
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/106396/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Shi, Xin, Liu, Yu-shen, Gao, Ge, Gu, Ming and Li, Haijiang 2018. IFCdiff: A content-based automatic
comparison approach for IFC files. Automation in Construction 86 , pp. 53-68.

10.1016/j.autcon.2017.10.013

Publishers page: https://doi.org/10.1016/j.autcon.2017.10.013

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

IFCdiff : A content-based automatic comparison

approach for IFC files

Xin Shia, Yu-Shen Liua,b,c,∗, Ge Gaoa, Ming Gua, Haijiang Lid

aBIM Research Group, School of Software, Tsinghua University, Beijing, China
bKey Laboratory for Information System Security, Ministry of Education of China

cTsinghua National Laboratory for Information Science and Technology
dBRE Institute of Sustainable Engineering, Engineering School, Cardiff University, UK

Abstract

As the usage of IFC (Industry Foundation Classes) files in construction
industry is on the dramatic increase, it often requires effective IFC com-
parison methods to keep track of important changes occurring during the
lifecycle of construction projects. However, most IFC comparisons are based
on a visual inspection, a manual count and a check of selective attributes.
Although a few techniques about automatic IFC comparisons have been
developed recently, they are usually very time-consuming, and are sensi-
tive to the GUID change or redundant instances in IFC files. To address
these issues, this paper presents a content-based automatic comparison ap-
proach, named IFCdiff, for detecting differences between two IFC files. This
approach starts with a comprehensive analysis of the structure and con-
tent of each IFC file, and then constructs its hierarchical structure along
with eliminating redundant instances. Next, the two hierarchical structures
are compared with an iterative bottom-up procedure instead of the origi-
nal files. The presented approach fully takes into account the content of
IFC files fully without the need of flattening instances in IFC files. In con-
trast with previous methods, our approach can greatly reduce the compu-
tational time and space, and the comparison result is not sensitive to re-

∗Corresponding author at: School of Software, Tsinghua University, Beijing 100084,
China. Tel.: +86 10 6279 5455; Mobile: +86 159 1083 1178. URL: http://cgcad.thss.
tsinghua.edu.cn/liuyushen/

Email addresses: coolstone712@126.com (Xin Shi), liuyushen@tsinghua.edu.cn
(Yu-Shen Liu), gg07@mails.tsinghua.edu.cn (Ge Gao), guming@tsinghua.edu.cn
(Ming Gu), lih@Cardiff.ac.uk (Haijiang Li)

Preprint submitted to Automation in Construction December 26, 2016

*Manuscript
Click here to view linked References

http://ees.elsevier.com/autcon/viewRCResults.aspx?pdf=1&docID=8288&rev=1&fileID=176750&msid={B8CC7F02-8278-4816-B6A4-1EA3044961A2}

dundant instances in IFC files. Finally, we demonstrate a potential appli-
cation to incremental backup of IFC files. The software can be found at:
http://cgcad.thss.tsinghua.edu.cn/liuyushen/ifcdiff/.

Keywords: Building Information Modeling (BIM), Industry Foundation
Classes (IFC), IFC comparison, Change detection, Similarity and difference

1. Introduction1

During the last decade, Building Information Modeling (BIM) has re-2

ceived a considerable amount of attention in the domain of Architecture,3

Engineering and Construction (AEC) to support lifecycle data sharing [1].4

As an open and neutral data format specification for BIM, Industry Founda-5

tion Classes (IFC) [2] plays a crucial role to facilitate interoperability between6

various software platforms. The IFC data format has been widely support-7

ed by the market-leading BIM software vendors. Many recent studies also8

demonstrate the IFC viability in various applications, such as evaluation of9

design solutions [3], virtual construction [4], construction management [5],10

model checking [6, 7], path planning [8], file optimization [9], semantic anno-11

tation [10] and information retrieval [11].12

As the usage of IFC files in construction industry is on the dramatic in-13

crease, it often requires an effective IFC comparison method to keep track14

of important changes occurring during the lifecycle of construction projects.15

The IFC comparison aims to analyze and identify the differences and similar-16

ities between two IFC files. It is a fundamental problem which may arise in17

many BIM-based applications, such as collaborative building design [12], in-18

cremental backup of files, construction project management [5], product data19

exchange [13, 14, 15], conformance checking [14], handover for operation and20

maintenance [14]. Previous IFC comparisons are usually based on a visual21

inspection, a manual count and a check of selective attributes [14, 16, 17, 18].22

However, due to the large file sizes and the complex inheritance and refer-23

encing relationships of IFC files, such a way of manual inspection is often24

time-consuming and error-prone; furthermore, it can only report a partial25

and illustrative view of the compared files [13]. Although a few recent s-26

tudies have been developed for automatic IFC comparison [13, 17, 19], their27

methods are usually very time-consuming, and are sensitive to the globally28

unique identifiers (GUID) change [17, 19] or redundant instances [13] within29

IFC files.30

2

To address these issues, this paper proposes a content-based automatic31

IFC comparison approach, named IFCdiff, for tracking differences or detect-32

ing changes between two IFC files. Our approach starts with a comprehen-33

sive analysis of structure and content of each IFC file, and then constructs34

its hierarchical structure along with eliminating redundant instances at each35

level. Next the two hierarchical structures are compared with each other36

for detecting changes in an iterative bottom-up procedure. Our approach37

fully takes into account the content of IFC files and makes good use of the38

hierarchical structure of IFC files. Thus, our approach can greatly reduce39

the computational time and space, and the comparison result is not sensitive40

to redundant instances within IFC files. In addition, we also demonstrate a41

potential application of our approach to incremental backup of IFC files.42

The paper is organized as follows. Section 2 reviews the related work and43

summarizes the existing problems. Section 3 introduces some basic concepts44

and terms of IFC files. Section 4 gives a detailed description of our approach.45

Section 5 demonstrates the experimental results and a potential application46

to incremental backup of IFC files. Finally, Section 6 concludes this paper,47

summarizes our contributions and discusses some future work.48

2. Related work49

Early studies of IFC comparison mainly conducted a visual inspection50

of models and a check of selective attributes in the original and exchange51

models [14, 16, 17, 18]. The visual inspection can be done with various IFC52

viewers that are available, while the attribute analysis is usually a manual53

check for building elements. However, only using a visual and manual way54

for comparing IFC files is inaccurate and incomplete due to the complex55

referencing and inheritance structure of IFC files [13]. The manual way is56

useful for only small and simple IFC models, whereas it is not practical for57

large and complex models in the actual construction projects. Consequently,58

there is an urgent need for developing automatic IFC comparison tools in the59

scenario of IFC-based data management.60

2.1. Plain text comparison61

There are various approaches in use for performing automatic comparison62

of one IFC file to another. An IFC file is a plain text (ASCII) format with63

the extension “*.ifc”, which is specified by IFC and ISO 10303-21 [20] (also64

known as “STEP physical file”). Therefore, a direct approach is to use plain65

3

text comparison tools for directly comparing two IFC files, regardless of66

information content of models. Some widely used text comparison tools [21]67

such as diff, DiffMerge, cmp, FileMerge, SVN, CVS and BCompare, can be68

conducted for this purpose. These tools usually compute the longest common69

subsequence and highlight the differences between files. However, pure text70

comparison does not consider specific data organization and representation71

of an IFC file which includes a complex referencing and inheritance structure.72

Therefore, the traditional text comparison tools are not suitable for IFC file73

comparison.74

2.2. GUID-based IFC comparison75

Another class of approaches is based on the globally unique identifier76

(GUID) [17, 19] which is an unique identifier for object instances across77

applications and systems. The GUID-based comparison criteria is as follows.78

If there is an instance in one IFC file which has the same GUID as an instance79

in another IFC file, they can be considered as the same instance; otherwise,80

they are considered as different even with the same attributes of the entity81

or of its reference entities. The GUID-based comparison is widely adopted82

by many commercial BIM softwares such as Autodesk Revit, Navisworks and83

Graphisoft ArchiCAD. Some research articles [19, 13] also discussed how to84

use the GUIDs for measuring the differences between IFC files. More recently,85

Oraskari et al. [22] presented RDF-based signature algorithms for computing86

differences of IFC models, but their algorithms is still closely related to the87

usage of GUIDs.88

However, in the IFC specification, only the entities inherited from IfcRoot89

has a GUID as one of its attributes, while many other entities (e.g. IfcProp-90

ertySingleValue which are IfcPropertySet) not inherited from IfcRoot have91

no GUID [19, 13]. In addition, the GUIDs of instances are often changed92

during the data exchange between different systems even without any mod-93

ification to the model itself. Therefore, the GUID-based comparison is not94

a reliable approach to distinguish two IFC files even if it is quite simple and95

fast for comparison.96

2.3. Graph-based IFC comparison97

A third type of approaches was suggested by Arthaud and Lombardo98

[12] in the co-design scenario, which compares two oriented graphs generated99

by two IFC files. From this, it is possible to track the differences between100

4

two IFC models. However, the matching process of nodes between two ori-101

ented graphs still complies with the GUID comparison, where the instances102

without GUIDs are ignored in the comparison process. Such a graph-based103

IFC comparison is a non-trivial and time-consuming task for large models.104

Furthermore, this approach does not handle duplicate data instances in IFC105

files. In practice, the IFC files generated by various software platforms often106

include a large number of duplicate data instances [9, 13], which should be107

processed in the process of IFC comparison. We will discuss this issue in108

Section 2.5.2 in detail.109

2.4. Flattening-based IFC comparison110

The fourth type of approaches, presented by Lee et al. [13], utilizes a111

recursive strategy to flatten the instances in two IFC files, and then compares112

the flattened data instances instead of the original ones. The “flattening”113

process is to replace all the reference numbers with their actual values in each114

