure 1.16. Synthesis of [2-13C]-folic acid by Cocco et al. (116).The reported overall 

yield is ~13%.
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To further probe the protonation state of folic acid bound to DHFR by means of 

NMR spectroscopy, [5-15N]- and [6-13C]-folic acid were synthesised as well by 

Selinsky et al. (117). In this synthetic route (Figure 1.17), the pteridine ring is 

assembled by condensing 2,4,5,6-tetraminopyridine (5) with dihydroxyacetone to 

yield 2. Similar to the procedure described by Cocco et al., isotopically labelled

folic acid is synthesised from 2 in three additional chemical steps with an overall 

yield of ~5%. To synthesise [5-15N]-FA, 5 was prepared from 2,3,6-

triaminopyrimidine (4) using isotopically labelled sodium nitrite (Na15NO2), while 

[2-13C]-dihydroxyacetone needed for the synthesis of [6-13C]-FA was produced

from [2-13C]-glucose following a chemoenzymatic procedure (161).

Figure 1.17. Synthetic route for the production of [5-15N]-folic acid or [6-13C]-folic acid 

reported by Selinsky et al. (89).The overall yield is ~5%. 

To date, folate specifically labelled with 15N and 13C at the respective N5, C2 and 

C6 positions have been made using the synthetic routes described by Cocco et 
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al. and Selinsky et al. Nevertheless, because symmetric reagents guanidine and 

dihydroxyacetone are used in these pathways, regioselective isotope labelling of 

other positions of FA’s pterin moiety, including C7 and C9, cannot be achieved.

1.6How folates are made by nature: the folate de novo biosynthetic pathway

A fundamental difference in folate metabolism between mammals, parasites and 

bacteria is that mammalian cells do not possess a biosynthetic machinery to 

produce H2F, which is supplied through dietary intake as folic acid (vitamin B9).  

On the other hand, microbes in general synthesise H2F from guanosine 

triphosphate (GTP) in 7 biochemical reactions catalysed by the folate de novo

biosynthetic pathway enzymes (Figure 1.18). Assuming the folate de novo

pathway from E. coli as a general model, the first committed biosynthetic step in 

folate biosynthesis is rearrangement of GTP into 7,8-dihydroneopterin 

triphosphate (DHNTP) through four tandem reactions: hydrolysis of C8 in the 

purine ring yielding a formyl intermediate, consequential deformylation, Amadori 

rearrangement of the ribose moiety, followed by a ring closure reaction (Figure 

1.19). DHNTP is then dephosphorylated to 7,8-dihydroneopterin (DHN) in two 

steps, the first specifically catalysed by 7,8-dihydroneopterin triphosphate 

pyrophosphatase (DHNTPase) while the intermediate 7,8-dihydroneopterin 

monophosphate (DHNMP) is believed to be hydrolysed into DHN by a non-

specific phosphatase (162, 163). Dihydroneopterin aldolase (DHNA) then 

transforms DHN into 6-hydroxymethyl-7,8-dihydropterin (HMDP), which is then 

pyrophosphorylated to 6-hydroxymethyl-7,8-dihydropterin pyrophosphate 

(HMDPpp) by 6-hydroxymethyl 7,8-dihydropterin pyrophosphokinase (HPPK). 

HMDP pyrophosphorylation serves the forthcoming nucleophilic substitution 

catalysed by dihydropteroate synthase (DHPS), where HMDPpp is combined 
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with pABA to yield 7,8-dihydropteroate (H2Pte). Dihydrofolate synthase (DHFS) 

eventually synthesises H2F by forming a peptide bond between the α-amino 

group of glutamic acid (Glu) and the carboxylic group of H2Pte.

Figure 1.18. Folate de novo biosynthetic pathway.

Figure 1.19. Sequence of chemical reactions catalysed by GTP cyclohydrolase I (GTP-

CH-I) from Escherichia coli.
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1.7Aims

The main goal of this investigation is to provide insight into DHFR catalysis

through heavy-atom KIE measurements using isotopically labelled H2Fs. Heavy-

atom KIE data provides unambiguous information about the chronological order 

of protonation and hydride transfer in DHFR catalysis, and it is crucial to build a 

transition-state model for the design of novel anti-DHFR drugs. Because of its 

prominent role in drug discovery and fundamental enzymology, heavy-atom KIE 

studies will be conducted firstly on EcDHFR. It is worthwhile to note that both N5 

and C6 position of H2F have never been investigated via heavy-atom KIE, mainly 

because current synthetic routes to introduce heavy atoms (15N, 13C) into H2F 

pterin moiety are laborious and costly (section 1.5) (116, 117). Therefore, there 

is a need to develop a practical synthetic procedure to produce site-specifically

labelled H2F at any position of the pterin moiety by using simple and readily-

available starting materials. 

In vitro metabolic engineering offers a cost-effective way to produce high-value 

complex natural products through the appropriate combination of enzymes from 

different organisms (164, 165). Enzymes are designed by nature to perform 

chemical transformations with unmatched chemo-, regio- and enantio-selectivity, 

making their use to site-specific isotopic labelling particularly attractive (166, 

167). Nevertheless, their application to folate chemistry is surprisingly restricted 

to a small number of examples (135, 138, 140, 142, 156), that is a rational 

approach fully exploiting the many inherited benefits of biocatalysis (mild 

conditions, eco-compatibility, versatility, easier product separation) for the site-

specific isotopic labelling of folates must be addressed.
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In this work, a one-pot chemo-enzymatic synthesis to the production of H2Fs 

labelled at N5, C6, C7 and C9 positions of the pterin ring using enzymes from the 

folate de novo biosynthetic pathway is reported. Because guanosine triphosphate 

(GTP) is the key intermediate to locate isotopic labels on H2F pterin moiety, efforts 

were primarily focused on establishing a biosynthetic procedure to generate 

guanosine nucleotides that is compatible to the folate de novo pathway enzymes 

to yield H2F. Additionally, an efficient and versatile cofactor regeneration system 

for NADP+ based on glutaredoxin/glutathione reductase redox couple has been 

developed. 
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2. A DISULFIDE-BASED NADP+ RECYCLING SYSTEM WITH 

A HIGH TURNOVER NUMBER*

*This chapter summarises the work published on ACS Catal., 2017, 7 (2), pp 1025-1029 (DOI: 

10.1021/acscatal.6b03061). Authors of this article include Antonio Angelastro, William M. 

Dawson, Louis Y. P. Luk, and Rudolf K. Allemann. AA, the author of this PhD thesis, is the only 

first author for this article. 



A disulfide-based NADP+ recycling system with a high turnover number

34

2.1Preface

Cofactor recycling is an essential aspect of biocatalysis, as many enzymes such 

as transferases and oxidoreductases, which are often employed in the 

manufacturing of high-value chemicals in both industrial and laboratory settings,

require cofactors. Cofactors are additional chemical components employed by an 

enzyme to perform a range of chemical transformations such as reductions, 

oxidations and phosphorylation. Implementing cofactor regeneration schemes 

reduces the use of these structurally complex and expensive compounds from 

stoichiometric to catalytic quantities. Importantly, as many cofactor-dependent 

enzymes catalyse reversible reactions, cofactor recycling systems drive 

biochemical reactions to completion by preventing accumulation of their 

bioproducts that may inhibit enzymatic activity, according to Le Chatelier’s 

principle. A practical parameter to quantify the efficiency of a cofactor recycling 

system is the total turnover number (TTN), which is the total number of moles of 

product formed per mole of cofactor (168-170) :

The TTN value puts in relationship the cost of mole of cofactor needed for each 

mole of product formed, and it should be in the range of 104 to 106 for a recycling 

system to be considered efficient on a laboratory scale and economically viable 

on an industrial scale (168-170).

In the biosynthetic works described in chapters 3 and 4, at least six enzymes 

require the use of adenosine triphosphate (ATP) or oxidised adenine dinucleotide 
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nicotinamide phosphate (NADP+) as cofactors. Hexokinase (HK), ribose-

phosphate pyrophosphokinase (PRS), guanylate kinase (GK) and 6-

hydroxymethyl 7,8-dihydropterin pyrophosphokinase (HPPK) utilise ATP to 

donate either a phosphate or diphosphate group to their substrates, generating 

respectively adenosine diphosphate (ADP) and adenosine monophosphate 

(AMP) as by-products. ATP regeneration was achieved as previously described 

(169, 170). On the other hand, glucose 6-phosphate dehydrogenase (G6PDH) 

and 6-phosphogluconate dehydrogenase (6PGDH) reduce NADP+ while 

performing their catalytic function. This chapter describes a new NADP+ 

regeneration system which has a TTN significantly higher than those reported 

previously in the literature. 

2.1.1 ATP recycling systems

Several enzymatic procedures for regenerating ATP from ADP have been 

reported, including the use of acetate kinase (AK), pyruvate kinase (PK), 

carbamate kinase (CarK) and creatine kinase (CreK) (Figure 2.1 A) (169, 170). 

Among those, regeneration of ATP fuelled by phosphoenolpyruvate (PEP) under 

the action of PK is considered one of the most efficient (169). ATP recycling from 

AMP can be accomplished by coupling an additional enzyme to PK, myokinase 

(MK), which produces 2 ADP molecules from ATP and AMP, that are further 

phosphorylated by PK to regain ATP (Figure 2.1 B) (171).
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Figure 2.1. (A) Recycling systems for ATP from ADP. (B) Recycling system for ATP from 

AMP by coupling of pyruvate kinase (PK) with myokinase (MK).

2.1.2 NADP+ recycling systems

While ATP regeneration systems are well established, recycling of NADP+ from 

NADPH is significantly less developed as few recycling schemes have been 

reported. Use glutamate dehydrogenase (GDH), one of the first regeneration 

methods for NADP+, is still the most used notwithstanding its drawbacks (166, 

167, 172, 173). This enzyme oxidises NADPH to NADP+ to convert α-

ketoglutarate and ammonium to glutamate (Figure 2.2). Unfortunately, GDH has 

an maximal steady-state turnover number of only ~40 s-1 thus limiting its recycling 

efficiency (173, 174). Moreover, its maximal TTN is less than 103 (171). 

Accordingly, other regeneration schemes, including the D-lactate dehydrogenase 

(LDH) (175), NADPH oxidase (NOX)(176, 177) and the laccase/mediator system 
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(178), have been developed in attempts to replace GDH. However, the TTNs 

determined for LDH and NOX (from 100 to 300) are even lower than those for

GDH, whereas the laccase/mediator system was not tested for recycling NADP+ 

(178). 

Figure 2.2. Current recycling systems for NADP+. Figure adapted from ref (179).

In evaluating a possible implementation of these NADP+ recycling schemes for

the in vitro biosynthesis of H2F, both the NOX and laccase/mediator system would 

be incompatible due to their oxygen-dependency, as reduced pterins including 

H2F are prone to oxygen-dependent oxidation (157, 158). Additionally, reduced 

pterins easily degrade in acidic conditions (157), but the laccase/mediator system 

functions only at acidic pH (between 3.0 and 6.0) with an optimum of 3.5 (178). 

Therefore, only the GDH and LDH recycling systems would be an option for the 
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chemo-enzymatic synthesis of H2F, but their low TTNs pose a serious limit to the 

overall biosynthetic efficiency. 

2.1.3 The glutaredoxin (GRX) system: an ideal recycling scheme for NADP+

A recycling system characterised by a high TTN that uses simple and inert 

oxidising reagents is ideally needed for NADP+ regeneration in the chemo-

enzymatic synthesis of H2F. In nature, NADP+ is mainly regenerated through the 

enzymatic reduction of disulfide bonds (180). One such example is the 

glutaredoxin (GRX) system, which is composed of a pair of tandem enzymes, 

glutaredoxin (GRX) and glutathione reductase (GR), which react with a pair of 

redox reagents, glutathione (GSH) and its oxidized counterpart GSSG (181). In 

the GRX system, GRX reduces the disulfide bonds to yield thiols using the 

reducing power of GSH, which is then oxidised to GSSG (182, 183). GSSG is 

recycled back to GSH in the concomitant oxidation of NADPH to NADP+ by GR 

(Figure 2.3).  

Figure 2.3. The glutaredoxin system. Figure taken from ref (179).
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The GRX system is an appropriate NADP+ recycling scheme for H2F 

biosynthesis, as glutathione and its oxidised counterpart are relatively inert 

compared to oxygen. Importantly, the GRX system can employ a wide range of 

disulfide compounds including 2-hydroxyethyl disulfide (HED or oxidised β-

mercaptoethanol) and cystine (Figure 2.3 A) as the latent oxidising reagent (184, 

185). Such substrate promiscuity is particularly attractive, as the latent oxidising 

reagent can be in general tailored for the biocatalytic system under investigation. 

This therefore avoids any possible complications related to chemical 

incompatibilities or product isolation. The reduced thiol by-product generated by 

the GRX system can also serve as a reducing agent protecting both substrates 

and biocatalysts from oxidative damages. Though this system requires the use 

of two coupling enzymes, it provides competitive advantages that cannot be 

offered by the currently available NADP+ recycling systems.

2.2 Construction of the glutaredoxin system for NADP+ recycling

Because of their favourable kinetic properties, glutathione reductase from 

Saccharomyces cerevisiae (ScGR) and glutaredoxin 2 from Escherichia coli

(EcGRX2) were employed in this work to reconstitute in vitro the GRX system for 

means of NADP+ recycling (186-189). ScGR shows a high steady-state turnover 

number (kcat) of 240 s-1 at pH 7.0 (187) whereas the experimental kcat for EcGRX2 

is ~550 s-1 for HED at pH 7.0 (188). Based on these kinetic parameters, the GRX 

system formed by the ScGR/EcGRX2 pair is expected to recycle NADP+ 8.64 x 

105 times (240 s-1 x 60 x 60) per hour.
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To test its efficiency, ribulose-5-phosphate (Ru5P) was generated in situ from 

glucose by coupling HK to the two NADP+-dependent enzymes that will be 

required for both of guanosine phosphates (chapter 3) and H2F (chapter 4)

chemo-enzymatic syntheses, G6PDH and 6PGDH. The TTN of the GRX system 

was determined by 13C-NMR spectroscopy using 13C6-D-glucose as starting 

material.

2.2.1 Gene expression, purification and characterisation of recombinant 

glutaredoxin 2 (GRX2) and 6-phosphogluconate dehydrogenase 

(6PGDH)

While HK, G6PDH and GR are readily available from commercial sources, 

recombinant EcGRX2 and 6PGDH were produced from the genes for GRX2 and 

6PGDH, grxB and gnd respectively. The constructs were amplified by PCR 

reaction using E.coli K-12 chromosomal DNA as template and subsequently 

cloned into the NdeI and XhoI sites of pET28-a vector (chapter 6, section 6.2). 

Recombinant enzymes, bearing a N-terminal hexahistidine tag, were 

overproduced in E. coli BL21(DE3) and purified by Ni2+ affinity chromatography 

(chapter 6, section 6.3). 

2.2.1.1 Characterisation and activity assay of 6PGDH

Production and purification of recombinant 6PGDH was followed by sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis (Figure 

2.4 A). 6PGDH catalyses the decarboxylative oxidation of 6-phosphogluconate 

(6-PG) to ribulose-5-phosphate (Ru5P) and CO2/bicarbonate using NADP+ as the 

final electron acceptor (Figure 2.4 C). Accordingly, enzymatic activity can be 

measured by UV-vis spectroscopy by following NADPH absorbance at 340 nm 

(Figure 2.4 B). To assess the most appropriate way for storing purified 6PGDH 
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without causing any activity loss, enzymatic activities of fresh, 50% glycerol stock 

and freeze dried 6PGDH were compared (Figure 2.4 B). While 6PGDH stored in 

50% glycerol at -20°C retains an enzymatic activity comparable to that of the 

freshly purified enzyme, freeze dried 6PGDH suffers of substantial activity loss. 

Figure 2.4. (A) SDS-PAGE of purified 6PGDH (MW = 53.6 kDa; fractions 1-4) compared 

to cell lysate (Lys) before and after (FT) purification. (B) Activity assay of 6PGDH through 

UV-vis spectroscopy by monitoring NADPH increase at 340 nm. Freeze dried 6PGDH 

(black) shows a marked activity loss compared to fresh (or 50% glycerol stock) 6PGDH. 

6PGDH assay principle is shown in (C). 

2.2.1.2 Characterisation and activity assay of EcGRX2

Recombinant EcGRX2 was analysed by SDS-PAGE (Figure 2.5 A). In addition, 

pure recombinant enzyme was subjected to mass spectrometry analysis (Figure 

2.6). Because EcGRX2 activity cannot be directly assayed by UV-vis 
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spectroscopy, the recombinant enzyme was coupled to ScGR using a procedure 

described by Holmgren which monitors the consumption of NADPH by measuring 

UV absorbance at 340 nm (Figure 2.5 B and C) (190). To ensure that NADPH 

consumption was a direct consequence of EcGRX2 activity, ScGR activity was 

monitored before addition of EcGRX2 into the same reaction mixture. Activity of 

freeze dried EcGRX2 was found significantly lower than its glycerol stock 

counterpart, therefore the enzyme was routinely stored at -20°C in 50% glycerol.

Figure 2.5. (A) SDS-PAGE of purified GRX2 (MW = 26.4 kDa; fractions 1-3) compared 

to cell lysate (Lys) before and after (FT) purification. (B) EcGRX2 activity monitored by 

UV-vis spectroscopy following NADPH decrease at 340 nm. Because GRX2 does not 

directly oxidise NADPH, ScGR is coupled to the recombinant enzyme in presence of 

catalytic quantities of GSH. Oxidation of GSH to GSSG is therefore directly linked to 

EcGRX2 resulting into the reduction of HED to β-ME concomitant to the oxidation of 

NADPH to NADP+. The assay principle is shown on panel (C). Compared to fresh (or 

50% glycerol stock) EcGRX2, freeze dried EcGRX2 (green) suffers of activity loss. 



A disulfide-based NADP+ recycling system with a high turnover number

43

Figure 2.6. Positive ESI-MS of purified EcGRX2. Deconvoluted experimental molecular 

weight of the recombinant enzyme was 26,383 amu (calculated 26,368 amu). 

2.2.2 In vitro assembly of the GRX system and determination of the 

maximal TTN

To determine the experimental TTN of the ScGR/EcGRX2 redox couple, HK and 

G6PDH were combined to oxidise D-glucose into 6-PG in two biochemical steps 

(Figure 2.7 A). In the first HK-catalysed reaction, ATP donates a phosphate group 

to D-glucose to yield glucose-6-phosohate (G6P) and ADP. Therefore, PK and 

stochiometric amounts of PEP were included to recycle ATP. G6PDH mediates

the oxidation of G6P by NADP+ to generate one equivalent of 6-PG and NADPH

in each catalytic cycle; this enzymatic reaction merits the use of the GRX system 

to regenerate NADP+. Accordingly, the NADP+ regenerating system was included 

by adding ScGR and EcGRX2, catalytic GSH and a stochiometric amount of the 

latent oxidizing reagent HED (or cystine). Use of 13C6-D-glucose allowed to 

precisely monitor the course of the reaction by NMR spectroscopy. When NADP+

was added to the reaction mixture, the substrate was efficiently converted to the 

product 6-PG, in which the corresponding C1 signal in the 13C-NMR spectrum 

shifted from ~96 and 92 ppm (64% β- and 36% α-anomer, respectively) to ~178 

ppm (Figure 2.7 C). 
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To assess the maximal number of TTN that could be achieved by the 

ScGR/EcGRX2 system, different concentrations of NADP+ were used ranging 

from 0.1 mM to 1 nM (Table 2.1). Noticeably, full conversion of substrate to 

product was observed when the concentration of NADP+ decreased to 10 nM 

corresponding to a TTN of 5 x 105 (Figure 2.7 C). On the other hand, D-

glucose/NADP+ ratios corresponding to a TTN value superior to 5 x 105 lead to a 

partial conversion of starting material into product (Figure 2.7 D). Consequently, 

it is concluded that the TTN of the ScGR/EcGRX2 recycling system can reach a 

TTN up to 5 x 105, a value that has not been achieved by other existing NADP+

recycling systems. It should also be noted that this enzyme pair is compatible 

with the PK/PEP ATP-recycling system used for adding the phosphate at the C-

6 position of glucose (171). Additionally, cystine, though sparingly soluble, can 

act as a latent oxidizing reagent as well.  



A disulfide-based NADP+ recycling system with a high turnover number

45

Figure 2.7. (A)  Conversion of D-glucose to 6-phosphogluconate (6-PG) by hexokinase 

(HK) and glucose 6-phosphate dehydrogenase (6GPDH). The ATP/ADP and the NADP+

recycling (highlighted in red) systems are composed of pyruvate kinase (PK), glutathione 

reductase (ScGR) and glutaredoxin 2 (EcGRX2). Conversion of substrate to product has 

been monitored by 13C-NMR spectroscopy using 13C6-D-glucose as starting material (B). 

While at TTN = 5 x 105 there was a complete conversion of 13C6-D-glucose to 13C6-6-PG 

(C), at TTN = 8 x 105 residual peaks from G6P at 96 and 92 ppm indicate an incomplete 

conversion (D).

Table 2.1. Experimental TTN value of the GRX system tested for NADP+ recycling 

determined by 13C-NMR spectroscopy.

NADP+

concentration
TTN Conversion of 13C6-glucose to 13C6-PG

0.1 mM 50 Complete
5 μM 103 Complete

0.5 μM 104 Complete
50 nM 105 Complete
10 nM 5 x 105 Complete
6 nM 8 x 105 Incomplete
1 nM 1 x 106 Incomplete
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To further examine the compatibility of the ScGR/EcGRX2 recycling system, 

6PGDH was incorporated to the model pathway as an additional NADP+-

dependent enzyme. Upon the addition of 6PGDH, the intermediate 6PG 

underwent a complete oxidative decarboxylation; the two characteristic downfield 

chemical shifts correspond to the C3 of Ru5P (δ = 160 ppm) and the byproduct 

bicarbonate (δ = 213 ppm). This indicated that the ScGR/EcGRX2 recycling 

system can readily double its workload by incorporating another set of NADP+-

dependent enzyme (Figure 2.8).

Figure 2.8. Conversion of D-glucose to ribulose-5-phosphate (Ru5P) by hexokinase 

(HK), glucose 6-phosphate dehydrogenase (6GPDH) and phosphogluconate 

dehydrogenase (6PGDH). 
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2.3Conclusion

A novel NADP+ recycling system based on the ScGR/EcGRX2 redox couple was 

developed. The GRX system showed its ability to drive a glucose-utilising 

biosynthetic pathway yielding important synthons including 6-PG and Ru5P. By 

using small organic sulfides as latent oxidising reagents, the ScGR/EcGRX2 pair 

could regenerate NADP+ using hydride ions from NAPDH to produce thiols via

glutathione. Although this system is composed of two enzymes, GRX accepts 

organic disulfides including HED and cystine, converting them into β-

mercaptoethanol and cysteine, both of which are useful 'byproducts' protecting 

the enzymes, reagents and products from unwanted oxidative damage. 

Moreover, GRX is known to enhance protein stability by preventing them from 

oxidative misfolding and aggregation (191-193). Accordingly, this system is 

atomically economical, as there are reagents (e.g. HED) serving more than one 

role. Unlike the NAD(P)H oxidases (NOXs) and the laccase/mediator system, the 

ScGR/EcGRX2 are functional in both aerobic and anaerobic environment, so that 

these enzymes can operate with oxygen-sensitive biocatalysts and biosynthetic 

intermediates such as reduced pterins and H2F. Indeed, the durable antioxidant 

environment built on NADPH is one of the main advantages of GRX system. Most 

importantly, both ScGR and EcGRX2 are highly active offering TTNs of up to 5 x

105 outperforming the currently available NADP+ recycling systems. Accordingly, 

the NADP+ recycling system sustained by ScGR/EcGRX2 is superior than all of 

the currently available systems and offers many advantages for commercial and 

academic users.
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3. CHEMO-ENZYMATIC SYNTHESIS OF ISOTOPICALLY 

LABELLED GUANOSINE NUCLEOTIDES
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3.1 Preface

Guanosine is one of the four natural nucleosides comprising of a purine base 

(guanine) covalently linked to ribose at the C1 via a β-N9-glycosidic bond. In living 

organisms, guanosine is mainly found as guanosine monophosphate (GMP), 

guanosine diphosphate (GDP) or guanosine triphosphate (GTP). Additionally, 

deoxyguanosine nucleotides (dGMP, dGDP and dGTP), where the 2’-hydroxyl is 

reduced, are commonly present within the cellular environment (Figure 3.1 A). 

