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Summary 73 

Six extant species of non-human great apes are currently recognized: Sumatran and Bornean orangutans, 74 

eastern and western gorillas, and chimpanzees and bonobos [1]. However, large gaps remain in our 75 

knowledge of fine-scale variation in hominoid morphology, behavior, and genetics, and aspects of great 76 

ape taxonomy remain in flux. This is particularly true for orangutans (genus: Pongo), the only Asian 77 

great apes, and phylogenetically our most distant relatives among extant hominids [1]. Designation of 78 

Bornean and Sumatran orangutans, P. pygmaeus (Linnaeus 1760) and P. abelii (Lesson 1827), as distinct 79 

species occurred in 2001 [1, 2]. Here, we show that an isolated population from Batang Toru, at the 80 

southernmost range of extant Sumatran orangutans south of Lake Toba, is distinct from other northern 81 

Sumatran and Bornean populations. By comparing cranio-mandibular and dental characters of an 82 

orangutan killed in a human-animal conflict to 33 adult male orangutans of similar developmental stage, 83 

we found consistent differences between the Batang Toru individual and other extant Ponginae. A 84 

second line of evidence provided our analyses of 37 orangutan genomes. Model-based approaches 85 

revealed that the deepest split in the evolutionary history of extant orangutans occurred ~3.38 Ma ago 86 

between the Batang Toru population and those to the north of Lake Toba, while both currently 87 

recognized species separated much later about 674 ka ago. Our combined analyses support a new 88 

classification of orangutans into three extant species. The new species, Pongo tapanuliensis, 89 

encompasses the Batang Toru population, of which fewer than 800 individuals survive.  90 
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Results and Discussion 91 

Despite decades of field studies [3] our knowledge of variation among orangutans remains limited as 92 

many populations occur in isolated and inaccessible habitats, leaving questions regarding their 93 

evolutionary history and taxonomic classification largely unresolved. In particular, Sumatran 94 

populations south of Lake Toba had long been overlooked, even though a 1939 review of the species’ 95 

range mentioned that orangutans had been reported in several forest areas in that region [4]. Based on 96 

diverse sources of evidence, we describe a new orangutan species, Pongo tapanuliensis, which 97 

encompasses a geographically and genetically isolated population found in the Batang Toru area at the 98 

southernmost range of extant Sumatran orangutans, south of Lake Toba, Indonesia. 99 

Systematics 100 

Genus Pongo Lacépède, 1799 101 

Pongo tapanuliensis sp. nov. Nurcahyo, Meijaard, Nowak, Fredriksson & Groves 102 

Tapanuli Orangutan 103 

Etymology. The species name refers to three North Sumatran districts (North, Central, and South 104 

Tapanuli) to which P. tapanuliensis is endemic. 105 

Holotype. The complete skeleton of an adult male orangutan that died from wounds sustained by local 106 

villagers in November 2013 near Sugi Tonga, Marancar, Tapanuli (Batang Toru) Forest Complex 107 

(1⁰35’54.1”N, 99⁰16’36.5”E), South Tapanuli District, North Sumatra, Indonesia. Skull and 108 

postcranium are lodged in the Museum Zoologicum Bogoriense, Indonesia, accession number 109 

MZB39182. High-resolution 3D reconstructions of the skull and mandible are available as 110 

supplementary material. 111 

Paratypes. Adult individuals of P. tapanuliensis (P2591-M435788 – P2591-M435790) photographed 112 

by Tim Laman in the Batang Toru Forest Complex (1⁰41’9.1”N, 98⁰59’38.1”E), North Tapanuli 113 

District, North Sumatra, Indonesia. Paratypes are available from http://www.morphobank.org (Login: 114 

2591 / Password: tapanuliorangutan). 115 

Differential diagnosis. We compared the holotype to a comprehensive comparative data set of 33 adult 116 

male orangutans from 10 institutions housing osteological specimens. Unless otherwise stated, all units 117 

are in [mm]. Summary statistics for all measurements are listed in Tables S1–3. Pongo tapanuliensis 118 

differs from all extant orangutans in the breadth of the upper canine (21.5 vs. <20.86); the shallow face 119 

depth (6.0 vs. >8.4); the narrower interpterygoid distance (at posterior end of pterygoids 33.8 vs. >43.9; 120 

at anterior end of pterygoids, 33.7 vs. >43.0); the shorter tympanic tube (23.9 vs. >28.4, mostly >30); 121 

the shorter temporomandibular joint (22.5 vs. >24.7); the narrower maxillary incisor row (28.3 vs. 122 

>30.1); the narrower distance across the palate at the first molars (62.7 vs. >65.7); the shorter horizontal 123 
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length of the mandibular symphysis (49.3 vs. >53.7); the smaller inferior transverse torus (horizontal 124 

length from anterior surface of symphysis 31.8 compared to >36.0); and the width of the ascending 125 

ramus of the mandible (55.9 vs. >56.3). 126 

Pongo tapanuliensis differs specifically from P. abelii by its deep suborbital fossa, triangular pyriform 127 

aperture, and angled facial profile; the longer nuchal surface (70.5 vs. <64.7); the wider rostrum, 128 

posterior to the canines (59.9 vs. <59); the narrower orbits (33.8 vs. <34.6); the shorter (29.2 vs. >30.0) 129 

and narrower foramen magnum (23.2 vs. >23.3); the narrower bicondylar breadth (120.0 vs. >127.2); 130 

the narrower mandibular incisor row (24.4 vs. >28.3); the greater mesio-distal length of the upper canine 131 

(19.44 vs. <17.55). The male long call has a higher maximum frequency range of the roar pulse type (> 132 

800 Hz vs. <747) with a higher ‘shape’ (>952 Hz/s vs. <934). 133 

Pongo tapanuliensis differs from P. pygmaeus by possessing a nearly straight zygomaxillary suture; the 134 

lower orbit (orbit height 33.4 vs. >35.3); the male long call has a longer duration (>111 seconds vs. <90) 135 

with a greater number of pulses (>52 pulses vs. <45), and is delivered at a greater rate (>0.82 pulses per 136 

20 seconds vs. <0.79). 137 

Pongo tapanuliensis differs specifically from Pongo ‘pygmaeus’ palaeosumatrensis in the smaller size 138 

of the first upper molar (mesio-distal length 13.65 vs. >14.0, buccolingual breadth 11.37 vs. >12.10, 139 

crown area 155.2 mm2 vs. >175.45, Figure S1). 140 

Description. Craniometrically, the type skull of P. tapanuliensis (Figure 1B) is significantly smaller 141 

than any skull of comparable developmental stage of other orangutans; it falls outside of the interquartile 142 

ranges of P. abelii and P. pygmaeus for 24 of 39 cranio-mandibular measurements (Table S1). A 143 

principal component analysis (PCA) of 26 cranio-mandibular measurements commonly used in primate 144 

taxonomic classification [5, 6] shows consistent differences between P. tapanuliensis and the two 145 

currently recognized species (Figs. 1C and S2). 146 

The external morphology of P. tapanuliensis is more similar to P. abelii in its linear body build and 147 

more cinnamon pelage than P. pygmaeus. The hair texture of P. tapanuliensis is frizzier, contrasting in 148 

particular with the long, loose body hair of P. abelii. Pongo tapanuliensis has a prominent moustache 149 

and flat flanges covered in downy hair in dominant males, while flanges of older males resemble more 150 

those of Bornean males. Females of P. tapanuliensis have beards, unlike P. pygmaeus. 151 

Distribution. Pongo tapanuliensis occurs only in a small number of forest fragments in the districts of 152 

Central, North, and South Tapanuli, Indonesia (Figure 1A). The total distribution covers approximately 153 

1,000 km2, with an estimated population size of fewer than 800 individuals [7]. The current distribution 154 

of P. tapanuliensis is almost completely restricted to medium elevation hill and submontane forest 155 

(~300–1300 m asl) [7-9]. While densities are highest in primary forest, it does occur at lower densities 156 

in mixed agroforest at the edge of primary forest areas [10, 11]. Until relatively recently, P. tapanuliensis 157 
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was more widespread to the south and west of the current distribution, although evidence for this is 158 

largely anecdotal [12, 13]. 159 

Other hominoid species and subspecies were previously described using standard univariate and 160 

multivariate techniques to quantify morphological character differences. The elevation of bonobos (P. 161 

paniscus) from a subspecies to a species dates back to Coolidge [14] and was based on summary 162 

statistics of primarily morphological data from a single female specimen of P. paniscus, five available 163 

P. paniscus skulls, and comparative data of what is now P. troglodytes. Groves and colleagues [5] and 164 

Shea et al. [15] supported Coolidge’s proposal using larger sample sizes and discriminant function 165 

analyses. Shea et al. [15] remarked that the species designation for P. paniscus, which was largely based 166 

on morphological comparisons, was ultimately strengthened by genetic, ecological, and behavioral data, 167 

as we attempted here for Pongo tapanuliensis. For the genus Gorilla, Stumpf et al. [16] and Groves [17] 168 

used cranio-mandibular data from 747 individuals from 19 geographic regions, confirming a 169 

classification of the genus into two species (G. gorilla and G. beringei), as proposed earlier by Groves 170 

[1]. Other recent primate species descriptions primarily relied on an inconsistent mix of data on pelage 171 

color, ecology, morphology, and/or vocalizations [18-23], with only a few also incorporating genetic 172 

analyses [24, 25]. 173 

Here, we used an integrative approach by corroborating the morphological analysis, behavioral and 174 

ecological data with whole-genome data of 37 orangutans with known provenance, covering the entire 175 

range of extant orangutans including areas never sampled before (Figure 2A, Table S4). We applied a 176 

model-based approach to statistically evaluate competing demographic models, identify independent 177 

evolutionary lineages, and infer levels of gene flow and the timing of genetic isolation between lineages. 178 

This enabled us to directly compare complex and realistic models of speciation. We refrained from 179 

directly comparing genetic differentiation among the three species in the genus Pongo with that of other 180 

hominoids, as we deem such comparisons problematic in order to evaluate whether P. tapanuliensis 181 

constitutes a new species. This is because estimates of genetic differentiation reflect a combination of 182 

divergence time, demographic history, and gene flow, and are also influenced by the employed genetic 183 

marker system [26, 27]. 184 

A PCA (Figure 2B) of genomic diversity highlighted the divergence between individuals from Borneo 185 

and Sumatra (PC1), but also separated P. tapanuliensis from P. abelii (PC2). The same clustering pattern 186 

was also found in a model-based analysis of population structure (Figure 2C), and is consistent with an 187 

earlier genetic study analyzing a larger number of non-invasively collected samples using microsatellite 188 

markers [28]. However, while powerful in detecting extant population structure, population history and 189 

speciation cannot be inferred, as they are not suited to distinguish between old divergences with gene 190 

flow and cases of recent divergence with isolation [29, 30]. To address this problem and further 191 



A NEW SPECIES OF ORANGUTAN 

8 

investigate the timing of population splits and gene flow, we therefore employed different 192 

complementary modeling and phylogenetic approaches. 193 

We applied an Approximate Bayesian Computation (ABC) approach, which allows to infer and compare 194 

arbitrarily complex demographic modes based on the comparison of the observed genomic data to 195 

extensive population genetic simulations [31]. Our analyses revealed three deep evolutionary lineages 196 

in extant orangutans (Figs. 3A and B). Colonization scenarios in which the earliest split within Pongo 197 

occurred between the lineages leading to P. abelii and P. tapanuliensis were much better supported than 198 

scenarios in which the earliest split was between Bornean and Sumatran species (models 1 vs. models 199 

