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Abstract5

We propose an efficient multidimensional implementation of VSIAM3 (volume/surface integrated6

average based multi-moment method). Although VSIAM3 is a highly capable fluid solver based on7

a multi-moment concept and has been used for a wide variety of fluid problems, VSIAM3 could not8

simulate some simple benchmark problems well (for instance, lid-driven cavity flows) due to relatively9

high numerical viscosity. In this paper, we resolve the issue by using the efficient multidimensional10

approach. The proposed VSIAM3 is shown to capture lid-driven cavity flows of Reynolds number up11

to Re=7500 with a Cartesian grid of 128× 128, which was not capable for the original VSIAM3. We12

also tested the proposed framework in free surface flow problems (droplets collision and separation of13

We=40, and droplet splashing on a superhydrophobic substrate). The numerical results by the proposed14

VSIAM3 showed reasonable agreements with these experiments. The proposed VSIAM3 could capture15

droplets collision and separation of We=40 with a low numerical resolution (8 meshes for the initial16

diameter of droplets). We also simulated free surface flows including particles toward Non-Newtonian17

flow applications. These numerical results have showed that the proposed VSIAM3 can robustly simulate18

interactions among air, particles (solid) and liquid.19
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1 Introduction21

VSIAM3 was invented by Xiao et al. (one-dimensional formulation in 2014 [22] and multi-dimensional22

formulation in 2015 [25]) [23, 1] and has been used for various fluid problems (incompressible flows, com-23

pressible flows, free surface flows, etc.), for instance, milkcrown in 2008 [34], oceanic flow in 2009 [30],24

droplet impact on dry surface in 2009 [40], droplet splashing on dry surface in 2011 [36, 37, 38], etc. Fig.

0.4ms 0.8ms 1.2ms

Figure 1: A numerical result by the original VSIAM3. A distilled water droplet of 1.86 [mm] impacts onto

a super hydrophobic substrate (the equilibrium angle is 163◦). The droplet impact speed is 2.98 [m/s]. A

Cartesian grid of 192×192×48 and α = 1.5∆x are used.

25

1 shows a typical numerical result of a droplet splashing by VSIAM3. Although a relatively coarse grid26

(Cartesian grid of 192×192×48) was used in this simulation, the numerical result has captured the physics27

of droplet splashing. The numerical simulation was completed within 2 hours using a standard desktop28

computer (Intel Core i7-3820 3.6GHz, 8GB memory). Although VSIAM3 is a highly capable fluid solver,29

VSIAM3 could not simulate some simple benchmark problems well (for instance, lid-driven cavity flows30

of Re>1000 as shown in Section 3) due to relatively high numerical viscosity. The numerical viscosity31

restricted applications of VSIAM3 to higher Reynolds number flows and/or Non-Newtonian flows. In this32

paper, we resolve the issue by proposing an efficient multidimensional formulation of VSIAM3.33

VSIAM3 is a fluid solver based on a multi-moment concept. Multi-moment method is defined as a34

method which uses at least two different types of moments (variables) and updates these moments by using35

different formulations. In standard single-moment methods such as ENO (essentially non-oscillatory) [6]36

and WENO (weighted ENO) schemes [12, 9], only cell average or boundary (point) value is used as the mo-37

ment and is updated by a finite difference method or finite volume method. In VSIAM3, both boundary value38

and cell average are used as moments (i.e. two different moments), and the boundary value and cell average39

are updated by a finite difference method and finite volume method, respectively (i.e. two different formu-40
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lations). VSIAM3 employs the CIP-CSL (constrained interpolation profile-conservative semi-Lagrangian)41

scheme [29, 27, 28, 14, 11] as the conservation equation solver.42

In this paper, we improve VSIAM3 by proposing an efficient multi-dimensional implementation of43

VSIAM3 to resolve the issues on numerical viscosity. In the original VSIAM3, a simple multidimensional44

framework which is referred to as TEC (Time Evolution Converting) formula [22, 25, 23] based on simple45

averaging procedures were used. In this paper, we propose a multidimensional formulation which solves the46

governing equations as much as possible and minimizes the use of such averaging procedures. The details47

of the multidimensional formulation as well as the original VSIAM3 is given in Section 2. In Section 3,48

numerical results of lid-driven cavity flows, free surface flows (droplet collision and separation, and droplet49

splashing) and flows with particles are given. The summary is given in Section 4.50