IFC file, which makes an IFC file into a structure that does not include any115

referencing or inheritance structure [13]. This overcomes the difference of116

reference numbers included in attribute values when comparing pairs of data117

instances. As a result, IFC comparison is simplified to pure string comparison118

after flattening.119

This flattening-based method firstly reads two IFC files and parses data120

into instance name, entity name, and attribute values before comparing. In121

the following example of one data instance, #90 is the instance name, IFC-122

SLAB is the entity name, and the remaining information within parentheses123

is the attribute values.124

125

#90=IFCSLAB(2VLPPLMIR7fBUKZN0XN2MZ, #13, S-
LAB 006, , $, #335, #320, $, .FLOOR.)

126

127

Since different BIM modeling systems might export IFC files in various ways.128

As a result, the instance names and reference numbers might be different.129

To overcome this difference in referencing mechanisms, the files should be130

“flattened” first, i.e., making files in a structure that does not include any131

referencing or inheritance structure by replacing the reference identifier num-132

bers with their actual attribute values. The following shows the flattened133

data instance of #90.134

135

5

#90=IFCSLAB (2VLPPLMIR7VLPPLMIR7fBUKZN0XN2MZ,
$, UNDEFINED, $, $, $, $, $, $, $, ORGANIZATIONNAME,
$, $, $, $, GS, GRAPHISOFT, GRAPHISOFT, $, $, 9.0, A-
CAD9.0, ARCHICAD, $, .NOCHANGE., $, $, $, 1149148841, S-
LAB 006, , $, $, (0.,0.,0.), (0.,0.,1.), (1.,0.,0.), (0.,0.,0.), (0.,0.,1.),
(1.,0.,0.), (43500.,14500., 200.), (0.,0.,1.), IFCPARAMETERVAL-
UE(0.)), ((0.,0.), IFCPARAMETERVALUE(90.)), .T., .CARTE-
SIAN.), .F., (0.,0.,0.), (0.,0.,1.), (1.,0.,0.), (0.,0.,1.), 200.)), $,
.FLOOR.)

136

137

Such a flattening process overcomes the difference of reference numbers in-138

cluded in attribute values when comparing pairs of data instances. As a139

result, IFC comparison is simplified to pure string comparison after flatten-140

ing.141

The process of file comparison in [13] consists of three main steps: (1)142

first parsing all data instances and flattening them, and then (2) comparing143

the flattened instances while ignoring their GUIDs, finally (3) computing the144

similarity. One main advantage of the flattening-based comparison approach145

is that it is insensitive to the change of GUIDs of data instances in IFC files.146

However, the flattening-based file comparison is usually time-consuming for147

large models, and it is also sensitive to redundant instances appearing in IFC148

files. In addition, this approach does not deal with the order changes of the149

properties in property sets in data instances. For example, an data instance150

IfcPropertySet is given below.151

152

#145=IFCPROPERTYSET(‘3wesF7dHX9B9kkD2hgAhST’, #33,
‘PSet Revit’, $, (#133, #134, #135, #136, #137, #138));

153

154

In the instance #145, the last attribute is a collection of attribute instances,155

i.e. (#133, #134, #135, #136, #137, #138), in which each attribute156

instance (e.g. #133) is an IfcPropertySingleValue indicating an attribute157

value. In this collection, the order of these attribute instances might change158

during data exchange between different BIM software. Therefore, this re-159

quires a special treatment in the file comparison process. However, the160

flattening-based IFC comparison does not consider this situation, which may161

result in that the same data instances but with different orders of attributes162

are considered to be different.163

6

2.5. Summarizing the existing problems164

After reviewing the existing approaches [12, 13, 17, 19], we summarize165

the existing problems as follows.166

2.5.1. Sensitivity for GUID changes167

Although the GUID-based approach [17, 19] is simple and fast without168

comparing all attribute values, the GUIDs of data instances are often changed169

in data exchange from different systems. Therefore, it is not an appropriate170

way for identifying the differences between IFC files. The graph-based com-171

parison [12] is time-consuming for large models, and it still complies with the172

GUID comparison during node matching. In addition, this approach is also173

sensitive to the redundant instances.174

In contrast, our method compares the contents and structures of IFC files175

through an iterative procedure, which does not rely on GUIDs.176

2.5.2. Sensitivity for redundant instances177

Redundancy in information theory is the number of bits used to transmit178

a message minus the number of bits of actual information in the message.179

Informally, it is the amount of wasted “space” used to transmit certain data180

[9]. Many previous studies (e.g. [9, 13, 16, 19]) have introduced that the181

exported IFC files in practice often contain a large number of redundant in-182

formation. Our recent paper [9] also illustrated several possible reasons for an183

abundance of redundancy in the exported IFC files. For instance, differences184

of model mapping mechanism between various BIM software platforms and185

the standard IFC data may produce a great deal of redundancy, and various186

possibilities offered by the IFC specification can cause redundancy too [9].187

One typical example of redundancy in IFC files is the identical data in-188

stances [9, 13], which are roughly defined as multiple instances of the same189

entity with the same entity name and attribute values, but possibly with190

different instance names. For example, the duplicate instances of the Ifc-191

CartesianPoint entity with the same value are one common example of re-192

dundant information. The identical data instances are the representative of193

the redundancy that should be dealt with in the process of IFC comparison.194

Complying with information theory, our approach eliminates the problem of195

redundancy existing in IFC files before comparing in order to remove the196

influence on the similarity caused by the redundant instances.197

The metric computation based on flattening the instances in [13] is sensi-198

tive to redundant instances in IFC files. In Eq. (1), the number of matching199

7

instances is highly relevant to the number of redundant instances in the IFC200

files. Assuming that there are a large number of duplicate instances in File201

A matched to data in File B, the similarity rate in Eq. (1) will be very high202

even close to 100%. This is unreasonable, because various IFC files (with or203

without duplicate instances) of the same building model should describe the204

same data model. A robust similarity rate computation should be insensitive205

to the number of redundant instances in IFC files. Although Lee et al. [13]206

also presented the matching rate for indicating how often instances in File207

A are redundantly produced in File B, it cannot improve the similarity rate208

computation in essence.209

Being different with the flattening-based comparison approach, our ap-210

proach constructs the hierarchical structures of IFC files along with eliminat-211

ing redundant instances. Then the two hierarchical structures are compared212

with an iterative bottom-up procedure instead of the original IFC files. By213

removing the redundant instances while keeping the complete IFC model-214

s, the approach can overcome the influence arising by redundant instances215

in IFC files. Consequently, our approach can obtain a stable and reliable216

similarity rate compared with the flattening-based approach [13].217

2.5.3. Time-consuming to calculation218

The flattening-based approach [13] is also time-consuming for comparison219

of large IFC files. On the one hand, the comparison between a large number220

of duplicate instances existing in IFC files will take a lot of time; while it is221

in fact unnecessary. On the other hand, after all instances in an IFC file are222

flattened, the generated strings of flattened instances become quite long due223

to the complex referencing and inheritance structure of IFC. It will cost a lot224

of time and space to complete the process of instance matching. In general,225

the flattening process will increase the size of an IFC file several times or even226

dozens of times. For example, a 10M IFC file in our test cases is increased227

to 70M after flattening.228

Compared with the flattening-based approach in [13], our approach avoids229

the procedure of flattening instances and is able to gain the similarity rate230

in a much shorter time. Furthermore, since the redundant instances are231

removed from the original files when using our approach, the number of data232

instances to be compared is decreased significantly. This greatly improves233

the comparison efficiency.234

A more formal investigation is given in Appendix A for discussing the235

complexities of the mentioned algorithms.236

8

2.5.4. Other issues237

In the previous work, the order problem of aggregation attributes was not238

considered in the process of IFC comparison. In IFC, a lot of attributes are in239

the form of a collection of reference numbers. For example, the relationship240

object associates one object with several other objects or attributes, and these241

