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Abstract
Attack of plants by herbivorous arthropods may result in considerable changes to the plant’s

chemical phenotype with respect to emission of herbivore-induced plant volatiles (HIPVs).

These HIPVs have been shown to act as repellents to the attacking insects as well as

attractants for the insects antagonistic to these herbivores. Plants can also respond to HIPV

signals from other plants that warn them of impending attack. Recent investigations have

shown that certain maize varieties are able to emit volatiles following stemborer egg deposi-

tion. These volatiles attract the herbivore’s parasitoids and directly deter further oviposition.

However, it was not known whether these oviposition-induced maize (Zea mays, L.) vola-
tiles can mediate chemical phenotypic changes in neighbouring unattacked maize plants.

Therefore, this study sought to investigate the effect of oviposition-induced maize volatiles

on intact neighbouring maize plants in ‘Nyamula’, a landrace known to respond to oviposi-

tion, and a standard commercial hybrid, HB515, that did not. Headspace volatile samples

were collected from maize plants exposed to Chilo partellus (Swinhoe) (Lepidoptera: Cram-

bidae) egg deposition and unoviposited neighbouring plants as well as from control plants

kept away from the volatile emitting ones. Behavioural bioassays were carried out in a four-

arm olfactometer using egg (Trichogramma bournieri Pintureau & Babault (Hymenoptera:

Trichogrammatidae)) and larval (Cotesia sesamiae Cameron (Hymenoptera: Braconidae))

parasitoids. Coupled Gas Chromatography-Mass Spectrometry (GC-MS) was used for vol-

atile analysis. For the ‘Nyamula’ landrace, GC-MS analysis revealed HIPV production not

only in the oviposited plants but also in neighbouring plants not exposed to insect eggs.

Higher amounts of EAG-active biogenic volatiles such as (E)-4,8-dimethyl-1,3,7-nonatriene

were emitted from these plants compared to control plants. Subsequent behavioural assays

with female T. bournieri and C. sesamiae parasitic wasps indicated that these parasitoids

preferred volatiles from oviposited and neighbouring landrace plants compared to those

from the control plants. This effect was absent in the standard commercial hybrid we tested.

There was no HIPV induction and no difference in parasitoid attraction in neighbouring and

control hybrid maize plants. These results show plant-plant signalling: ‘Nyamula’maize
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plants emitting oviposition-induced volatiles attractive to the herbivore’s natural enemies

can induce this indirect defence trait in conspecific neighbouring undamaged maize plants.

Maize plants growing in a field may thus benefit from this indirect defence through airborne

signalling which may enhance the fitness of the volatile-emitting plant by increasing preda-

tion pressure on herbivores.

Introduction
In their natural habitats, plants live in complex communities comprising herbivores, pollina-
tors, microbes, carnivores and neighbouring conspecific and other plants [1–3]. These plants
are thus under selection pressure to maximize fitness within a complex setting of biotic interac-
tions, with positive and negative outcomes [4]. As such, plants have evolved a diverse array of
defence strategies against the attacking organisms, including herbivores and parasitic plants
[5]. In particular, plants respond to herbivore attack through production of a number of chem-
ical signals known as herbivore-induce plant volatiles (HIPVs), which have direct and/or indi-
rect effects on the attacking herbivore. Directly, these chemical cues negatively affect the
physiology or behaviour of the herbivore, either as toxins, digestibility reducers or deterrents
[6, 7]. Indirectly, plants use these HIPVs to attract natural enemies of the herbivores, as well as
increase the foraging success of these natural enemies, thereby facilitating improved control of
herbivores [8,9].

HIPVs play a role in multitrophic community interactions by facilitating communication
between the infested plant and natural enemies of the attacking herbivores, and also warning
undamaged neighbouring plants of the same or another species, of the impending attack [10–
12]. They also systemically facilitate communication between different parts of the same plant
(intraplant signalling) [13–16]. The HIPVs are emitted not only from the infested plant parts
but also systematically from uninfested parts of the plant which increases the detectability of
the signal cues [4, 17–19]. However, different plant species produce entirely different blends of
HIPVs and even within one plant species, there can be genotypic variation in HIPV production
[20–22].

