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Abstract

Simulating hydrological processes within the (semi-)arid region of the Murray-1

Darling Basin (MDB), Australia, is very challenging specially during droughts.2

In this study, we investigate whether integrating remotely sensed terrestrial3

water storage changes (TWSC) from the Gravity Recovery And Climate Exper-4

iment (GRACE) mission into a global water resources and use model enables a5

more realistic representation of the basin hydrology during droughts. For our6

study, the WaterGAP Global Hydrology Model (WGHM), which simulates the7

impact of human water abstractions on surface water and groundwater stor-8

age, has been chosen for simulating compartmental water storages and river9

discharge during the so-called ’Millennium Drought’ (2001-2009). In particular,10

we test the ability of a parameter calibration and data assimilation (C/DA) ap-11

proach to introduce long-term trends into WGHM, which are poorly represented12

due to errors in forcing, model structure and calibration. For the first time, the13

impact of the parameter equifinality problem on the C/DA results is evaluated.14

We also investigate the influence of selecting a specific GRACE data product15
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and filtering method on the final C/DA results. Integrating GRACE data into16

WGHM does not only improve simulation of seasonality and trend of TWSC,17

but also it improves the simulation of individual water storage components. For18

example, after the C/DA, correlations between simulated groundwater storage19

changes and independent in-situ well data increase (up to 0.82) in three out of20

four sub-basins. Declining groundwater storage trends - found mainly in the21

south, i.e. Murray Basin, at in-situ wells - have been introduced while sim-22

ulated soil water and surface water storage do not show trends, which is in23

agreement with existing literature. Although GRACE C/DA in MDB does not24

improve river discharge simulations, the correlation between river storage simu-25

lations and gauge-based river levels increases significantly from 0.15 to 0.52. By26

adapting the C/DA settings to the basin-specific characteristics and reducing27

the number of calibration parameters, their convergence is improved and their28

and uncertainty is reduced. The time-variable parameter values resulting from29

C/DA allow WGHM to better react to the very wet Australian summer 2009/10.30

Using solutions from different GRACE data providers produces slightly differ-31

ent C/DA results. We conclude that a rigorous evaluation of GRACE errors is32

required to realistically account for the spread of the differences in the results.33

Keywords: GRACE, WGHM, Data Assimilation, Calibration, Murray

Darling Basin, Drought

1. Introduction34

The Murray-Darling Basin (MDB) in south-eastern Australia is one of the35

driest river basins over the world. Long-term hydro-meteorological records indi-36

cate that the MDB is prone to extreme hydrological events (Verdon-Kidd et al.,37

2009; Gallant et al., 2011; Gergis et al., 2012). Particularly, a long drought38

period, the so-called ‘Millennium Drought’ (Ummenhofer et al., 2009; Leblanc39

et al., 2012; van Dijk et al., 2013), occurred during 2001-2009 and affected envi-40

ronment, agriculture, and therefore economic activities within the basin. Sub-41

sequently, during 2010-2012, the MDB received above average precipitation,42
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mainly driven by the El Niño Southern Oscillation (ENSO, see e.g., Boening et43

al., 2012) and to a smaller extent the Indian Ocean Dipole (IOD, see e.g., Fo-44

rootan et al., 2016). Although this helped refilling its terrestrial water storage,45

studies indicate an overall water availability decline that is likely due to climate46

change (e.g., Grafton et al., 2014) noting that the sensitivity of stream-flow47

generation to changes in climate drivers varies spatially (Donohue et al., 2011).48

Various remote sensing data and hydrological models have been applied to49

monitor water variability of the MDB. For example, terrestrial water storage50

changes (TWSC) can be derived from the Gravity Recovery And Climate Ex-51

periment (GRACE) satellite mission (Tapley et al., 2004). The measurements52

represent the vertical integration of above- and below-surface water storage com-53

partments, and have been used to study the distribution of water and the impact54

of climate variability within the MDB (e.g., Brown and Tregoning, 2010; Awange55

et al., 2011; Garćia-Garćia et al., 2011; Forootan et al., 2012). In addition, re-56

motely sensed surface soil moisture and vegetation water content variations have57

been analyzed to quantify the influence of large-scale climate variability, such as58

ENSO and IOD, on the basin hydrology (Liu et al., 2009; Bauer-Marschallinger59

et al., 2013). Hydrological models have also been applied over the MDB, such as60

the WaterGAP Global Hydrology Model (WGHM, Döll et al., 2003), the Global61

Land Data Assimilation System (GLDAS, Rodell et al., 2009), and the high res-62

olution continental model of AWRA (Australian Water Resources Assessment,63

van Dijk and Renzullo, 2011; van Dijk et al, 2011; Vaze et al., 2013).64

WGHM simulates daily water storage changes in several individual compart-65

ments, including canopy, snow, soil, lake, wetland, man-made reservoirs, river66

and groundwater. The groundwater compartment is often not explicitly realized67

in other hydrological models (such as GLDAS). In addition, WGHM considers68

anthropogenic water abstraction, which makes the model distinct from most oth-69

ers. Accurate estimation of water storage variability, including variability of the70

surface and sub-surface (soil moisture and groundwater) storage compartments,71

as well as river discharge within the MDB is difficult due to its complex geomor-72

phology, the definition of water connection within the basin (Lamontagne et al.,73
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2014), and the strong dependence of hydrology on antecedent rainfall (Beau-74

mont, 2012). In general, the simulation skill of hydrological models is limited75

by uncertainties in: climate forcing (particularly precipitation), model parame-76

ters, and deficiencies in the model structure (Müller Schmied et al., 2014, 2016).77

Abelen and Seitz (2013) reported inconsistencies between WGHM and remotely78

sensed soil moisture variations, which might be due to neglected physical pro-79

cesses. For example, the soil water compartment is defined by a single layer in80

WGHM with its depths depending on the plants’ root zone. GLDAS simula-81

tions also do not perfectly represent the hydrological property of the MDB due82

to the missing groundwater compartment, as well as ignoring the influence of83

human water use (e.g., Tregoning et al., 2012). Similarly, the AWRA model does84

not account for extensive pumping, which occurs during drought periods. Dur-85

ing flood events also, less accurate discharge/recharge estimations are reported86

(e.g., in Crosbie et al., 2011). van Dijk and Renzullo (2011) and Forootan et al.87

(2012) showed inconsistencies in the linear trend (2003-2011) between GRACE88

TWSC and that of AWRA.89

To understand the hydrological behavior of the MDB, in most of previ-90

ous studies, GRACE TWSC estimates were compared directly to the storage91

variability or surface loading estimations simulated by hydrological models or92

observed by other techniques e.g., GPS, satellite altimetry, soil moisture remote93

sensing, and in-situ observation wells (e.g., Leblanc et al., 2009; Chen et al.,94

2016). Variability of a particular storage compartment, e.g., groundwater, is95

usually computed by reducing other storage compartments (e.g., surface, canopy96

and soil storage compartments) derived from complimentary sources (see an ex-97

tensive review in Tregoning et al., 2012, chapter 2). Leblanc et al. (2009), for98

instance, conducted a multi-sensor analysis over the MDB, and found a rapid99

decline in soil moisture and surface water of about 80 km3 and 12 km3, respec-100

tively, during 2001-2003 and low storage levels in the following years. They also101

reported that the in-situ groundwater measurements are highly correlated with102

GRACE TWSC (correlation coefficients of 0.94) and found a groundwater loss103

of about 104 km3 during 2003-2007. Chen et al. (2016) focused on Victoria,104
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southern Australia, and estimated changes in groundwater by subtracting sim-105

ulations of the other storage compartments from GRACE TWSC. The authors106

found a good agreement between their estimations and in-situ observation wells,107

i.e. a declining trend of about 8.0-8.3 km3/year during 2005-2009.108

The validity of hydrological assessments in previous works might be limited109

due to the inconsistencies between GRACE TWSC and model simulations or110

other observation techniques. Therefore, inversion (e.g., Forootan et al., 2014,111

2017; Al-Zyoud et al., 2015) and data assimilation techniques (e.g., Zaitchik112

et al., 2008; Eicker et al., 2014; Van Dijk et al., 2014) should be applied to113

consistently merge observations with hydrological model simulations.114

In this study, we pursue the recently improved calibration and data assim-115

ilation (C/DA) framework based on ensemble Kalman filtering (EnKF, Schu-116

macher et al., 2016) to merge GRACE TWSC estimation with WGHM simu-117

lations for the MDB. Unlike other hydrological measurements GRACE TWSC118

constrains the sum of changes within all individual water storage compartments119

including groundwater, which cannot be measured by any other remote sensing120

techniques. Using GRACE data, it is not possible to distinguish changes in121

individual storage components, i.e. whether these changes occur in canopy, soil122

water, surface water or groundwater. To vertically disaggregate the GRACE-123

derived TWSC into its individual components, one needs a priori information124

from other sources, for example, hydrological models, i.e. WGHM in our study.125

In addition, GRACE observations only provide a coarse horizontal resolution.126

Data assimilation provides a realistic way to downscale GRACE observations127

based on the equations implemented in hydrological models. Recently, Khaki128

et al. (2017a,b) applied GRACE data and Tian et al. (2017) used GRACE and129

soil moisture data simultaneously in an ensemble-based assimilation framework130

to update storage estimation of a hydrological model in Australia and the MDB.131

