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FRACTIONAL STOKES-BOUSSINESQ-LANGEVIN EQUATION AND

MITTAG-LEFFLER CORRELATION DECAY

VO V. ANH AND NIKOLAI N. LEONENKO

This contribution is dedicated to the 85th anniversary of Professor Mykhailo Iosipovych Yadrenko

Abstract. This paper presents some stationary processes which are solutions of the
fractional Stokes-Boussinesq-Langevin equation. These processes have reflection posi-
tivity and their correlation functions, which may exhibit the Alder-Wainwright effect or
long-range dependence, are expressed in terms of the Mittag-Leffler functions. These
properties are established rigorously via the theory of KMO-Langevin equation and a
combination of Mittag-Leffler functions and fractional derivatives. A relationship to
fractional Riesz-Bessel motion is also investigated. This relationship permits to study
the effects of long-range dependence and second-order intermittency simultaneously.

1. Introduction

In a computer experiment of molecular dynamics, Alder and Wainwright [2, 3] found
the tail behavior −32 as →∞ for the autocorrelation function of a stationary process of
non-Markovian type. This behavior is known as the Alder-Wainwright effect. The usual
Langevin equation for the velocity  () of a Brownian particle of mass  at position  ()
in a fluid, which neglects the effect of the fluid flow around the particle, is not adequate
to capture this behavior. Taking into account the hydrodynamic drag force, which is due
the acceleration of the particle, the Langevin equation becomes the Stokes-Boussinesq-
Langevin equation :

(1.1)
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³
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´
is the effective mass,  being the density of the fluid, 0 being

the density of the particle, ∗ = ∗ is the modified relaxation time,  is the mobility
coefficient,  is the kinematic viscosity of the fluid, and  () denotes the random force
arising from rapid thermal fluctuations (see Appendix A for the derivation of Eq. (1.1)).
It was shown in Widom [64], for example, that the autocorrelation function of the random
process  () defined by Eq. (1.1) has the tail −32 as →∞, which agrees with the result
of the Alder-Wainwright experiment.
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Many works on physical models of anomalous diffusion reported a Mittag-Leffler decay
for the autocorrelation function:

(1.2)  () =  (− ||)   ∈ R 0   ≤ 1  ≥ 0

where  is the one-parameter Mittag-Leffler function (defined in Section 2). This for-
mula covers a complete range from the exponential decay of Ornstein-Uhlenbeck processes
to the hyperbolic decay of strongly dependent processes, and includes the Alder-Wainwright
effect. Metzler et al. [44] introduced a fractional Fokker-Planck equation using fractional
derivatives to describe subdiffusive behavior of a system close to thermal equilibrium.
Based on this equation, they showed that the mean square displacement of a particle has
a Mittag-Leffler decay as  → ∞, hence implying the long-range dependence (LRD) for
its velocity. Metzler and Klafter [43] and Barkai and Silbey [9] investigated a fractional
Klein-Kramers equation, from which the fractional Fokker-Planck equation is deduced,
and again established the Mittag-Leffler relaxation.
Lutz [40] described another pathway to anomalous diffusion using random matrix the-

ory. This approach considers a system coupled to a fractal heat bath with a random-
matrix interaction. In the limit of weak coupling, the following fractional Langevin equa-
tion is obtained:

(1.3) 
··
 () +

Z 

0

 (− )
·
 ()  = () 

where () is a Gaussian random force with mean zero and covariance function  () =
E ( () (0)) ∼ 20Γ () cos

¡

2

¢
− 0    2 in the limit of large bandwidth,

0 being the strength of the coupling, and  () is a response kernel that obeys the
second fluctuation-dissipation theorem  () =  ()   ≡ Boltzmann constant,
 ≡ absolute temperature (Kubo [36]). Using this equation, the Mittag-Leffler decay
of the autocorrelation function is obtained. Kou and Xie [35] and Min et al. [46] used
the fractional Langevin equation (1.3) to investigate subdiffusion (0    1) within
a single protein molecule. Fa [25], Lim and Teo [39], Eab and Lim [23] extended the
fractional Langevin equation (1.3) to the case where the response kernel  () is given
in terms of a Mittag-Leffler function and the time derivative of

·
 () is replaced by a

Caputo fractional time derivative. The resulting equation is called a fractional generalized
Langevin equation (FGLE). Camargo et al. [12] considered a two-parameter Mittag-
Leffler function in the response kernel  () for the FGLE while Sandev et al. [58], [59]
considered a three-parameter Mittag-Leffler function for  (). The paper [59] provides a
review of works in this direction. It should be noted that these works used the fluctuation-
dissipation theorem and followed the Laplace transform method applied to the FGLE,
which is a random equation, to obtain a formal expression for the displacement  ().
From a different angle, Okabe [50, 51] introduced and gave a rigorous treatment of the

linear stochastic delay equation

(1.4)
·

 () = − ()−
Z 

0

 (− )
·

 () +  () 

in which the solution  () is defined as a random tempered distribution, and
·

 () is its
derivative. Here,  and  are positive numbers, the delay kernel  : (0∞)→ [0∞) has
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the representation

(1.5)  () =

Z ∞

0

− ()    0

 being a Borel measure on (0∞) such that
R∞
0

¡
−1 + 

¢
 ()  ∞, and  () is

a stationary Gaussian random tempered distribution associated with  (), called the
Kubo noise of the process  () (this concept comes from Kubo’s linear response theory
detailed in Kubo [36], Kubo et al. [37]). The Kubo noise  () is needed for a fluctuation-
dissipation theorem to hold. Eq. (1.4) has a physical meaning by considering  () to be
the -component of the velocity of a particle as described in Appendix A. A key feature
of Eq. (1.4) is that it describes the time evolution of a stationary Gaussian process with
reflection positivity (defined in the next section); this concept arises from an axiom of
the quantum field theory. Under the conditions on the measure  (), the diffusion
coefficient  =

