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The mechanical response of a homogeneous isotropic
linearly elastic material can be fully characterized by
two physical constants, the Young’s modulus and the
Poisson’s ratio, which can be derived by simple tensile
experiments. Any other linear elastic parameter can
be obtained from these two constants. By contrast, the
physical responses of nonlinear elastic materials are
generally described by parameters which are scalar
functions of the deformation, and their particular
choice is not always clear. Here, we review in a unified
theoretical framework several nonlinear constitutive
parameters, including the stretch modulus, the shear
modulus, and the Poisson function, that are defined
for homogeneous isotropic hyperelastic materials and
are measurable under axial or shear experimental
tests. These parameters represent changes in the
material properties as the deformation progresses,
and can be identified with their linear equivalent
when the deformations are small. Universal relations
between certain of these parameters are further
established, and then used to quantify nonlinear
elastic responses in several hyperelastic models for
rubber, soft tissue, and foams. The general parameters
identified here can also be viewed as a flexible basis
for coupling elastic responses in multi-scale processes,
where an open challenge is the transfer of meaningful
information between scales.

“The task of the theorist is to bring order into the chaos of the
phenomena of nature, to invent a language by which a class
of these phenomena can be described efficiently and simply.” -
Clifford Truesdell (1965)
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1. Introduction
An elastic body or material is linear-elastic or Hookean if the force needed to extend or compress
it by some distance is proportional to that distance [126]. The mechanical response of a
homogeneous isotropic linearly elastic material is fully characterized by two physical constants
that can be derived by simple experiments. For instance, a uniaxial tension or compression yields
both the Young’s modulus and the Poisson ratio. Any other linear elastic parameter can then
be obtained from these two constants [74]. The assumption that, under the small strain regime,
materials are linearly elastic with possibly a geometrically nonlinear behavior is successfully used
in many engineering applications.

However, many modern applications and biological materials involve large strains, whereby
the deformations are inherently nonlinear and the corresponding stresses depend on the
underlying material properties. Biological and bioinspired materials are the subject of continuous
intensive research efforts in biomedical applications, and can also be found in everyday life
as well as in several industrial areas, e.g., microelectronics, aerospace, pharmaceutical and
food processes. For these complex materials, reliable models supported by rigorous mechanical
analysis are needed and can also open the way to new applications [20,28,34,35,51,52,54,68,125].

Here we concentrate on the nonlinear elastic response of materials and do not discuss
possible viscoelastic behaviours which may be relevant in many biological systems. In general,
the mechanical responses of nonlinear elastic materials cannot be represented by constants but
are described by parameters which are scalar functions of the deformation. The complexity of
defining such functions comes from the fact that there are multiple ways to define strains and
stresses in nonlinear deformations, giving rise to multiple nonlinear functions corresponding to
the same linear parameter. Furthermore, the choice of these functions depends on how a particular
experiment is conducted and how the experimental data are processed [19,41,53,122,129,137].
For an elastic material subject to large strains, the usual approach is to approximate directly the
constants appearing in the mathematical model by employing numerical optimization techniques
in order to minimize the residual between the stress-strain relation and the experimental data.
Standard physical experiments are conducted mostly under uniaxial or biaxial loads [9,15,21,
22,44,46,70,71,88,101,110,112,117], and less frequently, under simple or pure shear and torsional
loading [69,70,88,92,111], while combined shear and axial, or torsion and axial, experiments are
rarer [15,67,80,101].

Table 1. Nonlinear Poisson functions for homogeneous isotropic hyperelastic materials subject to finite axial stretch (3.1),

with stretch parameter a> 0. In the small strain limit, these functions are equal to the Poisson’s ratio ν from linear

elasticity.

Poisson function νn(a) n strain tensor required linear elastic limit

ν(H)(a) =− lnλ(a)
ln a 0 Hencky (2.2) ν = lima→1 ν

(H)(a)

ν(B)(a) =
1−λ(a)
a−1 1 Biot (2.2) ν = lima→1 ν

(B)(a)

ν(G)(a) =
1−λ(a)2
a2−1 2 Green (2.2) ν = lima→1 ν

(G)(a)

ν(A)(a) =
λ(a)−2−1
1−a−2 -2 Almansi (2.2) ν = lima→1 ν

(A)(a)

When the geometries and boundary conditions of the deforming body are more complex,
or application-specific, inverse finite-element modelling can be employed [11,72,93,138]. This
involves the simulation of experiments whereby the material parameters are altered until the
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Table 2. Nonlinear stretch moduli for homogeneous isotropic hyperelastic materials subject to finite axial stretch (3.1), with

stretch parameter a> 0. In the small strain limit, these moduli are equal to the Young’s modulus E from linear elasticity.

stretch modulus equation stress tensor required linear elastic limit

Eincr(a) = ∂σ2

∂(ln a)
(3.12) Cauchy (2.3) E = lima→1E

incr(a)

E(a) = σ2

ln a−lnλ(a)

(
1− aλ′(a)

λ(a)

)
(3.13) Cauchy (2.3) E = lima→1 E(a)

Ẽincr(a) = ∂P2

∂(a−1) (3.17) 1st Piola-Kirchhoff (2.7) E = lima→1 Ẽ
incr(a)

Ẽ(a) = P2

a−λ(a)
(
1− λ′(a)

)
(3.18) 1st Piola-Kirchhoff (2.7) E = lima→1 Ẽ(a)

˜̃
E

incr

(a) = 2∂S2

∂(a2−1) (3.22) 2nd Piola-Kirchhoff (2.8) E = lima→1
˜̃
E

incr

(a)

˜̃
E(a) = 2S2

a2−λ2(a)

(
1− λ(a)λ′(a)

a

)
(3.23) 2nd Piola-Kirchhoff (2.8) E = lima→1

˜̃
E(a)

Table 3. Nonlinear shear moduli for homogeneous isotropic hyperelastic materials subject to simple shear superposed

on finite axial stretch (4.1). In the small strain limit, these moduli are equal to the shear modulus µ from linear elasticity.

shear modulus equation stress tensor required linear elastic limit

µ(a, k) = σ12

ka2
(4.7) Cauchy (2.3) µ= lima→1 limk→0 µ(a, k)

µ(a, k) = P12
ka (4.8) 1st Piola-Kirchhoff (2.7) µ= lima→1 limk→0 µ(a, k)

µ(a, k) = σ1−σ2

λ2
1−λ2

2
(4.9) Cauchy (2.3) µ= lima→1 limk→0 µ(a, k)

µ̂(k) = lima→1 µ(a, k) (4.13) Cauchy (2.3) or µ= limk→0 µ̂(k)

1st Piola-Kirchhoff (2.7)

µ̃(a) = limk→0 µ(a, k) (4.14) Cauchy (2.3) or µ= lima→1 µ̃(a)

1st Piola-Kirchhoff (2.7)

Table 4. Universal relation between nonlinear elastic parameters of homogeneous isotropic hyperelastic materials in the

general case where the nonlinear Poisson’s ratio ν(H)(a) = ν0(a) defined by (3.7) changes with the deformation, and

in the particular case when ν(H)(a) = ν is constant.

universal relation equation linear elastic limit

E(a)
µ̃(a)

= a2−a−2ν0(a)

ln a1+ν0(a)

(
1 + ν0(a) + aν′0(a) ln a

)
(4.24) E

µ = lima→1
E(a)
µ̃(a)

= 2 (1 + ν)

E(a)
µ̃(a)

= a2−a−2ν

ln a (4.25) E
µ = lima→1

E(a)
µ̃(a)

= 2 (1 + ν)
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force-displacement responses in the simulations match those measured by the experiments [23,44,
57]. For many practical applications, this can be very expensive computationally, especially when
complex geometries and a very fine mesh are involved. In addition, as the modelling errors and
the computational ones are undistinguishable, the model verification and validation processes are
prohibitive [2,94,95]. Hence, the choice of one set of computed parameters versus another remains
unclear [26]. Moreover, although under given forces, many isotropic elastic materials deform
uniquely, for nonlinear hyperelastic materials, this is not always the case [83,84,91]. In practice,
hyperelastic models containing fewer terms and constant coefficients, which can be altered
more easily or related directly to the linear elastic constitutive parameters, are usually preferred
even if their approximation of the experimental data is not the best [15,18,22,27,31,58,75,79,122].
This is further underpinned by the fact that, for more complex models, no particular physical
interpretation can be attributed to every individual constituent, which may increase the risk of
overfitting [59,60].

An alternative approach is to regard individual constants in a hyperelastic model as (non-
unique) contributors to general constitutive parameters that are explicit functions of the deformation
and convey nonlinear material properties that can be estimated directly from experimental
measurements. In this review, we consider nonlinear constitutive parameters for homogeneous
isotropic hyperelastic materials within the theoretical framework of finite elasticity, which in
principle can provide a complete description of elastic responses in a solid material under
loading [7,36,52,55,56,65,98,133]. In Section 2, we give a very short introduction to the finite
elasticity theory of homogeneous isotropic hyperelastic materials relevant to our discussion. In
Section 3, for an elastic material subject to triaxial stretch, we define and compare the nonlinear
Poisson functions and the bulk and stretch moduli in terms of different strain and stress tensors.
In Sections 4 and 5, for an elastic body subject to simple shear, or simple torsion, superposed
on axial stretch, we define the associated nonlinear shear or torsion moduli, respectively, and
relate them to the nonlinear stretch moduli via important universal relations. We recall that
universal relations are equations that hold for every material in a specified class [6,61,105]. The
key nonlinear parameters discussed here are summarized in Tables 1-4. Note that, in the small
strain limit, these parameters can be identified with the usual values from the linear elasticity
theory. In Section 6, we illustrate with examples how the general constitutive parameters defined
here can be employed to capture nonlinear elastic responses in different applications involving
large strain deformations.

2. Nonlinear elastic deformations
We consider a continuous three-dimensional material body in a compact domain Ω ⊂R3 subject
to a finite elastic deformation defined by the one-to-one, orientation preserving transformation
χ :Ω→R3. We denote by X the Lagrangian (reference, material) coordinates and by x the
Eulerian (current, spatial) coordinates of a material point, respectively. The deformation gradient
is F =∇χ=Grad x(X), with J =det F> 0. The corresponding displacement field is defined as [52,
p. 263] u(X) = x− X, and the displacement gradient is equal to ∇u =Grad u = F− I, where I is
the identity tensor.