Both guanosine and deoxyguanosine nucleotides participate in a wide range of 

biological and biosynthetic processes, including cell signalling, RNA and DNA 

biosynthesis. 

GTP is perhaps the most important phosphorylated derivative of guanosine from 

a biosynthetic point of view. In addition to being employed in RNA biosynthesis, 

GTP is the first intermediate of many biosynthetic pathways from various 

organisms to the production of a variety of natural products including pigments 

(194, 195), toxins (196), non-canonical nucleotides (197) and cofactors (196, 

198-201). Notably, GTP participates in the first committed step in the biosynthesis 

of flavin (201), molybdopterin (196, 198), tetrahydrobiopterin (199), and 

dihydrofolate (H2F, section 1.6) cofactors (Figure 3.1 B). 

For the scope of this thesis, production of site-specifically labelled GTP is 

fundamental to the enzymatic synthesis of isotopically enriched H2F for heavy-

atom KIE studies on DHFR. Besides, isotopically enriched guanosine nucleotides 

have many applications in biochemical studies including RNA structural and 

functional analysis (202-204). In this chapter, a simplified approach to the chemo-

enzymatic synthesis of guanine nucleotides is described. The biosynthetic 

procedure reported herein, which includes the newly developed cofactor 
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recycling scheme reported in Chapter 2, has been designed for being highly 

compatible to H2F biosynthesis. 

Figure 3.1. (A) Structure of guanosine and deoxyguanosine nucleotides. (B) Cofactors 

such as tetrahydrobiopterin, dihydrofolate, riboflavin and molybdopterin are 

biosynthetically derived from guanosine triphosphate (GTP). Atoms derived from GTP 

are highlighted in red.

3.1.1 Background: the de novo and salvage pathway of guanosine 
nucleotides

In cells, guanosine nucleotides are mainly biosynthesised de novo from ribose-

5-phosphate (R5P), which is provided by the pentose phosphate pathway from 

D-glucose (Figure 3.2). In the first step of purine de novo biosynthesis, the 

anomeric carbon of R5P is pyrophosphorylated to phosphoribose pyrophosphate 

(PRPP) with consumption of ATP by ribose-phosphate pyrophosphokinase 
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(PRS). PRPP is then converted into 5-phospho-β-D-ribosylamine (PRA) by 

glutamine phosphoribosylpyrophosphate amidotransferase (GPAT) where an 

amino group from glutamine is donated to PRPP. Glycine is subsequently 

connected to PRA to yield glycinamide ribonucleotide (GAR) by glycinamine 

ribonucleotide synthetase (GARS). A one-carbon unit provided by 10-formyl-H4F 

is transferred to GAR by GAR transformylase (GARTFase) to form 

formyglylcineamide ribonucleotide (FGAR). FGAR is converted into 

formylglycinamide ribonucleotide (FGAM) by FGAR amidotransferase with 

consumption of glutamine and ATP. FGAM is then cyclised to 5-aminoimidazole 

ribonucleotide (AIR) by FGAM cyclase. Addition of CO2 to AIR by AIR 

carboxylase leads to the formation of carboxyamino-imidazole ribonucleotide 

(CAIR). An aspartate residue is added to CAIR to yield N-succinyl-5-

aminoimidazole-4-carboxamide ribonucleotide (SAICAR) by the action of the 

enzyme SAICAR synthetase. SAICAR lyase removes a fumarate molecule from 

SAICAR to yield 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). A 

second carbon unit from N10-formyl-H4F is donated to AICAR by AICAR 

transformylase to yield N-formylaminoimidazole-4-carboxamide ribonucleotide 

(FAICAR). Cyclisation of FAICAR to inosinate by IMP synthase yields inosinate 

monophosphate (IMP). Conversion of IMP to GMP is achieved in two biochemical 

steps catalysed by IMP dehydrogenase (IMPDH) and XMP-glutamine 

amidotransferase. 
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Figure 3.2. Biosynthesis of GTP through the purine de novo pathway.

GMP can also be produced from R5P using the preformed guanine base (Figure 

3.3) via the salvage pathway. Similar to the de novo pathway, R5P is added with 

a diphosphate group yielding PRPP. The guanine base is then combined to 

PRPP by a specific enzyme, xanthine-guanine phosphoribosyl transferase 

(XGPRT), to yield GMP in a single biochemical step. While 6 ATP, 3 Gln, 2 N10-

formyl-H4F, NAD+, Gly, Asp and CO2 are needed for assembling the purine ring 

de novo from RP5, only one ATP molecule and guanine are needed in the 
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corresponding salvage pathway. Considering that nucleotide biosynthesis is in 

general an energetically demanding process, it is not surprising that nature has 

developed such a system to recover preformed purine bases from cellular 

degradation processes.

Figure 3.3. Biosynthesis of GMP through the purine salvage pathway.

3.2 Chemo-enzymatic synthesis of guanosine nucleotides

Site-specific isotopic labelling of guanosine nucleotides has been investigated 

previously, particularly for structural and functional analysis of ribonucleic acids 

through NMR spectroscopy (166, 167, 202-207). Production of specifically 

labelled GMP, GDP and GTP via chemoenzymatic procedures is particularly 

attractive for the unmatched chemo-, regio- and enantio-selectivity of enzymatic 

catalysts. 

Because it would be simple to reproduce the purine salvage pathway in vitro, the 

logical option to produce purine nucleotides chemo-enzymatically is by employing 

the purine salvage enzymes, as previously reported by Tolbert et al. (205). 

Unfortunately, guanine has low solubility which turned out to be a limiting factor 

for an efficient GMP biosynthesis. In an attempt to minimise this problem, it was 

proposed to combine an excess of the insoluble purine base with high amounts 
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of enzymes and long reaction times, ranging between 4 h and 70 h (202, 205). 

Nevertheless, this biosynthetic route remains impractical due to a lack of 

reproducibility. To circumvent the problem, Schultheisz et al. engineered the 

purine de novo biosynthetic pathway in a one-pot synthesis (166). In this elegant 

work, purine nucleotides isotopically labelled at specific positions were produced 

using very simple starting materials (e.g. D-glucose) with yields up to 66%. 

However, the synthetic procedure requires a minimum of 28 enzymes, 5 cofactor 

recycling systems and various reagents making it difficult to be expanded for the 

synthesis of other relevant natural products such as folate.

Because the main goal of this research is to develop an enzymatic one-pot 

synthesis of site-specifically labelled folate through the generation of the key 

intermediate GTP from D-glucose, the enzymatic assembly of the guanosine 

nucleotide must be simple, yet efficient. Due to the complex setup, a hypothetical 

implementation of the de novo purine synthesis described by Schultheisz et al. to 

the H2F biosynthetic pathway is difficult (166). Consequently, in this work efforts 

were focused on synthesising isotopically labelled GMP by combining the 

pentose phosphate and purine salvage pathways enzymes. Accordingly, it will 

allow us to further extend the biosynthetic pathway to produce other natural 

products including H2F. Moreover, given the importance of labelled guanosine 

nucleotides have for biochemical studies, the scientific community would benefit 

from a facile chemo-enzymatic procedure for the synthesis of isotopically labelled 

GMP/GDP/GTP.
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3.3Synthesis of isotopically labelled guanine

In the chemo-enzymatic assembly of GMP that uses purine salvage pathway 

enzymes, D-glucose and guanine are employed as starting materials. While D-

glucose isotopically enriched on various positions is available from commercial 

sources, site-specifically labelled guanine can be synthesised in house following 

well-established procedures (208). In general, guanine is assembled through the 

cyclisation of either a substituted pyrimidine (Figure 3.4 A) or an imidazole 

derivative (Figure 3.4 B).

Figure 3.4. General scheme of guanine assembly from either (A), a substituted 

pyrimidine, or (B), an imidazole derivative.

3.3.1 Traube purine synthesis of guanine

The first method to synthesise guanine was developed by Wilhelm Traube in 

1900 (209). The “Traube purine synthesis” (Figure 3.5 A) involves the nitrosation 

of 2,4-diamino-6-hydroxypyrimidine (6) at C5 to yield the intermediate 2,4-

diamino-6-hydroxy-5-nitrosopyrimidine (7). Reduction with sodium dithionite 
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under aqueous conditions leads to 2,4,5-triamino-6-hydroxypyrimidine (8) which 

is subsequently cyclised to guanine with formic acid under reflux. 

In addition to the use of formic acid reported in the original work, other procedures 

involving the use of reagents such as formamide, trimethylorthoformate and 

morpholine for the ring closure step were described (208, 210). Aiming to achieve 

the highest possible yield, all these reported modifications have been tested 

(Figure 3.5 B). Cyclisation of 8 with either formamide or trimethylorthormate under 

conditions reported in (208) did not yield the desired product. Ring closure using 

formic acid resulted in 40% guanine whilst a mixture of formic acid and 

morpholine doubled the yield to 85%. It has been proposed that formation of 4-

formylmorpholine facilitates the formylation step required for 8 to be transformed

in guanine (Figure 3.5 C) (210).

Figure 3.5. (A) Traube purine synthesis of guanine (209). (B) Experimental conditions 

and yields for cyclisation of (8) to guanine. (C) Ring closure mechanism proposed by 

Sharma et al. (210) for the morpholine-catalysed reaction.
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3.3.1.1 Synthesis of [7-15N] and [6-13C,7-15N] Guanine

Because simple starting materials such as sodium nitrite and formic acid are 

employed the Traube synthesis, [7-15N]- and [6-13C,7-15N]-guanine can be cost-

effectively synthesised (chapter 6, section 6.6.1). The use of Na15NO2 during 

nitrosation of 6, followed by reduction with dithionite, leads to the intermediate [5-

15N]-2,4,5-triamino-6-hydroxypyrimidine (9), which has been characterised by 

both 15N-NMR spectroscopy (δ = 24 ppm, singlet) and MS (Figure 3.6). The 

labelled compound shows a mass increase of ~1 amu compared to that with 

isotopes of natural abundance.

Figure 3.6. (A) Positive ESI-MS of (A) natural abundance and (B) 15N-labelled 2,4,5-

triamino-6-hydroxypyrimidine (9). 

Cyclisation of 9 with formic acid in morpholine yields guanine labelled at N7 

(Figure 3.7). This is evident by the mass increase of ~1 amu in the spectrum and 

the spin-spin long range coupling between 15N and the C8 proton which leads a 

doublet at 7.56 ppm (2JNH = 10 Hz). Additionally, the 15N-NMR spectrum shows a 

peak at 214 ppm.
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Figure 3.7. (A) Positive ESI-MS and 1H-NMR of (A) natural abundance and (B) 15N-

labelled guanine. 

Condensation of 9 with 13C formic acid in morpholine as solvent results in [6-13C,

7-15N]-guanine (Figure 3.8). Compared to guanine with isotopes of natural 

abundance, positive ESI-MS of the double-labelled compound shows a mass 

increase of ~2 amu (Figure 3.8 A). The proton attached to C8 appears at ~7.5 

ppm as a doublet of doublets (1JCH = 186 Hz, 2JNH = 10 Hz) in the 1H-NMR 

spectrum, due to the spin-spin coupling to both N7 and C8 (Figure 3.8 B). 13C-

NMR shows a doublet at 148 ppm (2JCN = 3.0 Hz) while in the 1H-15N-HMBC 

experiment N7 correlates to the C8 proton at 219.3 ppm (Figure 3.8 C). 
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Figure 3.8. (A) Positive ESI-MS, (B) 1H-NMR and (C) 1H-15N-HMBC of [7-15N,8-13C]-

guanine.

3.3.2 Synthesis of guanine from 5-amino-4-imidazolecarboxamide

Yamazaki et al. developed an approach to prepare guanine from 5-amino-4-

imidazolecarboxamide (14) through the intramolecular cyclisation 5-cyanoamido-

4-imidazolecarboxamide (11), which is generated in situ by heating of 5-(N’-

benzoyl-S-methylisothiocarbamoyl)amino-4-imidazolecarboxamide (10) in strong 

alkaline conditions (Figure 3.9) (211, 212). Benzoyl isothiocyanate (13), freshly 

prepared by reacting benzoyl chloride (12) and KSCN, is added to 14 yielding 5-

(N’-benzoylisothiocarbamoyl)amino-4-imidazolecarboxamide (15). Treatment of 

15 with methyl iodide leads to the formation of 10 which is subsequently heated 

at 100°C in 6M NaOH to trigger the cyclisation to guanine. In the original synthetic 

strategy, both intermediates 10 and 15 were purified before proceeding to the 
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next synthetic step. In this work, a modified version of this synthetic route was 

developed where only the final product was purified with an overall yield of 29%, 

similar to that of Yamazaki et al. (31% overall) (211, 212).

Figure 3.9. (A) Mechanism proposed by Yamazaki et al. (212) for the cyclisation of 5-

(N’-benzoyl-S-methylisothiocarbamoyl)amino-4-imidazolecarboxamide (10) to guanine 

through the in situ formation of 5-cyanoamido-4-imidazolecarboxamide (11). (B) 

Synthesis of guanine from 5-amino-4-imidazolecarboxamide (14).
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3.3.2.1 Synthesis of [2-13C]-guanine

[2-13C]-guanine was prepared following the synthetic route described in section 

3.3.2 by replacing natural abundance KSCN with its 13C counterpart (chapter 6, 

section 6.6.2.1). Similar to [7-15N]-guanine (section 3.3.1.1), MS characterisation 

of [2-13C]-guanine showed a mass increase of ~1 amu (Figure 3.10). 13C-NMR 

experiment showed a singlet peak at 159 ppm.

Figure 3.10. Positive ESI-MS of [2-13C]-guanine.

3.4 Chemo-enzymatic synthesis of GMP

A total of 10 enzymes have been combined for the biosynthesis of GMP 

described in this work. As discussed in chapter 2, D-glucose is converted into the 

intermediate Ru5P by the action of enzymes from the pentose phosphate 

pathway, namely HK, G6PDH and 6PGDH (Figure 3.11). Here, the biosynthetic 

cascade continues with the isomerisation of Ru5P to R5P catalysed by 

phosphoriboisomerase (PRI). R5P is the connection between the pentose 

phosphate and purine salvage pathways, where PRRP is linked to the purine 

moiety by XGPRT to yield the final product GMP. The newly developed NADP+

recycling system based on the GR/GRX2 redox couple (chapter 2) was used in 

this biosynthetic procedure. 
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Figure 3.11. Chemo-enzymatic synthesis of guanosine monophosphate (GMP). 

A serious issue regarding GMP biosynthesis is the low solubility of guanine. Here, 

a system where the guanine concentration is kept just below saturation has been 

developed (Figure 3.12 A). A reservoir of the purine base dissolved in alkali 

solution (50 mM KOH) is flowed into the reaction mixture with a syringe pump. 

The guanine injected into the system is then converted into soluble GMP. To 

maintain the pH of the reaction mixture within the optimum range, the ratio 

between amounts of alkali needed to dissolve guanine and buffer was determined 

experimentally. With this approach, substrates are employed in stoichiometric 

amounts, reaction times are shortened and there is no need for high amounts of 

enzymes to shift the equilibrium towards product formation.
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Figure 3.12. (A) Syringe-pump system for controlling guanine concentration. 

Comparison between (B) GMP synthesised by controlled flow of alkaline guanine into 

the reaction mixture and (C) without syringe pump.

3.4.1 Synthesis of [1’,2’,3’,4’,5’-13C5]-, [1’,2’,3’,4’,5’-13C5,7-15N]-, 

[1’,2’,3’,4’,5’-8-13C6,7-15N]- and [2-13C]-GMP

The guanine biosynthetic pathway assembled in this work allowed us to 

synthesise various isotopically labelled GMPs (Table 3.1) in one day with yields 

ranging between 70% and 80%. In addition to 6PGDH and GRX2 (chapter 2, 

section 2.2.1), recombinant PRS and XGPRT were employed. Genes cloned in 

a pET expression system have been expressed and purified as previously 

reported (166, 213). Because the GRX recycling system for NADP+ may use 

either HED or cystine as the final electron acceptor (chapter 2), the biosynthetic 

efficiency for GMP synthesis was tested by varying those reagents; in either case 

yields were similar, and no substantial difference was found.  
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All synthesised compounds were purified by anion exchange chromatography 

(chapter 6, section 6.6) and quantified through the Beer-Lambert law (chapter 6, 

section 6.3.4.5.2). All compounds were characterised by high-resolution mass 

spectrometry (HR-MS); accurate masses are listed in Table 3.1 whereas full 

spectra are reported in chapter 8. Use of D-13C6-glucose and guanine as starting 

material lead to [1’,2’,3’,4’,5’-13C5]-GMP. This was shown by 13C-NMR

spectroscopy, where carbons C1’ (doublet, 86 ppm), C2’ (triplet, 74 ppm), C3’ 

(triplet, 71ppm), C4’ (triplet, 84 ppm), C5’ (doublet, 63 ppm) couple to each other 

between 100 ppm and 50 ppm (Figure 3.13 B). 

While in [1’,2’,3’,4’,5’-13C5,7-15N]-GMP the 13C-NMR spectrum is identical to that 

of [1’,2’,3’,4’,5’-13C5]-GMP (Figure 3.14 C), the C8 proton at 8.00 ppm on 1H-NMR 

splits as a doublet for the spin-spin coupling to 15N (2JNH= 12 Hz, Figure 3.14 A 

and B). Additionally, the 1H-15N-HMBC experiment shows the long-range 

correlation between C8 proton (δ = 8.00 ppm) to the N7 at 235 ppm (Figure 3.14 

D). 

The C8 proton [1’,2’,3’,4’,5’,8-13C6, 7-15N]-GMP further splits as a doublet of 

doublets (1JCH= 213 Hz, 2JNH= 12 Hz) in the 1H-NMR spectrum (Figure 3.15 A and 

B), and this pattern of splitting is also evident in the corresponding 1H-15N-HMBC 

spectrum (Figure 3.15 D) due to the high 1JCH coupling constant. 13C-NMR 

spectrum shows the C8 carbon at 135 ppm along with C1’, C2’, C’3’, C4’ and C5’ 

ribose carbons (Figure 3.15 C). 

Because no spin active atom is near C2 of [2-13C]-GMP, the 13C-label can only 

be seen through 13C-NMR at 161 ppm as a singlet (Figure 3.16 B).
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Table 3.1. Isotopically labelled GMPs synthesised in this work. 13C is highlighted in red

Starting Material Labelled GMP Accurate Mass [M+H]+

(amu)

D-13C6-Glucose 

+ 

Guanine

369.0811 

D-13C6-Glucose

+ 

[7-15N]-Guanine

370.0795 

D-13C6-Glucose 

+ 

[7-15N,8-13C]-Guanine

371.0793 

D-Glucose 

+ 

[2-13C]-Guanine

365.0674

Figure 3.13. (A)1H-NMR and (B) 13C-NMR of [1’,2’,3’,4’,5’-13C5]-GMP.
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Figure 3.14. (A)1H-NMR of [1’,2’,3’,4’,5’-13C5,7-15N]-GMP. (B) Purine C8 proton splits as 

a doublet for the spin-spin coupling to N7 (2JNH= 12 Hz). (C) Isotopically labelled carbons 

from the ribose moiety are shown by 13C-NMR, while (D) 1H-15N-HMBC experiment 

shows a correlation between C8 proton (δ = 8.00 ppm) to the N7 at 235 ppm.
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Figure 3.15. (A)1H-NMR of [1’,2’,3’,4’,5’,8-13C6,7-15N]-GMP. (B) Purine C8 proton splits 

as a doublet of doublets for the spin-spin coupling to both C8 and N7 atoms (1JCH= 213 

Hz, 2JNH= 12 Hz). (C) Isotopically labelled carbons from the ribose moiety are shown by 

13C-NMR between 100 ppm and 50 ppm, while C2 of the purine ring resonates at 135 

ppm. (D) 1H-15N-HMBC experiment shows a correlation between C8 proton to the N7 at 

235 ppm.

Figure 3.16. (A)1H-NMR and (B) 13C-NMR of [2-13C]-GMP. 
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3.5Chemo-enzymatic synthesis of GTP 

Synthesis of GTP is a continuation of GMP biosynthesis where two additional 

phosphate groups on GMP C5’ position are added stepwise (figure 3.17). 

Consequently, the experimental setup for synthesising GTP is essentially 

identical to that described for GMP (section 3.4) except for the presence of an 

additional enzyme, guanylate kinase (GK), which transfers a phosphate group 

from ATP to GMP yielding ADP and GDP. The GDP intermediate is then further 

phosphorylated into GTP by the action of the ATP-recycling enzyme PK, which 

in this case also functions as a biosynthetic enzyme. 

Figure 3.17. Continuation of guanosine monophosphate (GMP) biosynthesis illustrated

in figure 3.11 to the formation of guanosine triphosphate (GTP).

3.5.1 Gene expression, purification and characterisation of recombinant 

guanylate kinase (GK)

The gene codifying for guanylate kinase (gmk) was amplified by PCR reaction 

using E. coli K-12 chromosomal DNA as template and subsequently cloned into 

the NdeI and XhoI sites of pET28-a vector (chapter 6, section 6.2). The 

recombinant enzyme, bearing a N-terminal hexahistidine tag, was overproduced 

in E. coli BL21(DE3) and purified by affinity chromatography (chapter 6, section 
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6.3.4.1). Sequencing of the cloned gmk gene revealed a point mutation of causing 

the shift of the Arg152 codon in Gly (R152G), and this was confirmed by mass 

spectrometry analysis (Figure 3.18). Nevertheless, the mutated enzyme was 

found active (Figure 3.19) and it therefore did not cause any difference for 

purposes of the work described here. GK activity has been tested by UV-vis 

spectroscopy by coupled assay with PK and lactate dehydrogenase (LDH) as 

previously described (214) (Figure 3.19 B and C). Briefly, ATP consumed by GK 

is regenerated by PK which in turn produces pyruvate as a by-product. In the 

presence of NADH, LDH reduces pyruvate to lactate, and this enzymatic step can 

be detected by following the decrease of NADH absorbance at 340 nm.

Figure 3.18. ESI-MS+ of purified GK R152G mutant. Deconvoluted experimental 

molecular weight of the recombinant enzyme was 25,526 amu (calculated 25,525 amu). 
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Figure 3.19. (A) SDS-PAGE of purified GK (MW = 25.5 kDa; fractions 1-2) compared to 

cell lysate (Lys) before and after (FT) purification. (B) GK activity monitored by UV-vis 

spectroscopy following NADH decrease at 340 nm. The assay principle is shown on 

panel (C). Compared to fresh (or 50% glycerol stock, red) GK, freeze dried GK (green) 

suffers of activity loss. 

3.6 Conclusion

In this chapter, a simple procedure for the biosynthesis of isotopically labelled 

guanosine nucleotides (GMP and GTP) is reported. Compared to previous 

procedures, two major modifications were made. Firstly, the highly efficient 

recycling system for NADP+ based on the GR/GRX redox couple (chapter 2) was 

implemented. By using small organic sulfides as latent oxidizing reagents, the 

GR/GRX system is able to produce useful ‘byproducts’ such as β-

mercaptoethanol to protect enzymes, reagents and products from unwanted 



Chemo-enzymatic synthesis of isotopically labelled guanosine nucleotides

71

oxidative damage. Unlike other NADP+ recycling schemes such as the NOX and 

laccase/mediator systems, the GR/GRX pair is not dependent on oxygen and it 

is therefore functional under both aerobic and anaerobic conditions. 

A second modification is related to formation of GMP through the combination of 

PRPP with insoluble guanine by the purine salvage pathway enzyme XGPRT. 