R∞
0

() is finite for Eq. (1.4). Inoue [33] extended Okabe’s work by
considering the case  =∞. In this latter work, Eq. (1.4) is also established, but with
 = 0. A key result obtained is that the solution of Eq. (1.4) (with  = 0) possesses
both long-range dependence and reflection positivity. A causality condition (defined in
(2.18) of Section 2) is needed for uniqueness of the solution.
In Section 2, we apply the theory of Okabe [50, 51] and Inoue [33] to a fractional

generalization of the Stokes-Boussinesq-Langevin equation:

(1.6)
·

 () = − ()− D1− () + ()   ∈ R  ≥ 0  ≥ 0
where the fractional derivative D1− 0 ≤  ≤ 1 is defined in (2.15) below, and  ()
is Kubo noise with a certain spectral density. In this application, the delay kernel  ()
of (1.5) takes the specific form of the fractional derivative D1− and the Kubo noise has
two specifications in Theorems 2.1 and 2.2 respectively. In Theorem 2.1 we confirm ana-
lytically the Mittag-Leffler decay in the autocorrelation function of the solution process,
while in Theorem 2.2, for  = 12 the asymptotic behaviour of the correlation function
is  () = 

¡
−32

¢
  → ∞ which is the Alder-Wainwright effect. A new aspect of

Theorems 2.1 and 2.2 is that the results are given in an explicit form using the Mittag-
Leffler functions, rather than asymptotic results as given in Inoue [33]. These exact
results highlight the important role played by a combination of Mittag-Leffler functions
and fractional derivatives, which takes advantage of the availability of nice formulae of
the Laplace transform in terms of Mittag-Leffler functions.
In Section 3, we consider the fractional Stokes-Boussinesq-Langevin equation (1.6) in

the context of fractional Gaussian noise ̇(). Eq. (1.6) will then take the form

(1.7)
·

 () = −()− D1−2() + ̇()  ∈ R  ≥ 0  ≥ 0
We will look at two cases of interest:  = 0 and then  = 0 separately. For  = 0 in (1.7),
existence and uniqueness of a stationary solution for (1.7) with long-range dependence
is confirmed for 0    12. For the case 12    1, we will consider Eq. (1.7)
with  = 0 in the Itô approach. The corresponding equation is the Ornstein-Uhlenbeck
equation driven by fractional Brownian motion  ()  12    1. Existence and
uniqueness of a stationary solution with long-range dependence is also obtained, as well
as an explicit form for its spectral density.
In the approach of Okabe [50, 51] and Inoue [33], the noise term (Kubo noise) is

associated with the underlying process via its spectral decomposition. If we are able
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to obtain long-range dependence or the Alder-Wainwright effect in the solution of the
fractional Stokes-Boussinesq-Langevin equation under the scenario of system-independent
noise, we may use the noise term to represent other effects such as intermittency (see
Frisch [27] for example). There may also be more flexibility in defining the response
function  (). We demonstrate these possibilities in Section 4, where a stationary process
related to fractional Riesz-Bessel motion (Anh et al. [5, 7]) is derived. This permits to
study the effects of long-range dependence and second-order intermittency simultaneously.
These effects are known to be important features of data in geophysics, turbulence and
finance.

2. Stationary processes governed by the fractional
Stokes-Boussinesq-Langevin equation

2.1. Reflection positivity. Let = { ()   ∈ R} be a real-valued, measurable, mean-
square continuous, stationary (in the wide sense) random process with mean E () =
, covariance function  () = Cov ( ()  (0))   ∈ R and spectral density
 ()   ∈ R that is,

(2.1)  (− ) =

Z

R

cos { (− )}  () 

The concept of reflection positivity arises in the axiomatic quantum field theory (Oster-
walder and Schrader [53], Nelson [49], Hegerfeldt [29], Glimm and Jaffe [28], pp. 90-92).
Following Osterwalder and Schrader [53], we say that the process  has reflection posi-
tivity if its covariance function (2.1) satisfies

X

=1

 ( + ) ̄ ≥ 0  ∈ [0∞)   = 1  

for any  ≥ 1  ∈ C  = 1   Hida and Streit [31] showed that a Gaussian process
 has reflection positivity if and only if there exists uniquely a bounded non-negative
Borel measure  on [0∞) such that

(2.2)
 ()

 (0)
=  () =  ({0}) +

Z

(0∞)
 () () 

where

(2.3)  () = −||  ∈ R   0

is the correlation function of the stationary Gaussian Ornstein-Uhlenbeck (OU) process
 () defined by the equation

(2.4)  () = − () +  ()   ∈ R   0   0

Here,  = { ()   ∈ R} is a one-dimensional Brownian motion or Wiener process such
that

(2.5) E () = 0 Var () = || 

The stationary Gaussian solution of (2.4) has the following covariance function and spec-
tral density:

(2.6)  () =
2

2
−||  ∈ R;  () =



2 + 2
  =

2

2
  ∈ R
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By Bernstein’s Theorem (see Feller [26], p. 426) we obtain that the condition (2.2) is
equivalent to the complete monotonicity of the function  () on (0∞)  that is,

(2.7) (−1) 


 () ≥ 0   0  = 0 1 2 

The following functions on (0∞) are known to be completely monotone:
exp {−}   0 0   ≤ 1;
(2−1Γ())−1(

√
)(

√
)   0   0;

(1 + )   0 0   ≤ 1   0;

2(
√
 + −

√
)−    0   0;

(−) (0    1  = 1) or (0   ≤ 1  ≥ );

1(−) 0    1 0    1

In this list,  is the modified Bessel function and (−),   0 is the Mittag-Leffler
function of the negative real argument (see formula (2.32) below).
If we assume that