(a) Strain tensors
In order to define the nonlinear strain tensors, we will make use of the polar decomposition theorem
[52, pp. 276], which states that: F has two unique multiplicative decompositions of the form F =

RU and F = VR, where U =
(

FT F
)1/2

and V =
(

FFT
)1/2

are symmetric and positive definite,

representing the right and left stretch tensors, respectively, and R is proper orthogonal (i.e., R−1 =
RT , with the superscript T denoting transpose, and detR = 1), representing the rotation tensor.
Of particular significance are the right Cauchy-Green tensor C = U2 = FT F and the left Cauchy-
Green tensor B = V2 = FFT . Since V = RURT , the right and left stretch tensors U and V have the
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same eigenvalues {λi}i=1,2,3, called the principal stretches. It follows that B = V2 = RU2RT =

RCRT , i.e., the right and left Cauchy-Green tensors have the same eigenvalues {λ2i }i=1,2,3. The
principal invariants of the Cauchy-Green tensors B and C are [121]

I1 =tr (B) = λ21 + λ22 + λ23,

I2 =
1

2

[
(trB)2 − tr

(
B2
)]

= λ21λ
2
2 + λ22λ

2
3 + λ23λ

2
1,

I3 =detB = λ21λ
2
2λ

2
3.

(2.1)

From these basic kinematic quantities, we can define strain tensors. Here, we identify a
one-parameter family of tensors combining both Lagrangian and Eulerian strain tensors [98,
pp.156,159]:

en =


(Cn/2 − I)/n if n> 0,

lnC1/2 if n= 0,

(Bn/2 − I)/n if n< 0.

(2.2)

Some of these tensors are routinely used, such as the Hencky (logarithmic or true) strain tensor
[62] e(H) = e0, the Biot strain tensor [12] e(B) = e1, the Green strain tensor [98, pp. 89-90] e(G) =

e2, the Almansi strain tensor [98, pp. 90-91] e(A) = e−2. The strain tensors en defined by (2.2)
are independent of rotation, and for small elastic deformations, they are equivalent to the

infinitesimal strain from the linear elastic theory e =
(
∇u +∇uT

)
/2. Throughout this review,

the bar over a scalar or a tensor is used to denote a value appearing in the theory of linear elasticity.

(b) Stress tensors
We focus on homogeneous isotropic hyperelastic materials described by a strain-energy density
function that depends only on the deformation gradient F and is identically zero at the unstressed
state, i.e., W(I) = 0. By the principle of objectivity, requiring that the strain-energy function is
unaffected by a superimposed rigid-body deformation, which involves a change of position, and
by the material symmetry,W can be expressed equivalently in terms of the principal invariants
{I1, I2, I3}, or alternatively, in terms of the stretches {λ1, λ2, λ3}. In order to simplify the notation,
we write the strain-energy function asW and infer its argument from the context. We define the
following stress tensors:

• The Cauchy stress tensor, representing the force per unit area in the current configuration,

σ= J−1
∂W
∂F

FT − pI = 2J−1F
∂W
∂C

FT − pI = 2J−1
∂W
∂B

B− pI, (2.3)

where p= 0 for compressible materials and J = 1 for incompressible materials. For
incompressible materials, p is the Lagrange multiplier associated with the incompressibility
constraint, commonly referred to as the arbitrary hydrostatic pressure [52, p. 286], [129], [133,
p. 74]. Note that the Cauchy stress tensor (2.3) is symmetric, i.e., σT =σ. For compressible
materials, the Cauchy stress tensor (2.3) can be written equivalently as [133, p. 140]

σ= 2J−1
(
∂W
∂I1

∂I1
∂B

+
∂W
∂I2

∂I2
∂B

+
∂W
∂I3

∂I3
∂B

)
B = β0 I + β1 B + β−1 B−1, (2.4)

where the constitutive coefficients

β0 =
2√
I3

(
I2
∂W

∂I2
+ I3

∂W

∂I3

)
, β1 =

2√
I3

∂W

∂I1
, β−1 =−2

√
I3
∂W

∂I2
(2.5)

are scalar functions of the invariants (2.1) [133, p. 23]. Thus the Cauchy stress tensor σ and the
left Cauchy-Green tensor B are coaxial, i.e., they have the same eigenvectors. When the material
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is incompressible, the stress tensor (2.3) is equal to

σ=−p I + β1 B + β−1 B−1. (2.6)

• The first Piola-Kirchhoff stress tensor, representing the force per unit area in the reference
configuration,

P = JσF−T =
∂W
∂F
− pF−T , (2.7)

where p= 0 for compressible materials and J = 1 for incompressible materials. The stress tensor
(2.7) is not symmetric in general.

• The second Piola-Kirchhoff stress tensor,

S = F−1P = JF−1σF−T = 2
∂W
∂C
− pC−1, (2.8)

where p= 0 for compressible materials and J = 1 for incompressible materials. This stress tensor
has no physical interpretation, but it is sometimes preferred, due to its symmetry, especially in
computational approaches [11,72,93]. For compressible materials, the stress tensor (2.8) has the
equivalent representation

S = 2

(
∂W
∂I1

∂I1
∂C

+
∂W
∂I2

∂I2
∂C

+
∂W
∂I3

∂I3
∂C

)
= γ0I + γ1C + γ−1C−1, (2.9)

where

γ0 = 2

(
∂W
∂I1

+ I1
∂W
∂I2

)
, γ1 =−2

∂W
∂I2

, γ−1 = 2I3
∂W
∂I3

(2.10)

are scalar functions of the principal invariants (2.1). Hence, the second Piola-Kirchhoff stress
tensor S and the right Cauchy-Green tensor C are coaxial. When the material is incompressible,
the stress tensor (2.8) is equal to

S = γ0 I + γ1 C− p0 C−1, (2.11)

where γ0 and γ1 are given by (2.10) and p0 is the arbitrary hydrostatic pressure.

For the stress tensors (2.3), (2.7), and (2.8), the principal components (i.e., their principal
eigenvalues) can be expressed in terms of derivatives ofW with respect to the principal stretches
(see Appendix A where different explicit forms for the principal stress components are given).

(c) Incremental elastic moduli
Assuming that the strain-energy function W is an analytic function of the strain tensor e, using
Einstein’s notation convention that repeated indices represents summation, this function can be
approximated as follows [93, p. 219],

W ≈E0 + Eijeij +
1

2
Eijkleijekl, (2.12)

where E0 is an arbitrary constant, {Eij}i,j=1,2,3 are elastic moduli of order 0, and
{Eijkl}i,j,k,l=1,2,3 are elastic moduli of order 1 [98, p. 331]. The elastic moduli are defined to
measure changes of the stress with the changes of strain. Such changes can be estimated, for
example, by the following incremental fourth-order tensors:



7

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

• The gradient of the Cauchy stress tensor σ with respect to the logarithmic strain tensor lnB1/2,

Eincr =
∂σ

∂
(
lnB1/2

) =
∂σ

∂ (lnV)
, (2.13)

with the components

Eincr
ijkl =

∂σij
∂ (lnVkl)

, i, j, k, l= 1, 2, 3. (2.14)

• The gradient of the first Piola-Kirchhoff stress tensor P with respect to the deformation gradient
F, or equivalently, the gradient of P with respect to the displacement gradient F− I,

Eincr =
∂P
∂F

=
∂P

∂ (F− I)
, (2.15)

with the components

Eincr
ijkl =

∂Pij
∂Fkl

=
∂Pij

∂ (Fkl − δkl)
, i, j, k, l= 1, 2, 3. (2.16)

Then Eincr
ijkl > 0 if the stress component Pij increases as the strain component Fkl − δkl increases,

and Eincr
ijkl < 0 if Pij decreases as Fkl − δkl increases. The fourth-order tensor (2.15) can be

expressed equivalently as

Eincr =
∂2W
∂F2

=
∂2W

∂ (F− I)2
. (2.17)

Since, for the unstressed state, ∂W/∂ (F− I) = P = 0, by (2.12), we can write

W ≈ 1

2
Eincr
ijkl

(
Fij − δij

)
(Fkl − δkl) . (2.18)

• The gradient of the second Piola-Kirchhoff stress tensor S with respect to the left Cauchy-Green
tensor C, or equivalently, half of the gradient of S with respect to the Green strain tensor e(G) =

(C− I) /2,

Eincr =
∂S
∂C

=
∂S

∂ (C− I)
, (2.19)

with the components

Eincr
ijkl =

∂Sij
∂Ckl

=
∂Sij

∂ (Ckl − δkl)
, i, j, k, l= 1, 2, 3. (2.20)

Then Eincr
ijkl > 0 if the stress component Sij increases as the strain component (Ckl − δkl) /2

increases, and Eincr
ijkl < 0 if Sij decreases as (Ckl − δkl) /2 increases. The fourth-order tensor (2.19)

takes the equivalent form

Eincr = 2
∂2W
∂C2

. (2.21)

In this case, since, for the unstressed state, ∂W/∂eG = S = 0, by (2.12), we can write

W ≈ 1

8
Eincr
ijkl

(
Cij − δij

)
(Ckl − δkl) . (2.22)

The incremental elastic moduli (2.13), (2.15), and (2.19) can be calculated for any hyperelastic
material for which the strain-energy function W is known, by using the definitions for the
corresponding stress tensors in compressible or incompressible materials, respectively. When the
strain-energy function is not known, assuming that the material is incompressible, these moduli
can be approximated from a finite number of experimental measurements where the applied force
is given. For compressible materials, suitable body forces may also need to be taken into account.
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(d) Adsciticious inequalities
In order for the behaviour of a hyperelastic material to be physically plasuible, there are some
universally accepted empirical requirements, which are constraints on the constitutive equations.
These constraints take the form of inequalities and cannot be obtained from first-principles, hence
they are named adscititious or empirical [4,38,102,131], [52, p. 291], [133, pp. 153-171].

(i) Baker-Ericksen inequalities

For a hyperelastic body subject to uniaxial tension, the deformation is a simple extension in
the direction of the tensile force if and only if the Baker-Ericksen (BE) inequalities stating that
the greater principal stress occurs in the direction of the greater principal stretch hold [3,76]. The BE
inequalities take the form(

σi − σj
) (
λi − λj

)
> 0 if λi 6= λj , i, j = 1, 2, 3, (2.23)

where {λi}i=1,2,3 and {σi}i=1,2,3 are the principal stretches and the principal stresses,
respectively, and “≥” replaces the strict inequality “>” in (2.23) if any two principal stretches
are equal.

