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Abstract 

Aim 

To investigate in situ Enterococcus faecalis biofilm removal from the lateral canal of a 

simulated root canal system using passive or active irrigation protocols.  

Methodology 

Root canal models (n = 43) were manufactured from transparent resin materials using 

3D-printing. Each canal was created with an 18 mm length, apical size 30, a .06 taper, 

and a lateral canal of 3 mm length, 0.3 mm diameter.  Biofilms were grown on the 

lateral canal and apical 3 mm of the main canal for 10 days. Biofilm of three models 

was examined using SEM. The other forty models were divided to four groups (n = 

10). The models were observed under a fluorescence microscope. Following 60 s of 

9 mL of 2.5% NaOCl irrigation using syringe and needle, the irrigant was either left 

stagnant in the canal or activated using gutta-percha, sonic or ultrasonic methods for 

30 s. Images were then captured every second using an external camera. The residual 

biofilm percentages were measured using image analysis software. The data were 

analyzed using generalized linear mixed models. A significance level of 0.05 was used 

throughout. 

Results 

The greatest level of biofilm removal was with ultrasonic agitation (66.76%) followed 

by sonic (45.49%), manual agitation (43.97%), and passive irrigation groups (38.67%) 

respectively. The differences were significant between the residual biofilm in the 

passive irrigation and both sonic & ultrasonic groups (P = 0.001). 

Conclusion 



Agitation resulted in better penetration of the 2.5% NaOCl into the lateral canal of an 

artificial root canal model. Ultrasonic agitation of NaOCl improved the removal of 

biofilm. 

 

Introduction 

It is widely acknowledged that complete eradication of biofilm by root canal treatment 

would be essential for preventing periodontitis, an inflammatory lesion around the 

dental root caused mainly by bacteria (Sjögren et al. 1997). Bacteria adhere to solid 

surfaces (in this case the root canal) where they divide and rapidly form biofilms 

(Costerton et al. 1999). Root canal treatment to remove biofilm includes 

instrumentation and irrigation. It has been reported that using instrumentation alone is 

not sufficient for complete elimination of bacteria from the root canal system (Nair et 

al. 2005). This inadequacy may be related in part to the irregular nature of the canal 

anatomy such that there are regions that do not come into contact with the instrument. 

Lateral canals that branch off the main root are examples of canal regions that are 

impossible to instrument and could harbour residual bacterial biofilms (Ricucci et al. 

2009). Microorganisms that survive in the canal after treatment can cause secondary 

infections of the root canal system.  

Enterococcus faecalis is an important pathogen in persistent root canal infections, 

often identified in teeth with post-treatment infection (Mejare 1974, Sedgley et al. 

2004). Therefore, a final irrigation regimen performed after the completion of chemo-

mechanical canal preparation may improve debridement in the non-instrumented part 

of the root canal system (Ballal et al. 2009). However, the debriding action of an irrigant 

may remain elusive when using a needle and syringe alone (Jiang et al. 2012). 

Agitation may be applied to aid the dispersal of the irrigant into the root canal system 



(Macedo et al. 2014). Agitation techniques for root canal irrigants include either 

manual agitation (Cecic et al. 1984, Druttman & Stock 1989, Huang et al. 2008) or 

automated agitation (Cunningham et al. 1982, Sabins et al. 2003). 

Manual agitation of the irrigant can be achieved by using a file (Bronnec et al. 2010) 

or a taped gutta-percha cone (Huang et al. 2008) placed in the instrumented canal 

and moved by the operator. Sonic and ultrasonic devices are examples of automated 

agitation (Sabins et al. 2003). These devices use a fine polymer or metal tip that is 

vibrated within the canal, with different frequencies depending on the instrument. 

Sonically activated instruments are driven with a frequency range of 1-6 kHz (Tronstad 

et al. 1985). In ultrasonic agitation, a tip oscillates at frequencies of 25 to 30 kHz in a 

pattern of motion consisting of nodes and anti-nodes along its length (Weller et al. 

1980). 

Although recent evidence suggested that the efficacy of NaOCl could be enhanced by 

irrigant agitation (Layton et al. 2015, Mohmmed et al. 2016) or by increasing its 

concentration (Mohmmed et al. 2017), these studies focused on irrigation within simple 

straight root canals. However, the real-time monitoring of NaOCl efficacy in removing 

bacterial biofilm from a root canal with more complex anatomy has not been reported. 

Hence, more knowledge of biofilm-NaOCl interaction within the root canal system is 

crucial to improve the outcomes of the root canal treatment. 

This study investigated the effect of different agitation techniques on the efficacy of 

2.5% NaOCl in eliminating the biofilm from the surface of the lateral canal using the 

residual biofilm, removal rate of biofilm, and the extent of destruction of the residual 

biofilm as outcome measures.  