Although their studies indicate improvements in soil and groundwater storage132

estimations, no attempts have been made to calibrate model parameters. In this133

study, we show to what extent adding water storage information from GRACE,134

through a C/DA procedure, is able to improve WGHM’s TWSC, individual wa-135
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ter storage simulations and its parameters. Hereby, the main focus of our paper136

is on the effect of the Millennium Drought on the groundwater storage. It is also137

investigated whether a C/DA of GRACE data affects WGHM’s river discharge138

simulations. This study is the first attempt to assess the impact of GRACE data139

assimilation on hydrological simulations during a long-term drought period, i.e.140

here the Millennium Drought.141

WGHM has 22 parameters that ensure its realistic simulations. However,142

several parameter combinations may be able to restore observed TWSC and thus143

GRACE-based calibration alone would be plagued by the equifinality problem.144

We will show here that, by reducing the number of calibrated parameters, de-145

ficiencies in model outputs reduces, and subsequently hydrological estimations146

within the MDB are improved. The implemented C/DA framework has already147

been successfully applied to improve simulations of total and individual water148

storage compartments in the Mississippi River Basin (Eicker et al., 2014). Their149

study was however limited to one year, and the results were not validated with150

independent data sets. The novelty of the presented framework compared to151

previous approaches is the extension to model parameter calibration, as well as152

the implementation of spatial GRACE TWSC error correlations in the ensemble153

filter update.154

The objectives of this paper are: (1) to transfer and assess the C/DA ap-155

proach (Schumacher et al., 2016) to a (semi-)arid region experiencing a severe156

long-term drought without tuning the approach; (2) to investigate the impact157

of GRACE data products and its post-processing on the C/DA results; (3) to158

address the equifinality problem that occurs in the parameter calibration stage;159

(4) to identify changes in hydrological behavior of the basin within and after160

the Millennium Drought; and (5) validating the C/DA results using indepen-161

dent in-situ data, i.e. here river level and river discharge from gauge stations, as162

well as groundwater well data. The designed objectives will address important163

technical issues related to the combination of GRACE and hydrological models:164

Objective (1) will show whether by applying the C/DA and using GRACE165
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data it is possible to restore long-term trends (water decline in our case) in166

a particular water storage compartment. This is important since models167

usually do not realistically represent long-term decline or rising of water168

levels in the MDB that have been found in GRACE data (Döll et al.,169

2014). To our knowledge, this is the first application of GRACE-based170

model parameter calibration via ensemble-based data assimilation for this171

purpose. An independent validation against in-situ groundwater measure-172

ments is also performed.173

Objective (2) helps assessing the robustness of the C/DA approach with174

respect to the choice of data products. This investigation is also important175

for other studies since there is currently no clear guidance on the “best”176

selection of a GRACE product and of its post-processing for assimilation177

studies.178

Objective (3) has not yet been tackled in the context of parameter cali-179

bration against GRACE data. Therefore, we will discuss how selecting a180

sub-set of model parameters improves the C/DA.181

Objective (4) provides insights about spatial and temporal variations of182

soil water and groundwater storage changes within the MDB after im-183

plementing a C/DA. The combined results are likely more reliable than184

interpreting WGHM simulations or GRACE data individually.185

Objective (5) shows to what extent C/DA can improve water storage sim-186

ulations and its impact on river discharge simulations can be identified.187

2. Study Area and Data188

The MDB, with an area of ∼ 1, 060, 000 km2, is home of two major rivers;189

the Murray River and the Darling River, which joins the Murray River around190

500 km upstream from the basin outlet. It extends from the subtropics of191

central Queensland to the southern alps of Victoria and the Southern Ocean,192

therefore, it has been under influence of both humid and arid climates and their193

variabilities (Connell and Grafton, 2011). Most of the basin is flat, low-lying194

7



and far inland, and receives 477 mm area-averaged annual rainfall (Fu et al.,195

2010). Its tributary rivers tend to be long and slow-flowing, and carry a volume196

of water that is large only by Australian standards. The sedimentary rocks have197

a maximum depth of 600 m; thus, groundwater storage is relatively small. The198

MDB is essentially a closed groundwater basin, where groundwater drainage is199

directed internally towards the central subsidence and thicker sediments, rather200

than towards the side where the Murray connects to the sea (Grafton et al.,201

2014).202

We consider four sub-basins within the MDB: the arid north-western Darling203

area (NW), which contains the Darling and Warrego Rivers, and the north-204

eastern Darling area (NE) in which the Balonne River and several other northern205

rivers flow. The other two consist of the south-eastern Murray area (SE) with206

the first half of the Murray River, and the whole Lachlan and Murrumbidgee207

Rivers, as well as the south-western Murray area (SW) with the second half208

of the Murray River. These regions are defined (i) based on the hydrological209

sub-basins and underlying river routing system considered in WGHM, as well210

as (ii) the spatial area detectable by GRACE. The shapes of the sub-basins and211

their areas are reported in Fig. 1.212

2.1. Hydrological Model: WGHM213

The WaterGAP Global Hydrology Model (WGHM) and five water use mod-214

els together form the global water availability and use model Water - Global215

Assessment and Prognosis (WaterGAP). WGHM uses a number of water storage216

equations that describe the daily vertical water balance and horizontal routing,217

with a spatial resolution of 0.5◦×0.5◦ for the global land area excluding Antarc-218

tica. Detailed descriptions of the model equations are given in Döll et al. (2003)219

and Müller Schmied et al. (2014). In this study, we use the model version Wa-220

terGAP 2.2 for calibration and data assimilation (C/DA) of GRACE TWSC.221

The model has already been calibrated against mean annual river discharge at222

1319 Global Runoff Data Centre (GRDC) stations, of which 11 are located in223

the MDB (Müller Schmied et al., 2014). The monthly forcing fields of tempera-224
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Figure 1: The Murray-Darling Basin (MDB) and its four sub-basins considered here to inte-

grate GRACE TWSC with the WGHM model simulations.

ture, cloud cover, and the number of wet days were obtained from the Climate225

Research Unit’s Time Series (CRU TS 3.2; Harris et al., 2013) and precipitation226

provided by the Global Precipitation Climatology Center (GPCC v6; Schneider227

et al., 2014), which at the date of our study were available until end of 2010.228

2.2. GRACE TWSC229

Monthly GRACE level 2 products, expressed as dimensionless spherical har-230

monics of the geopotential up to degree and order 90, are available from different231

sources. Here, the RL05 of GFZ and JPL (ftp://podaac-ftp.jpl.nasa.gov/232

allData/grace/L2/) are considered, as well as those of ITSG-Grace2014 (http:233

//portal.tugraz.at/portal/page/portal/TU_Graz/Einrichtungen/Institute/234

Homepages/i5210/research/ITSG-Grace2014). Degree 1 coefficients are re-235

placed by those from Swenson et al. (2008). The zonal degree 2 spherical har-236
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monic coefficients (C20) are replaced by Satellite Laser Ranging (SLR) data237

(Cheng et al., 2013, see also grace.jpl.nasa.gov).238

GRACE level 2 products contain correlated errors, visible as striping pat-239

terns in the spatial domain (Kusche, 2007). Therefore, before computing monthly240

TWS fields, the DDK3 anisotropic decorrelation filter (Kusche et al., 2009) is241

applied to suppress such errors. Monthly residual gravity field solutions are242

computed by subtracting the temporal average of 2003-2010 from each month.243

The residual coefficients are then converted to gridded TWSC fields (on the244

0.5◦×0.5◦ grid used in WGHM) following Wahr et al. (1998). The same steps245

are repeated for the ITSG-Grace2014 product, while applying a Gaussian fil-246

ter with 300 km and 500 km radii to investigate the influence of smoothing247

of GRACE TWSC on the C/DA results. A formal variance-covariance error248

propagation is carried out to obtain the observation error covariance matrices249

(Schumacher et al., 2016). It is worth mentioning that the TWSC estimations250

from CSR data lie within the GRACE ensemble (ITSG-GRACE2014, GFZ,251

JPL). Thus, here, we do not explicitly report the results based on CSR data. In252

total, five different GRACE TWSC variants are considered in this study. For253

all variants, the full error covariance matrix of the ITSG-Grace2014 product254

smoothed by a 300 km Gaussian filter is used.255

For the C/DA, Schumacher et al. (2016) suggest to integrate GRACE TWSC256

and model simulations either on coarse grids, e.g., 5.0◦×5.0◦ or as (sub-) basin257

averages. In this study, we select GRACE TWSC averaged over the four sub-258

basins of Fig. 1 for assimilation into WGHM. To account for the signal damping259

and spatial leakage due to the application of filtering, constant and time-variable260

scaling factors are estimated (see Sect. 6 of the Supplementary Data for details).261