(ii) Pressure-compression inequalities

Another set of plausible constitutive constraints are the pressure-compression (PC) inequalities
stating that each principal stress is a pressure (compression) or a tension if the corresponding principal
stretch is a contraction or an elongation (extension) [133, p. 155]. In practice, either or both of the
following “mean versions” of the PC conditions are physically more realistic,

σ1 (λ1 − 1) + σ2 (λ2 − 1) + σ3 (λ3 − 1)> 0, (2.24)

or

σ1

(
1− 1

λ1

)
+ σ2

(
1− 1

λ2

)
+ σ3

(
1− 1

λ3

)
> 0, (2.25)

if not all {λi}i=1,2,3 are equal to 1.

Remark 2.1. The BE and the PC inequalities are verified by most elastic materials, as confirmed by
experiments and experience. For a linear elastic material characterized by the shear and bulk moduli, the
PC inequalities require that these moduli are both positive, while the BE inequalities only require that the
shear modulus is positive. However, in finite elasticity in general, neither of these two sets of inequalities is
implied by the other [133, pp. 155-159].

3. Experiment #1: simple tension or compression
For a hyperelastic body under uniaxial tension (or compression) acting in the second direction,
the Cauchy stress takes the form

σ= diag (0, N, 0) , (3.1)

where diag(a, b, c) denotes the diagonal tensor with (a, b, c) on its diagonal, and N is a non-zero
constant. In this case, it is known that the corresponding deformation is a simple extension (or
contraction) of the form (see Figure 1)

x1 = λ(a)X1, x2 = aX2, x3 = λ(a)X3, (3.2)

where (X1, X2, X3) and (x1, x2, x3) are the Cartesian coordinates for the reference and current
configuration, respectively, a is a positive constant representing the extension (or contraction)
ratio, and λ(a) is the stretch ratio in the orthogonal direction.
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Figure 1. Cuboid (left) deformed by axial stretch (right) under the uniaxial load N .

For the deformation (3.2), the deformation gradient

F = diag (λ(a), a, λ(a)) (3.3)

is symmetric, hence the left and right Cauchy-Green tensors are equal,

B = C =diag
(
λ(a)2, a2, λ(a)2

)
. (3.4)

Then a> 1 for N > 0 (axial tension) and 0<a< 1 for N < 0 (axial compression) if and only if the
BE inequalities (2.23) [133, p. 158] hold. In [5], it was shown that a simple tensile load, i.e.,N > 0 in
(3.1), produces a simple extension, i.e., a> 1 in (3.2), provided the following empirical inequalities
hold: β0 ≤ 0, β1 > 0, and β−1 ≤ 0 [133, p. 158].

In the special case when this deformation is isochoric, i.e., det F = 1, the orthogonal
stretch takes the form λ(a) = 1/

√
a. For this deformation, since σ1 = σ3 = 0 and σ2 =N , the

BE inequalities (2.23) reduce to σ2 (a− 1/
√
a)> 0, i.e., σ2 > 0 for a> 1, and σ2 < 0 for a< 1.

Therefore, when the deformation (3.2) is isochoric, the PC inequalities (2.24) and (2.25) are
equivalent to the BE inequalities (2.23). In particular, for incompressible hyperelastic materials in
simple tension or compression, as any deformation is isochoric, the BE inequalities are equivalent
to the PC inequalities.

Using (3.4), the strain tensors (2.2) are simply given by

en = diag (en(λ(a)), en(a), en(λ(a))) , (3.5)

where, for any given stretch x> 0, we define the nonlinear strain [63]

en(x) =

{
ln(x) if n= 0,

(xn − 1)/n if n 6= 0.
(3.6)

In Figure 2A, we plot the values of different strain measures in the second direction as the stretch
parameter a varies.

(a) Nonlinear Poisson’s ratios
To introduce the nonlinear Poisson’s ratios, we consider an isotropic elastic material for which
uniaxial loading causes a simple tension or compression (3.2). These deformations can be
maintained in every homogeneous isotropic hyperelastic body by application of suitable traction
[39,40,119,120]. Then the nonlinear Poisson’s ratio is defined as the negative quotient of the strain
in an orthogonal direction to the strain in the direction of the applied force. Although, in practice,
Poisson’s ratios are more often computed for small strains, this definition applies also in the case
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Figure 2. Comparison of different: (A) finite axial strains en(a) versus axial stretch a; (B) nonlinear Poisson’s ratios for

an incompressible material. Note that every axial strain increases with the increasing axial stretch, but only by using

the Hencky (logarithmic) strain the corresponding Poisson function remains constant and equal to 0.5, capturing the

characteristic property that the material volume remains fixed.

of large strains [8]. Whereas in the small strain regime the Poisson’s ratio is a constant, in finite
strain, this ratio is a scalar function of the deformation. Moreover, for a nonlinear elastic material,
the Poisson function can be expressed using different strains.

Using (3.5), we define a family of nonlinear Poisson functions as follows:

νn(a) =−
en(λ(a))

en(a)
. (3.7)

As before, we can specialize these functions for known strain tensors with the attached names:
Hencky form with ν(H)(a) = ν0(a); Biot form with ν(B)(a) = ν1(a); Green form with ν(G)(a) =

ν2(a); and Almansi form with ν(A)(a) = ν−2(a). In Table 1, we summarize the nonlinear Poisson
functions (3.7) for typical values of n.

The nonlinear Poisson’s ratios νn(a) defined by (3.7) can be calculated directly from
experimental measurements, without prior knowledge of the strain-energy function describing
the material from which the elastic body undertaking the deformation is made. For infinitesimal
deformations, i.e., when a→ 1, the Poisson’s ratios coincide with the Poisson’s ratio from the
linear elastic theory,

ν = lim
a→1

νn(a) =− lim
a→1

λ′(a), (3.8)

where λ′(a) = dλ(a)/da. If a material is incompressible, then λ(a) = a−1/2 and the different
nonlinear Poisson functions from Table 1 are plotted in Figure 2B. In particular, for n= 0,
λ(a) = a−ν0(a), i.e., the Hencky form is the only Poisson function that remains constant and equal
to ν0(a) = ν = 1/2, capturing the characteristic conservation in the material volume.

For many materials, in the small strain regime, the Poisson’s ratio takes values between 0 and
0.5 [133, p. 154], but apparent Poisson’s ratios that are either negative or greater than 0.5 can
also be obtained when large deformations occur. For anisotropic materials, different Poisson’s
ratios may also be found as the material is extended or compressed in different directions. For
example, negative Poisson’s ratios were reported in cork under non-radial (axial or transverse)
compression [43], while Poisson’s ratios with values between 0.6 and 0.8 were measured in some
woods where the primary strain was extensional in the radial direction and the secondary strain
was compressive in the transverse direction [32]. An apparent Poisson’s ratio equal to 1 was also
calculated for honeycomb structures with hexagonal cells under the small strain assumption [51].
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(b) Nonlinear bulk moduli
Volume changes can also be quantified by the nonlinear bulk modulus. Under finite triaxial
deformation, we define this modulus as

κ=
1

3

∂ (σ1 + σ2 + σ3)

∂(J − 1)
, (3.9)

where {σi}i=1,2,3 are the axial stresses and J − 1 is the volumetric strain.
For rubberlike materials, experiments which measure volume changes under finite uniaxial

tension [98, pp. 516-517], [103] suggest that the bulk modulus remains constant and equal to the
classical bulk modulus, i.e., κ= κ. This seems to render the bulk modulus more attractive than
the strain-dependent Poisson’s ratio when explicit material properties are sought experimentally.
However, more experimental data exploring finite volume changes in elastic materials are needed.

In hydrostatic compression [14,97], [98, p. 519], nonlinear pressure versus volume responses of
rubber materials were found. In his case, σ1 = σ2 = σ3 =−Jp, where p is the hydrostatic pressure,
and the bulk modulus (3.9) takes the simpler form [63]

κ=−J ∂p
∂J
− p. (3.10)

Under small strain, the corresponding modulus is κ=−J∂p/∂J . Volume change has also been
observed under hydrostatic tension, but the deformation in this case is small before the elasticity
limit is reached and cavitation occurs [98, p. 520].

(c) Nonlinear stretch moduli
Another important quantifier of isotropic linear elasticity is the Young’s modulus. It is, therefore,
important to define a nonlinear version of this parameter. For this purpose, we introduce
the nonlinear stretch modulus to study the nonlinear elastic response of an isotropic hyperelastic
material under the uniaxial tension or compression (3.1). The role of this elastic modulus is to
reflect stiffening (or softening) in a material under increasing axial load. That is, when the axial
stress increases as the axial deformation increases, there is an increase of the stretch modulus
and the material stiffens, and if the axial stress decreases as the axial deformation increases,
then there is a corresponding decrease in the stretch modulus as the material softens. We recall
that, for uniaxial tension or compression, the first and third principal stretches are λ2 = a and
λ1 = λ3 = λ(a). As the stretch modulus depends on both a stress and a strain, there are multiple
choices based on the particular stress and strain tensors considered. Here, we consider three
typical moduli:

• For the Cauchy stress tensor, by subtracting the third from the second principal component
given by (A 3), we obtain

σ2 = σ2 − σ3 = (ln a− lnλ(a))

(
ζ1 −

ζ−1
ln a lnλ(a)

)
. (3.11)

It follows that σ2 is proportional to ln a− lnλ(a), and similarly for incompressible materials,
with λ(a) = a−1/2 if we subtract the third from the second principal component given by (A 14).
Applying the general formula for the elastic moduli (2.14), we can define the incremental stretch
modulus in terms of the logarithmic strain e0 as follows:

Eincr(a) =
∂σ2

∂ (ln a)
=

∂σ2
∂ (ln a− lnλ(a))

(
1− aλ′(a)

λ(a)

)
. (3.12)

Alternatively, as σ2 is proportional to ln a− lnλ(a), we can define a nonlinear stretch modulus of
the form

E(a) =
σ2

ln a− lnλ(a)

(
1− aλ′(a)

λ(a)

)
. (3.13)
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For incompressible materials, where λ(a) = a−1/2, (3.13) simplifies to

E(a) =
σ2(a)

ln a
. (3.14)