Materials and Methods 

The construction of the simulated root canal was performed according to Mohmmed 

et al. (2016) with the modification of a more complex root canal anatomy, ie. the 

presence of a lateral canal. The preparation of microbial strains, generation of biofilms, 

irrigation methods, data collection and analysis  were based on (Mohmmed et al. 2016) 

and described in detail as follows.  

Construction of transparent root canal models with lateral canal and 

distribution to experimental groups 

The root canal models (n = 43) were created using a 3D printer (Formlabs Inc., 

Somerville, Massachusetts, USA) and, as each model comprised of two halves, a total 

of 86 half models were printed. The design of the model used herein consisted of a 

main canal of 18 mm length, apical size 30, a .06 taper, and a lateral canal of 3 mm 

length, 0.3 mm diameter located at 3 mm from the apical terminus (Figure 1). Three 

models were used to examine the biofilm generated on the surface of the root canal 

model. The other models were divided into four groups (n = 10 per group) according 

to the type of irrigation protocol.  In-group 1 (the passive irrigation group), no agitation 

was applied. In-group 2 (the manual agitation group), the irrigant was agitated using a 

gutta-percha cone (GP) (SybronEndo, Buffalo, New York, USA). In-group 3 (the sonic 

agitation group), the irrigant was agitated using the EndoActivator® device (Dentsply 

Tulsa Dental Specialties, Tulsa, Oklahoma, USA). In-group 4 (the ultrasonic agitation 

group), the irrigant was agitated using a Satelec® P5 ultra-sonic device (Satelec, 

Acteon Inc, Laurel, New Jersy, USA).  



Preparation of microbial strain and determination of the standard inoculum 

Biofilms were grown from a single bacterial strain (Enterococcus faecalis; ATCC 

19433). The strain was supplied in the form of frozen stock in a brain-heart infusion 

broth (BHI) (Sigma-Aldrich, St. Louis, Montana, USA) and 30% glycerol (Merck, Poole, 

UK) stored at -70 °C. The strain was thawed to 37 °C for 10 min and swirled for 30 s 

using a Vortex mixer (IKA, Leighton Buzzard, UK) (Siqueira et al. 2002). After thawing, 

100 µL of the strain were taken and plated onto a BHI agar plate (Sigma-Aldrich) with 

5% defibrinated horse blood (E&O Laboratories, Bonnybridge, UK) and incubated at 

37 °C in a 5% CO2 incubator (LEEC, Nottingham, UK) for 24 h. Bacterial morphology 

and catalase activity were confirmed prior to the generation of the biofilms. For this, 

two colonies of the strain were removed separately using a sterile inoculating loop 

(VWR, Lutterworth, Leicester, UK), and catalase testing using 3% H2O2 (Sigma-

Aldrich Ltd, Poole, UK) and Gram staining (BD Ltd., Charlbury, UK), were performed. 

In addition, the identification of the strain was achieved by 16S rRNA gene sequencing 

and analysis. 

A standard inoculum of 108 CFU/mL concentration was used for the final biofilm 

production, which was adapted from a previous study (Al Shahrani et al. 2014). For 

this, six colonies were removed from the agar plate, placed into 20 mL of BHI broth 

with 5% defibrinated horse blood, and incubated at 37 °C in a 5% CO2 incubator for 

24 h. BHI containing E. faecalis was adjusted to 0.5 absorbance at a wavelength of 

600 nm using a spectrophotometer (NanoDrop™ Spectrophotometer ND-100, 

Wilmington, Delaware, USA) (Al Shahrani et al. 2014). Inoculum concentration was 

confirmed by determining the colony forming units per millilitre (CFUs/mL) using six 

ten-fold serial dilutions (Peters et al. 2001). This was performed by mixing aliquots of 

100 μL bacterial inoculum into 900 μL of reduced transport fluid in 1.5 mL mini tubes 



(Sarstedt Ltd, Nümbrecht, Germany). From these dilutions, aliquots of 20 μL were 

plated on BHI agar plates with 5% defibrinated horse blood and then incubated at 37 

°C in the 5 % CO2 incubator for a period of 24 h. The final concentration was 1.1 × 108 

CFU/mL.  

Generation of single species biofilm (E. faecalis) on the surface of the apical 3 

mm of the canal model  

The models halves were packed individually in packaging bags (Sterrad 100S, ASP®, 

Irvine, California, USA) and then sterilised using gas plasma with hydrogen peroxide 

vapor (Sterrad 100S) for 50 min (Precautions & Flush 2008). Each root canal model 

comprised of two halves but only one was used to grow a biofilm. This was so that, 

once assembled, the biofilm on the canal surface could be imaged through the half 

without a biofilm. 