objects or attributes are recorded as reference numbers in a set. Another242

example is the property set which includes some reference numbers and each243

of them stands for one property. Since different systems export data in244

different ways, the order of aggregation attributes might change during data245

exchange. However, the previous approaches (also including flattening-based246

approach [13]) regard this case, i.e. that those instances with the same247

attribute sets but in different order, as different instances. In contrast, our248

approach handles the order problem of attributes, which produces a stable249

similarity rate.250

The GUID-based and flattening-based approaches mainly focus on textu-251

al comparison between two IFC files. However, since the readability of IFC252

text file is poor, it is non-trivial for users to find the differences between geo-253

metric models only through text comparison. In fact, each IFC file includes254

geometric information which represents a 3D building model. If the textual255

comparison results can be associated with the 3D model, it will enable users256

to intuitively understand the differences and changes between models. This257

paper develops a prototype IFCdiff viewer specifically designed to highlight258

the different geometric objects between models.259

2.6. Tree compression260

In computer science, tree compression (or named tree compaction) is a261

common task and well-studied. Given a tree, the task is to map it as com-262

pactly as possible to memory [23], where the range of the mapping depends on263

specific applications. Many methods such as arithmetric coding and Huffman264

coding can be used for encoding and decoding of trees on data compression.265

There have been some typical applications of the tree compression methods266

such as the compression of pixel trees, syntax compression of program files,267

and the compression of XML document trees [24].268

In this paper, we simplify each IFC file as a tree structure and remove269

the redundant data instances from this tree, which can be regarded as an270

application of tree compression to IFC files. Then, the compressed tree271

structures derived from two IFC files are compared instead of comparing the272

original IFC files. When the compression of tree structures is considered,273

9

two objectives are often involved. The first objective is to reduce the space274

needed for storing a tree itself, and the second one is to reduce the operation275

time on the specific application. Our method meets both of the requirements276

because the space can be saved through removing the redundant nodes while277

accelerating the functionality of the operations (i.e. IFC comparison).278

3. Basic terms and IFC hierarchical structure279

This section introduces some basic terms used in this paper and IFC280

hierarchical structures.281

3.1. Basic terms used in the IFC file282

As the ISO 16739 standard, IFC defines a conceptual data schema and an283

exchange file format of building information models. An IFC data file is in an284

ASCII text format with the extension “*.ifc”, which uses the STEP physical285

file structure according to ISO 10303-21 [20]. The IFC file is composed of286

a header section and a data section [25], as shown in Figure 1. The header287

section describes basic information including the file description, the date288

and time, the schema version, etc. The data section defines the BIM data289

including a large number of entity instances (or named data instances). Each290

entity instance takes “#” as the beginning of the sentence and has instance291

name, entity name and a list of attribute values. The instance name (e.g.292

“#3967”) is unique within the scope of an IFC file, which can also be used as293

a reference id cited by other entity instances. An example IFC file is shown294

in Figure 1, where some basic terms are illustrated.295

Note that the instance names in two IFC files are independent of each296

other, so they cannot be used as a feature to distinguish two data instances.297

In our approach, the entity name and attribute values are considered for298

instance comparison.299

3.2. Hierarchical structure of the IFC file300

IFC divides all entities into rooted and non-rooted entities. Rooted enti-301

ties derive from the most abstract class IfcRoot and each one has a GUID302

along with attributes. Non-rooted entities have no GUID, and data instances303

only exist if referenced from a rooted data instance directly or indirectly.304

The IFC data model is essentially constructed in a hierarchical structure,305

generally with the rooted entity IfcProject as the root node. This structure306

is named IFC hierarchical structure in this paper. The data instances (e.g.307

10

ISO-10303-21;

HEADER;

FILE_DESCRIPTION(('ArchiCAD 11.0 generated ','2;1');

FILE_NAME ('IFC Engine', '2006', ('Architect'), ('Building Designer

FILE_SCHEMA(('IFC2X3'));

ENDSEC;

DATA;

…

#3959=IFCDIRECTION((-1.,0.));

#3963=IFCCARTESIANPOINT((2.2204460E-16,0.75));

#3967=IFCAXIS2PLACEMENT2D(#3963,#3959);

#3970=IFCRECTANGLEPROFILEDEF(.AREA.,$,#3967,1.,1.5);

…

ENDSEC;

END-ISO-10303-21;

entity instance

header

section

data

section

attribute value

entity name

reference id

instance name

Of ce'), 'FileA', 'Windows System', 'The authorising person.');fi

Figure 1: The basic terms used in the IFC file.

11

#3970

#3967

#3963#3959

…

…

…

…

IFCRECTANGLEPROFILEDEF

IFCAXIS2PLACEMENT2D

IFCDIRECTION IFCCARTESIANPOINT

Figure 2: A partial IFC hierarchical structure corresponding to the file fragment in Figure
1, where each node also indicates its corresponding entity name.

non-rooted entities IfcDirection and IfcCartesianPoint) that do not include308

any reference id in their attributes are considered as the terminal nodes, or309

level 0. The data instances that directly cite the level 0 nodes are their parent310

nodes, or level 1. Consequently, the data instances are structured as the level311

n nodes, if they are the parent nodes of level n − 1. The similar hierarchi-312

cal representation of IFC file was also used in other IFC-based applications313

including IFC compression [9] and partial model extraction [26].314

Figure 2 shows a partial IFC hierarchical structure corresponding to the315

file fragment in Figure 1. In Figure 2, the data instances (e.g. “#3959” and316

“#3963”) are recognized as the terminal nodes (i.e. level 0), whose parent317

node is the data instance “#3967” (i.e. level 1). The data instance “#3970”318

(i.e. the parent node of “#3967”) is recognized as the level 2.319

4. The content-based IFC comparison approach320

To achieve a fast and redundancy-insensitive IFC comparison, this sec-321

tion introduces a content-based automatic comparison approach for detecting322

changes between two IFC files. By analyzing the content of each IFC file,323

the approach first constructs the IFC hierarchical structure along with elim-324

inating duplicate data instances. Then these two hierarchical structures are325

12

compared with an iterative bottom-up procedure. The main procedure of326

our approach is illustrated in Figure 3. Starting with two IFC files as input,327

our approach contains four steps as follows.328

Step 1: Preprocess the data instances and construct the IFC hierarchical329

structures (see Section 4.1). This step first removes redundant infor-330

mation in each data instance, and then extracts three basic terms(i.e.331

instance name, entity name and attribute values) from each data in-332

stances. Next, based on the extracted terms and their referencing re-333

lationships, the hierarchical structures of two IFC files are constructed334

for further comparison.335

Step 2: Compare the terminal nodes between two IFC hierarchical structures336

along with removing redundant instances (see Section 4.2). This step337

first identifies and groups identical data instances in the terminal nodes.338

Then only one data instance of each group is kept, while all other339

duplicate instances are removed from this group. Next, we compare340

the updated terminal nodes between two hierarchical structures and341

find the matching instances between them.342

Step 3: Repeat Step 2 for iterative and level-by-level comparison for the343

remaining data instances between two files (see Section 4.3). Step 3 is344

a recursive and iterative process terminated until the comparing nodes345

reach the root node in any one of two files. The matching instances346

between two files are recorded in a hash table.347

Step 4: Finally, compute the similarity rate between two IFC files (see Sec-348

tion 4.4). The similarity rate is defined as the rate of the number of349

matching instances between two files divided by the total number of350

instances in the target file. In addition, all matching instances between351

two files are saved in the hash table, and the differences between files352

are also recorded for further applications (e.g. incremental backup of353

IFC files in Section 5.6).354

For the reader’s convenience, the target file and the source file will be355

referred to as File A and File B in this paper, respectively.356

4.1. Step 1: Preprocess data instances and construct the IFC hierarchical357

structures358

We preprocess data instances within each input IFC file, and then con-359

truct the IFC hierarchical structures. The preprocessing will remove redun-360

dant information (e.g. blank spaces and multi-lines) from each data instance361

13

Input: two IFC files

Preprocess and construct

Compare the terminal nodes along

Step 2::

the IFC hierarchical structures

Step 3:

Repeat Step 2 for iterative

and level-by-level comparison

Step 4:

Compute the similarity rate

End

Collect all data instances

in the current level nodes

Compare pairs of nodes

along with removing

redundant instances

Reach the root node?
No

Yes

Start iteration

End iteration

Begin

Output:

the comparison results

with removing redundant instances

Step 1:

Figure 3: The flow diagram of our content-based IFC comparison approach.