({0}) = 0 0  ([0∞)) ∞

Z ∞

0

2() ∞

then the spectral density () is given by

(2.8) () =
1



Z ∞

0



2 + 2
()  ∈ R− {0}

and
() ∈ 1(R)

Example 2.1. If we define the Borel measure  on (0∞) according to the gamma
distribution:

(2.9)  () = −1−Γ ()    0

then from (2.2) we obtain

(2.10)  () =
1

(1 + ||)
  ∈ R

and the corresponding spectral density function is given by

(2.11)  () =
1


Im

Z ∞

0

−

(1 + −2)
   0

which is also known as the probability density of the generalized Linnik distribution (Er-
dogǎn and Ostrovskii [24]). Analytic and asymptotic properties of the function (2.11) has
been studied by Erdogǎn and Ostrovskii [24]. In particular, for 0    1  ↓ 0

(2.12)  () =
1

2Γ () cos
©

2

ª 1

||1−
(1−  ())   ()→ 0

while for  = 1  ↓ 0

 () =
1


log

1

||
− 


+
1

2
||2 log

1

||
+

¡
2
¢


where  = Γ0 (1) is Euler constant. Thus, for  ∈ (0 1] the process  with covariance
function (2.10) and spectral density (2.11) displays long-range dependence.
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2.2. Fractional Stokes-Boussinesq-Langevin equation. Let us recall some defini-
tions of fractional derivatives (see Caputo [13], Caputo and Mainardi [14], Miller and
Ross [45], Samko et al. [56], Djrbashian [17], Podlubny [55] among others).
Under certain natural conditions on the real-valued function  ()  the Caputo frac-

tional derivative of order  ∈ [− 1 )   = 1 2  is defined as

(2.13) D

 () =

1

Γ (− )

Z 



()  ()

(− )+1−


while the Riemann-Liouville fractional derivative of order  ∈ [− 1 )   = 1 2  is
defined as

(2.14) D

 () =

1

Γ (− )





Z 



 ()

(− )+1−


The main advantage of Caputo’s definition is that the fractional derivative of a constant
 is equal to zero: 0D


 = 0 while in the Riemann-Liouville definition we have

0D

 = −Γ (1− )  0 ≤   1

Putting  = −∞ in both definitions (2.13) and (2.14) and requiring reasonable behavior
of  () and its derivatives for → −∞ we arrive at the same formula

(2.15) D () = −∞D

 () = −∞D


 () =

1

Γ (− )

Z 

−∞

()  ()

(− )+1−


where  − 1 ≤     = 1 2  The fractional derivative (2.14) is also called Weyl’s
fractional derivative (see Samko et al. [56], p. 356).
In order to obtain exact formulae for Eq. (1.6) instead of asymptotic expressions, we

will widely use the one-parameter and two-parameter Mittag-Leffler functions (see, for
example, Djrbashian [17]). In particular, the entire function of order 1 of type 1

 () =
∞X

=0



Γ ( + 1)
  ∈ C   0

is known as the one-parameter Mittag-Leffler function. For real  ≥ 0 the function

(2.16)  (−) =
∞X

=0

(−1) 
Γ ( + 1)

  ≥ 0 0   ≤ 1

is infinitely differentiable and completely monotone. It follows from the definition that

1 (−) = − 12 (−) = 
2

µ
1− 2√



Z 

0

−
2



¶
  ≥ 0

From Djrbashian [17], p. 5, we obtain the following asymptotic formula:

(2.17)  (−) = −
X

=1

(−1) −
Γ (1− )

+
³
||−−1

´
 0    1

as →∞
The next theorem is concerned with the fractional Stokes-Boussinesq-Langevin equa-

tion (1.6) for the case  = 0. The uniqueness of its stationary solution is obtained under
the causality condition

(2.18) Σ() = Σ( )
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for any  ∈ R where Σ( ) denotes the closed linear hull of
{ ()   ∈ D (R)  supp{} ⊂ (−∞ ]} in 2 (ΩF   )  (ΩF   ) being the underlying
complete probability space and D(R) being the space of all  ∈ ∞(R) with compact
support (see Appendix B for further details). It should be noted that Eq. (1.6) is not
an Itô stochastic differential equation in general because the fractional operator (2.15) is
not local. For  ≥ 0   0 Eq. (1.6) is a particular case of the second KMO-Langevin
equation (Okabe [51], Inoue [33]).

Theorem 2.1. There exists a unique stationary solution  (in the sense of random
distributions) of the fractional Stokes-Boussinesq-Langevin equation (1.6) with  = 0 and
spectral density of the Kubo noise of the form

(2.19)  () = 

r
2


cos

½
(1− )

2

¾
||1−  0    1   0   0

under the causality condition (2.18). The solution  is a purely nondeterministic zero-
mean stationary Gaussian process having the following properties:

(2.20)  (0) = 
√
2;

(2.21)  () =  ()  (0) =  (− ||)   ∈ R 0    1;

for  ∈ (0 1) and large   0

(2.22)  () =
1

|| Γ (1− )
+

µ
1

||2

¶
;

for  ∈ (0 1)   has reflection positivity, that is, (2.2) holds with

(2.23)  () =
sin {}



−1

1 + 2 cos {} + 2
;

its spectral density is

(2.24)  () =
sin {}

2

Z ∞

0



(2 + 2) (1 + 2 cos {} + 2)
   0 0    1;

the correlation function (2.21) is the unique solution of the Cauchy problem for the frac-
tional differential equation

(2.25) 0D

  () +  () = 0   0  (0) = 1;

the process  has the time-domain representation as a random distribution:

 () = lim
→∞

1(0) (− ||) ∗ ()

=

Z 

−∞
 (− |− |) ()  0    1(2.26)

Proof. The existence and uniqueness of the stationary solution of equation (1.6) with
 = 0 follows from Theorems 1.1 and 1.2 of Inoue [33]. The expression (2.19) of the
Kubo noise is given in Example 5.11 of Inoue [33]). The result (2.20) is part of Theorem
5.10 of Inoue [33]). Moreover, from (ii) of Theorem 1.2 of Inoue [33] we obtain