2, combined posterior probability: 99.91%, Figure 3A). Of the two best scenarios, a model postulating 200 

colonization of both northern Sumatra and Borneo from an ancestral population likely situated south of 201 

Lake Toba on Sumatra, had the highest support (model 1a vs. model 1b, posterior probability 97.56%, 202 

Figure 3A). Our results supported a scenario in which orangutans from mainland Asia first entered 203 

Sundaland south of what is now Lake Toba on Sumatra, the most likely entry point based on 204 

paleogeographic reconstructions [32]. This ancestral population, of which P. tapanuliensis is a direct 205 

descendant, then served as a source for the subsequent different colonization events of what is now 206 

Borneo, Java and northern Sumatra. 207 

We estimated the split time between populations north and south of Lake Toba at ~3.4 Ma (Figure 3B, 208 

Table S5). Under our best-fitting model, we found evidence for post-split gene flow across Lake Toba 209 

(~0.3–0.9 migrants per generation, Table S5), which is consistent with highly significant signatures of 210 

gene flow between P. abelii and P. tapanuliensis using D-statistics (CK, BT, WA, Homo sapiens: D= -211 

0.2819, p-value<0.00001; WK, BT, LK, Homo sapiens: D= -0.2967, p-value<0.00001). Such gene flow 212 

resulted in higher autosomal affinity of P. tapanuliensis to P. abelii compared to P. pygmaeus in the 213 

PCA (Figure 2B), explaining the smaller amount of variance captured by PC2 (separating P. 214 

tapanuliensis from all other populations) compared to PC1 (separating P. pygmaeus from the Sumatran 215 

populations). The parameter estimates from a Bayesian full-likelihood analysis implemented in the 216 

software G-PhoCS were in good agreement with those obtained by the ABC analysis, although the split 217 

time between populations north and south of Lake Toba was more recent (~2.27 Ma, 95%-HPD: 2.21–218 

2.35, Table S5). The G-PhoCS analysis revealed highly asymmetric gene flow between populations 219 

north and south of the Toba caldera, with much lower levels of gene flow into the Batang Toru 220 

population from the north than vice versa (Table S5). 221 

The existence of two deep evolutionary lineages among extant Sumatran orangutans was corroborated 222 

by phylogenetic analyses based on whole mitochondrial genomes (Figure 4A), in which the deepest split 223 

occurred between populations north of Lake Toba and all other orangutans at ~3.97 Ma (95%-HPD: 224 

2.35–5.57). Sumatran orangutans formed a paraphyletic group, with P. tapanuliensis being more closely 225 

related to the Bornean lineage from which it diverged ~2.41 Ma (1.26–3.42 Ma). In contrast, Bornean 226 
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populations formed a monophyletic group with a very recent mitochondrial coalescence at ~160 ka (94–227 

227 ka). 228 

Due to strong female philopatry [33], gene flow in orangutans is almost exclusively male-mediated [34]. 229 

Consistent with these pronounced differences in dispersal behavior, phylogenetic analysis of extensive 230 

Y-chromosomal sequencing data revealed a comparatively recent coalescence of Y chromosomes of all 231 

extant orangutans ~430 ka (Figure 4B). The single available Y-haplotype from P. tapanuliensis was 232 

nested within the other Sumatran sequences, pointing at the occurrence of male-mediated gene flow 233 

across the Toba divide. Thus, in combination with our modeling results, the sex-specific data highlighted 234 

the impact of extraordinarily strong male-biased dispersal in the speciation process of orangutans. 235 

Our analyses revealed significant divergence between P. tapanuliensis and P. abelii (Figs. 3B and 4A), 236 

and low levels of male-mediated gene flow (Figs. 3B and 4B), which, however, completely ceased 10–237 

20 ka ago (Figure 3C). Populations north and south of Lake Toba on Sumatra had been in genetic contact 238 

for most of the time since their split, but there was a marked reduction in gene flow after ~100 ka (Figure 239 

3C), consistent with habitat destruction caused by the Toba supereruption 73 ka ago [35]. However, P. 240 

tapanuliensis and P. abelii have been on independent evolutionary trajectories at least since the late 241 

Pleistocene/early Holocene, as gene flow between these populations has ceased completely 10–20 ka 242 

(Figure 3C) and is now impossible because of habitat loss in areas between the species’ ranges [7]. 243 

Nowadays, most biologists would probably adopt an operational species definition such as: ‘a species 244 

is a population (or group of populations) with fixed heritable differences from other such populations 245 

(or groups of populations)’ [36]. With totally allopatric populations, a ‘reproductive isolation’ criterion, 246 

such as is still espoused by adherents of the biological species concept, is not possible [37, 38]. 247 

Notwithstanding a long-running debate about the role of gene flow during speciation and genetic 248 

interpretations of the species concept [39, 40], genomic studies have found evidence for many instances 249 

of recent or ongoing gene flow between taxa which are recognized as distinct and well-established 250 

species. This includes examples within each of the other three hominid genera. A recent genomic study 251 

using comparable methods to ours revealed extensive gene flow between Gorilla gorilla and G. beringei 252 

until ~20‒30 ka [41]. Similar, albeit older and less extensive, admixture occurred between Pan 253 

troglodytes and P. paniscus [42], and was also reported for Homo sapiens and H. neanderthalensis [43]. 254 

Pongo tapanuliensis and P. abelii appear to be further examples, showing diagnostic phenotypic and 255 

other distinctions that had persisted in the past despite gene flow between them. 256 

Due to the challenges involved in collecting suitable specimens for morphological and genomic analyses 257 

from critically endangered great apes, our description of P. tapanuliensis had to rely on a single skeleton 258 

and two individual genomes for our main lines of evidence. When further data will become available, a 259 

more detailed picture of the morphological and genomic diversity within this species and of the 260 

differences to other Pongo species might emerge, which may require further taxonomic revision. 261 
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However, is not uncommon to describe species based on a single specimen (e.g., [44-46]), and 262 

importantly, there were consistent differences among orangutan populations from multiple independent 263 

lines of evidence, warranting the designation of a new species with the limited data at hand. 264 

With a census size of fewer than 800 individuals [7], P. tapanuliensis is the least numerous of all great 265 

ape species [47]. Its range is located around 200 km from the closest population of P. abelii to the north 266 

(Figure 2A). A combination of small population size and geographic isolation is of particular high 267 

conservation concern, as it may lead to inbreeding depression [48] and threaten population persistence 268 

[49]. Highlighting this, we discovered extensive runs of homozygosity in the genomes of both P. 269 

tapanuliensis individuals (Figure S3), pointing at the occurrence of recent inbreeding. 270 

To ensure long-term survival of P. tapanuliensis, conservation measures need to be implemented 271 

swiftly. Due to the rugged terrain, external threats have been primarily limited to road construction, 272 

illegal clearing of forests, hunting, killings during crop conflict and trade in orangutans [7, 11]. A hydro-273 

electric development has been proposed recently in the area of highest orangutan density, which could 274 

impact up to 8% of P. tapanuliensis’ habitat. This project might lead to further genetic impoverishment 275 

and inbreeding, as it would jeopardize chances of maintaining habitat corridors between the western and 276 

eastern range (Figure 1A), and smaller nature reserves, all of which maintain small populations of P. 277 

tapanuliensis.  278 
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Figure 1. Morphological evidence supporting a new orangutan species. A) Current distribution of 719 

Pongo tapanuliensis on Sumatra. The holotype locality is marked with a red star. The area shown in the 720 

map is indicated in Figure 2A. B) Holotype skull and mandible of P. tapanuliensis from a recently 721 

deceased individual from Batang Toru. See also Figure S1, Tables S1 and S2. C) Violin plots of the 722 

first seven principal components of 26 cranio-mandibular morphological variables of 8 north Sumatran 723 

P. abelii and 19 Bornean P. pygmaeus individuals of similar developmental state as the holotype skull 724 

(black horizontal lines). See also Figure S2. 725 

Figure 2. Distribution, genomic diversity, and population structure of the genus Pongo. A) 726 

Sampling areas across the current distribution of orangutans. The contour indicates the extent of the 727 

exposed Sunda Shelf during the last glacial maximum. The black rectangle delimits the area shown in 728 

Figure 1A. n = numbers of sequenced individuals. See also Table S4. B) Principal component analysis 729 

of genomic diversity in Pongo. Axis labels show the percentages of the total variance explained by the 730 

first two principal components. Colored bars in the insert represent the distribution of nucleotide 731 

diversity in genome-wide 1-Mb windows across sampling areas. C) Bayesian clustering analysis of 732 

population structure using the program ADMIXTURE. Each vertical bar depicts an individual, with 733 

colors representing the inferred ancestry proportions with different assumed numbers of genetic clusters 734 

(K, horizontal sections). 735 

Figure 3. Demographic history and gene flow in Pongo. A) Model selection by Approximate 736 

Bayesian Computation (ABC) of plausible colonization histories of orangutans on Sundaland. The ABC 737 

analyses are based on the comparison of ~3,000 non-coding 2-kb loci randomly distributed across the 738 

genome with corresponding data simulated under the different demographic models. The numbers in 739 

the black boxes indicate the model’s posterior probability. NT = Sumatran populations north of Lake 740 

Toba, ST = the Sumatran population of Batang Toru south of Lake Toba, BO = Bornean populations. 741 

B) ABC parameter estimates based on the full demographic model with colonization pattern inferred in 742 

panel A. Numbers in grey rectangles represent point estimates of effective population size (Ne). Arrows 743 

indicate gene flow among populations, numbers above the arrows represent point estimates of numbers 744 

of migrants per generation. See also Table S5. C) Relative cross-coalescent rate (RCCR) analysis for 745 

between-species pairs of phased high-coverage genomes. A RCCR close to 1 indicates extensive gene 746 

flow between species, while a ratio close to 0 indicates genetic isolation between species pairs. The x-747 

axis shows time scaled in years, assuming a generation time of 25 years and an autosomal mutation rate 748 

of 1.5x10-8 per site per generation. See also Figure S3. 749 

Figure 4. Sex-specific evolutionary history of orangutans. Bayesian phylogenetic trees for (A) 750 

mitochondrial genomes and (B) Y chromosomes. The mitochondrial tree is rooted with a human and a 751 

central chimpanzee sequence, the Y chromosome tree with a human sequence (not shown). ** Posterior 752 

probability = 1.00. C) Genotype-sharing matrix for mitogenomes (above the diagonal) and Y 753 
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chromosomes (below the diagonal) for all analyzed male orangutans. A value of 1 indicates that two 754 

males have identical genotypes at all polymorphic sites; a value of 0 means that they have different 755 

genotypes at all variable positions. 756 
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CONTACT FOR RESOURCE SHARING 757 

Further information and requests for resources and reagents should be directed to and will be fulfilled 758 

by the Lead Contact, Michael Krützen (michael.kruetzen@aim.uzh.ch). 759 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 760 

Sample collection and population assignment for genomic analysis 761 

Our sample set comprised genomes from 37 orangutans, representing the entire geographic range of 762 

extant orangutans (Figure 2A). We obtained whole-genome sequencing data for the study individuals 763 

from three different sources (Table S4): (i) genomes of 17 orangutans were sequenced for this study. 764 

Data for 20 individuals were obtained from (ii) Locke et al. [50] (n=10) and (iii) Prado-Martinez et al. 765 

