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Summary 

It is now widely accepted that different areas of the brain are functionally connected 

even in the absence of explicit task demands, the so-called 'resting-state'. Differences in 

resting-state connectivity between groups are increasingly used as a marker of 

pathology in a number of neurological diseases and neuropsychiatric disorders. 

However, in order for a specific pattern of functional connectivity to represent a valid 

biomarker, it must be proven to be stable and reliably measurable in the absence of 

disease or disorder. Further, much is still unknown about the biological basis and 

purpose of resting-state activity, that may help to elucidate the functional relevance in 

patient groups. 

Magnetoencephalography (MEG) is a technique that is well suited to the study of 

resting-state connectivity because it provides a direct inference of synchronised 

neuronal activity. In chapter two of this thesis, the test-retest repeatability of two 

different approaches to assessing functional coupling of brain areas using MEG is 

examined. Having established a preferential analysis pipeline, chapter three compares 

frequency band-limited MEG connectivity with functional connectivity derived from 

BOLD-fMRI data. The connectivity pipeline is then used for two different applications. 

First, the approach is combined with pharmacological intervention in healthy subjects in 

order to investigate the role of AMPA receptors in the glutamate system on the MEG 

signal and functional connectivity (chapter four). The final experimental chapter focuses 

on comparing functional connectivity in a group of generalised epilepsy patients with 

age- and gender-matched healthy control subjects. Taken together, the results of this 

thesis have implications for the study of functional connectivity in the resting-state 

using MEG, particularly the sensitivity of the technique to microscale as well as 

macroscale changes.        
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1 General introduction 

1.1 Rationale  

It is widely accepted that the brain is active even when not explicitly executing a task. 

Furthermore, non-invasive imaging experiments show that resting brain activity 

exhibits a stereotypical set of functionally connected networks (Raichle, 2009). 

Resting-state is attractive because it is simple to set-up and simple to perform. 

However, in order for a 'biomarker' of disease to be valid, it is important to establish 

reliability and variability of the measurement technique in the absence of disorder 

(Mayeux, 2004). Gaining a better understanding of the complex neural dynamics that 

give rise to neuroimaging signals is also critical to interpretation of the underlying 

causes of group differences in functional connectivity at rest.  

One of the many disorders where the resting-state offers a viable investigative 

technique is epilepsy. Though convention dictates a distinction between focal and 

generalised epilepsies, the condition as a whole is increasingly thought of as a 

disorder of neural networks (see reviews by Hamandi, Routley, Koelewijn, & Singh, 

2016; Kramer & Cash, 2012), associated with dysfunction in the excitation-inhibition 

balance (Engel, 1996). So, achieving a robust marker of dysfunction outside ictal 

periods, and being able to understand the processes giving rise to these changes, are 

important to further advancing our understanding of the disorder. 

Therefore the work contained in this thesis is an attempt to disentangle some of the 

issues relating to functional connectivity in the resting-state using MEG. In particular, 

I first attempt to establish the reliability and validity of a common approach to 

estimating functional connectivity. Then, apply this approach in a number of 

scenarios relating to understanding the underlying signal generation and epilepsy-

related changes in functional connectivity. 
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1.2 A brief background on magnetoencephalography (MEG) 

1.2.1 The biophysical and technical basis of the MEG signal 

The MEG signal is thought to arise from summation of inhibitory and excitatory post-

synaptic potentials in neural populations (Lopes de Silva, 2010). Only neurons in an 

open-field orientation produce a measurable net signal and the most common of 

these, the pyramidal neuron, is believed to form the greatest contribution to the 

signal measurable by MEG. However, MEG is not sensitive to activity in a single 

neuron, but rather requires 10,000-50,000 neurons to become synchronously active 

(Murakami & Okada, 2006). The current dipoles associated with mass coherent 

activity of neurons produce primary volume currents that are able to pass 

unencumbered through the head and are measurable at the scalp using MEG 

(Hämäläinen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993). This theory is 

supported by studies showing that the MEG signal bears the closest correspondence 

to invasive recording of local field potentials (LFPs) that also measure post-synaptic 

potentials (Adjamian et al., 2004).  