Z ∞

0

 ( ()  (0))  =

µ
− − 

Z ∞

0

 () 

¶−1
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Im   0 which, with

(2.27)  () = −1Γ ()  0    1

and  =  reduces to the following equation:

(2.28)
Z ∞

0

− ()  =
1

+ 1−
   0

It is known (see for example Samko et al. [56], p. 21) that the Laplace transform of the
Mittag-Leffler function (2.21) is

(2.29)
Z ∞

0

− (− ||)  =
−1

 + 
 Re   ||1 

0    1 Thus, (2.21) follows from (2.27) and (2.28). The formula (2.22) then follows
from (2.17), and (2.23) is a particular case of Theorems 1.3-5 of Djrbashian [17]. The
formula (2.24) follows from (2.8) and (2.23). The fractional differential equation (2.25)
is solved by (2.21) in Djrbashian and Nersesian [18], which uses the same definition
of fractional derivatives as Caputo’s. The representation (2.26) is a particular case of
Theorem 1.2 of Inoue [33], while (2.19) follows from (5.17) of Inoue [33] with appropriate
choice of  () according to (2.27). ¤

Remark 2.1. If  = 1 the corresponding equation is (2.4) and the covariance function of
its stationary solution is given by (2.6). The correlation function (2.21) formally reduces
to (2.6) (up to constants) in this case. For  ∈ (0 1) the process  given in Theorem
2.1 displays LRD, that is,

(2.30)
Z ∞

0

 ()  =∞

The exact formula (2.21) in terms of the Mittag-Leffler function thus gives a complete
interpolation between the exponential covariance function of OU processes and the hyper-
bolic covariance function of LRD processes. The representation (2.26) of the process itself
also interpolates the moving-average representations of OU processes and LRD processes.

In what follows we need the two-parameter Mittag-Leffler function (see again Djr-
bashian [17], p. 1-6) which can be defined by the series expansion

(2.31)  () =
∞X

=0



Γ ( + )
   0   0  ∈ C

It is clear that 1 () =  ()  and 11 () =  21 () = cosh
√
 22 () =

(sinh
√
) 
√
 12 () = ( − 1)  13 () = ( − 1− ) 2 If   1  ≥  the

function

(2.32)  (−) =
∞X

=0

(−1) 
Γ ( + )

  ≥ 0

is completely monotone, that is,

(2.33)  (−) =
Z ∞

0

− () 

where

 () = −
1



∞X

=0

(−1)
!

Γ (1−  +  ( + 1)) sin { ( ( + 1)− )}  ≥ 0
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Theorem 2.2. There exists a unique stationary solution  (in the sense of distributions)
of the fractional Stokes-Boussinesq-Langevin equation (1.6) with   0   0 and the
spectral density of the Kubo noise of the form

(2.34)  () = 

r
2



µ
+ 

Z ∞

0

2

2 + 2




¶
  ∈ R− {0}  0    1

The solution  is a stationary Gaussian process with reflection positivity and correlation
function of the form

(2.35)  () =  ()  (0) =
∞X

=0

(−1)
!

() 
()
1+− (−) 

where 
(0)
 () =  () is defined by (2.32) and

(2.36) 
()
 () =




 () =

∞X

=0

 ( + )!

!Γ ( +  + )
  = 1 2 

Proof. The existence and uniqueness of a stationary solution of (1.6) with   0   0 is
given in Okabe [51]. The causality condition (2.18) follows in this solution. The expression
(2.34) is the spectral density for Kubo noise of model (6.6) of Inoue [33] corresponding
to the response function  () of (2.27). With this choice of  (), we obtain from (6.1) of
Inoue [33] that

(2.37)
Z ∞

0

− ()  =
¡
+ + 1−

¢−1
   0

From Djrbashian [17], Podlubny [55], we can obtain the following expression for the
Laplace transform of the function (2.36):

(2.38)
Z ∞

0

−+−1()
 (±

)  =
!−

( ∓ )+1
 Re   ||1   = 0 1 

and for 0    1 the function (2.37) can be written as

(2.39)
1



−1

1− + 

∙
1 +

−1

1− + 

¸
=
1



∞X

=0

(−1) +1−1+(−1)
¡
1− + 

¢+1


Term-by-term inversion of (2.39) based on the general expansion theorem for the Laplace
transform using (2.38) produces (2.35). ¤

Remark 2.2. Putting  = 0 formally in (2.35) we obtain

 () =
∞X

=0

(−1)
!

() = −  ≥ 0

which is the correlation function (2.3) of the OU process (2.4). Moreover, putting  = 0
formally in (2.35) with   0 we obtain

 () = 1 (−)   ≥ 0
which coincides with the correlation function (2.21) of the stationary solution to (1.6)
with  = 0  ∈ (0 1] 
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Remark 2.3. The correlation function (2.35) is the inverse Laplace transform of the
function

 () =
1

+ + 1−
   0 0    1

The behaviour of  () as  → 0 is  (1− (1−))   being a constant. This yields,
via Watson’s lemma, the behaviour  () =  (2−) as  → ∞ Thus, for  = 12 the
asymptotic behaviour of the correlation function is  () = 

¡
−32

¢
  → ∞ which is

the Alder-Wainwright effect; but the exact expression (2.35) for the correlation function
is more informative.