Undamaged plants that can activate and tailor their defences according to information
derived from their attacked neighbouring plants may gain a selective advantage over plants
that are unable to make use of the signal cues [23]. Evidence of plants being capable of ‘eaves-
dropping’ on airborne signals has been documented [24–28, 8, 29, 30, 23]. HIPVs can immedi-
ately induce defence in neighbouring plants at artificially high levels [31] while at the same
time, physiologically relevant levels of induced volatile organic compounds (VOCs) can prime
plants to prepare themselves for future pest and pathogen attack [31]. Perceived plant volatiles
can also have physiological effects on the receiving plant as evidenced by changes in the tran-
scription of defence-related genes [11, 32, 33]. Exposure of plants to herbivore-induced volatile
organic compounds can result in changes in the abundance of phyto-hormones [34, 35] and
increase production of defence-related metabolites such as terpenoids [35, 36], proteinase
inhibitors [30] and phenolic compounds [30]. These plant defence strategies can be exploited
in the management of injurious pests such as cereal stemborers.

Effective production of maize and other cereal crops is severely constrained by cereal stem-
borer pests, with the indigenous species, Busseola fusca Füller (Lepidoptera: Noctuidae) and
the invasive Chilo partellus Swinhoe (Lepidoptera: Crambidae) being the most damaging in
eastern Africa [37]. Effective management of these pests however remains elusive for small-
holder farmers due to challenges posed by the boring activity of the larvae, the limited
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resources available to the farmers making chemical control methods unaffordable [38], and
lack of empirical evidence of effectiveness of some of the cultural control methods [39]. Plant
signalling through HIPVs or their variants thus represents an opportunity for effective control
of stemborer pests. HIPVs are produced by plants long after damage has been inflicted to the
plant by feeding larvae [40]. However, recent studies indicate that some plant genotypes such
as Pinus sylvestris, Zea mays, teosinte (Zea species) are able to respond to the initial stage of her-
bivore attack (egg deposition) by emission of volatile organic compounds that are attractive to
certain natural enemies [41, 42, 19, 43–45] or suppression of constitutive HIPV emission [46].
Investigations involving maize-herbivore-natural enemy tritrophic interactions have shown
that egg deposition by cereal stemborers can induce volatile emission in certain maize varieties.
These volatiles attract natural enemies and deter further herbivore colonization [19, 43–45].
This is seen as a preventative defence mechanism since parasitoids are recruited in advance,
before the phytophagous larvae hatch and cause damage to plants. However, it is not known
whether these oviposition-induced volatiles can mediate the same indirect defence in neigh-
bouring unattacked maize plants. This current study thus sought to determine 1) effects of ovi-
position-induced volatiles on neighbouring unattacked maize plants; 2) subsequent effect on
stemborer parasitoids of any volatiles from neighbouring unattacked maize plants. This would
provide insights into the potential role of plant signalling in enhancing management of stem-
borer pests, particularly for the resource-constrained smallholder farmers in sub-Saharan
Africa.

Materials and Methods

Study site
This study was carried out at Thomas Odhiambo Campus, Mbita Point (0° 25’S, 34° 12’E, 1200
m above sea level), a field station of the International Centre of Insect Physiology and Ecology
(icipe) located on the shores of Lake Victoria in western Kenya where cereal stemborers are a
serious constraint to maize cultivation.

Plants
‘Nyamula’, a local maize landrace that has been shown to emit oviposition-induced volatiles
upon stemborer egg deposition [43, 45] and hybrid maize variety, HB515, previously shown
not to emit volatiles up on egg deposition [45] were used in this experiment. Seeds, obtained
from local smallholder farmers in the Mbita region for ‘Nyamula’ and Western Seed Company,
Kitale, Kenya for HB515, were planted individually in pots filled with fertilised soil in an
insect-proof screen house under natural conditions (25°C, 65%RH; 12L: 12D). The seedlings
were used in experiments when they were 3–4 weeks old, approximately 45 cm tall.

Insects
Chilo partellusmoths used in this study were obtained from the insect mass rearing unit at the
icipe-Thomas Odhiambo campus. The larvae originated from field-collected stemborers, prin-
cipally from sorghum Sorghum bicolor (L.) Moench fields in the Mbita region in western
Kenya. Larvae were reared on a semi-synthetic diet containing sorghum leaf powder [47]. Field
collected egg parasitoids, Trichogramma bournieri Pintureau & Babault (Hymenoptera: Tri-
chogrammatidae) and larval parasitoids, Cotesia sesamiae Cameron (Hymenoptera: Braconi-
dae) were reared on stemborer eggs and larvae respectively, using methodologies described by
Overholt [48]. The insects were maintained at 24 ± 3°C, 70 ± 5% RH, 12L: 12D. The mass-
reared culture was infused with a field-collected population every three months to avoid
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genetic decay and maintain the original behavioural characteristics of the species. Naive mated
female moths and parasitoids obtained from second to third generation of the original field col-
lected culture were used in the experiments.