Although it has been described that the reaction can proceed using guanine as a 

slurry (205), such reaction conditions require long reaction times and have poor 

reproducibility. Hence, in this work, guanine was stored in an alkaline buffer (50

mM KOH) and added to the reaction dropwise with a syringe pump. Under these 

modifications, approximately 70-80% of GMP can be obtained within 60 mins. 

[1’,2’,3’,4’,5’-13C5]-, [1’,2’,3’,4’,5’-13C5,7-15N]-, [1’,2’,3’,4’,5’-8-13C6,7-15N]- and [2-

13C]-GMP were synthesised and characterised. These compounds are currently 

in use in our lab to conduct in vivo experiments on Escherichia coli.
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4. CHEMO-ENZYMATIC SYNTHESIS OF ISOTOPICALLY 

LABELLED H2Fs AND INVESTIGATION OF EcDHFR 

CATALYSIS VIA HEAVY-ATOM ISOTOPE EFFECTS*

*This chapter summarises the work published on J. Am. Chem. Soc., 2017, 139 (37), pp 13047–

13054 (DOI: 10.1021/jacs.7b06358). Authors of this article include Antonio Angelastro, William 

M. Dawson, Louis Y. P. Luk, E. Joel Loveridge and Rudolf K. Allemann. AA, the author of this 

PhD thesis, is the only first author for this article. 



Chemo-enzymatic synthesis of isotopically labelled H2Fs and investigation of EcDHFR catalysis 
via heavy-atom kinetic isotope effects

73

4.1Preface

Mapping the transition-state of the DHFR-catalysed reduction of H2F by 

measuring heavy-atom isotope effects is fundamental to dissect the reaction 

mechanism on an atomic scale and to assist the rational design of novel DHFR 

inhibitors. To reach this goal, a set of H2Fs site-specifically labelled on N5, C6, 

C7 and C9 positions of the pterin moiety with either stable (15N, 13C) or radioactive 

isotopes (14C) must be synthesised. To date, despite half a century of efforts and 

nearly 30 synthetic procedures reported in the literature, synthesis of folates 

labelled on the pterin moiety can only be partially achieved through laborious and 

cost-demanding procedures (Chapter 1, section 1.5). This is mainly due to the 

shortage of suitably labelled starting materials and lack of regio-, stereo- and 

enantio-selectivity of key chemical reactions. The picture is further complicated 

when reduced folates (e.g. H2F) are considered as they are unstable toward 

oxygen, light, heat and non-physiological pH values (157-160). 

In this work, the folate de novo biosynthetic pathway of E. coli was redesigned in 

vitro in a one-pot chemo-enzymatic synthesis. This allows us to produce 

isotopically labelled folates from D-glucose, guanine and p-aminobenzoyl-L-

glutamic acid (pABA-Glu). Using this biosynthetic route, H2Fs enriched with 

stable isotopes at specific positions were synthesised in less than a week. The 

high degree of purity and isotopic enrichment (>97%) of these compounds has 

allowed us to perform, for the first time, single and multiple heavy-atom KIE 

measurements for EcDHFR catalysis and to derive unambiguous information 

about the chronological order of protonation and hydride transfer.
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4.2 Cloning, expression, purification and assay of recombinant enzymes 

constituting the H2F de novo pathway.

The folate de novo pathway (Chapter 1, section 1.6, figure 1.18) is constituted

overall by 6 known enzymes: GTP cyclohydrolase I (GTP-CH-I), 7,8-

dihydroneopterin triphosphate pyrophosphatase (DHNTPase), dihydroneopterin 

aldolase (DHNA), 6-hydroxymethyl 7,8-dihydropterin pyrophosphokinase 

(HPPK), dihydropteroate synthase (DHPS) and dihydrofolate synthase (DHFS). 

None of these enzymes is commercially available and therefore they have all 

been produced in-house through molecular biology techniques (Chapter 6, 

section 6.2). Genes encoding for GTP-CH-I, DHNA, HPPK and DHPS were 

cloned by Dr William Dawson (213) and corresponding recombinant enzymes 

were overproduced in E. coli strains as previously reported (213). Additionally, 

the gene encoding for DHNTPase (nudB) has been amplified from E. coli K-12 

chromosomal DNA and cloned into the NdeI and XhoI sites of pET28-a vector 

(Chapter 6, Section 6.2). DHNTPase was overproduced in E. coli BL21(DE3)RP 

and purified by affinity chromatography (Chapter 6, section 6.3.4.1) (Figure 4.1). 
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Figure 4.1. SDS-PAGE of purified DNTPase by affinity chromatography (fractions 1-2) 

compared to cell lysate (Lys) before and after (FT) purification. After prolonged heating 

(right panel) the recombinant enzyme (MW = 19.500 kDa) shifts nearby the 18.4 kDa 

band of the marker.

4.2.1 Activity assay of recombinant enzymes constituting the H2F pathway

GTP-CH-I activity can be monitored by following the increase of absorbance at 

330 nm which corresponds to the formation of dihydropterin. Alternatively, the 

conversion of guanosine triphosphate (GTP) to 7,8-dihydroneopterin 

triphosphate (DHNTP) by GTP-CH-I can be visualised by acquiring UV spectra 

at defined intervals. As illustrated in Figure 4.2, the UV-vis spectrum at the 

beginning of the reaction (which corresponds to GTP) has profoundly 

transformed at the end of the reaction (which corresponds to DHNTP). 
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Figure 4.2. Formation of DHNTP from GTP catalysed by GTP-CH-I by UV-vis 

spectroscopy. UV spectra of starting material (blue) and product (red) are highlighted. 

Assaying recombinant DHNTPase, DHNA, HPPK and DHPS activities was 

particularly problematic as all the corresponding product intermediates DHNTP, 

7,8-dihydroneopterin monophosphate (DHNMP), 7,8-dihydroneopterin (DHN), 6-

hydroxymethyl-7,8-dihydropterin (HMDP) and 6-hydroxymethyl-7,8-dihydropterin 

pyrophosphate (HMDPpp) are chemically unstable and have not been clearly 

characterised. This problem was also reported by Dr William Dawson who could 

not prove activity for recombinant HPPK and DHPS because DHN oxidised to 

neopterin under his experimental conditions (213). In this work, the issue was 

circumvented by sequential coupling of each enzyme to GTP-CH-I without 

isolating intermediates. Furthermore, reduced pterins were found to be 

sufficiently stable in the presence of oxygen for a day when protected from light 

and in presence of radical scavengers such as thiols, allowing analytical 

characterisation of each intermediate. DHNTP and DHNMP possess a 

triphosphate and monophosphate group, respectively, and thus can be analysed
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by anion exchange chromatography (Figure 4.3). Coupling of DHNTPase with 

GTP-CH-I results in the formation of DHNMP from GTP (Figure 4.3 B). 

Dephosphorylation of DHNMP with alkaline phosphatase (ALP) yields the 

intermediate DHN which was identified by LC-MS (Figure 4.4). Addition of DHNA 

leads to the formation of HMDP from DHN, as indicated by LC-MS analysis 

(Figure 4.5). Similar to DHNTP and DHNMP, pyrophosphorylation of HMDP to 

HMDPpp by HPPK can be monitored by anion exchange chromatography (Figure 

4.6). Production of dihydropteroate (H2Pte) from HMDPpp and pABA mediated 

by DHPS catalysis was proven by LC-MS (Figure 4.7).

Figure 4.3. Anion exchange chromatograms of GTP (A) incubated with GTP-CH-I and 

(B) GTP-CH-I and DHNTPase.
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Figure 4.4. Positive ESI LC-MS of dihydroneopterin (DHN; MW = 255 amu) generated 

by GTP-CH-I, DHNTPase and ALP.

Figure 4.5. Positive ESI LC-MS of 6-hydroxymethyl-7,8-dihydropterin (HMDP; MW = 195 

amu) by GTP-CH-I, DHNTPase, ALP and DHNA.
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Figure 4.6. Anion exchange chromatogram of 6-hydroxymethyl-7,8-dihydropterin 

pyrophosphate (HMDPpp) generated by GTP-CH-I, DHNTPase, ALP, DHNA and HPPK.

Figure 4.7. Positive ESI LC-MS of H2Pte generated from 6-hydroxymethyl-7,8-

dihydropterin pyrophosphate (HMDPpp) and p-aminobenzoic acid (pABA) by 

dihydropteroate synthase (DHPS). 
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4.3 Design of H2F chemo-enzymatic synthesis

In the design of the enzymatic synthesis of H2F, two key issues had to be

considered: (1) use of simple building block of which isotopically labelled 

counterparts can be obtained; (2) establish a simple, versatile and fast procedure 

avoiding isolation of reaction intermediates. Attention was focused on labelling 

H2F N5, C6, C7 and C9 of the pterin moiety as these positions are directly 

involved in the formation of the transition-state during the DHFR-catalysed 

reduction of H2F to H4F (Chapter 1, section 1.3). All atoms composing the pterin 

moiety are derived from GTP, the first intermediate of the folate de novo pathway 

(Figure 4.8). Precisely, C1’, C2’, C3’, N1, C2, N3, C4, C5, C6, N7 and N9 

positions of GTP correspond to the C7, C6, C9, N3, C2, N1, C4b, C4a, C4, N5 

and N8 positions of H2F. The use of isotopically labelled GTP is crucial to produce 

H2F enriched on the positions of interest (N5, C6, C7 and C9), and site-specific 

isotopically labelled GTPs need to be synthesised. As discussed in chapter 3, a 

biosynthetic procedure for generating isotopically labelled GTP from D-glucose 

and guanine is available (Figure 4.8). The labelled nucleotides were generated

to prepare the corresponding H2Fs by combining a total of 17 enzymes. In this 

biosynthetic cascade, no intermediate needs to be isolated due to the general 

high substrate specificity of each enzyme. Also, because H2F and other pterin 

intermediates are prone to oxygen-dependent degradation (158), the 

biosynthesis was performed in an anaerobic environment, with an overall yield of 

30%.
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Figure 4.8. Biosynthetic strategy for the synthesis of H2F. Glucose and guanine are 

processed into the key intermediate guanosine triphosphate (GTP, Chapter 3), which is 

then reorganized into DHN by GTP-CH-I, DHNTPase and ALP. DHNA, HPPK and DHPS 

combine DHN with pABA-Glu to yield the final product H2F. Additionally, myokinase 

(MK), glutathione reductase (GR) and glutaredoxin 2 (GRX2), are used to constitute 

cofactor regeneration systems for ATP and NADP+ (171, 179).
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4.3.1 DHNATPase enhances GTP-CH-I activity

Reorganisation of GTP into DHNTP by GTP-CH-I is a metabolic branch point 

connecting the purine biosynthetic pathway to H2F de novo synthesis (215). In 

vitro manipulation of GTP-CH-I was challenging, mainly because of its low 

turnover constant (kcat = 0.05 s-1) (216) and the inherent chemical instability of 

DHNTP. Positive allosteric effectors like potassium and magnesium cations were 

reported to increase the GTP-CH-I rate up to 5-fold and they were included in the 

reaction buffer (217), whereas oxygen removal stabilises DHNTP allowing longer 

reaction times. Despite these adjustments, conversion of GTP to DHNTP 

remained incomplete (Figure 4.9).

Figure 4.9. Anion exchange analysis of GTP incubated with GTP-CH-I reveals a partial 

conversion of GTP into DHNTP. Formation of guanosine monophosphate (GDP) is due 

to the non-enzymatic hydrolysis of GTP the assay.

The second chemical transformation in folate biosynthesis is a partial 

dephosphorylation of DHNTP to DHNMP by DHNTPase (163, 218). Interestingly, 

deletion of the gene that encodes DNTPase strongly impairs E. coli folate 

metabolism (163). This therefore suggests that DHNTP hydrolysis is involved in 
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folate metabolic flux regulation. Considering that guanosine monophosphate 

(GMP) does not influence GTP-CH-I kinetics (219), it is plausible that DHNTPase 

acts as a positive effector on GTP-CH-I. That is, GTP-CH-I is inhibited by DHNTP 

but not DHNMP. To test the hypothesis, GTP-CH-I was assayed in vitro either in 

the absence or presence of DHNTPase (Figure 4.10). When coupled to 

DHNTPase, GTP-CH-I showed a marked rate enhancement and complete 

conversion to DHNMP (Figure 4.10 and 4.11). 

Figure 4.10. Comparison of GTP-CH-I activity in absence (black) and presence (red) of 

DHNTPase monitoring 7,8-dihydroneopterin formation absorbance at 330 nm by UV-Vis 

spectroscopy.
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Figure 4.11. Anion exchange analysis of GTP incubated with GTP-CH-I and DHNTPase 

shows total conversion of GTP to DHNMP.

4.3.2 DHPS substrate tolerance simplifies H2F biosynthesis

In H2F biosynthesis, DHNMP needs to be dephosphorylated to DHN. Currently, 

the natural enzyme responsible for converting DHNMP to DHN is not known (162, 

163). Non-specific alkaline phosphatase (ALP) was therefore used. DHN is then 

refined to HMDP by DHNA through a retro-aldol reaction. Then, HPPK catalyses 

the pyrophosphorylation of DHN to form HMDPpp with consumption of ATP (220). 

In E. coli, HMDPpp is first added with pABA and subsequently glutamate by the 

actions of two separate enzymes, DHPS and DHFS. These reactions yield 

dihydrofolate (H2F) as the product (Figure 4.12). DHPS has a relaxed substrate 

specificity and is also capable of accepting pre-assembled pABA-Glu instead of 

pABA (221), and therefore DHFS was omitted in the reaction pathway. This 

synthesis requires only one purification step as no intermediate needs to be 

isolated. However, ALP needed to be removed from the reaction mixture by 

ultrafiltration before the addition of DHNA, HPPK and DHPS, because ALP can

remove phosphate groups from ATP and HMDPpp. All reduced pterins 

compounds (DHNTP, DHNMP, DHN, HMDP, HMDPpp), including the final 
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product H2F, are oxygen-sensitive, therefore the synthetic pathway was 

performed within a N2-filled glove box system to ensure the removal of oxygen

(<0.5 ppm). Additionally, generation of antioxidant thiols by the NADP+ recycling 

system based on the GRX system (Chapter 2) helped to stabilise intermediates

that are unstable in the presence oxygen (e.g. H2F). For the H2F biosynthetic 

pathway, cystine is preferred over HED (oxidised β-mercaptoethanol) for the 

GR/GRX2 NADP+ regeneration system. Perhaps, β-mercaptoethanol made from 

the reduction of HED can interfere with other enzymatic reactions, such as the 

chelation of Zn2+ in GTP-CH-I. 6.6 mg of H2F were produced from 9 mg of glucose 

with an overall yield of 30%.

Figure 4.12. (A) In nature, H2F is assembled from HMDPpp, pABA and Glu by 

dihydropteroate synthase (DHPS) and dihydrofolate synthase (DHFS). (B) In vitro, a 

shorter route to H2F is made possible by DHPS tolerance to alternative substrates like 

pABAGlu.     
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4.4Synthesis and characterization of labelled H2Fs

Five isotopically labelled H2Fs were synthesised using the H2F chemo-enzymatic 

synthesis described in this chapter (Table 4.1). All compounds were 

characterised by a combination of NMR spectroscopy and high-resolution mass

spectrometry (HR-MS). 

Table 4.1. Isotopically labelled H2Fs synthesised in this work. 13C is highlighted in red.

Starting Material Labelled H2F Accurate Mass 
[M+H]+ (amu)

D-Glucose 
[7-15N]-Guanine

pABA-Glu

445.1624

[3-13C]-D-Glucose 
Guanine

pABA-Glu

445.1624

[3-13C]-D-Glucose 
[7-15N]-Guanine

pABA-Glu

446.1575 

D-13C6-Glucose 
Guanine

pABA-Glu

447.1721

D-13C6-Glucose 
[7-15N]-Guanine

pABA-Glu

448.1694

HRMS spectrum of [6-13C]-H2F produced from from [3-13C]-D-glucose shows an 

increase of molecular weight of ~1 amu, and 13C-NMR spectroscopic 
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characterisation reveals a singlet at 152 ppm. Additionally, 1H-13C-HMBC 

spectroscopy illustrates long-range couplings between 6-13C and hydrogens 

attached to C7 and C9 positions (H7 and H9) (figure 4.13 A). To incorporate a 

15N label into the pterin moiety, the labelled substrate [7-15N]-guanine was used; 

the resulting product also showed ~1 amu increase in HRMS analysis and a 15N 

signal at 285 ppm coupling with H7 and H9 in the 1H-15N HMBC experiment 

(Figure 4.13 B). When [3-13C]-D-glucose and [7-15N]-guanine are combined in the 

biosynthetic pathway, both the N5 and C6 positions of H2F are isotopically 

enriched. This is evident by a mass increase of ~2 amu and 13C-NMR which 

shows a doublet at ~152 ppm with a coupling constant 1JCN of 7.5 Hz. 1H-13C 

HMBC and 1H-15N HMBC spectroscopic characterisation also reveals the 

anticipated long range C7 and C9 hydrogens coupling (Figure 4.14). Similarly, 

[6,7,9-13C3]-H2F and [5-15N][6,7,9-13C3]-H2F have been made using 13C6-D-

glucose and [7-15N]-guanine and verified by HRMS and NMR spectroscopy 

analyses (Figures 4.15 and 4.16). 

All isotopically labelled H2FS were also characterised by 1H-NMR (Figure 4.17 

and 4.18). While 1H-NMR spectrum of [5-15N]-H2F is identical to that of natural 

abundance H2F (Figure 4.17 A), chemical shift of both H7 (3.95 ppm) and H9 

(3.87 ppm) result perturbed in [6-13C]-H2F, [5-15N, 6-13C]-H2F, [6-13C3]-H2F and 

[5-15N, 6-13C3]-H2F (Figure 4.18). When the C6 position of H2F is 13C-enhriced

([6-13C]-H2F and [5-15N, 6-13C]-H2F), both H7 and H9 split as doublets on 1H-NMR

spectrum with a coupling constant 2JCH of 6 Hz (Figure 4.18 B). In addition to the 

C6 long-range coupling, when C6, C7 and C9 are all 13C-labelled, such as in [6-

13C3]-H2F and [5-15N, 6-13C3]-H2F, H7 and H9 further split as doublet of doublets 

(Figure 4.18 C).
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Figure 4.13. (A) 1H-13C HMBC of [6-13C]-H2F and (B) 1H-15N HMBC (right panel) of [5-

15N]-H2F.

Figure 4.14. 1H-13C HMBC (left panel) and 1H-15N HMBC (right panel) of [5-15N][6-13C]-

H2F.
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Figure 4.15. 1H-13C HMBC (left panel) and 1H-15N HSQC (right panel) of [6,7,9-13C3]-

H2F.

Figure 4.16. 1H-13C HMBC (left panel) and 1H-15N HMBC (right panel) of [5-15N][6,7,9-

13C3]-H2F
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Figure 4.17. (A) 1H-NMR spectrum of natural abundance H2F. (B) 2D-NMR NOESY 

experiment allows to unambiguously assign H7 and H9 protons, as highlighted in panels 

(C) and (D). In the NOESY experiment, H7 protons strongly correlate through space to 

5’ and 3’ protons from pABA moiety whereas cross-correlations between H9 protons and 

5’/3’ are weaker or not detectable.
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Figure 4.18. Sections from 1H-NMR spectra of isotopically labelled H2Fs.  (A) In 1H-NMR 

spectrum of [5-15N]-H2F, both H7 and H9 are singlets as in natural abundance H2F. (B) 

When H2F C6 position is 13C-ehriced, as in [6-13C]- and [5-15N,6-13C]-H2F, H7 and H9 

protons split as a doublet (2JCH= 6 Hz) due to the long-range coupling to C6 (C). In 

addition to C6, further isotopic enrichment of C7 and C9 positions results in additional 

splitting of H7 and H9 protons as doublet of doublets because of the short-range coupling 

of C7 to H7 (1JCH = 144 Hz) and C9 to H9 (1JCH = 132 Hz).
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4.5Single and multiple heavy-atom isotope effect studies on EcDHFR

EcDHFR, the enzyme sustaining the one-carbon metabolic cycle in E. coli by 

catalysing the reduction of H2F to H4F (Figure 4.19), is one of the most 

investigated natural catalyst in enzymology and a well-established model for the 

discovery of antimicrobial drugs (Chapter 1, section 1.4). Nevertheless, several 

aspects of its reaction mechanism remain unclear as the transition state 

structure(s) and the order of chemical transformation events have not been fully 

elucidated (87, 222). Solvent and hydrogen KIE measurements combined with 

site-directed mutagenesis have suggested a stepwise mechanism where 

protonation precedes hydride transfer (Figure 4.19 C) (83, 96). 

However, D2O increases the viscosity of the reaction buffer relative to H2O (98, 

99) and site-directed modification can alter the catalytic behaviour of an enzyme 

(97). Accordingly, to derive unambiguous information about the nature of the 

transition-state, [5-15N]-H2F, [6-13C]-H2F and [5-15N][6-13C]-H2F were used to 

measure the 15N- and 13C-KIE. Recombinant EcDHFR used for pre-steady-state 

kinetics was overproduced in BL21-Star(DE3) cells (Chapter 6, section 6.3.4.2.1) 

and purified by a combination of anion exchange and size-exclusion 

chromatography techniques to ensure high purity (Figure 4.20).

Pre-steady-state kinetic measurements by fluorescence resonance energy 

transfer from a tryptophan nearby the active site to the reduced cofactor yields 

hydride transfer rate constants (kH) with an accuracy up to 0.7%. While the 

measured 15N-KIE is one at all temperatures (Table 4.2 and Figure 4.21 A), the 

corresponding average 13C-KIE value at the same temperature range is 1.022 

(Table 4.2 and Figure 4.21 B). The double labelled [5-15N][6-13C]-H2F yielded an 
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average heavy-atom isotope effect of 1.018, close to that obtained with 13C-

labeled substrate.

Considering the three possible scenarios for the reduction pathway of H2F in the 

EcDHFR catalysed reaction (Figure 4.19), if the reduction proceeds through a 

concerted mechanism, where the N5 of H2F is protonated concomitantly to the

step of hydride transfer from the C4 of NADPH to the C6 of H2F (Figure 4.19 B), 

isotopic labelling of either the reacting nitrogen or carbon atoms in H2F would 

lead to a measurable kinetic difference from that of natural abundance substrate.

Additionally, a concerted transition state would be reflected in the multiple heavy-

atom KIE measurement when using the double labelled [5-15N][6-13C]-H2F. 

Instead, as the measured 13C- and 15N13C-KIEs yield similar values and the 

observed 15N-KIE is close to unity, the heavy-atom isotope effect data reported 

in this PhD thesis rules out the possibility of a concerted mechanism. The KIE 

data strongly supports that the steps of protonation and hydride transfer are 

largely independent of each other and occur in a stepwise fashion. Whether the

N5 protonation event occurs either after (Figure 4.19 A) or before (Figure 4.19 C) 

the hydride transfer step, previous experimental (77, 83, 85, 88-90, 96) and 

computational (91, 93-95) evidences indicate that N5 protonation is required for 

hydride transfer to occur but not vice versa. Notably (as mentioned in Chapter 1, 

section 1.4), while H2F N5 pKa raises within EcDHFR Michaelis complex from 2.6 

to 6.5 (77, 89, 90), the Asp27-mutated enzyme is still capable to function at acidic 

pH although catalytically compromised (85). In addition, Wan et al. recently 

proved through neutron and ultrahigh-resolution X-ray crystallography that folate 

N5 atom is indeed protonated when bound to EcDHFR (88).
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Figure 4.19. Possible scenarios for the EcDHFR catalysed reaction. (A) Hydride 

from C4 of NADPH is transferred to C6 of H2F, followed by protonation in a 

stepwise fashion. (B) Hydride transfer is concomitant to protonation. (C) H2F is 

firstly protonated, then hydride transfer occurs.

Figure 4.20. (A) SDS-PAGE and (B) positive ESI-MS of recombinant EcDHFR

(theoretical MW = 17,999 amu, found = 18,000 amu) used for pre-steady-state kinetic 

measurements.
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Table 4.2. Heavy-atom KIEs measured on EcDHFR using [6-13C]-H2F, [5-15N]-H2F and 

[5-15N][6-13C]-H2F.