The scaling values are found to be close to 1. The main C/DA results are262

presented with respect to the ITSG-Grace2014 product, which is filtered by263

DDK3, and called ITSG-DDK3 in the following.264
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2.3. Groundwater Observations265

Groundwater changes from around 15800 observation wells within the MDB266

are applied to validate the C/DA results. The measurements were spatially267

averaged over 1◦×1◦ grid cells, including between one to around 2680 wells268

per grid cell. The locations of the individual observation wells are provided in269

(Tregoning et al., 2012). It was reported that these wells might be influenced270

by local effects such as pumping that might cause draw-down or recharge due to271

irrigation. The observations are expressed as groundwater levels, and converted272

to equivalent water heights (EWH) by considering aquifer specific yield, which is273

usually unknown and cannot be measured at this scale. Here, we use an estimate274

of 0.1 as a typical value for water aquifers as proposed by Tregoning et al. (2012).275

To demonstrate the effect of the choice of the specific yield, additionally specific276

yield maps based on surface geology are considered (Viney et al., 2015, , Sect.277

4.3.2).278

3. Calibration and Data Assimilation (C/DA) Framework279

An overview of the calibration and data assimilation (C/DA) study set-up is280

given in Fig. 2. To run the hydrological simulation, WGHM is initialized during281

1995-2000. Then, an ensemble of Ne=30 runs is generated to represent uncer-282

tainties in forcing data, model parameters (see Tab. 1), initial water states and283

errors in the model structure. For this, a priori Probability Density Functions284

(PDF) are considered for the model parameters based on literature (Döll et al.,285

2003; Kaspar, 2004; Schumacher et al., 2015). A multiplicative error model is286

assumed for precipitation fields centered around 1 and with limits of 0.7 and287

1.3, and an additive error model for temperature fields centered at 0 and limits288

of ±2◦C; both are added as white noise. The generated ensembles are used in289

a two years model spin-up phase during 2001-2002 to generate an ensemble of290

initial water states. Our experiments with the initialization and spin-up length291

indicate that these have negligible influence on the model runs (details in Sect.292

7, Supplementary Data.293
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First, an open loop (OL) run during 2003-2010, i.e. WGHM runs are per-294

formed with each of the 30 ensemble members (first column in Fig. 2, and Tab.295

2). Within WGHM, parameter values are set globally, i.e. the same values are296

used in all river basins world-wide. Moreover, the parameters are temporally297

constant. Subsequently, WGHM is run in C/DA mode, i.e. GRACE TWSC298

observations along with their full error covariance information are assimilated299

monthly into WGHM (second column in Fig. 2, and Tab. 2) using the EnKF300

(Evensen, 1994; Burgers et al., 1998). In the EnKF updates, the water mass301

balance is not conserved, i.e. water mass can be introduced to or removed from302

WGHM. By applying the C/DA, model parameters are calibrated sequentially303

each time that GRACE observations are available within the MDB. Therefore,304

the calibrated parameters are the most appropriate for the MDB but not nec-305

essarily for other river basins. The adjusted parameter values are then used to306

start the WGHM runs for the next months. This is done for the entire 2003-307

2010. In summary, parameter values after the C/DA vary in time and are not308

identical to the parameters used in the OL run. Since the updated water states309

and parameters are adjusted to the GRACE observations within each EnKF310

update step, the model uncertainties decrease successively. Thus, an inflation311

factor of 10%, based on findings in Schumacher et al. (2016), is used to ensure312

a contribution of GRACE TWSC to the updated water states and parameters313

during the entire study period (addressing Objective 1).314

We also carry out five experiments with a range of configurations (Tab. 2):315

(i) different GRACE products (ITSG, GFZ, JPL) are used for introducing the316

observed TWSC, and (ii) various spatial filters applied to the ITSG-Grace2014317

data product (300 and 500 km Gaussian filter, as well as DDK3), to account for318

the impact of GRACE post-processing (addressing Objective 2).319

Another experiment is designed, in which only the three parameters of the320

root depth multiplier, net radiation multiplier and groundwater outflow coeffi-321

cient are calibrated instead of the 22 model parameters (C/DA (v2) in Tabs. 1322

and 2). These three parameters are selected since they are relatively indepen-323

dent and have considerable influence on simulating relevant water compartments324
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in the MDB, i.e. soil water and groundwater. By this reduction and compar-325

ing to the C/DA version, in which all 22 parameters are calibrated, we can326

investigate the equifinality problem using GRACE TWSC for model calibration327

(addressing Objective 3).328

Perturbed States

Ne samples of
- Forcing: CRU TS 3.2, GPCC
- Parameters: Tab. 1
- Initial states: 6 years model
initialization (1995-2000),
2 years spin-up with forcing and
parameter ensembles (2001-2002)

OL C/DA

WGHM
WGHM

Ne x

WGHM
WGHM

Ne x

01/2003-
12/2010

Current
Month

EnKF
Update

Ensemble of TWS,
individual compartments

Ensemble of TWS,
individual compartments

Error estimation
from ensemble

GRACE TWSC (ITSG, GFZ, JPL)
- Monthly means in 2003-2010
- Spatial averages to 4 sub-basins
- filtering: Gaussian (300 km, 500 km), DDK3

Error estimation of observations
- full covariance matrix (4x4)

Comparison/Validation

GRACE TWSC
observations

Measurements of
Groundwater

Figure 2: Set-up of study for the Murray-Darling Basin (MDB). First, open loop (OL) model

runs are performed over 2003-2010 (left column). Subsequently, GRACE TWSC averaged over

the 4 major sub-basins of the MDB are assimilated into WGHM testing different configurations

(center and right column) and simultaneously the WGHM’s parameters are calibrated (see

Tab 1). To assess the C/DA results, simulated TWSC and groundwater changes are compared

to GRACE TWSC and independent groundwater well measurements.
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Table 1: Model parameters that are calibrated within the EnKF, where “IN” indicates the identification number, “mode”

represents the value used in the original WGHM run, and under “limits” the spread of parameter values used for ensemble

generation are summarized. The last two columns indicate whether a parameter is calibrated against GRACE. For the C/DA

version 2 (v2) run, the mode and limits of parameters 3, 4 and 19 are modified. These values are provided in brackets.

IN Calibration Parameter Mode Limits C/DA C/DA (v2)

1 root depth multiplier 1 [0.5 2.0] yes yes

2 river roughness coefficient multiplier 1 [0.5 2.0] yes -

3 lake depth (m) 5 [1 20] yes -

(4) ([1 10])

4 wetland depth (m) 2 [0.5 5] yes -

(1) ([0.5 2])

5 surface water outflow coefficient 0.01 [0.001 0.1] yes -

(day−1)

6 net radiation multiplier 1 [0.5 2.0] yes yes

7 Priestley-Taylor coefficient (humid) 1.26 [0.885 1.65] yes -

8 Priestley-Taylor coefficient (arid) 1.74 [1.365 2.115] yes -

9 maximum daily potential evapotrans- 15 [7.25 22.5] yes -

piration (mm/day)

10 maximum canopy water height per 0.3 [0.1 1.4] yes -

leaf area (mm)

11 specific leaf area multiplier 1 [0.5 2.0] yes -

12 snow freeze temperature (◦C) 0 [-1.0 3.0] yes -

13 snow melt temperature (◦C) 0 [-3.75 3.75] yes -

14 degree day factor multiplier 1 [0.5 2.0] yes -

15 temperature gradient (◦C/m) 0.006 [0.004 0.01] yes -

16 groundwater recharge factor multiplier 1 [0.5 2.0] yes -

17 maximum groundwater recharge multiplier 1 [0.5 2.0] yes -

18 critical precipitation for groundwater 10 [2.5 20.0] yes -

recharge (mm/day)

19 groundwater outflow coefficient (day−1) 0.006 [0.006 0.018] yes yes

(0.01) ([0.004 0.016])

20 net abstraction surface water multiplier 1 [0.5 2.0] yes -

21 net abstraction groundwater multiplier 1 [0.5 2.0] yes -

22 precipitation multiplier 1 [0.8 1.2] yes -
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Table 2: Overview of model simulations and assimilation runs that are analyzed in this study.

The main results are presented with respect to the C/DA variant ITSG-DDK3 and the C/DA

version 2 (v2), in which only three model parameters are calibrated (see Tab. 1). The

remaining C/DA variants are discussed in the Supplementary Data.