There are a number of pertinent theoretical and technical considerations. MEG is not 

sensitive to all dipole orientations, such that radial sources are likely to be silent 

(Figure 1-1). However, given the size of cortical patch required to generate MEG 

signal, it is likely in practice that little of the cortex is truly silent (Hillebrand & Barnes, 

2002). Rather, MEG sensitivity falls away with depth from the sensors (Hillebrand & 

Barnes, 2002). There is some evidence that it is possible to detect signal from deep 

structures (Cornwell, Johnson, Holroyd, Carver, & Grillon, 2008), but it is likely that 

localisation accuracy for these regions will be poorer compared to more superficial 

sources.  
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Figure 1-1. Diagrammatic representation of potential cortical dipole orientations and 

relative 'visibility' with MEG. Orange arrows represent a single dipole and blue and red 

circles represent  magnetic field lines entering and exiting the head. (A) Anterior-

posterior tangential source and (B) left-right tangential source both produce field 

patterns that are detectable with MEG. (C) Radial source (superior-inferior alignment on 

grey matter sheet) will be MEG-silent. The gyral crests of the grey matter sheet carry 

greatest likelihood of radial orientations (Hillebrand & Barnes, 2002). Figure adapted 

without permission from Singh (2006). 

The first MEG recordings were made using single sensors (Cohen, 1968, 1972). 

Following this pioneering work the technique has developed through multi-channel 

arrays to present day whole-head helmet coverage systems (Hari & Salmelin, 2012). 

The magnetic fields in the brain are extraordinarily small (10-12 tesla), and the 

potential noise sources are many orders of magnitude larger by comparison. 

Specialist hardware helps to overcome this issue. Superconducting quantum 

interference devices (SQUIDs) sensors are highly sensitive to magnetic fields, and are 

coupled to the brain's magnetic fields via flux transformers consisting of a pickup coil 

and a coupling coil (Vrba & Robinson, 2001). Both the SQUIDs and flux transformers 

are stored inside a dewar and cooled to -269˚C to be kept operational. There are a 

number of available configurations for the flux transformer pickup coil, and the 

system used to conduct the research contained in this thesis is a CTF MEG 275 

containing first order axial gradiometers (Figure 1-2). The additional winding of the 

first-order gradiometers compared to magnetometers acts as a noise cancellation 
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system. Magnetic field noise which appears that same to both coils of the 

gradiometer will create a current that is equal and opposite, thus reducing noise by a 

factor of 100 compared to magentometers (Vrba & Robinson, 2001). It is possible to 

convert data recorded using axial gradiometers to planar gradient formation 

(Oostenveld, Fries, Maris, & Schoffelen, 2011). Additionally, the entire system is 

housed within a shielded room to screen out environmental noise. Noise from mains 

electronics can be filtered out post-collection. Further, data can be analysed in 

synthetic third-order gradiometer mode to reduce the noise further by up to a factor 

of 100 (Vrba & Robinson, 2001). In the CTF 275 system used throughout this thesis, 

this is achieved by use of 29 reference magnetometers located in the centre of the 

dewar that can be used to regress out additional noise.  

 

Figure 1-2. Schematic showing three pickup coil configurations (top) and representative 

field maps for each type (bottom). The axial magnetometer consists of one wire winding 

whereas the 1st order axial gradiometer has an additional wire winding for noise 

cancellation purposes (note the more focal field map). The planar gradiometer 

formation produces a field pattern where the signal maxima is produced directly over 

the dipole. Adapted without permission from Singh (2006). 
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1.2.2 Analysing MEG data 

With whole-head MEG systems comes the potential to accurately estimate both 

timecourses and spatial locations of discrete neural sources (Mosher, Leahy, & Lewis, 

1999). In order to do so, one must first solve the 'forward problem' by determining 

the magnetic field pattern that could be generated by a known current distribution 

(also known as the lead fields). MEG is less sensitive to uncertainties in the 

conductivity profile of the head compared to other non-invasive neurophysiological 

techniques (i.e. EEG), so solving the forward problem is relatively straightforward 

(Singh, 2006). 

However, having solved the forward problem, one must still estimate the location of 

the current sources given a particular magnetic field distribution across sensors, 

known as the 'inverse problem' (Mosher et al., 1999). The inverse problem suffers 

from non-uniqueness, meaning that there is not enough information in the data 

received to provide an unambiguous solution. However, adding a priori constraints 

relating to the temporal or spatial distribution of current can help to reduce the 

estimate to a single solution and the success of any given inverse solution is 

dependent on these a priori constraints (Singh, 2006). There are a number of 

approaches to solving the inverse problem. These include equivalent dipole fitting, 

which models a single active source at any given moment (Wood, 1982) and 

distributed current models that attempt to estimate a continuous current 

distribution that is generating the observed response (e.g. minimum norm -

Hämäläinen & Ilmoniemi, 1994; Lin et al., 2006).  