14

#70

instance name entity name attribute values

Figure 4: Illustration of preprocessing data instances within each IFC file, where three
basic items will be extracted from each data instance.

within each IFC file. Especially, the data instance with multi-lines is convert-362

ed into a single line. Then, the contents of three basic terms (i.e. instance363

name, entity name and attribute values) are extracted from each data in-364

stance, as shown in Figure 4. The above preprocessing is similar to the365

strategy in [9]. Finally, based on the extracted terms and their referencing366

relationships, the hierarchical structure of each IFC file (mentioned in Section367

3.2) is constructed for further comparison.368

Figure 5 shows an example of two file fragments from the target file369

(File A) and the source file (File B), respectively. The corresponding IFC370

hierarchical structures are displayed in Figure 6.371

4.2. Step 2: Compare the terminal nodes along with removing redundant372

instances373

The constructed IFC hierarchical structure is a tree-like data structure,374

so the comparison of two structures can be conducted in a similar way of375

level-by-level comparison of two trees. To accomplish this goal, we need to376

traverse two trees simultaneously, where this traversal visits the nodes by377

levels from bottom to top. The second step of our approach is to compare378

the terminal nodes between two hierarchical structures along with removing379

redundant instances.380

Firstly, for each file, we collect all data instances on the terminal nodes381

which do not include any reference id in their attribute values. For example,382

15

#3 = IFCCARTESIANPOINT((0.,0.,0.));

#5 = IFCCARTESIANPOINT((0.,0.,0.));

…

#24 = IFCAXIS2PLACEMENT3D(#3, $, $);

#25 = IFCLOCALPLACEMENT($, #24);

#38 = IFCLOCALPLACEMENT($, #37);

(' $ ',36 = IFCBUILDING 1yz7A4aOTA0AbP bdps9jg

#33, $, $, $, #25, $, $, .ELEMENT., $, $, #35);

#40 = IFCCARTESIANPOINT((0., 0., -150.));

#41 = IFCAXIS2PLACEMENT3D(#40, $, $);

#42 = IFCLOCALPLACEMENT(#38, #41);

#51 = IFCCARTESIANPOINT((0.,0.,0.));

#52 = IFCCARTESIANPOINT((0., 0., -150.));

#53 = IFCCARTESIANPOINT((0.,0.,0.));

(# , $, $);57 = IFCAXIS2PLACEMENT3D 52

#63 = IFCAXIS2PLACEMENT3D(#53, $, $);

#84 = IFCAXIS2PLACEMENT3D(#51, $, $);

#111 = IFCLOCALPLACEMENT($, #84);

#163 = IFCLOCALPLACEMENT($, #63);

#150 = IFCBUILDING('1yz7A4aOTA0AbP$bdps9jg',

#33,$,$,$,#111,$,$,.ELEMENT.,$,$,#35);

(# , #);189 = IFCLOCALPLACEMENT 163 57

File A File B

matching

matching

matching

matching

…

…

#37 = IFCAXIS2PLACEMENT3D(#5, $, $);

…

…

…

Figure 5: Illustration of two file fragments from the target file (File A) and the source file
(File B), respectively. The matching instances between two file fragments are highlighted.

(a) File A (b) File B

Figure 6: The two partial IFC hierarchical structures are displayed, which correspond to
File A and File B (in Figure 5), respectively. Here the identical data instances (light gray
nodes) on the terminal nodes (i.e. level 0) in each file are identified and grouped.

16

in File A, the data instances (#3, #5 and #40) are recognized as the terminal383

nodes in the hierarchical structure (see Figure 6(a)). In File B, the data384

instances (#51, #53 and #52) are the terminal nodes (see Figure 6(b)).385

Secondly, for each file, we identify and group the identical data instances386

in the terminal nodes by comparing their entity names and attribute values,387

where the terminal nodes with the same value are clustered into one group.388

Consequently, we can obtain multiple groups of identical data instances. In389

Figure 6, the light grey nodes (#3 and #5) denote one group of identical390

data instances in File A, while #51 and #53 are grouped together in File B.391

Thirdly, only one data instance of each group is kept, while all other392

duplicate instances are removed from this group. Meanwhile, the reference393

id of attribute values in the remaining data instances in the upper levels will394

be updated accordingly. As shown in Figure 7, the data instance #3 in the395

group is kept in File A, while #5 is deleted. Meanwhile, their upper parent396

nodes (i.e. #24 and #37) are respectively relocated to the data instance #3.397

File B is processed similarly, where #51 is kept and #53 is removed. After398

achieving the above process, we can remove all redundant data instances399

from the terminal nodes both in File A and in File B.400

Finally, we compare the new terminal nodes (without duplicate instances)401

between the two hierarchical structures while ignoring the GUIDs, and find402

the matching instances between them. Since the data instances in the ter-403

minal nodes do not include any reference id, we only compare the values404

of data instances (i.e. their entity names and attribute values) in terms of405

string comparison. In Figure 7, as for the terminal nodes, #3 in File A is406

matched to #51 in File B, where #3 and #51 are the same as “IFCCARTE-407

SIANPOINT((0.,0.,0.))” by checking the original file fragments in Figure 5.408

In addition, we record the pair of matching instances (#3, #51) in a hash409

table (denoted by T) for the upper level comparison.410

4.3. Step 3: Repeat the iterative comparison process411

In a similar way to Step 2, we need to traverse all nodes of two IFC hierar-412

chical structures by levels from bottom to top. Therefore, we make use of an413

iterative strategy for comparing the nodes of each level along with removing414

duplicate instances. The procedure of iterative comparison is described as415

follows.416

Firstly, for each IFC file, these data instances which directly cite the417

terminal nodes mentioned in Section 4.2 are collected, which will be treated418

as the new terminal nodes instead of the previous ones. As shown in Figure419

17

(a) File A (b) File B

Figure 7: Remove the duplicate instances from the terminal nodes (i.e. level 0) in each
file, and update the reference id of their upper parent nodes. (a) #3 is kept in File A,
while #5 is removed. (b) #51 is kept in File B, while #53 is deleted.

8, the data instances (#24, #37 and #41) on the level 1 in File A become the420

new terminal nodes instead of the previous terminal nodes (#3 and #40),421

while the data instances (#84, #63 and #57) in File B are regarded as the422

new terminal nodes instead of #51 and #52.423

Secondly, in a similar way to Step 2, we group the identical data instances424

in the new terminal nodes (i.e. level 1), and then the duplicate instances are425

removed from this level in each IFC file. In Figure 8, the light gray nodes426

(#24 and #37) denote one group of identical data instances in File A, while427

the light gray nodes (#84 and #63) are another group in File B. After428

removing the duplicate instances, the data instance #24 is kept in File A,429

while #84 is kept in File B, as shown in Figure 9. Meanwhile, the upper430

parent nodes (i.e. level 2) are updated accordingly (see Figure 9), where the431

data instances (#25 and #38) are relinked to #24 in File A and the data432

instances (#111 and #163) are relinked to #84 in File B.433

Thirdly, we compare the new terminal nodes (i.e. level 1) between two434

hierarchical structures while ignoring the GUIDs, and find the matching in-435

stances between them. Since the data instances in the level 1 include the436

reference id in their attribute values, we first compare the reference id and437

then compare the remaining properties between the two data instances. In438

Figure 9, the data instance #24 in File A and #84 in File B are accordingly439

updated as follows.440

18

(a) File A (b) File B

Figure 8: Illustration of the iterative comparison process on the level 1. Here we group the
identical data instances (light gray nodes) in the level 1 in each file. (a) The nodes (#24
and #37) denote one group in File A. (b) The nodes (#84 and #63) are in one group in
File B.

(a) File A (b) File B

Figure 9: Illustration of the iterative comparison process on the level 1. Here we remove
the duplicate instances from the nodes of level 1 in each file, and update the reference id
of their upper parent nodes. (a) #24 is kept in File A, while #37 is removed. (b) #84 is
kept in File B, while #63 is deleted.

19

(a) File A (b) File B

Figure 10: Illustration of the iterative comparison process on the level 2. Here we group
the identical data instances (light gray nodes) in the level 2 in each file. (a) The nodes
(#25 and #38) denote one group in File A. (b) The nodes (#111 and #163) denote
another group in File B.

441

#24=IFCAXIS2PLACEMENT3D(#3, $, $);442

443

#84=IFCAXIS2PLACEMENT3D(#51, $, $);444

445

Since we have recorded the matching instances (#3, #51) in the hash446

table T in the level 0 (see Section 4.2), the reference id of #24 is the same as447

the one of #84. In addition, the entity names and other properties between448

#24 and #84 are the same, so they are a pair of matching instances in449

the level 1. Meanwhile, this pair of matching instances (#24, #84) are450

continuously added into the hash table T for the upper level comparison.451

We repeat the above procedure for further comparing the remaining da-452

ta instances in two files. If the comparing nodes reach the root node (i.e.453

IfcProject) of File A or File B, the iterative comparison procedure is termi-454

nated. Figure 10 and Figure 11 show the above comparison procedure in the455

level 2. Figure 12 illustrates the pair of matching instances (#36, #150) in456

the level 3.457

4.4. Step 4: Compute the similarity metric458

The last step of our approach is to compute the similarity rate between459

two IFC files. Being similar to the similarity metric used in [13], we define the460

20

(a) File A (b) File B

Figure 11: Illustration of the iterative comparison process on the level 2. Here we remove
the duplicate instances from the nodes of level 2 in each file and update the reference id
of their upper parent nodes. (a) #25 is kept in File A, while #38 is removed. (b) #111
is kept in File B, while #163 is deleted.