[51] (n=10). All individuals were wild-born, except for five orangutans which were first-generation 766 

offspring of wild-born parents of the same species (Table S4). 767 

Population provenance of the previously sequenced orangutans [50, 51] was largely unknown. We 768 

identified their most likely natal area based on mtDNA haplotype clustering in a phylogenetic tree 769 

together with samples of known geographic provenance. Because of extreme female philopatry in 770 

orangutans, mtDNA haplotypes are reliable indicators for the population of origin [33, 52-56]. Using 771 

three concatenated mtDNA genes (16S ribosomal DNA, Cytochrome b, and NADH-ubiquinone 772 

oxidoreductase chain 3), we constructed a Bayesian tree, including 127 non-invasively sampled wild 773 

orangutans from 15 geographic regions representing all known extant orangutan populations [53, 57]. 774 

Gene sequences of our study individuals were extracted from their complete mitochondrial genome 775 

sequences. The phylogenetic tree was built with BEAST v1.8.0. [58], as described in Nater et al. [53], 776 

applying a TN93+I substitution model [59] as determined by jModelTest v2.1.4. [60]. 777 

Using the mitochondrial tree, we assigned all previously sequenced orangutans [50, 51] to their most 778 

likely population of origin. Our sample assignment revealed incomplete geographic representation of 779 

the genus Pongo in previous studies. To achieve a more complete representation of extant orangutans, 780 

we sequenced genomes of 17 wild-born orangutans mainly from areas with little or no previous sample 781 

coverage. Detailed provenance information for these individuals is provided in Table S4. 782 

Samples for morphological analysis 783 

We conducted comparative morphological analyses of 34 adult male orangutans from 10 institutions 784 

housing osteological specimens. A single adult male skeleton from the Batang Toru population was 785 

available for study, having died from injuries sustained in an orangutan-human conflict situation in 786 

November 2013. To account for potential morphological differences related to developmental stage [61, 787 

62], our analyses included only males at a similar developmental stage as the Batang Toru specimen, 788 
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i.e., having a sagittal crest of <10 mm in height. In addition to the single available Batang Toru male, 789 

our extant sample comprises specimens from the two currently recognized species, the north Sumatran 790 

Pongo abelii (n=8) and the Bornean P. pygmaeus (n=25). 791 

We also evaluated the relationship of the dental material between the Batang Toru specimen and those 792 

of the Late Pleistocene fossil material found within the Djamboe, Lida Ajer, and Sibrambang caves near 793 

Padang, Sumatra, all of which has been previously described by Hooijer [63]. Some scholars have 794 

suggested that the fossil material may represent multiple species [64, 65]. However, Hooijer had more 795 

than adequately shown that the variation in dental morphology observed within the three cave 796 

assemblages can easily be accommodated within a single species [63]. As only teeth were present in 797 

the described cave material, many of which also have gnaw marks, taphonomic processes (e.g., 798 

porcupines as accumulating agents) are thought to have largely shaped the cave material [66, 67] and 799 

thus may account for the appearance of size differences among the cave samples [64, 65]. Furthermore, 800 

the similarities in the reconstructed age of the cave material (~128-118 ka or ~80-60 ka [66-68]), and 801 

the fact that the presence of more than one large-bodied ape species is an uncommon feature in both 802 

fossil and extant Southeast Asian faunal assemblages [69], makes it highly unlikely that multiple large-803 

bodied ape species co-existed within the area at a given time. For purposes of discussion here, we 804 

collectively refer to the Padang fossil material as P. p. palaeosumatrensis, as described by Hooijer [63]. 805 

As the comparative fossil sample likely comprises various age-sex classes [63], we divided the fossil 806 

sample into two portions above and below the mean for each respective tooth utilized in this study. We 807 

considered samples above the mean to represent larger individuals, which we attribute to “males”, and 808 

the ones below to being smaller individuals, which we attribute to “females” [70]. We only used the 809 

“male” samples in comparison to our extant male comparative orangutan sample.  810 
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METHOD DETAILS 811 

Whole-genome sequencing 812 

To obtain sufficient amounts of DNA, we collected blood samples from confiscated orangutans at 813 

rehabilitation centres, including the Sumatran Orangutan Conservation Program (SOCP) in Medan, 814 

BOS Wanariset Orangutan Reintroduction Project in East Kalimantan, Semongok Wildlife 815 

Rehabilitation Centre in Sarawak, and Sepilok Orangutan Rehabilitation Centre in Sabah. We took 816 

whole blood samples during routine veterinary examinations and stored in EDTA blood collection tubes 817 

at -20°C. The collection and transport of samples were conducted in strict accordance with Indonesian, 818 

Malaysian and international regulations. Samples were transferred to Zurich under the Convention on 819 

International Trade of Endangered Species in Fauna and Flora (CITES) permit numbers 4872/2010 820 

(Sabah), and 06968/IV/SATS-LN/2005 (Indonesia). 821 

We extracted genomic DNA using the Gentra Puregene Blood Kit (Qiagen) but modified the protocol 822 

for clotted blood as described in Greminger et al. [71]. We sequenced individuals on two to three lanes 823 

on an Illumina HiSeq 2000 in paired end (2 x 101 bp) mode. Sample PP_5062 was sequenced at the 824 

Functional Genomics Center in Zurich (Switzerland), the other individuals at the Centre Nacional 825 

d’Anàlisi Genòmica in Barcelona (Spain), as the individuals of Prado-Martinez et al. [51]. On average, 826 

we generated ~1.1x109 raw Illumina reads per individual. 827 

Read mapping 828 

We followed identical bioinformatical procedures for all 37 study individuals, using the same software 829 

versions. We quality-checked raw Illumina sequencing reads with FastQC v0.10.1. [72] and mapped to 830 

the orangutan reference genome ponAbe2 [50] using the Burrows-Wheeler Aligner (BWA-MEM) 831 

v0.7.5 [73] in paired-end mode with default read alignment penalty scores. We used Picard v1.101 832 

(http://picard.sourceforge.net/) to add read groups, convert sequence alignment/map (SAM) files to 833 

binary alignment/map (BAM) files, merge BAM files for each individual, and to mark optical and PCR 834 

duplicates. We filtered out duplicated reads, bad read mates, reads with mapping quality zero, and reads 835 

that mapped ambiguously. 836 

We performed local realignment around indels and empirical base quality score recalibration (BQSR) 837 

with the Genome Analysis Toolkit (GATK) v3.2.2. [74, 75]. The BQSR process empirically calculates 838 

more accurate base quality scores (i.e., Phred-scaled probability of error) than those emitted by the 839 

sequencing machines through analysing the covariation among several characteristics of a base (e.g., 840 

position within the read, sequencing cycle, previous base, etc.) and its status of matching the reference 841 

sequence or not. To account for true sequence variation in the data set, the model requires a database of 842 

known polymorphic sites (‘known sites’) which are skipped over in the recalibration algorithm. Since 843 

no suitable set of ‘known sites’ was available for the complete genus Pongo, we preliminary identified 844 
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confident SNPs from our data. For this, we performed an initial round of SNP calling on unrecalibrated 845 

BAM files with the UnifiedGenotyper of the GATK. Single nucleotide polymorphisms were called 846 

separately for Bornean and Sumatran orangutans in multi-sample mode (i.e., joint analysis of all 847 

individuals per island), creating two variant call (VCF) files. In addition, we produced a third VCF file 848 

jointly analysing all study individuals in order to capture genus-wide low frequency alleles. We applied 849 

the following hard quality filter criteria on all three VCF files: QUAL < 50.0 || QD < 2.0 || FS > 60.0 || 850 

MQ < 40.0 || HaplotypeScore > 13.0 || MappingQualityRankSum < -12.5 || ReadPosRankSum < -8.0. 851 

Additionally, we calculated the mean and standard deviation of sequencing depth over all samples and 852 

filtered all sites with a site-wise coverage more than five standard deviations above the mean. We 853 

merged the three hard filtered VCF files and took SNPs as ‘known sites’ for BQSR with the GATK. 854 

The walkers CountReads and DepthOfCoverage of the GATK were used to obtain various mapping 855 

statistics for unfiltered and filtered BAM files. 856 

Mean effective sequencing depth, estimated from filtered BAM files, varied among individuals ranging 857 

from 4.8–12.2x [50] to 13.7–31.1x (this study) [51], with an average depth of 18.4x over all individuals 858 

(Tables S4). For the previously sequenced genomes [50, 51], estimated sequence depths were 25–40% 859 

lower as the values reported in the two source studies. This difference is explained by the way sequence 860 

depth was calculated. Here, we estimated sequence depth on the filtered BAM files where duplicated 861 

reads, bad read mates, reads with mapping quality zero, and reads which mapped ambiguously had 862 

already been removed. Thus, our sequence coverage estimates correspond to the effective read-depths 863 

which are available for SNP discovery and genotyping. 864 

SNP and genotype calling 865 

We produced high quality genotypes for all individuals for each position in the genome, applying the 866 

same filtering criteria for SNP and non-polymorphic positions. We identified SNPs and called 867 

genotypes in a three-step approach. First, we identified a set of candidate (raw) SNPs among all study 868 

individuals. Second, we performed variant quality score recalibration (VQSR) on the candidate SNPs 869 

to identify high-confidence SNPs. Third, we called genotypes of all study individuals at these high-870 

confidence SNP positions. 871 

Step 1: We used the HaplotypeCaller of the GATK in genomic Variant Call Format (gVCF) mode to 872 

obtain for each individual in the dataset genotype likelihoods at any site in the reference genome. 873 

HaplotypeCaller performs local realignment of reads around potential variant sites and is therefore 874 

expected to considerably improve SNP calling in difficult-to-align regions of the genome. We then 875 

genotyped the resulting gVCF files together on a per-island level, as well as combined for all 876 

individuals, using the Genotype GVCFs tool of the GATK to obtain three VCF files with candidate 877 

SNPs for P. abelii, P. pygmaeus, and over all Pongo samples. 878 
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Step 2: Of the produced set of candidate SNPs, we identified high-confidence SNPs using the VQSR 879 

procedure implemented in the GATK. The principle of the method is to develop an estimate of the 880 

relationship between various SNP call annotations (e.g., total depth, mapping quality, strand bias, etc.) 881 

and the probability that a SNP is a true genetic variant. The model is determined adaptively based on a 882 

set of ‘true SNPs’ (i.e., known variants) provided as input. Our ‘true SNPs’ set contained 5,600 high-883 

confidence SNPs, which were independently identified by three different variant callers in a previous 884 

reduced-representation sequencing project [71]. We ran the Variant Recalibrator of the GATK 885 

separately for each of the three raw SNP VCFs to produce recalibration files based on the ‘true SNPs’ 886 

and a VQSR training set of SNPs. The VQSR training sets were derived separately for each of the three 887 

raw SNP VCF files and contained the top 20% SNPs with highest variant quality score after having 888 

applied hard quality filtering as described for the VCF files in the BQSR procedure.  889 

We used the produced VQSR recalibration files to filter the three candidate SNP VCFs with the Apply 890 

Recalibration walker of the GATK setting the ‘--truth_sensitivity_filter_level’ to 99.8%. Finally, we 891 

combined all SNPs of the three VCF files passing this filter using the Combine Variants tool of the 892 

GATK, hence generating a master list of high-confidence SNP sites in the genus Pongo. 893 

Step 3: We called the genotype of each study individual at the identified high-confidence SNP sites. 894 

We performed genotyping on the recalibrated BAM files in multi-sample mode for Bornean and 895 