Another common source estimation approach, and the one that is used throughout 

this thesis, is beamforming. This class of source model, also known as a virtual sensor 

approach, constructs a spatial filter that scans across all locations in the given grid to 
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estimate the signal at every grid location (Vrba & Robinson, 2001). The virtual sensor 

at each location in the grid is the sum of the weighted signal from all sensors that 

gives maximal sensitivity to activity in that location (Hillebrand, Singh, Holliday, 

Furlong, & Barnes, 2005), whilst supressing contributions from other, non-target, 

locations. The main assumptions in beamforming are that the data are generated by 

a discrete set of current dipoles, and that no two distinct cortical areas exhibit 

perfect temporal coherence with one another (Hillebrand & Barnes, 2005). Although 

this means that distant sources that are highly correlated with one another will be 

'invisible' using a beamformer, this is not a likely scenario in the study of spontaneous 

oscillatory activity. The key advantage for the purposes of working with resting-state 

data is that beamforming is suited to studying activity that is not necessarily tightly 

phase-locked to a stimulus (Singh, 2006), and provides additional noise rejection that 

is beneficial when analysing non-averaged data (Vrba, 2002).  

 

1.3 The functional role of neural oscillations 

1.3.1 Contextual overview  

One of the first demonstrations of oscillatory activity in the human brain was made 

by the founder of EEG, Hans Berger, when he observed large rhythmic fluctuations in 

recordings at 10Hz when subjects opened and closed their eyes (Berger, 1929). In the 

years since, oscillations in a number of other frequency bands have also been 

observed. The putative functional role, mechanisms and interpretation of band-

limited oscillations have been extensively studied and it is not feasible to cover each 

of these here (for reviews on the gamma and theta bands respectively, see: Buzsaki & 

Wang, 2012; Colgin, 2013). Broadly and simply speaking, oscillatory activity between 

1 and 100Hz can be classified into a number of frequency bands. Although there are 
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no clearly defined boundaries set upon the various frequency bands, the bandings 

used throughout this thesis consistent with previous work (Brookes et al., 2011b; 

Koelewijn et al., 2015; Muthukumaraswamy et al., 2013b; Nutt et al., 2015) are as 

follows: delta (1-4Hz), theta (4-8Hz), alpha (8-13Hz), beta (13-30Hz), low gamma (30-

50Hz) and high gamma (50-90Hz). The putative functional role of band-limited 

oscillations with respect to spontaneous functional connectivity is discussed further 

below (sub-section 1.3.2). 

Traditionally, the oscillatory signals measured with MEG could be divided into two 

categories. First, activity that is tightly time- and phase-locked to a stimulus (i.e. the 

evoked response), and secondly activity that is sustained throughout stimulus 

presentation and is time- but not phase-locked to stimulus onset (i.e. the induced 

response; Pfurtscheller & Lopes da Silva, 1999). However, recent thinking suggests 

that spontaneous oscillatory activity occurring at rest in multiple frequency bands 

and, more specifically, the way in which these oscillations are coupled may be 

functionally relevant (Engel, Fries, & Singer, 2001).  

1.3.2 Neural oscillations as an intrinsic coupling mechanism 

Oscillations may become coupled in a number of ways, and some suggest that 

oscillatory connectivity by phase or amplitude represent 'intrinsic coupling modes' of 

the human brain (Engel, Gerloff, Hilgetag, & Nolte, 2013a). There is no accepted 

account of the purpose of spontaneous oscillations in the brain, but many candidate 

processes link to cognitive operations related to predictive coding (Schölvinck, 

Leopold, Brookes, & Khader, 2013). For example, animal work shows that 

spontaneous activity exhibits progressive adaptation to intensive visual stimulation, 

with responses over time becoming more similar to stimulus-evoked responses 

(Berkes, Orbán, Lengyel, & Fiser, 2011; Fiser, Chiu, & Weliky, 2004). This is taken to 
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suggest that spontaneous oscillations are involved in making dynamic predictions 

about sensory stimuli (Berkes et al., 2011). It has also been shown that spontaneous 

activity prior to presentation of a stimulus can affect perception of said stimulus 

(Romei et al., 2008). This is taken as further evidence for the involvement of 

background activity in modulating excitability in a predictive manner (Romei et al., 

2008).  