(a) File A (b) File B

Figure 12: Illustration of the iterative comparison process on the level 3. On the level 3,
#36 in File A and #150 in File B are a pair of matching instances.

21

similarity rate from File A to File B as the rate of the number of matching461

instances between two files divided by the total number of instances in File462

A.463

Similarity(A,B)(%) =
|A ∩B|

|A|
, (1)

where |A| is the total number of instances in File A after removing redundant464

instances, and |A ∩ B| is the number of matching instances between File A465

and File B along with removing redundant instances using our approach. In466

contrast with the previous flattening-based approach in [13], when using our467

approach, the number of matching instances in File A compared to File B is468

the same with those in File B compared to File A, i.e. |A ∩ B| = |B ∩ A|,469

even if the input files include redundant data instances. Consequently, our470

approach can obtain a stable and reliable similarity rate.471

As for the example of two file fragments in Figure 5 used in this section,472

the similarity rate from File A to File B [13] is 70.0% (7/10) based on the473

flattening-based approach, while the similarity rate is 57.1% (4/7) with our474

approach.475

Finally, all matching instances between two files are saved in the hash476

table T , and the differences between them are also recorded for further ap-477

plications (e.g. incremental backup of IFC files in Section 5.6).478

Computational complexity479

Let n and m (n ≥ m) be the number of data instances in File A and File480

B, respectively. First, as for IFC hierarchical structures, it takes O(n) (for481

File A) and O(m) (for File B) to preprocess all the data instances in Step482

1. Meanwhile, it takes O(n log(n)) (for File A) and O(m log(m)) (for File483

B) to remove the redundant data instances and update the reference id [9].484

Finally, it takes O(n log(m)) to compare pairs of data instances between two485

files with an iterative bottom-up procedure. As a result, the total complexity486

is about 2O(n)+ 2O(n log(n)) +O(n log(m)), and therefore an upper bound487

of running time is O(n log(n)). A more detailed analysis for computational488

complexity is dependent on the two IFC hierarchical structures, and we leave489

it to the future work. In our implementation, we use the hash table to save490

the matching instances to accelerate the node searching and comparison.491

4.5. Improvements of approach implementation492

In order to address several issues mentioned in Section 2.5, we make some493

improvements for the presented approach.494

22

(1) Ignoring the GUID change495

During data exchange, initial GUIDs of data instances often get lost or496

changed. Therefore, we compare pairs of data instances while ignoring their497

GUIDs in Step 2 and Step 3 of our approach. This can overcome the effects498

of GUID changes during data exchange.499

(2) Ignoring the change of owner history information500

The owner history information (IfcOwnerHistory) contains information501

about the author, create time, modeling software and so on. This information502

will be changed whenever an IFC file is imported and exported from a system,503

even if there is no change in the model itself. Therefore, to identify the actual504

changes between two models, the owner history information is ignored in the505

comparison of instance attribute values.506

(3) Ignoring the order change of property set507

The previous comparison approach does not deal with the problem of the508

order changes of the properties in property sets. As mentioned above,the at-509

tribute of IfcPropertySet may be a collection of some attribute instances,which510

requires special treatment in the file comparison process.When comparing511

two IfcPropertySet instances, we compare all attribute instances in two col-512

lections and find the matching data instance with the help of the hash table513

T .514

5. Experimental results and discussions515

Our approach has been implemented in a content-based IFC comparison516

tool, called IFCdiff, with Visual C++ under Windows 8. All the experiments517

were run on an Intel Pentium(R) Dual-Core 3.06GHZ processor with 6 GB518

memory. Figure 13 shows the screenshot of the IFCdiff tool. The user519

should first open two candidate IFC files (the target and source files), and520

then click the button “Compare” to perform the comparison procedure. The521

comparison results and the similarity metrics are displayed at the bottom.522

Alternatively, one can select multiple checkboxes to ignore the GUIDs, owner523

history information and the order of property set.524

In order to visualize the compared models and their differences, we also525

developed an IFCdiff viewer, as shown in Figure 14. In the main interface526

of the viewer in Figure 14(a), the corresponding differences of two input IFC527

files are highlighted in the text boxes in the middle, the similarity metrics528

23

Figure 13: The screenshot of our comparison tool IFCdiff.

and a summary of the analysis are given at the bottom, and the matching529

data entities between two files are listed on the right. By clicking the button530

“3DView” of each file in Figure 14(a), the viewers of 3D models will pop531

up in Figure 14(b) and Figure 14(c), where the matching building elements532

are highlighted with the same color. This enables users to check the visual533

differences and changes between IFC models quickly.534

To evaluate the performance of the presented approach, this section tests535

our approach on some selected IFC files, and the experiments are conducted536

by comparing with other existing approaches. Finally, we demonstrate a537

potential application to incremental backup of IFC files.538

5.1. Comparison with plain text comparison methods539

The first experiment compares our method with plain text comparison540

methods. Many plain text comparison tools [21] are able to achieve file541

comparison to highlight the differences between files. Such tools generally542

perform string comparison of string-by-string or line-by-line and highlight the543

differences and changes between two files. Here we typically choose the tool544

DiffMerge to compare two IFC files and show their differences. In the test545

case, a building model first was built in Graphisoft ArchiCAD 16 and was546

exported as File A (Figure 15(a)). Then the same model was slightly modified547

24

(a) The main interface of the IFCdiff viewer

(b) 3D model of File A (c) 3D model of File B

Figure 14: The screenshot of the IFCdiff viewer.

25

(a) File A

(b) File B

Figure 15: The file comparison results using the plain text comparison tool DiffMerge.

26

Table 1: The number of data instances in test cases (M1 – M4).

IFC files #instances

M1 (with redundance) 106,438
M2 (without redundance) 45,461
M3 (with redundance) 103,541
M4 (without redundance) 44,931

through removing a window, and it was re-exported as File B (Figure 15(b)).548

Figure 15 shows the corresponding parts of file fragments with the same549

contents but with different instance names. For example, #724 in File A and550

#674 in File B are the identical data instances but with different instance551

names. DiffMerge recognizes that the two parts are totally different while552

highlighting their differences. The main reason is that plain text comparison553

methods cannot deal with specific data organization and representation of554

IFC files including the complex referencing and inheritance structures. In555

contrast, our approach recognizes the two parts as the same.556

5.2. Comparison with the flattening-based file comparison method557

The second experiment compares our method with the flattening-based558

file comparison method [13]. The used IFC files were exported through Archi-559

CAD, which are referred to as M1 – M4. The corresponding models are560

visualized in Figure 16. In the four test files, M1 contains a large number561

of duplicate data instances, while M2 is the non-redundant file obtained by562

removing the duplicate data instances from M1 (using our IFCCompressor563

tool [9]). M3 is obtained by deleting the roof of M1 in ArchiCAD and ex-564

porting the file, while M4 is the non-redundant file obtained by removing565

the duplicate data instances from M3. Table 1 shows the number of data566

instances in each IFC file. For instance, the original M1 file contains 106,438567

instances, while the non-redundant M2 file just includes 45,461 instances.568

Table 2 shows the similarity rates computed using our method and the569

flattening-based method [13]. M1 (with redundance) and M2 (without re-570

dundance) are the same model but with a different number of data instances;571

similarly, M3 (with redundance) and M4 (without redundance) are the same572

model but with a different number of instances. In general, a robust ap-573

proach of IFC comparison should be capable of obtaining a stable similarity574

rate between M3 (or M4) and M1 (or M2). The results in Table 2 suggest575

27

(a) M1 (with redundance) (b) M2 (without redundance)

(c) M3 (with redundance) (d) M4 (without redundance)

Figure 16: Visualizing the models of four test IFC files (M1 – M4). M1 contains a large
number of duplicate data instances, while M2 is the non-redundant file through removing
the duplicate instances from M1. M3 is the re-exported file after deleting the roof of M1 in
ArchiCAD, while M4 is the non-redundant file through removing the duplicate instances
from M3.

28

Table 2: The similarity rates computed using our method and the flattening-based method
[13].