2 Numerical method51

In this section, we explain the detail of the original VSIAM3 and propose an efficient multi-dimensional52

implementation of VSIAM3.53

2.1 Outline of VSIAM3 and Grid for VSIAM3 (M-grid)54

Here we briefly explain further details of differences between VSIAM3 and typical single-moment methods.55

Fig. 2 (a) shows a schematic figure of 2D grid. In most of standard single-moment methods, collocation
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Figure 2: Schematic figure of 2D grid.
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or staggered grid is used. When a collocation grid is used, p, u, v are defined at the same location (for57

instance, at cell center, pi, j, ui, j, vi, j), here p is the pressure, and u and v are x- and y-components of the58

velocity, respectively. In staggered grid, p,u and v are defined at different locations (pi, j is defined at the cell59

center, ui+1/2, j on a cell boundary and vi, j+1/2 on the other cell boundary). In the multi-moment framework,60

although p is defined only at the cell center (pi, j) like standard single-moment methods, u and v are defined61

at cell center and on all cell boundaries (ui, j,ui+1/2, j,ui, j+1/2,vi, j,vi+1/2, j,vi, j+1/2) as shown in Fig. 2 (b).62

This grid is called M-grid [26]. These cell average and boundary values are defined as63

ui, j =
1

∆x∆y

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

u(x,y)dxdy, (1)

64

ui−1/2, j =
1

∆y

∫ y j+1/2

y j−1/2

u(xi−1/2,y)dy, (2)

65

ui, j−1/2 =
1

∆x

∫ x j+1/2

x j−1/2

u(x,y j−1/2)dx. (3)

In VSIAM3, these additional moments are used in velocity computations and increase the accuracy of66

velocity calculations. Although the calculation cost of the velocity is increased, when a semi-implicit method67

which solves the pressure implicitly and velocity explicitly is used (for instance the case of droplet splashing68

of Fig. 1), the increase of calculation cost by the additional moments is negligible because the pressure69

calculation is dominating the total calculation time and the number of definition points of pressure is the70

same with that of single moment method. This multi-moment framework made the efficient calculation of71

droplet splashing possible. However VSIAM3 requires more memory than other standard methods (3 times72

for velocity in 2D and 4 times for in 3D).73

2.2 Governing equations74

In this paper, we consider only incompressible flows and the following governing equations are used75

∫

Γ
u ·ndS = 0, (4)

76

∂

∂ t

∫

Ω
udV +

∫

Γ
u(u ·n)dS =−

1

ρ

∫

Γ
pndS+

1

ρ

∫

Γ
τ ·ndS, (5)

where u is the velocity, n the outgoing normal for the control volume Ω with its surface denoted by Γ, ρ the77

density, p the pressure and τ the viscous stress tensor.78
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2.3 Fractional step79

A fractional step approach [34] is used as follows:80

ut+∆t = f NA2( f NA1( f A(ut))), (6)

1. advection part ( f A):81

∂

∂ t

∫

Ω
udV +

∫

Γ
u(u ·n)dS = 0, (7)

2. non-advection part 1 ( f NA1):82

∂

∂ t

∫

Ω
udV =

1

ρ

∫

Γ
τ ·ndS, (8)

3. non-advection part 2 ( f NA2):83

∫

Γ
u ·ndS = 0, (9)

84

∂

∂ t

∫

Ω
udV =−

1

ρ

∫

Γ
pndS. (10)

These equations are solved by VSIAM3, in which the advection part is solved by a CIP-CSL method.85

2.4 Advection part ( f A)86

A CIP-CSL method is used to solve the conservation equation87

∂

∂ t

∫

Ω
φdV +

∫

Γ
φ(u ·n)dS = 0, (11)

here φ is a scalar value. In this paper, the CIP-CSLR method [28] which is a less oscillatory CIP-CSL88

scheme is used.89

2.4.1 CIP-CSLR90

The CIP-CSLR scheme is briefly explained here. In the CIP-CSLR method [28], the following function91

Φi(x)92

Φi(x) =
αiβi(x− xi−1/2)

2 +2αi(x− xi−1/2)+φi−1/2
(

1+βi(x− xi−1/2)
)2

, (12)

is used to interpolate between xi−1/2 and xi+1/2. The coefficients, αi and βi, are determined as follows93