One general framework of oscillatory function that is pertinent to the study of RSNs 

comes from Donner and Siegel (2011). In this model, oscillations broadly serve two 

dimensions of function associated with distinct patterns of oscillatory behaviour 

(Figure 1-3). Encoding processes, such as discrimination of visual features is said to be 

served by local gamma oscillations, whereas low frequency oscillations facilitate 

integrative functions such as perceptual inference via long-range interactions 

(Donner & Siegel, 2011). This framework is well supported by a large body of 

evidence suggesting that local gamma oscillations are involved in encoding processes 

(Adjamian et al., 2004; Gray & Singer, 1989; Kopell, Ermentrout, Whittington, & 

Traub, 2000). Studies also associate activity in low-frequency bands with integrative 

processes such as sensory perception and perceptual decision making (Hipp, Engel, & 

Siegel, 2011; Lou, Li, Philiastides, & Sajda, 2014). Further, this framework is also 

consistent with the notion that alpha oscillations represent a process of active 

inhibition (Jensen & Mazaheri, 2010) rather than cortical idling, as was once 

presumed (Pfurtscheller, Stancák Jr, & Neuper, 1996). An example of the dissociative 

low-high frequency processes co-existing can be seen in a study by Frien and Eckhorn 

(2000). Using invasive recordings in awake monkey cortex, they found that the range 

of coupling distance was significantly higher for low frequency compared to high 

frequency oscillations, and high frequency oscillations were significantly modulated 

by stimulus properties where low frequencies were not. Subsequent work confirmed 
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these observations (Leopold, Murayama, & Logothetis, 2003), and taken together 

these findings support the framework suggested by Donner and Siegel (2011). 

Moreover, a recent study of visual cortical areas suggests that low and high 

frequency oscillations may differentially mediate feedback and feedforward 

processes respectively (Michalareas et al., 2016). In this study, Michalareas et al 

inferred a number of feedforward and feedback projections in human visual cortex 

from reterograde tracing of homologous areas in macaque visual cortex. They then 

used frequency resolved Granger causality of human MEG data to show that causal 

influences in feedforward pathways were predominant in the gamma band whereas 

alpha and beta interactions were most dominant in the feedback projections. 

Moreover, a cortical hierarchy of human visual cortex constructed from these results 

showed good concordance with the known hierarchy of macaque visual cortex 

(Michalareas et al., 2016). This study provides an additional functional account of 

oscillations in different frequencies that builds on the framework of Donner and 

Siegel (2011).  

 

Figure 1-3. Network interactions shaping spectral profiles of cognitive functions, taken 

from Donner and Siegel (2011). Local encoding functions correspond most closely to 

modulations in the gamma band. Integrative functions represent longer-range network 
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integration and correspond to spectral profiles in lower frequencies, particularly the 

beta band. Copyright 2011 by Elsevier, reprinted with permission. 

1.3.3 Neuromodulation and the role of neurotransmitters 

Animal and modelling studies suggest that oscillatory activity is intrinsically linked to 

the balance of excitation and inhibition in the brain (Brunel & Wang, 2003; Scheffzuk 

et al., 2013). Using MEG in conjunction with pharmacological manipulation 

(pharmacoMEG) offers a way to study this balance selectively and non-invasively in 

humans (Muthukumaraswamy, 2014). The main excitatory and inhibitory 

neurotransmitters in the brain are glutamate and GABA, respectively. Several studies 

have highlighted that manipulation of the GABAergic system impacts oscillatory 

behaviour. For example, benzodiazepines have been shown to increase beta power 

over somatosensory cortex (Jensen et al., 2005) as well as causing widepsread 

increases in band-limited power across a diffuse set of brain regions (Hall, Barnes, 

Furlong, Seri, & Hillebrand, 2010). To date, no human studies have focused 

specifically on the glutamate system. This gap in current knowledge is addressed 

further in chapter 4.  

There is also evidence that the chemoarchitecture of the brain may specifically 

underwrite certain aspects of functional connectivity. For example, a recent study 

using human and macaque data found that cortical areas with higher density of 

excitatory receptors showed increased functional connectivity in fMRI than those 

with higher proportional density of inhibitory receptors (van den Heuvel et al., 2016). 

Alterations to RSN activity have been shown using pharmacoMEG and pharmacoEEG 

with drugs acting on a wide range of neurotransmitter systems, including serotonin 

(Muthukumaraswamy et al., 2013b), GABA (Fingelkurts et al., 2004) and dopamine 

(Heinrichs-Graham et al., 2014). Further work could elucidate the contribution of a 
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number of different neurotransmitters to functional connectivity and help to bridge 

the gap between generative models of oscillatory activity in animals and humans.  