One mL of standard E. faecalis inoculum (1.1 × 108 CFU/mL) was delivered into a 

sterilised 7 mL plastic bijou bottle (Sarstedt Ltd) that contained a sterilised half model. 

The apparatus was incubated at 37 °C in a 5% CO2 incubator for ten days. A sterile 

syringe (BD Plastipak™, Franklin Lakes, NJ, USA) and a 21-gauge needle (BD 

Microlance™, Franklin Lakes, NJ, USA) were used to immerse the 3 mm apical portion 

of the half model. Every three days, half of the inoculum that surrounded the model 

was discarded and replaced with fresh BHI broth (De‐Deus et al. 2007). After 

incubation, three samples with biofilms were prepared for scanning electron 

microscopy and the remaining were assembled for irrigation treatment. 



Re-apposition of the model halves 

Before reassembling the two model halves, a polyester seal film of 0.05 mm thickness 

(UnisealTM, Buckingham, UK) was positioned on the half coated with biofilm. Any part 

of the film that overhung the canal boundary was removed using a surgical blade 

(Swann-Morton, Owlerton, UK) without disturbing the biofilm. The two halves of the 

model were then held in position using four brass bolts (size 16 BA) and nuts 

(Clerkenwell Screws, London, UK). 

Irrigation experiments 

In order to image the biofilm and it’s removal, the model halves with biofilms were 

removed from the plastic bottle and prepared for staining with a crystal violet (CV) 

stain (Merck, Darmstadt, Germany). CV was used as it stained the biofilm such that it 

could be distinguished from the model and did not bleach with the NaOCl. Each model 

half was placed on a microscope slide and rinsed with distilled water (Roebuck, 

London, UK) to remove loosely attached cells. Using a pipette (Alpha Laboratories 

Ltd, Eastleigh, UK), 2 µL of CV stain were applied to the part of the canal half where 

the biofilm had been generated (3 mm) and left for 1 minute for staining. It was 

subsequently washed with distilled water (Izano et al. 2007) 

In all groups, sodium hypochlorite (NaOCl) (Teepol® bleach, Teepol products, Egham, 

UK) of 2.5% available chlorine and 12.8 pH was used as irrigating solution. 9 mL of 

the NaOCl was delivered using a 10 mL syringe (Plastipak) with a 27-gauge side-cut 

open-ended needle (Monoject, Sherwood Medical, St. Louis, Missouri, USA). The 

needle was inserted into the canal just coronal to the organic film or biofilm. The port 

opening of the needle always faced the model half containing the organic film or 

biofilm. The syringe was attached to a programmable precision syringe pump (NE-



1010; New Era Pump Systems, Wantagh, New York, USA) in order to deliver the 

irrigant at a flow rate of 0.15 mL s-1. For each canal, a total of 9 mL of irrigant was 

delivered over a period of 1 min. In group 1, following the 60 s irrigation using a syringe 

and needle, the irrigant was kept stagnant (passive irrigation) in the canal for 30 s in 

the other groups (2-4), the irrigating solution was agitated using manual (Group 2) , 

sonic (Group 3) and ultrasonic methods (Group 4) . 

In the manual agitation group, the irrigant was delivered as in the previous group. 

Following that, a gutta-percha cone with an apical size 30 and 0.02 taper was placed 

2 mm coronal to the canal terminus which was used to agitate the irrigant in the root 

canal system with a push–pull amplitude of approximately 3–5 mm at a frequency of 

50 strokes per 30 s (Huang et al. 2008). A new GP cone was used with each canal 

model. 

For the sonic agitation group, the irrigant was delivered as described in group 1. 

Following that, the agitation was carried out using an EndoActivator® device by placing 

the polymer tip of an EndoActivator® device with size 25 and 0.04 taper at 2 mm from 

the canal terminus, and then the agitation was continued for 30 s with a high power-

setting (Ruddle 2007). A new tip was used with each canal model.  

For the ultrasonic agitation group, the irrigant was delivered as in the previous group. 

Following that, the agitation was carried out by placing a stainless steel instrument, 

size and taper 20/02 (IrriSafe; Satelec Acteon, Merignac, France), of a Satelec® P5 

Newtron piezon unit at 2 mm from the canal terminus, then the agitation was continued 

for 30 s. The file was energized at power setting 7 as recommended by the 

manufacturer. A new instrument was used with each canal model.  



Following irrigation protocols, the residual NaOCl on the model surface was 

immediately neutralised by immersing the models in 2 mL of 5% sodium thiosulphate 

solution (Sigma-Aldrich Co Ltd., Gillingham, UK) for 5 minutes (Hegde et al. 2012).  

Three models from each group were examined for residual biofilm using SEM. The 

residual biofilm on the canal surface was imaged at 3, 2, and 1 mm from the canal 

terminus. Three models from each group were examined to assess the effect of 2.5% 

NaOCl irrigant on the residual surface biofilm. 