αi = βiφi +(φi −φi−1/2)/∆x, (13)

94

βi =
1

∆x

(

|(φi−1/2 −φi)|+ ε

|(φi −φi+1/2)|+ ε
+1

)

, (14)
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by using the following constraints95

Φi(xi+1/2) = φi+1/2, (15)
96

φi =

∫ xi+1/2

xi−1/2

Φi(x)dx/∆x. (16)

Here ε is a small number to avoid zero division. We used ε = 10−15 for all results in this paper. By using97

the interpolation function Φi(x), the boundary value φi−1/2 can be updated by the conservation equation of a98

differential form99

∂φ

∂ t
+u

∂φ

∂x
=−φ

∂u

∂x
. (17)

Eq. (17) is solved using a splitting approach as follows100

∂φ

∂ t
+u

∂φ

∂x
= 0, (18)

101

∂φ

∂ t
=−φ

∂u

∂x
. (19)

A semi-Lagrangian approach is used for the advection equation (18)102

φ∗
i−1/2 =

{

Φi−1(xi−1/2 −ui−1/2∆t) if ui−1/2 ≥ 0

Φi(xi−1/2 −ui−1/2∆t) if ui−1/2 < 0.
(20)

Eq. (19) is solved by a finite difference method [1]. The cell average φi is updated by a finite volume103

formulation104

φn+1
i = φn

i −
Fi+1/2 −Fi−1/2

∆x
, (21)

here Fi−1/2 is the flux105

Fi−1/2 =

{

−
∫ xi−1/2−ui−1/2∆t

xi−1/2
Φi−1(x)dx if ui−1/2 ≥ 0

−
∫ xi−1/2−ui−1/2∆t

xi−1/2
Φi(x)dx if ui−1/2 < 0.

(22)

The detail description can be found in [28].106

2.4.2 Original multi-dimensional formulation (TEC formula)107

In the original VSIAM3, a dimensional splitting method [25, 22] is used for CIP-CSL scheme. Fig. 3 shows108

the schematic figure of the multi-dimensional formulation in 2D. For x-direction, φ∗
i, j and φ∗

i−1/2, j are firstly109

updated from φn
i, j and φn

i−1/2, j by using the 1D CIP-CSL solver (Step 1 in Fig. 3). However some boundary110

values such as φn
i, j−1/2

cannot be updated using the 1D CIP-CSL solver because there are no boundary values111

6
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Figure 3: Schematic figures of the dimensional splitting approach using the TEC formula.
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(φi−1/2, j−1/2 and φi+1/2, j−1/2) for φi, j−1/2. Therefore φn
i, j−1/2

is updated by the TEC formula (Step 2) without112

solving the conservation equation, as follows:113

φ∗
i, j−1/2 = φn

i, j−1/2 +
1

2
(φ∗

i, j −φn
i, j +φ∗

i, j−1 −φn
i, j−1). (23)

A similar approach is used for y-direction. φn+1
i, j and φn+1

i, j−1/2
are computed from φ∗

i, j and φ∗
i−1/2, j by using a114

1D CIP-CSL method. φ∗
i−1/2, j is updated by TEC as follows:115

φn+1
i−1/2, j = φ∗

i−1/2, j +
1

2
(φn+1

i, j −φ∗
i, j +φn+1

i−1, j −φ∗
i−1, j). (24)

Although the TEC formula seems to be a monotone operation, TEC causes numerical oscillations even the116

1D CSL scheme is oscillation free as shown in Section 3.117

2.4.3 Proposed multi-dimensional formulation (TM formula)118

Here we propose a different type of dimensional splitting formulation which solves the equation for all119

moments by creating temporary moments (TMs). When the 1D solver is used for x-direction, we could not120

update φi, j−1/2 because there are no boundary values for φi, j−1/2. Therefore we calculate TMs using a simple121

interpolation:122

φn
i−1/2, j−1/2 =

1

2
(φn

i, j−1/2 +φn
i−1, j−1/2), (25)

as shown in Fig. 4 (Step 1). Once TMs are calculated, the 1D CIP-CSL solver can be used to update φi, j−1/2123

(Step 2). After φi, j−1/2 is updated, TMs are abandoned. Hereinafter the multi-dimensional approach referred124

to as TM formula. For y-direction, the procedure is almost same with that for x-direction. φi, j, φi, j−1/2 and125