 

1.4 The resting-state in functional neuroimaging 

1.4.1 Rest as an experimental paradigm 

The use of the resting-state in neuroimaging research has grown exponentially in 

recent years, along with the interest in macroscale functional connectivity and 

connectomics. Using the online citation index 'Web of Science' 

(http://wok.mimas.ac.uk/), the search terms 'resting-state' and 'connectivity' or 

'networks' yield 471 MEG papers on the topic between 2000 and 2016, with 

publications increasingly on a yearly basis (Figure 1-4). Replacing MEG with fMRI in 

search term lengthens the list by a factor of approximately seven, and yields 3514 

records.  

 

Figure 1-4. Web of Science citation search for the number of papers published between 

2000 and 2016 containing the following search terms: ((Magnetoencephalography OR 
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MEG) AND (resting-state OR rest) AND (networks OR connectivity)). Last retrieved 

05/06/2017. 

The seminal paper suggesting that distinct regions of the brain could be functionally 

coupled at rest was published in the mid-1990s using fMRI (Biswal, Zerrin Yetkin, 

Haughton, & Hyde, 1995). Further fMRI and PET studies showed that this so-called 

'default-mode' network of regions were intrinsically coupled during the resting-state 

and became less active during tasks (Greicius, Krasnow, Reiss, & Menon, 2003; 

Raichle et al., 2001). This pioneering work paved the way for fMRI studies showing 

intrinsic connectivity in a number of different resting-state networks (RSNs; Fox et al., 

2005; Wang et al., 2008). There is also evidence that RSNs persist as 'background' 

coupling patterns even during the performance of tasks (Smith et al., 2009).  

1.4.2 Studying functional connectivity at rest using MEG 

As indicated above, the study of functional connectivity at rest continues apace in the 

fMRI community. An exploration of RSN literature in fMRI is beyond the scope and 

remit of this thesis (see reviews by Greicius, 2008; Raichle, 2009; van den Heuvel & 

Hulshoff Pol, 2010) but it is crucially worth noting that using fMRI, researchers have 

found differences in RSNs in a variety of neurological diseases and disorders including 

Alzheimer's disease (Sorg et al., 2007), schizophrenia (Liang et al., 2006) and 

depression (Greicius et al., 2007). Instead, we focus here on the relatively small but 

growing body of work concerning resting-state connectivity in MEG. Some postulate 

that oscillatory activity represents an important coupling process in the brain, so 

MEG is ideally suited to studying functional connectivity of this type (Engel et al., 

2013a; Engel et al., 2013b; Schnitzler & Gross, 2005). Additionally, as an 

electrophysiological method MEG does not rely on hemodynamic coupling to 

neuronal activity that may itself be affected by disease or disorder, as is the case of 
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fMRI (Brookes et al., 2011a). Please see the introductory section of chapter 3 for 

expansion on this point.   

It stands to reason that the information dense MEG signal provides a number of ways 

to characterise functional connectivity. In the broadest terms, the two categories that 

have overtaken many others in popular use during recent years are phase-phase 

coupling and amplitude-amplitude coupling (O’Neill, Barratt, Hunt, Tewarie, & 

Brookes, 2015). Phase coupling assesses fixed phase relationships between two 

sources (Hillebrand, Barnes, Bosboom, Berendse, & Stam, 2012; Lachaux, Rodriguez, 

Martinerie, & Varela, 1999), and amplitude coupling looks for synchronisation among 

the power envelopes of two sources (Brookes et al., 2011b; Hipp, Hawellek, Corbetta, 

Siegel, & Engel, 2012). The precise nature of the relationship and differences 

between phase and amplitude coupling is still unclear. This has led to the suggestion 

that phase and amplitude coupling represent mechanistically different but linked 

processes (Canolty & Knight, 2010; Engel et al., 2013a). However, some studies 

suggest that it is possible to assess connectivity equivalently using a variety of 

estimates and approaches (Colclough et al., 2016; Tewarie et al., 2014). The estimate 

to be used throughout this thesis is amplitude envelope correlation, so from here we 

focus on approaches using this coupling type.  

A number of methods use a seed-based approach to estimate band limited power 

envelope correlations. One of the first examples used fMRI-guided seed regions to 

measure activity in the dorsal attention and default mode networks in MEG (de 

Pasquale et al., 2010). The authors found good correspondence with RSNs in fMRI, 

but correlation in MEG was limited to the same hemisphere as the seed (de Pasquale 

et al., 2010). However, other studies using seed-based approaches have been able to 

demonstrate connectivity between primary sensory cortices across both hemispheres 
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(Brookes et al., 2011a; Hipp et al., 2012). These investigations also show that 

amplitude-amplitude coupling is mediated at quite slow timescales, with amplitude 

envelopes co-varying over seconds or tens of seconds (Hipp et al., 2012). 