Sumatran orangutans separately, producing one SNP VCF file per island.  896 

Finally, we only retained positions with high genome mappability, i.e., genomic positions within a 897 

uniquely mappable 100-mers (up to 4 mismatches allowed), as identified with the GEM-mappability 898 

module from the GEM library build [76]. This mappability mask excludes genomic regions in the 899 

orangutan reference genome that are duplicated and therefore tend to produce ambiguous mappings, 900 

which can lead to unreliable genotype calling. Furthermore, we aimed to reduce spurious male 901 

heterozygous genotype calls on the X chromosome due to UnifiedGenotyper assuming diploidy of the 902 

entire genome. We determined the male-to-female ratios (M/F) of mean observed heterozygosity (Ho) 903 

and sequence coverage in non-overlapping 20-kb windows along the X chromosome across both 904 

islands. We obtained a list of X-chromosomal windows where M/F of Ho was above the 85%-quantile 905 

or M/F coverage was above the 95%-quantile, resulting in 1255 20-kb windows requiring exclusion. 906 

We then repeated step 3 of the genotype calling pipeline on the X chromosome for the male samples 907 

setting the argument ‘-ploidy’ of UnifiedGenotyper to 1 to specify the correct hemizygous state of the 908 

X chromosome in males. We subsequently masked all X-chromosomal positions within the spurious 909 

20-kb windows in both male and female samples. 910 

In total, we discovered 30,640,634 SNPs among all 37 individuals, which represent the most 911 

comprehensive catalogue of genetic diversity across the genus Pongo to date.  912 
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QUANTIFICATION AND STATISTICAL ANALYSIS 913 

Recombination map estimation 914 

We generated recombination maps for Bornean and Sumatran orangutans using the LDhat v2.2a 915 

software [77], following Auton et al. [78]. We used a high-quality subset of genotype data from the 916 

original SNP-calling dataset for the recombination map estimation for each island separately. Only 917 

biallelic, non-missing and polymorphic SNPs were used. Filtered genotype data were split into windows 918 

of 5,000 SNPs with an overlap of 100 SNPs at each side. 919 

We ran the program Interval of the LDhat package for 60 million iterations, using a block penalty of 5, 920 

with the first 20 million iterations discarded as a burn-in. A sample was taken from the MCMC chain 921 

every 40,000 iterations, and a point estimate of the recombination rate between each SNP was obtained 922 

as the mean across samples. We joined the rate estimates for each window at the midpoint of the 923 

overlapping regions and estimated theta per site for each window using the finite-site version of the 924 

Watterson’s estimate, as described in Auton & McVean [77]. 925 

We tested the robustness of the method with regards to the observed genome-wide variation of theta by 926 

contrasting recombination rate estimates using window-specific and chromosomal-average thetas. 927 

Thetas twice as large that the genome average produced very similar 4Ner (rho) estimates. Because of 928 

this, a single genome-wide average of theta per site was used for all the windows (Sumatra: 𝜽w = 929 

0.001917, Borneo: 𝜽w = 0.001309). We then applied additional filters following Auton et al. [78]. SNP 930 

intervals larger than 50 kb, or rho estimates larger than 100, were set to zero and the 100 surrounding 931 

SNP intervals (-/+ 50 intervals) were set to zero recombination rate. A total of 1,000 SNP intervals were 932 

found to have rho > 100 for P. abelii, and 703 for P. pygmaeus. In addition, 32 gaps (> 50 kb) were 933 

identified for P. abelii, and 47 gaps for P. pygmaeus. After applying the +/- 50 interval criteria, a total 934 

of 7,424 SNP intervals were zeroed for P. abelii, and 15,694 for P. pygmaeus. 935 

Haplotype phasing 936 

We phased the genotype data from Bornean and Sumatran orangutans using a read aware statistical 937 

phasing approach implemented in SHAPEIT v2.0 [79, 80]. This allowed us to obtain good phasing 938 

accuracy despite our relatively low sample sizes by using phasing information contained in the paired-939 

end sequencing reads to support the statistical phasing procedure. We used a high-quality subset of 940 

genotype data from the original SNP-calling dataset containing only biallelic and polymorphic SNPs. 941 

We first ran the program extractPIRs to extract phase informative reads (PIR) from the filtered BAM 942 

files. In a second step, we ran SHAPEIT in read aware phasing mode using the following parameters: 943 

200 conditional states, 10 burnin interations, 10 pruning interations, 50 main iterations, and a window 944 

size of 0.5 Mb. Additionally, we provided two species-specific recombination maps (estimated with 945 

LDhat) and the PIR files obtained in the first step to the program. 946 
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SHAPEIT uses a recombination map expressed in cM/Mb, therefore it was necessary to convert the 947 

LDhat-based rho estimates to cM/Mb units (rho=4Ner). Accordingly, we estimated island-specific 948 

effective population sizes using the Watterson’s estimator of theta (Sumatra: Ne[θW]=41,000, Borneo: 949 

Ne[θW]=27,000) and applied these to the recombination map conversion. The most likely pair of 950 

haplotypes for each individual were retrieved from the haplotype graphs, and recoded into VCF file 951 

format. 952 

Individual heterozygosity and inbreeding 953 

We determined the extent of inbreeding for each individual by a genome-wide heterozygosity scan in 954 

sliding windows of 1 Mb, using a step size of 200 kb. We detected an excess of windows with very low 955 

heterozygosity in the density plots, pointing to some extent of recent inbreeding. To estimate the cutoff 956 

values of heterozygosity for the calculation of inbreeding coefficients, we calculated heterozygosity 957 

thresholds for each island according to the 5th-percentile of the genome-wide distribution of 958 

heterozygosities (Borneo: 1.0 x 10-4 heterozygote sites per bp; Sumatra: 1.3 x 10-4). Neighboring regions 959 

with heterozygosities below the cutoff value were merged to determine the extent of runs of 960 

homozygosity (ROH). Based on the number and size of ROHs, we estimated the percentage of the 961 

genome that is autozygous, which is a good measure of inbreeding [81]. We choose 1 Mb as window 962 

size for the calculation of heterozygosities based on previous studies identifying regions smaller than 963 

0.5 Mb as the result of background relatedness, and tracts larger than 1.6 Mb as evidence of recent 964 

parental relatedness [82]. 965 

Sex-specific genomic data: mitogenomes and Y chromosomes 966 

We produced complete mitochondrial genome (mitogenome) sequences for all study individuals. We 967 

first created a consensus reference sequence from 13 Sanger-sequenced mitogenomes representing 968 

almost all major genetic clusters of extant orangutans using BioEdit v7.2.0. [83]. The Sanger-sequenced 969 

mitogenomes were generated via 19 PCRs with product sizes of 1.0–1.2 kb and an overlap of 100–300 970 

bp (Table S6) following described methods [84]. PCR conditions for all amplifications were identical 971 

and comprised a pre-denaturation step at 94°C for 2 minutes, followed by 40 cycles each with 972 

denaturation at 94°C for 1 minute, annealing at 52°C for 1 minute, and extension at 72°C for 1.5 973 

minutes. At the end, we added a final extension step at 72°C for 5 minutes. PCR products were checked 974 

on 1% agarose gels, excised from the gel and after purification with the Qiagen Gel Extraction Kit, 975 

sequenced on an ABI 3130xL sequencer using the BigDye Terminator Cycle Sequencing kit (Applied 976 

Biosystems) in both directions using the amplification primers. 977 

We individually mapped Illumina whole-genome sequencing reads of all 37 study individuals (Table 978 

S4) to the consensus mitochondrial reference sequence using NovoAlign v3.02. (NovoCraft), which 979 

can accurately handle reference sequences with ambiguous bases. This procedure prevented biased 980 
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short read mapping due to common population-specific mutations. For each individual, we generated a 981 

FASTA sequence for the mitogenome with the mpileup pipeline of SAMtools. We only considered 982 

bases with both mapping and base Phred quality scores ≥ 30 and required all positions to be covered 983 

between 100 and 2000 times. Finally, we visually checked the sequence alignment of all individuals in 984 

BioEdit and manually removed indels and poorly aligned positions and excluded the D-loop to account 985 

for sequencing and alignment errors in those regions which might inflate estimates of mtDNA diversity. 986 

In total, we identified 1,512 SNPs among all 50 individuals. 987 

We thoroughly investigated the literature for the potential occurrence of nuclear insertions of mtDNA 988 

(numts) in the genus Pongo, given that this has been a concern in closely related gorillas (Gorilla spp.) 989 

[85]. There was no indication of numts in the genus Pongo, which is in line with our own previous 990 

observations [28, 52, 53]. Numts also seem unlikely given our high minimal sequence depth threshold. 991 

We developed a comprehensive bioinformatics strategy to extract sequences from the male-specific 992 

region of the Y chromosome (MSY) from whole-genome sequencing data. We expect the principle of 993 

our bioinformatics strategy to be applicable to mammalian species in general if the taxon under 994 

investigation is in phylogenetic proximity to one for which a Y-chromosomal reference sequence is 995 

present or will be made available. Like for most mammals, there is currently no reference Y 996 

chromosome for orangutans. Therefore, we had to rely on a reference assembly of a related species (i.e., 997 

humans) for sequence read mapping. Despite the ~18 million years divergence between humans (Homo 998 

spp.) and orangutans [51, 86], we obtained a high number of MSY sequences. The impact of varying Y 999 

chromosome structure among species [87, 88] on sequence read mappability might have been reduced 1000 

because we exclusively targeted X-degenerate regions. Hughes et al. [89] showed for human and 1001 

chimpanzees that although less than 50% of ampliconic sequences have a homologous counterpart in 1002 

the other species, over 90% of the X-degenerate sequences hold such a counterpart. 1003 

We applied several filters to ensure male-specificity and single-copy status of the generated MSY 1004 

sequences. (i) We simultaneously mapped sequencing reads to the whole orangutan reference genome 1005 

PonAbe2 [50] and not just the human reference Y chromosome, reducing spurious mapping of 1006 

autosomal reads to the Y chromosome and allowing subsequent identification of reads that also aligned 1007 

to the X or autosomal chromosomes. (ii) We exclusively accepted reads that mapped in a proper pair, 1008 

i.e., where both read mates mapped to the Y chromosome, which considerably increased confidence in 1009 

Y-specific mapping. (iii) We also mapped whole-genome sequencing reads of 23 orangutan females to 1010 

the human Y reference chromosome and excluded all reference positions where female reads had 1011 

mapped from the male Y sequence data. (iv) To exclude potential repetitive regions, we filtered non-1012 

uniquely mapped reads as well as positions with sequence coverage greater than two times the median 1013 

coverage for each individual, as extensive coverage can be indicative for repetitive regions which might 1014 

appear as collapsed regions on the Y reference chromosome. (v) To ensure that we only targeted unique, 1015 
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single-copy MSY regions, we exclusively retained reads mapping to four well-established X-degenerate 1016 

regions of the MSY in humans [90].  1017 

Our bioinformatics strategy consisted of the following detailed steps. First, we created a new reference 1018 

sequence (PonAbe2_humanY) by manually adding the human reference Y chromosome (GRCh37) to 1019 

the orangutan reference genome PonAbe2 [50]. We then used BWA-MEM v0.7.5. [73] to map Illumina 1020 

whole-genome short reads from 36 orangutans (13 males and 23 females) to this new reference 1021 

sequence. We mapped reads for each individual separately in paired-end mode and with default settings. 1022 

To reduce output file size, we removed unmapped reads on the fly using SAMtools v0.1.19 [91]. Picard 1023 

v1.101 was used to add read groups and sort the BAM files. We then extracted all reads which mapped 1024 

to the Y chromosome using SAMtools and marked read duplicates with Picard. 1025 

We used the GATK [74, 75] to perform local realignment around indels and filtered out duplicated 1026 

reads, bad read mates, reads with mapping quality zero and reads which mapped ambiguously. We 1027 

called genotypes at all sequenced sites with the Unified Genotyper of the GATK, applying the output 1028 

mode 'EMIT_ALL_CONFIDENT_SITES'. We called genotypes in multi-sample mode (females and 1029 

males separately, sample-ploidy was set to 1), producing one genomic VCF file for each sex. We only 1030 

accepted bases/reads for genotype calling if they had Phred quality scores ≥ 30. 1031 