φi, j+1/2 are updated by the 1D CIP-CSL solver. For φi−1/2, j−1/2, we firstly calculate TMs using126

φ∗
i−1/2, j−1/2 =

1

2
(φ∗

i−1/2, j +φ∗
i−1/2, j−1), (26)

then use the 1D CIP-CSL solver. The implementation of this multi-dimensional approach is simple and127

the extension to 3D is also straightforward. TM does not cause numerical oscialltions if the 1D scheme is128

oscialltion free.129

Summary of the procedure:

x-direction130

1. Calculate TMs as φi−1/2, j−1/2 =(φi, j−1/2+φi−1, j−1/2)/2 and ui−1/2, j−1/2 =(ui, j−1/2+ui−1, j−1/2)/2.131
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2. Update all moments (φi, j , φi−1/2, j , φi+1/2, j , φi, j−1/2 and φi, j+1/2) using 1D CIP-CSL solver.132

y-direction133

1. Calculate TMs as φi−1/2, j−1/2 =(φi−1/2, j+φi−1/2, j−1)/2 and ui−1/2, j−1/2 =(ui−1/2, j+ui−1/2, j−1)/2.134

2. Update all moments (φi, j , φi, j−1/2, φi, j+1/2, φi−1/2, j and φi+1/2, j) using 1D CIP-CSL solver.135

2.5 Non-advection Part 1 ( f NA1)136

The viscosity term is computed by a standard finite volume formulation for cell averages.137

1

ρ

∫

Γ
τ ·ndS =

1

ρi, j

(

τi+1/2, j − τi−1/2, j

∆x
+

τi, j+1/2 − τi, j−1/2

∆y

)

. (27)

Although, in the original VSIAM3, the boundary values were updated by TEC, in this paper, we solve Eq.138

(27) for the boundary values. We simply used a standard discretization for the boundary values as well.139

For instance, the following second-order central difference scheme is used for all moments in cases of two140

dimensional single phase flows,141

ui, j = ui, j +
µ

ρ
(
ui+1, j +ui−1, j −2ui, j

∆x2
+

ui, j+1 +ui, j−1 −2ui, j

∆y2
)∆t, (28)

142

ui−1/2, j = ui−1/2, j +
µ

ρ
(
ui+1/2, j +ui−3/2, j −2ui−1/2, j

∆x2
+

ui−1/2, j+1 +ui−1/2, j−1 −2ui−1/2, j

∆y2
)∆t, (29)

143

ui, j−1/2 = ui, j−1/2 +
µ

ρ
(
ui+1, j−1/2 +ui−1, j−1/2 −2ui, j−1/2

∆x2
+

ui, j−3/2 +ui j+1/2 −2ui, j−1/2

∆y2
)∆t. (30)

144

2.6 Non-advection Part 2 ( f NA2)145

By combining the divergence of Eq. (10) and
∫

Γ un+1 ·ndS = 0, the following Poisson equation146

∫

Γ

∇pn+1

ρ
·ndS =

1

∆t

∫

Γ
u∗ ·ndS, (31)

is obtained, where u∗ is the velocity after non-advection part 1. Eq. (31) was discretized as147

( 1

ρn+1
i+1/2, j

∂x pn+1)i+1/2, j − ( 1

ρn+1
i−1/2, j

∂x pn+1)i−1/2, j

∆x
(32)

+

( 1

ρn+1
i, j+1/2

∂y pn+1)i, j+1/2 − ( 1

ρn+1
i, j−1/2

∂x pn+1)i, j−1/2

∆y

=
1

∆t
(
u∗

i+1/2, j −u∗
i−1/2, j

∆x
+

v∗
i, j+1/2

− v∗
i, j−1/2

∆y
),

10



here148

(
1

ρn+1
i−1/2, j

∂x pn+1)i−1/2, j ≡
2

ρn+1
i, j +ρn+1

i−1, j

pn+1
i, j − pn+1

i−1, j

∆x
. (33)

A preconditioned conjugate gradient (CG) method is used for the pressure Poisson equation. The conver-149

gence tolerance of the pressure Poisson equation εp = 10−10 is used. By using pn+1, the boundary values of150

the velocity are updated as follows151

un+1
i−1/2, j = u∗i−1/2, j −

∆t

ρi−1/2, j

(

∂x pn+1
)

i−1/2, j
, (34)