When a→ 1, i.e., for small axial strains, both the incremental modulus defined by (3.12),
commonly known as the tangent modulus, and the nonlinear modulus given by (3.13), also
known as the secant modulus, converge to the Young’s modulus from the linear elastic theory,

E = lim
a→1

Eincr(a) = lim
a→1

E(a) = lim
a→1

σ2(a)

ln a
. (3.15)

• For the first Piola-Kirchhoff stress tensor, by subtracting the third from the second principal
component given by (A 7), we find

P2 = P2 − P3 = (a− λ(a))
(
ρ1 −

ρ−1
aλ(a)

)
. (3.16)

Hence P2 is proportional to a− λ(a), and similarly for incompressible materials if we subtract
the third from the second principal component given by (A 16). Applying the general formula for
the elastic moduli (2.16), we define the incremental stretch modulus [11, pp. 224]

Ẽincr(a) =
∂P2

∂(a− 1)
=

∂P2

∂(a− λ(a))
(
1− λ′(a)

)
. (3.17)

In this case, as P2 is proportional to a− λ(a), we can also define the nonlinear stretch modulus

Ẽ(a) =
P2

a− λ(a)
(
1− λ′(a)

)
. (3.18)

For incompressible materials, (3.18) takes the form

Ẽ(a) =
P2

a3/2 − 1

(
a1/2 +

1

2a

)
. (3.19)

When a→ 1, both elastic moduli (3.17) and (3.18) converge to the Young’s modulus

E = lim
a→1

Eincr(a) = lim
a→1

Ẽ(a) = lim
a→1

σ2
ln a

. (3.20)

• For the second Piola-Kirchhoff stress tensor, subtracting the third from the second principal
component given by (A 11) yields

S2 = S2 − S3 =
(
a2 − λ2(a)

)(
γ1 −

γ−1
a2λ(a)2

)
, (3.21)

i.e., S2 is proportional to a2 − λ(a)2, and similarly for incompressible materials when we subtract
the third from the second principal component given by (A 18). Then, using the formula for the
elastic moduli (2.20), we define the following incremental stretch modulus in terms of the strain
measure e2: ˜̃

E
incr

(a) =
2∂S2

∂ (a2 − 1)
=

2∂S2
∂ (a2 − λ(a)2)

(
1− λ(a)λ′(a)

a

)
. (3.22)

Alternatively, as S2 is proportional to a2 − λ(a)2, we can define the nonlinear stretch modulus

˜̃
E(a) =

2S2
a2 − λ(a)2

(
1− λ(a)λ′(a)

a

)
. (3.23)

If the material is incompressible, then (3.23) becomes

˜̃
E(a) =

2S2
a3 − 1

(
a+

1

2a2

)
. (3.24)

When a→ 1, both moduli defined by (3.17) and (3.18), respectively, converge to the Young’s
modulus

E = lim
a→1

Eincr(a) = lim
a→1

˜̃
E(a) = lim

a→1

σ2
ln a

. (3.25)
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We summarize these nonlinear stretch moduli in Table 2, and note that, when the strain-energy
function is known, the incremental stretch moduli (3.12), (3.17), and (3.22) can be calculated from
the definitions of the respective axial stresses (see Section (b)), but they are difficult to estimate
accurately from a finite number of experimental measurements. However, when the strain-energy
function is not known, the nonlinear stretch moduli (3.13), (3.18), and (3.23) can be obtained
directly from experimental measurements where the axial force is prescribed. Moreover, while
special assumptions regarding the strain-energy function are required in order for the incremental
stretch moduli (3.12), (3.17), and (3.22) to be positive, the nonlinear stretch moduli (3.13), (3.18),
and (3.23) are always positive if the PC inequalities (2.24) or (2.25) hold.

4. Experiment # 2: simple shear superposed on axial tension
In isotropic linear elasticity, the Poisson’s ratio and Young’s modulus fully characterize a
material. In particular, the response of a material under shear is given by its shear modulus
µ=E/(2(1 + ν)). Yet, in nonlinear deformation the shear response cannot be simply obtained
from the nonlinear Poisson’s ratio and the nonlinear stretch modulus. Therefore, we introduce
the nonlinear shear modulus to study the nonlinear elastic response of an isotropic hyperelastic
material subject to the following simple shear superposed on axial stretch [109] (see Figure 3),

x1 = λ(a)X1 + kaX2, x2 = aX2, x3 = λ(a)X3, (4.1)

where (X1, X2, X3) and (x1, x2, x3) are the Cartesian coordinates for the reference and current
configuration, respectively, and a and k are positive constants representing the axial stretch and
the shear parameter, respectively. This deformation can be maintained in every homogeneous
isotropic hyperelastic body by application of suitable traction [30,40,119].

Figure 3. Cuboid (left) deformed by simple shear superposed on axial stretch (right), showing the unit normal and tangent

vectors on an inclined face.

For the deformation (4.1), the gradient tensor is

F =

 λ(a) ka 0

0 a 0

0 0 λ(a)

 , (4.2)

and the left Cauchy-Green tensor is

B =

 λ(a)2 + k2a2 ka2 0

ka2 a2 0

0 0 λ(a)2

 . (4.3)
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The corresponding principal stretches {λi}i=1,2,3, such that {λ2i }i=1,2,3 are the eigenvalues of
the Cauchy-Green tensor (4.3), satisfy

λ21 =
λ(a)2 + a2

(
1 + k2

)
+

√
[λ(a)2 + a2 (1 + k2)]

2 − 4a2λ(a)2

2
,

λ22 =
λ(a)2 + a2

(
1 + k2

)
−
√

[λ(a)2 + a2 (1 + k2)]
2 − 4a2λ(a)2

2
= a2λ(a)2λ−21 ,

λ23 = λ(a)2,

(4.4)

and the associated principal invariants (2.1) are equal to

I1 = λ21 + λ22 + λ23 = k2a2 + a2 + 2λ(a)2,

I2 = λ21λ
2
2 + λ22λ

2
3 + λ23λ

2
1 = k2a2λ(a)2 + 2a2λ(a)2 + λ(a)4,

I3 = λ21λ
2
2λ

2
3 = a2λ(a)4.

(4.5)

By the representation (2.4), the non-zero components of the associated Cauchy stress are
among the following components:

σ11 = σ33 + k2a2β1,

σ12 = ka2
(
β1 −

β−1
a2λ(a)2

)
,

σ22 = σ33 +
(
a2 − λ(a)2

)(
β1 −

β−1
a2λ(a)2

)
+ k2

β−1
λ(a)2

,

σ33 = β0 + β1λ(a)
2 +

β−1
λ(a)2

.

(4.6)

Similar expressions are obtained for incompressible materials by specialising λ(a) = a−1/2 and
by adding an arbitrary pressure to the diagonal terms of the Cauchy stress. For compressible and
incompressible materials, the principal Cauchy stresses are given by (A 1)-(A 2) and (A 12)-(A 13),
respectively.

(a) Nonlinear shear moduli
By (4.6), the shear component of the Cauchy stress tensor, σ12, is proportional to ka2. In this case,
a nonlinear shear modulus can be defined as follows:

µ(a, k) =
σ12
ka2

= β1 −
β−1

a2λ(a)2
. (4.7)

For incompressible materials, as the shear component P12 = σ12/a of the first Piola-Kirchhoff
stress tensor (2.7) is proportional to the shear strain ka, the nonlinear shear modulus (4.7) is equal
to

µ(a, k) =
P12

ka
=
σ12
ka2

= β1 −
β−1
a
. (4.8)

This modulus is independent of the Lagrange multiplier p, and can be estimated directly from
experimental measurements if the shear force is known.

For both compressible and incompressible materials, by the representations (A 1)-(A 2) and (A
12)-(A 13) of the principal Cauchy stresses, respectively, the nonlinear shear modulus defined by
(4.7) can be written equivalently as

µ(a, k) =
σ1 − σ2
λ21 − λ22

. (4.9)

Hence, the nonlinear shear modulus (4.9) is positive if the BE inequalities (2.23) hold. Also, for a
cuboid deformed by simple shear superposed on axial stretch (4.1), in the plane of shear, the unit
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normal and tangent vectors on the inclined faces are, respectively (see Figure 3),

n =± 1√
1 + k2

 1

−k
0

 , t =± 1√
1 + k2

 k

1

0

 , (4.10)

and the tangent components of the Cauchy stress and left Cauchy-Green tensor are, respectively,

σt = tTσn =
kλ(a)2

1 + k2

(
β1 −

β−1
a2λ(a)2

)
and Bt = tTBn =

kλ(a)2

1 + k2
. (4.11)

Then (4.7) is equal to

µ(a, k) =
σt
Bt

= β1 −
β−1

a2λ(a)2
. (4.12)

When a→ 1, i.e., for simple shear superposed on infinitesimal axial stretch, in both
compressible and incompressible materials, the nonlinear shear modulus given by (4.7) converges
to the nonlinear shear modulus for simple shear [133, pp. 174-175],

µ̂(k) = lim
a→1

µ(a, k) = β̂1 − β̂−1, (4.13)

where β̂1 = lima→1 β1 and β̂−1 = lima→1 β−1.
When k→ 0, i.e., for infinitesimal simple shear superposed on finite axial stretch, the nonlinear

shear modulus given by (4.7) converges to

µ̃(a) = lim
k→0

µ(a, k) = β̃1 −
β̃−1

a2λ(a)2
, (4.14)

where β̃1 = limk→0 β1 and β̃−1 = limk→0 β−1. For incompressible materials,

µ̃(a) = β̃1 −
β̃−1
a
. (4.15)

We summarize the nonlinear shear moduli in Table 3. Note that, when a→ 1 and k→ 0, these
moduli converge to the linear shear modulus of the infinitesimal theory [133, p. 179], i.e.,

µ= lim
a→1

lim
k→0

µ(a, k) = lim
k→0

µ̂(k) = lim
a→1

µ̃(a) = β1 − β−1, (4.16)

where β1 = lima→1 limk→0 β1 and β−1 = lima→1 limk→0 β−1.

Remark 4.1. For simple shear, i.e., when a= 1, the shear modulus (4.7) is in agreement with the
generalized shear modulus defined by Truesdell & Noll [133, pp. 174-175], and also with the shear modulus
defined by Moon & Truesdell [89]. However, for simple shear superposed on axial stretch, with a 6= 1, the
shear modulus (4.7) differs by a factor a2 from the shear modulus in [89]. Nevertheless, for the nonlinear
shear modulus defined here, the equivalent form (4.9) is valid for any a> 0, including a= 1 as in the
simple shear case [133, p. 175].