T (°C) kH
14N/ kH

15N kH
12C/ kH

13C kH
14N12C/ kH

15N13C

5 0.996 ± 0.018 1.018 ± 0.009 1.020 ± 0.011

10 0.995 ± 0.018 1.018 ± 0.011 1.023 ± 0.010

15 0.999 ± 0.005 1.015 ± 0.006 1.014 ± 0.008

20 1.000 ± 0.009 1.021 ± 0.013 1.011 ± 0.007

25 0.993 ± 0.009 1.028 ± 0.007 1.018 ± 0.006

30 1.000 ± 0.022 1.023 ± 0.012 1.011 ± 0.009

35 1.000 ± 0.016 1.029 ± 0.012 1.034 ± 0.016
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Figure 4.21. Heavy-atom KIEs measured on EcDHFR using (A) [5-15N]-H2F, (B) [6-13C]-

H2F and (C) [5-15N][6-13C]-H2F. (D) Comparison between heavy-atom KIEs indicate a 

substantial difference between relative contributions of N5 and C6 positions in stabilizing 

the transition state during hydride transfer.

4.6Conclusion

Isotopically labelled folate derivatives are useful, non-invasive probes to gain 

insight into the mechanism of DHFR, which may lead to improved design of drugs 

(Chapter 1). Previous chemical syntheses of folate are low yielding, require 

multiple purification steps and are characterized by poor regio- and stereo-

selectivity (116, 117, 146, 147). Here, H2F was produced enzymatically in a one-

pot reaction from D-glucose, guanine and pABA-Glu, whose isotopically labelled 

counterparts are either commercially available or can be prepared easily (150, 
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208); only the final product was purified. Due to the improved reaction setup for 

GTP-CH-I, which converts GTP to DHNTP via four chemical steps, the cascade 

reaction which involves 17 enzymes, is also high yielding (223). The synthesis

developed here shows the enormous potential of using enzymes in multistep

reactions for the efficient synthesis of complex molecular structures. H2Fs 

labelled in specific positions with stable isotopes could be prepared with an 

average overall yield of 30%. With this powerful biochemical setup, five 

isotopically labelled H2Fs were synthesised including [5-15N]-H2F, [6-13C]-H2F 

and [5-15N][6-13C]-H2F. These compounds were used to measure, for the first 

time, heavy-atom kinetic isotope effects for the reaction catalysed by EcDHFR, 

providing strong evidence that protonation at the N5 position of H2F and hydride 

transfer to the C4 position occur in a stepwise mechanism. 

With this newly developed synthesis it is possible to measure a wide range of

primary and secondary heavy-atom isotope effects on DHFR and to derive 

transition-state maps for the catalysed reaction. However, accuracy of the non-

competitive method used in this work is 0.7% whereas it should fall below 0.5% 

to have an accurate map of the transition-state (31). Accordingly, development of 

an alternative methodology to yield more accurate heavy-atom isotope effects is 

currently under progress in our research group. Besides the investigation of 

DHFR catalysis, labelled folates have many potential applications in both 

mechanistic enzymology and cell biology (90, 116, 117, 146, 224, 225). The work 

described here can be applied in nutritional, medical and cell biological research 

to address in vivo bioavailability and to perform kinetic investigation of folate 

metabolism in whole organisms including humans (119, 123, 225-228).
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DHFR, one of the most studied enzymes in chemical biology, serves as model in 

both fundamental enzymology and drug discovery research. Nevertheless, its 

mechanism of catalysis is not fully understood, mainly because information about 

the transition-state is missing. Measuring heavy-atom KIEs is the only technique 

available that can unambiguously provide detailed knowledge about the 

transition-state of the DHFR-catalysed reaction. However, current synthetic 

strategies to produce site-specific isotopically labelled H2Fs are impractical and 

allow only a restrained pattern of isotopic substitutions. 

This PhD programme has developed a versatile and cost-effective strategy for 

the production of H2F labelled with stable isotopes (15N, 13C) at precise positions 

by re-designing the de novo folate biosynthetic pathway from E. coli in vitro. This

methodology, which employs seventeen enzymes in a one-pot system, enables 

the production of highly purified labelled H2Fs from D-glucose, guanine and 

pABA-Glu in less than a week, with a single purification step and 30% overall 

yield.

In the process of developing the in vitro biosynthetic pathway of H2F, we have 

addressed several technical issues which are also frequently encountered in the 

scientific community. A novel NADP+ recycling scheme based on the GR/GRX 

enzymatic redox couple was developed. The previously reported regeneration 

systems of NADP+ are either oxygen-dependent (NOX, laccase/mediator system) 

or poorly efficient (GDH and LDH system), and so they are not applicable in folate 

biosynthesis. The GR/GRX system was engineered to overcome these issues, 

enabling NADP+ to be recycled in the absence of oxygen with an improved total 

turn-over number (TTN). We discovered a maximal TTN of 5 x 105, noticeably 

higher than those of other NADP+-recycling systems (TTN = 102 - 103). NADP+
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recycling via the GRX system also provides other significant advantages. The 

GRX system utilises electrons from NADPH to reduce small organic disulfides 

(e.g. cystine and HED) into thiols, with the possibility to choose the latent 

oxidising reagent on a case-by-case basis. Production of thiol is an additional

benefit to the biosynthetic process, as it established a reducing environment 

preventing both enzymes and oxygen-sensitive intermediates (e.g. H2F) from 

oxidative damages. Importantly, the GRX system does not depend on oxygen to 

function, implying that it can be used both in aerobic and anaerobic conditions. 

Overall, the development of GR/GRX system represents a substantial advance 

in the biocatalysis field and it will have wide applications in both academic and 

industrial settings. 

In chapter 3, the synthesis of isotopically labelled GTP, a key branching 

intermediate to multiple biosynthetic pathways was reported (166, 205). Previous 

procedures of guanine nucleotides using enzymes from the salvage pathway are 

considered inadequate because of the poor reproducibility (205). Herein, a 

chemo-enzymatic approach to the synthesis of labelled guanine nucleotides 

using a combination of enzymes from the pentose phosphate and purine salvage 

pathways was reported with two major modifications: (1) GDH was replaced by 

GRX to recycle the NADP+ cofactor; (2) the formation of GMP from PRPP and 

insoluble guanine was optimised in an automated and reproducible way. Various 

isotopically labelled GMPs were produced with overall yields ranging between 

70% and 80%. The optimised biosynthetic setup described in this thesis is not 

only beneficial to the synthesis of isotopically labelled H2Fs, but also to a wide 

range of biochemical investigations. Isotopically labelled guanosine nucleotides 

are extensively used for biochemical studies, notably nucleic acids 

characterisation (202-204). Also, isotopically labelled GMPs synthesised in this 
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work are currently being used for studying flavin coenzymes including flavin 

adenine dinucleotide (FAD) (229).

The optimised biosynthetic setup of guanine nucleotides has allowed the

synthesis of isotopically labelled H2Fs in a one-pot procedure. Operating in an 

oxygen-free environment helped to stabilise reduced pterins, while DHNTPase 

was found to improve the overall yield by enhancing GTP-CH-I activity. Also, 

DHPS substrate tolerance permitted to further simplify H2F synthesis by avoiding 

an additional biosynthetic step. Site-specific labelled D-glucose, guanine and 

pABA-Glu are relatively simple to be either obtained from commercial sources or 

produced in-house. With the research described here it is now possible to prepare 

folate isotopically-enriched at any desired position using the same biosynthetic 

strategy. In this work, attention was focused at positions N5, C6, C7 and C9 of 

H2F, as these atoms are involved into the formation of the transition-state in the 

DHFR-catalysed reaction. [5-15N]-, [6-13C]- and [5-15N,6-13C]-H2F were produced 

to measure, for the first time, single and multiple heavy-atom kinetic isotope 

effects on EcDHFR. Our data obtained here strongly support a step-wise 

mechanism where H2F N5 is protonated before a hydride from NADPH C4 is 

transferred to H2F C6. 

Because we aim to map the transition-state of the DHFR-catalysed reaction to 

design novel anti-DHFR drugs, we have developed a one-pot 14-steps in vitro 

chemo-enzymatic pathway of isotopically labelled H2F for heavy atom KIE 

measurement. Whilst gaining important insights into the DHFR reaction, our work 

has also allowed us to develop a versatile NADP+-recycling system and a 

reproducible high-yielding GMP synthetic pathway. These achievements have 

created new opportunities in other areas research. The mechanistic 
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characterisations of other one-carbon enzymes, such as SHMT and TS, both of 

which are also important antiproliferative targets. This work also allows us to 

develop new high-yielding synthesis of isotopically labelled nucleotide-derived 

biomolecules, such as DNA, RNA, cofactors such as FAD and other pterin-

containing natural products, including pigments and natural “sun-screen” like

biopterin-α-glucoside (230). In conclusion, the completion of this PhD programme

has opened the doors for many new research ideas and opportunities.
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6.1Materials

L-Ascorbic acid (99%), 2,4-diamino-6-hydroxypyrimidine, 2-hydroxyethyl 

disulfide, L-cystine, D-(13C6)-glucose, D-(3-13C)-glucose (99 atom%), L-

glutathione (reduced), guanosine 5’-monophospahte disodium salt hydrate (from 

yeast, >99%), deuterium oxide (99.9 atom%), guanine, sodium dithionite, sodium 

nitrite-15N (Na15NO2, 98 atom%), were purchased from Sigma-Aldrich. NADP+

monosodium salt (>98%) and ATP disodium salt trihydrate (>98%) were 

purchased from Apollo Scientific Ltd (UK). Phosphoenolpyruvic acid 

monopotassium salt, 99% was purchased from Alfa Aesar. 6-Phosphogluconic 

acid dihydrate and isopropyl-β-D-thiogalactopyranoside (IPTG) were obtained 

from Melford Laboratories Ltd (Ipswich, UK). 4-Aminobenzoic acid (99%), 

NADPH tetrasodium salt hydrate and guanosine 5’-triphosphate disodium salt 

hydrate (90%, for biochemistry) were purchased from ACROS Organics. Alkaline 

phosphatase from bovine intestinal mucosa (ALP, buffered aqueous glycerol 

solution), pyruvate kinase from rabbit muscle (PK, type II, ammonium sulfate 

suspension), myokinase from rabbit muscle (MK, ammonium sulfate 

suspension), glutathione reductase from baker’s yeast (GR, S. cerevisiae, 

ammonium sulfate suspension), hexokinase from S. cerevisiae (HK, type F-300, 

lyophilized powder), glucose-6-phosphate dehydrogenase from L. 

mesenteroides (G6PDH, recombinant, expressed in E. coli, ammonium sulfate 

suspension) and phosphoriboisomerase from spinach (PRI, type I, partially 

purified powder) were purchased from Sigma-Aldrich. Crimson Taq DNA 

polymerase was purchased from New England Biolabs.
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6.2Preparation of solutions, buffers and growth mediums

6.2.1 Luria-Bertani (LB) liquid medium

Tryptone (10 g), NaCl (10 g) and yeast extract (5.0 g) were dissolved in 950 mL 

of deionised water (dH2O). When the solutes have dissolved, volume of the 

solution was adjusted to 1 L. The final solution was sterilised by autoclaving at 

121°C for 20 min. The sterile solution was stored at 4°C.

6.2.2 Luria-Bertani (LB) solid medium

Tryptone (10 g), NaCl (10 g) and yeast extract (5.0 g) were dissolved in 950 mL 

dH2O. When the solutes have dissolved, volume of the solution was adjusted to 

1 L and agar (15.0 g) was added. The suspension was sterilised by autoclaving 

at 121°C for 20 min. After sterilisation, the resulting homogeneous solution was 

cooled to 40°C and added with the appropriate antibiotic (e.g. kanamycin) before 

being poured into sterile petri dishes. Further cooling at room temperature 

resulted into solidification of the medium which has been stored at 4°C.

6.2.3 Sterile glycerol solution (50% v/v)

A 50% v/v glycerol solution was prepared by mixing 50 mL of glycerol to 50 mL 

of dH2O. The resulting solution was sterilised by autoclaving at 121°C for 20 min 

and stored at 4°C.

6.2.4 Sterile antibiotic solutions

Three antibiotics (tetracycline, ampicillin and kanamycin) were used as selection 

markers for molecular cloning or gene expression into E. coli hosts. Tetracycline 

solution was prepared by dissolving 100 mg of the antibiotic in 10 mL of 70% 

ethanol solution. All remaining antibiotic sterile solutions (ampicillin and 

kanamycin) were made by dissolving 200 mg of the appropriate antibiotic in 4 mL 
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of dH2O and sterilised by filtration using a 0.2 µm syringe filter. Sterile solutions 

were stored at -20°C.

6.2.5 Bradford reagent

20 mg brilliant blue G250 dissolved in a small amount of ethanol were mixed with 

20 mL of 80% H3PO4. The solution was diluted to 200 mL with dH2O, filtered and 

stored at 4°C protected from light.

6.2.6 Molecular cloning buffers

6.2.6.1 Transformation buffer I (Tfb-I)

0.588 g of potassium acetate (30 mM), 2.42 g of rubidium chloride (100 mM), 

0.294 g of calcium chloride (10 mM) and 2.0 g of manganese chloride (50 mM) 

are dissolved in 100 mL of dH2O and the pH adjusted with diluted acetic acid to 

5.8. 30 mL of glycerol (15% v/v) are thereafter added and the volume adjusted to 

200 mL with additional dH2O. The final solution is sterilised by filtration using a 

0.2 µm syringe filter and stored at +4°C

6.2.6.2 Transformation buffer II (Tfb-II)

0.21 g of 3-(N-Morpholino)propanesulfonic acid (MOPS, 10 mM), 1.1 g of calcium 

chloride (75 mM) were dissolved in 50 mL of dH2O and the pH adjusted with 

diluted NaOH to 6.5. 15 mL of glycerol (15% v/v) are thereafter added and the 

volume adjusted to 100 mL with additional dH2O. The final solution is sterilised 

by filtration using a 0.2 µm syringe filter and stored at +4°C.



Materials and methods

107

6.2.6.3 Transformation buffer III (Tfb-III)

1.11 g of calcium chloride (100 mM) was dissolved in 90 mL of dH2O. After 

dissolution, the volume was adjusted to 100 mL and the final solution sterilised 

by autoclaving at 121°C for 20 min. Sterile buffer was stored at 4°C. 

6.2.6.4 Transformation buffer IV (Tfb-IV)

1.11 g of calcium chloride (100 mM) was dissolved in 50 mL of dH2O. After 

dissolution, 15 mL of glycerol (15% v/v) were added and the volume was adjusted 

to 100 mL with dH2O.The final solution sterilised by autoclaving at 121°C for 20 

min. Sterile buffer was stored at 4°C. 

6.2.6.5 Tris-acetate-EDTA (TAE) 50X buffer

242 g of Tris free base, 18.61 g of EDTA disodium salt were added to 700 mL of 

dH2O under stirring. When Tris and EDTA fully dissolved, 57.1 mL of glacial acetic 

acid were added and the volume adjusted to 1 L.

6.2.7 Enzyme purification buffers

6.2.7.1 Enzyme purification buffer 1 (EPB-1)

6.1 g Tris free base (50 mM), 17.5 g NaCl (300 mM) and 1.4 g imidazole (20 mM) 

were dissolved in 900 mL of dH2O. After dissolution, pH was adjusted to 8.00 with 

diluted HCl. The volume was to 1 L with addition dH2O and the solution was 

filtered and degassed before use. 

6.2.7.2 Enzyme purification buffer 2 (EPB-2)

6.1 g Tris free base (50 mM), 17.5 g NaCl (300 mM) and 17 g imidazole (250 

mM) were dissolved in 900 mL of dH2O. After dissolution, pH was adjusted to 

8.00 with diluted HCl. The volume was to 1 L with addition dH2O and the solution 

was filtered and degassed before use. 
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6.2.7.3 Enzyme purification buffer 3 (EPB-3)

EBF-3 was prepared as for EPB-1 (section 6.2.7.1) but for the addition of 50 mL 

of 1M KH2PO4 (50 mM) before adjusting the pH.

6.2.7.4 Enzyme purification buffer 4 (EPB-4)

EBF-4 was prepared as for EPB-2 (section 6.2.7.2) but for the addition of 50 mL 

of 1M KH2PO4 (50 mM) before adjusting the pH.

6.2.7.5 Enzyme purification buffer 5 (EPB-5)

30.75 mL of 1M K2HPO4, 19.25 mL of 1M KH2PO4 and 350 µL β-

mercaptoethanol (β-ME) were added to 800 mL of dH2O. The pH was therefore 

adjusted to 7.00 and the solution diluted to 1 L yielding a 50 mM PO4, 5 mM β-

ME solution. The solution was filtered and degassed before use.

6.2.7.6 Enzyme purification buffer 6 (EPB-6)

6.06 g Tris free base (100 mM), 7.45 g KCl (100 mM), 350 µL β-ME (5 mM) were 

added to 800 mL of dH2O. The pH was therefore adjusted to 8.00 and the solution 

diluted to 1 L. The solution was filtered and degassed before use.

6.2.7.7 Enzyme purification buffer 7 (EPB-7)

61.5 mL of 1M K2HPO4, 38.5 mL of 1M KH2PO4, 5.84 g NaCl, 350 µL β-ME were 

added to 800 mL of dH2O. The pH was therefore adjusted to 7.00 and the solution 

diluted to 1 L yielding a 100 mM PO4, 100 mM NaCl, 5 mM β-ME solution. The 

solution was filtered and degassed before use.
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6.2.8 SDS-PAGE buffers

6.2.8.1 SDS resolving buffer

6.0 g Tris free base (0.5 M) was dissolved in 80 mL of dH2O. After dissolution, 

pH was brought to 6.8 with diluted HCl and the volume was adjusted to 100 mL 

with dH2O.

6.2.8.2 SDS stacking buffer

27.23 g Tris free base (1.5 M) was dissolved in 80 mL of dH2O. After dissolution, 

pH was brought to 8.8 with diluted HCl and the volume was adjusted to 150 mL 

with dH2O.

6.2.8.3 SDS sample buffer

1.25 mL SDS resolving buffer (section 6.2.8.1), 2.5 mL glycerol, 2 m 10% (w/v) 

SDS, 0.2 mL 0.5% (w/v) bromophenol blue and 3.55 m dH2O were mixed together 

and stored at room temperature.

6.2.8.4 10X Running buffer

30.3 g of Tris free base, 144.0 g glycine and 10.0 of sodium-dodecyl sulphate 

(SDS) were dissolved in 900 mL of dH2O at 37°C. After dissolution, volume was 

adjusted to 1 L with dH2O.
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6.3Molecular cloning

6.3.1 TAE agarose gel electrophoresis

1X TAE buffer diluted from 50X stock solution (section 6.1.6.5) was mixed with 

agarose at percentages ranging between 0.8% (large fragments separation) and 

1.5% (small fragments separation), depending on the size of the DNA fragment 

to be separated. The mixture was heated near the boiling point until agarose fully 

dissolved and resulting solution poured on gel-caster system and left to solidify 

at room temperature. The gel was placed in an electrophoresis chamber 

immersed in 1X TAE buffer. DNA samples were loaded on the gel and separated 

by applying a constant electric current (80 mA) for 40 min. When separation was 

complete, the agarose gel was stained with dilute ethidium bromide solution and 

DNA fragments were visualised using a UV light box compared to a 100 bp and 

1 kb standard size marker.

6.3.2 Purification of DNA by agarose gel extraction

The target DNA fragment separated by agarose gel electrophoresis (section 

6.2.1) was cut with a scalpel and separated from agarose using an agarose gel 

extraction kit (QIAGEN, UK) following instruction provided by the supplier.

6.3.3 Purification of DNA by spin miniprep column

EconoSpin All-in-1 mini prep spin columns (Epoch Biolabs, USA), QIAprep spin 

miniprep kit (QIAGEN, UK) and QIAquick purification kit (QIAGEN, UK) were 

used to isolate either plasmid or PCR DNA following instruction provided by the 

manufacturer.
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6.3.4 Preparation of XL1-Blue super-competent cells

XL1-Blue cells from a 50% glycerol stock solution stored at -80°C were incubated 

in 50 mL of LB medium containing tetracycline (50 mg/L) overnight at 37°C. The 

day after, 100 mL of fresh LB medium with tetracycline (50 mg/L) was inoculated 

with 1 mL from the overnight culture and incubated at 37°C. Cell growth was 

monitored by measuring optical density at 600 nm (OD600). When OD600 reached 

0.6-0.7, 50 mL of culture was cooled on ice for 15 min and cells were separated 

from the medium by centrifugation at 3400 g for 6 min. The supernatant was 

discarded and cells were gently resuspended in 5 mL of Tfb-I buffer (section 

6.1.6.1). Cells were left on ice for 15 min, centrifugated, and resuspend in 4 mL 

of Tfb-II buffer (section 6.1.6.2). Cells were left on ice for further 15 min to be then 

aliquoted in sterilised Eppendorf tubes (100 µL each tube) and stored at -80°C. 

6.3.5 Amplification of target genes from E.coli chromosomal DNA by 

polymerase chain reaction (PCR)

Genes encoding for 6-phosphogluconate dehydrogenase (gnd), glutaredoxin 2 

(grxB), guanylate kinase (gmk), 7,8-dihydroneopterin triphosphate 

pyrophosphatase (nudB) were amplified from E.coli chromosomal DNA prepared 

following to the method described by Syn et al. (231). All genes were amplified 

using Crimson Taq polymerase (New England Biolabs) according to the 

instructions provided by the supplier. Gene sequences for primers design were 

obtained through GenBank database (Table 6.1). In a typical PCR reaction setup, 

10 µL of 5X Crimson Taq buffer, 1 µL of deoxynucleotide triphosphates (final 

concentration 200 µM), 2.5 µL of forward and 2.5 µL of reverse complement 

primers (final concentration 1.25 µM), 0.3 µL of chromosomal DNA, 0.3 µL of 

Crimson Taq polymerase and 33.4 µL of sterilised dH2O were mixed together in 
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a PCR tube. PCR reactions were performed using a Biometra thermocycler 

(Germany). Optimal annealing temperatures were determined experimentally 

through gradient PCRs. To ensure maximum selectivity, PCR products were all 

purified through DNA agarose gel extraction (section 6.2.2) to be then digested 

with NdeI and XhoI fast-digest restriction enzymes (Thermo Scientific, UK). 

Digested amplicons were then separated from the restriction fragments through 

DNA spin miniprep column (section 6.2.3).

Table 6.1. Primers designed for PCR amplification. Restriction sites for NdeI 

(CATATG) and XhoI (CTCGAG) are shown in bold.

Enzyme E. coli
gene 

(NCBI ID)

PCR Primers

6-Phosphogluconate 
dehydrogenase 
(6PGDH)

gnd
(946554)

Fwd: 5’-GTTGTTCATATGTCCAAGCAACAGATCG-3’
Bwd:5’-CACCACCTCGAGTTATTATCCAGCCATTCGG-3’

Glutaredoxin 2 (GRX2) grxB 
(946926)

Fwd: 5’-GTTGTTCATATGAAGCTATACATTTACGATCACTGC-3’
Bwd:5’-CACCACCTCGAGTTAAATCGCCATTGATGAT-3’

Guanylate kinase (GK) gmk 
(948163) Fwd: 5’-GTTGTTCATATGGCTCAAGGCAC-3’

Bwd:5’-CACCACCTCGAGTCAGTCTGCCAACAATTT-3’
7,8-Dihydroneopterin 
triphosphate 
pyrophosphatase 
(DHNTPase)

nudB 
(946383) Fwd: 5’- GTTGTTCATATGAAGGATAAAGTGTATAAGCGTC -3’

Bwd:5’-CACCACCTCGAGTCAGGCAGCGTTAATTACAAACTG-3’
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Table 6.2. PCR protocol for the amplification of gnd, grxB, gmk and nudB genes. After 

the initial denaturation step, denaturation, annealing and elongations (highlighted) were 

repeated 30 times before the final elongation.