Recording of biofilm removal by the irrigant 

The rate of film or biofilm removal was recorded using a high-resolution CCD camera 

(QICAM Mono Fast 1479, Toronto, ON, Canada). The camera was connected to a 

fluorescent microscope (Leica DMIRB, Leica Microsystems UK, Mlton Keynes, UK) 

and the samples imaged with a 2.5× magnification lens. During the time-lapse 

recording of interactions between the irrigant and the organic film or biofilm, both 

fluorescing (red filter) and non-fluorescing (intensity of 2.5 W/m2) light was used to 

achieve a better resolution (Figure 2).  

Image analysis 

The video-captured recording was separated into ninety images according to each 

second of footage using Image J 1.4 and micro-imaging software 1.4 (Media 

Cybernetics Inc., Rockville, MD, USA). The images were analysed using Image-pro 

Plus 4.5 and ipWin4 software (MediaCybernetics®, Silver Spring, Maryland, USA). 

Canal surface coverage by residual organic film or biofilm present after every second 

of irrigation (0.15 mL) was quantified. 



Preparation of the samples for Scanning Electron Microscopy 

The biofilm on the surface of three untreated root canal models and three models from 

each treatment group were observed using scanning electron microscopy (SEM) (FEI 

XL30 FEG SEM, FEI, Eindhoven, Netherlands). For this, samples were fixed in 3% 

glutaraldehyde (Agar Scientific, Stansted, UK) in 0.1 M sodium cacodylate buffer (Agar 

Scientific,) at 4 °C overnight. Then, they were dehydrated in a graded series of ethanol 

(50, 70, 90, and 100%) (Sigma-Aldrich Co Ltd.,), placed in hexamethyldisilazane (Agar 

Scientific,) for 5 min and air-dried. Samples were mounted onto aluminium pin stubs 

(Agar Scientific,), and sputter coated with gold/palladium (Polaron E5000, QUORUM 

Technology, Laughton, UK) before examination using SEM. The appearance of the 

remaining biofilm was assessed as was the morphology of the bacteria. 

Data analyses  

The residual biofilm (%) on the surface of the root canal model with a lateral canal 

anatomy at each second of 90 s irrigation with passive and active 2.5% NaOCl irrigant 

was analysed using line plots. An assumption concerning a normal distribution of data 

for the residual biofilm was checked using a visual inspection of the box and whisker 

plots. The data were normally distributed and therefore the generalised linear mixed 

models, followed by Dunnett post-hoc comparisons were performed to compare their 

distributions in the four experimental groups. A similar analysis was performed to 

analyse the effects of irrigant agitation duration (time) and experimental group (passive 

or manual, sonic, and ultrasonic active irrigation) on the percentage of residual biofilm 

covering the lateral canal surface area. A significance level of 0.05 was used 

throughout. The data were analysed by SPSS (BM Corp. Released 2013. IBM SPSS 

Statistics for Windows, Version 22.0. Armonk, New York, USA).  



Results 

The greatest removal of E. faecalis biofilm was associated with the ultrasonic agitation 

protocol followed by sonic agitation, manual agitation, and passive irrigation (control) 

protocols respectively (Figure 3). 

The mean (95% Confidence interval) percentages of the lateral canal surface area 

coverage with residual bacterial biofilm against duration of irrigation(s) are presented 

in Figure 4. The data showed that the greatest removal was associated with the 

ultrasonic agitation group (66.76%) followed by sonic agitation (45.49%), manual 

agitation (43.97%), and passive irrigation groups (control) (38.67%) respectively.  

The results from the linear mixed model (Table 1) indicated that there was a significant 

difference between the residual biofilm on the lateral canal surface area in the passive 

irrigation group and the automated groups (sonic & ultrasonic) (P = 0.001). Amongst 

the agitation groups, strong evidence of less residual biofilm was found in the 

ultrasonic agitation group than those in the sonic and manual agitation groups (P = 

0.011).  

Another important finding (Table 2) was that the interval of irrigant agitation 

interestingly had an influence on the amount of biofilm removed. The amount of biofilm 

removed using passive irrigation group was significantly less [0.51%/s; (±0.08), 

1.01%/s; (±0.08)] than the amount of biofilm removed using sonic, and ultrasonic 

agitation groups respectively (P = 0.001). For the agitation groups, the amount of 

biofilm removed using the ultrasonic agitation group was significantly more [0.07%/s; 

(±0.06), 0.49%/s; (±0.06)] than that using the manual and sonic agitation group 

respectively (P = 0.001).  

SEM images of the biofilm on the surface of the lateral canal models before and after 

irrigation are presented in Figure 5. 