(b) Poynting modulus in shear
We recall that the (positive or negative) Poynting effect is a large strain effect observed when an
elastic cube is sheared between two plates and stress is developed in the direction normal to
the sheared faces, or when a cylinder is subjected to torsion and the axial length changes [29,
69,81,82,88,89,104,114,130]. This effect naturally captures the coupling between normal and shear
deformations when an elastic cube is sheared, and between axial and torsion deformations when
a cylinder is twisted.
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When an incompressible cube which is free on its outer surface is subject to simple shear, it
exhibits an axial stretch proportional to the square of the shear,

|a− 1|= |a(k)− 1|= µP k
2a2, (4.17)

where the parameter µP is a positive constant. When a> 1, the classical Poynting effect occurs,
and if a< 1, then the negative Poynting effect is observed. To estimate the value of µP in (4.17),
identified here as the Poynting modulus, assuming σ33 = 0 in (4.6), as λ(a) = a−1/2, the normal
force is equal to

N(a, k) = σ22 =

(
a2 − 1

a

)(
β1 −

β−1
a

)
+ k2a2

β−1
a
. (4.18)

Then, taking N(a, k) = 0 in (4.18) provides an equation for the axial stretch a corresponding to
the amount of shear ka. By (4.17) and (4.18), noting that a→ 1 as k→ 0, we obtain

lim
k→0

∣∣∣a2 − 1/a
∣∣∣

k2a2
= lim
k→0

∣∣∣∣∣ β̃−1/a

β̃1 − β̃−1/a

∣∣∣∣∣=
∣∣β−1∣∣

β1 − β−1
, (4.19)

and by (4.17) and (4.19),

µP = lim
k→0

|a− 1|
k2a2

=
1

3
lim
k→0

∣∣∣a3 − 1
∣∣∣

k2a2
=

1

3
lim
k→0

∣∣∣a2 − 1/a
∣∣∣

k2a2
=

∣∣β−1∣∣
3
(
β1 − β−1

) . (4.20)

Remark 4.2. By (4.20), if β−1 = 0, then the Poynting modulus vanishes, meaning that the Poynting
effect is not observed. When β−1 < 0, the classical Poynting effect occurs, and if β−1 > 0, then the negative
Poynting effect is obtained. In [81,82], it was shown that positive or negative Poynting effects are possible
if the following generalized empirical inequalities are assumed: β0 ≤ 0 and β1 > 0, without any constraint
on β−1.

(c) Universal relations between nonlinear shear and stretch moduli
For a unit cube of unconstrained material subject to simple shear superposed on finite axial stretch
(4.1), when σ33 = 0 in (4.6), the normal force is equal to

N(a, k) = σ22 =
(
a2 − λ(a)2

)(
β1 −

β−1
a2λ(a)2

)
+ k2

β−1
λ(a)2

. (4.21)

Taking the limit of infinitesimal shear, we obtain

Ñ(a) = lim
k→0

N(a, k) =
(
a2 − λ(a)2

)(
β̃1 −

β̃−1
a2λ(a)2

)
, (4.22)

and by (4.14),

Ñ(a)

µ̃(a)
= lim
k→0

N(a, k)

µ(a, k)
= a2 − λ(a)2. (4.23)

Therefore, as the axial stretch a> 1 increases, the magnitude of the normal force Ñ relative to the
shear modulus µ̃ increases. This is a universal relation, i.e., it holds independently of the material
responses β1 and β−1. Recalling that, under infinitesimal simple shear, no Poynting effect is
observed [81,82], i.e., the resulting normal force is zero, the following universal relation holds
between the nonlinear shear modulus in the small shear limit (4.14) and the nonlinear stretch
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modulus (3.13) for the axial stretch a under the axial force Ñ(a)

E(a)

µ̃(a)
=
Ñ(a)

µ̃(a)

1

ln a− lnλ(a)

(
1− aλ′(a)

λ(a)

)
=
a2 − a−2ν0(a)

ln a1+ν0(a)

(
1 + ν0(a) + aν′0(a) ln a

)
. (4.24)

If the Poisson’s ratio defined by ν(H) = ν0 is constant, ν0 = ν, then λ(a) = a−ν0 = a−ν and the
universal relation (4.24) becomes

E(a)

µ̃(a)
=

Ñ(a)

µ̃(a) ln a
=
a2 − a−2ν

ln a
. (4.25)

In particular, for incompressible materials, where ν = 1/2,

E(a)

µ̃(a)
=

Ñ(a)

µ̃(a) ln a
=
a2 − a−1

ln a
. (4.26)

In the linear elastic limit, where a→ 1, the classical relation between the Young’s modulus and
the linear shear modulus is recovered, i.e.,

E

µ
= lim
a→1

E(a)

µ̃(a)
= 2(1 + ν). (4.27)

For incompressible materials, E/µ= 3. The universal relations (4.24) and (4.25) and their linear
elastic limits are summarized in Table 4. These relations will be employed in the calibration of
hyperelastic models to experimental data for rubberlike material in Section 6.

5. Experiment #3: simple torsion superposed on axial tension
In this Section, nonlinear elastic moduli are obtained under certain non-homogeneous finite
deformations, which are controllable for all incompressible elastic solids in the absence of body
forces. Generalizations of these deformations are also possible for specific isotropic compressible
materials [17]. A circular cylinder of incompressible isotropic hyperelastic material occupying
the domain (R,Θ,Z)∈ [0, R0]× [0, 2π]× [−Z0, Z0], where R0 and Z0 are positive constants, is
deformed by the simple torsion superposed on axial stretch [133, pp. 189-191] (see Figure 4)

r=
R√
a
, θ=Θ + τaZ, z = aZ, (5.1)

where (R,Θ,Z) and (r, θ, z) are the cylindrical coordinates for the reference and the current
configuration, respectively.

Figure 4. Circular cylinder (left) deformed by simple torsion superposed on axial stretch (right).
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For this deformation, the deformation gradient is

F =

 ∂r/∂R 0 0

0 (r/R)∂θ/∂Θ r∂θ/∂Z

0 0 ∂z/∂Z

=

 1/
√
a 0 0

0 1/
√
a rτa

0 0 a

 , (5.2)

where a and τ are positive constants representing the axial stretch and the torsion parameter,
respectively, and the left Cauchy-Green tensor is

B =

 1/a 0 0

0 1/a+ r2τ2a2 rτa2

0 rτa2 a2

 . (5.3)

By (2.6), the non-zero components of the Cauchy stress tensor are among the following
components,

σrr =−p+
β1
a

+ β−1a,

σθθ = σrr + β1r
2τ2a2,

σθz = rτa2
(
β1 −

β−1
a

)
,

σzz = σrr +

(
a2 − 1

a

)(
β1 −

β−1
a

)
+ r2τ2a2

β−1
a
,

(5.4)

where p depends only on r.

(a) Nonlinear torsion moduli
The classical torsion modulus is measured as the ratio between the torque and the twist. For the
deformation (5.1), if Brr < 1 and σrr =−p0 ≤ 0 at the external surface r= r0, then at this surface,
the torque is equal to [133, pp. 190-191]

T (a, τ) = 2π

∫r0
0
σθzr

2dr= 2πτa2
∫r0
0

(
β1 −

β−1
a

)
r3dr. (5.5)

The resultant normal force is [133, p. 191]

N(a, τ) =2π

∫r0
0
σzzrdr

=2π

∫r0
0

(σzz − σrr) rdr + 2π

∫r0
0
σrrrdr

=− πp0r20 + 2π

(
a2 − 1

a

) ∫r0
0

(
β1 −

β−1
a

)
rdr

− πτ2a2
∫r0
0

(
β1 −

2β−1
a

)
r3dr.

(5.6)

As the torque is proportional to the twist, we define the nonlinear torsion modulus as the ratio
between the torque T given by (5.5) and the amount of twist τa,

µT (a, τ) =
T

τa
= 2πa

∫r0
0

(
β1 −

β−1
a

)
r3dr=

2π

a

∫R0

0

(
β1 −

β−1
a

)
R3dR. (5.7)

Note that this modulus increases as the radius R0 of the (undeformed) cylinder increases. When
a→ 1, i.e., for simple torsion superposed on infinitesimal axial stretch, the modulus defined by
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(5.7) converges to the torsion modulus for simple torsion [133, p. 192],

µ̂T (τ) = lim
a→1

T

τ
=
πr40
2

(
β̂1 − β̂−1

)
=
πR4

0

2

(
β̂1 − β̂−1

)
, (5.8)

where β̂1 = lima→1 β1 and β̂−1 = lima→1 β−1. When τ → 0, i.e., for infinitesimal torsion
superposed on finite axial stretch, the modulus given by (5.7) converges to

µ̃T (a) = lim
τ→0

µT (a, τ) = lim
τ→0

T

τa
=
πar40
2

(
β̃1 −

β̃−1
a

)
=
πR4

0

2a

(
β̃1 −

β̃−1
a

)
, (5.9)

where β̃1 = limτ→0 β1 and β̃−1 = limτ→0 β−1. If τ → 0 and a→ 1, then these moduli converge to
the linear elastic modulus

µT = lim
a→1

lim
τ→0

µT (τ, a) = lim
a→1

µ̂T (τ) = lim
τ→0

µ̃T (a) =
πr40
2

(
β1 − β−1

)
=
πR4

0

2

(
β1 − β−1

)
,

(5.10)
where β1 = lima→1 limτ→0 β1 and β−1 = lima→1 limτ→0 β−1.