From the VCF file of the females, we generated a 'nonspec' list with the coordinates of all sites with 1032 

coverage in more than one female (minimal sequence depth 2x), as these sites most likely were located 1033 

in pseudoautosomal or ampliconic regions, i.e., share similarity with the X or autosomal chromosomes. 1034 

To ensure Y-specificity, we removed all sites of the 'nonspec' list from the VCF file of the males with 1035 

VCFtools v0.1.12b. [92]. 1036 

Finally, we used GATK to extract sequences of four well-established X-degenerate regions of the MSY 1037 

in humans (14,170,438–15,795,786; 16,470,614–17,686,473; 18,837,846–19,267,356; 21,332,221–1038 

21,916,158 on the human reference Y chromosome assembly GRCh37/hg19)[90]. To be conservative, 1039 

we chose regions which were longer than 1 Mb in humans and disregarded the first and last 300 kb of 1040 

each region to account for potential uncertainties regarding region boundaries, leaving us with 1041 

3,854,654 bp in total. We exclusively retained genotype calls that were covered by a minimum of two 1042 

reads and had a maximum of twice the individual mean coverage, resulting in 2,825,271 bp of MSY 1043 

sequences among the 13 orangutan males. As expected, individual mean MSY sequence depth was 1044 

about half (average: 54.4%) of that recorded for the autosomes, and ranged from 2.79–16.62x. For 1045 

analyses, we only kept sites without missing data, i.e., with a genotype in all study males. Because 1046 

genomes of some individuals had been sequenced to only low coverage (~5–7x) [50], this left us with 1047 

673,165 bp of MSY sequences. We identified 1,317 SNPs among the 13 males, corresponding to a SNP 1048 

density of 1 SNP every 511 bp. 1049 
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We constructed phylogenetic trees and estimated divergence dates for mitogenome and MSY sequences 1050 

using the Bayesian Markov chain Monte Carlo (MCMC) method implemented in BEAST v1.8.0. [58]. 1051 

To determine the most suitable nucleotide substitution model, we conducted model selection with 1052 

jModelTest v2.1.4. [60]. Based on the Akaike information criterion (AIC) and corrected AIC, we 1053 

selected the GTR+I substitution model [93] for mitogenomes and the TVM+I+G model [94] for MSY 1054 

sequences. 1055 

The mitogenome tree was rooted with a human and a central chimpanzee sequence from GenBank 1056 

(accession numbers: GQ983109.1 and HN068590.1), the MSY tree with the human reference sequence 1057 

hg19. We estimated divergence dates under a relaxed molecular clock model with uncorrelated 1058 

lognormally distributed branch-specific substitution rates [95]. The prior distribution of node ages was 1059 

generated under a birth-death speciation process [96]. We used fossil based divergence estimates to 1060 

calibrate the molecular clock by defining a normal prior distribution for certain node ages. For 1061 

mitogenomes, we applied two calibration points, i.e., the Pan-Homo divergence with a mean age of 6.5 1062 

Ma and a standard deviation of 0.3 Ma [97, 98] and the Ponginae-Homininae divergence with a mean 1063 

age of 18.3 Ma and a larger standard deviation of 3.0 Ma [86], which accounts for the uncertainty in 1064 

the divergence date [99]. For MSY sequences, we used the Ponginae-Homininae divergence for 1065 

calibration. We performed four independent BEAST runs for 30 million generations each for 1066 

mitogenomes, with parameter sampling every 1,000 generations, and for 200 million generations each 1067 

with parameter sampling every 2,000 generations for MSY sequences. We used Tracer v1.6 [100] to 1068 

examine run convergence, aiming for an effective sample size of at least 1000 for all parameters. We 1069 

discarded the first 20% of samples as burn-in and combined the remaining samples of each run with 1070 

LogCombiner v1.8.0. [58]. Maximum clade credibility trees were drawn with TreeAnnotator v1.8.0. 1071 

[58] and trees visualized in FigTree v1.4.0. [101] and MEGA v6.06. [102]. 1072 

Autosomal genetic diversity and population structure 1073 

For all subsequent population genetic analyses, we assumed an autosomal mutation rate (μ) of 1.5 x 10-1074 
8 per base pair per generation, based on estimates obtained for the present-day mutation rates in humans 1075 

and chimpanzees, derived primarily from de novo sequencing comparisons of parent-offspring trios but 1076 

also other evidence [103-106]. There is good reason to believe that the mutation rate in orangutans is 1077 

similar to that in other great apes, given the very similar branch lengths from outgroups such as gibbon 1078 

and macaque to each species [107]. We assumed a generation time of 25 years [108]. 1079 

We identified patterns of population structure in the autosomal genome by principal component analysis 1080 

(PCA) of biallelic SNPs using the function ‘prcomp’ in R v3.2.2 [109]. Three separate analyses were 1081 

performed: one within each island and one including all study individuals. For each sample set, we 1082 

excluded all genotypes from the SNP VCF files that were covered by less than five reads and only 1083 

retained SNPs with a genotype call in all individuals after this filter. Furthermore, we removed SNPs 1084 
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with more than two alleles and monomorphic SNPs in the particular sample set. This restrictive filtering 1085 

left us with 3,006,895 SNPs for the analysis of all study individuals, 5,838,796 SNPs for PCA within 1086 

Bornean orangutans and 4,808,077 SNPs for PCA within Sumatran orangutans. 1087 

We inferred individual ancestries of orangutans using ADMIXTURE v1.23 [110]. We randomly 1088 

sampled one million sites from the original VCF files and filtered this subset by excluding sites with 1089 

missing genotypes or with a minor allele frequency less than 0.05. We further reduced the number of 1090 

sites to 272,907 by applying a linkage disequilibrium (LD) pruning filter using PLINK v1.90b3q (–1091 

indep‐pairwise 50 5 0.5) [111]. ADMIXTURE was run 20 times at all K values between 1 and 10. 1092 

Among those runs with a difference to the lowest observed cross validation (CV) error of less than 0.1 1093 

units, we reported the replicate with the highest biological meaning, i.e., runs that resolved substructure 1094 

among different sampling areas rather than identifying clusters within sampling areas. 1095 

For subsequent analyses, we defined seven distinct populations based on the results of the PCA and 1096 

ADMIXTURE analyses: three on Sumatra (Northeast Alas comprising North Aceh and Langkat 1097 

regions, West Alas, and Batang Toru) and four on Borneo (East Kalimantan, Sarawak, Kinabatangan 1098 

comprising North and South Kinabatangan, and Central/West Kalimantan comprising Central and West 1099 

Kalimantan). Even though individuals from North and South Kinabatangan could be clearly 1100 

distinguished in the PCA and ADMIXTURE analysis, we decided to pool the two Kinabatangan 1101 

populations due to their low samples sizes (n = 2). This can be justified as data from the mitochondrial 1102 

genome showed that they started to diverge only recently (~40 ka). 1103 

Ancestral gene flow between orangutan populations 1104 

We used D-statistics to assess gene flow between orangutan species, testing all three possible 1105 

phylogenetic relationships among P. abelii, P. tapanuliensis, and P. pygmaeus. We extracted genotype 1106 

data from the two individuals per population with the highest sequencing coverage and included two 1107 

human genome sequences as outgroup (SRA sample accession: ERS007255 and ERS007266). We 1108 

calculated D-statistics for all combinations of populations involving the three species using the qpDstat 1109 

program of the ADMIXTOOLS package v4.1 and assessed significance using the block jackknife 1110 

procedure implemented in ADMIXTOOLS. 1111 

To explore temporal patterns of gene flow between orangutan populations, we applied the multiple 1112 

sequential Markovian coalescent (MSMC2) model [112]. The rate of coalescence of between-1113 

population haplotype pairs was compared to the within-population coalescence rate of haplotype pairs 1114 

from the same population to obtain the relative cross-coalescence rate (RCCR) through time. A RCCR 1115 

close to 1 indicates extensive gene flow between populations, while a ratio close to 0 indicates complete 1116 

genetic isolation. 1117 
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We used the phased whole-genome data for the relative cross-coalescence rate analysis. To avoid 1118 

coverage-related issues, we selected the individual with the highest sequencing coverage for each 1119 

population. We further excluded sites with an individual sequencing coverage less than 5x, a mean 1120 

mapping quality less than 20, or sites with low mappability based on the mappability mask. 1121 

We ran MSMC2 for all pairs of populations, using a single individual (i.e., two haplotypes) per 1122 

population. For each population pair, we performed three individual MSMC2 runs, using the default 1123 

time discretization parameters: within population 1 (two haplotypes; -I 0,1), within population 2 (two 1124 

haplotypes; -I 2,3), and between populations (four haplotypes; -I 0,1,2,3 -P 0,0,1,1). We then used the 1125 

combineCrossCoal.py Python script of the MSMC2 package to combine the outputs of the three runs 1126 

into a combined output file. 1127 

As the sequencing coverage of the best Batang Toru individual was substantially lower compared to 1128 

individuals from other populations (~17x vs. ~23–27x, Table S4), we also assessed whether different 1129 

sequencing coverage was negatively affecting the relative cross-coalescence rate results. To achieve 1130 

this, we repeated the analysis using individuals with similar coverage as the Batang Toru individual 1131 

(~16–21x). The results were highly consistent with the output from the runs with the highest-coverage 1132 

individuals, indicating that the relative cross-coalescent rate analysis was robust to differences in 1133 

sequencing coverage in our data set. 1134 

Approximate Bayesian Computation (ABC) 1135 

To gain insights into the colonization history of the Sundaland region by orangutans and obtain 1136 

parameter estimates of key aspects of their demographic history, we applied a model-based ABC 1137 

framework [31]. For this, we sampled a total of 3,000 independent sequence loci of 2 kb each, following 1138 

the recommendations in Robinson et al. [113]. Loci were sampled randomly from non-coding regions 1139 

of the genome, with a minimum distance of 50 kb between loci to minimize the effects of linkage. Since 1140 

the coalescent simulations underlying ABC inference assume neutrality, we excluded loci located 1141 

within 10 kb of any exonic region defined in the Pongo abelii Ensembl gene annotation release 78, as 1142 

well as loci on the X chromosome and the mitochondrial genome, which would exhibit reduced Ne as 1143 

compared to the autosomal regions. 1144 

For all ABC-based modelling, we defined three metapopulations for the calculation of summary 1145 

statistics: Sumatran populations north of Lake Toba (NT), the Sumatran population of Batang Toru 1146 

south of Lake Toba (ST), as well as all Bornean populations (BO). For each metapopulation as well as 1147 

over all metapopulations combined, we calculated the first four moments over all loci for the following 1148 

summary statistics: nucleotide diversity (π), Watterson’s theta, and Tajima’s D. Furthermore, for each 1149 

of the three pairwise comparisons between metapopulations, we calculated the first four moments over 1150 

loci of the number of segregating sites, proportions of shared and fixed polymorphism, average 1151 

sequence divergence (dXY), and ΦST [114]. To avoid potential problems with unreliable phasing, we 1152 
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only used summary statistics that do not require phased sequence data. This resulted in a total of 108 1153 

summary statistics used in the ABC analyses. For each locus, we extracted genotype data of a total of 1154 

22 individuals (5 Northeast Alas, 5 West Alas, 2 Batang Toru, 4 Central/West Kalimantan, 2 East 1155 