Volatile collection
Volatile compounds were collected using headspace sampling [49] from whole maize plants
subjected to the following treatments: with stemborer eggs (inducing plants), without stem-
borer eggs but exposed to egg exposed plants (induced plants) and, without stemborer eggs
and not exposed to plants with eggs (control plants). Prior to volatile collection, seedlings for
oviposition were placed in oviposition cages (80 X 40 X 40 cm) into which five gravid naive
female moths were introduced and kept overnight for oviposition. A wad of cotton wool (10
cm in diameter) moistened with water was placed into the cage for the moths to feed on the
water from wet cotton wool. The following day, 20 egg exposed landrace maize plants were
moved into an insect-proof screen house and arranged in two rows, 60 cm apart and 30cm
between the plants to act as the inducing plants. Ten unexposed maize plants, five each for
‘Nyamula’ and HB515, and of the same age were then introduced between the two rows and
placed 30cm apart. The set up was left for three days. Control plants were kept inside similar
cages but without C. partellusmoths in a similar insect-proof screen house. Volatiles were col-
lected from these plants over a period of 48 hours, starting at the last two hours of photophase.
Maize leaves were enclosed in polyethyleneterephthalate (PET) bags (3.2 L,* 12.5 mm thick)
heated to 150°C before use and were fitted with a swagelock inlet and outlet ports. Charcoal-fil-
tered air was pumped (600 mL min-1) through the inlet port and volatiles collected on Porapak
Q (0.05g, 60/80 mesh; Supelco Inc. Bellefonte, PA, USA) filters inserted into the outlet through
which air was drawn at 400 mL min-1. Elution of the entrained volatiles was done using 0.5 mL
dichloromethane and eluted samples stored in tightly capped microvials in a -20°C freezer
prior to bioassays and further analysis. Entrainments from both plants with eggs (inducing),
induced and control plants were replicated five times, and each plant was used only once.

Behavioural bioassay
Responses of the parasitoids to plant derived volatiles were evaluated in a Perspex four-arm
olfactometer [50]. Headspace samples (10 μL aliquots) were applied, using a micropipette
(Drummond ‘microcap’, Drummond Scientific Co., Broomall, PA, USA), to a piece of filter
paper (4 x 25 mm) subsequently placed in an inlet port at the end of each olfactometer arm.
Gravid female parasitoids without any prior exposure to plants or hosts were transferred indi-
vidually into the central chamber of the olfactometer using a custom-made piece of glass tub-
ing. Air was drawn through the four arms towards the centre at 260 mL min-1. Time spent in
each olfactometer arm was recorded with ‘Olfa’ software (F. Nazzi, Udine, Italy) for 12 min-
utes. A choice-test was carried out to compare insect responses to headspace samples from
induced and control plants, as well as from oviposited and control plants. The two opposite
arms held the test stimuli (10 μL aliquots of headspace sample). The remaining two arms were
solvent controls. The experiment was replicated 12 times.

Chemical analysis
Entrained VOCs were analyzed using a Hewlett-Packard 7890 GC machine (Agilent Technolo-
gies Co Ltd, Santa Clara, CA, USA) equipped with a cool-on column injector, a non-polar HP-
1 capillary column (50 m, 0.32mm internal diameter, 0.52 μm film thickness) and a flame ioni-
zation detector (FID). Four μL of headspace sample was injected into the injector port of the
GC instrument. Oven temperature was maintained at 30°C for 2 minutes and then
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programmed at 5°C min-1 to 250°C. The carrier gas was helium. Data were analyzed using HP
Chemstation software. Aliquots of attractive headspace samples were analyzed using a Hew-
lett-Packard 5890 GC machine (Agilent Technologies) on a capillary Gas Chromatography
HP-1 column (50 m, 0.32 mm internal diameter, 0.52 μm film thickness) directly coupled to a
mass spectrometer (VG Autospec; Fisons Instruments, Manchester, UK) equipped with a cool
on-column injector. Ionisation was performed by electron impact (70 eV at 250°C). The oven
temperature was maintained at 30°C for 5 minutes, and then programmed at 5°C min-1 to
250°C. Tentative identifications were made by comparison of spectra with mass spectral data-
bases [51]. Tentative identifications of the compounds were confirmed through co-injections
with authentic standards. Quantification of key compounds emitted in both egg exposed
(inducing), induced and control maize plants was done by comparing the peak area of these
treatments to the peak area of 100 nanograms of synthetic DMNT. This was done by first
injecting 1 μl of synthetic DMNT which contained 100 ng of DMNT prepared in redistilled
hexane. The peak area was recorded and a response factor calculated using Eq 1 below. An
equal amount of natural headspace sample containing unknown concentration of DMNT was
then analysed and the amount of compound obtained using Eq 2 below.