152

vn+1
i, j−1/2

= v∗i, j−1/2 −
∆t

ρi, j−1/2

(

∂y pn+1
)

i, j−1/2
. (35)

Other velocity components (ui, j , vi, j , ui, j−1/2, vi−1/2, j) are updated by the TEC formula. Concerning the153

pressure gradient term, we use the TEC formula in the proposed formulation.154

3 Numerical results155

We validated the proposed framework through two-dimensional sine wave propagation, Zalesak problem,156

invicid horizontal shear layer problem, lid-driven cavity flow problems (Re=1000, 3200, 5000 and 7500)157

and comparisons with experiments (droplet collision and separation [2], and droplet splashing [21]). We158

also conducted numerical simulations of free surface flows with particles (interactions among air, liquid and159

particles) as possible Non-Newtonian applications of the proposed framework.160

3.1 Two-dimensional sine wave propagation161

In this test, two-dimensional conservation equation is solved using the TEC formula and TM formula. The162

initial condition is163

φ(x,y,0) = sin(2π(x+ y)), (36)
164

u(x,y) = (1,1). (37)

The domain [0,1]× [0,1] and periodic boundary condition are used. Three different grid sizes [(N ×N) =165

(50× 50), (100× 100) and (200× 200)] are used with ∆x = ∆y = 1/N and ∆t = 0.2∆x. Error is defined as166

follow167

L1 =
1

N

N

∑
i=1

|φi −φexact,i|. (38)
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Table 1: Errors in two-dimensional sine wave propagation at t = 1 when the CIP-CSLR method was used.

Original formulation (TEC) Proposed formulation (TM)

L1 error Order L1 error Order

50×50 2.10×10−3 - 2.26×10−3 -

100×100 1.12×10−3 0.91 9.04×10−4 1.32

200×200 6.83×10−4 0.71 3.79×10−4 1.25

Table 1 shows the numerical results. Basically TM is superior to TEC. Although both orders of accuracy168

are less than second-order, this is due to the 1D CIP-CSLR scheme which includes a type of a limiter169

(the order of accuracy of CSLR in 1D sine wave test is about 1.5). Therefore we also conducted another170

convergence study using the CIP-CSL2 scheme [29] which has third-order accuracy in 1D sine wave test (but171

we do not use the CIP-CSL2 scheme for fluid simulations because the scheme is not oscillation free). Table172

2 shows results by the CIP-CSL2 scheme with TEC and TM. Then both results show more than second-order

Table 2: Errors in two-dimensional sine wave propagation at t = 1 when the CIP-CSL2 method was used.

Original formulation (TEC) Proposed formulation (TM)

L1 error Order L1 error Order

50×50 5.18×10−5 - 2.65×10−5 -

100×100 1.12×10−5 2.21 4.96×10−6 2.42

200×200 2.63×10−6 2.09 9.85×10−7 2.33

173

accuracy. Although TM as well as TEC reduces the order of accuracy of 1D CSL-CSL2 scheme because of174

the interpolation and time splitting, both maintains more than second-order if the 1D solver has 3rd order175

accuracy.176

3.2 Zalesak problem177

Zalesak’s test problem [41] in which a notched circle is rotated is widely used as a test of scalar advection178

method. The initial condition is given by179

φ =

{

1 if
√

(x−0.5)2 +(y−0.75)2 < 0.17 and (y > 0.85 or |x−0.5| > 0.03)
0 if others,

(39)

u(x,y) = (y−0.5,0.5− x). (40)
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The one revolution is completed with 628 time steps. Fig. 5 shows numerical results (top view of 0.5-180

contour) by the CIP-CSLR scheme with TEC and TM after one revolution. Both results show good agree-

Original (TEC) Proposed (TM)

Figure 5: Top views of numerical results of Zalesak problem after one revolution by VSIAM3 using TEC and

TM. The solid and dot lines represent 0.5 contour lines of numerical results and exact solution, respectively.

The grid of 100×100 was used.