Another important new approach proposed the used of independent component 

analysis (ICA; Brookes et al., 2011b; Hall, Woolrich, Thomaz, Morris, & Brookes, 

2013). Here, ICA was applied in the temporal domain in order to generate, in a data-

driven way with no a priori input, RSNs that represent areas with a fixed amplitude 

relationship across the recording time. This technique was also extended to include a 

GLM of task-based data (Luckhoo et al., 2012). Yet another method estimated a 

whole-brain connectivity matrix based on a single virtual sensor representative for 

each region of the Automated Anatomical Labelling (AAL) atlas (Hillebrand et al., 

2012; Tzourio-Mazoyer et al., 2002). This approach initially used the Phase Lag Index, 

but has also been successfully applied with power envelope correlations (Tewarie et 

al., 2014).  

Regardless of approach, one of the key factors in the use of amplitude coupling 

methods is the removal of spurious correlation (O’Neill et al., 2015). Hipp et al. 

(2012) showed that using simple envelope correlation results in a trivial spatial 

pattern of coupling with strongest connectivity in neighbouring sources and rapid 

decay with distance from the reference point. This is presumed to arise due to the ill-

posed inverse problem resulting in signal leakage whereby activity at a single source 

is measured at multiple sensors (Engel et al., 2013a; Hipp et al., 2012; O’Neill et al., 

2015). Several leakage correction methods have been suggested, but most involve 

removal of zero phase-lag activity. There is some evidence that zero-lag 

synchronisation does occur across discrete cortical areas (Frien, Eckhorn, Bauer, 

Woelbern, & Kehr, 1994). Thus there is a possibility that the process of 
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orthogonalisation may remove true functional connectivity but on balance, the 

benefit of removing spurious connectivity outweighs this small potential loss. In one 

example, sources across the grid are orthogonalised in a pairwise fashion prior to 

calculation of power envelope correlations (Hipp et al., 2012). Another method 

extends this approach to orthogonalise all sources with respect to each other in a 

multivariate fashion (Colclough, Brookes, Smith, & Woolrich, 2015). The 

orthogonalisation methods detailed in Hipp et al (2012), and Colclough et al (2015) 

are used in chapter 2.  

Using these and other similar methods, researchers have been able to establish 

alterations to connectivity in many scenarios including childhood epilepsy (Koelewijn 

et al., 2015), depression (Nugent, Robinson, Coppola, Furey, & Zarate Jr, 2015) and 

schizophrenia (Liddle et al., 2016). The clearest connectivity structure in MEG, and 

often those where group differences manifest, can be seen in the alpha and beta 

bands (8-30Hz). This is consistent with the framework that positions low-frequency 

oscillations as carriers of long range integration across the cortex (Donner & Siegel, 

2011).  

1.4.3 Resting-state connectivity as a 'biomarker' 

Resting-state connectivity and RSNs seem to be sensitive to specific changes in a 

number of different patient groups (Arbabshirani, Kiehl, Pearlson, & Calhoun, 2013; 

Bartolomei et al., 2006; Franzen et al., 2013). This leads some to suggest that resting-

state functional connectivity represents a biomarker of disease or disordered state. 

For example in a recent study, authors were able to divide depression patients on the 

basis of connectivity patterns into four distinct subtypes associated with differing 

symptom profiles and reactivity to neurostimulation treatment (Drysdale et al., 

2017). The concept of a 'biomarker' in basic and clinical research is being continually 
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re-evaluated but there is a general consensus that a biomarker should be a reliable 

index of health or disease that can be objectively measured (Strimbu & Tavel, 2010). 

For the context of neuroimaging connectivity, measures should be consistent within 

subjects over time and repeatable at the group level (Colclough et al., 2016; Garces, 

Martin-Buro, & Maestu, 2016). There is evidence from fMRI studies that RSNs are 

repeatable between subjects and over multiple recordings sessions (Damoiseaux et 

al., 2006), but the criterion of robustness is likely contingent on each measuring 

technique and analysis pipeline. 