Target gene

gnd grxB gmk nudB

Initial denaturation 180 s, 95°C

Denaturation 20 s, 95°C

Annealing 30 s, 61°C 30 s, 55°C 30 s, 57°C 30 s, 63°C

Elongation 120 s, 68°C

Final elongation 300 s, 68°C

6.3.6 Preparation of pET28-a empty vector 

XL1-Blue cells containing a pET28-a vector were grown overnight in 100 mL of 

LB medium containing 50 mg/L kanamycin. The day after, cells were separated 

by centrifugation at 3400 g for 5 min. The supernatant was discarded and the 

pET28-a plasmid was purified from the cell pellet using QIAprep spin miniprep kit 

(QIAGEN, UK) following instructions from the supplier. Purified pET28-a was then 

digested with NdeI and XhoI fast-digest restriction enzymes (Thermo Scientific, 

UK) following the protocol described by the supplier. Digested pET28-a was then 

purified by agarose gel extraction (Section 6.2.2).

6.3.7 Ligation of target genes into pET28-a empty vector 

gnd, grxB, gmk and nudB genes (section 6.2.5) were all ligated into a pET28-a 

empty vector at NdeI and XhoI restriction sites using T4 DNA ligase (Thermo 

Scientific, UK). In a typical ligation reaction, 60 µg of the empty vector were mixed 

with the DNA insert in 1:3 and 1:7 ratio in the buffer provided by supplier reaching 
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10 µL final volume. After addition of the T4 ligase enzyme, the reaction mixture 

was incubated at 37°C overnight. The day after, the ligation product was used to 

transform XL1-Blue super-competent cells. Briefly, 100 µL of thawed XL1-Blue 

super-competent cells (section 6.2.4) were incubated on ice with 10 µL of the 

ligation reaction mixture for at least 30 min. Cells were then transformed with the 

exogenous DNA by heat-shock at 40°C for 44 s. 1 mL of LB medium antibiotic-

free was added and heat-shocked cells were incubated at 37°C for 1 hour under 

shacking. Cells were then centrifugated for 1 minute at 3300 g and 900 µL of the 

supernatant were discarded. The remaining 100 µL of supernatant left into the 

Eppendorf tube were used to gently resuspend cells into the media. 

Resuspended cells were then plated on LB solid medium containing kanamycin 

as the selection maker and incubated at 37°C overnight. A successful ligation will 

provide after the overnight incubation small XL1-Blue colonies bearing the 

kanamycin-resistant pET28-a plasmid ligated with the target gene.

6.3.8 Analysis of ligation products

A single colony deriving by the transformation of XL1-Blue cells with the pET28-

a ligation product (section 6.2.7) was inoculated in 50 mL of LB liquid medium 

containing 50 mg/L of kanamycin and grown overnight. The day after, ½ mL from 

the culture was mixed with a solution of 50% sterile glycerol (section 6.1.3) and 

stored at -80°C. The remaining part was harvested and the plasmid extracted. 

Sequencing analysis of pET28a-gnd, pET28a-grxB, pET28a-gmk and pET28a-

nudB was performed by Eurofins Genomics.
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6.4Production and purification of recombinant enzymes

6.4.1 Preparation of BL21(DE3)pLysS and BL21-CodonPlus(DE3)RP 

competent cells

BL21(DE3)pLysS or BL21-CodonPlus(DE3)RP cells from a 50% glycerol stock 

solution stored at -80°C were incubated in 50 mL of LB medium overnight at 37°C 

with 35 µg/mL of chloramphenicol or without antibiotic, respectively. The day 

after, 100 mL of fresh LB medium was inoculated with 1 mL from the overnight 

culture and incubated at 37°C. Cell growth was monitored by measuring optical 

density at 600 nm (OD600). When OD600 reached 0.6-0.7, 50 mL of culture was 

cooled on ice for 15 min and cells were separated from the medium by 

centrifugation at 3400 g for 6 min. The supernatant was discarded and cells were 

gently resuspended in 5 mL of Tfb-III buffer (section 6.1.6.3). Cells were left on 

ice for 15 min, centrifugated, and resuspend in 4 mL of Tfb-IV buffer (section 

6.1.6.4). Cells were left on ice for further 15 min to be then aliquoted in sterilised 

Eppendorf tubes (100 µL each tube) and stored at -80°C. 

6.4.2 Transformation of competent cells with pET28a-gnd, pET28a-grxB, 

pET28a-gmk and pET28a-nudB vectors

BL21(DE3)pLysS competent cells were transformed with pET-28a-gnd, pET-28a-

grxB and pET-28a-gmk plasmids, while BL21-CodonPlus(DE3)-RP cells were 

transformed with pET28a-nudB. 1 µL of plasmid was incubated with BL21(DE3) 

competent cells (section 6.3.1) on ice for at 30 min. Transformation with the 

exogenous DNA was performed by heat shocking at 44°C for 45 s. 1 mL of LB 

medium antibiotic-free was then added and heat-shocked cells were incubated 

at 37°C for 1 hour under shacking. Cells were then centrifugated for 1 minute at 

3300 g and 900 µL of the supernatant were discarded. The remaining 100 µL of 
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supernatant left into the Eppendorf tube were used to gently resuspend cells into 

the media. Resuspended cells were then plated on LB solid medium containing 

kanamycin as the selection maker and incubated at 37°C overnight. The day 

after, a single colony is inoculated in 50 m of LB liquid medium containing 

kanamycin (50 mg/L) and incubated at 37°C under shacking. ½ mL from the 

overnight culture was mixed with a solution of 50% sterile glycerol (section 6.1.3) 

and stored at -80°C.

6.4.3 Production of recombinant enzymes 

All recombinant enzymes were overproduced in E. coli strains at optimised 

temperatures and induction times (table 6.3). All E. coli strains for gene 

expression were prepared as described in Section 6.3.2. In a typical procedure, 

the E. coli strain transformed with a given pET plasmid carrying the target gene 

to express (e.g. pET-28a-grxB) is incubated at 37°C overnight in 50 mL LB liquid 

medium containing the appropriate antibiotic. The day after, 5 mL from the 

overnight culture are used to inoculate 1 L of LB liquid medium containing the 

appropriate antibiotic. The resulting culture is incubated at 37°C until OD600 

reaches 0.6. Depending on the recombinant enzyme, temperature of the culture 

was adjusted according to the values reported in Table 6.3 and 120 mg of 

isopropyl-β-D-1-thiogalactopyrnoside (IPTG, 0.5 mM) was added to induce 

expression of the target gene. After addition of IPTG, cells were left to produce 

the recombinant enzymes according to the times reported in Table 6.3. Cells were 

then harvested through centrifugation at 3400 g for 10 min. The supernatant was 

discarded and the pellet was used either to extract the recombinant enzyme as 

described in section 6.3.4 or conserved at -20°C.  
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Table 6.3 Recombinant enzymes used in this work overproduced in E.coli strains.

Enzyme (plasmid-gene) E. coli strain Temperature 
and 

induction time
GRX2 (pET-28a-grxB) BL21(DE3)pLysS 37°C, 4 h

6PGDH (pET-28a-gnd) BL21(DE3)pLysS 37°C, 4 h

PRS (pET-22HT-prsA)* BL21-Star(DE3)pLysS 37°C, 4 h

XGPRT (pET-28a-gpt)** BL21(DE3)pLysS 25°C, Overnight

GK (pET-28a-gmk) BL21(DE3)pLysS 37°C, 4 h

GTP-CH-I (pET-21d-folE)** BL21-Star(DE3) 25°C, Overnight

DHNTPase (pET-28a-nudB) BL21-CodonPlus(DE3)RP 30°C, Overnight

DHNA (pET-28a-folB)** BL21-CodonPlus(DE3)RP 37°C, 4 h

HPPK (pET28a-folK)** BL21-CodonPlus(DE3)RP 37°C, 4 h

DHPS (pET-21a-folP)** BL21-Star(DE3) 25°C, Overnight

EcDHFR (pET-11c-folA)*** BL21-Star(DE3) 37°C, Overnight

GRX2 = glutaredoxin 2, 6PGDH = 6-phosphogluconate dehydrogenase, PRS = ribose-
phosphate pyrophosphokinase, XGPRT = xanthine-guanine phosphoribosyl transferase, GK 
= guanylate kinase, GTP-CH-I = GTP-cyclohydrolase I, DHNTPase = 6-hydroxymethyl 7,8-
dihydropterin pyrophosphokinase, DHNA = 7,8-dihydroneopterin aldolase, HPPK = 6-
hydroxymethyl 7,8-dihydropterin pyrophosphokinase, DHPS = dihydropteroate synthase, 
EcDHFR = Escherichia coli dihydrofolate reductase.

*Gene cloned by Schultheisz et al. (166)

** Gene cloned by Dr. William Dawson (213)

*** Gene cloned by Swanwick et al. (232)

6.4.4 Purification of recombinant enzymes

6.4.4.1 Purification of recombinant enzymes bearing an hexahistidine 

tag (His-tag)

6.4.4.1.1 Purification of GRX2, 6PGDH, XGPRT, GK, DHNA and HPPK

Recombinant enzymes bearing an hexahistidine tag, including GRX2, 6PGDH, 

XGPRT, GK, DHNA and HPPK, were all purified through affinity chromatography. 

A pellet of cells containing the overproduced recombinant enzyme (section 6.3) 
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was resuspended in 20 mL of EBF-1 (section 6.1.7.1) and lysed by sonication on 

ice. Cell debris were removed by by centrifugation at 4 °C, 24300 g for 30 min. 

The supernatant was filtered with a 0.2 µm syringe filter and loaded on a Ni-NTA 

Agarose resin (Qiagen) pre-equilibrated with the Hig-Tag washing buffer. The 

resin was then washed three times with EBF-1. The recombinant enzyme bound 

to the resin was eluted with 20 mL of EBF-2 (section 6.1.7.2). Samples of lysate, 

flow-through and eluted enzyme were taken for SDS-PAGE analysis (section 

6.3.4.3). 

6.4.4.1.2 Purification of PRS

PRS was found to aggregate if purified through the method described in section 

6.4.4.1.1. However, presence phosphate was found to prevent precipitation of the 

recombinant enzyme. Accordingly, the purification procedure described in section 

6.4.4.1.1 was modified by replacing EBF-1 (section 6.1.7.1) and EBF-2 (section 

6.1.7.2) with EBF-3 (section 6.1.7.3) and EBF-4 (section 6.1.7.4), respectively.

6.4.4.2 Purification of recombinant wild-type enzymes

6.4.4.2.1 Purification of GTP-CH-I, DHPS and EcDHFR

Recombinant wild-type GTP-CH-I and DHPS were purified by anion exchange 

followed by size exclusion chromatography. Cells containing the overproduced 

enzyme (section 6.3) were re-suspended in EBF-5 (section 6.1.7.5) and lysed by 

sonication on ice. Cell debris was removed by centrifugation at 4 °C, 24300 g for 

30 min. The supernatant solution was then loaded onto a Q-sepharose fast flow 

resin (GE Healthcare Life Sciences) and the recombinant enzyme eluted with a 

linear gradient from 0 to 1 M NaCl. Fractions containing the enzyme were merged 

and concentrated by ultrafiltration using a 10 kDa cut-off membrane (Merck 

Millipore). Ion-exchanged GTP-CH-I and DHPS were further purified using 
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Superdex 200 and Superdex 75 prep grade size exclusion resin (GE Healthcare 

Life Sciences), respectively, equilibrated with EBF-6 (section 6.1.7.6). Size-

exclusion chromatography purification of EcDHFR was instead performed on a 

Superdex 75 grade size exclusion resin equilibrated with EBF-7 (section 6.1.7.7). 

Samples from lysate and fractions were taken for SDS-PAGE analysis. 

6.4.4.3 SDS-PAGE analysis

6.4.4.3.1 SDS-PAGE gel preparation

Resolving gel (10%) was prepared by mixing 3.3 mL acrylamide/bis-acrylamide 

solution, 2.5 mL SDS resolving buffer (section 6.1.8.1), 100 µL 10% (w/v) SDS 

and 4.1 mL dH2O. 50 µL of 10% (w/v) ammonium persulfate and 20 µL N,N,N’,N’-

tetramethylenediamine (TEMED) were then added to trigger polymerisation, and 

the resolving gel solution was poured into the gel caster. The solution was 

covered with a layer of isopropanol and left to polymerise for 15 min. After 

polymerisation, the isopropanol layer was removed and the stacking gel (4%) 

solution, made by mixing 1.3 mL 30% acrylamide/bis-acrylamide solution, 2.5 mL 

SDS stacking buffer (section 6.1.8.2), 100 µL 10% (w/v) SDS, 6.1 mL dH2O, 50 

µL 10% APS and 20 µL TEMED, was poured. A comb was used to shape 14 

wells where samples can be loaded.  

6.4.4.3.2 SDS-PAGE samples preparation

50 µL BME were mixed with 950 µL of SDS sample buffer (section 6.1.8.3). For 

each sample to be analysed, 50 µL of the resulting solution were mixed with 50 

µL of protein sample and heated at 95°C for 4 min.
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6.4.4.3.3 SDS-PAGE running protocol

SDS-PAGE gel, prepared as described in section 6.4.4.3.1, was loaded with 7 µL 

of unstained protein molecular weight marker (Thermo Scientific) and 5 µL of 

samples to be analysed (section 6.4.4.3.2). The gel was put in a chamber 

containing 10X SDS running buffer (section 6.1.8.4) diluted to 1X with dH2O. The 

gel was run by applying a current at 150 V for 45 min.

6.4.4.4 Enzymes storage

Recombinant GRX2, 6PGDH, GK, DHNTPase, DHNA and HPPK from affinity 

chromatography purification (section 6.3.4.1.1) were dialysed against 50 mM Tris 

(pH = 7.6), 50 mM NaCl and 5 mM β-ME buffer and stored in 50% glycerol 

solution at 20°C maximum for maximum three months. Recombinant PRS 

(section 6.3.4.1.2) was instead dialysed against 50 mM PO4 (pH = 7.6), 50 mM 

NaCl and 5 mM β-ME and stored at -20°C in 50% glycerol for maximum 3 months.

Recombinant GTP-CH-I and DHPS from size exclusion chromatography 

purification (section 6.3.4.2.1) were stored in 50% glycerol as well for maximum 

1 month. 

6.4.4.5 Determining protein and substrates concentration 

6.4.4.5.1 Bradford assay

The principle of the assay developed by Bradford (233) is based on Coomassie 

dye color change upon binding to a protein under acidic conditions.  Bovine serum 

albumine (BSA) diluted with the Bradford reagent (section 6.1.5) in six samples 

ranging between 10 µg/mL and 100 µg/mL were used to determine a standard 

calibration curve. UV-vis spectra were collected for each sample between 600 

nm and 400 nm, and variation of absorbance at 590 nm and 450 nm were 

extrapolated to determine the calibration curve. Protein samples of unknown 
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concentration were then prepared by mixing them with 1 mL of Bradford reagent 

and their respective absorbance at 590 nm and 450 nm were compared to the 

standard curve to calculate the concentration. All recombinant enzymes 

concentration was determined using the Bradford assay except for EcDHFR, 

which concentration was determined applying the Beer-Lambert law (section 

6.4.4.5.2),

6.4.4.5.2 Beer-Lambert law 

The Beer-Lambert law establishes a relationship between UV-vis absorption of a 

given sample and its concentration through the formula:

where A is the absorption, C is the analyte concentration (M) and ε is the 

extinction coefficient (M-1 cm-1) and l is the path length (cm). The value of ε is 

wavelength dependent and it can be used to determine samples concentration 

by measuring A at the given wavelength. EcDHFR (ε = 31117 M-1 cm-1 at λ = 280 

nm), GMP (ε = 17300 M-1 cm-1 at λ = 253 nm), H2F (ε = 28000 M-1 cm-1 at λ = 280 

nm) and NADPH (ε = 28000 M-1 cm-1 at λ = 340 nm) concentrations were 

determined applying the Beer-Lamber law by measuring A at the given 

wavelength in 50 mM PO4 buffer (pH = 7.00).

6.4.5 Enzyme activity assays

GRX2, 6PGDH, PRS, XGPRT, GK and GTP-CH-I activities were assayed 

following published procedures (171, 190, 205, 214, 234, 235) All anion exchange 

chromatography analyses were performed using a ProPac SAX-10 analytical or 

semi-preparative column (Fisher Scientific) with a linear gradient from 0 to 400 

mM NaCl over 60 min in 20 mM bicarbonate buffer (pH 8.0). Liquid 
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chromatography – mass spectrometry (LC-MS) analyses were performed using 

a Bruker amaZon SL ion-trap mass spectrometer equipped with an ultra-

performance liquid chromatography (UPLC) system. All UPLC separations were 

performed with a linear gradient of 5% to 95% aqueous acetonitrile containing 

0.1% HCOOH over 20 min using a C18 analytical column.

6.4.5.1 Comparison of GTP-CH-I activity with and without DHNTPase

0.2 mg of GTP were incubated with GTP-CH-I in 1 mL of 50 mM Tris (pH 7.6), 

100 mM KCl, 5 mM MgCl2, 5 mM β-ME at 37 °C. Formation of 7,8-

dihydroneopterin triphosphate (DHNTP) was monitored by UV-vis spectroscopy 

at 330 nm for 1 h. After 2 h, the mixture was analysed by anion exchange 

chromatography. DHNTPase was assayed by coupling with GTP-CH-I following 

the same procedure described above. 

6.3.5.2 DHNA, HPPK, DHPS activity assay

Because 7,8-dihydroneopterin (DHN), 6-hydroxymethyl-7,8-dihydropterin 

(HMDP) and 6-hydroxymethyl-7,8-dihydropterin pyrophosphate (HMDPpp) are 

chemically unstable, substrates were generated enzymatically from GTP. 1 mg 

of GTP placed in a 1.5 mL Eppendorf tube was incubated with GTP-CH-I and 

DHNTPase in 1 mL of 50 mM Tris (pH 8.0), 100 mM KCl, 5 mM MgCl2, 5 mM 

BME at 37 °C for 3 h. ALP was added and the mixture left to react for further 30 

min. Enzymes were removed using a 10 kDa spin column (GE Healthcare Life 

Sciences); the filtrate containing DHN was analysed by LC-MS and used to assay 

DHNA, HPPK and DHPS activities in a sequential order. Addition of DHNA 

triggers conversion of DHN to HMDP which was detected by LC-MS. 100 µL of 

ATP solution (10 mg/mL, pH ~7.6) was then added together with HPPK, and 

formation of HMDPpp was monitored by anion exchange chromatography. 
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Addition of DHPS to 100 µL solution of containing p-aminobenzoic acid (2 mg/mL) 

leads to the formation of dihydropteroic acid as detected by LC-MS.  

6.5Determining GRX system total turnover number (TTN)

In a falcon tube 0.05 mmol of 13C6-D-glucose (9.3 mg), 0.11 mmol of HED (17 

mg), 0.06 mmol (13 mg) of PEP were mixed in 10 mL of 50 mM potassium 

phosphate, 50 mM NaCl, 10 mM MgCl2, 2 mM GSH buffer at 37°C, and the pH 

was adjusted to 7.6 with NaOH(aq). 0.005 mmol ATP (3 mg) was then added 

together with 10 nmol PK, 20 nmol GRX2, 5 nmol GR and 5 nmol G6PDH. NADP+

concentration was varied in order to assess the TTN at 50 (0.001 mmol), 103 (5 

x 10-5 mmol), 104 (5 x 10-6 mmol), 105 (5 x 10-7 mmol), 5 x 105 (10-7 mmol) and 

106 (5 x 10-8 mmol) respectively. Formation of 13C6-PG was triggered by addition 

of HK (10 nmol) and the progress of the enzymatic reaction was monitored by 

13C-NMR spectroscopy by mixing 450 μL from the reaction mixture with 50 μL of 

D2O. 
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6.6Synthesis of isotopically labelled guanines

6.6.1 Traube purine synthesis

6.6.1.1 Synthesis of [5-15N]-2,4,5-triamino-6-hydroxypyrimidine

A solution of 2,4-diamino-6-hydroxypyrimidine (1.64 g, 12.99 mmol) in 10% acetic 

acid (30 mL) was cooled on ice and Na15NO2 (1 g, 14.29 mmol) dissolved in a 

small amount of deionized water (dH2O) was added dropwise under stirring. [5-

15N]-2,4-diamino-5-nitroso-6-hydroxypyrimidine precipitated as a purple solid.

formed. The precipitate was centrifuged, washed twice with cold dH2O and re-

suspended in hot dH2O. When the suspension was close to boil, sodium dithionite 

(9.95 g, 57.16 mmol) divided in four portions were added every 15 min. The 

reaction mixture discolored as the nitroso compound reduced to [5-15N]-2,4,5-

triamino-6-hydroxypyrimidine. The solution was then cooled to room temperature. 

Addition of conc. H2SO4 caused precipitation of the final compound. The solid 

was filtered and crystallized in 1 N H2SO4. Crystals were collected and dried 

under vacuum yielding 2.36 g (9.86 mmol, 69% yield) of [5-15N]-2,4,5-triamino-6-

hydroxypyrimidine sulphate salt. 

13C NMR (125 MHz, 90% H2O + 10% D2O) δ 168.87 (s), 157.92 (s), 154.07 (s), 

101.12 (d, JC-N = 8.9 Hz) ppm.

6.6.1.2 Synthesis of [7-15N]-guanine 

[5-15N]-2,4,5-triamino-6-hydroxypyrimidine (2.27 g, 9.49 mmol) were mixed with 

4-formylmorpholine (9.45 mL, 94.4 mmol) and refluxed in 98% HCOOH (15 mL) 

under nitrogen for 3 hours. After this time, the mixture was cooled to room 

temperature and then put on ice. Ammonium hydroxide was slowly added until 

the pH reached 9.0. [5-15N]-guanine precipitated out and was collected by 



Materials and methods

125

centrifugation, washed three times with cold dH2O then twice with acetone, and 

dried under vacuum to yield 1.23 g of off-white powder (8.06 mmol, 85% yield).

1H NMR (500 MHz, 90% H2O + 10% D2O) δ 7.56 (d, 1H, JC-N = 10 Hz) ppm. 13C 

NMR (125 MHz, H2O + 10% D2O) δ 167.22 (d, JC-N = 3.8 Hz), 159.96 (s), 159.44 

(s), 146.61 (s), 117.19 (d, JC-N = 3.8 Hz) ppm.

6.6.1.3 Synthesis of [6-13C,7-15N]-guanine

Synthesis of [6-13C,7-15N]-guanine was performed as for [7-15N]-guanine (section 

6.5.1.2) using [5-15N]-2,4,5-triamino-6-hydroxypyrimidine (1.07 g, 4.25 mmol) and 

H13COOH (1 g, 0.85 mmol) as starting material. 1 mL morpholine was used as 

solvent.

1H NMR (600 MHz, 90% H2O + 10% D2O) δ 7.43 (dd, 1H, 1JC-H = 198 Hz, 2JN-H = 

12 Hz) ppm. 13C NMR (150 MHz, 90% H2O + 10% D2O) δ 147.89 (d, JC-N = 3 Hz)

ppm.

6.6.2 Synthesis of guanine from 5-amino-4-imidazolecarboxamide

6.6.2.1 Synthesis of [2-13C]-guanine

Benzoyl chloride (592 µL, 5.09 mmol) and KS13CN (495 mg, 5.09 mmol) were 

placed in a round bottom flask and put under a stream of N2. ~10 mL of anhydrous 

CH3CN was added, and the mixture was stirred at 70°C. A white solid, KCl,

precipitated. After 1 h, the solid was filtered and the solvent was evaporated 

under reduced pressure. Crude 13C-benzoyl isothiocyanate formed during the 

reaction appeared as a faint yellow oil. 5-amino-4-imidazolecarboxamide (642, 

5.09 mmol) dissolved in ~ 50mL dH2O was mixed with crude 13C-benzoyl 

isothiocyanate, and the solution was stirred at room temperature overnight. The 
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day after, 1 mL of NaOH 6M was added to the reaction mixture to dissolve 5-(N’-

benzoyl-isothiocarbamoyl)amino-4-imidazolecarboxamide precipitated from the 

solution in the course of the reaction. The solution was filtered and methyl iodide 

(1.3 mL, 20 mmol) was added. The solution was vigorously stirred for 2 h at room 

temperature, and 5-(N’-benzoyl-S-methylisothiocarbamoyl)amino-4-

imidazolecarboxamide appeared as a white solid. The precipitate was filtered and 

washed twice with water to be then put in a round bottom flask. 15 mL of 6M 

NaOH were added and the mixture was heated at 100°C for 1 h. The solution 

was left to cool at room temperature to be then put on ice. Concentrated HCl was 

added with caution into the mixture until the pH reached ~7.00. [2-13C]-guanine 

precipitated. The solid was separated from the solution by centrifugation, washed 

with water, ethanol and then dried under vacuum to yield 226 mg (29 % overall) 

of final product.