181

ment with the exact solution. Fig. 6 shows the side views. Although both results are apparently similar, these182

results have shown that TEC is not oscillation free and more diffusive than TM, as shown in Fig. 6 (b), (c),183

(e) and (f). TM is oscillation free.184

3.3 Invicid horizontal shear layer problem185

In this subsection, Euler equation is solved using VSIAM3 with TM and TEC. The flow consists of a hor-186

izontal shear layer of finite thickness with small vertical perturbation [3]. The initial condition is given187

by188

u(x,y) =











tanh(30(y−
1

4
)) if y ≤

1

2

tanh(30(
3

4
− y)) if y >

1

2
,

(41)

189

v(x,y) =
1

20
sin(2πx). (42)

Figures 7 and 8 show numerical results (vorticity contours) by the original VSIAM3 (TEC) and proposed190

VSIAM3 (TM), respectively. A Cartesian grid of 128 × 128 was used in this test. Both results show191

reasonable agreements with the reference (Fig. 1 in [3]). However the result by the original VSIAM3 seems192

to be disturbed by numerical oscillations, for instance, see the location indicated by the arrow in Fig. 7193

(t=1.8). On the other hand, the result by the proposed VSIAM3 is smoother and closer to the reference(Fig.194

1 [3]).195
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Figure 6: Side views of numerical results of Zalesak problem after one revolution by original VSIAM3 using

TEC (a-c) and proposed VSIAM3 using TM (d-f). The grid of 100×100 was used.
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t=0.4 t=0.8

t=1.2 t=1.8

t=0.4 t=0.8

t=1.2 t=1.8

Figure 7: Numerical result of invicid horizontal shear layer problem by the original VSIAM3 (TEC). A

Cartesian grid of 128 × 128 was used. Lines represent vorticity contours of ±3, ±6, ±9, ±12, ±15, ±18,

±21, ±24, ±27 and ±30.
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t=0.4 t=0.8

t=1.2 t=1.8

Figure 8: Numerical result of invicid horizontal shear layer problem by the proposed VSIAM3 (TM). A

Cartesian grid of 128 × 128 was used. Lines represent vorticity contours.
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Fig. 9 show time histories of the kinetic energy which is defined as follow196

K =
∫

u ·udxdy. (43)

Error in kinetic energy is slightly improved by the proposed VSIAM3. However loss of kinetic energy is

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 1.005

 0  0.5  1  1.5  2

E
ne

rg
y

Time

Proposed (TM)
Original (TEC)

Figure 9: Kinetic energy versus time for shear layer on 128 × 128 grid. Kinetic energy has been normalized

based on the initial kinetic energy.

197

still larger than that by the second-order project method [3].198

3.4 2D incompressible flows (lid-driven cavity flows)199

The proposed and original VSIAM3 were applied to lid-driven cavity flow problems and these numerical200

results are compared with numerical results by Ghia et al. [5]. Figures 10 and 11 show numerical results201

of Re= 1000, 3200, 5000 and 7500 by the original VSIAM3 and the proposed VSIAM3, respectively.202

Although the original VSIAM3 could simulate the cavity flow of Re=1000 with the grid of 128 × 128203

as shown in Fig. 10, could not accurately simulate cavity flows of Re=3200, 5000 and 7500 due to high204

numerical viscosity. Fig. 11 shows the numerical results by the proposed VSIAM3. These results have205

shown that the proposed VSIAM3 can capture cavity flows up to Re=7500 by improving numerical viscosity.206

Figures 12 and 13 show numerical results of convergence studies of lid-driven cavity flows of Re= 5000207

and 7500 by the original VSIAM3 and proposed VSIAM3, respectively. When 256×256 grid is used, the208

original VSIAM3 could also capture the cavity flow of Re=5000 well, however could not accurately capture209

17



(a): Re=1000
Grid: 128x128

(b): Re=3200
Grid: 128x128

(c): Re=5000
Grid: 128x128

(d): Re=7500
Grid: 128x128
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Figure 10: Numerical results of lid-driven cavity flows of Re=1000, 3200, 5000 and 7500 by the original

VSIAM3. A Cartesian grid of 128×128 was used. The solid and dot lines represent x- and y- components

of the velocity fields on the lines x = 0 and y = 0, respectively. Dots represent numerical results by Ghia et

al. [5].