With regards to MEG, few studies have specifically investigated the stability and 

repeatability of functional connectivity estimates in the absence of disease or 

disorder. It has been suggested that connectivity estimates are consistent for an 

individual over repeated recordings and show little inter-individual variation 

(Colclough et al., 2016). However, another study showed that whilst group estimates 

are stable, there is some variability in RSNs at the single-subject level (Wens et al., 

2014), so this issue is not yet resolved. It is also possible that small changes at any 

analysis stage may affect the reproducibility of estimates, so it is important to 

validate any new pipeline in its entirety prior to application in patient groups. These 

points are expanded further in the introductory section of chapter two.  

 

1.5 Epilepsy as a network disorder 

1.5.1 Epidemiology and diagnosis of epilepsy  

Epilepsy is a neurological disorder characterised by the presence of seizures, and is 

associated with abnormally increased synchronisation (hypersynchrony) of oscillatory 

activity in neural populations (Gloor, 1979). Epilepsy is one of the most common 
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serious neurological disorders affecting approximately 50 million people worldwide, 

with proportionately higher incidence in low and middle income countries (WHO, 

2017). In the UK, the prevalence of epilepsy is estimated at between 0.61% and 

0.76%, depending on region (Thomas et al., 2012). The epidemiology and aetiology of 

the disorder is hugely complex (Savage, 2014), but for diagnostic purposes, seizures 

are broadly classified as focal or generalised. Symptoms of focal seizures will vary 

considerably depending on location but could include abnormal sensations, psychic 

aberrations and involuntary movements (Braeutigam, 2013). The most commonly 

recognised generalised seizures include temporary loss of consciousness (absences) 

and tonic-clonic seizures associated with jerky convulsions (Savage, 2014). Given the 

heterogeneity of this family of disorders, it is unsurprising that successful treatment 

of epilepsy is also complex (Yeager et al., 2005), and up to 20-30% of patients are 

refractory to anti-epileptic medication (Sander, 1993). 

The International League Against Epilepsy (ILAE) published a new classification 

framework this year, following an extensive period of consultation (Fisher et al., 

2017; Scheffer et al., 2017). Prior to this year, the last ratified classification was in 

1989 (ILAE, 1989). The current classification as of March 2017 can be seen in Figure 

1-5. The first step of is based on diagnosing seizure type followed by further diagnosis 

of epilepsy type and, if applicable, specific syndrome (Scheffer et al., 2017). Attempts 

should be made at every stage of diagnosis to delineate aetiology, but up to 60% of 

epilepsy cases are recorded as arising from unknown causes (WHO, 2017). Critically, 

the new framework introduces a new epilepsy type named 'combined generalised & 

focal', taking into consideration a mounting body of evidence suggesting that in many 

cases there is no clear distinction between focal and generalised epilepsies (Beghi, 

2017). Please see section 1.5.2 for further expansion on this point. 
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Figure 1-5. Latest framework for classification of the epilepsies, taken from Scheffer et 

al (2017). Copyright 2017 by John Wiley and Sons. Reprinted with permission.  

1.5.2 Focal vs. generalised features and network dynamics 

There is by now a strong suggestion that the distinction between focal and 

generalised epilepsies may not be as clear-cut as it was once believed, and that 

epilepsy should be considered a network disorder (Spencer, 2002). Widespread 

activation throughout the brain has been found in focal epilepsies (Alarcon et al., 

1994; Lieb, Engel, & Babb, 1986) and there is also evidence to suggest that even 

generalised epilepsies may have focal features (Meeren, Pijn, Van Luijtelaar, Coenen, 

& Lopes da Silva, 2002). Furthermore, many studies actively demonstrate network 

involvement in epilepsy. For example, a recent MEG study found that longer seizure 

duration was associated with greater connectivity in the beta band between the 

epileptogenic zone and other brain regions (Madhavan, Heinrichs-Graham, & Wilson, 

2013). Moreover, even when surgery for focal epilepsy is considered successful (i.e. 

freedom from seizures with loss of awareness), a small number of patients continue 
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to have simple partial seizures (de Tisi et al., 2011). Some proponents of the network 

view in epilepsy therefore suggest that removal of the epileptogenic zone identified 

during pre-surgical mapping will be successful only if the area acts as a critical hub 

within the so-called epileptogenic network (Richardson, 2012). 