1H NMR (600 MHz, 90% H2O + 10% D2O) δ 7.52 (1H, s) ppm. 13C NMR (150

MHz, 90% H2O + 10% D2O) δ 159.17 (s) ppm.

6.7General procedure for the synthesis of isotopically labelled GMPs

In a falcon tube 0.05 mmol 13C6-D-glucose (9.3 mg), 0.11 mmol HED (17 mg) or 

cystine (26 mg), 0.2 mmol PEP (41 mg) were mixed in 5 mL of 100 mM Tris, 50 

mM NaCl, 10 mM MgCl2, 2 mM GSH buffer at 37°C, and the pH was thereafter 

adjusted to 7.6 with NaOH(aq). 0.005 mmol ATP (3 mg) and 0.001 mmol NADP+

(0.8 mg) were then added together with 10 nmol PK, 10 nmol MK(171), 20 nmol 

GRX2, 5 nmol GR, 5 nmol G6PDH and 5 nmol PRI, and the volume adjusted to 

10 mL with further addition of reaction buffer. The enzymatic cascade was 

triggered by addition of HK (10 nmol) which was monitored by UV-vis 

spectroscopy following NADPH absorbance at 340 nm. When the absorbance 
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declined to the baseline (or solid cystine was fully dissolved to reduced cysteine), 

PRS (10 nmol) and XGPRT (30 nmol) were added. The reaction was left to 

proceed for further 15 min. in order to generate sufficient amounts of the 

intermediate PRPP in situ. 0.05 mmol of guanine (7.6 mg) dissolved 50 μL of 

KOH (5.0 M) were diluted to 10 mL with deionized water and loaded in a 10 mL 

syringe. Alkaline guanine was then flowed into the reaction mixture at the rate of 

0.2 mL/min (1 μmol/min). After 50 min., when addition of guanine was complete, 

the reaction mixture was allowed to proceed for further 10 min. The pH shifted 

from 7.6 to ~8.0. The final product was purified from the crude mixture by anion 

exchange chromatography with a linear gradient from 0 to 40% of 1M NaCl in 60 

min in 20 mM bicarbonate buffer (pH = 8.0) using a ProPac SAX-10 preparative 

column (Fisher Scientific). GMP eluted after ~16 min. Fractions containing the 

product were merged and, prior to freeze drying, GMP was quantified by the beer-

Lambert law (section 6.3.4.5.2). Yields ranged between 70% and 80%.

6.8General procedure for the synthesis of isotopically labelled H2Fs

Chemo-enzymatic synthesis of 7,8-dihydrofolate (H2F) was performed inside a 

LABstar glove box station (MBraun, Germany) equipped with a 50 mL falcon tube 

Thermomixer (Eppendorf), pH meter and syringe pump. Oxygen concentration 

was constantly kept below 0.5 ppm. Solutions were extensively degassed prior 

to their introduction into the glovebox system, and left to equilibrate to the inert 

atmosphere overnight before use. In a falcon tube, D-glucose (9 mg, 0.05 mmol), 

cystine (26 mg, 0.11 mmol) and PEP (62 mg, 0.3 mmol) were mixed in 5 mL of 

100 mM Tris, 100 mM KCl, 10 mM MgCl2, 2 mM GSH buffer at 37°C, and the pH 

was adjusted to 7.6 with NaOH(aq). ATP (3 mg, 0.005 mmol) and NADP+ (0.8 mg, 

0.001 mmol) were added together with PK (10 nmol), MK (10 nmol),(171) GRX2 
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(20 nmol), GR (5 nmol), G6PDH (5 nmol) and PRI (5 nmol). After adjusting the 

total volume of 10 mL with the reaction buffer, the enzymatic cascade was 

triggered by addition of HK (10 nmol) and left to react overnight (or until solid 

cystine was fully dissolved) at 37 °C. The day after, PRS (10 nmol), XGPRT (30 

nmol) and GK (20 nmol) were added. The reaction was left to proceed for further 

15 min in order to generate sufficient amounts of the intermediate PRPP in situ. 

Guanine (7.6 mg, 0.05 mmol) dissolved in 50 μL of 5 M KOH was diluted to 10 

mL with deionized water and loaded in a 10 mL syringe. Alkaline guanine was 

then flowed into the reaction mixture at the rate of 0.2 mL/min (1 μmol/min). 

During guanine addition, the reaction vessel was agitated at 400 rpm. After 50 

min, when addition of guanine was complete, the reaction mixture was allowed 

to proceed for further 10 min; the pH shifted from 7.6 to ~8.0. GTP-CH-I (100 

nmol) and DHNTPase (25 nmol) were added and the reaction was left to proceed 

overnight protected from light. After the overnight reaction with GTP-CH-I and 

DHNTPase, ALP (15 nmol) was added and the reaction mixture incubated for 1 

h and 30 min. The reaction mixture pH must be under strict control and never 

reach values below 7.0. This is to avoid pH-dependent degradation of 7,8-

dihydropterin intermediates including the final product H2F. Enzymes were 

removed by ultrafiltration using a 50 mL 10 kDa spin column (GE Healthcare Life 

Sciences). The filtrate was put in a clean 50 mL falcon tube, and a solution of 

ATP (6 mg, 0.01 mmol), MK (10 nmol), PK (10 nmol), 0.015 mmol of PEP (31 

mg, 0.15 mmol) and pABA-Glu (16 mg, 0.06 mmol) was added to the main 

mixture making sure the pH was adjusted between 7.6 and 8.0 before addition. 

Then, DHNA (20 nmol), HPPK (20 nmol) and DHPS (30 nmol) were added, and 

the reaction mixture was left overnight. During H2F formation, the reaction mixture 

turns faint yellow. The final product was purified from the crude mixture by anion 
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exchange chromatography. Briefly, the crude product was diluted to 200 mL with 

dH2O. The diluted solution was put on ice and accurately protected from light, for 

being loaded on a ProPac SAX-10 preparative column (Fisher Scientific) 

equilibrated with 20 mM Tris buffer (pH 7.6). After loading, the column was 

washed with buffer until absorbance at 210 nm declined to the baseline. H2F was 

thereafter eluted from the anion exchange column with a linear gradient from 0 to 

400 mM NaCl over 60 min, following 7,8-dihydropterin absorbance at 330 nm. 

H2F eluted after ~33 min. Fractions containing the product were merged. The H2F 

solution was immediately put in a flask and the product (and other salts) 

precipitated with cold acetone. The acetone solution was left on ice for 10 min to 

ensure complete precipitation, and the solid was separated through centrifugation 

by collecting it in a 50 mL falcon tube. The faint yellow solid collected at the 

bottom of the falcon tube was gently dried from residual acetone using a stream 

of N2. When sufficiently dry, the tube was put on ice and the pellet treated with a 

1-2 mL of ice-cold 10% ascorbic acid (pH 2.8). While salts are dissolved in the 

ascorbic acid solution, H2F remains insoluble and it can be therefore separated 

by centrifugation in a 1.5 mL Eppendorf tube. The solid was washed 3 times with 

ice-cold dH2O and once with ice-cold acetone. Eventually, the acetone-washed 

product was dried under vacuum for 30 min and stored at -20 °C. The average 

overall yield was 30% (6.7 mg, 0.015 mmol).
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6.9Characterisation of isotopically labelled GMPs and H2Fs

6.9.1 NMR spectroscopy

All NMR experiments were performed at 25 °C on a Bruker AVANCE III 600 MHz 

(1H) spectrometer with a QCI-P cryoprobe. All samples were prepared in 10% 

deuterium oxide by dissolving samples with 0.1 M NaOH.

6.9.1.1 [1’,2’,3’4’,5’-13C5]-GMP

1H NMR (600 MHz, 90% H2O + 10% D2O) δ 8.00 (s), 5.77 (1H, d, JC-H = 164 Hz), 

3.93 (5H, m) ppm. 13C NMR (150 MHz, 90% H2O + 10% D2O) δ 86.25 (d, JC-C = 

42.6 Hz), 84.45 (m), 74.23 (dd, JC-C = 37, 5 Hz), 71.05 (t, JC-C = 38 Hz), 63.77 (d, 

JC-C = 43 Hz) ppm.

6.9.1.2 [1’,2’,3’4’,5’-13C5, 7-15N]-GMP

1H NMR (600 MHz, 90% H2O + 10% D2O) δ 8.00 (d, 1H, 2JN-H = 10.8 Hz), 5.78 

(1H, d, JC-H = 165 Hz), δ 3.93 (5H, m) ppm. 13C NMR (150 MHz, 90% H2O + 10% 

D2O) δ 86.25 (d, JC-C = 42.6 Hz), 84.45 (m), 74.23 (dd, JC-C = 37, 5 Hz), 71.05 (t, 

JC-C = 38 Hz), 63.77 (d, JC-C = 43 Hz) ppm.

6.9.1.3 [1’,2’,3’4’,5’,8-13C6, 7-15N]-GMP

1H NMR (600 MHz, 90% H2O + 10% D2O) δ 8.06 (dd, 1H, 1JC-H = 205 Hz, 2JN-H = 

11 Hz), δ 5.78 (1H, d, JC-H = 169 Hz), δ 3.93 (5H, m) ppm. 13C NMR (150 MHz, 

90% H2O + 10% D2O) δ 135.71 (s), 86.25 (d, JC-C = 42.6 Hz), 84.45 (m), 74.23 

(dd, JC-C = 37, 5 Hz), 71.05 (t, JC-C = 38 Hz), 63.77 (d, JC-C = 43 Hz).

6.9.1.4 [2-13C]-GMP

1H NMR (600 MHz, 90% H2O + 10% D2O) δ 8.04 (s), 5.77 (1H, d, JH-H = 6 Hz), 

4.31 (2H, dd, JH-H =3.4, 1.6 Hz), 4.21 (2H, m), 3.89 (1H, m) ppm. 13C NMR (150 

MHz, 90% H2O + 10% D2O) δ 161.38 (s) ppm.
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6.9.1.5 [5-15N]-H2F

1H NMR (600 MHz, 90% H2O + 10% D2O) δ 7.63 (2H, d, JH-H = 8.8 Hz), 6.74 (2H, 

d, JH-H = 8.8 Hz), 4.21 (1H, dd, JH-H = 9 Hz, 5 Hz), 3.95 (2H, s), 3.87 (2H, s), 2.20 

(2H, m), 1.98 (2H, m) ppm.

6.9.1.6 [6-13C]-H2F

1H NMR (600 MHz, 90% H2O + 10% D2O) δ 7.63 (2H, d, JH-H = 8.8 Hz), 6.74 (2H, 

d, JH-H = 8.8 Hz), 4.21 (1H, dd, JH-H = 9 Hz, 5 Hz), 3.95 (2H, d, 2JC-H 6.1 Hz), 3.87 

(2H, d, 2JC-H 6.1 Hz), 2.20 (2H, m), 1.98 (2H, m) ppm. 13C NMR (150 MHz, 90% 

H2O + 10% D2O) δ 152.07 (s) ppm.

6.9.1.7 [5-15N][6-13C]-H2F

1H NMR (600 MHz, 90% H2O + 10% D2O) δ 7.63 (2H, d, JH-H = 8.8 Hz), 6.74 (2H, 

d, JH-H = 8.8 Hz), 4.21 (1H, dd, JH-H = 9 Hz, 5 Hz), 3.95 (2H, d, 2JC-H 5.8 Hz), 3.87 

(2H, d, 2JC-H 5.8 Hz), 2.20 (2H, m), 1.98 (2H, m) ppm. 13C NMR (150 MHz, 90% 

H2O + 10% D2O) δ 152.08 (d, JC-N 7.0 Hz) ppm.

6.9.1.8 [6,7,9-13C3]-H2F

1H NMR (600 MHz, 90% H2O + 10% D2O) δ 7.63 (2H, d, JH-H = 8.8 Hz), 6.74 (2H, 

d, JH-H = 8.8 Hz), 6.74 (1H, s), 4.21 (1H, dd, JH-H = 9, 5 Hz), 3.95 (2H, dd, 1JC-H = 

132 Hz, 2JC-H 6 Hz), 3.87 (2H, dd, 1JC-H = 147 Hz, 2JC-H 6 Hz), 2.20 (2H, m), 1.98 

(2H, m) ppm. 13C NMR (150 MHz, 90% H2O + 10% D2O) δ 152.05 (dd, JC-C = 52,

40 Hz), 47.84 (d, JC-C = 52 Hz), 47.84 (d, JC-C = 52 Hz) ppm.



Materials and methods

132

6.9.1.9 [5-15N][6,7,9-13C3]-H2F

1H NMR (600 MHz, 90% H2O + 10% D2O) δ 7.63 (2H, d, JH-H = 8.8 Hz), 6.74 (2H, 

d, JH-H = 8.8 Hz), 4.21 (1H, dd, JH-H = 9 Hz, 5 Hz), 3.95 (2H, dd, 1JC-H = 132 Hz, 

2JC-H 6 Hz), 3.87 (2H, dd, 1JC-H = 147 Hz, 2JC-H 6 Hz), 2.20 (2H, m), 1.98 (2H, m)

ppm. 13C NMR (150 MHz, 90% H2O + 10% D2O) δ 152.03 (ddd, JC-C = 51, 40 Hz,

JC-N 7.2 Hz), 47.84 (d, JC-C = 52 Hz), 47.84 (d, JC-C = 52 Hz) ppm.

6.9.2 Liquid chromatography – high resolution mass spectrometry (LC-

HRMS)

All LC-HRMS analyses were run on a Waters Synapt G2-Si time-of-flight mass 

spectrometer (Surrey, UK) equipped with a Acquity UPLC system.

6.10 Pre-steady state kinetics (PSSK) and heavy-atom kinetic isotope 

effect measurements on EcDHFR

6.10.1 Preparation of natural abundance H2F for PSSK measurements

Natural abundance H2F was prepared with a modified version of the method 

described by Blakley (236). 8 g ascorbic acid were placed in a three-neck round 

bottom flask and dissolved with 80 mL dH2O. pH was adjusted to 6.00 and the 

solution constantly purged with a stream of N2 protected from light. 400 mg folic 

acid dissolved in 40 mL NaOH were added to the ascorbic acid solution, and after 

5 min pH was re-adjusted to 6.00. The reaction mixture was put on ice under 

stirring for 5 min, and 4.4 g sodium dithionite were added. When sodium dithionite 

was completely dissolved, the reaction was allowed to proceed for 15 min. A fresh 

solution of 1 M HCl was added to the reaction mixture dropwise using a peristaltic 
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pump until pH drops to 2.8. H2F will precipitate out from the solution. The 

precipitate is separated from the solution by centrifugation, and precipitated again 

in 10% sodium ascorbate as described before. To ensure sample homogeneity 

in PSSK measurements, H2F is then purified by anion exchange chromatography 

following the same procedure described for isotopically labelled H2Fs (section 

6.8). 

6.10.2 Single-turnover experiments

Single-turnover experiments were performed on an Applied Phothophysics 

SX20/LED stopped-flow spectrophotometer (UK) optimized for measuring DHFR 

reaction rate through fluorescence resonance energy transfer (FRET) by exciting 

tryptophan residues at 292 nm, which were in turn exciting NADPH at 340 nm 

and measuring the subsequent emission at 450 nm. NADPH and H2F 

concentrations were determined spectrophotometrically as described in section 

6.3.4.5.2. Experiments were performed in 100 mM phosphate, 100 mM NaCl, 5 

mM β-ME, pH 7.0. The buffer was filtered and extensively degassed before use. 

Solutions were constantly kept on ice and protected from light during 

measurements. EcDHFR (20 µM) was preincubated with NADPH (8 µM) for at 

least 5 min before measurements by rapidly mixing with H2F (200 µM). 

Measurements were repeated at least three times. Rate constants were 

extrapolated by fitting the kinetic data to the equation for a triple-exponential 

decay using Applied Photophysics Pro-Data SX software. Isotopically labelled 

H2Fs were checked by NMR before use.
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6.10.3 Errors and their propagation

6.10.3.1 Standard deviation and standard error of the mean

Uncertainty for the measured pre-steady-state values are reported as standard 

deviation (σ) which is defined as:

where X is the value of each measurement, M is the mean value of the sample 

and n is the total number of repetitions.

6.10.3.2 Propagation of uncertainty 

Errors of the KIE data presented in this work were calculated using the error 

following propagation formula:

where X and Y represent the independently measured values, ΔZ and ΔY the 

uncertainty values for X and Y respectively.
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8.1 Apprendix 1. High-resolution mass spectrometry data
8.1.1 HRMS of isotopically labelled guanosine monophosphates

Figure A.1. Positive TOF HRMS of natural abundance GMP.
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Figure A.2. Positive TOF HRMS of [1’,2’,3’,4’,5’-13C5]-GMP.

Figure A.3. Positive TOF HRMS of [1’,2’,3’,4’,5’,8-13C6,7-15N]-GMP.
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Figure A.4. Positive TOF HRMS of [1’,2’,3’,4’,5’-13C5,7-15N]-GMP

Figure A.5. Positive TOF HRMS of [2-13C]-GMP.
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8.1.2. HRMS of isotopically labelled dihydrofolates

Figure A.6. Positive TOF HRMS of natural abundance H2F. 

 

Figure A.7. Positive TOF HRMS of [5-15N]-H2F. 
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Figure A.8. Positive TOF HRMS of [6-13C]-H2F. 

 

Figure A.9. Positive TOF HRMS of [6-13C,5-15N]-H2F. 
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Figure A.10. Positive TOF HRMS of [6,7,9-13C3]-H2F

Figure A.11. Positive TOF HRMS of [6,7,9-13C3,5-15N]-H2F. 
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8.2. Apprendix 2. Pre-steady state kinetic data

Table A.1. Pre-steady-state kinetic data for determining 15N-KIE on EcDHFR using [5-

15N]-H2F. 

T(°C) kH
14N (s-1) kH

15N (s-1)

5 83.229 ± 1.045 83.560 ± 1.089

10 107.963 ± 1.250 108.400 ± 1.461

15 144.056 ± 0.793 144.200 ± 0.059

20 182.443 ± 1.595 182.500 ± 0.630

25 228.902 ± 1.297 230.300 ± 1.634

30 281.197 ± 3.883 281.200 ± 4.868

35 338.237 ± 3.005 338.000 ± 4.395

Table A.2. Pre-steady-state kinetic data for determining 13C-KIE on EcDHFR using [6-

13C]-H2F.

T(°C) kH
12C (s-1) kH

13C (s-1)

5 93.397 ± 0.675 91.717 ± 0.547

10 120.504 ± 0.916 118.407 ± 0.900

15 157.535 ± 0.568 155.171 ± 0.822

20 195.551 ± 1.346 191.540 ± 2.143

25 246.174 ± 0.894 239.506 ± 1.501

30 286.3681 ± 1.587 279.970 ± 2.968

35 357.173 ± 0.965 347.012 ± 3.773
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Table A.3. Pre-steady-state kinetic data for determining 15N,13C-KIE on EcDHFR using         

[5-15N][6-13C]-H2F.

T(°C) kH
14N,12C (s-1) kH

15N,13C (s-1)

5 94.208 ± 0.724 92.336 ± 0.685

10 121.883 ± 1.000 119.133 ± 0.680

15 157.775 ± 1.032 155.535 ± 1.162

20 198.094 ± 1.152 195.862 ± 0.720

25 241.495 ± 1.111 237.226 ± 0.806

30 282.080 ± 0.760 279.100 ± 2.41

35 351.533 ± 3.340 339.801 ± 4.247
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8.3 Appendix 3. Additional SDS-PAGE analyses

Figure A.12. SDS-PAGE of purified PRS (MW = 34,2 kDa; fractions 1-3) compared to 

cell lysate (Lys) before and after (FT) purification.

Figure A.13. SDS-PAGE of purified XGPRT (MW = 16,8 kDa; fractions 1-2) compared 

to cell lysate (Lys) before and after (FT) purification.
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Figure A.14. SDS-PAGE of purified GTP-CH-I (MW = 24,8 kDa; fractions 1-6) compared 

to cell lysate (Lys) after size exclusion chromatography. 

Figure A.15. SDS-PAGE of purified DHNA (MW = 13,6 kDa; fractions 1) compared to 

cell lysate (Lys) before and after (FT) purification.