Response factor ¼ Peak area
Sample amount

Eq 1

Amount of analyte ¼ Peak area
Response factor

Eq 2

Statistical analysis
Four-arm olfactometer bioassay data, i.e. time spent in each olfactometer arm by T. bournieri
and C. sesamiae, were compared by analysis of variance (ANOVA) after conversion of the data
into proportions and a logratio transformation. Means were separated using Tukey’s test with
α set at 0.05. Multivariate analysis of variance (MANOVA) was used to compare the quantities
of volatile blends emitted by different plant treatments. Statistical analyses were done using
R3.0 software [52].

Results

Behavioural responses of parasitoids to headspace samples of volatiles
from egg exposed, neighbouring and control maize plants
Both egg (T. bournieri) and larval (C. sesamiae) parasitoids were significantly attracted to vola-
tiles from egg exposed landrace ‘Nyamula’ plants compared to those from plants not exposed
to eggs and solvent controls (F2,33 = 10.37, P<0.001; F2,33 = 12.76, P<0.001 respectively) (Fig
1). Similarly, both egg and larval parasitoids spent significantly more time in the olfactometer
arms with volatiles from neighbouring ‘Nyamula’ plants compared to arms holding volatiles
from unexposed plants and solvent controls (F2,33 = 18.39, P<0.001; F2,33 = 10.54, P<0.001
respectively) (Fig 2). In contrast, there was no significant difference in time spent by both egg
and larval parasitoids in arms holding volatiles from neighbouring, unexposed HB515 plants,
and solvent controls (F2,33 = 0.12, P>0.05; F2,33 = 1.05, P>0.05 respectively) (Fig 3). Complete
responses are shown in Tables A, B and C in S1 File attached.

Chemical analysis
Gas chromatographic analysis of the headspace samples revealed quantitative and qualitative
changes in the volatile profiles emitted by plants exposed to egg deposition in comparison to
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unexposed control plants of the same variety. Similar observations were made for the head-
space samples from the landrace ‘Nyamula’maize plants without eggs that were exposed to vol-
atiles from plants with eggs (Fig 4). There were marked increases in the levels of compounds

Fig 1. Behavioural response of female parasitoids to volatiles collected from landracemaize seedlings, ‘Nyamula’with or
withoutChilo partellus eggs in a four-arm olfactometer bioassay.Response of (A) Trichogramma bournieri; (B) Cotesia
sesamiae. Bars marked by different letters within a graph are statistically different (P<0.05).

doi:10.1371/journal.pone.0158744.g001
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which had previously been shown to be electrophysiologically active and play a key role in par-
asitoid attraction such as DMNT [53] in the plants with eggs and the neighbouring landrace
maize plants exposed to volatiles from plants with eggs (Fig 4). However, there were no changes
in the volatile profiles in hybrid maize, HB515, exposed to volatiles from maize plants with
eggs (Fig 5), an indication that the difference is due to genotype. EAG active compounds in

Fig 2. Behavioural response of parasitoids to volatiles collected from a landrace, ‘Nyamula’, neighbouring
inducedmaize plant (exposed to maize plant emitting egg-induced volatiles) and an unexposed control plant
in a four-arm olfactometer bioassay.Response of (A) Trichogramma bournieri; (B) Cotesia sesamiae. Bars
marked by different letters within a graph are statistically different (P<0.05).

doi:10.1371/journal.pone.0158744.g002
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egg-induced ‘Nyamula’ are reported by [43]. Quantification of these compounds in the volatile
samples in the current study showed that there were significant increases in amount of limo-
nene, DMNT and decanal in not only the oviposited and but also in neighbouring VOC-
induced landrace ‘Nyamula’maize compared to the control (F2,12 = 2.10, P>0.05; F2,12 = 3.12,
P>0.05; F2,12 = 0.62, P>0.05 respectively) (Table 1). These electrophysiologically active com-
pounds were not detected in the hybrid maize, HB515 (Table 1).