Run Method GRACE Product GRACE Filtering

OL Open Loop - -

ITSG-DDK3 EnKF ITSG-Grace2014 DDK3

ITSG-300km EnKF ITSG-Grace2014 300 km Gaussian

ITSG-500km EnKF ITSG-Grace2014 500 km Gaussian

GFZ-DDK3 EnKF GFZ RL05 DDK3

JPL-DDK3 EnKF JPL RL05 DDK3

C/DA (v2) EnKF ITSG-Grace2014 DDK3

4. Results329

4.1. Meteorological and Hydrological Conditions330

During the Millennium Drought (2001-2009), the MDB has received be-331

low average precipitation (see e.g., Leblanc et al., 2012; van Dijk et al., 2013).332

Basin-averaged annual precipitation from the Australian Bureau of Meteorol-333

ogy (BoM) during 1981-2013 shows that 2001-2009 was the longest period with334

below the mean precipitation of 477 mm (Fig. 3 (A), see also Forootan et al.,335

2016). Compared to the previous three decades, particularly, 2002 and 2006336

were the driest years with up to 41% below average precipitation, followed by337

the wettest year in 2010 with 66% higher annual precipitation. The distribu-338

tion of precipitation is however not homogeneous over the basin. In Fig. 3339

(B), the differences between the mean annual precipitation over the Millennium340

Drought, and during 1981-2013 are shown on a 0.5◦×0.5◦ grid. In the Dar-341

ling Basin (northern part), precipitation is found to be overall higher during342

2001-2009 compared to the three decade mean with a maximum value of +38343

mm/year. In contrast, precipitation in the Murray Basin (southern part) is344
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found smaller with a maximum of -40 mm/year. Therefore, we expect strong345

impact from the meteorological drought predominantly in the south.346

A B

Figure 3: (A) Divergence of annual precipitation in mm (from the long-term temporal mean

of 477 mm) averaged over the entire Murray-Darling Basin (MDB). (B) Difference in mean

annual precipitation during 2001-2009 and 1981-2013 on a 0.5◦×0.5◦ grid.

In Fig. 4, monthly TWSC derived from the open loop (OL) run during347

1995-2010 and from GRACE during 2003-2013 over the entire MDB are shown.348

The WGHM simulation shows a strong decline in TWSC during 2001-2002,349

as well as a strong increase in 2010, which are clearly related to the extreme350

meteorological conditions. However, no further water decline is visible in the351

very dry year 2006. In contrast, during 2003-2007, the GRACE-derived TWSC352

decreased and is found mostly below the temporal mean until 2009. The strong353

rainfall events in 2010 and 2011 resulted in an increase of the total water mass354

(Forootan et al., 2012). Afterwards, TWSC values are found to be mostly above355

the temporal mean.356

No significant linear trend is visible in TWSC from the WGHM OL run dur-357

ing 2003-2009. On the contrary, the estimation from the ITSG-DDK3 GRACE358

solution (see Tab. 2) shows a decrease of -7.6 mm/year over the entire MDB,359

ranging from -2.9 mm/year in the north-eastern Darling Basin (NE) to -14.0360

mm/year in the south-eastern Murray Basin (SE, Tab. 3). Although precipita-361

tion is above the three decadal average (see Fig. 3 (B)), the linear trends in the362

Darling Basins are found to be negative. The application of different filtering to363

smooth GRACE TWSC represents a small impact on the linear trend estima-364

tion in the Darling sub-basins (differences of around 0.3 mm/year, see column365
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Figure 4: TWSC (in mm) derived from the WGHM open loop (OL) run and from GRACE

averaged over the entire Murray-Darling Basin (MDB). The black line shows the WGHM OL,

the blue line indicates GRACE (using ITSG-Grace2014), which is smoothed by the DKK3

filter, while the dark gray area represents the range of all investigated GRACE datasets (see

Tab. 2).

“GRACE Filtering” in Tab. 3), and a higher influence in the Murray sub-basins366

(differences of up to 3.0 mm/year, see Tab. 3). Using different GRACE prod-367

ucts for the trend estimation has a similar impact on the results (see column368

“GRACE Products” in Tab. 3). However, all analyzed GRACE data sets in-369

dicate negative trends in TWSC for the entire MDB. Therefore, an improved370

representation of the TWSC decline between 2003-2009 is expected by merging371

GRACE and WGHM in the C/DA framework.372

4.2. TWSC Simulations from WGHM373

4.2.1. Improving the Representation of TWSC374

TWSC time series from the open loop (OL) simulations, GRACE and the cal-375

ibration and data assimilation (C/DA) results after assimilating ITSG-DDK3,376

are shown in Fig. 5. A much better agreement is found between C/DA results377

(and the ensemble of all C/DA variants) with GRACE TWSC compared to the378

OL variant of WGHM. In terms of root mean square errors (RMSE), the fit for379

the entire basin is improved by 50% (from 21.4 to 10.7 mm), ranging from 45%380

in the north-western Darling Basin (NW) to 53% in both Murray sub-basins381
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Table 3: Linear trend (in mm/year) during 2003-2009 and its error derived by ITSG-Grace2014

(filtered by DDK3) for the averages over the entire MDB and its four major sub-basins (see

the basins in Fig. 1). Averaged linear trends and their uncertainties estimated from different

GRACE products, as well as after applying different filtering techniques are presented.

GRACE GRACE

Basin ITSG-DDK3 Products Filtering

MDB -7.6 ± 0.6 -5.9 ± 1.5 -6.8 ± 1.0

NW -3.8 ± 0.8 -2.7 ± 1.0 -4.2 ± 0.3

NE -2.9 ± 0.8 -0.8 ± 2.1 -3.2 ± 0.3

SE -14.0 ± 0.7 -11.7 ± 2.1 -11.1 ± 3.0

SW -13.5 ± 0.7 -12.8 ± 0.6 -11.4 ± 2.4

(Tab. 4). Applying different filtering techniques or using different GRACE382

products indicate improvements for the entire basin of up to 51% in terms of383

RMSE with respect to the OL variant. Furthermore, the correlation coefficient384

of WGHM simulated TWSC after C/DA with GRACE TWSC improves by 37%385

(from 0.58 to 0.92) for the entire MDB compared to OL. For the sub-basins, the386

improvements range between 28% in the south-eastern Murray Basin (SE) and387

72% in the north-western Darling Basin (NW). Assessing the different C/DA388

variants in Tab. 2 indicates improvements for the entire MDB in terms of cor-389

relation coefficients of up to 36% compared to OL. After calibrating only three390

model parameters in C/DA (v2), the correlation coefficients are still high and391

the RMSE has been reduced compared to the OL. The individual RMSE and392

correlation coefficient values of all C/DA variants can be found in Tabs. S1 and393

S2 of the Supplementary Data.394

The influence of assimilation on WGHM in simulating TWSC on the 0.5◦×0.5◦395

grid is assessed in Fig. 6, which shows correlation coefficients and RMSE be-396

tween model simulations (from OL and C/DA) and GRACE TWSC after ap-397

plying DDK3 filtering for both. Low to moderate improvements in correlations398

are found after C/DA all over the basin. The RMSE values between the WGHM399
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simulated TWSC after C/DA and GRACE TWSC are found also to be smaller400

compared to the OL variant.401

Table 4: Agreement between model predicted and observed TWSC in terms of correlation

coefficients (CC) and root mean square errors (RMSE) in mm. Improvements are reported in

the brackets.

CC CC CC RMSE RMSE RMSE

Basin OL ITSG-DDK3 C/DA (v2) OL ITSG-DDK3 C/DA (v2)

MDB 0.61 0.92 (+0.31) 0.87 (+0.26) 21.7 10.7 (-11.0) 13.3 (-8.3)

NW 0.23 0.75 (+0.52) 0.58 (+0.36) 23.3 15.7 (-7.6) 19.0 (-4.2)

NE 0.45 0.89 (+0.44) 0.79 (+0.34) 27.8 14.7 (-13.1) 19.4 (-8.4)

SE 0.73 0.95 (+0.22) 0.93 (+0.20) 30.2 13.7 (-16.5) 16.3 (-14.0)

SW 0.52 0.91 (+0.39) 0.83 (+0.30) 33.8 16.1 (-17.7) 22.1 (-11.8)

4.2.2. Linear Trends and Seasonality in TWSC402

The estimated linear trends in TWSC from the OL and C/DA variants403

of WGHM are summarized in Tab. 5. The standard deviations of the WGHM404

variant ITSG-DDK3 and C/DA (v2) are determined by formal error propagation405

based on the error covariance matrices of the EnKF updates. A comparison of406

the trends after C/DA with the trends from OL, and different GRACE products407

shows that the negative trends in the WGHM TWSC are reasonably intensified.408

The mean difference of the trends from the C/DA variants compared to GRACE409

is 1.5 mm/year, while the mean difference to the TWSC outputs of the OL410

simulations is 5 mm/year. The trends of the C/DA (v2) variant are somewhat411

smaller in the western parts of the MDB.412

In order to assess whether the contribution of GRACE TWSC in the updated413

WGHM simulations (after C/DA) is realistically distributed, in Fig. 7, we show414

those statistically significant linear rates in TWSC that are found in the MDB415

during 2003-2009. A t-test with a significance level of 97.5 % is applied for this416
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A

B

C

D

E

Figure 5: Monthly TWSC in mm averaged (A) over the entire MDB, (B) over NW, (C) over

NE, (D) over SE, and (E) over SW. The blue line indicates the TWSC from GRACE (ITSG,