18



(a): Re=1000
Grid: 128x128

(b): Re=3200
Grid: 128x128

(c): Re=5000
Grid: 128x128

(d): Re=7500
Grid: 128x128
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Figure 11: Numerical results of lid-driven cavity flows of Re=1000, 3200, 5000 and 7500 by the proposed

VSIAM3. A Cartesian grid of 128×128 was used. The solid and dot lines represent x- and y- components

of the velocity fields on the lines x = 0 and y = 0, respectively. Dots represent numerical results by Ghia et

al. [5].
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(a): Re=5000
Grid: 64x64

(b): Re=7500
Grid: 64x64
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(c): Re=5000
Grid: 256x256

(d): Re=7500
Grid: 256x256
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Figure 12: Numerical results of a convergence study of lid-driven cavity flows of Re= 5000 and 7500 by the

original VSIAM3. Cartesian grids of 64×64 and 256×256 were used. The solid and dot lines represent x-

and y- components of the velocity fields on the lines x = 0 and y = 0, respectively. Dots represent numerical

results by Ghia et al. [5].
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(b): Re=7500
Grid: 64x64

(a): Re=5000
Grid: 64x64
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(c): Re=5000
Grid: 256x256

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

y,
 v

x, u

CSLR (y-u)
Ghia (y-u)

CSLR (x-v)
Ghia (x-v)

(d): Re=7500
Grid: 256x256
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Figure 13: Numerical results of a convergence study of lid-driven cavity flows of Re= 5000 and 7500 by the

proposed VSIAM3. Cartesian grids of 64×64 and 256×256 were used. The solid and dot lines represent x-

and y- components of the velocity fields on the lines x = 0 and y = 0, respectively. Dots represent numerical

results by Ghia et al. [5].
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the cavity flow of Re=7500 as shown in Fig. 12 (c-d). Overall the original VSIAM3 has shown a reasonable210

convergence for cavity flows of Re=5000 and 7500 as shown in figures 10 and 12. The proposed VSIAM3211

could simulate both cavity flows of Re=5000 and 7500 well on 256× 256 grid and has shown a reasonable212

convergence as shown in figures 11 and 13.213

3.5 Two droplets collision and separation214

We conducted 3D numerical simulations of a free surface flow which includes topology change of liquid215

interfaces (two droplets collision and separation) [2]. The numerical formulation to simulate free surface216

flows is based on VSIAM3, the CLSVOF (coupled level set [15, 19] and volume-of-fluid [7, 10]) method217

[18, 31], the THINC/WLIC (tangent of hyperbola for interface capturing/weighted line interface calculation)218

scheme [24, 33, 8] and the density scaled balanced continuum surface force model [38, 39] with level set219

curvature correction [37]. For the full details of the implementation the free surface flow solver, see [34, 37,220

38])221

Fig. 14 shows snapshots of the numerical results of We=40 by the original VSIAM3 and the proposed222

VSIAM3 with these of the experiment [2]. In these numerical simulations, quantitative parameters were223

used. The density ratio is 1.25:1000 (air:liquid). The mesh size ∆ = D/14 was used, here D is the diameter224

of initial droplets. In this numerical resolution, both original and proposed VSIAM3 could capture the225

phenomenon well.226

Fig. 15 show numerical results when a lower numerical resolution, ∆ = D/8, was used. Although227

the proposed VSIAM3 could capture the droplet separation with this lower numerical resolution, the original228

VSIAM3 failed. The difference could be attributed to the higher numerical viscosity of the original VSIAM3.229

The original VSIAM3 could capture the phenomenon with ∆ = D/10 but failed with ∆ = D/9. Although the230

cost improvement with 2 meshes (about 20%) in one direction sounds small, we can possibly reduce total231

mesh number about 50% (0.8 × 0.8 × 0.8= 0.512) in 3D simulations and also take a larger ∆t. Although232

there are several previous work of this type of numerical simulations [20, 13], to our best knowledge, no233

other numerical framework can capture the phenomenon with this low numerical resolution.234
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(a) Original  (D/   =14)

(b) Proposed (D/   =14) 

(c) Experiment

∆

∆

Figure 14: Numerical results of two droplet collision and separation by the original VSIAM3 (a) and pro-

posed VSIAM3 (b) with the experiment of We=40 (c) [2]. The time evolution is from right to left. The

mesh size is ∆ = D/14. Reproduced with permission from Journal of Fluid Mechanics 221, 183-204 (1990).

Copyright 1990 Cambridge University Press.