Taking the biofilm structure of the untreated model into account, SEM images (Fig. 

5ai) showed cocci morphology of the bacteria cell. Bacterial cells were often gathered 

in colonies, and held together by a matrix of extracellular polymeric substance. 

Complete encapsulation of bacterial cells by the matrix could be observed.  

The influences of 2.5% NaOCl irrigation on biofilm at the 3 mm level from the canal 

terminus are presented in Figure 5 (aii, aiii, aiv).  Although SEM images of passive 

irrigation (Fig. 5aii) and manual agitation (Fig. 5aiii) groups showed residual biofilm 

with obvious ESP destruction and a damaged cell membrane; some bacteria cells 

appeared flawless. Entire biofilm elimination was associated with automated groups 

(Fig. 5aiv).  

At the 2 mm level, reduction in removal and destruction effect were evident in the 

passive irrigation (Fig. 5bi) and manual (Fig. 5ci) groups, and communities of bacterial 

cells held by EPS matrix were noted. This effect was more distinct in the former group. 

Regarding the automated groups, the greatest biofilm deformation and removal was 

associated with the ultrasonic group (Fig. 5ei) followed by the sonic group (Fig. 5di).   

At 1 mm from the canal terminus, both passive irrigation (Fig. 5bii) and manual (Fig. 

5cii) groups had no effect and this pattern was reflected in the intact form and structure 

of the biofilm. The destruction of biofilm by NaOCl was noticed in the sonic (Fig. 5dii) 

and ultrasonic (Fig. 5eii) groups. This effect was superior in the latter group. However, 

unharmed bacterial cells that are enclosed in an extracellular polymeric substance 

was identified. 

Discussion 

This study set out with the aim of comparing the impact of passive and active irrigation 

protocols (manual, sonic, and ultrasonic agitation) and time of irrigation on the efficacy 



of 2.5% NaOCl irrigant in biofilm removal from the wall of a simulated lateral canal of 

the root canal system. The results did not show any significant increase in the efficacy 

of NaOCl during manual agitation. Although a greater removal and eradication effect 

of NaOCl on the E. faecalis biofilm was associated with the ultrasonic activation group, 

it was not enough for complete biofilm removal and dissolution from the lateral canal 

anatomy.  

In the present study, all laboratory models were made of synthetic transparent 

materials. The surface and composition of such materials differ from that of root canal 

dentine. The porous nature of dentine (due to dentinal tubules) may act differently from 

a solid plastic material. A laboratory study that uses ex vivo (extracted teeth) to test 

the antimicrobial action of irrigants would be more relevant in terms of reflecting the 

clinical situation. Yet, tooth dentine is optically opaque and any internal structures are 

concealed, which makes them inaccessible for the direct visualisation needed to 

assess the antibacterial action of an irrigant during the process of irrigation. In addition, 

the ethical issues and difficulties in patient recruitment may limit the ability of achieving 

adequate sample sizes (Spratt et al. 2001). In this regard, the models advocated in 

this study have the advantage that the transparent canal model allows for a direct 

investigation in a time dependent way, into the removal action of the test targets 

(biofilm, simulant biofilms) by NaOCl irrigant. In addition, the use of the 3D printing 

technique with stereolithography materials allows the generation of multiple samples 

with the same anatomical features and much finer resolution (Melchels et al. 2010). 

Major criticism of this model is that the attachment of the biofilm in dentine may differ 

from that on a synthetic material of the model used here. Nevertheless, previous 

investigations, which examined the potential of the 3D printing materials for 

development of suitable in vitro biofilm models illustrated that the model material 



allowed for attachment and growth of E. faecalis biofilm on their surface to a similar 

extent to that of dentine (Mohmmed et al. 2016). 

In this study, the root canal model was created with an apical size 30, .06 taper 

because it has been suggested that the minimum apical size necessary to deliver the 

irrigant to the canal terminus is size 30 (Khademi et al. 2006). A side cut 27-gauge 

endodontic needle was chosen, as it is commonly used in clinical practice, and to avoid 

the greater pressure required to deliver the irrigant at a rate of 9 mL per minute, as is 

the case when using a flat ended 30-gauge needle (Shen et al. 2010). A total of 9 mL 

of NaOCl were used during syringe irrigation protocol as it has been reported that 9 

mL were sufficient to remove stained collagen simulating biofilm from the root canal 

system (Huang et al. 2008). The volume of 9 mL per minute (0.15 mL s-1) irrigant was 

selected as an attempt to improve the solution penetration (Bronnec et al. 2010). 