3. Fractional Stokes-Boussinesq-Langevin equation driven by
fractional Gaussian noise

3.1. A fractional Stokes-Boussinesq-Langevin equation. Fractional Brownian mo-
tion (FBM),  = {()  ∈ R}, with Hurst parameter  ∈ (0 1) is a Gaussian,
mean-zero and -self-similar process with (0) = 0 and stationary increments. By

-self-similarity we mean that, for   0, {()  ∈ R} 
= {()  ∈ R} where 

=
stands for equality in finite-dimensional distributions. The FBM  with  = 1

2
is the

usual Brownian motion  = {()  ∈ R}.
Samorodnitsky and Taqqu [57] provided an introduction to FBM. For a detailed treat-

ment of FBM we refer to Mishura [47]. We note that the covariance function of FBM
is

(3.1) Cov(() (1)) =


2
{||2 + ||2 − |− |2}   ∈ R

where  = Var(1) while the covariance function of an increment of FBM is given by

Cov((+ )−() (+ + )−(+ ))

= Cov(() (+ )−())

= 
∞X

=1

2

(2)!

Ã
2−1Y

=0

(2 − )

!

2−2

= 
X

=1

2

(2)!

Ã
2−1Y

=0

(2 − )

!

2−2 +
¡
2−2−2

¢
 →∞

for every  ∈ {1 2   } and all 0      ∈ R. If we denote
() = Cov (() ((+ 1))−()), then, for  ∈

¡
0 1

2

¢

P∞

=−∞() = 0

(negative correlation property) and, for  ∈
¡
1
2
 1
¢

P∞

=−∞ |()| =∞ (long-range
dependence).
FBM admits a time-domain representation in the form of Itô stochastic integral with

respect to standard Brownian motion ():

() =
1

Γ( + 1
2
)

Z

R

[

(− )− 


(−)]()  ∈ R

where 

() = −

1
21(0∞)(). We consider the spectral representation

() =

Z

R

− − 1
− ()
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where () is a complex Gaussian random measure with

E|()|2 = 2

Then the spectral representation of FBM is

(3.2) () =

Z

R

− − 1
−

1

(−)− 1
2

()

from which we get a formal representation of the derivative process, which exists only in
the sense of random distributions:

(3.3)



() = ̇() =

Z

R

−(−) 12−()

where
(−) 12− = lim

↓0
(−) 12−   =  + 

and we choose the branch of (−) 12− such that (−) 12−
¯̄
¯
=

= 1 The above formu-

lae show that we can consider the fractional noise ̇ = {̇()  ∈ R} as a random
distribution with spectral density

(3.4) 2||1−2   ∈ (0 1)
Remark 3.1. The formulae (3.2)-(3.3) correspond to the definition of the outer function
() as the boundary value of an analytic function () in the upper half-plane Im   0
(see Appendix C). More often (see, for instance, Samorodnitsky and Taqqu [57] or Igloi
and Terdik [32]) the expressions such as

() =

Z

R

 − 1


()

are used. These expressions correspond to considering the Hardy functions in the lower
half-plane Im   0. Thus, to use these latter expressions, we must change the definition
of the outer function (C.1) such that this function becomes analytical in Im   0.

Remark 3.2. The variance of  () has the spectral representation

Var () = 4

Z ∞

0

(1− cos) 
() 

where, in view of (3.4), 
() = 2 ||−(2+1)  ∈ R is the spectral density of  () 

We have denoted above that Var(1) = ; thus the connection between 2 and  is

2 = 
4
∞
0 (1−cos)||−(2+1) =

Γ(2+1) sin()
2



For a nonrandom function  , integration with respect to FBM  can be based on
formal calculations:Z

R

()() =

Z

R

()̇()

=

Z

R

−
Z

R

 () (−) 12−()

=

Z

R

½Z

R

−()

¾
(−) 12−()

A precise meaning is given by the following definition.
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Definition 1. Let  ∈ 2(R) be a non-random real-valued function and
Z

R

¯̄
¯̄
Z

R

−()

¯̄
¯̄
2

||1−2 ∞

Then

(3.5)
Z

R

()()

=

Z

R

µZ

R

−()

¶
(−) 12−()

for  ∈ (0 1).
Note that because FBM is not a semimartingale, more advanced tools have been de-

veloped to handle integration with respect to FBM in both time and frequency domains
(Igloi and Terdik [32], Alós, Mazet and Nualart [4], Pipiras and Taqqu [54]).
As an application of Theorem 2.1, we consider a fractional Stokes-Boussinesq-Langevin

equation in the form

(3.6)
·

 () = −D1−2() + ̇()  ≥ 0  ∈ R
where the fractional derivative D1−2   ∈ (0 1

2
] is defined in Eq. (2.15). Then

(3.7) (0) = 
√
2

and

(3.8) 

() =

()

(0)
= 2

¡
−||2

¢
  ∈ R

In view of (2.26) and (3.8), we consider a stationary solution of (3.6) in the form

(3.9) () =
1

(0)

Z 

−∞
(− )̇()

We write the spectral representation of the noise ̇ in the form of stochastic integral
with transfer function ̇:

(3.10) ̇() =

Z

R

−̇()()

Since Eq. (3.9) is of convolution type, we obtain by Parseval ’s identity and 3.10) the
spectral representation of  () as

 () =

Z

R

−
µ

1

(0)

Z ∞

0

()

¶

̇
()()

that is,

(3.11)  () =

Z

R

− ()()

with



() =

1

(0)

µZ ∞

0

()

¶

̇
()

Then, by Eqs. (3.6), (3.10) and (3.11) we get
Z

R

−
©
− + (−)1−2

ª


()() =

Z

R

−
̇
()()

or £
− + (−)1−2

¤


() = 

̇
()
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which yields
|−  + (−)1−2 |2


() = 

̇
()

The spectral density of  () is then given by



() =


̇
()

|−  + (−)1−2 |2 

Using (3.4), we obtain for  ∈ (0 1
2
] that

(3.12) 

() =

21−2

2 + 22(1−2) + 22(1−) sin
¡

¡
1
2
−

¢¢   ∈ R

3.2. Ornstein-Uhlenbeck equation driven by fractional Brownian motion. We
have seen in the subsection above that the linear response theory with Kubo noise works
for the case 0    12. In this subsection we pay attention to the case 12    1 of
strongly correlated noise. We consider the linear stochastic differential equation driven
by FBM:

(3.13) () = −()+ ()   0  ∈ R
Note that Eq. (3.13) was discussed by a number of authors including Comte and Re-
nault [16], Igloi and Terdik [32], Cheridito et al. [15]. One can show that there exists a
unique continuous solution of Eq. (3.13) in the form

(3.14) () =

Z 

−∞
−(−)()

or, in the frequency domain,

(3.15) () =

Z

R

−
1

− + 
(−)−+ 1

2()  ∈ R

for a complex Gaussian random measure () with

E|()|2 = 2

Thus, the stationary process (3.14) has spectral density

(3.16) () =
2

2 + 2
||1−2   ∈ R

and covariance function

() =
1

2
2

X

=1

−2
Ã
2−1Y

=0

(2 − )

!

2−2 +
¡
2−2−2

¢

as  → ∞, for any  = 1 2    and  6= 1
2
. In particular, for  ∈

¡
1
2
 1
¢
the process

(3.14) is stationary and exhibits long-range dependence, that is,
Z

R

() =∞

while, for  ∈
¡
0 1

2

¢
 it has the negative correlation property

Z

R

() = 0



14 VO V. ANH AND NIKOLAI N. LEONENKO

We assume for simplicity that 2 = 1  = 1. In the former case, the outer function and
canonical representation kernel can be obtained explicitly (see Inoue and Kasahara [34]).
By applying Exercises 2.3.4 and 2.7.2 of Dym and McKean [21] to the rational functions

1

1− 
= exp

(
1

2

Z

R

1 + 

 − 

log (1 + 2)
−1

1 + 2


)

 Im   0

− = exp

½
1

2

Z

R

1 + 

 − 

log2

1 + 2


¾
 Im   0

(noting that both 1
(1−) and − are positive on the upper imaginary axis), we obtain for

the outer function (C.1) an explicit formula:

(3.17) () =
(−) 12−
1− 

 Im   0

For the function (3.17) we have

(3.18) () =
1√
2

Z ∞

0

()

with

(3.19) () =

√


Γ
¡
 − 1

2

¢
Z 

0

−−
3
2   0

Thus, the covariance function of the process (3.14) with 2 = 1  = 1 has the remarkable
representation

(3.20) () =
1

2

Z ∞

0

 (||+ )()

with the function  given by (3.19). To our knowledge, this is the only case where the
canonical representation (C.3) can be written explicitly, unless the process is an Ornstein-
Uhlenbeck process.

4. Stationary processes related to fractional Riesz-Bessel motion

Fractional Riesz-Bessel motion (FRBM) was introduced in Anh et al. [5] and further in-
vestigated in Anh et al. [7]. Its model is governed by the operator − ( −∆)2 (−∆)2 
where ∆ is the Laplace operator, the fractional operators ( −∆)2 and (−∆)2 are the
inverses of the Bessel and Riesz potentials respectively. Formally, a real-valued Gaussian
process  () which has (i)  (0) = 0 a.s., (ii) stationary increments, and (iii) spectral
density of the form

 () =


||2 (1 + 2)
 12    32  ≥ 0  ∈ R

is called a fractional Riesz-Bessel motion (FRBM). Fractional Brownian motion can be
deduced from fractional Riesz-Bessel motion by putting  = 0  =  + 12. If  ∈
(1 32)  the process displays long-range dependence (as || → 0). The sum  + 
describes clustering of extreme values (as ||→∞) of FRBM (see Anh et al. [6]).
The spectral density of the stationary increments of FRBM has the form

(4.1)  () =


||2 (1 + 2)+1
  ∈ R
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where  =  − 1 ∈ (−12 12)    −1 In this section we introduce a model related to
stationary fractional Riesz-Bessel motion which has spectral density similar to (4.1). This
model is based on the fractional Stokes-Boussinesq-Langevin equation with stationary
random noise.
Consider again a fractional Stokes-Boussinesq-Langevin equation of the following form

(4.2)
·

 () = − ()− D () + ()   ∈ R
where  ≥ 0  ≥ 0  ∈ (0 1) and  ()   ∈ R is stationary random noise with
spectral distribution  () and spectral density  ()  The fractional derivative D

is defined in (2.15). As we cannot interpret Eq. (4.2) in the Itô sense, we will use the
approach proposed by Wong and Hajek [66], pp. 78—116. In particular, every mean-
square continuous second-order stationary process  ()   ∈ R with mean zero can be
represented as

(4.3)  () =

Z

R

−̂ () 

where ̂ () is the spectral process with orthogonal increments such that

E [̂ ()− ̂ ()] [̂ ()− ̂ ()] =  ([ ) ∩ [ )) 
Then Z

R

 () ̂ () =

Z

R

̂ ()  ()   ∈ D (R) 

where ̂ denotes the Fourier transform of , D(R) is the space of all functions in ∞(R)
with compact support (see Appendix B) In particular,  () can be (generalized) white
noise. The integral

R
R
̂ ()  ()  can be handled by replacing it with the second-order

stochastic integral
R
R
 () ()  where  is a random measure such that

E | ([ ))|
2 =  ([ )). Then

(4.4) D () =

Z

R

(−) −̂ () =
Z

R

(−) − () 

We will write    for the random measures corresponding to  () and () of (4.2)
in this approach. Since (4.2) can be rewritten as

(4.5)
¡
D+D + 

¢
 () = () 

we have

 () =
h
− +  (−) + 

i−1
 () 

Thus, there exists a stationary solution of Eq. (4.2) with   0   0 (Gaussian if  ()
is Gaussian) of the form

(4.6)  () =

Z

R

−
1

− +  (−) + 
 ()  0    1

where
E | ()|

2 =  () 