Kalimantan, 2 Sarawak, 2 Kinabatangan) by selecting the individuals with the highest sequence 1156 

coverage for a given locus. Additionally, we recorded the positions of missing data for each locus and 1157 

individual and coded genotypes as ‘missing’ in the simulated data if mutations fell within the range of 1158 

missing data in the observed data. 1159 

In a first step, we used a model testing framework to infer the most likely sequence of population splits 1160 

in the colonization history of orangutans. For this, we designed four models representing potential 1161 

colonization patterns into Sundaland (Figure 3A). We assumed a simplified population structure with 1162 

three distinct, random mating units composed of NT, ST, and BO metapopulations as described above. 1163 

We simulated 4x106 data sets for each model using the coalescent simulator ms [115]. Since we obtained 1164 

a large number of summary statistics, we used a partial least squares discriminant analysis (PLS-DA) 1165 

to extract the orthogonal components of the summary statistics that are most informative to discriminate 1166 

between the four competing models using the ‘plsda’ function of the R package ‘mixOmics’ v5.2.0 1167 

[116] in R version 3.2.2 [109]. For model testing, we used the R package ‘abc’ v2.1 [117] to perform a 1168 

multinomial logistic regression on the PLS transformed simulated and observed summary statistics, 1169 

using a tolerance level of 0.05% (8,000 simulations closest to the observed data). To find the optimal 1170 

number of PLS components for model selection, we performed cross-validations with 200 randomly 1171 

chosen sets of summary statistics for each model and assessed model misspecification rates when using 1172 

10, 12, 15, 18, and 20 components. 1173 

We found that using the first 18 PLS components resulted in the lowest model misspecification rate. 1174 

However, our model testing approach lacked power to reliably differentiate between pairs of models 1175 

with the same underlying species tree (i.e., model 1a vs. model 1b and model 2a vs. model 2b in Figure 1176 

3A), as evidenced by a high model misspecification rate of 47.63% across all four models. In order to 1177 

increase discrimination power with a new set of optimized PLS components, we therefore repeated the 1178 

PLS-DA and multinomial logistic regression with the two best-fitting models (model 1a vs. model 1b). 1179 

This resulted in a substantially lower model misspecification rate (36.00%). Moreover, no model 1180 

misassignment occurred with a posterior probability equal or higher than the observed value (0.976), 1181 

indicating a high confidence in the selected model (model 1a). 1182 

After establishing the order of population split events, we were interested in parameter estimates of 1183 

different aspects of the orangutan demographic history. For this, we applied a more complex model that 1184 

included additional population structure in NT and BO, as well as recent population size changes 1185 

(Figure 3B). The design of this model was informed by (i) PCA and ADMIXTURE analyses (Figs. 2B 1186 

and 2C), (ii) MSMC2 analyses (Figure 3C), and (iii) previous demographic modeling using more 1187 

limited sets of genetic makers [57]. For parameter estimation, we performed a total of 1x108 simulations 1188 
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as described above. Model parameterization and parameter prior distributions are shown in Table S5. 1189 

We used 100,000 random simulations to extract the orthogonal components of the summary statistics 1190 

that maximize the covariance matrix between summary statistics and model parameters using the ‘plsr’ 1191 

function of the R package ‘pls’ v2.5-0 [118]. We defined the optimal number of partial least squares 1192 

(PLS) components based on the drop in the root mean squared error for each parameter with the 1193 

inclusion of additional PLS components [119]. After transforming both the simulated and observed 1194 

summary statistics with the loadings of the extracted PLS components, we performed ABC-GLM post-1195 

sampling regression [120] on the simulations with the smallest Euclidean distance to the observed 1196 

summary statistics using ABCtoolbox v2.0 [121]. To find the optimal proportion of retained 1197 

simulations, we assessed the root-mean-integrated-squared error of the parameter posterior distributions 1198 

based on 1,000 pseudo-observed data sets (pods) randomly chosen from the simulated data. We found 1199 

that varying the tolerance level had little impact on the accuracy of the posterior distributions and 1200 

therefore used a tolerance level of 0.00002 (equaling 2,000 simulations) for parameter estimation. 1201 

To assess the goodness of fit of our demographic model, we calculated the marginal density and the 1202 

probability of the observed data under the general linear model (GLM) used for the post-sampling 1203 

regression with ABCtoolbox [120]. A low probability of the observed data under the GLM indicates 1204 

that the observed data is unlikely to have been generated under the inferred GLM, implying a bad model 1205 

fit. We obtained a p-value of 0.14, showing that our complex demographic model is well able to 1206 

reproduce the observed data. Additionally, we visualized the coverage of summary statistics generated 1207 

under the demographic model relative to the observed data by plotting the first 12 principal components 1208 

of the simulated and observed data. For this, we randomly selected 100,000 simulations and extracted 1209 

PCA components using the ‘prcomp’ function in R. The observed data fell well within the range of 1210 

simulated summary statistics for all 12 components. Furthermore, we checked for biased posterior 1211 

distributions by producing 1,000 pods with parameter values drawn from the prior distributions. For 1212 

each pods, we determined the quantile of the estimated posterior distribution within which the true 1213 

parameter values fell and used a Kolmogorov-Smirnov in R to test the resulting distribution of posterior 1214 

quantiles for uniformity. Deviations from uniformity indicate biased posterior distributions [122] and 1215 

the corresponding parameter estimates should be treated with caution. As expected from complex 1216 

demographic models, multiple parameters showed significant deviations from uniformity after 1217 

sequential Bonferroni correction [123]. However, in most of these distributions, data points were 1218 

overrepresented in the center of the histogram, which indicates that posterior distributions were 1219 

estimated too conservatively.  1220 
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G-PhoCS analysis 1221 

We used the full-likelihood approach implemented in G-PhoCS v1.2.3 [124] to compare different 1222 

models of population splitting with gene flow and to estimate parameters of the best-fitting model. Due 1223 

to computational constraints, we limited our data set to eight individuals with good geographic coverage 1224 

of the extant orangutan distribution (1 Northeast Alas, 1 West Alas, 2 Batang Toru, 2 Central/West 1225 

Kalimantan, 1 East Kalimantan, 1 Kinabatangan). We sampled 1-kb loci across the autosomal genome, 1226 

ensuring a minimum distance of 50 kb among loci to minimize linkage. To reduce the impact of natural 1227 

selection, we excluded loci located within 1 kb of any exonic region defined in the Pongo abelii 1228 

Ensembl gene annotation release 78. We coded sites as missing based on the following filter criteria: 1229 

low mappability, mean mapping quality less than 20, and individual coverage less than 5x. Sites without 1230 

at least one valid genotype per species were excluded completely. We only retained loci with at least 1231 

700 bp of sites with data, resulting in a total of 23,380 loci for which we extracted genotype information 1232 

for the eight selected individuals. 1233 

We compared models with the three different possible underlying population trees in a three taxon 1234 

setting (Borneo, Sumatra north of Lake Toba, and Batang Toru). We performed 16 independent G-1235 

PhoCS runs for each model, running the MCMC algorithm for 300,000 iterations, discarding the first 1236 

100,000 iterations as burn-in and sampling every 11th iteration thereafter. The first 10,000 iterations 1237 

were used to automatically adjust the MCMC finetune parameters, aiming for an acceptance rate of the 1238 

MCMC algorithm of 30–40%. We merged the resulting output files of independent runs and analysed 1239 

them with Tracer v1.6 [100] to ensure convergence among runs. We then used the model comparison 1240 

based on the Akaike information criterion through MCMC (AICM) [125, 126] implemented in Tracer 1241 

to assess the relative fit of the three competing models. 1242 

In agreement with the ABC analyses, the model positing the deepest split between Sumatra north of 1243 

Lake Toba and Batang Toru, followed by a split between south of Lake Toba and Borneo, showed a 1244 

much better fit to the data compared to the two other splitting patterns. Independent replicates of the 1245 

same model produced highly consistent posterior distributions, indicating convergence of the MCMC 1246 

algorithm. All parameters of the best-fitting model were estimated with high precision, as shown by the 1247 

small 95%-highest posterior density ranges (Table S5). Compared to the estimates from the ABC 1248 

analysis, G-PhoCS resulted in more recent divergence time estimates for both the NT/(BO,ST) and 1249 

BO/ST splits. This discrepancy might be caused by hypermutable CpG sites, which likely violate certain 1250 

assumptions of the G-PhoCS model [124]. We could not exclude CpG sites in our analysis due to the 1251 

absence of a suitable outgroup for calibration. Instead, we had to rely on a fixed genome-wide mutation 1252 

rate, which includes hypervariable CpG sites. An alternative explanation could be a likely bias in the 1253 

G-PhoCS results due to the restriction to a highly simplified demographic model as compared to our 1254 

ABC analyses; G-PhoCS assumes constant effective population sizes and migration rates in between 1255 
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population splits. However, this assumption is most likely violated in orangutans, as shown by the 1256 

results of our ABC analysis (Figure 3B, Table S5). 1257 

Cranial, dental, and mandibular morphology 1258 

We evaluated five qualitative and 44 quantitative cranial, dental, and mandibular variables (Tables S1 1259 

and S2). We chose variables that had previously been used to describe and differentiate orangutan 1260 

cranio-mandibular shape [61-63, 127-132]. Due to extensive dental wear of the Batang Toru specimen, 1261 

we limited our comparisons with the Padang cave material to the breadth of the upper and lower canines, 1262 

in addition to the length, breadth, and area (i.e., breadth x length) of the lower first molar, all of which 1263 

displayed a limited amount of wear. All measurements were taken by a single individual (AnN) in order 1264 

to reduce observer bias. 1265 

We used both univariate and multivariate statistics to evaluate the Batang Toru specimen in relation to 1266 

our comparative sample. As Batang Toru is only represented by a single sample, we first compared it 1267 

to the interquartile range (IQR, defined as the range between the first and the third quartile) and the 1268 

lower and upper inner fence (±1.5*IQR) for each separate sample population, using traditional methods 1269 

for evaluating outliers [133]. This allowed us to evaluate the Batang Toru specimen’s distance and 1270 

direction from the central tendency of our sample orangutan populations. We also conducted univariate 1271 

exact permutation tests for each morphological variable by removing a single sample for either the P. 1272 

abelii, P. pygmaeus, or P. p. palaeosumatrensis sample populations and then comparing the linear 1273 

distance to the mean of the remaining samples. This was done for each sample until all samples had a 1274 

calculated value. A linear distance between the P. tapanuliensis sample and the P. abelii, P. pygmaeus, 1275 

and P. p. palaeosumatrensis mean values (i.e., the test statistics) was then calculated and compared to 1276 

the sample distributions detailed above. P-values represent the number of samples from the sample 1277 

distribution that exceed the test statistic, divided by the total number of comparisons. In some cases, 1278 

specimens did not preserve the measurements utilized in this study (e.g., broken bone elements and/or 1279 

missing/heavily worn teeth), and so were excluded from comparisons. Sample sizes for univariate 1280 

comparisons of extant orangutan cranio-mandibular morphology are detailed in Table S1, whereas the 1281 

sample sizes for the univariate comparisons of extant and fossil teeth are detailed in Table S2. 1282 

We also conducted a PCA on 26 of our 39 cranio-mandibular variables, on a subset of our extant 1283 

orangutan sample, including P. abelii (n=8), P. pygmaeus (n=19), and the newly described P. 1284 

tapanuliensis specimen. The choice of 26 variables allowed us to maximize sample size and avoid 1285 

violating the assumptions of PCA [134]. A scree plot (using the princomp function from the base stats 1286 

package in R [135]) indicated that seven principal components were sufficient to be extracted, based on 1287 

the Kaiser criterion of eigenvalues at ≥1 [136]. Using the principal function from the psych R package 1288 