Furthermore, this rate falls within the range of 0.01–1.01 mL s-1 reported in previous 

studies to be used in clinical practice (Boutsioukis et al. 2007). One criticism may be 

generated about the high flow rate that may increase both apical pressure and irrigant 

extrusion (Park et al. 2013); however, it has been argued that the healthy condition of 

the periapical tissue creates a barrier against apical extrusion (Salzgeber & Brilliant 

1977).  

The diameter of the lateral canal of the root canal model was 0.3 mm (300 µm). This 

may be considered as a limitation as it lies beyond the range of the lateral canals (10 

- 200 µm) reported in previous studies using scanning electron microscope 

(Dammaschke et al. 2004) and microcomputer tomography (Al‐Jadaa et al. 2009) of 

human teeth. However, this width was selected, as it was adequate for recording the 

in-situ removal of the bacterial biofilm. In addition, based on previous observations on 

the printing of lateral canal models with a smaller diameter, the inner surface of the 



canal was incompletely polymerised. Furthermore, the lateral canal of diameter 250 

µm, which is larger than the abovementioned range, was used in a previous study to 

investigate the removal of simulated biofilms from the lateral canals (Macedo et al. 

2014).  

A total of ten days was selected for biofilm growth as it has been confirmed that this 

period allowed microbial colonization and developed biofilm models (Sena et al. 2006). 

The relevant biofilm model allowed for the controlled investigation and comparison of 

the antimicrobial protocols (Halford et al. 2012). Antimicrobial susceptibility of 

generated biofilms over time has been explored intensively. For instance, Wang et al. 

(2012) reported that young biofilm was more sensitive to intracanal medicaments, and 

bacteria were more easily killed than in an old biofilm. It has been argued that biofilms 

become increasingly difficult to eliminate by antibacterial agents between 2 and 3 

weeks (Stojicic et al. 2013). However, another study suggested the biofilm resistance 

is inherent and it is possible to generate mature wild bacterial biofilm (Pseudomonas 

aeruginosa) after 5 days incubation (Klausen et al. 2003).  

In the present study, an inverted fluorescent microscope was selected to observe and 

record biofilm removal by NaOCl. The main advantage of this microscope was that it 

allowed direct imaging of the biofilm removal without the need for sample fixation. 

However, high resolution imaging proved difficult because of the steeply curved sides 

of the canal walls that resulted in a lot of out-of-focus data and increased reflected 

light. Furthermore, it was not possible to assess single bacterial cell destruction in the 

biofilm because a low magnification 2.5x lens was needed in order to observe the 

whole apical canal in a single image. In this regard, residual biofilms were examined 

using SEM to assess the extent of destruction of biofilm structure. 



The use of crystal violet stain to render the biofilm visible under the microscope 

provoked an issue, because the stain might have affected the oxidative capability of 

NaOCl. For this, experiments were performed to examine the effect of CV stain on the 

oxidative capacity and capability of NaOCl. The results showed that CV, which 

displayed a fluorescent capacity, had a neutral effect on NaOCl. This was interpreted 

by the evaluation of the available chlorine and pH of NaOCl before and after the 

addition of CV. This result may be attributed to the alkaline property of the stain, or 

due to its concentration, which was not high enough to affect the oxidative capacity of 

NaOCl. The experiments were performed in triplicate. 

Image analysis software (Image-Pro Plus) has been used to analyse the images from 

the fluorescent microscope. This software has been adopted in other studies in order 

to analyse images (Huang et al. 2008, McGill et al. 2008). One criticism that can be 

made in relation to all image-analysis techniques is that the areas measured are to 

some extent subjectively chosen by the examiner. In order to reduce this limitation, 

inter- and intra-examiner assessments were carried out. A semi-automatic approach 

to measuring the biofilms was applied and imaging software was used to manually 

draw the template of the root canal outline and quantify the biofilm. The same template 

was used to obtain and calculate the biofilm area after washing, without further 

interference of the operator. 

Although the method of quantifying the biofilm from the root canal wall revealed 

marked results, a single assessor performed the measurements and therefore there 

was a possibility of bias. In order to reduce this, a methodology was agreed using a 

standard protocol for outlining the root canal and for setting the threshold of the stain 

to be measured. The principal assessor and another observer who was experienced 

in using image analysis software measured 10% of the images and this was repeated 



until sufficient inter-observer agreement was achieved (Hartmann & Wood 1990). 

Another attempt to reduce bias was attained by assessment of the intra-observer 

reliability. This was performed by recording ten replicate measurements of the residual 

biofilm in each group at specific intervals (every 10 s of the 90 s irrigation) and 

comparing the values taken. This comparison showed good agreement between the 

measurements (Koppe et al. 2009). This semi-automatic method provided operator-

independent quantitative results. 

The biofilms on the surface of the test materials were observed using SEM, which 

provided information about the structure and components of the single species biofilm 

formed on the test materials. However, the study did not attempt to measure the 

thickness of the biofilm. The reason for this is related to the effect of the dehydration 

procedure during SEM sample preparation, which may cause shrinkage of the biofilm, 

affecting it’s thickness (Paz et al. 2015).  