Fig 3. Behavioural response of parasitoids to volatiles collected from a hybrid, HB515, neighbouring
inducedmaize plant (exposed to maize plant emitting egg-induced volatiles) and an unexposed control
plant in a four-arm olfactometer bioassay.Response of (A) Trichogramma bournieri; (B) Cotesia sesamiae.
Bars marked by same letters within a graph are not statistically different (P>0.05).

doi:10.1371/journal.pone.0158744.g003
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Discussion
Results from the current study show that egg-induced volatiles from the maize landrace ‘Nya-
mula’ can induce an indirect defence response in neighbouring conspecific plants even when
they are not exposed to the herbivore themselves. This suggests that egg-induced volatile
organic compounds were detected and responded to by the undamaged neighbouring plants
and implies that there is airborne signalling between ‘Nyamula’ plants following C. partellus
egg deposition. As shown previously [43], egg deposition triggered emission of VOCs that are

Fig 4. GC profiles of headspace volatiles frommaize landrace, ‘Nyamula’: (A) exposed to oviposition, (B) exposed to egg-induced
maize volatiles from neighbouring plant, (C) unexposed. The identities of some of the EAG-activec ompounds whose emission was
highly elevated by oviposition and induction are as follows: (a) limonene; (b) (E)-4,8-dimethyl-1,3,7, nonatriene (DMNT); (c) methyl
salicylate; (d) decanal.

doi:10.1371/journal.pone.0158744.g004
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attractive to stemborer parasitoids but here we show the signal can be passed between plants to
make the “early herbivore alert” effect precede even the physical presence of eggs on a plant.
This signalling of an impending herbivore attack prompts plants to activate their defence
mechanisms, eventually emitting volatile semiochemicals that attract natural enemies of the
herbivores. However, the effect depended on maize genotype and was absent in the standard
hybrid line HB515. Previous studies have shown that herbivore egg deposition on certain
maize varieties induces emission of volatiles that are attractive to both egg and larval parasit-
oids. This trait has been found to be prevalent in wild and landrace maize varieties but rare in

Fig 5. GC profiles of headspace volatiles from hybrid maize, HB515: (A) landrace ‘Nyamula’ exposed to oviposition used for
induction, (B) HB515 exposed to egg-induced maize volatiles from neighbouring ‘Nyamula’ plant, (C) unexposed HB515
control plant. The identities of some of the EAG-activec ompounds whose emission was highly elevated by oviposition are as
follows: (a) limonene; (b) (E)-4,8-dimethyl-1,3,7, nonatriene (DMNT); (c) methyl salicylate; (d) decanal.

doi:10.1371/journal.pone.0158744.g005

Induction of Indirect Defence in Neighbouring Plants

PLOS ONE | DOI:10.1371/journal.pone.0158744 July 8, 2016 10 / 15



maize hybrids [19, 43, 54, 44]. The current study reports for the first time mediation of indirect
defence in undamaged maize plants by egg-induced maize volatiles from neighbouring plants.

Comparing the egg-induced VOCs from the landrace maize plants and those from neigh-
bouring intact maize plants exposed to the egg-induced VOCs revealed quantitative rather
than qualitative differences. Larger quantities of VOCs were emitted from the egg exposed
landrace plants compared to the VOC-induced plants. The mechanism of emission of physio-
logically-active volatile compounds from VOC-exposed plants can have two possible explana-
tions. Firstly, the egg-induced maize volatiles might have been adsorbed to the surface of the
VOC-exposed maize plants and later volatilized once more. Secondly, it is possible that vola-
tiles from egg-exposed plants triggered production of electrophysiologically active semiochem-
icals by VOC-exposed plants. Given that VOCs have been shown to induce expression of
defence genes in uninfested plants [55, 56, 23], and the fact that it is only landrace maize varie-
ties that had been shown to respond to egg deposition and not the hybrid maize that showed
changes on volatile profiles, the latter explanation seems plausible. Furthermore, hybrid maize
HB515 had been shown not to respond to herbivore oviposition by activating semiochemical
emissions as opposed to the landrace ‘Nyamula’ [45]. Nevertheless, additional studies are being
done using labelled synthetic DMNT to determine the mechanisms of the induced responses
observed in the intact neighbouring plants. The VOCs released from egg exposed and neigh-
bouring maize plants induced by them generally matched those of previous studies on egg-
induced volatiles in maize varieties [19, 43, 44]. Some of the released VOCs as well as those
reported in literature include green leaf volatiles (GLVs); monoterpenes such as myrcene and
limonene; homoterpenes such as (E)-4,8-dimethyl-1,3,7, nonatriene (DMNT); sesquiterpenes
such as (Z)-β-farnesene and (E)-β-caryophyllene; phenyl propanoids including methyl salicy-
late and aldehydes such as decanal. DMNT, a key compound known to mediate herbivore-nat-
ural enemy interactions in these systems, was elevated by egg deposition as well as by exposure
of intact maize to egg-indued VOCs. The emission of these compounds explains the observed
behavioural responses of the parasitoids in the olfactometer bioassays.