Target Source SR using our methoda SR using flatteningb

M3 M1 83.2% 81.6%
M3 M2 83.2% 81.6%
M4 M1 83.2% 83.2%
M4 M2 83.2% 83.2%

a“SR using our method” is the similarity rate computed by our methods.
b“SR using flattening” is the similarity rate computed by the flattening-based method

[13].

that our approach is not sensitive to redundant instances within IFC files,576

which can obtain the consistent similarity rate (83.2%) between M3 (or M4)577

and M1 (or M2). In contrast, the flattening-based method obtains two differ-578

ent similarity rates (81.6% and 83.2%), because of the redundant instances579

within IFC files. As for the flattening-based method, if there are a large580

number of duplicate instances matched in two files, the similarity rate tends581

to be high; otherwise, if there are a large number of duplicate instances not582

matched in two files, the similarity rate tends to be low.583

5.3. Experiments under different parameter conditions584

The third experiment compares our method under different parameter585

conditions. In Figure 13 and Figure 14, one can select multiple checkboxes586

to ignore the GUIDs, owner history information and the order of property587

set. This can explicitly improve the comparison results. We select two IFC588

files (referred to as M5 and M6) for this test, as visualized in Figure 17. A589

building model was first generated in ArchiCAD and then exported as M5.590

Next, M5 was imported into ArchiCAD and re-exported as M6 without any591

modification. Before performing file comparison, the duplicate instances of592

M5 and M6 have been removed using our IFCCompressor tool [9].593

Table 3 shows the similarity rates using the IFCdiff with different param-594

eters. The similarity rate without any specific parameters is about 85.85%,595

which is the same as the similarity rate in the flattening-based method [13].596

The reason is that the two input files M5 and M6 have no redundant in-597

stances; consequently, the flattening-based method [13] can obtain the same598

result. In Table 3, the similarity rate with ignoring the GUIDs is also 85.85%,599

29

(a) M5 (b) M6

Figure 17: Visualizing the models of M5 and M6. A building model first was generated
in ArchiCAD and then exported as M5. Next, M5 was imported into ArchiCAD and
re-exported as M6 without any modification.

which indicates that ArchiCAD preserves the GUIDs well during data ex-600

change. Another reason is that the building model was built on ArchiCAD601

and was exported as M5 and M6 still through ArchiCAD. In other words, the602

GUIDs were generated and maintained by the same system (i.e. ArchiCAD)603

itself. However, the GUID preservation rate often is low when a model is604

imported and exported in two different systems, as illustrated by Lee et al.605

[13].606

In this table, the similarity rate with ignoring owner history information607

is about 95.12%, which is highest in this table. The reason is that a large608

number of data instances cite the entity IfcOwnerHistory which holds the609

modeler and modeling software information. The owner history information610

changes whenever a file is imported and exported from a system, even if no611

revisions are made to the model. Therefore, when ignoring the changes of612

owner history information, the similarity rate can be improved significantly.613

Finally, we test the similarity rate while ignoring the order of properties614

in property sets, which is about 86.26% better than the default (i.e. 85.85%).615

This suggests that the orders of some attribute instances have been changed616

during the data exchange process, even if importing and exporting was done617

in the same system (i.e. ArchiCAD). The reason is the difference of model618

mapping mechanism between the internal models of BIM software platforms619

and the standard IFC data model, where the properties of some objects held620

in ArchiCAD are in different order to that in the IFC data model.621

30

Table 3: The similarity rates using the IFCdiff with different parameter conditions.

Parameters Similarity rate

Default (without any specific parameters) 85.85%
Ignore the GUIDs 85.85%
Ignore owner history information 95.12%
Ignore the order of property set 86.26%

(a) M7 (b) M8

(c) M9 (d) M10

Figure 18: Visualizing the four models (M7 – M10) used for testing computational time
and space.

31

5.4. Computational time and space622

5.4.1. Computational time623

The fourth experiment compares computational time and space between624

our method and other methods [13]. In this test, four building models were625

developed in Autodesk Revit 2014 and exported as the initial IFC files (re-626

ferred to as M7 – M10), as visualized in Figure 18. Then we import the four627

files into Revit and ArchiCAD, and export them as new IFC files without628

making any changes to the models. The new IFC files are renamed M7 R,629

M8 A, M9 R and M10 A, where “ R” and “ A” denote that the files are630

exported through Revit and ArchiCAD, respectively. The new files are used631

as the target files, while the initial files are used as the source files.632

Table 4: The details of paired IFC files used for testing computational time and space.

No.
Target files Source files

Name Size(MB) #instances Name Size(MB) #instances

1 M7 R 0.591 11,753 M7 0.425 8,287
2 M8 A 1.040 24,277 M8 1.257 26,234
3 M9 R 2.519 42,884 M9 3.511 68,114
4 M10 A 9.817 215,354 M10 4.364 91,023

Table 4 gives the details of those files to be compared, where “No.” is633

the index of paired files to be compared, “Size(MB)” is the file sizes, and634

“#instances” is the number of data instances within the files. Note that635

although there is no modification in the imported and exported models, the636

file sizes and the number of data instances still suffer some changes. For637

example, M10 contains 91,023 instances, while there is a great increase of638

instances in the re-exported M10 A (215,354 instances). The main reason is639

that different systems map data into the IFC files in different ways.640

Next, comparisons of paired files are made using the flattening-based641

method [13] and our approach, respectively. Table 5 shows the computation-642

al time of the two methods. In Ref. [13], the process of file comparison mainly643

contains three steps: (1) parsing data instances into the memory, (2) flatten-644

ing all the instances and (3) comparing pairs of instances. In Table 5, we list645

the computational time of each step of the flattening-based method and the646

32

Table 5: Computational time of two methods for the paired IFC files in Table 4.

No.
Flattening-based method Ours

RT a(%)
Parse(s) Flatten(s) Compare(s) T1

b(s) T2
c(s)

1 0.3276 2.0592 7.7377 10.1245 1.3728 86.44%
2 0.3276 2.0436 43.8987 46.8159 4.8048 89.74%
3 2.7924 4.6956 254.5 261.988 8.5333 96.74%
4 7.1605 135.861 1702.0 1845.02 81.2609 95.60%

a“RT ” is the percentage of reduced time when using our approach.
b“T1” is the total time of the flattening-based method.
c“T2” is the time of our approach.

total time (“T1”). In addition, the time of our approach is given by “T2”, and647

the percentage of reduced time is listed by “RT”, where RT = (T1 − T2)/T1.648

The result in Table 5 shows that our approach can significantly reduce the649

time in the file comparison process. For example, the percentage of reduced650

time is about 95.60% for the comparison of M10 A and M10. As mentioned651

in Section 2.5.3, the flattening-based method is often time-consuming for652

comparison of large IFC files, especially with numerous duplicate instances.653

It takes a lot of time to perform the two steps of flattening and compar-654

ing in [13]. In contrast with the flattening-based method, our approach has655

an advantage when dealing with large file comparison. In this experiment,656

for example, the flattening-based method costs 1845.02s for the comparison657

of M10 A and M10, while our approach just takes 81.2609s to process the658

comparison of the same files (reducing 95.60%). The result shows that the659

percentage of reduced time with our algorithm is generally very high (the660

average is 92.13%) for tested cases.661

5.4.2. Computational space662

In general, the flattening process in [13] also increases the size of an IFC663

file several times or even dozens of times. Table 6 shows the size of original664

target files in Table 4 and the size variation after running the flattening-based665

method and our approach. As seen in this table, when using the flattening-666

based approach, the sizes of some files are increased by more than ten times.667

In contrast, our approach reduces the file to a smaller size, which greatly668

improves the comparison efficiency.669

33

Table 6: Space requirements of two methods in the file comparison process.

No. Originala(MB)
Flattening-based method Ours

Flattenb(MB) Increasec(%) Processd(MB) Reducee(%)

1 0.591 33.292 5533.16% 0.466 26.82%
2 1.040 9.407 804.52% 0.722 44.04%
3 2.519 31.959 1168.72% 1.905 32.23%
4 9.817 70.175 614.83% 6.398 53.44%

a“Original” is the size of original target files in Table 4.
b“Flatten” is the size of space after flattening all instances in the target files.
c“Increase” is the percentage of increased space when using the flattening-based method.
d“Process” is the size of space after removing redundant instances using our approach.
e“Reduce” is the percentage of reduced space when using our approach.

In addition, the flattening-based method needs to use all the instances670

for comparison. Unlike that, since enormous duplicate instances are removed671

from the original files based on our approach, the number of actual instances672

used for comparison is significantly decreased. Table 7 lists the number of673

instances used for comparison based on the flattening-based method and our674

approach. The result shows that the average percentage of reduced instances675

using our approach reaches 25% for the tested cases.676

Table 7: Counting the number of instances used for comparison based on the flattening-
based method and our approach.

No. Target files N1
a N2

b Reducec(%)

1 M7 R 11,753 10,005 14.87%
2 M8 A 24,277 16,393 32.48%
3 M9 R 42,884 31,911 25.59%
4 M10 A 215,343 154,617 28.20%

a“N1” is the number of instances used for comparison based on the flattening-based
method.

b“N2” is the number of instances used for comparison based on our approach.
c“Reduce” is the percentage of reduced instances when using our approach.