(b) Poynting modulus in torsion
The Poynting effect for an incompressible cylinder under torsion consists in an axial stretch
proportional to the square of the twist, i.e.,

|a− 1|= |a(τ)− 1|= µP τ
2a2, (5.11)

where the positive constant µP is identified as the Poynting modulus [133, p. 193]. To find the value
of this modulus, we note that setting N(a, τ) =−p0πr20 in (5.6) provides an equation for the axial
stretch a corresponding to the amount of twist τa. In this case, by (5.6), a→ 1 as τ → 0, and

lim
τ→0

∣∣∣a2 − 1/a
∣∣∣

τ2a2
= lim
τ→0

∣∣∣∣∣∣
∫r0
0

(
β̃1 − 2β̃−1/a

)
r3dr

2
∫r0
0

(
β̃1 − β̃−1/a

)
rdr

∣∣∣∣∣∣= R2
0

4

∣∣∣∣∣1− β−1
β1 − β−1

∣∣∣∣∣ . (5.12)

Then, by (5.11), as a= a(τ)→ 1 as τ → 0, we obtain

µP = lim
τ→0

|a− 1|
τ2a2

=
1

3
lim
τ→0

∣∣∣a3 − 1
∣∣∣

τ2a2
=

1

3
lim
τ→0

∣∣∣a2 − 1/a
∣∣∣

τ2a2
=
R2
0

12

∣∣∣∣∣1− β−1
β1 − β−1

∣∣∣∣∣ , (5.13)

where the last equality follows from (5.12). Hence, the Poynting modulus (5.13) increases as the
radius R0 of the (undeformed) cylinder increases.

6. Examples and applications
Every linear elastic material can be characterized by two physical constants, which may be found
from simple uniaxial tension or compression experiments. By contrast, the mechanical responses
of nonlinear elastic materials cannot be represented by constants but are generally described by
parameters which are functions of the deformation. To be effective in estimating elastic material
behaviours, these parameters must satisfy certain criteria:

(i) For the nonlinear parameters to be generally applicable, they must be obtainable
for all materials in a class, such as, for example, all compressible or incompressible
homogeneous isotropic hyperelastic materials.

(ii) Ideally, nonlinear elastic parameters should be measured and calibrated under multiaxial
deformations, which, in principle, are closer to real physical situations.

(iii) For mechanical consistency with the linear elasticity theory, these parameters must be
equal to the corresponding linear elastic ones under small strains.
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Table 5. Explicit forms of the shear moduli µ(a, k) of (4.9), µ̃(a) = limk→0 µ(a, k) of (4.15), and µ= lima→1 µ̃(a) of

(4.16) for selected incompressible isotropic hyperelastic models. For the shear moduli of these incompressible materials,

the principal stretches are given by (4.4) with λ(a) = a−1/2.

material model strain-energy function shear moduli

W(λ1, λ2, λ3)

neo-Hookean c1
2

(
λ21 + λ22 + λ23 − 3

)
µ(a, k) = c1

[127] c1 independent of deformation µ̃(a) = c1

µ= c1

Mooney-Rivlin c1
2

(
λ21 + λ22 + λ23 − 3

)
+ c2

2

(
λ−21 + λ−22 + λ−23 − 3

)
µ(a, k) = c1 + c2

a

[90,113] c1, c2 independent of deformation µ̃(a) = c1 + c2
a

µ= c1 + c2

Ogden
∑n
p=1

cp
2α2
p

(
λ
2αp
1 + λ

2αp
2 + λ

2αp
3 − 3

)
µ(a, k) =

∑n
p=1

cp
αp

λ
2αp
1 −λ2αp

2

λ2
1−λ2

2

[96] cp, αp independent of deformation µ̃(a) =
∑n
p=1

cp
αp

a1−αp(1−a3αp)
1−a3

µ=
∑n
p=1 cp

Lopez-Pamies
∑n
p=1

3cp
2αp

[(
λ2
1+λ

2
2+λ

2
3

3

)αp
− 1

]
µ(a, k) =

∑n
p=1 cp

(
k2a2+a2+2/a

3

)αp−1
[73] cp, αp independent of deformation µ̃(a) =

∑n
p=1 cp

(
a2+2/a

3

)αp−1
µ=

∑n
p=1 cp

Arrunda-Boyce
∑n
p=1

cpα
2p

[(
λ2
1+λ

2
2+λ

2
3

α

)p
−
(
3
α

)p]
µ(a, k) =

∑n
p=1 cp

(
k2a2+a2+2/a

α

)p−1
[1] cp, α independent of deformation µ̃(a) =

∑n
p=1 cp

(
a2+2/a

α

)p−1
µ=

∑n
p=1 cp

(
3
α

)p−1
Yeoh

∑n
p=1

cp
2p

(
λ21 + λ22 + λ23 − 3

)p
µ(a, k) =

∑n
p=1 cp

(
k2a2 + a2 + 2/a− 3

)p−1
[134,135] cp independent of deformation µ̃(a) =

∑n
p=1 cp

(
a2 + 2/a− 3

)p−1
µ= c1

Carroll c1
2

(
λ21 + λ22 + λ23 − 3

)
+
√
3c2

[√
λ−21 + λ−22 + λ−23 −

√
3

]
µ(a, k) = c1 + c2

√
3√

k2a3+2a3+1

[16] c1, c2 independent of deformation µ̃(a) = c1 + c2
√
3√

2a3+1

µ= c1 + c2

Dobrynin-Carrillo c1
6

(
λ21 + λ22 + λ23

)
+ c1

[
1
γ −

λ2
1+λ

2
2+λ

2
3

3

]−1
µ(a, k) = c1

3 + 2c1
3

[
1− γ

3

(
k2a2 + a2 + 2/a

)]−2
[33] c1, γ independent of deformation µ̃(a) = c1

3 + 2c1
3

[
1− γ

3

(
a2 + 2/a

)]−2
µ= c1

3

[
1− 2(1− γ)−2

]
Fung c1

2α

[
eα(λ

2
1+λ

2
2+λ

2
3−3) − 1

]
µ(a, k) = c1e

α(k2a2+a2+2/a−3)

[45] c1, α independent of deformation µ̃(a) = c1e
α(a2+2/a−3)

µ= c1

Gent − c1
2β ln

[
1− β

(
λ21 + λ22 + λ23 − 3

)]
µ(a, k) = c1

1−β(k2a2+a2+2/a−3)

[47] c1, β independent of deformation µ̃(a) = c1
1−β(a2+2/a−3)

µ= c1

Gent-Thomas c1
2

(
λ21 + λ22 + λ23 − 3

)
+ 3c2

2 ln
λ−2
1 +λ−2

2 +λ−2
3

3 µ(a, k) = c1 + 3c2
k2a2+2a2+1/a

[48] c1, c2 independent of deformation µ̃(a) = c1 + 3c2
2a2+1/a

µ= c1 + c2

Gent-Gent − c1
2β ln

[
1− β

(
λ21 + λ22 + λ23 − 3

)]
+ 3c2

2 ln
λ−2
1 +λ−2

2 +λ−2
3

3 µ(a, k) = c1
1−β(k2a2+a2+2/a−3) +

3c2
k2a2+2a2+1/a

[99,106] c1, c2, β independent of deformation µ̃(a) = c1
1−β(a2+2/a−3) +

3c2
2a2+1/a

µ= c1 + c2
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An important parameter that satisfies the aforementioned criteria is the nonlinear shear
modulus µ(a, k) defined by (4.9). In Table 5, , for 12 popular incompressible isotropic hyperelastic
models, we provide the explicit forms for this nonlinear shear modulus, its limit in the case
of small shear superposed on finite axial stretch, µ̃(a) = limk→0 µ(a, k) given by (4.15), and its
linear elastic limit µ= lima→1 limk→0 µ(a, k) = lima→1 µ̃(a) given by (4.16). For each model,
the nonlinear shear modulus under simple shear, µ̂(k) = lima→1 µ(a, k) defined by (4.13), can
also be derived, while the nonlinear stretch modulus E(a) can be inferred from the universal
relation (4.26). The table clearly shows that, although some materials have the same linear shear
modulus (e.g., µ= c1 for neo-Hookean, Yeoh, Fung and Gent models; µ= c1 + c2 for Mooney-
Rivlin, Carroll, Gent-Thomas and Gent-Gent models; µ=

∑n
p=1 cp for Ogden and Lopez-Pamies

models), the nonlinear shear moduli are specific to each model, distinguishing them with respect
to their elastic responses under large strains.

Equipped with these parameters, we then proceed to illustrate their application to certain
materials, such as rubber, soft tissues, and foams. The theoretical and practical challenges raised
when modelling rubber elasticity are discussed in [129], which concludes with the open remark
that, for a theory to be helpful in explaining the elastic responses of this material, it should take
into account its properties “not only in simple extension and compression, but also in other types of
strain”. Clearly, this is valid for other elastic materials operating in large strain as well, and in
particular, for soft tissues and foams, which are of growing research interest due to the great
diversity of their nonlinear mechanical responses under loads.

In this context, the universal relations between the nonlinear shear and stretch moduli
incorporate valuable information from both shear and axial deformations, and hence can be
employed to quantify elastic responses in multiaxial deformation. Another nonlinear parameter
that naturally captures the coupling between large axial and shear deformations is the Poynting
modulus, which has received less attention in practical applications to date.

(a) Rubber
The first experimental results on natural gum rubber were reported by Rivlin & Saunders (1951)
[115] (see also [128, Ch. 5] and [133, pp. 181-182]). In [123], fourteen hyperelastic models are
surveyed and their performance compared with Treloar’s elastomer data, which are provided
as well (see also the models and discussions in [10,14,66,107,108]). For rubberlike materials under
large tension, in [31], several hyperelastic models were systematically calibrated to experimental
data measuring the tensile stress, and the corresponding values of second- and third-order
elasticity constants were calculated. Recognizing the need for more information which is not
represented by the stress-strain curve, the so-called Mooney plot has been proposed to capture
additional behaviours in the calibrated models. The auxiliary function behind the Mooney plot
takes the general form g(z) = ∂W/∂I1 + z∂W/∂I2, where z = 1/a and a is the extension ratio
[116]. In particular, for the Mooney-Rivlin model listed in Table 5, the linear form g(z) = c1 + c2z

is obtained. It is interesting to note that although the value of this function is the same as that of
the nonlinear shear modulus µ̃(a) = c1 + c2/a, because g(z) and µ̃(a) have different arguments,
the curves (z, g(z)) and (a, µ̃(a)) will not coincide in general.