(a) Original  (D/   =8)∆

(b) Proposed (D/   =8) ∆

0ms50ms105ms130ms210ms230ms

Figure 15: Numerical results of two droplet collision and separation by the original VSIAM3 (a) and pro-

posed VSIAM3 (b). The time evolution is from right to left. The mesh size is ∆ = D/8.
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3.6 Droplet splashing on superhydrophobic substrate235

We performed numerical simulations of prompt splashing using the original and proposed methods, and236

compared these numerical results with the experiment [21]. In the comparison, quantitative parameters, the237

densities ρliquid = 1000 kg/m3, ρair = 1.25 kg/m3, viscosities µliquid = 1.0× 10−3 Pa·s, µair = 1.82× 10−5
238

Pa·s, surface tension σ = 7.2× 10−2 N/m, gravity 9.8 m/s2, initial droplet diameter D = 1.86 mm, impact239

speed 2.98 m/s and the equilibrium contact angle 163◦ are used. A Cartesian grid of 192×192×48 is used.240

Fig. 16 shows the result. The proposed VSIAM3 captures the physics of droplet splashing including satellite

1.3ms

1.0ms

0.5ms

0.3ms

1.3ms

1.0ms

0.5ms

0.3ms

(a) Original (b) Proposed

1.3ms

1.0ms

0.5ms

0.3ms

Figure 16: A comparison between the numerical results by the original method (a) and proposed method

(b). The corresponding images of the experiment can be found in [21]. A distilled water droplet of 1.86

[mm] impacts onto a super hydrophobic substrate (the equilibrium angle is 163◦) which is covered by carbon

nanofibers (CNFs). The droplet impact speed is 2.98 [m/s]. A Cartesian grid of 192×192×48 and α = 1.5∆x

are used.
241
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droplets and spikes (Fig. 16 (b)) as the original VSIAM3 captured (Fig. 16 (a)). These numerical results242

have shown at least qualitative agreement with the experiment. The corresponding images of the experiment243

can be found in [21]. The proposed VSIAM3 has maintained the robustness which the original VSIAM3 has244

even after significant reduction of numerical viscosity.245

3.7 Free surface flows with particles246

Finally we conducted numerical simulations of free surface flows with particles as a possible application247

to Non-Newtonian flows using the proposed VSIAM3. In those simulations, surface tension was not taken248

into account. DEM (Distinct Element Method) [4, 32, 17, 16] was used for particle dynamics. For the249

detail of the method to simulate interactions among particles and fluids, see [35]. In these simulations, the250

densities ρliquid = 1000 kg/m3, ρparticle = 500 kg/m3, ρair = 1.25 kg/m3, viscosities µliquid = 1.0×10−3 Pa·s,251

µair = 1×10−6 Pa·s and gravity 9.8 m/s2 were used. A Cartesian grid of 64×64×64 was used.252

Figures 17 and 18 show numerical results of free surface flows with 8 particles and 27 particles, respec-253

tively. Particles fell onto the liquid surface as interacting with air, liquid, other partciles and side wall. The254

proposed VSIAM3 can robustly simulate interactions among air, particle and liquid.255

4 Summary256

We proposed an efficient multidimensional implementation of VSIAM3. Although the original VSIAM3257

could not capture lid-driven cavity flows of Re>1000 with the Cartesian grid of 128× 128, the proposed258

VSIAM3 could well capture lid-driven cavity flows up to Re=7500. In comparisons with experiments of259

free surface flows, the proposed VSIAM3 could simulate droplets collision and separation of We=40 with260

lower numerical resolution (∆=D/8) than that of the original VSIAM3. The proposed VSIAM3 could capture261

droplet splashing as the original VSIAM3 did. We also simulated free surface flows with particles as possible262

Non-Newtonian flow applications. These numerical results have shown that the proposed VSIAM3 could263

reduce numerical viscosity without losing robustness of the original VSIAM3. The proposed VSIAM3 can264

be used for various fluid problems including Non-Newtonian flows.265
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t=0 t=0.02 t=0.04

t=0.06 t=0.08 t=0.10

Figure 17: 3D numerical simulation of interaction among air, liquid and 8 particles. A Cartesian grid of

64×64×64 was used.
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t=0 t=0.02 t=0.04

t=0.06 t=0.08 t=0.10

Figure 18: 3D numerical simulation of interaction among air, liquid and 27 particles. A Cartesian grid of

64×64×64 was used.
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