[137], we ran a PCA on the correlation matrix of our 26 selected variables, extracting seven principal 1289 

components with varimax rotation. 1290 
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To highlight the multivariate uniqueness of P. tapanuliensis, we used the extracted PCs and calculated 1291 

the Euclidean D2 distance for each sample relative to the P. abelii and P. pygmaeus centroids. We 1292 

grouped these distances into two distributions, referred to as the between species (i.e., the distances of 1293 

all P. abelii samples to the P. pygmaeus centroid plus all of the P. pygmaeus samples to the P. abelii 1294 

centroid) and within species (i.e., the distances of all P. abelii samples to the P. abelii centroid plus all 1295 

of the P. pygmaeus samples to the P. pygmaeus centroid) distributions. We then compared the Euclidean 1296 

D2 distances of P. tapanuliensis to the P. abelii and P. pygmaeus centroids (i.e., the test values), relative 1297 

to the two aforementioned sample distributions. Exact permutation p-values for these results were 1298 

calculated as the number of samples from the sample distribution that exceed the test statistic, divided 1299 

by the total number of comparisons. All Euclidean D2 distance were calculated in the base stats package 1300 

in R [135]. 1301 

Acoustic and behavioral analyses 1302 

We used both previously published [138-140] and newly collected data in our analyses of male long 1303 

calls. The current study includes n=130 calls from n=45 adult males across 13 orangutan field sites. In 1304 

addition to two individuals from Batang Toru, we sampled 14 individuals of P. abelii and 29 individuals 1305 

of P. pygmaeus. Using our comparative sample, we evaluated 15 long call variables (Table S3). We 1306 

chose variables and their definitions that had previously been described to differentiate orangutan male 1307 

long calls [138, 139, 141]. 1308 

We used both univariate and multivariate statistics to evaluate the Batang Toru specimen in relation to 1309 

our comparative sample. As Batang Toru is only represented by two individuals, we compared the mean 1310 

of these two sample points to the interquartile range (IQR) and the lower and upper inner fence 1311 

(±1.5*IQR) for each separate sample population [133]. As above, univariate exact permutation tests 1312 

were conducted for each long call variable by removing a single sample for either the P. abelii or P. 1313 

pygmaeus sample populations and then comparing the linear distance to the mean of the remaining 1314 

samples. This was done for each sample until all samples had a calculated value. A linear distance 1315 

between the average of the two P. tapanuliensis samples and the P. abelii or P. pygmaeus mean values 1316 

(i.e., the test statistics) was then calculated and compared to the sample distributions detailed above. P-1317 

values represent the number of samples from the sample distribution that exceed the test statistic, 1318 

divided by the total number of comparisons. In some cases, not all acoustic variables were available for 1319 

each individual. As such, sample sizes for univariate comparisons are detailed in Table S3. 1320 

 1321 

Geological and ecological analyses 1322 

We evaluated five ecological variables, including the type and age of geological parent material, 1323 

elevation, average temperature, and average rainfall, to highlight that the current ecological niche of P. 1324 



A NEW SPECIES OF ORANGUTAN 

39 

tapanuliensis is divergent relative to that of P. abelii and P. pygmaeus. For Sumatran populations, type 1325 

and age of geological parent material were digitized from the land unit and soil map series of Sumatra 1326 

[142-149]. No comparable geospatial data is available for Borneo, so we used previously published 1327 

materials to more broadly characterize areas populated by orangutans [150]. To maintain consistency, 1328 

elevation, average temperature, and average annual rainfall were collected from the WorldClim v. 1.4 1329 

bioclimatic variables dataset [151]. Using the digitized land unit/soil maps, we calculated the percentage 1330 

of Sumatran orangutan distribution [152] classified into four classes for each type (e.g., igneous, 1331 

metamorphic, sedimentary, and other rock [i.e., land units with a mixture of rock types]) and age (e.g., 1332 

Pre-Cenozoic, Tertiary, Quaternary, and other [i.e., land units with a mixture of ages]) of geological 1333 

parent material. For the elevation and climatic variables, we created 1km x 1km sample point grids for 1334 

each currently identified orangutan population in Borneo and Sumatra [152, 153], and sampled the three 1335 

aforementioned WorldClim datasets. 1336 

DATA AND SOFTWARE AVAILABILITY 1337 

Raw sequence read data have been deposited into the European Nucleotide Archive (ENA; 1338 

http://www.ebi.ac.uk/ena) under study accession number PRJEB19688. Mitochondrial and Y-1339 

chromosomal sequences are available from the Mendeley Data repository under ID code 1340 

doi:10.17632/hv2r94yz5n.1. 1341 



 

KEY RESOURCES TABLE 
 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Biological Samples   
17 Pongo spp. whole blood samples This paper See Table S4 
34 Pongo spp. cranial specimens This paper N/A 
Chemicals, Peptides, and Recombinant Proteins 
Proteinase K (20 mg/ml) Promega Cat#V3021 
Critical Commercial Assays 
Gentra Puregene Blood Kit Qiagen Cat#158467 
Deposited Data 
Pongo abelii reference genome ponAbe2 [50] http://genome.wustl.

edu/genomes/detail/
pongo-abelii/ 

Pongo abelii Ensembl gene annotation release 78 Ensembl https://www.ensembl
.org/Pongo_abelii/Inf
o/Index 

Human reference genome NCBI build 37, GRCh37 Genome Reference 
Consortium 

http://www.ncbi.nlm.
nih.gov/projects/gen
ome/assembly/grc/h
uman/ 

Whole-genome sequencing data of 5 Pongo abelii [50] SRA: PRJNA20869 
Whole-genome sequencing data of 5 Pongo pygmaeus [50] SRA: PRJNA74653 
Whole-genome sequencing data of 10 Pongo spp. [51] SRA: PRJNA189439 
Whole-genome sequencing data of 17 Pongo spp. This paper ENA: PRJEB19688 
Whole-genome sequencing data of 2 Homo sapiens Human Genome 

Diversity Project 
SRA: ERS007255 
and ERS007266 

13 Pongo MSY sequences This paper http://dx.doi.org/10.1
7632/hv2r94yz5n.1 

50 Pongo mitochondrial genome sequences This paper http://dx.doi.org/10.1
7632/hv2r94yz5n.1 

Pictures of paratypes This paper https://morphobank.
org/index.php/Projec
ts/ProjectOverview/p
roject_id/2591 

Additional supporting information and analyses This paper https://morphobank.
org/index.php/Projec
ts/ProjectOverview/p
roject_id/2591 

Oligonucleotides 
19 mitochondrial primer pairs This paper See Table S6 
Software and Algorithms 
FastQC v0.10.1. [72] https://www.bioinfor

matics.babraham.ac.
uk/projects/fastqc/ 

BWA v0.7.5 [73] http://bio-
bwa.sourceforge.net/ 

Picard Tools v1.101  http://broadinstitute.g
ithub.io/picard/ 

Key Resource Table



 

GATK v3.2.2. [74, 75] https://software.broa
dinstitute.org/gatk/ 

GEM library [76] http://algorithms.cna
g.cat/wiki/The_GEM
_library 

LDhat v2.2a [77] https://github.com/au
ton1/LDhat 

SHAPEIT v2.0 [79] https://mathgen.stats
.ox.ac.uk/genetics_s
oftware/shapeit/shap
eit.html 

BioEdit v7.2.0. [154] http://www.mbio.ncs
u.edu/bioedit/page2.
html 

NovoAlign v3.02. Novocraft http://www.novocraft.
com/products/novoal
ign/ 

SAMtools v0.1.19 [155] http://www.htslib.org/ 
VCFtools v0.1.12b. [156] https://vcftools.githu

b.io/index.html 
BEAST v1.8.0. [58] http://beast.communi

ty/index.html 
jModelTest v2.1.4. [60] https://github.com/dd

arriba/jmodeltest2 
Tracer v1.6  http://tree.bio.ed.ac.

uk/software/tracer/ 
FigTree v1.4.0.  http://tree.bio.ed.ac.

uk/software/figtree/ 
MEGA v6.06. [102] http://www.megasoft

ware.net/mega.php 
R 3.2.2 [109] https://www.r-

project.org 
ADMIXTURE v1.23 [110] https://www.genetics

.ucla.edu/software/a
dmixture/index.html 

PLINK v1.90b3q [111] https://www.cog-
genomics.org/plink2 

ADMIXTOOLS v4.1 [157] https://github.com/D
ReichLab/AdmixTool
s 

MSMC2 [112] https://github.com/st
schiff/msmc2 

ms [115] http://home.uchicago
.edu/rhudson1/sourc
e/mksamples.html 

R package ‘mixOmics’ v5.2.0 [116] https://www.rdocume
ntation.org/packages
/mixOmics 

R package ‘abc’ v2.1 [117] https://cran.r-
project.org/package
=abc 

R package ‘pls’ v2.5-0 [118] https://cran.r-
project.org/package
=pls 



 

ABCtoolbox v2.0 [121] http://www.unifr.ch/bi
ology/research/weg
mann/wegmannsoft 

G-PhoCS v1.2.3 [124] http://compgen.cshl.
edu/GPhoCS/ 

R package ‘psych’ [137] https://cran.r-
project.org/package
=psych 

R package ‘MASS’ [158] https://cran.r-
project.org/package
=MASS 
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Figure S1. Comparisons of five dental variables across P. abelii (red), P. pygmaeus (blue), P. 

tapanuliensis (black horizontal line), and P. p. palaeosumatrensis (green). Related to Figure 1B. 
Variables include upper canine breadth (A), lower canine breadth (B), lower M1 length (C), lower M1 

breadth (D), and lower M1 area (E). For each boxplot, the middle line is the median value of the 

Supplemental Data



 

distribution, with the box representing the first (lower extreme) and third (upper extreme) quartile 

values (i.e., the interquartile range [IQR]), and the whiskers representing the lower and upper extreme 

values that are within 1.5 x IQR of the first and third quartile values. Exact permutation analyses 

suggested that P. tapanuliensis could be differentiated statistically from the P. abelii mean for both 

the upper (p-value<0.001) and lower canine breadths (p-value<0.001) and from the P. ‘pygmaeus’ 

palaeosumatrensis mean for lower M1 length (p-value<0.001), breadth (p-value<0.001), and area (p-

value<0.001). P. tapanuliensis could not be differentiated statistically from the P. pygmaeus mean for 

any of the five dental measures.  



 

 

Figure S2. Kernel density mirror plot of Euclidean D2 analyses of six principal components 
calculated from 26 cranio-mandibular morphological variables. Related to Figure 1C. The 

between-species distribution (blue line) was calculated as the distances of all P. abelii samples to the 

P. pygmaeus centroid plus all of the P. pygmaeus samples to the P. abelii centroid, whereas the 

within-species distribution (red line) was calculated as the distances of all P. abelii samples to the P. 

abelii centroid plus all of the P. pygmaeus samples to the P. pygmaeus centroid. The dotted line 

represents the distance of the P. tapanuliensis sample to the P. abelii centroid (exact permutation test; 

within-species distribution: p-value<0.001; between-species: p-value<0.001), whereas solid line 

represents the distance of the P. tapanuliensis samples to the P. pygmaeus centroid (within-species: p-

value<0.001; between-species: p-value<0.001).  