DDK3); the black line indicates the WGHM OL simulation; the red line indicates the WGHM

simulation after C/DA of GRACE (ITSG, DDK3), and the yellow line the WGHM simulation

after C/DA (v2) of GRACE (ITSG, DDK3). The dark gray area represents the range of all

C/DA results (see Tab. 2 for C/DA configurations).
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Figure 6: Gridded correlation coefficients between WGHM TWSC simulation and ITSG-

Grace2014 TWSC after applying DDK3 filtering for both; (A) for the OL, (B) after applying

the C/DA. Gridded root mean square error (RMSE) in mm estimated (C) from the differences

between OL TWSC and those of GRACE, and (D) from the C/DA TWSC and GRACE

TWSC.

assessment. As it was expected from the basin averaged results (Fig. 4), the417

DDK3-filtered OL TWSC does not contain significant linear trends (see Fig.418

7 (A)), while in the non-smoothed simulations, moderate negative trends can419

be found over parts of the north and south-west of the MDB (see Fig. 7 (D)).420

After applying the C/DA based on ITSG-DDK3, a negative trend in TWSC421

is introduced mainly to the south, which can be seen in Fig. 7 (B) and (E).422

The restored linear trends (Fig. 7 (B)) are in better agreement with those of423

GRACE compared to the OL simulation (Fig. 7 (C)).424

Our results indicate that the CD/A also influences the seasonal skill of425

WGHM. In Fig. 8, the annual amplitude of TWSC for 2003-2009 is shown. The426

DDK3-filtered values, estimated from the OL, C/DA, and ITSG-Grace2014, are427

shown in Fig. 8 (A), (B), and (C), respectively. Comparing the spatial distri-428
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butions and magnitude of the annual cycle, one can easily see that the C/DA429

results (in B) are tuned towards GRACE estimation (in (C)) compared to those430

of the OL (in A). In Fig. 8 (D) and (E), the annual amplitudes of TWSC,431

without applying a filter, are shown, which indicate that the OL simulation432

underestimates the annual cycle mainly over the south and north-east (Fig. 8433

(D)). This is however improved after applying C/DA (see Fig. 8 (E)).434

Table 5: Linear trends (in mm/year) of TWSC and their uncertainty during 2003-2009 com-

puted for the entire MDB and the four sub-basins (basins are shown in Fig. 1). The OL

results and those after the C/DA of WGHM using ITSG-Grace2014-DDK3 are shown in the

second and third columns, respectively. The averages of linear trends and their errors from

different GRACE products, and after applying different filtering techniques are reported in

the fourth and fifth columns, respectively. Results of the C/DA (v2) is reported in the last

column.

ITSG- GRACE GRACE C/DA

Basin OL DDK3 Products Filtering (v2)

MDB -0.9 ± 0.05 -6.5 ± 0.3 -5.3 ± 1.6 -5.7 ± 1.1 -5.5 ± 0.1

NW 2.1 ± 0.09 -1.0 ± 0.2 -0.8 ± 1.0 -2.0 ± 1.0 -0.3 ± 0.2

NE -1.6 ± 0.04 -4.2 ± 0.5 -2.3 ± 2.1 -3.9 ± 0.4 -3.8 ± 0.1

SE -3.7 ± 0.13 -13.0 ± 0.7 -10.9 ± 2.5 -9.7 ± 3.4 -12.2 ± 0.2

SW -0.4 ± 0.11 -10.0 ± 0.3 -9.7 ± 0.6 -9.0 ± 1.8 -7.3 ± 0.1

4.3. Details of Groundwater Storage Changes435

4.3.1. Improvements of the Representation of Groundwater Changes436

Among various water storage compartments simulated by WGHM, our re-437

sults indicate that the negative linear trends, restored in WGHM by assimilating438

GRACE TWSC, are predominantly associated with the groundwater compart-439

ment, and much less with the surface water and soil water storage compartments440

(see the results of the surface and soil compartments in the Supplementary Data,441

Figs. S1 and S2). While in van Dijk et al. (2013) a decrease in public reservoirs442

is reported for 2006-2007, our analysis agrees well with the findings in Leblanc443
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et al. (2009), who did not find considerable trend in surface water and soil mois-444

ture in MDB since 2003. This comparison does not allow to distinguish whether445

OL or the C/DA results are better. However, it clearly shows that C/DA did446

not erroneously introduce decreasing trends to the soil and surface water com-447

ponents (as could have happened given the decreasing trend in TWSC). This448

was, however, correctly translated by C/DA to a water decline in the ground-449

water storage only.450

In Fig. 9, WGHM’s groundwater time series (derived by OL runs and after451

C/DA) and the observed groundwater well time series are shown. Results are452

averaged over the entire MDB and its four sub-basins of Fig. 1. All graphs453

in Fig. 9 (A) to (E) indicate nearly constant values in the OL simulations454

(black lines), which are not consistent with the well measurements (blue lines)455

that show strong annual variability and linear trends within most sub-basins.456

After C/DA, the agreement of simulated and observed groundwater is clearly457

improved for the entire MDB and all four sub-basins: Seasonal variability and458
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Figure 7: An overview of statistically significant linear trend in TWSC (in mm/year) within

the MDB during 2003-2009. The results in (A), (B), and (C) are respectively derived after

applying the DDK3 filter to the WGHM OL runs, improved WGHM after C/DA, and from

ITSG-Grace2014. In (D) and (E), the linear trend from the original OL TWSC simulations

of WGHM and after applying C/DA without any spatial filtering are shown, respectively.
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Figure 8: Annual amplitude of TWSC (in mm) from WGHM and GRACE. The DDK3-filtered

results are shown in (A) using WGHM OL, (B) using improved WGHM after C/DA, and (C)

using ITSG-Grace2014. In (D) and (E), the annual amplitudes from the original OL TWSC

simulations of WGHM and after applying C/DA without any spatial filtering are shown,

respectively.

negative linear trends are merged towards groundwater observations. The cor-459

relation coefficients of the OL and C/DA time series with respect to the ground-460

water observation time series are shown in Tab. 6.461

The correlation coefficients are found to be even higher for the C/DA (v2)462

variant except for the south-western Murray region. The groundwater changes463

from the OL are found to be phase shifted compared to the wells observations,464

especially over the Murray sub-basins. As a result, small correlation coefficients465

are found between them. After C/DA, the phase shift is reduced over all re-466

gions except for the north-eastern Darling Basin (NE). The improvements occur467

mainly during 2006-2009, which are reflected in the higher correlation coeffi-468

cients (Tab. 6). However, the inter-annual variability during 2003-2005 seems469

to be clearly underestimated in all regions. In 2010, the increase in ground-470

water is not yet captured by the C/DA variants that calibrate all 22 WGHM471

parameters. In contrast, the C/DA (v2) is able to reflect this increase in the472

groundwater compartment since the adjusted parameters are more efficient.473

Groundwater observations are provided to us on 1◦×1◦ grid cells. Thus, the474

OL and C/DA groundwater simulations are averaged on the same grid and the475

correlation coefficients before and after C/DA are shown in Fig. 10. Correlation476
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coefficients are found to be increased in some grid points, while for others no477

changes are observed. C/DA (v2) further improves the correlation coefficients478

over the Darling and Murray regions.479

Table 6: Correlation coefficients between WGHM simulated groundwater changes (OL and

after C/DA) and well measurements covering 2003-2009. MDB and its sub-basins are defined

according to Fig. 1.

Basin OL ITSG-DDK3 C/DA (v2)

MDB 0.53 0.66 (+0.13) 0.72 (+0.19)

NW -0.01 0.74 (+0.75) 0.82 (+0.83)

NE 0.32 0.16 (-0.17) 0.28 (-0.04)

SE 0.01 0.36 (+0.34) 0.41 (+0.39)

SW -0.05 0.77 (+0.82) 0.69 (+0.75)

4.3.2. Spatial Distribution of the Groundwater Depletion480

In Fig. 11 (A), (B) and (C), statistically significant linear trends in ground-481

water changes from the OL and C/DA variants of WGHM and the well mea-482

surements are shown. The OL simulation shows no trend in the majority of the483

grid cells. Assimilating ITSG-DDK3 TWSC observations into WGHM, restores484

negative trends to more than half of the grid cells. These trends correspond well485

to the linear trends derived from groundwater well measurements, which show486

strong linear trends (up to more than 40 mm/year) predominantly in the north487

and the south-east of the MDB. Also for the original WGHM groundwater time488

series on the 0.5◦×0.5◦, OL shows no linear trend nearly all over the MDB (Fig.489

11 (D)). The more highly resolved grid values show that assimilating GRACE490

TWSC restores a negative trend predominantly in the north, east and south-491

east of the MDB (Fig. 11 (E)). Several grid cells especially in the south-east492

exhibit water decline of more than 40 mm/year. In case of C/DA (v2), the493

linear trends restored to the groundwater compartment are smaller for various494

grid cells compared to Fig. 11 (E) but considerably improved compared to the495
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Figure 9: Monthly time series of groundwater changes (in mm) averaged (A) over the entire

MDB, (B) over NW, (C) over NE, (D) over SE, and (E) over SW. The blue line indicates the

groundwater observations; the black line indicates the WGHM OL simulation; the red line

indicates the WGHM simulation after C/DA of GRACE (ITSG, DDK3), and the yellow line

the WGHM simulation after C/DA (v2) of GRACE (ITSG, DDK3). The gray area represents

the range of all C/DA results (see Tab. 2 for C/DA configurations).
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A B C

Figure 10: Correlation coefficients between wells data and: (A) the OL groundwater simula-

tions, (B) the C/DA simulations (case ITSG-DDK3 while calibrating all 22 model parameters),

and (C) the C/DA (v2) simulations (calibrating only 3 parameters).