Here, from the Treloar’s experimental data for uniaxial tension [31,128], we first derive the
associated values of the nonlinear stretch modulus E(a) defined by (3.14). Next, using the
universal relation (4.26), the corresponding values of the nonlinear shear modulus µ̃(a) are
obtained (see Table 6). The Gent-Gent model listed in Table 5 is then calibrated to the data values
for the nonlinear shear modulus in the usual way, i.e., by employing a nonlinear least squares
procedure to find the minimum of the residual between the nonlinear shear modulus and the
given data. The results are plotted in Figure 5, where the model parameters are c1 = 2.4281,
β = 0.0128, c2 = 1.9842, and the relative error is less than 3.4% over all available data. These
values are similar to those reported in [31].
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Figure 5. Experimental values for (A) the first Piola-Kirchhoff stress P (a) of rubber in uniaxial tension [31,128],

with associated (B) nonlinear stretch modulus E(a) and (C) nonlinear shear modulus µ̃(a) (see Table 6), and the

corresponding values of the Gent-Gent material model with c1 = 2.4281, β = 0.0128, c2 = 1.9842 calibrated to the

nonlinear shear modulus µ̃(a), and (D) the associated relative error.

Table 6. Experimental values for the first Piola-Kirchhoff stressP (a) of rubber in uniaxial tension [31,128], with associated

nonlinear stretch modulus E(a) and nonlinear shear modulus µ̃(a) (see Figure 5).

a 1.02 1.12 1.24 1.39 1.58 1.90 2.18 2.42 3.02 3.57 4.03 4.76

5.36 5.75 6.15 6.40 6.60 6.85 7.05 7.15 7.25 7.40 7.50 7.60

P (a) (MPa) 0.2600 1.3700 2.3000 3.2300 4.1600 5.1000 6.0000 6.9000 8.8000 10.7000 12.5000 16.2000

19.9000 23.6000 27.4000 31.0000 34.8000 38.5000 42.1000 45.8000 49.6000 53.3000 57.0000 64.4000

E(a) (MPa) 3.3922 13.5394 13.2582 13.6339 14.3691 15.0969 16.7838 18.8941 24.0451 30.0173 36.1431 49.4229

63.5297 77.5783 92.7688 106.8794 121.7125 137.0535 151.9717 166.4724 181.5243 197.0642 212.1690 241.3236

µ̃(a) (MPa) 4.4194 4.2440 3.9007 3.7023 3.5271 3.1423 3.0463 3.0677 3.0237 3.0646 3.1499 3.4352

3.7370 4.1261 4.4745 4.8623 5.2911 5.6380 5.9887 6.4232 6.8594 7.2205 7.6181 8.4930

(b) Soft tissues
Experimental observations on several soft tissues with large lipid content, such as brain, liver, and
adipose tissues indicate that, under large strains, the nonlinear shear modulus increases strongly
and almost linearly as axial compression increases, while increasing only moderately as axial
tension increases, regardless of the stress-strain response under simple shear [79,80,100,101] (see
Figure 6 and Tables 7-8). Although biological tissues have a viscoelastic mechanical behaviour,
hyperelastic modelling is useful as a starting point for the development of more complex models.
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A hyperelastic constitutive model has a unique stress-strain relationship, which is independent
of strain rate, whereas for viscoelastic materials, the stress-strain response changes with the strain
rate. Nevertheless, for some soft tissues where the shape of the stress-strain curve is almost
invariant with respect to strain rate, at fixed strain rate, the shear modulus may be captured by
a nonlinear hyperelastic model. For human brain tissue, in [79], Ogden-type constitutive models
were calibrated, for the first time, to the nonlinear shear modulus µ(a, k) given by (4.9) identified
from experimental data collected under multiaxial loading up to 20% shear strain superposed on
up to 25% axial tension or compression. Similarly, for mouse brain and adipose tissues, in [80],
hyperelastic models were calibrated to experimental data measuring the nonlinear shear modulus
µ̃(a) given by (4.14) under small shear superposed on up to 45% axial tension or compression.
Currently, experimental data on soft tissues under multiaxial loading are rare, maybe also because
they are harder to analyse. The nonlinear shear modulus can be a useful in quantifying results
from such experiments.
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Figure 6. Experimental values for the nonlinear shear modulus µ(a, k) of (A) human brain tissue [79] at 5%, 10% and

15% shear strain (see Table 7) and (B) mouse adipose tissues [80] at 3.5% shear strain (see Table 8), showing a stronger

increase under increasing compression than under tension.

Table 7. Experimental values for the nonlinear shear modulus µ(a, k) of human brain tissue [79] at 5%, 10% and 15%

shear strain (see Figure 6A).

a 0.75 0.80 0.85 0.90 0.95 1 1.05 1.10 1.15 1.20 1.25

brain tissue

µ(a, k) (kPa) 1.1738 0.9689 0.8228 0.6560 0.4782 0.3876 0.2619 0.2722 0.2768 0.2987 0.3405

ka= 0.05

µ(a, k) (kPa) 1.1817 0.9867 0.8474 0.6928 0.5339 0.4192 0.2888 0.3073 0.3213 0.3696 0.3913

ka= 0.10

µ(a, k) (kPa) 1.2478 1.0643 0.9309 0.7744 0.6297 0.5135 0.3723 0.4068 0.4341 0.5064 0.5221

ka= 0.15
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Table 8. Experimental values for the nonlinear shear modulus µ(a, k) of mouse adipose tissues [80] at 3.5% shear strain

(see Figure 6B).

a 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

ka= 0.035

µ(a, k) (kPa) 1.2687 0.6038 0.3498 0.2272 0.0969 0.0911 0.0846 0.1144 0.1539

lean tissue

µ(a, k) (kPa) 3.8295 1.9238 1.0036 0.4999 0.2142 0.2494 0.3363 0.4340 0.6205

obese tissue

(c) Foams
Solid cellular bodies, or foams, are ubiquitous in nature and engineering applications, and can
be found in both load- and non-load-bearing structures [37,51,78,85,118,136]. For soft cellular
structures with components exhibiting material nonlinear elasticity, bridging the microstructural
responses of individual cells with the apparent macrostructural behaviour is a challenging
modelling problem in materials science. To date, there are no established continuum models
for this type of structures, even though, in principle, they should stand on the shoulders of the
existing nonlinear elasticity theory.

The Blatz-Ko model [8,13] is a phenomenological extension to hyperelasticity of the isotropic
linearly elastic models for stretch-dominated structures due to Gent & Thomas (1959, 1963)
[49,50]. The Hill-Storakers foam model extends the Ogden-type strain-energy function for
incompressible materials [96] to the compressible case. In [124], it was noted that Hill’s strain-
energy function [64] can be used to describe the simple special case of foams where the
principal stresses are uncoupled, i.e., depend only upon the stretch ratio in the corresponding
principal direction. For these models, in Table 9, we write explicitly the nonlinear shear modulus
µ(a, k) defined by (4.9), its limit in the case of small shear superposed on finite axial stretch,
µ̃(a) = limk→0 µ(a, k) given by (4.14), and its linear elastic limit µ= lima→1 limk→0 µ(a, k) =

lima→1 µ̃(a) given by (4.16), as well as the Poisson function ν(H)(a) = ν0(a) defined by (3.7)
and its linear elastic limit ν = lima→1 ν

(H)(a) given by (3.8). The corresponding nonlinear shear
modulus under simple shear, µ̂(k) = lima→1 µ(a, k) defined by (4.13), can also be derived, and as
the Poisson’s ratio is independent of deformation, i.e., ν(H)(a) = ν0(a) = ν, the nonlinear stretch
modulus E(a) can be obtained from the universal relation (4.25).

Table 9. Explicit forms of the shear moduli µ(a, k) of (4.9), µ̃(a) = limk→0 µ(a, k) of (4.14), and µ= lima→1 µ̃(a)

of (4.16), and of the Poisson’s ratios ν(H)(a) = ν0(a) of (3.7) and ν = lima→1 ν(H)(a) of (3.8) for selected isotropic

hyperelastic foam models. For the shear moduli of these compressible materials, the principal stretches are given by (4.4).

material model strain-energy function shear moduli Poisson’s ratio

W(λ1, λ2, λ3)

Hill-Storakers
∑n
p=1

cp
2α2
p

[
λ
2αp
1 + λ

2αp
2 + λ

2αp
3 − 3 + 1

γp
(λ1λ2λ3)

−2αpγp − 1
γp

]
µ(a, k) = 1

λ(a)2a

∑n
p=1

cp
αp

λ
2αp
1 −λ2αp

2

λ2
1−λ2

2

[64,124] cp, αp, γp independent of deformation µ̃(a) = 1
λ(a)2a

∑n
p=1

cp
αp

a1−αp(1−a3αp)
1−a3 ν(H)(a) =

∑n
p=1

γp
1+2γp

µ=
∑n
p=1 cp ν =

∑n
p=1

γp
1+2γp

Blatz-Ko c1
2

(
λ−21 + λ−22 + λ−23 + 2λ1λ2λ3 − 5

)
µ(a, k) = c1

λ(a)4a3

[8,13] c1 independent of deformation µ̃(a) = c1
λ(a)4a3

ν(H)(a) = 1/4

µ= c1 ν = 1/4
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For stretch-dominated foams with arbitrarily oriented cell walls made from a general isotropic
hyperelastic material, in [86,87], isotropic hyperelastic models were derived analytically from
the microstructural architecture and the physical properties at the cell level. Stretch-dominated
architectures, although not load-bearing in general, are structurally more efficient, due to a higher
stiffness-to-weight ratio than the bending-dominated ones [24,25,42,51,77]. For these models, the
nonlinear stretch and shear moduli and the Poisson function can be predicted explicitly from the
strain-energy function and the large strains of the cell walls. To illustrate this, we derive here the
Poisson function for open-cell foams, and refer to the original papers for further details on how
the other elastic parameters may be obtained. For the elastic foams, the geometric assumption is
that the cell walls are equal, arbitrarily oriented circular cylinders (or cuboids), with the width to
length ratio ρ, and the joints between adjacent walls are spheres (or cuboids), with the width much
smaller than the length of the walls. The kinematic assumption is that, when the foam is subject
to a triaxial stretch, every cell wall deforms by a triaxial stretch, without bending or buckling, and
the stretches of the foam and of the walls are related by a rotation, while the joints do not deform
significantly. In particular, we assume that the foam deforms by diag(α1, α2, α3), such that
α1 = α2, in the Cartesian directions (e1, e2, e3), with some cell walls deform by diag(λ1, λ2, λ3),
such that λ1 = λ2, in the orthonormal directions (n1,n2,n3) given by

n1 =−e1 cos θ cosφ− e2 cos θ sinφ+ e3 sin θ,

n2 = e1 sinφ− e2 cosφ,

n3 = e1 sin θ cosφ+ e2 sin θ sinφ+ e3 cos θ.