Figure A.16. SDS-PAGE of purified HPPK (MW = 18,1 kDa; fractions 1-3) compared to 

cell lysate (Lys) before and after (FT) purification.
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Figure A.17. SDS-PAGE of purified DHPS (MW = 30,6 kDa; fractions 5-8) compared to

cell lysate (Lys) after size exclusion chromatography. 
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8.4 Apprendix 4. Sequencing data
8.4.1 Sequencing of gmk
> gmk2_T7term -- unclipped
TGAATACGCCTTCTTTTTCGGGCTTTGTTAGCAGCCGGATCTCAGTGGTGGTGGTGGTGGTGCTCGAGTCAGTCTGCCAACAATT
TGCTGATTAAAGCGTCATGACGCTGCTTTTGGCGGCTCATGCGCAGACGTTCGGCGCGAATAATGGTCTTCAAATCGGTCAACGC
GGTATCGAAGTCATCATTCACAATCAGATAATCATATTCGGCGTAATGGCTCATTTCTGCAACAGCTTGCGCCATACGCTTTGCAAT
GACCTCTTCGCTGTCCTGACCGCGACCGCGTAGACGGCCGTCCAGTTCAATTTTGGACGGCGGTAAAATAAAGATACTCCGCGC
GTGCGGCATCTTCTGGCGAATTTGCTGCGCGCCCTGCCAGTCGATATCGAGAAAAACATCGACACCGGTCGCCAGTACTTGCTCT
ATGGCCTCACGCGAAGTGCCATAGTAATTACCAAAAACTTCTGCGTGTTCGAGGAACGCATCTCTGCTAATCATTTCTTTAAATTCA
TCATGATTAACAAAGAAATAATGTTCACCGTGGACTTCACCAGGACGCGGTTGGCGTGTGGTGTGTGAAACAGAAACCTGGGTGT
CATACAACGGTTGGGTTTTTAATAAAGCCTGAATCAGGCTGGATTTACCCGCGCCACTGGGGGCAGAAACAATATAAAGCGTGCC
TTGAGCCATATGGCTGCCGCGCGGCACCAGGCCGCTGCTGTGATGATGATGATGATGGCTGCTGCCCATGGTATATCTCCTTCTT
AAAGTTAAACAAAATTATTTCTAGAGGGGAATTGTTATCCGCTCACAATTCCCCTATAGTGAGTCGTATTAATTTCGCGGGATCGAG
ATCTCGATCCTCTACGCCGGACGCATCGTGGCCGGCATCACCGGCGCCACAGGTGCGGTTGCTGGCGCCTATATCGCCGACATC
ACCGATGGGGAAGATCGGGCTCGCCACTTCGGGCTCATGAGCGCTTGTTTTCGCGTGGGTATGGGGGCAGGCCCCGTGGCCGG
GGGAATGTTGGGCGCCTTCCCTTGGAGGACCATTCTTGGGGGGGGGGGGTAACGGGCTCATCT
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8.4.2 Sequencing of gnd

>[1]-gndT7P_T7 -- 23..848 of sequence

CTAGAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCC
GCGCGGCAGCCATATGTCCAAGCAAAATATCGGCGTAGTCGGTATGGCAGTGATGGGACGCAACCTTGCGCTCAACATCGAAAG
CCGTGGTTATACCGTCTCTATTTTCAACCGTTCCCGTGAGAAGACGGAAGAAGTGATTGCCGAAAATCCAGGCAAGAAACTGGTT
CCTTACTATACGGTGAAAGAGTTTGTCGAATCTCTGGAAACGCCTCGTCGCATCCTGTTAATGGTGAAAGCAGGTGCAGGCACGG
ATGCTGCTATTGATTCCCTCAAACCATATCTCGATAAAGGAGACATCATCATTGATGGTGGTAACACCTTCTTCCAGGACACTATTC
GTCGTAATCGTGAGCTTTCAGCAGAGGGCTTTAACTTCATCGGTACCGGTGTTTCTGGCGGTGAAGAGGGGGCGCTGAAAGGTC
CTTCTATTATGCCTGGTGGCCAGAAAGAAGCCTATGAATTGGTAGCACCGATCCTGACCAAAATCGCCGCCGTAGCTGAAGACGG
TGAACCATGCGTTACCTATATTGGTGCCGATGGCGCAGGTCACTATGTGAAGATGGTTCACAACGGTATTGAATACGGCGATATG
CAGCTGATTGCTGAAGCCTATTCTCTGCTTAAAGGTGGCCTGAACCTCACCAACGAAGAACTGGCGCAGACCTTTACCGAGTGGA
ATAACGGTGAACTGAGCAGTTACCTGATCGACATCACCAAAGATATCTTCACCAAAAAAG

>1]-gndT7T_T7term -- 7..1021 of sequence

CGCTTCTTTCGGGCTTTGTTAGCAGCCGGATCTCAGTGGTGGTGGTGGTGGTGCTCGAGTTATTAATCCAGCCATTCGGTATGGA
ACACACCTTCTTTATCAATACGCTTATAAGTATGCGCACCAAAATAGTCACGCTGTGCCTGGATCAGGTTCGCAGGCAGAACAGCA
GCACGGTAGCTGTCGTAATAGGCAACCGCTGCGGAGAAGGTCGGAACCGGAATACCGTTCTGTACTGCATAAGCAACGACATCA
CGCAGCGCCTGCTGGTAGTCATCGGCAATTTGCTTGAAGTACGGAGCCAGCAACAGGTTAGCGATCTGTGGATTTTCGGCATAAG
CATCGGTGATTTTCTGCAGGAACTGCGCACGGATGATGCAGCCAGCACGGAAAATCTTCGCGATTTCGCCGTAGTTCAGATCCCA
GTTGTACTCTTCAGACGCAGCACGCAGCTGAGAGAAGCCCTGGGCGTAAGAAACGACTTTGCCCAGATACAGCGCACGACGAAC
TTTTTCGATGAACTCAGCCTTGTCGCCTGCTGGCTGTGCTTGCGGACCAGAGAGAACTTTAGATGCGGCAACACGCTGATCTTTC
AGAGAAGAGATATAACGTGCAAACACAGACTCGGTAATCAGCGACAGCGGTTCGCCGAGATCCAGCGCGCTCTGGCTGGTCCAT
TTACCGGTACCTTTGTTAGCCGCTTCATCCAGGATCACATCAACCAGGTAGTTACCGTCTTCATCTTTTTTGGTGAAGATATCTTTG
GTGATGTCGATCAGGTAACTGCTCAGTTCACCGTTATTCCACTCGGTAAAGGTCTGCGCCAGTTCTTCGTTGGTGAGGTTCAGGC
CACCTTTAAGCAGAGAATAGGCTTCAGCAATCAGCTGCATATCGCCGTATTCAATACCGTTGTGAACCATCTTCACATAGTGACCT
GCGCCATCGGCACCAATATAGGTAACGCATGGTTCACCGTCTTCAGCTACGGCGGCGATTTTGGTCAGGATCGGTGCTA
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8.4.3 Sequencing of grxB
>grxB_T7 -- 33..766 of sequence
TTTTGTTTAACTTTAAGAAGGAGGATATACCATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGC
AGCCATATGAAGCTATACATTTACGATCACTGCCCTTACTGCCTCAAAGCCCGCATGATTTTCGGCCTGAAAAATATCCCCGTCGA
ATTACATGTTCTGCTCAACGACGACGCAGAAACACCCACCCGGATGGTCGGTCAAAAACAGGTTCCCATTCTGCAAAAAGATGAC
AGCCGCTATATGCCAGAAAGCATGGACATCGTTCACTATGTCGATAAACTCGACGGCAAACCGTTACTGACCGGCAAACGTTCCC
CTGCCATTGAAGAGTGGCTGCGCAAGGTCAATGGCTACGCCAACAAACTGCTGTTGCCGCGTTTTGCCAAATCGGCATTTGATGA
GTTTTCTACTCCCGCCGCGCGCAAATATTTCGTCGACAAGAAAGAGGCCAGCGCGGGTAATTTTGCCGACCTGCTGGCCCACTCT
GACGGTCTGATTAAGAATATCAGCGATGATTTACGTGCGCTGGACAAACTGATCGTCAAACCGAACGCCGTGAATGGCGAACTTT
CGGAAGATGATATTCAGCTATTCCCGCTACTGCGTAATCTGACGCTGGTAGCCGGAATTAACTGGCCAAGCCGCGTTGCTGATTA
CCGCGATAATATGGCGAAAACAGACACAAATCAAATTTGTTATCATCAATGGC
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8.4.4 Sequencing of nudB
>nudB[3]_T7

AAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCG
CGGCAGCCATATGAAGGATAAAGTGTATAAGCGTCCCGTTTCGATCTTAGTGGTCATCTACGCACAAGATACGAAACGGGTGCTG
ATGTTGCAGCGGCGTGACGATCCCGATTTCTGGCGGTCGGTAACCGGCAGCGTGGAAGAGGGTGAAACCGCGCCGCAAGCTGC
CATGCGCGAAGTAAAGGAAGAGGTCACCATTGATGTTGTCGCTGAACAACTGACCTTAATTGACTGTCAGCGCACGGTAGAGTTT
GAAATTTTTTCACATTTACGTCATCGCTATGCGCCGGGCGTGACGCGTAATACGGAATCATGGTTCTGTCTTGCGCTTCCGCACGA
GCGGCAGATCGTTTTCACTGAACATCTGGCTTACAAGTGGCTTGATGCGCCTGCTGCGGCGGCGCTCACTAAGTCCTGGAGCAA
CCGGCAGGCGATTGAACAGTTTGTAATTAACGCTGCCTGACTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAA
GCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGG
GGTTTTTTGCTGAAAGGAGGAACTATATCCGGATTGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAACCGCGGC
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ABSTRACT: NADP+-dependent enzymes are important in
many biocatalytic processes to generate high-value chemicals
for the pharmaceutical and food industry; hence, a cost-
effective, efficient, and environmentally friendly recycling
system for the relatively expensive and only marginally stable
enzyme cofactor NADP+ offers significant benefits. NADP+

regeneration schemes have previously been described, but their
application is severely limited by the low total turnover
numbers (TTN) for the cofactor. Here, we report a glutathione-based recycling system that combines glutaredoxin from E. coli
(EcGRX) and the glutathione reductase from S. cerevisiae (ScGR) for NADP+ regeneration. This system employs inexpensive
latent organic disulfides such as oxidized cysteine or 2-hydroxyethyl disulfide (HED) as oxidizing agents and allows NADP+

recycling under both aerobic and anaerobic conditions with a TTN in excess of 5 × 105, indicating that each regeneration cycle is
99.9998% selective toward forming the cofactor. Accordingly, for each 1 mol of product generated, less than $0.05 of cofactor is
needed. Finally, the EcGRX/ScGR pair is compatible with eight enzymes in the guanosine monophosphate (GMP) biosynthetic
pathway, giving the corresponding isotopically labeled nucleotide in high yield. The glutathione-based NADP+ recycling system
has potential for biocatalytic applications in academic and industrial settings.

KEYWORDS: biocatalysis, biosynthesis, cofactor/coenzyme recycling, enzyme oxidation, biotechnology

■ INTRODUCTION

Refining the performance of enzyme-catalyzed redox processes
remains at the frontier of biocatalysis research1,2 and is of
central importance to the development of sustainable chemical
production processes.3 Oxidoreductases are a large group of
enzymes,4 which due to their good catalytic efficiency, general
applicability, and nontoxic nature have been used widely in
industrial processes, ranging from kilogram-scale chiral
resolutions5 to intricate syntheses of pharmaceuticals.6,7 Since
oxidoreductases almost exclusively require the use of
structurally complex and expensive cofactors such as
nicotinamide adenine dinucleotide phosphate NADP(H),
cost-efficient recycling schemes have been developed. Cur-
rently, there are a number of in situ enzymatic systems that
efficiently recycle NADPH, including engineered glucose/
glucose 6-phosphate dehydrogenase,8,9 formate dehydrogen-
ase,10,11 and phosphite dehydrogenase.12 These recycling
schemes have been extensively used in NADPH-dependent
enzymatic reductions, such as the production of the HMG-CoA
reductase inhibitor atorvastatin.6 On the other hand, the
current options for the regeneration of the corresponding
oxidized cofactor NADP+ are limited,13 even though enzymatic
oxidation processes play an important role in contemporary
synthetic chemistry and should be fully integrated into chemical
manufacturing.14−23 Hence, there is a pressing need for the
design of a flexible, noninterfering NADP+ recycling
system.24−27

The industrial relevance of any cofactor-regenerating scheme
is primarily assessed by its total turnover number (TTN),
which is defined as the total number of moles of product
formed per mole of cofactor.2,28,29 While the minimal TTN
required for each specific cofactor depends on its cost and the
value of the product yielded from the biocatalytic process, it is
generally anticipated that the TTN should fall in the range of
104−106 to be economically viable on an industrial scale.2,28,29

This generalization is applicable to the use of NADP+; its
current cost is ∼$22k per mole (Table S1 in the Supporting
Information) and it cannot be used as a stoichiometric reagent
for large-scale synthetic reactions. Additionally, in order to be
practical, the cofactor-recycling process needs to be specific yet
compatible with the designed chemical reactions. Enzymes are
often characterized by high chemical selectivity and specificity,
and they are biodegradable, so that enzymatic methods to
regenerate a cofactor have significant advantages.29 Therefore,
it is perhaps surprising that there are only a few published
enzymatic NADP+ recycling schemes, but all of these have
drawbacks that limit their applications. The glutamate
dehydrogenase (GDH) system is the most widely used method
to regenerate NADP+ (Figure 1).25,30−32 In this system, a
stoichiometric amount of ammonium α-ketoglutarate is

Received: October 26, 2016
Revised: December 3, 2016
Published: December 19, 2016

Research Article

pubs.acs.org/acscatalysis

© 2016 American Chemical Society 1025 DOI: 10.1021/acscatal.6b03061
ACS Catal. 2017, 7, 1025−1029

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
http://pubs.acs.org/page/policy/editorchoice/index.html
http://dx.doi.org/10.1021/acscatal.6b03061
pubs.acs.org/acscatalysis
http://pubs.acs.org/doi/suppl/10.1021/acscatal.6b03061/suppl_file/cs6b03061_si_001.pdf


converted to glutamate to regenerate the oxidized cofactor. A
major drawback of this system is the modest activity of GDH
whose maximum steady-state turnover number of approx-
imately 40 s−1 restricts the maximal TTN to less than 1 ×
103,25,33 significantly lower than the value required for an
economically viable process. Furthermore, α-ketoglutarate
contains a highly electrophilic carbonyl group that is prone to
cross reaction with other components of the system, resulting
in the production of unwanted byproduct(s); in addition, the
byproduct glutamate has been shown to complicate product
isolation.29 Consequently, other regeneration schemes, includ-
ing the D-lactate dehydrogenase (LDH),34 NADPH oxidase
(NOX),35,36 and the laccase/mediator system,37 have been
developed. The calculated TTNs of the LDH and NOX
systems are rather low, however, and range from 1 × 102 to 3 ×
102,35,36 whereas the laccase/mediator system has not been
optimized for NADP+ and its TTN has not been determined.37

Moreover, both NOX and the laccase/mediator system are
oxygen-dependent and hence not suitable for most anaerobic
biocatalysts such as cytochrome P450 dependent enzymes.
Hence, a recycling system that uses simple, inert, latent
oxidizing reagents and is characterized by high TTNs is
urgently required.
In nature, NADP+ can be generated by coupling to enzymatic

disulfide bond reduction.38 One major example of this

chemistry is the glutathione (GSH) reductase system, which
plays an essential role in maintaining a reducing environment
within the cell.39 In plants, mammals, some bacteria, and
archea, this system is composed of a pair of enzymes,
glutaredoxin (GRX) and glutathione reductase (GR), and a
pair of redox reagents, glutathione (GSH) and its oxidized
counterpart GSSG.40 GRX contains catalytic cysteine resi-
due(s), which are used to reduce organic disulfide bonds.41,42

The resulting oxidized disulfides within the active site of GRX
are then recycled by reduced glutathione to regenerate the
enzyme in its reducing form (Figure 2A). In turn, to maintain a
sufficient pool of glutathione, GSSG is reduced by GR, an
enzymatic process that oxidize a stoichiometric amount of
NADPH to NADP+ (Figure 2B).
The glutathione coupling system presents itself as an ideal

surrogate for a NADP+ recycling system. Glutathione and its
oxidized counterpart are relatively inert in comparison to
oxygen and α-ketoglutarate and are thus more compatible with
most biocatalytic processes. Importantly, while GR is directly
responsible for generating NADP+, GRX is capable of
generating GSSG by reducing a wide range of disulfide species
from oxidized proteins to small, inexpensive organic molecules
such as 2-hydroxyethyl disulfide (HED or oxidized β-
mercaptoethanol) and cystine (Figure 2A).43,44 Such substrate
promiscuity can be exploited in that the oxidizing agent can be
carefully chosen to suit a particular transformation and
complications in product isolation can be minimized. The
reduced thiol byproduct (e.g., β-mercaptoethanol and cysteine)
will also protect the substrates and biocatalysts from oxidative
damages. This system requires the use of two cooperating
enzymes, and it provides clear competitive advantages over
what is offered by all of the currently used systems.
We have developed a glutathione-based recycling system that

employs the enzymes GR and GRX and is capable of using
small, latent organic disulfides as oxidizing reagents to
regenerate NADP+ with a maximal TTN in excess of 5 ×
105, a value noticeably higher than those of the existing NADP+

recycling system and acceptable at an industrial standard. This
system is compatible with various enzymes and can be used to
generate important sugar intermediates such as 6-phosphogluc-
onate (6-PG), ribulose 5-phosphate (Ru5P), and GMP.

Figure 1. Currently available NADP+-recycling systems and their
corresponding total turnover number (TTNs): glutamate dehydrogen-
ase (GDH), lactate dehydrogenase (LDH), NADPH oxidase (NOX)
and laccase/mediator system. N/D = not determined. For a−e see refs
25 and 34−37, respectively.

Figure 2. (A) Coupling of the glutaredoxin (GRX) and glutathione reductase (GR) reactions and (B) the disulfide bond reduced in the GR reaction.
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■ RESULTS AND DISCUSSION
Glutathione reductase from S. cerevisiae (ScGR) and
glutaredoxin 2 from E. coli (EcGRX2) were chosen to construct
a glutathione recycling system.45−48 ScGR is commercially
available at a reasonable price with a relatively high turnover
number kcat of 240 s

−1 at pH 7.0,46 while recombinant EcGRX2
can be produced in large quantities by expression in E. coli
(Table S2 in the Supporting Information),47 which yields an
enzyme with a high kcat value (∼550 s−1).47 On the basis of
their kinetic parameters, the functional pair of EcGRX2 and
ScGR should recycle NADP+ 8.64 × 105 times within 1 h,
resulting in a high TTN.
Oxidized sugar intermediates are often used in both

traditional chemoenzymatic synthesis and contemporary
synthetic biology developments.31,32,49−52 Hence, the efficiency
of the ScGR/EcGRX2 recycling system was tested for the
production of 6-phosphogluconate (6-PG), a common
intermediate in glucose-utilizing metabolic pathways such as
the pentose−phosphate53 and Entner−Doudoroff pathways.54

To this end D-glucose was incubated with the commercially
available enzymes hexokinase (HK), which catalyzes the
addition of phosphate to C-6 of D-glucose, and glucose 6-
phosphate dehydrogenase (G6PDH) (Figure 3). The gluta-

thione coupling enzymes ScGR and EcGRX2, the recycling
reagent GSH, and the latent oxidizing reagent HED were added
to regenerate NADP+. A downfield shift from ∼96 and 92 ppm
(64% β and 36% α anomer, respectively) of the resonance of C-
1 to ∼178 ppm in the 13C NMR spectrum showed that the
substrate was efficiently converted to 6-PG (Figure S1 in the
Supporting Information). The maximum TTN achieved with
the enzyme pair ScGR/EcGRX2 recycling system was 5 × 105

(Table S3 in the Supporting Information), which together with
the low cost of HED ($3.27 per mole) shows that ScGR/EcGR
can form a NADP+ recycling system that is commercially viable
on an industrial scale. This system is also compatible with
pyruvate kinase, which is used to recycle ATP in the first step of
the pathway.50 Cystine, though sparingly soluble, can also act as
a latent oxidizing agent; it efficiently recycled NADP+ and
converted glucose to 6PG (see Supporting Information).
To further examine the potential of the ScGR/EcGRX2

recycling system, an additional NADP+-dependent enzyme, 6-
phosphogluconate dehydrogenase (6-PGDH), on the pathway
to guanosine monophosphate (GMP) was added (Figure 4). 6-
PGDH catalyzes the conversion of 6-PG to ribulose 5-

phosphate (Ru5P).53 Two characteristic downfield chemical
shifts corresponding to C-2 of Ru5P (δ 213 ppm) and the
byproduct bicarbonate (δ 160 ppm) indicated complete
oxidative decarboxylation (Figure S2 in the Supporting
Information).
The ScGR/EcGRX2 recycling system was then combined

with eight enzymes to produce in a one-pot reaction 13C-
labeled GMP,31,32,49 which is used in many biochemical studies,
including structural and functional analysis of RNA51,55,56 and
metabolomic investigations.57−59 The above Ru-5P biosyn-
thetic pathway was extended by incorporating phosphoribo-
isomerase (PRI) and ribose-phosphate pyrophosphokinase
(PRS), which catalyze the isomerization of Ru-5P and the
addition of pyrophosphate to the C-1 position, respectively
(Figure 5). The resulting intermediate phosphoribose pyro-
phosphate (PRPP) is chemically labile at room temperature
and was transformed into GMP in situ with xanthine-guanine
phosphoribosyl transferase (XGPRT). Guanine is only
sparingly soluble at neutral pH, and while it has been suggested
previously that the reaction can proceed as a slurry,49 the
heterogonous nature of the reaction led to poor reproducibility
and increased reaction times of up to 1 day. Hence, guanine
was dissolved at increased pH (50 mM KOH), where it shows
good solubility, and added in a dropwise fashion to the reaction
mixture. Under these conditions 70−80% GMP (Figure S3 in
the Supporting Information) was reproducibly obtained within
2 h from D-glucose. Because PRPP formation requires ATP,
which is converted to AMP as the byproduct, myokinase (MK)
was included to generate ADP, which is subsequently converted
to ATP in a PK-catalyzed reaction that uses phosphoenol
pyruvate (PEP) as the phosphate donor. Together, this work
illustrated that ScGR/EcGRX2 pair is compatible with eight
enzymes, including six biosynthetic enzymes and two ATP-
recycling enzymes.

■ CONCLUSIONS
Developing an efficient and highly compatible NADP+

recycling process is an essential step toward integrating
enzymatic oxidation into the production of high-value
chemicals.14,15 With small, inert organic disulfides as oxidizing
agents, the ScGR/EcGRX2 pair can regenerate NADP+ up to 5
× 105 times, well in excess of the best TTNs of 1 × 103

reported so far.25 Accordingly, each cycle of regeneration is
99.9998% selective for the formation of the active cofactor.
With such selectivity, the cost of NADP+ can be reduced to <
$0.05 per mole of product formed. In practice, the ScGR/
EcGRX2 pair was shown to be compatible with several
biosynthetic enzymes, including ATP-recycling kinases, in the
production of crucial synthons such as 6-PG, 5RuP, and GMP.
This system also offers an attractive synthetic pathway for the
production of isotopically labeled compounds. In addition,
GRX is able to produce useful “byproducts” such as β-
mercaptoethanol, which can protect enzymes, reagents, and

Figure 3. Conversion of D-glucose to 6-phosphogluconate by
hexokinase (HK) and glucose 6-phosphate dehydrogenase
(6GPDH). The ATP/ADP and NADP+ recycling systems are
composed of pyruvate kinase (PK), glutathione reductase (ScGR),
,and glutaredoxin (EcGRX2).

Figure 4. Conversion of D-glucose to ribulose 5-phosphate (Ru5P) by
hexokinase (HK), glucose 6-phosphate dehydrogenase (G6PDH), and
6-phosphogluconate dehydrogenase (6PGDH). Details of the ATP
and NADP+ recycling systems are described in Figure 3 and in the text.
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products from unwanted oxidative damage. GRX has previously
been shown to enhance protein stability by preventing proteins
from oxidative misfolding and aggregation.60−62 The system
developed here is atom efficient in that there are reagents
serving more than one role. Finally, unlike other NADP+

recycling schemes, including the NOX and laccase/mediator
systems, the ScGR/EcGRX2 pair is oxygen-independent and is
functional in aerobic as well as anaerobic environments and is
therefore compatible with oxygen-sensitive biocatalysts such as
P450s. The ScGR/EcGRX2 based NADP+ recycling systems is
superior to all existing methods for cofactor regeneration and
offers many advantages for commercial and academic users.
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Biochemistry 1992, 31, 9288−9293.
(42) Vlamis-Gardikas, A.; Holmgren, A. Methods Enzymol. 2002, 347,
286−296.
(43) Luthman, M.; Holmgren, A. J. Biol. Chem. 1982, 257, 6686−
6690.
(44) Holmgren, A.; Aslund, F. Methods Enzymol. 1995, 252, 283−
292.
(45) Aslund, F.; Ehn, B.; Miranda-Vizuete, A.; Pueyo, C.; Holmgren,
A. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 9813−9817.
(46) Chenas, N. K.; Rakauskene, G. A.; Kulis, I. I. Biokhimiia 1989,
54, 1090−1097.
(47) Aslund, F.; Spyrou, G.; Bergman, T.; Holmgren, A. J. Biol. Chem.
1997, 272, 11236−11243.
(48) Massey, V.; Williams, C. H. J. Biol. Chem. 1965, 240, 4470−
4480.
(49) Tolbert, T. J.; Williamson, J. R. J. Am. Chem. Soc. 1996, 118,
7929−7940.
(50) Gross, A.; Abril, O.; Lewis, J. M.; Geresh, S.; Whitesides, G. M. J.
Am. Chem. Soc. 1983, 105, 7428−7435.
(51) Longhini, A. P.; LeBlanc, R. M.; Becette, O.; Salguero, C.;
Wunderlich, C. H.; Johnson, B. A.; D’Souza, V. M.; Kreutz, C.; Dayie,
T. K. Nucleic Acids Res. 2016, 44, e52.
(52) Zhu, Z.; Kin Tam, T.; Sun, F.; You, C.; Percival Zhang, Y. H.
Nat. Commun. 2014, 5, 3026.
(53) Stincone, A.; Prigione, A.; Cramer, T.; Wamelink, M. M. C.;
Campbell, K.; Cheung, E.; Olin-Sandoval, V.; Gruning, N. M.; Kruger,
A.; Alam, M. T.; Keller, M. A.; Breitenbach, M.; Brindle, K. M.;
Rabinowitz, J. D.; Ralser, M. Biol. Rev. 2015, 90, 927−963.
(54) Conway, T. FEMS Microbiol. Lett. 1992, 103, 1−28.
(55) Duss, O.; Diarra Dit Konte,́ N.; Allain, F. H. Methods Enzymol.
2015, 565, 537−562.
(56) Lu, K.; Miyazaki, Y.; Summers, M. F. J. Biomol. NMR 2010, 46,
113−125.
(57) Bracher, A.; Eisenreich, W.; Schramek, N.; Ritz, H.; Gotze, E.;
Herrmann, A.; Gutlich, M.; Bacher, A. J. Biol. Chem. 1998, 273,
28132−28141.