OL variant.496

The spatially averaged linear trends for the MDB and its four sub-basins are497

reported in Tab. 7. We have good confidence in the spatial averages of GRACE-498

derived TWSC over large areas such as the sub-basins of the MDB and their499

spatial distributions. These are accordingly integrated into the WGHM after500

C/DA. In contrast, the spatial averages over large areas from in-situ groundwa-501

ter measurements are strongly influenced by interpolation errors, especially if502

well observations are obtained close to irrigation wells. More generally, ground-503

water observation wells tend to be positioned in reliable and productive aquifers.504

These may occupy only a small part of the landscape, and thus are not repre-505

sentative for the entire MDB (Tregoning et al., 2012, chapters 5 and 6). The506

ranking based on GRACE and the C/DA variants of WGHM also fits well to507

the spatial distribution of the difference in mean annual precipitation. Thus, it508

seems justified to trust the GRACE observations more than the groundwater509

well interpolation at large scales.510

As for the estimation of linear trends in TWSC after C/DA, the choice of511

GRACE products and filtering clearly affects the linear trends in groundwater,512

which reaches up to 2 mm/year averaged over the entire MDB. The smallest513

impact of up to 1 mm/year occurred in the north-western Darling Basin (NW),514

which also exhibits the smallest linear trend among the sub-basins. In contrast,515

the linear trend in the south-eastern Murray Basin (NE) is affected by more516
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than 6 mm/year.517

In order to demonstrate the impact of post-processing of groundwater mea-518

surements on the validation of results, we modify the post-processing in two519

ways: First, instead of using an average specific yield value of 0.1, values based520

on a geology map are applied to convert groundwater levels to equivalent wa-521

ter heights (Viney et al., 2015), i.e. values between 0.06 and 0.30; Second, we522

identify those (gridded) groundwater time series that exhibit the highest RMSE523

compared to the sub-basin averaged time series. It is assumed that these time524

series might be representative for the 1◦×1◦ grid cell but not for the sub-basin525

average. Therefore, these grids are neglected and the sub-basin averages are526

recomputed. From the different post-processing strategies an average water527

storage decline of -11.6 mm/year is determined with a standard deviation of528

± 6.5 mm/year within the south-eastern Murray Basin (SE) and an average529

decline of -33.3 mm/year with a standard deviation of ± 14.5 mm/year within530

the north-western Darling Basin (NW; see last column in Tab. 7). These large531

differences indicate the high dependency of the groundwater estimations on the532

choice of specific yield and on the errors for computing (sub-)basin averages533

from point measurements. The effect is found to be considerably higher than534

the effect of the chosen GRACE product and the choice of the TWSC filtering535

approach.536

4.4. Model Parameter Calibration537

An extensive section is provided in the Supplementary Data to discuss the538

calibration of all the 22 WGHM parameters within the C/DA against calibrating539

only the 3 parameters of the root depth multiplier, the net radiation multiplier,540

and the groundwater outflow coefficient, which the implementation is called541

C/DA (v2) from now on. We also modify a priori PDFs of the wetland and lake542

depth and the groundwater outflow coefficient based on the investigation of the543

update increments (see Tab. 1). The calibrated parameter values are shown544

in Sect. 8 of the Supplementary Data. In general, our results indicate that by545

calibrating all 22 parameters in some instances one can find few of them that546
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Figure 11: Significant linear trend in groundwater changes (in mm/year) within the MDB

during 2003-2009. The results in (A), (C), (E) and (G) are respectively derived from the

groundwater measurements, the WGHM OL, WGHM after C/DA while calibrating all 22

parameters, and from WGHM after C/DA (v2) while calibrating only 3 parameters. Results

are spatially averaged over 1◦×1◦ grid cells. In (B), (D), and (F), the linear trend from the

original OL groundwater simulations of WGHM and after applying C/DA and C/DA (v2) are

shown, respectively.
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Table 7: Linear trends (in mm/year) in groundwater changes and their uncertainties during 2003-2009 computed for the

entire MDB and the four sub-basins. The linear trends estimated from groundwater measurements (specific yield = 0.1)

are provided in the second column. The results of WGHM OL and after C/DA of ITSG-DDK3 are shown in the third and

fourth columns, respectively. The averages of linear trends and standard deviations from different GRACE products, and

after applying different filtering techniques are reported in the fifth and sixth columns, respectively. The results of C/DA

(v2) are provided in the seventh column. In the last column, the averages of linear trends and standard deviations from

different post-processing strategies (specific yield modification, removing outliers) for the groundwater measurements are

shown.

ITSG- GRACE GRACE C/DA Groundwater

Basin Data OL DDK3 Product Filtering (v2) Variant

MDB -16.1 -0.6 ± 0.01 -8.3 ± 0.2 -7.7 ± 2.4 -5.9 ± 2.2 -5.4 ± 0.1 -20.5 ± 4.0

NW -28.7 0.1 ± 0.00 -3.6 ± 0.2 -4.5 ± 1.0 -2.9 ± 0.8 -3.1 ± 0.1 -33.3 ± 14.5

NE -12.6 -1.4 ± 0.02 -6.4 ± 0.5 -5.2 ± 2.5 -5.0 ± 1.4 -5.6 ± 0.1 -22.5 ± 15.6

SE -8.4 -0.4 ± 0.02 -19.2 ± 0.6 -16.3 ± 6.3 -12.1 ± 6.3 -9.6 ± 0.1 -11.6 ± 6.5

SW -14.9 -0.1 ± 0.01 -5.8 ± 0.3 -7.2 ± 1.6 -4.8 ± 1.0 -3.4 ± 0.1 -14.7 ± 9.5

are not converged to a value within a priori range, while in C/DA (v2), all three547

parameters converge and their uncertainties are considerably reduced. This does548

not however necessary imply that one version is better suited to achieve more549

accurate water storage simulations. Therefore, in the following, we mainly focus550

on interpreting the C/DA results derived from both versions.551

The C/DA update increments, i.e. the difference between model prediction552

and model update, of the total and individual water storage compartments are553

presented in Fig. 12. Since mass is not conserved in the EnKF updates, these554

increments indicate how the water mass balance is violated by data assimila-555

tion (see also Sect. 5 of the Supplementary Data). The updates of soil water556

are higher in the east and south-east of the MDB, and decrease in western557

direction (Fig. 12 (B)). For groundwater, the same spatial pattern is visible558

but the amount of water mass associated with the groundwater compartment559

is considerable larger (Fig. 12 (C)). In Sect. 4.3, it is already shown that the560

updates for the groundwater compartment lead to improved agreements with561

in-situ observations. In addition, the updates for the soil water compartments562
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improve the seasonal representation of simulated TWSC after C/DA compared563

to the OL results (see Fig. S1 in the Supplementary Data). We find only small564

update increments for lakes, which seems to be reasonable, since only a few565

small surface water bodies are located in the MDB (Fig. 12 (D)).566

A B C

D E F

Figure 12: Root mean square (RMS) of monthly update increments after applying the C/DA

to integrate WGHM with TWSC from ITSG-DDK3 (calibrating all 22 parameters) for (A)

TWSC, (B) soil water, (C) groundwater, (D) lakes, (E) wetlands, and (F) rivers. In (F), the

locations of the river discharge stations that have been used to calibrate the WaterGAP 2.2

model version are shown by the black dots.