This study did not include the use of neutral irrigation solutions (saline, water) to clarify 

whether the biofilm removal was a result of the chemical activity of NaOCl or the 

physical characteristic of the agitation protocols used in the study. The current 

research was specifically designed to evaluate the effect of different agitation protocols 

on the ability of NaOCl to remove and disrupt E. faecalis biofilm in comparison with a 

passive irrigation protocol. It has been reported in our previous study that the residual 

biofilms after irrigation protocol without agitation using 5.25% NaOCl and 2.5% NaOCl 

were less than that using water (P = 0.001). However, it would be interesting to repeat 

that study using different agitation methods. 

One result which emerged from the statistical analysis was that NaOCl should to be in 

direct contact with the E. faecalis biofilm to perform total removal and destruction of 



the bacterial cell (Moorer & Wesselink 1982). This was achieved in all groups at the 3 

mm level from the lateral canal terminus, as the port opening of the needle was facing 

the lateral canal, which may yield a jet with high velocity fluid flow (Boutsioukis et al. 

2010, Verhaagen et al. 2012).  

The agitation of the NaOCl could enhance a lateral flow component, and improve 

irrigant penetration into the side canal (Castelo-Baz et al. 2012). However, no 

complete eradication of biofilm was evident in the passive and manual agitation 

groups. The possible explanation for this might be that the rate of irrigant refreshment 

as the irrigant diffused was decreased (van der Sluis et al. 2010). As the irrigation 

procedure continued, the irrigant penetration into the terminus of the lateral canals 

was enhanced with automated groups (sonic and ultrasonic). These results may be 

related to the acoustic streaming and cavitation effects that were created by the tip 

oscillation of the sonic and ultrasonic device within the main root canal (van der Sluis 

et al. 2005). Nevertheless, NaOCl efficacy was insufficient for complete removal of the 

residual biofilm. This could be due to fact that the effective diffusion of NaOCl was 

restricted to the top layers of the biofilm (Renslow et al. 2010). Another possible 

explanation for this is the rapid consumption of OCl- ions of NaOCl during its reaction 

with biofilm (Moorer & Wesselink 1982). The efficacy of NaOCl was reduced at 1 mm 

from the lateral canal terminus in all irrigation groups. This observation could be 

attributed to the reduction in both fluid convection (Verhaagen et al. 2014) and irrigant 

replacement (Wang et al. 2014).  

It is important to consider the effect of increasing NaOCl concentration on the amount 

of biofilm removal as it has been reported that tissue dissolution of NaOCl increased 

with a higher concentration of the NaOCl solution (Moorer & Wesselink 1982, 

Haapasalo et al. 2014). Furthermore, it has been argued that agitation improved the 



antimicrobial efficacy of 5.25% NaOCl when compared with 2.5% NaOCl (Sena et al. 

2006). Although these studies provided information about the efficacy of irrigation, 

their results were based upon a technique of immersing the sample into an irrigant. In 

such conditions, the efficacy of irrigation was related to its chemical action as well as 

diffusion without interference of the canal confinement, which may reduce the mixing 

and replacement of irrigant (Verhaagen et al. 2012). In this regard, Mohmmed et al. 

(2017) reported that a clear improvement in biofilm removal was achieved when 5.25% 

of NaOCl was used instead of 2.5%, but no complete biofilm removal was detected. 

This suggest that the flow of NaOCl to the full extent of the root canal system by 

frequent refreshment/agitation cycles may be more important for obtaining maximal 

removal effect than increasing its concentration.    

The findings are in agreement with de Gregorio et al. (2009) findings, who showed 

that the efficacy of the automated groups (sonic & ultrasonic) was greater than that of 

the passive irrigation group. However, the findings of the current study do not support 

the abovementioned study, which reported that there was no difference between the 

sonic and ultrasonic agitation groups.  This inconsistency may be due to the structure 

of biofilm exhibiting resistance to antimicrobial agents (Roberts & Mullany 2010) when 

compared to the contrast media used in the de Gregorio et al. study.  



The presence of a lateral canal influenced the dynamic of fluids, resulting in lower 

percentage of E. faecalis biofilm removal in the groups that received active irrigation 

when compared to single canal anatomy as reported by Mohmmed et al. (2016).  The 

canal complexicity reduced the cleaning efficiency by 23% in the ultrasonic agitation, 

35% in the sonic, and 37% in the manual agitation groups. Hence, increasing canal 

complexity results in changes in the mechanics of fluids and future studies should 

consider increasing the canal complexity and microbial variety, considering multi-

species biofilms.  