 

 

Figure S3. Signatures of recent inbreeding in different orangutan populations. Related to Figure 
3C. Number of genomic fragments that are autozygous (y-axis) plotted against the total fraction of the 

genome covered by such fragments (x-axis). Each dot represents and individual, with sample origins 

represented by colors corresponding to those in Figure 2A. 
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Table S2. Summary statistics for the dental variables utilized in this study [mm]. Related to 
Figure 1B. 

Species UCB LCB LM1L LM1B LM1A
P. abelii     
Mean 17.90 15.96 13.12 10.81 141.86
SD 1.77 0.96 0.57 0.60 10.23
Minimum 15.67 14.34 12.48 10.08 128.51
1st Quartile 16.76 15.61 12.66 10.36 133.35
Median 17.37 16.05 13.00 10.87 145.43
3rd Quartile 19.38 16.29 13.56 11.18 148.32
Maximum 20.54 17.55 13.89 11.68 155.74
n 8 8 7 7 7
P. pygmaeus     
Mean 18.08 17.03 13.46 11.22 151.04
SD 1.57 1.61 0.78 0.70 13.58
Minimum 14.82 14.46 11.38 10.11 126.17
1st Quartile 17.37 15.59 13.17 10.57 140.12
Median 17.85 17.20 13.50 11.31 147.79
3rd Quartile 19.27 18.27 13.83 11.74 162.36
Maximum 20.86 19.60 15.01 12.45 171.56
n 19 19 20 20 20
P. p. palaeosumatrensis       
Mean 20.94 17.28 14.99 13.05 195.71
SD 1.91 1.47 0.53 0.58 14.09
Minimum 18.30 15.30 14.00 12.10 175.45
1st Quartile 19.10 16.05 14.60 12.70 183.80
Median 21.20 17.00 14.90 13.00 193.50
3rd Quartile 22.00 18.15 15.40 13.48 205.74
Maximum 24.60 20.50 16.20 14.50 234.90
n 21 39 90 90 90
P. tapanuliensis     

21.50 19.44 13.65 11.37 155.20
n 1 1 1 1 1
Permutation tests     
vs. P. abelii <0.001 <0.001 NS NS NS
vs. P. pygmaeus NS NS NS NS NS
vs. P. p. palaeosumatrensis NS NS <0.001 <0.001 <0.001

UCB = Upper canine breadth, LCB = Lower canine breadth, LM1L = Lower M1 length, LM1B = 
Lower M1 breadth, LM1A = Lower M1 area.  



 

Table S3. Summary statistics for the 15 long call variables utilized in this study. Related to 
STAR Methods. 

Species No. of   pulses Call Dur Sound Dur Interval Dur Max Freq R

  [s] [s] [s] [Hz]

P. abelii           
Mean 40.74 72.70 0.61 1.09 558.83
SD 9.63 24.17 0.08 0.19 121.73
Minimum 26.50 46.22 0.47 0.76 369.76
1st Quartile 32.94 50.42 0.57 0.98 468.26
Median 38.75 65.20 0.61 1.12 557.78
3rd Quartile 47.67 96.25 0.67 1.22 642.11
Maximum 56.50 113.60 0.74 1.46 746.86
n 14 14 14 14 14
P. pygmaeus           
Mean 25.41 53.59 0.69 1.37 706.99
SD 7.72 13.73 0.18 0.34 184.11
Minimum 10.00 28.76 0.43 0.80 257.25
1st Quartile 21.00 45.79 0.57 1.06 621.98
Median 25.00 51.80 0.66 1.39 689.88
3rd Quartile 29.00 60.68 0.79 1.63 836.52
Maximum 45.00 89.36 1.28 1.97 998.74
n 29 29 29 29 27
P. tapanuliensis           
Mean 57.11 112.06 0.66 1.06 830.64
SD 5.97 0.39 0.04 0.06 42.15
Minimum 52.89 111.78 0.63 1.02 800.84
1st Quartile 55.00 111.92 0.64 1.04 815.74
Median 57.11 112.06 0.66 1.06 830.64
3rd Quartile 59.22 112.19 0.67 1.08 845.55
Maximum 61.33 112.33 0.68 1.10 860.45
n 2 2 2 2 2
Permutation tests           
vs. P. abelii NS NS NS NS <0.001
vs. P. pygmaeus <0.001 NS NS NS NS

No. of pulses = Number of pulses, Call Dur = Duration of call, Sound Dur = Duration of sound, 
Interval Dur = Duration of interval, Max Freq R = Maximum frequency of roar (R) pulse type. 



 

Table S3 (continued). Summary statistics for the 15 long call variables utilized in this study. 
Related to STAR Methods. 

Species Min Freq R Peak Freq R Shape R Freq Max Freq Min
[Hz] [Hz] [Hz/s] [Hz] [Hz]

P. abelii           
Mean 141.77 310.61 709.07 824.29 64.04
SD 39.16 60.44 155.29 193.91 30.40
Minimum 88.90 186.82 450.06 460.38 17.64
1st Quartile 103.36 279.97 572.28 732.78 49.39
Median 148.70 294.25 739.86 837.01 61.87
3rd Quartile 173.99 362.27 833.23 948.13 75.76
Maximum 200.53 400.52 934.08 1111.25 145.50
n 14 14 14 14 14
P. pygmaeus           
Mean 177.36 403.82 749.46 984.66 62.13
SD 61.70 111.90 247.91 291.69 29.46
Minimum 74.08 202.17 230.78 354.29 10.58
1st Quartile 135.31 336.22 642.39 896.06 45.86
Median 173.87 387.60 730.15 977.19 57.00
3rd Quartile 215.93 436.23 870.72 1167.10 77.16
Maximum 361.07 732.13 1372.05 1498.60 144.44
n 27 27 27 29 29
P. tapanuliensis       
Mean 199.17 399.56 1036.53 1136.15 87.69
SD 7.57 19.16 118.19 128.95 10.08
Minimum 193.82 386.02 952.96 1044.97 80.57
1st Quartile 196.50 392.79 994.74 1090.56 84.13
Median 199.17 399.56 1036.53 1136.15 87.69
3rd Quartile 201.85 406.33 1078.31 1181.74 91.26
Maximum 204.53 413.11 1120.10 1227.33 94.82
n 2 2 2 2 2
Permutation tests           
vs. P. abelii NS NS <0.001 NS NS
vs. P. pygmaeus NS NS NS NS NS

Min Freq R = Minimum frequency of roar (R) pulse type, Peak Freq R = Peak frequency of roar pulse 
type, Shape R = Average shape of roar pulse type, Freq Max = Maximum frequency of call, Freq Min 
= Minimum frequency of call.  



 

Table S3 (continued). Summary statistics for the 15 long call variables utilized in this study. 
Related to STAR Methods. 

Species Rate Huitus Roar Sigh Intermediary
[pulses/20s] [%] [%] [%] [%]

P. abelii           
Mean 0.81 10.26 54.57 6.54 5.31
SD 0.11 13.68 15.66 4.29 5.41
Minimum 0.62 0.00 19.35 0.00 0.00
1st Quartile 0.72 3.15 48.03 5.44 1.10
Median 0.81 5.61 53.85 6.84 4.83
3rd Quartile 0.89 8.68 66.53 8.23 6.96
Maximum 0.97 48.39 75.76 13.51 16.67
n 14 14 14 14 14
P. pygmaeus           
Mean 0.52 16.26 28.36 15.51 11.02
SD 0.13 15.58 17.23 18.17 9.26
Minimum 0.30 0.00 0.00 0.00 0.00
1st Quartile 0.45 0.00 20.29 4.35 4.35
Median 0.48 16.54 26.92 8.00 8.21
3rd Quartile 0.64 23.11 35.55 20.30 15.38
Maximum 0.79 64.00 80.95 80.00 41.67
n 29 29 29 29 29
P. tapanuliensis           
Mean 0.88 7.80 39.58 20.47 1.98
SD 0.08 11.03 0.81 10.24 2.80
Minimum 0.82 0.00 39.01 13.23 0.00
1st Quartile 0.85 3.90 39.29 16.85 0.99
Median 0.88 7.80 39.58 20.47 1.98
3rd Quartile 0.91 11.69 39.87 24.09 2.97
Maximum 0.93 15.59 40.15 27.71 3.96
n 2 2 2 2 2
Permutation tests           
vs. P. abelii NS NS NS <0.001 NS
vs. P. pygmaeus <0.001 NS NS NS NS

Rate = Number of pulses per 20 s, Huitus = Percent number of huitus (H) pulse type, Roar = Percent 
number of roar (R)  pulse type, Sigh = Percent number of sigh (S) pulse type, Intermediary = Percent 
number of intermediary (I) pulse type. 
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Table S6. PCR primers for Sanger sequencing of mitogenomes. Related to STAR Methods. 

Primer name Primer sequence (3′–5′)  Primer positiona

F1 GYTTGGTCCTRGCCTTTC 77
R1 AGTACRCTTACCATGTTAC 1004
F2 ACACACCGCCCGTCAC 902
R2 CAGGTCAATTTCACTGGT 2109
F3 CATCACCTCTAGCATTAC 1931
R3 ATTAGGGCGTAGTTWGAG 3120
F4 AAGATGGCAGAGCCCG 2658
R4 CAACATTTTCGGGGTATG 3874
F5 CTGACRAAAGAGTTACTTTG 3698
R5 GGGCTTAGCTTAATTAAAG 5076
F6 CCAAGAGCCTTCAAAGC 4958
R6 CYGTRAATATRTGGTGGGC 6224
F7 TWCTCYCACCCAGGAGC 5732
R7 GGGGYTGGCTTGAAACC 6917
F8 AAAGGAAGGAATCGAACC 6873
R8 GTCTTTAACTTAAAAGGTTAA 7776
F9 GAGGCCCAYTGCAAAGC 7729
R9 TGGTGGCCTTGGTATGT 8858
F10 CYACCCARCTWTCCATAAA 8250
R10 CCTCATCAGTAGATGGAG 9425
F11 TTCCACGGCCTCCACG 9253
R11 GATAAGGGGTCGGAGG 10384
F12 AAAYAAATGATTTCGACTCAT 9863
R12 AAGCTTCAGGGGGTTTG 11125
F13 CGACAAACAGAYCTAAAATC 11047
R13 GTTGATRTTTGGGTCTGAG 12135
F14 GTGCAACTCCAAATAAAAG 11770
R14 AGGGCTCAGGCGTTGG 13016
F15 TCTGCACCCAYGCCTTC 12776
R15 GTATGATGGTTGTTTTTGG 13943
F16 GCACCCGCACCAATAG 13687
R16 GGCCTCAYGGGAGGAC 14609
F17 CGAGAYGTAAACTACGGC 14411
R17 AGTTAAGTRCTTTTTCTCTG 15435
F18 CAAGCAACAGAGCATAAC 15130
R18 TGTCTTATTTAAGGGGAAC 16017
F19 CTGTATCCGGCATCTGG 15943
R19 CGCGGTGGCTGGCAC 324
a, Sequence positions (3′-end) on the Pongo abelii reference mitochondrial genome NC_002083.



 

Supplemental References 

S1. Locke, D.P., Hillier, L.W., Warren, W.C., Worley, K.C., Nazareth, L.V., Muzny, D.M., Yang, 
S.-P., Wang, Z., Chinwalla, A.T., Minx, P., et al. (2011). Comparative and demographic 
analysis of orang-utan genomes. Nature 469, 529-533. 

S2. Prado-Martinez, J., Sudmant, P.H., Kidd, J.M., Li, H., Kelley, J.L., Lorente-Galdos, B., 
Veeramah, K.R., Woerner, A.E., O/'Connor, T.D., Santpere, G., et al. (2013). Great ape 
genetic diversity and population history. Nature 499, 471-475. 

 

 