4.5. River Discharge and River Level567

To answer the Objective (5) of this paper, in sections 4.2 and 4.3, we568

showed how the C/DA improves total and individual water storage simulations569

of WGHM. Further insights will be provided in section 5. In this section, the570

impact of C/DA on WGHM’s river discharge and river level (storage) simula-571

tions is provided. Since GRACE data have a direct influence on water storage572

simulations and indirectly change simulated fluxes (e.g., river discharge, see573

Schumacher et al., 2015), one only needs to show the latter has not been worsen574

by the C/DA.575

We use river discharge observations provided by the Bureau of Meteorol-576

ogy (BoM, http://www.bom.gov.au/waterdata/) to validate the updated river577
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compartment. In Fig. 13, the time series of river discharge are shown for three578

selected stations while calibrating 22 parameters in (A), (C) and (E), as well as579

for the C/DA (v2) in (B), (D) and (F). At the Paroo River at Caiwarro (BoM580

station number 424201A; number 1 in Fig. 12 (F)), the WGHM OL simulated581

river discharge fits quite well to the observations but the high flows in 2004,582

2008 and 2010 are underestimated (Fig. 13 (A)). After performing the C/DA583

run with 22 parameters, the discharge values represent the high flows better584

than OL.585

For other stations, the river compartment is found to be overestimated e.g.,586

during 2003-2004, 2008-2009, and during the wet year 2010. In Fig. 13 (B)587

and (C), we show the time series at Darling River at Burtundy (BoM station588

number 425007; number 4 in Fig. 12 (F)) and Lachlan River at Booligal (BoM589

station number 412005, number 7 in Fig. 12 (F)) as examples. After reducing590

the number of calibration parameters, i.e. within the C/DA (v2) run, the river591

discharge simulation is found to be improved. At Caiwarro (Fig. 13 (B)), the592

high flows in 2004 and 2008 are better represented compared to the OL and593

the previous C/DA run. However, in spring 2008 still two peaks are simulated594

although only one of them is observed. At the other river discharge station, the595

simulations are also improved. The high flows in 2010 are found to be much596

closer to the observations for the C/DA (v2) run, especially at Burtundy (Fig.597

13 (F)) but during the drought period they are still found to be overestimated.598

We also compare simulated river storage with a number of stations provided599

by the Murray-Darling Basin Authority (https://riverdata.mdba.gov.au/600

system-view). For example, in Fig. 14, river storage outputs from WGHM601

are compared with the time series of level changes derived from Murray’s up-602

stream, which is close to station 4 in Fig. 12(F). The comparison is limited to603

2007.5-2011 during which the gauge data is available. Our results indicate that604

the open-loop river storage is not well compared with observations (RMSE of605

1.42), for example, high peaks are detected in 2008 and 2010, which are not606

found in the measured levels. After applying the C/DA (both versions, how-607

ever, the mentioned peaks are vanished and the general evolution of estimated608
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A B

C D

E F

Figure 13: Time series of river discharge (in m/s3) at three selected river discharge stations:

(A, B) Paroo River at Caiwarro (BoM station number 424201A; number 1 in Fig. 12 (F)),

(C, D) Darling River at Burtundy (BoM station number 425007; number 4 in Fig. 12 F); and

(E, F) Lachlan River at Booligal (BoM station number 412005, number 7 in Fig. 12 (F)).

The left column presents C/DA results from the ITSG-DDK3 case for which all 22 parameters

have been calibrated, and the right column presents the C/DA (v2) while calibrating only 3

parameters.

33



river storage fairly well follows that of the gauge data, i.e., RMSE reduces to609

0.6. Correlation coefficients between the OL river level simulations and gauge610

observations indicate a weak correspondence of 0.15 (p-value showed that this611

correlation is not significant). This is increased to the statistically significant612

value of 0.52 (significant according to p-values) after implementing the C/DA.613

Impact of the 2010’s La Niña is fairly well reflected in the C/DA derived river614

storage (compare the red and yellow curves in Fig. 14 with the observation615

curve in blue). Comparable results are found for the downstream station, which616

is not shown here.617

Figure 14: Time series of river level at the station 4 in Fig. 12 (F). The time series are

temporally normalized, thus, they are unit-less.

5. Discussion618

5.1. Choice of GRACE Product and Post-Processing619

Several GRACE products (ITSG-Grace2016, GFZ, and JPL) with different620

spatial filters (the isotropic Gaussian and the anisotropic DDK filter) are as-621

sessed within the proposed C/DA in the MDB. Our analysis of the updated622

TWSC and groundwater changes is not able to suggest a single product or spa-623

tial filtering strategy that exhibits always superior metrics (here in terms of624
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RMSE and correlation coefficients). The magnitude of the differences among625

the EnKF variants is similar to the magnitude of the differences between the626

considered GRACE variants itself. The uncertainty information obtained for627

the ITSG-DDK3 results represents these differences among the EnKF variants628

fairly well. Thus, a careful incorporation of the GRACE TWSC uncertainty629

information provides reliable information of the spread of the EnKF updates630

that might have been obtained when selecting another data product.631

5.2. Effect of Equifinality of Calibration Parameters on C/DA Results632

We test calibrating only three parameters within the C/DA in order to mit-633

igate the equifinality problem. We find that the three selected parameters con-634

verge to a constant value during the drought period and their uncertainty is635

clearly reduced. Although, improvements are already found for groundwater636

simulations during the drought period when calibrating 22 model parameters,637

it is not possible to constrain these many parameters using GRACE to improve638

the simulation of individual water storages when climate conditions rapidly and639

strongly change, i.e. the occurrence of strong rainfall events in 2010 after a640

long drought. This is, however, achieved by reducing the number of calibrated641

parameters. As a result, we find a strong positive impact on the EnKF updated642

of groundwater changes, especially in 2010.643

In summary, parameter updating using GRACE observations is very chal-644

lenging. Due to its current coarse spatial resolution and highly correlated er-645

rors, it might have limitations and might result in poorly constrained WGHM646

parameters that actually steer the simulation of individual water storage com-647

partments or fluxes. An improved spatial resolution, which is expected from648

the GRACE follow on (GRACE-FO) mission (scheduled launch at the end of649

2017), and a combination with other remote sensing observations might lead to650

better constrained parameter values.651

5.3. Application of the C/DA Framework within a (semi-)arid River Basin652

We find that all the EnKF variants improve the WGHM simulations and653

outperform the original simulations in terms of RMSE and correlation for the654
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(semi-)arid basin of the Murray and Darling rivers and its four sub-basins, and655

even on the 0.5◦×0.5◦ grid. The WGHM grid is much finer resolved than the656

spatial resolution of GRACE data and therefore this result is not self-evident.657

We would like to recall that we integrated GRACE data averaged over the658

four major sub-basins of the MDB and not at each individual WGHM grid659

point. Thus, the results give confidence that GRACE data can be horizontally660

downscaled by the C/DA within (semi-)arid regions.661

The water decline is primarily associated with the groundwater compart-662

ment, which is confirmed through validation with independent well measure-663

ments. However, in three out of the four MDB sub-basins, the restored trends664

are much smaller than the observed ones. For a realistic assessment of the665

C/DA performance, it is important to be aware that uncertainties exist also666

for the ground-based validation data and these should not be treated as truth.667

Thus, a perfect agreement between groundwater simulations after C/DA and668

groundwater measurements cannot be expected. Using groundwater simulations669

improved by C/DA of GRACE data has therefore the advantage that no specific670

yield estimate and no spatial interpolation are required. The results indicate671

that the groundwater simulations in the Darling Basin (NE) are less improved672

compared to other regions in terms of correlation coefficients. The hydrological673

reason for this is a different behavior in terms of annual cycles between GRACE674

TWSC and groundwater well observations in this region. In fact, seasonality675

of GRACE TWSC is less pronounced in the Darling Basin (NE), but it is vis-676

ible in the in-situ well measurements. Thus, C/DA is not able to correct the677

seasonality of WGHM’s groundwater simulations in this sub-basin.678

No significant trends are found in the surface water and soil water storage679

compartments after 2003, which is in agreement with the analysis performed in680

Leblanc et al. (2009). If the water decline was solely climate related, we would681

expect more or less similar rates of decline in the surface, soil and groundwater682

compartments. Our investigations however suggest that anthropogenic influence683

on the hydrological cycle, in form of groundwater abstraction, is the reason for684

the significant water decline within a wide area of the MDB (see, e.g., Fig. S8685
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(C), in which the net abstraction multiplier for groundwater is mostly larger686

than 1), which is supported by local reports (e.g., from the Australian Bureau687

of Meteorology).688

The impact of C/DA on TWSC in the northern and southern regions of the689

MDB is found to be different. Stronger seasonal amplitudes in the south result690

in higher correlation coefficients but also higher RMSE values. The response691

of the hydrological resources within the four sub-basins to the meteorological692

drought also differs for the northern and southern sub-basins. The spatial dis-693

tribution of the BoM precipitation data shows that more rainfall occurred in the694

northern MDB, especially in the Darling Basin (NW), compared to the other695

sub-basins. Thus, the impact of the Millennium Drought is found to be pre-696

dominant in the southern MDB, which is in agreement with the pronounced697

hydrological drought in the south observed by GRACE. The negative linear698

trends of TWSC, as well as groundwater are less strong in the north compared699

to the south. The reason might not only be related to the climatological condi-700

tions but also to the human influence on the water resources in the MDB. Due701

to surface water subtractions, e.g., from the Darling River in the north, less702

water enters the Murray sub-basins in the south. In order to ensure irrigation703

and therefore continue agricultural activities, groundwater is even more heavily704

pumped resulting in the observed decline of TWSC and groundwater resources.705

This statement is supported by the engagement of the Murray Darling Basin706

Authority (see https://www.mdba.gov.au/) that established a Basin Plan to707

manage the entire basin as one system beyond political boarders in order to708

balance the water use and to ensure a sustainable use of the water resources.709

The hydrological drought is therefore a consequence of the mixture of dry mete-710

orological conditions and human impact on the water cycle, which is especially711