34

Figure 19: Visualizing the IFC model used in a real-life case.

5.5. Preliminary test in a real-life case677

In order to test the performance of our approach in a real-life case, an678

apartment building model in the Yunnan province in China is selected as a679

preliminary test. The architectural design model was developed in Revit, and680

exported as an IFC file. This selected model has been used for our previous681

case studies including IFC-based path planning [8] and IFC compression [9].682

The original IFC file is about 156.0 MB, which includes more than 2.8 million683

data instances with numerous duplicate instances. The corresponding model684

is visualized in Figure 19.685

In this case study, we first remove all duplicate instances from the orig-686

inal file using the IFCCompressor tool [9]. Then the newly non-redundant687

file is compared with the original file, which produces the similarity rate of688

100%. The result suggests that our approach is not sensitive to redundant689

instances even in large IFC files. When using our IFCdiff tool, the time690

cost of comparison process is about 371.1s. In contrast, the flattening-based691

method fails to handle such large IFC files.692

35

#57

#189

#52

#111

#150

#84

#51

…

(a) File A

#41

#42

#40

#25

#36

#24

#3

…

(b) File B

Figure 20: An example for illustrating the incremental backup content, where File A is
the previous version and File B is the current version. The identical data instances are
highlighted by the light gray nodes, while the different data instances are the white nodes.

5.6. Application to incremental backup of IFC files693

One potential application of our approach is for incremental backup of694

IFC files. An incremental backup is a type of data backup that backs up695

only the new or changed data since the last incremental backup. The design696

and management of building models follow an iterative process, which often697

includes frequent revision and updating on one or more basic models during698

the lifecycle of a construction project. This requires an effective method for699

IFC file backup.Time and disk space can be saved by only backing up the700

changed data.701

The traditional full backup backs up all data on a disk even if minor702

changes are made to the files, which is time-consuming and space-intensive703

for IFC data management. Therefore, incremental backups are often desir-704

able as they consume smaller storage space and are quicker to perform than705

full backups. Although pure text comparison methods can be directly used706

for incremental backup of IFC files, they cannot deal with specific data or-707

ganization and representation of IFC files, as mentioned in Section 5.1. As708

a result, numerous consistent data instances (with different instance names)709

are considered to be different, and the size of incremental backup data is710

often close to the full backup.711

The incremental backup mainly consists of identifying and recording the712

changed data since the last backup. Our comparison approach can be directly713

36

…

#40 = IFCCARTESIANPOINT((0., 0., -150.));

…

#41 = IFCAXIS2PLACEMENT3D(#40, $, $);

…

#42 = IFCLOCALPLACEMENT(#38, #41);

…

Figure 21: Illustrating the differences between the previous and current versions, which
are saved to record the changed data in incremental backup.

Table 8: Comparison of storage space between the full backup and our incremental backup.

Previous Current Full backup(MB) Incremental backup(MB) Reduce(%)

M2 M4 2.231 0.603 72.97%

applied to identify the differences between two IFC files. Then the differences714

are saved as the portion that has changed. Figure 20 shows an example for715

illustrating the incremental backup content, where File A is the previous716

version and File B is the current version. Here the identical data instances717

are highlighted by the light gray nodes, while the different data instances are718

the white nodes. Finally, the differences between two files are saved to record719

the changed data since the last incremental backup, where we typically save720

the different data instances and the hash table of matching instances in a721

specific file form (see Figure 21).722

We also test our incremental backup strategy on two actual files (M2 and723

M4), as shown in Figure 16. Table 8 shows the comparison of storage space724

between the full backup and our incremental backup, where M2 and M4 are725

assumed to be the previous and current versions, respectively. The result726

suggests that our incremental backup saves around 73% space in contrast to727

the full backup. The incremental backup of IFC files is an attractive research728

topic, and its full implementation including an efficient recovery process will729

be left to our future work.730

37

6. Conclusion, contribution and discussion731

This paper presents a content-based automatic comparison approach for732

IFC files, and presents the development of a file comparison tool IFCdiff.733

The novelty is to build the hierarchical structures for comparing IFC files734

along with eliminating their redundant instances in the comparison process.735

Here the built hierarchical structures of two IFC files are compared with an736

iterative bottom-up procedure instead of comparing the original files. Such737

a process does not need to flatten all the data instances in IFC files. In the738

comparison process, all matching instances between two files are saved in the739

hash table, while the differences between them are also recorded for further740

applications. To evaluate the performance of our approach, the presented741

approach is tested on some IFC files exported through several commercial742

BIM software platforms. Finally, we make use of the presented approach743

to demonstrate a potential application to incremental backup of IFC files.744

The experimental results show that our approach outperforms the previous745

methods.746

The significant contributions of our work are summarized as follows.747

- We build the hierarchical structures for comparing IFC files with an it-748

erative bottom-up procedure. Compared with the previous flattening-749

based approach, our approach avoids the procedure of flattening in-750

stances. As a result, our approach can greatly reduce the computa-751

tional time and space in the file comparison process. The experimental752

result shows that the percentage of reduced time with our algorithm is753

generally very high (the average is 92.13%) for tested cases.754

- In the level-by-level comparison of hierarchical structures, we also e-755

liminate redundant instances appearing in two IFC files. This brings756

two advantages. On the one hand, by removing redundant instances757

can significantly decrease the number of data instances to be com-758

pared, which improves the comparison efficiency. On the other hand,759

by removing the redundant instances while keeping the complete IFC760

models, the comparison result using our approach is not sensitive to761

redundant instances in IFC files, which brings a stable and reliable762

similarity superior to the previous methods.763

- We apply the presented comparison approach to incremental backup764

of IFC files. Here our approach is used for identifying and recording765

the changed data between the previous version and the current one.766

38

The result suggests that our incremental backup can greatly save the767

storage space in contrast to the full backup.768

Some previous studies have contributed to the issue of removing redun-769

dant instances in a single IFC file, such as Solibri IFC Optimizer [27] and770

IFCCompressor [9]. In this paper, we follow a similar manner to [9] to remove771

redundant instances in each level comparison, so the strategy of removing772

redundant instances used in this paper is not new. In practice, however,773

the IFC files generated by various software platforms often include a large774

number of redundant instances [9, 13], so the redundant instances should775

be considered in the process of IFC comparison. In this paper, we argue776

that it is meaningful and important to make use of the hierarchical struc-777

tures for comparing IFC files along with removing redundant instances. This778

combination of hierarchical comparison and redundance elimination can sig-779

nificantly speed up the file comparison process and obtain a stable similarity.780

Even if two IFC files without redundancies are compared to each other, our781

approach can still reduce the computational time and space in contrast with782

the previous flattening-based approach. The IFCdiff presented in this paper783

can be considered as a complementary tool for the existing IFC tools.784

Our comparison method only deals with the syntax content of data in-785

stances explicitly extracted from the input IFC file itself, but the semantic786

content of data instances implicitly derived from the IFC file is not handled787

yet. The domain of geometry comparison and objectified relationships be-788

longs to the semantic comparison problem, which is quite complicated and789

will be our future work. We give an example for illustrating this problem as790

follows. In our method, one data instance explicitly extracted from the input791

IFC file itself consists of three terms (i.e. instance name, entity name and792

attribute values). If the entity name and attribute values between two data793

instances are consistent, they are considered to be the same. In contrast,794

if the geometric representation is different between two data instances, they795

will be potentially considered to be different in our method. This may not796

be always true. In particular, the IFC schema provides various geometric797

representations (such as swept, CSG and B-rep) for a solid model, which can798

be freely chose by an BIM modelling system. This means that the same solid799

model may have many different geometric representations. To address this800

issue, a possible way of geometry comparison is to first discretize the solid801

models into 3D meshes and then use some existing 3D shape comparison802

methods for the discretized shapes [28, 29, 30, 31, 32, 33].803

39

Supplementary material804

The online IFCdiff tool and its demonstration can be accessed at: http:805

//cgcad.thss.tsinghua.edu.cn/liuyushen/ifcdiff/.806

Acknowledgements807

The research is supported by the National Natural Science Foundation of808

China (61472202, 61272229). The third author is supported by the National809

Key Technologies R&D Program of China (2015BAF23B03).810

Appendix A. Comparison of computational complexities811

In this section, we mainly compare computational complexities between812

our approach and the flattening-based algorithm [13]. If only considering813

the comparison process, both the time complexities of our method and the814

flattening-based method are O(n log(n)) (see Section 4.4) with the assump-815

tion that the length of each data instance is a constant, where n is the average816

number of data instances between two IFC files to be compared. Our method817

is able to accomplish the comparison of reference instances by only compar-818

ing the instance name with the help of an auxiliary map storing matched819

instance names. However, the flattening-based method replaces all the ref-820

erence numbers with their actual values in each IFC file, which makes an821

IFC file into a structure that does not include any referencing or inheritance822

structure. This will result in that the length of the flattened data instance823

increases dramatically (see an example in Section 2.4). Therefore, the length824

of the data instance cannot be seen as a constant any more. Assuming that825

the average length of the flattened data instance is L, the time complexity826

of the flattening-based algorithm is O(Ln log(n)), which of course will take827

much more time than our method.828

In addition, our algorithm has some extra advantages in contrast to the829

flattening-based method from the perspective of space complexity. In order to830

facilitate the description and analysis, the comparing file and the compared831

file can be simplified as a hierarchical structure to establish the reference832

mechanism based on a tree. Let d be the depth of the tree and L be the833

average length of each data instance. We also assume that the number of834

attributes of the instance is K and they are all references. Finally, from the835

bottom of the tree, each data instance is referenced by others for h times.836

40

In our algorithm, the number of the terminal level is kd−1 and the total837

length is kd−1L. Similarly, the second layer from the bottom has kd−2 data838

instances and the total length is kd−2L. Therefore, we can deduce that the839

space complexity of our algorithm is840

S1 = kd−1L+ kd−2L+ ...+ L. (A.1)