Volatile organic compounds (VOCs) have been shown to induce defence responses in plants.
For example, (Z)-3-hexenyl acetate induces defence genes in unifested leaves of Lima bean [11,
23] and Arabidopsis [55]. Other compounds which have been identified that elicit VOC-induced
plant responses include (Z)-jasmone [57, 58], (E,Z)-β-ocimene, (E)-4,8-dimethyl-1,3,7-nona-
triene (DMNT), (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) [11] and methyl salicy-
late [59, 60]. GLVs have also been shown to prime maize plants against subsequent herbivore
attack [35]. The role of HIPVs in influencing defence pathways and responses in neighbouring
undamaged plants has been previously described [27, 29, 16]. Whilst HIPVs can immediately
induce defence signalling in neighbouring plants at high levels, physiologically relevant levels of
HIPVs appear to prime plants to prepare for future herbivore and pathogen attack [31]. Since

Table 1. Volatile emission (ng/plant/hr) (mean ± s.e) from egg exposed (inducing), neighbouring (induced) and control maize plants (N = 5).

Compound Inducing plant Landrace ‘Nyamula’ Hybrid ‘HB515’

Induced Control Induced Control

limonene 0.59 (0.28)a 0.36 (0.14)a 0.06 (0.03)b n.d n.d

linalool 0.53 (0.21)a 0.72 (0.20)a 0.04 (0.02)a n.d n.d

(E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) 17.33 (7.44)a 8.11 (4.01)a 0.10 (0.06)b n.d n.d

methyl salicylate 0.42 (0.06)a 0.43 (0.07)a 0.19 (0.06)a n.d n.d

decanal 2.90 (2.81)a 3.35 (2.83)a 0.02 (0.02)a n.d n.d

Means followed by a different letter, within a row, are significantly different (multivariate analysis of variance, P < 0.05). n.d indicates not detected.

doi:10.1371/journal.pone.0158744.t001
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most of these volatile compounds had elevated levels and emissions following egg deposition in
the current study, it is suggested that they are the ones responsible for the induction of indirect
defence mechanisms in neighbouring undamaged maize plants.

Plants that are able to ‘eavesdrop’ from neighbouring attacked plants and use these cues to
activate and tailor their defences according to information derived from their attacked neigh-
bours in anticipation of herbivore attack may gain a selective advantage over plants that are
unable to make use of these signal cues [23]. Additionally, egg-induced volatiles provide nat-
ural enemies of herbivores with early-alert cues indicating the presence of hosts [42, 61].
Thus, the emission of volatile organic compounds attractive to natural enemies of herbivores
from both the egg exposed and neighbouring undamaged maize plants increases the signal
strength of these attractive cues thereby increasing the recruitment and foraging efficiency of
the antagonists. This eventually increases the preventive defence strategy of the plant com-
munity against herbivores since large numbers of natural enemies are recruited to parasitize
eggs as well as emerging larvae before causing damage to the plants [41]. Furthermore, para-
sitized lepidopteran eggs do not develop into larvae and parasitised larvae feed less than non-
parasitized ones and die upon emergence of the adult wasp, which greatly reduces damage to
the plant [62, 63].

The induction of defensive responses in maize plants through airborne signals from egg
exposed plants even before any damage is inflicted on the crop plant could contribute to nat-
ural protection of crop plants against stemborers. For instance, intercropping maize varieties
that are able to respond defensively to early-herbivory with varieties that can perceive the
emitted chemical signals can enhance natural enemy recruitment as opposed to crop mono-
cultures that cannot respond to egg deposition or volatile signals induced by oviposition.
This could be of practical importance as demonstrated by Pettersson et al. [64] and Ninkovic
et al. [65] who planted mixtures of barley cultivars emitting volatiles that negatively affected
host plant acceptance by aphids. Since there is variability in emission of egg-induced semio-
chemicals in maize germplasm, and the levels of emission may be too low for practical crop
protection purposes, it may be possible to boost the strength of the signal by companion
planting with maize varieties that emit larger amounts of effective volatile compounds as
described by Pickett et al. [66].
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