pronounced in the southern MDB.712

According to the results we show above, we are confident to state that the713

C/DA approach can be applied to use GRACE and improve a model (here714

WGHM) in a (semi-)arid region without tuning its setting. However, few prob-715

lems remain for the simulation of river discharge. It is important to keep in716
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mind that assimilating GRACE data into a model does not directly affect the717

river discharge simulation but rather through the calibration of several model718

parameters. Therefore, a perfect agreement with river discharge observations719

for the entire basin cannot be expected at least by the current resolution of720

GRACE products. However, after applying the C/DA we find a good agree-721

ment between river storage simulation of WGHM and gauge observations at722

the Murray’s upstream and downstream. Therefore, our conclusion is that the723

C/DA successfully improves storage simulation of WGHM. To achieve better724

discharge simulations, one likely needs to assimilate observations in the form of725

water fluxes (e.g., river flow and/or multiple altimetry observations), which will726

be addressed in future.727

5.4. Groundwater and Soil Storage Response to Climate Variability and Water728

Abstraction729

In this section, we explore the spatial and temporal variability of soil water730

storage and groundwater changes within the entire Murray Darling Basin by731

applying a principal component analysis (PCA, Forootan, 2014, chapter 3) on732

the outputs of WGHM before and after implementing C/DA. This analysis733

helps us to understand how these storages evolve after a dry season and how734

they response to climate variability.735

In Figs. 15 and 16, PCA results of soil water and groundwater storage736

changes are shown, respectively. In both figures, the spatial patterns are em-737

pirical orthogonal function (EOF) in mm that can be interpreted as anomaly738

maps and their corresponding temporal evolutions are unit-less (normalized)739

evolutions shown on right and labeled as principal component (PC). By multi-740

plying EOF and PC, one can reconstruct spatio-temporal variability of soil and741

groundwater storage changes in the region, while representing their maximum742

variance. Our computations indicate that the first mode of soil (EOF1 and743

PC1 of soil in Fig. 15) is equivalent with 62% of the total variance and the744

one of groundwater (EOF1 and PC1 in Fig. 16) represents 78% of the total745

variance. For brevity, in both Figs. 15 and 16, we only show the EOF that cor-746
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responds to the open loop output but PCs are estimated separately by applying747

PCA on the soil water and groundwater storage outputs of open loop, C/DA748

with all parameters, and C/DA with 3 parameters. The presentation of PCs is749

limited to the period of 2007.5-2011, within which the PCs are better distin-750

guishable. In both figures, we also show a measure of ENSO events, reflected751

in the southern oscillation index (SOI), which is downloaded from the website752

of BoM (http://www.bom.gov.au/climate/current/soi2.shtml). Sustained753

positive values of the SOI used here represent La Niña episodes and its negative754

values represent El Niño, which respectively correspond to higher and lower755

than normal precipitation in Australia.756

PCA results of soil storage from the open loop output indicate stronger757

anomalies on the east and north parts of the basin (see EOF1 in Fig. 15), as758

well as a temporal delay of ∼6 months between peaks of ENSO and soil moisture759

in 2008 and 2009. The strong La Niña in 2010 is found to change the open loop’s760

soil storage outputs quite immediately. We find no obvious trend in the open761

loop results, which apparently indicate that the history of water storage does762

not play a major role in simulating the maximum peaks derived from WGHM763

(see the black curve in Fig. 15). PCs derived from the C/DA outputs reflect the764

ENSO activity on the basin’s soil water storage more realistically. Particularly,765

we find the dry period of 2008.8-2010.2 causes a decline in soil storage (covering766

2009.2-2010.6), which is recovered by the La Niña in the middle of 2010 (see the767

red and yellow curves in Fig. 15).768

Application of C/DA is found very beneficial for improving the representa-769

tion of groundwater in the basin. The PCA results derived from groundwater770

output of the open loop run (see the black curve in Fig. 16) indicate a moder-771

ate decline until 2010, which is followed by a sudden groundwater recharge that772

is likely caused by the extensive rainfall in 2010-2011. Groundwater anoma-773

lies are found stronger along the river (see EOF in Fig. 16). The computed774

groundwater PCs, derived after implementing the C/DA (both versions), evolve775

more naturally than that of the open loop. For example, it is clear that within776

the La Niña years of 2007.5-2009.5, the rate of groundwater storage decline is777
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quite moderate (see the red and yellow curves in Fig. 16), which likely reflects778

the impact of water use. An accelerated groundwater depletion is found dur-779

ing 2009-2010.2, which reflects both a strong El Niño and extensive irrigations.780

Then, the water decline has been gradually recovered by the 2010’s La Niña.781

Figure 15: First dominant orthogonal mode, including EOF and its corresponding PC, derived

from soil moisture outputs of WGHM. Here EOF1 is derived from the open loop run, but PC1

is derived by applying PCA on the open loop, and two versions of the C/DA outputs and

compared to the ENSO index (SOI). This dominant mode represents 62% of variance in soil

moisture variability in the region.

Figure 16: First dominant orthogonal mode, including EOF1 and its corresponding temporal

pattern PC1, derived from groundwater outputs of WGHM is shown. Here EOF1 is derived

from the open loop run, but PC1 is derived by applying PCA on the open loop, and two

versions of the C/DA outputs and compared to the ENSO index (SOI). This dominant mode

(EOF1 and PC1 together) represents 78% of variance in groundwater variability in the region.
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6. Conclusions and Outlook782

A novel calibration and data assimilation (C/DA) framework (Schumacher783

et al., 2016) is applied here to integrate terrestrial water storage changes (TWSC)784

observed by GRACE satellites into WGHM within the Murray-Darling Basin785

(MDB) during 2003-2010. Several technical insights are revealed from this as-786

sessment that are summarized in the following:787

1. By applying the C/DA approach to the (semi-)arid region of the MDB,788

it is possible to restore linear trends into WGHM, and also improve the789

seasonality. As droughts in the MDB are well studied, they can act as790

a reference for impact models like WGHM. The association of the water791

decline with the correct water storage compartment, i.e. groundwater in792

our study, is achieved and validated against ground-based well measure-793

ments. Our results show that by implementing C/DA the response of soil794

water and groundwater storage to climate variability within the MDB has795

been improved. Our results indicate that although river discharge simu-796

lation WGHM in the MDB cannot be improved by assimilating limited797

resolution GRACE data, its river storage simulations can be considerably798

(positively) influenced by the C/DA.799

2. Difficulties exist when combining information from different sources, i.e.800

model simulations, remote sensing and ground-based measurements, and801

of different spatial resolution and accuracy. Uncertainties of ground-based802

data have to be considered for independent validation of the C/DA per-803

formance and a perfect agreement might not be expected.804

3. Adapting the C/DA settings to basin-specific characteristics (in this study805

by modifying a priori PDFs of parameters) and reducing the number of806

calibration parameters to avoid equifinality has several positive impacts807

on the C/DA results: (i) the uncertainties of calibration parameters are808

clearly reduced and their values converge; (ii) the influence of climate809

condition on the groundwater compartments is captured; and (iii) the810
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representation of river discharge is clearly improved, especially within the811

wet year 2010.812

4. The calibration of a smaller parameter sub-set clearly suggests that param-813

eter values vary with changes of climatic conditions within the river basin.814

Therefore, allowing the model parameters to change over time results in a815

better representation of water storage variability and water fluxes within816

MDB.817

5. Parameter updating using GRACE observations is very challenging, even818

if the number of calibration parameters is reduced. Combined C/DA using819

GRACE data is a highly under-determined system that might be limited820

in constraining individual model parameters, while an optimal parameter821

set with respect to TWSC simulations is always achieved.822

6. Comparing WGHM outputs with in-situ observations indicates that C/DA823

of GRACE data does not improve river discharge simulations in the MDB,824

but river storage simulations are significantly improved. This is likely825

caused by limitation in model equations that transfer storage information826

to water fluxes (Müller Schmied et al., 2014). This limitation is not only827

an issue for WGHM but also most of existing hydrological or land surface828

models.829

7. Comparing GRACE data from different providers and using different fil-830

tering techniques, it seems that their impact on the final C/DA results is831

smaller than GRACE data errors.832

The assessment of our C/DA approach for assimilating GRACE TWSC into833

a hydrological model has clearly shown the strengths and limitations of the834

current implementation. For future work, the application of a multi-criteria835

C/DA approach in which data on river discharge and possibly surface water836

level variations are taken into account might further help to improve the C/DA837

results.838
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Döll P, Müller Schmied H, Schuh C, Portmann FT, Eicker A (2014)893

Global-scale assessment of groundwater depletion and related groundwa-894

ter abstractions: Combining hydrological modeling with information from895

well observations and GRACE satellites. Water Resour Res 50:56985720.896

doi:10.1002/2014WR015595897

Donohue RJ, Roderick ML, McVicar TR (2011) Assessing the differences in898

sensitivities of runoff to changes in climatic conditions across a large basin. J899

Hydrol 406:234244. doi:10.1016/j.jhydrol.2011.07.003900
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