(58) Illarionova, V.; Eisenreich, W.; Fischer, M.; Haussmann, C.;
Romisch, W.; Richter, G.; Bacher, A. J. Biol. Chem. 2002, 277, 28841−
28847.
(59) Bracher, A.; Fischer, M.; Eisenreich, W.; Ritz, H.; Schramek, N.;
Boyle, P.; Gentili, P.; Huber, R.; Nar, H.; Auerbach, G.; Bacher, A. J.
Biol. Chem. 1999, 274, 16727−16735.
(60) Cheng, N. H.; Liu, J. Z.; Brock, A.; Nelson, R. S.; Hirschi, K. D.
J. Biol. Chem. 2006, 281, 26280−26288.
(61) Bandyopadhyay, S.; Starke, D. W.; Mieyal, J. J.; Gronostajski, R.
M. J. Biol. Chem. 1998, 273, 392−397.
(62) Davis, D. A.; Newcomb, F. M.; Starke, D. W.; Ott, D. E.; Mieyal,
J. J.; Yarchoan, R. J. Biol. Chem. 1997, 272, 25935−25940.

ACS Catalysis Research Article

DOI: 10.1021/acscatal.6b03061
ACS Catal. 2017, 7, 1025−1029

1029

http://dx.doi.org/10.1021/acscatal.6b03061


Chemoenzymatic Assembly of Isotopically Labeled Folates
Antonio Angelastro, William M. Dawson,† Louis Y. P. Luk, E. Joel Loveridge,‡

and Rudolf K. Allemann*

School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom

*S Supporting Information

ABSTRACT: Pterin-containing natural products have diverse functions in life, but an efficient and easy scheme for their in vitro
synthesis is not available. Here we report a chemoenzymatic 14-step, one-pot synthesis that can be used to generate 13C- and
15N-labeled dihydrofolates (H2F) from glucose, guanine, and p-aminobenzoyl-L-glutamic acid. This synthesis stands out from
previous approaches to produce H2F in that the average yield of each step is >91% and it requires only a single purification
step. The use of a one-pot reaction allowed us to overcome potential problems with individual steps during the synthesis.
The availability of labeled dihydrofolates allowed the measurement of heavy-atom isotope effects for the reaction catalyzed
by the drug target dihydrofolate reductase and established that protonation at N5 of H2F and hydride transfer to C6 occur
in a stepwise mechanism. This chemoenzymatic pterin synthesis can be applied to the efficient production of other folates and a
range of other natural compounds with applications in nutritional, medical, and cell-biological research.

■ INTRODUCTION

Pterin is a common motif found in natural products. Folate,
the essential vitamin that fuels the one-carbon cycle for the
biosynthesis of nucleotide and amino acid building blocks, was
one of the first natural products found to contain pterin.1,2

The metabolic importance of pterins is illustrated by their
integration into enzyme cofactors such as molybdopterin and
tetrahydrobiopterin.3−5 Pterin natural products are also used as
pigments in the butterflies Catopsilia argante and Appias nero,6

whereas biopterin-α-glucoside serves as a natural sunscreen
that protects cellular contents from photoinduced damage in
photosynthetic cyanobacteria.7

5,6,7,8-Tetrahydrofolic acid (H4F), which in addition to the
pterin ring system contains p-aminobenzoic acid (pABA) and
L-glutamic acid (Glu), is required for the biosynthesis of
metabolites that are key for cell survival and replication.2

A one-carbon unit in different oxidation states can be added at
N5 and/or N10 of H4F and used to produce metabolites such as
thymidylate, purines, glycine, serine, and S-adenosylmethionine
(SAM) (Figure 1).8 Because of the central importance of
folate biochemistry for cell replication and survival, dihydrofolate
reductase (DHFR), thymidylate synthase (TS), and serine
hydroxymethyltransferase (SHMT) have long been exploited as
important drug targets in the treatment of bacterial infections,9

malaria,10,11 and cancer,12,13 and the DHFR-targeting drugs
trimethoprim, proguanil, pyrimethamine, and methotrexate are

listed as essential medicines by the World Health Organization
(WHO).14 Nevertheless, as with many clinically used drugs,
resistance to antifolates has begun to emerge,15−17 and investi-
gation of the enzymes of the one-carbon cycle is an important
part of inhibitor design strategies.18

Detailed mechanistic insight into enzyme-catalyzed reactions
is often obtained by isotopic labeling and measurement of kinetic
isotope effects (KIEs)19−22 or spectroscopic analysis.23,24

Information derived from regio- and stereospecific substrate
labeling has been used to design inhibitors with dissociation
constants in themicro- to picomolar range.25 However, the use of
these techniques to investigate folate-dependent enzymes is
hindered by the absence of a general and efficient method to
specifically label atoms of the pterin ring system, particularly at
N5, C6, C7, and C9, which are directly linked to the chemistry
of the catalyzed reactions. Folate and its derivatives can be
synthesized by connecting the pterin, pABA, and glutamate
groups in sequential order,26 and several synthetic strategies
to incorporate an isotopic label into pterin in a regiospecific
manner have been reported.27−30 Pterins have been synthesized
by condensing guanidine or dihydroxyacetone with the respec-
tive heterocyclic starting materials, and N5-, C2-, and C6-labeled
folates have beenmade previously.27,28However, because symmetric
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reagents are used in these syntheses, regioselective isotope
labeling of C7 and C9 cannot easily be achieved.28,30 In all cases,
the yields of labeled folate or derivatives are low (<5% overall
yield), and the procedures depend on multiple purification
steps. Chemoenzymatic strategies have also been described,31−33

whereby H4F was condensed with 11C-formaldehyde or
14C-formic acid to yield the corresponding isotopically labeled
[11C]5,10-methylene-H4F, [

14C]5-formyl-H4F, and [
14C]10-form-

yl-H4F. However, a general and efficient method to label the pterin
ring in folates has never been developed.
In nature, the pterin ring in folate is formed from guanosine

triphosphate (GTP) in one biochemical step catalyzed by GTP
cyclohydrolase (GTP-CH),34,35 an enzyme found in all king-
doms of life ranging from archaebacteria, insects, plants to
humans. In all GTP-CH-catalyzed reactions, GTP is converted to
a pterin via a set of tandem reactions that have no equivalent in
organic chemistry. GTP cyclohydrolase I (GTP-CH-I) catalyzes
the formation of 7,8-dihydroneopterin triphosphate (DHNTP)
from GTP by mediating four distinct chemical reactions
(Figure S1): hydrolysis of the purine ring yielding an N-formyl
intermediate, N-deformylation, a stereospecific Amadori rear-
rangement of the ribose moiety, and ring closure to form
the pterin.36−38 Because no symmetric reagent is used in this

reaction, GTP-CH-I can be used to synthesize the pterin ring
system of folate with heavy isotopes incorporated regio- and
stereoselectively.39 It is therefore surprising that GTP-CH-I has
not been used in any in vitro enzymatic pathway to synthesize
folates. Perhaps the low catalytic turnover (kcat = 0.05 s−1)40 and
the rather low stability of the product 7,8-dihyropterin41 toward
oxygen and light have limited the use of GTP-CH-I in synthesis.
Here we report a 14-step one-pot chemoenzymatic synthesis of

7,8-dihydrofolic acid (H2F) that exploits the well-established
procedures to isotopically label GTP39,42,43 by using GTP-CH-I to
site-specifically isotope-label pterins. The low enzymatic activity
and product instability of GTP-CH-I were addressed by enzymatic
coupling. By means of our methodology, H2F enriched with stable
isotopes at N5 and C6 could be synthesized efficiently in pure
form in >30% yield from isotopically enriched D-glucose and
guanine. Given the high degree of purity and isotopic enrichment
(>97%; see the Supporting Information), heavy-atom KIEs could
be measured to investigate the mechanism of the Escherichia coli
DHFR (EcDHFR)-catalyzed reduction of H2F to H4F.

■ RESULTS AND DISCUSSION

In Vitro Synthesis of Folate. The biosynthetic pathway to
folate in E. coli uses the building blocks D-glucose, guanine, and

Figure 1. Folate coenzymes in one-carbon metabolism. Folic acid is converted to 7,8-dihydrofolic acid (H2F) and 5,6,7,8-tetrahydrofolic acid (H4F).
One-carbon units attached to H4F are highlighted. Abbreviations: 1, dihydrofolate reductase (DHFR); 2, 10-formyl-H4F synthetase (FTHFS);
3, 10-formyl-H4F dehydrogenase (FDH); 4, 5,10-methenyl-H4F cyclohydrolase (MTHFC); 5, 5,10-methylene-H4F dehydrogenase (MTHFD);
6, 5,10-methylene-H4F reductase (MTHFR); 7, methionine synthase (MS); 8, serine hydroxymethyltransferase (SHMT); 9, thymidylate synthase
(TS); 10, 5,10-methenyl-H4F synthetase (MTHFS); 11, 5-formimino-H4F cyclodeaminase (FTCD); SAM, S-adenosylmethionine.
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p-aminobenzoyl-L-glutamate (pABA-Glu). In the biosynthetic
scheme of H2F (Figure 2), C2, C3, and C4 of glucose correspond
to C7, C6, and C9 of H2F and N1, C2, N3, C4, C5, C6, N7, and
N9 of guanine correspond to N3, C2, N1, C4b, C4a, C4, N5, and
N8 in H2F. GTP is the key intermediate in this synthetic
pathway, connecting the purine salvage pathway to de novo
folate biosynthesis. Accordingly, a minimum of 14 enzymes need
to be assembled in vitro to produce H2F.
The GTP biosynthetic pathway is composed of enzymes from

the pentose phosphate and purine salvage pathways (Figures 2
and S2). D-Glucose serves as the starting material, which is
transformed into phosphoribose pyrophosphate (PRPP) in
five steps that are catalyzed by hexokinase (HK), glucose
6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate
dehydrogenase (6PGDH), phosphoriboisomerase (PRI), and
ribose-phosphate pyrophosphokinase (phosphoribosylpyro-
phosphate synthetase, PRS).44 PRPP is then combined with
guanine to form GMP under xanthine guanine phosphoribosyl
transferase (XGPRT) catalysis. The resulting GMP is con-
verted to the corresponding nucleotide triphosphate in reactions
catalyzed by guanylate kinase (GK) and pyruvate kinase (PK).
Since HK and GK use ATP as the phosphate source, PK can also
function as the recycling enzyme. On the other hand, PRS uses
ATP as the pyrophosphate source, so myokinase (MK) was
included to regenerate ATP fromAMP.45 A significant amount of
NADP+ is also needed for GTP biosynthesis. Hence, the recently
developed glutathione reductase (GR)/glutaredoxin 2 (GRX2)
recycling system was used to regenerate the oxidized cofac-
tor.44 The GR/GRX2 system uses disulfides like 2-hydroxyethyl

Figure 2. Strategy for the synthesis of 7,8-dihydrofolate (H2F).
Guanosine triphosphate (GTP) was made via the pentose phosphate
and purine salvage pathways under hexokinase (HK), glucose
6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydro-
genase (6PGDH), phosphoriboisomerase (PRI), ribose-phosphate
pyrophosphokinase (PRS), xanthine guanine phosphoribosyl trans-
ferase (XGPRT), guanylate kinase (GK), and pyruvate kinase (PK)
catalysis. In the folate de novo pathway, GTP is converted to
7,8-dihydroneopterin (DHN) under catalysis by GTP cyclohydrolase
I (GTP-CH-I), 7,8-dihydroneopterin pyrophosphatase (DHNTPase),
and alkaline phosphatase (ALP); DHN is then converted to H2F under
catalysis by dihydroneopterin aldolase (DHNA), 6-hydroxymethyl
7,8-dihydropterin pyrophosphokinase (HPPK), and dihydropteroate
synthase (DHPS). The additional enzymes myokinase (MK),
glutathione reductase (GR), and glutaredoxin 2 (GRX2) are used for
the regeneration of ATP and NADP+.44,45 The pterin atoms of
H2F derived from glucose (red) and guanine (blue) are highlighted.
Details of each biosynthetic step are described in Figure S2.

Figure 3. Conversion of guanosine triphosphate (GTP) into
7,8-dihydroneopterin triphosphate (DHNTP) and monophosphate
(DHNMP). Shown are anion-exchange chromatography analyses of
GTP incubated for 2 h at 37 °C with (a) GTP cyclohydrolase I
(GTP-CH-I), which shows partial conversion to DHNTP, and (b) both
GTP-CH-I and 7,8-dihydroneopterin triphosphate pyrophosphohydro-
lase (DHNTPase), resulting in essentially complete conversion to
DHNMP. Production of guanosine diphosphate (GDP) is most likely
due to the nonenzymatic hydrolysis of GTP during incubation.
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disulfide (HED or oxidized β-mercaptoethanol) or cystine as
regenerating reagents and produces thiols as useful byproducts
that protect the enzymes and intermediates from oxidative
damage.
The conversion of GTP to DHNTP by GTP-CH-I marks the

entry point of the folate de novo pathway. It has been reported
that potassium and magnesium ions are positive allosteric
effectors that can increase the rate of the GTP-CH-I reaction
up to 5-fold.46 The addition of these cations, however, was
insufficient, as the reaction was found to be incomplete, giving a
poor yield of DHNTP (Figure 3a). In folate de novo
biosynthesis, dephosphorylation of DHNTP to 7,8-dihydro-
neopterin monophosphate (DHNMP) by DHNTP pyrophos-
phohydrolase (DHNTPase) is the biochemical step followed
by the GTP-CH-I reaction (Figure 2).47,48 Knockout of the
DHNTPase gene significantly impairs folate metabolism in
E. coli,48 which suggests that DHNTP phosphohydrolysis is a
key regulatory step in folate metabolism. In other words, the
activity of GTP-CH-I is most likely inhibited by its own product,
DHNTP, which therefore needs to be immediately converted to
DHNMP in order to sustain the activity of GTP-CH-I. In the
presence of DHNTPase, GTP-CH-I showed a marked rate
enhancement (Figure S3), with nearly complete conversion of
GTP and a high yield of DHNMP (Figure 3b).
Additional enzymes are needed to convert DHNMP into

folate. To the best of our knowledge, the natural enzyme
responsible for the conversion of DHNMP to 7,8-dihydroneop-
terin (DHN) is unknown,37,48 and alkaline phosphatase (ALP)
was used instead as a surrogate. DHN is subjected to a retro-aldol
reaction catalyzed by dihydroneopterin aldolase (DHNA) to
yield 6-hydroxymethyl-7,8-dihydropterin (HMDP),49,50 which
then reacts with ATP in the presence of 6-hydroxymethyl
7,8-dihydropterin pyrophosphokinase (HPPK) (Figure 4).51

In E. coli, the resulting intermediate, 6-hydroxymethyl-7,8-
dihydropterin pyrophosphate (HMDPpp), is first condensed
with pABA and then with glutamate, catalyzed by dihydropter-
oate synthase (DHPS)52 and dihydrofolate synthase (DHFS),53

respectively, to finally generate H2F. However, DHPS accepts
preassembled pABA-Glu as a substrate,54 so DHFS is not
required in the in vitro reaction. The entire H2F synthetic
pathway requires only one purification step of the product, but
ALP needs to be removed by ultrafiltration prior to the addition
of DHNA, HPPK, and DHPS because the phosphatase can also
catalyze the phosphorolysis of ATP and HMDPpp. Two addi-
tional modifications were made to further improve the overall
yield. A N2-filled glovebox system was used because all reduced
pterin-containing compounds, DHNTP, DHNMP, DHN,
HMDP, HMDPpp, and the final product H2F, are oxygen-
sensitive.41 Also, cystine was found to be the preferred reagent
over HED for the NADP+ regeneration system operated by GR
andGRX2. Perhaps β-mercaptoethanol made from the reduction
of HED interferes with other enzymatic reactions, such as the
chelation of Zn2+ in GTP-CH-I. The total turnover numbers for
the regeneration of ATP from ADP by pyruvate kinase and
from AMP by pyruvate kinase/myokinase are both ∼100,55
while the total turnover number for our GR/GRX2-based
NADP+ recycling system can reach 5× 105.44 In general, a typical
biosynthetic cascade produced 6.6 mg of H2F from 9 mg of
glucose in an overall yield of 30%, i.e., the average yield of each
chemical transformation is in excess of 91%.

Synthesis of Selectively Labeled Folates. Five isotopi-
cally labeled H2Fs were synthesized using the newly developed in
vitro pathway (Figure 5a). Liquid chromatography−high-resolu-
tion mass spectrometry (LC-HRMS) analysis of [6-13C]H2F,
produced from [3-13C]D-glucose, showed an increase of ∼1
amu; 13C NMR spectroscopy revealed a singlet at 152 ppm.

Figure 4. Conversion of 7,8-dihydroneopterin (DHN) to dihydrofolate (H2F). Dihydroneopterin aldolase (DHNA) catalyzes the transformation of
DHN to 6-hydroxymethyl-7,8-dihydropterin (HMDP), which is pyrophosphorylated by 6-hydroxymethyl 7,8-dihydropterin pyrophosphokinase
(HPPK). The resulting 6-hydroxymethyl-7,8-dihydropterin pyrophosphate (HMDPpp) is converted to H2F by dihydropteroate synthase (DHPS),
whose promiscuity allows the use of preassembled pABA-Glu as the substrate and the omission of dihydrofolate synthase (DHFS) in the in vitro
synthetic pathway.
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Additionally, long-range coupling between 6-13C and protons on
C7 and C9 of [6-13C]H2F were observed in the 1H,13C HMBC
spectrum (Figure 5b).
To incorporate an 15N label into the pterin moiety at N5,

[7-15N]guanine was used. The resulting product showed∼1 amu
increase in LC-HRMS analysis and an 15N signal at 285 ppm
coupling to C7 and C9 protons in the 1H,15N HMBC spectrum
(Figure 5c).
When [3-13C]D-glucose and [7-15N]guanine were combined

to produce [5-15N][6-13C]H2F, a mass increase of ∼2 amu was
measured. The 13CNMR spectrum showed a doublet at 152 ppm

with a coupling constant 1JCN of 7.5 Hz; long-range coupling
between the protons on C7 and C9 was observed in the
1H,13C HMBC and 1H,15N HMBC spectra (see the Supporting
Information), indicating that both N5 and C6 of H2F were
isotopically enriched.
Similarly, [6,7,9-13C3]H2F and [5-15N][6,7,9-13C3]H2F were

synthesized from 13C6-D-glucose and [7-15N]guanine, and their
identities were confirmed by HRMS and NMR spectroscopy
(see the Supporting Information).

Heavy-Atom Kinetic Isotope Effects on the Reaction
Catalyzed by EcDHFR.The preparation of 13C- and 15N-labeled

Figure 5. H2Fs labeled with stable isotopes on the pterin ring system. (a) Patterns of isotopic distribution are determined by the starting material
isotopic enrichment used during H2F biosynthetic assembly. (b)

1H,13CHMBC and (c) 1H,15NHMBC spectra of [6-13C]H2F and [5-
15N]H2F. Protons

attached to C7 (3.95 ppm) and C9 (3.87 ppm) correlate to C6 (152 ppm) or N5 (285 ppm). 1H NMR spectra of all compounds and additional 2D
NMR characterization of [5-15N][6-13C]H2F, [6,7,9-

13C3]H2F and [5-
15N][6,7,9-13C3]H2F are reported in Figures S12−S15. HRMS data for all of the

compounds are given in Table S3 and Figures S16−S21. Isotopic enrichment was calculated to be at least 97% from the mass spectrometric data
(as illustrated in Figures S22−S24).
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dihydrofolates allowed the measurement of heavy-atom isotope
effects for the reactions catalyzed by dihydrofolate reductase
(DHFR), a key enzyme in one-carbon metabolism and a vali-
dated target for the treatment of bacterial infections, malaria, and
cancer.56 DHFR catalyzes the reduction of H2F to H4F via
transfer of the pro-R hydride from C4 of NADPH to the Re face
on C6 accompanied by protonation of N5 of H2F (Figure 6).

57,58

Several aspects of the reaction mechanism warrant additional
investigation. In particular, the transition state structure and the
order of chemical transformation events have not been fully
determined.59,60 The active site of DHFR provides a favorable
environment for protonation of N5 by elevating the pKa from 2.6
to 6.5 and using an active-site water as the proton source.61,62

Solvent and hydrogen KIE measurements combined with site-
directed mutagenesis have suggested a stepwise mechanism in
which protonation precedes hydride transfer.63,64 However, D2O
increases the viscosity of the reaction buffer relative to H2O,

65,66

and site-directed modification can alter the catalytic behavior
of an enzyme.67 Thus, additional mechanistic investigations
are needed to establish the order of events. Since isotopic
substitution does not alter the chemistry of the reaction but only
the kinetics, [6-13C]H2F and [5-15N]H2F were used to measure
the 15N and 13C heavy-atom kinetic isotope effects. Pre-steady-
state kinetic measurements at 15 °C by fluorescence resonance
energy transfer from the active-site tryptophan in DHFR to the
reduced cofactor yield first-order hydride transfer rate constants
with an accuracy of up to 0.7% (Figures S25−S27 and Table S4).
While a 13C KIE of 1.015 ± 0.006 was observed for the reduction
of [6-13C]H2F, the corresponding

15N KIE for [5-15N]H2F was
essentially unity (0.999 ± 0.006) under the same conditions.
To confirm this finding, [5-15N][6-13C]H2F was used to probe
both positions at the same time, and the measured value for the
corresponding multiple heavy-atom KIE was 1.014 ± 0.008,
which is statistically identical to that obtained when the substrate
was labeled with 13C only.

The observed 15N KIE on hydride transfer indicates that
protonation of N5 is not isotopically sensitive, likely because
it is not rate-limiting under pre-steady-state conditions (as the
reaction is essentially irreversible,58 the observed KIE will tend to
unity rather than to the equilibrium isotope effect).22 On the
other hand, the measured 13C KIE indicates that the hydride
transfer step is rate-determining. This strongly suggests a
stepwise mechanism. If the protonation and hydride transfer
steps were concerted, 15N- and 13C-labeled H2Fs should both
yield measurable KIEs;19,21,22 this interdependence may also lead
to an additive effect in the multiple heavy-atom isotope effect
measurement with the double-labeled substrate.19,21,22 In other
words, our results suggest that the pre-steady-state kinetic
measurement at pH 7.0 reveals only the step of hydride transfer
because protonation of N5 is in rapid equilibrium and the
ensemble of reaction-ready conformations is mostly populated
with protonated H2F. Importantly, these results confirm the
validity of previous solvent KIE and site-directed mutagenesis
studies, which also concluded that the sequence of chemical
events (protonation and hydride transfer) is distinct and strictly
ordered.64,68 Overall, the results provided here strongly support
a mechanism where protonation and hydride transfer are
independent of each other and occur in a stepwise fashion.

■ CONCLUSIONS

Dihydrofolate was produced enzymatically in an easy one-pot,
high-yielding reaction sequence from glucose, guanine, and
pABA-Glu that required only a single purification step. Potential
problems with individual steps during the synthesis could be
overcome through the use of a one-pot reaction. This metho-
dology can be used to generate dihydrofolates labeled in specific
positions with stable isotopes with average overall yields of
>30%, facilitating many applications in cell biology and
mechanistic enzymology.27−29,61,69,70 For the first time, heavy-
atom KIEs for the DHFR-catalyzed reduction of H2F could be
measured to provide strong support for a stepwise reduction of
the substrate in which protonation at N5 and hydride transfer
from C4 of the NADPH to C6 of protonated dihydrofolate
proceed independently. This chemoenzymatic pterin synthesis
can be integrated into other enzymatic procedures to generate
folate derivatives31,32 and other high-value natural products that
are not easily accessible by conventional synthesis.71 It can be
applied to nutritional, medical, and cell-biological research to
address questions of in vivo bioavailability and to explore the
kinetics of folate metabolism in intact cells and organisms.70,72−76
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