Conclusion 

The removal effect of NaOCl on bacterial biofilm was limited to the 3 mm level from 

the lateral canal terminus. The agitation of NaOCl resulted in better penetration of the 

irrigant into the lateral canals. Ultrasonic agitation of NaOCl improved the removal of 

biofilm. 
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Figure 1: Image illustrates the design of the complex root canal mode (main and lateral 

canals. Each half of a simulated canal is of 18 mm length with 1.38 mm diameter at 

the coronal portion and 0.3 mm diameter at the apical portion. The lower view shows 

the printed two halves and when they are reassembled, a straight simple canal of 18 

mm length, apical size 30, and a 0.06 taper is created with lateral canal of 3 mm length, 

0.3 mm diameter adapted from (Mohmmed et al. 2016) with permission. 



Figure 2: Sketch illustrating the set-up of equipment for recording of the biofilm (biofilm 

was generated on the apical portion (3 mm) of the main and lateral (3 mm) canals 

model) removal by active or passive NaOCl irrigation protocol using a camera 

connected to a 2.5× lens of an inverted fluorescent microscope. The irrigant was 

delivered using a syringe with a 27-gauge side-cut open-ended needle, which was 

attached to a programmable precision syringe pump. The residual biofilm was 

quantified using computer software (Image-pro Plus 4.5) adapted from (Mohmmed et 

al. 2016) with permission.  



 

Figure 3: Images illustrate stained E. faecalis biofilm on the canal surface of the root 

canal model after NaOCl (a) syringe irrigation, (b) manual agitation, (c) sonic agitation, 

and (d) ultrasonic agitation protocols. 

 

 



 

Figure 4: Mean (95% CI) percentages values of the residual biofilm (%) covering the 

root lateral canal surface-area over duration (s) of syringe irrigation followed by 

passive or active irrigation protocols, stratified by type of irrigation (n = 10 per group). 
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Figure 5: SEM images illustrate (ai) E. faecalis biofilm grown for 10 days. (aii,  aiii, and 

aiv) residual biofilm at 3 mm from the lateral canal after passive irrigation, manual, 

sonic protocols respectively. (b) Passive irrigation group; (i) residual biofilm at 2 mm 

from the lateral canal terminus; (ii) residual biofilm at 1 mm from the lateral canal 

terminus. (c) manual-agitation group; (i) residual biofilm at 2 mm from the lateral canal 

terminus; (ii) residual biofilm at 1 mm from the lateral canal terminus. (d) Sonic 

agitation group; (i) residual biofilm at 2 mm from the lateral canal terminus; (ii) residual 

biofilm at 1 mm from the lateral canal terminus. (e) Ultrasonic agitation group; (i) 

residual biofilm at 2 mm from the lateral canal terminus; (ii) residual biofilm at 1 mm 

from the lateral canal terminus. 

 

 

  



 

Table 1: Generalized linear mixed model analysis to compare the difference in the amount of 

residual biofilms (%) covering the lateral canal surface during passive or active irrigation time 

(the irrigant was either left stagnant in the canal or activated using gutta-percha, sonic or 

ultrasonic methods for 30 seconds) with 2.5% NaOCl irrigant  (n = 10 per group). 

Experimental groups *Coefficient  95% CI  
P 

value 

Manual agitation vs passive irrigation 10.78 -0.81, 22.36 0.068 

Sonic agitation vs passive irrigation 21.04 9.46, 32.63 0.001 

Ultrasonic agitation vs passive irrigation 56.08 44.49, 67.67 0.001 

Manual agitation vs ultrasonic agitation   -66.88 -78.46, -55.29 0.011 

Sonic agitation vs ultrasonic agitation -34.91   -46.49, -23.33 0.011 

Manual agitation vs sonic agitation  -32.31 -43.89, -20.72 0.011 

*Coefficient for the residual biofilm, CI = Confidence interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2: Generalized linear mixed model analysing the effect of time (seconds) on the 

amount of biofilm removed from the lateral canal surface of each experimental group (n = 10 

per group). 

Experimental groups *Coefficient  95% CI 
p 

value 

Manual agitation vs passive irrigation -0.06  -0.22, 0.09 0.428 

Sonic agitation vs passive irrigation -0.51 -0.66, -0.36 0.001 

Ultrasonic agitation vs passive irrigation -1.01  -1.12, -0.85 0.001 

Manual agitation vs ultrasonic agitation   0.07  0.91, 1.22 0.001 

Sonic agitation vs ultrasonic agitation 0.49    0.34, 0.65 0.001 

Sonic agitation vs manual agitation  0.58  0.43, 0.74 0.001 

*Coefficient for time effect represents the rate of biofilm removal, CI = Confidence interval. 

 

 

 

 

 

 

 

 

 

 

 