The spectral density of the process (4.6) is of the form

(4.7)  () =
 ()

| ()|2
  ∈ R



16 VO V. ANH AND NIKOLAI N. LEONENKO

where
 () = − +  (−) +  = + || −


2 +  || −


2 

A direct calculation yields
(4.8)

| ()|2 = 2+ ||2+2 ||1+ cos
 (1− )

2
+2 || cos



2
+ 2 ||2  0    1  ∈ R

Suppose now that the correlation function of the random noise  () is of the form

(4.9)  () = 1 () ||
+12+12 (||)   ∈ R   −12

where
1 () =

£
Γ ( + 12) 2−12

¤−1


Here,  () is the modified Bessel function of the third kind of order  (Abramowitz
and Stegun [1]). Note that

(4.10)  () = − ()    0;  () ∼ Γ () 2−1−  ↓ 0   0

From (4.9) and (4.10) we obtain  (0) = 1
It is known (see Donoghue [19], p. 293) that the spectral density which corresponds to

(4.9) has the form

(4.11)  () =
2 ()

(1 + 2)+1
  ∈ R   −12

where

(4.12) 2 () =
Γ ( + 1)√
Γ ( + 12)



From (4.7)-(4.11) we obtain

Theorem 4.1. There exists a stationary solution of the fractional Stokes-Boussinesq-
Langevin equation (4.2) with  ∈ (0 1)   ≥ 0   0 and stationary random noise
 ()   ∈ R with correlation function (4.9). The spectral density of this solution is given
by
(4.13)

 () =
2 () 2

(1 + 2)+1
h
2 + 2 + 2 ||1+ cos (1−)

2
+ 2 || cos 

2
+ 2 ||2

i   ∈ R

where  ∈ (0 1)    −12 and 2 () is defined by (4.12). The process  () is Gaussian
if  () is Gaussian.

Remark 4.1. If the parameter  = 0 but   0 the spectral density (4.13) reduces to

(4.14)  () =
2 () 2

||2 (1 + 2)+1
³
2 + ||2(1−) + 2 ||1− cos (1−)

2

´ 

where  ∈ (0 12)    −12 This spectral density displays LRD for  ∈ (0 12)  The
asymptotic properties of the spectral density (4.14) is similar to those of (4.1). We there-
fore conclude that the stationary process described in Theorem 4.1 with  = 0 provides
a dynamic model of fractional Riesz-Bessel motion in the same way as the OU process
providing a dynamic model of Brownian motion.
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Remark 4.2. A general form of Eq. (4.5) is

(4.15)
¡
D

 () + +1D
1 () +0D

0
¢
 () = ()

with constant coefficients   1 0 and   1    1  0  ≥ 1 The spectral
density of the stationary solution  () then takes the form (4.7) with

| ()|2 = 20+
X

=1

2 ||
2+2

X

1≤≤
 ||

+ cos
 − 
2

+2

X

=1

 ||
 cos



2


This spectral density belongs to 1 (R) if   12 or  +   1   ∈ {1  } 
If 0 = 0, this spectral density displays LRD of the form 

³
||−21

´
as || → 0 for

1 ∈ (0 12) and second-order intermittency of the form 
³
||−2

´
as ||→∞

Appendix A. Dynamic models of Brownian motion and related processes

This appendix is based on Kubo [36], Nelson [48], Hauge and Martin-Löf [30], Kubo
et al. [37], Okabe [52], Mainardi and Pironi [41]. Our aim is to recall a few historical
facts which clarify our considerations in Sections 2 and 3. The term “Brownian particle”
refers to a body of microscopically visible size suspended in a fluid. Its motion is caused
by a molecular bombardment of the fluid and is called Brownian motion because it was
first described by Robert Brown, a botanist, in 1827 (see Nelson [48] for some interesting
historical facts).
The first mathematical theory of Brownian motion was proposed by Einstein [22] and

Smoluchowski [61] based on the kinetic theory of heat. Einstein derived the diffusion equa-
tion or heat equation for the transition probability density of the position of a Brownian
particle as




= D

2

2


where D is a positive constant, called the diffusion coefficient. The second part of Ein-
stein’s argument relates D to other physical quantities (see Einstein’s relation (A.7) be-
low). A more rigorous theory was developed by Wiener [65]. Therefore Brownian motion
is also known as the Wiener process.
Langevin [38] initiated, and Uhlenbeck and Ornstein [63] developed the equation of the

motion of a Brownian particle of mass . This theory is derived from Newton’s second
law:  =  which in this special case reads

(A.1) 
2 ()

2
=  () + () 

where  () is the position of the particle  () is the frictional force (due to the fluid)
and  () denotes the random force arising from rapid thermal fluctuations. Eq. (A.1)
can be equivalently rewritten as the following system of two equations:

(A.2)
 ()


=  ()  

 ()


=  () + () 

where  () is the velocity of the particle Assuming for the frictional force the Stokes
expression for the drag of a spherical particle of radius  it is given by

 = −1

 () 

1


= 6
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where  denotes the mobility coefficient and  and  are the density and the kinematic vis-
cosity of the fluid, respectively. The constant  =  is called the friction characteristic
time. Thus, the Langevin equation (A.1) reads

(A.3)
 ()


= −1


 () +

1


 () 

We assume that the Brownian particle has been kept for a sufficiently long time in the
fluid at absolute temperature  Then, for any time  the equilibrium law for the energy
distribution requires that

E
¡
2 ()

¢
= 

where  is the Boltzmann constant (a knowledge of  is equivalent to a knowledge of Avo-
gadro’s number and hence of molecular sizes). If we assume that there exists a Gaussian
stationary solution to the Langevin equation (A.3), then the previous assumptions lead
to the following expressions for the covariance functions of the velocity of the Brownian
particle and the noise term:

(A.4) E ( ()  ()) = E
¡
2 (0)