(6.1)

Then the logarithmic Poisson functions (3.7) for the foam and for the cell wall are, respectively,

ν
(f)
0 =− lnα1

lnα3
and ν0 =−

lnλ1
lnλ3

. (6.2)

In general, the stretches of the cell walls and of the foam are related by [86]

λ1 + ρ

1 + ρ
= α1 cos

2 θ cos2 φ+ α2 cos
2 θ sin2 φ+ α3 sin

2 θ,

λ2 + ρ

1 + ρ
= α1 sin

2 φ+ α2 cos
2 φ,

λ3 + ρ

1 + ρ
= α1 sin

2 θ cos2 φ+ α2 sin
2 θ sin2 φ+ α3 cos

2 θ,

(6.3)

hence if α1 = α2 and λ1 = λ2, then αi = (λi + ρ)/(1 + ρ), i= 1, 2, 3. In this case, defining λ3 = a,
we obtain the following relation between the Poisson functions for the foam and for the cell wall,
given by (6.2):

ν
(f)
0 (a) =−

ln
(
a−ν0(a) + ρ

)
− ln(1 + ρ)

ln (a+ ρ)− ln(1 + ρ)
. (6.4)

In the linear elastic limit, ν(f) = lima→1 ν
(f)
0 (a) = lima→1 ν0(a) = ν, i.e., the respective Poisson’s

ratios coincide [86]. Note that, in general, when the Poisson function of the cell wall material is
constant, i.e., ν0(a) = ν, the Poisson’s ratio of the foam given by (6.4) is not.

7. Conclusion
Constant material parameters are standard in engineering applications where linear elastic
models are commonly used. In nonlinear elasticity, similar constitutive parameters can be defined
that are functions of the deformation. In this review, we present in a unified mathematical
framework several of these parameters, including the stretch modulus, the shear modulus, and
the Poisson function, which are defined for compressible and incompressible homogeneous
isotropic hyperelastic materials and are measurable under axial or shear experimental tests.
These functions are important because they represent changes in the material properties as
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the deformation progresses, and can be identified with their linear elastic equivalent when the
deformations are small (see Tables 1, 2, and 3). The universal relations between these parameters
given in Table 4 can be used to quantify nonlinear elastic responses in hyperelastic models.

The nonlinear parameters identified here play significant roles in both the fundamental
understanding and the application of many elastic materials under large elastic strains. As shown
by our microstructure-based foam models, they can also provide a flexible basis for the coupling
of elastic responses in multi-scale processes, where an open challenge is the transfer of meaningful
information between scales. Similar parameters can be identified for homogeneous anisotropic
elastic materials, where different constitutive parameters may be found in different directions.
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A. Principal stresses
In this Appendix, we include several equivalent forms for the principal components of the stress
tensors given in Section 2(b). For compressible hyperelastic materials, the principal components
of the stress tensors (2.3), (2.7), and (2.8) are defined as follows:

• If {λi}i=1,2,3 are the principal stretches of the given deformation, then the principal components
of the Cauchy stress tensor (2.3) are [133, p. 143]

σi = J−1
∂W
∂λi

λi = J−1
∂W

∂ (lnλi)
, i= 1, 2, 3, (A 1)

or equivalently, by the representation (2.4),

σi = β0 + β1λ
2
i + β−1λ

−2
i , i= 1, 2, 3. (A 2)

The principal Cauchy stresses (A 1) are also equivalent to

σi =
∂W
∂ι1

∂ι1
∂ lnλi

+
∂W
∂ι2

∂ι2
∂ lnλi

+
∂W
∂ι3

∂ι3
∂ lnλi

= ζ0 + ζ1 lnλi + ζ−1 (lnλi)
−1 , i= 1, 2, 3,

(A 3)
where

ι1 = lnλ1 + lnλ2 + lnλ3,

ι2 = lnλ1 lnλ2 + lnλ2 lnλ3 + lnλ3 lnλ1,

ι3 = lnλ1 lnλ2 lnλ3

(A 4)

are the principal invariants of the logarithmic stretch tensors lnU and lnV, and

ζ0 =
∂W
∂ι1

+ ι1
∂W
∂ι2

, ζ1 =−
∂W
∂ι2

, ζ−1 = ι3
∂W
∂ι3

(A 5)

are scalar functions of the invariants (A 4).

• For the first Piola-Kirchhoff stress tensor (2.7), the principal components are

Pi = Jσiλ
−1
i =

∂W
∂λi

, i= 1, 2, 3. (A 6)

Equivalently,

Pi =
∂W
∂i1

∂i1
∂λi

+
∂W
∂i2

∂i2
∂λi

+
∂W
∂i3

∂i3
∂λi

= ρ0 + ρ1λi + ρ−1λ
−1
i , i= 1, 2, 3, (A 7)
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where

i1 =λ1 + λ2 + λ3,

i2 =λ1λ2 + λ2λ3 + λ3λ1,

i3 =λ1λ2λ3

(A 8)

are the principal invariants of the stretch tensors U and V, and

ρ0 =
∂W
∂i1

+ i1
∂W
∂i2

, ρ1 =−
∂W
∂i2

, ρ−1 = i3
∂W
∂i3

(A 9)

are scalar function of the invariants (A 8).

• The principal components of the second Piola-Kirchhoff stress tensor (2.8) are

Si = λ−1i Pi = 2
∂W
∂λ2i

, i= 1, 2, 3, (A 10)

or equivalently, by the representation (2.9),

Si = γ0 + γ1λ
2
i + γ−1λ

−2
i , i= 1, 2, 3. (A 11)

When the material is incompressible, i.e., J =detF= λ1λ2λ3 = 1, the principal components of
the stress tensors (2.3), (2.7), and (2.8) are given as follows:

• The principal components of the Cauchy stress tensor (2.3) are

σi =−p+
∂W
∂λi

λi =−p+
∂W

∂ (lnλi)
, i= 1, 2, 3, (A 12)

or equivalently, by the representation (2.6),

σi =−p+ β1λ
2
i + β−1λ

−2
i , i= 1, 2, 3, (A 13)

where β1 and β−1 are given by (2.5) and p is the arbitrary hydrostatic pressure. The principal
Cauchy stresses (A 12) are also equivalent to

σi =−p+ ζ1 lnλi + ζ−1 (lnλi)
−1 , i= 1, 2, 3, (A 14)

where ζ1 and ζ−1 are given by (A 5).

• For the first Piola-Kirchhoff stress tensor (2.7), the principal components are

Pi = σiλ
−1
i =−pλ−1i +

∂W
∂λi

, i= 1, 2, 3, (A 15)

or equivalently,

Pi = ρ0 + ρ1λi − p0λ−1i , i= 1, 2, 3, (A 16)

where ρ0 and ρ1 are given by (A 9) and p0 is the arbitrary hydrostatic pressure.

• The principal components of the second Piola-Kirchhoff stress tensor (2.8) are

Si = λ−1i Pi =−pλ−2i + 2
∂W
∂λ2i

, i= 1, 2, 3, (A 17)

or equivalently, by the representation (2.11),

Si = γ0 + γ1λ
2
i − p0λ

−2
i , i= 1, 2, 3, (A 18)

where γ0 and γ1 are given by (2.10) and p0 is the arbitrary hydrostatic pressure.



28

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

References
1. Arruda EM, Boyce MC. 1993. A three-dimensional constitutive model for the large stretch

behavior of rubber elastic materials, Journal of Mechanics and Physics of Solids 41, 389-412.
2. Babuška I, Nobile F, Tempone R. 2007. Reliability of computational science, Numerical Methods

for Partial Differential Equations 23, 753-784.
3. Baker M, Ericksen JL. 1954. Inequalities restricting the form of stress-deformation relations for

isotropic elastic solids and Reiner-Rivlin fluids, Journal of the Washington Academy of Sciences
44, 24-27.

4. Ball JM, James RD. 2002. The scientific life and influence of Clifford Ambrose Truesdell III,
Archive for Rational Mechanics and Analysis 161, 1-26.

5. Batra RC. 1976. Deformation produced by a simple tensile load in an isotropic elastic body,
Journal of Elasticity 6, 109-111.

6. Beatty MF. 1987. A class of universal relations in isotropic elasticity theory, Journal of Elasticity
17, 113-121.

7. Beatty MF. 2001. Seven lectures in finite elasticity, in Topics in Finite Elasticity (Hayes M,
Saccomandi G eds.), Springer, Wien, 31-93.

8. Beatty MF, Stalnaker DO. 1986. The Poisson function of finite elasticity, Journal of Applied
Mathematics 53, 807-813.

9. Becker GW, Kruger O. 1972. On the nonlinear biaxial stress-strain behavior of rubberlike
polymers, in Deformation and fracture of high polymers (Kausch HH, Hessell JA, Jaffee RI
eds.), Plenum Press, New York, 115-130.

10. Beda T. 2007. Modeling hyperelastic behavior of rubber: a novel invariant-based and a review
of constitutive models, Journal of Polymer Science Part B: Polymer Physics 45, 1713-1732.

11. Belytschko T, Liu W, Moran B. 2001. Nonlinear Finite Elements for Continua and Structures,
Wiley, New York.

12. Biot MA. 1965. Mechanics of Incremental Deformations, John Wiley & Sons, Inc., New York,
London, Sydney.

13. Blatz PJ, Ko WL. 1962. Application of finite elastic theory to deformation of rubbery materials,
Transactions of The Society of Rheology 6, 223-251.

14. Boyce MC, Arruda EM. 2000. Constitutive models of rubber elasticity: A review, Rubber
Chemistry and Technology 73, 504-523.

15. Budday S, Sommer G, Birkl C, Langkammer C, Haybäck J, Kohnert J, Bauer M, Paulsen F,
Steinmann P, Kuhl E, Holzapfel GA. 2017. Mechanical characterization of human brain tissue,
Acta Biomaterialia, 48, 319-340.

16. Carroll MM. 2011. A strain energy function for vulcanized rubber, Journal of Elasticity 103,
173-187.

17. Carroll MM, Horgan CO. 1990. Finite strain solutions for a compressible elastic solid.
Quarterly of Applied Mathematics 48, 767-780.

18. Chagnon G, Rebouah M, Favier D. 2014. Hyperelastic energy densities for soft biological
tissues: a review, Journal of Elasticity 120, 129âĂŞ160.
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