Meanwhile, in the flattening-based method, the number of the terminal841

level is kd−1 and the total length is kd−1L. Similarly, the second layer from the842

bottom has kd−2 data instances and the total length is kd−1Lh+kd−2L. Thus,843

we can deduce that the space complexity of the flattening-based algorithm is844

S2 = kd−1L+ (kd−1Lh + kd−2L) + (kd−1Lh+ kd−2L)hL+ kd−3 + ...+ L

= kd−1Lh + (kd−1Lh + kd−2L) + ... + kd−1L+ kd−2L+ ... + L

= kd−1Lh + (kd−1Lh + kd−2L) + ... + S1.

(A.2)

Apparently, the whole file increases dramatically large after the flattening845

process, which explains why the flattening-based method takes much longer846

than our method.847

References848

[1] C. Eastman, P. Teicholz, R. Sacks, K. Liston, BIM Handbook: A Guide849

to Building Information Modeling for Owners, Managers, Designers, En-850

gineers and Contractors, 2nd Edition, John Wiley and Sons, NJ, 2011.851

[2] BuildingSMART, Industry Foundation Classes (IFC). Available852

from: http://www.buildingsmart-tech.org/specifications/853

ifc-overview/ (2014).854

[3] S. Jeong, Y. Ban, Computational algorithms to evaluate design solutions855

using space syntax, Computer-Aided Design 43 (6) (2011) 664–676.856

[4] J. Zhang, F. Yu, D. Li, Development and implementation of an Indus-857

try Foundation Classes-based graphic information model for virtual con-858

struction, Computer-Aided Civil and Infrastructure Engineering 29 (1)859

(2014) 60–74.860

41

[5] R. Vanlande, C. Nicolle, C. Cruz, IFC and building lifecycle manage-861

ment, Automation in Construction 18 (1) (2008) 70–78.862

[6] C. Eastman, J. Lee, Y. Jeong, J. Lee, Automatic rule-based checking of863

building designs, Automation in Construction 18 (8) (2009) 1011–1033.864

[7] P. Pauwels, D. V. Deursen, R. Verstraeten, J. D. Roo, R. D. Meyer, R. V.865

de Walle, J. V. Campenhout, A semantic rule checking environment866

for building performance checking, Automation in Construction 20 (5)867

(2011) 506–518.868

[8] Y.-H. Lin, Y.-S. Liu, G. Gao, X.-G. Han, C.-Y. Lai, M. Gu, The IFC-869

based path planning for 3D indoor spaces, Advanced Engineering Infor-870

matics 27 (2) (2013) 189–205.871

[9] J. Sun, Y.-S. Liu, G. Gao, X.-G. Han, IFCCompressor: A content-based872

compression algorithm for optimizing Industry Foundation Classes files,873

Automation in Construction 50 (2015) 1–15.874

[10] G. Gao, Y.-S. Liu, M. Wang, M. Gu, J.-H. Yong, A query expansion875

method for retrieving online BIM resources based on Industry Founda-876

tion Classes, Automation in Construction 56 (2015) 14–25.877

[11] G. Gao, Y.-S. Liu, P. Lin, M. Wang, M. Gu, J.-H. Yong, BIMTag:878

Concept-based automatic semantic annotation of online BIM product879

resources, Advanced Engineering Informatics 31 (2017) 48–61.880

[12] G. Arthaud, J. Lombardo, Automatic semantic comparison of STEP881

product models: Application to IFC product models, in: Innovations in882

Design & Decision Support Systems in Architecture and Urban Plan-883

ning, Heeze, The Netherlands, 2006, pp. 447–463.884

[13] G. Lee, J. Won, S. Ham, Y. Shin, Metrics for quantifying the similar-885

ities and differences between IFC files, Journal of Computing in Civil886

Engineering 25 (2) (2011) 172–181.887

[14] R. Lipman, M. Palmer, S. Palacios, Assessment of conformance and888

interoperability testing methods used for construction industry product889

models, Automation in Construction 20 (4) (2011) 418–428.890

42

[15] W. Gielingh, An assessment of the current state of product data tech-891

nologies, Computer-Aided Design 40 (7) (2008) 750–759.892

[16] T. Pazlar, Ž. Turk, Evaluation of IFC optimization, in: Proceedings of893

CIB W78 Conference on Bringing ITC Knowledge to Work, 2007, pp.894

61–66.895

[17] Y.-S. Jeong, C. Eastman, R. Sacks, I. Kaner, Benchmark tests for BIM896

data exchanges of precast concrete, Automation in Construction 18 (4)897

(2009) 469–484.898

[18] T. Pazlar, Ž. Turk, Interoperability in practice: Geometric data ex-899

change using the IFC standard, ITcon 13 (2008) 362–380.900

[19] H. Ma, K. M. E. Ha, C. K. J. Chung, R. Amor, Testing semantic interop-901

erability, in: Proceedings of Joint International Conference on Comput-902

ing and Decision Making in Civil and Building Engineering, Montreal,903

Canada, 2006, pp. 1216–1225.904

[20] ISO 10303-21:2002, Industrial automation systems and integration –905

Product data representation and exchange – Part 21: Implementation906

methods: Clear text encoding of the exchange structure (2002).907

[21] File comparison tools. Available from: http://en.wikipedia.org/908

wiki/Comparison_of_file_comparison_tools (2015).909

[22] J. Oraskari, S. Törmä, RDF-based signature algorithms for computing910

differences of IFC models, Automation in Construction 57 (2015) 213–911

221.912

[23] J. Katajainen, E. Mäkinen, Tree compression and optimization with913

applications, International Journal of Foundations of Computer Science914

1 (4) (1990) 425–447.915

[24] G. Busatto, M. Lohrey, S. Maneth, Efficient memory representation of916

XML document trees, Information Systems 33 (4–5) (2008) 456–474.917

[25] T. Liebich, IFC 2x Edition 3 Model Implementation Guide (Version 2.0).918

(2009).919

43

[26] L. Zhang, R. Issa, Ontology based partial building information model920

extraction, Journal of Computing in Civil Engineering 27 (6) (2013)921

576–584.922

[27] Solibri, Solibri IFC Optimizer. Available from: http://www.solibri.923

com/solibri-ifc-optimizer.html (2014).924

[28] Y.-S. Liu, K. Ramani, M. Liu, Computing the inner distances of volu-925

metric models for articulated shape description with a visibility graph,926

IEEE Transactions on Pattern Analysis and Machine Intelligence 23 (12)927

(2011) 2538–2544.928

[29] Y.-S. Liu, Y. Fang, K. Ramani, IDSS: deformation invariant signatures929

for molecular shape comparison, BMC Bioinformatics 10 (157) (2009)930

1–14.931

[30] Y. Fang, Y.-S. Liu, K. Ramani, Three dimensional shape comparison932

of flexible protein using the local-diameter descriptor, BMC Structural933

Biology 9 (29) (2009) 1–15.934

[31] Y.-S. Liu, Q. Li, G.-Q. Zheng, K. Ramani, W. Benjamin, Using diffusion935

distances for flexible molecular shape comparison, BMC Bioinformatics936

11 (480) (2010) 1–15.937

[32] J. Feng, Y.-S. Liu, L. Gong, Junction-aware shape descriptor for 3D938

articulated models using local shape-radius variation, Signal Processing939

112 (2015) 4–16.940

[33] Y.-S. Liu, H. Deng, M. Liu, L. Gong, VIV: Using visible internal volume941

to compute junction-aware shape descriptor of 3D articulated models,942

Neurocomputing 215 (2016) 32–47.943

44