¢
−|−| =




−|−|

(A.5) E ( () ()) =
2


E
¡
2 (0)

¢
 (− ) =




 (− ) 

where   ∈ R and  () denotes the Dirac distribution. The constant (finite of infinite)

(A.6) D = E
¡
2 (0)

¢
=

Z ∞

0

E ( ()  (0))  = lim
→∞

E2 ()

2

is known as the diffusion coefficient and the Einstein relation

(A.7) D =



= 

holds.
The Langevin equation (A.3) and Einstein relation (A.7) have been extremely useful

in statistical physics and financial mathematics (see Shiryaev [60], for example). It is
interesting to note that Bachelier [8] made the first attempt towards a mathematical de-
scription of the evolution of stock prices (on the Paris market) on the basis of probabilistic
concepts analogous to Brownian motion.
In the theory of hydrodynamics, the Langevin equation (A.3) needs to be modified,

since it ignores the effect of the added mass and retarded viscous force, which are due to
the acceleration of the particle (see Hauge and Martin-Löf [30], for example). The added
mass effect requires to substitute the mass of the particle  with the so-called effective
mass given by

∗ =  [1 +  (20)] 

where 0 denotes the density of the particle. Keeping the Stokes drag law unmodified,
the relaxation time changes from  =  to ∗ = ∗ The corresponding Langevin
equation then has the form (A.3) with  replaced by ∗ and  by ∗ Consequently, the
diffusion coefficient is unmodified and turns out to be

D = ∗E
¡
2 (0)

¢
= 

so the Einstein relation (A.7) still holds.
The retarded viscous force effect is due to an additional term to the Stokes drag, which

is related to the history of the particle acceleration. This additional drag force, proposed
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by Stokes [62], Boussinesq [11] and Basset [10], is referred to as the Basset history force
(see Hauge and Martin-Löf [30] or Maxey and Riley [42], for example). In our notation,

(A.8)  () = −1


√


Z 



 () √
− 

 = − 


√


D
12
  () 

where D
12
  () is the fractional derivative (2.13) of order 12 in the Caputo sense (see

Caputo [13], Caputo and Mainardi [14], Mainardi and Pironi [41]). Then using (A.3),
(A.8), the generalised Langevin equation or Stokes-Boussinesq-Langevin equation turns
out to be

(A.9)
 ()


= − 1

∗
 ()− 

∗
√


D
12
  () +

1

∗ () 

It is worth noting that if the process is in thermodynamic equilibrium (at  = 0), we
would account for the long memory of hydrodynamic interaction, and thus it is correct
to integrate Eq. (A.9) from  = −∞ On the other hand Dufty [20] proposed in the case
 = 0 to modify the random force by replacing  () by

 ∗ () = ()− 


√


Z 0

−∞

 () √
− 



In any case, the fluctuation-dissipation theory of Kubo [36] proposes to introduce a mem-
ory function, and one of the possible memory functions gives us the Stokes-Boussinesq-
Langevin equation (A.9) or more general equation (1.6) or (4.2). This is the reason why
we study in this paper the fractional version of the Stokes-Boussinesq-Langevin equa-
tion (1.6) or (4.2), which can also be called Langevin equation with Basset history force.
Our consideration suggests useful models for financial mathematics in view of signifi-
cant analogies (see again Shiryaev [60]) between Newtonian mechanics and stock price
motions.

Appendix B. Random distributions

We denote by  the Hilbert space of C-valued random variables, defined on a proba-
bility space (ΩF   ), with zero expectation and finite variance: ( ) = E []  || || =
( )

1
2 . By D(R) we denote the space of all  ∈ ∞(R) with compact support, endowed

with the usual topology. A random distribution is a linear and continuous map from
D(R) to . A random distribution  is stationary if ((


)(


)) = (()())

for all   ∈ D(R) and  ∈ R, where 

() = (+). We then denote by 


its spectral

measure: (()()) =
R∞
−∞ ̂()̂()


(), where ̂ is the Fourier transform of 

namely ̂() =
R∞
−∞ −(). Any stationary random distribution  has the following

spectral representation: () =
R∞
−∞ ̂()(), where  is the orthogonal measure

corresponding to the spectral measure 

(): E| ()|2 =  (). We write

·

 for the

derivative of a random distribution :
·

() = −(̂).
Let and  be random distributions. Then is said to be stationarily correlated with

 if ((

)  (


)) = (()  ()) for all   ∈ D(R) and  ∈ R; this is equivalent

to (( + )  ()) = (()  (0)) for all   ∈ R if  and  are both processes. We
denote by ( ) the closed linear hull of { () :  ∈ D(R)} in . Then we have

( ) =
nR∞

−∞ () ()  ∈ 2(

)
o
 A stationary random distribution  is said to
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be purely non-deterministic if
T

∈R
 ( ) = {0}, that is, the remote past does not contain

any information at all.

Appendix C. Canonical representation

Suppose that  is a purely non-deterministic process, then  has a spectral density
 = {()  ∈ R} of the Hardy class:

(1 + 2)−1 log () ∈ 1(R)

Following Dym and McKean [21] we write  for the outer function of  :

(C.1) () = exp

½
1

2

Z

R

1 + 

 − 

log ()

1 + 2


¾
 Im   0

and  for the canonical representation kernel of  that is,  = ̂, where ̂ is the Fourier
transform of

(·) = lim
↓0

(·+ ) ∈ 2(R)

i.e.,

̂() = lim
→∞

Z 

−
−()

We have

(C.2) () =
1

2

Z ∞

0

() Im   0

and

(C.3) () =
1√
2

Z 

−∞
(− )()  ∈ 2(R)

or

(C.4) () =
1√
2

Z ∞

0

(||+ )()

is called the canonical representation of , where  = {()  ∈ R} is the standard
Brownian motion. Note that the representations (C.3) and (C.4) play an important role
in the prediction theory of stationary processes.
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