The functional interactions across the brain in epilepsy are also likely to be dynamic, 

and show some degree of temporal sequencing. In a study of generalised absence 

seizures, the authors found a cascade of events including long-range 

desynchronisation prior to absence seizure onset, followed by increases in both local 

and long-range phase synchronisation lasting for the duration of the ictal event 

(Amor et al., 2009). Findings of desynchronisation such as these lend weight to the 

idea that hyposynchrony in the wider network pre-ictally may help to contribute to 

both focal and generalised ictogenesis (Uhlhaas & Singer, 2006), and that the regions 

susceptible to this effect are person-specific and stable over time (Aarabi, Wallois, & 

Grebe, 2008). This finding also indicates that it may be possible to detect epilepsy-

related changes in the brain during non-ictal periods. However, relatively fewer 

studies have examined differences in connectivity during paroxysm-free background 

recordings. Those that have are somewhat mixed, with some studies suggesting 

altered connectivity at rest (Luo et al., 2012b; Niso et al., 2015) and others finding no 

evidence of disruption to background activity (Moeller et al., 2011). Please see the 

introduction to chapter five for further discussion on this point. A better 

understanding of this facet of the disorder may help contribute to knowledge around 

transition to seizure.  

1.5.3 The use of MEG in the study of epilepsy 

Due to the fact that signals in both EEG and MEG arise from the synchronous firing of 

large numbers of neurons, these techniques by their nature emphasise synchronous 
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activity whilst highly unsynchronised activity is cancelled out. These non-invasive 

neurophysiological techniques, particularly EEG, are widely used in diagnosis and 

planning for epilepsy. In the USA, MEG is an FDA-approved clinical evaluation tool for 

epileptic foci localisation and pre-surgical planning, and is used in clinical context to 

varying degrees elsewhere (Braeutigam, 2013). Studies have shown good 

concordance between MEG localisation of ictal activity and localisation from invasive 

recordings (Eliashiv, Elsas, Squires, Fried, & Engel, 2002; Fujiwara et al., 2012). 

Though EEG and MEG are considered complementary techniques, there is one key 

difference that arguably make MEG the advantageous technique for the study of 

functional connectivity in epilepsy. Electrical fields can be smeared as they travel 

through different tissue compartments to the scalp, so EEG is particularly affected by 

the conductivity profile of the head (van den Broek, Reinders, Donderwinkel, & 

Peters, 1998). Magnetic fields, and therefore MEG, are less susceptible to signal 

diffusion by different tissue compartments (Hämäläinen et al., 1993; van den Broek 

et al., 1998). This volume conduction problem in EEG means that there is increased 

overlap between the signals recorded at two separate sensors. This can be 

particularly problematic when trying to measure connectivity because the signal 

overlap can create spurious synchrony between electrodes where none actually 

exists in the brain (Lachaux et al., 1999). 

 

1.6 Thesis objectives 

Studying functional connectivity in the resting-state, using MEG, offers a useful tool 

to understand more about neural oscillations and the role of neurotransmission 

underlying the signal, as well as the effects of neurological disease. Therefore, the 

key aims to be addressed by the experimental chapters of this thesis are as follows:  
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1. I first seek to investigate the test-retest reliability of two amplitude coupling 

approaches to functional connectivity in MEG. To this end, I will analyse data from 

repeated scans of healthy individuals taken a week apart using both connectivity 

approaches and assess group and single subject level stability, in order to establish a 

preferential pipeline for subsequent analysis.  

2. Having established an analysis pipeline, I will compare band-limited MEG 

connectivity with connectivity in fMRI. This analysis will be completed using a healthy 

cohort of 88 participants scanned as part of the UK MEG Partnership database 

collection. 

3. I will investigate the role of glutamate in generation of the resting-state MEG signal 

using pharmacoMEG with an anti-epileptic compound in healthy subjects. 

Perampanel is a newly licensed drug acting as a selective AMPA antagonist that 

allows, for the first time, the study of specific AMPA-mediated glutamatergic 

processes non-invasively in human subjects.  

4. Finally, I will apply the connectivity method in an epilepsy group in order to 

investigate changes to background activity that could indicate the mechanisms of the 

enduring seizure-prone state in this population. Specifically, the patients included in 

this analysis all have a diagnosis of Juvenile Myoclonic Epilepsy, one of the most 

common forms of Idiopathic Generalised Epilepsy that has previously been 

associated with aberrant network activity in the resting-state.  
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2 Assessing the repeatability of oscillatory resting-state 

networks in healthy individuals 

2.1 Abstract 

The study of functional neural networks and how they map on to cognitive and 

sensory performance is a well-established topic of neuroimaging research. 

Increasingly, there is a focus on understanding how these networks may be used to 

measure differences in functionality between groups, and whether these provide 

novel biomarkers of neurological or neuropsychiatric conditions. Recently developed 

techniques have enabled network analysis to be conducted using 

magnetoencephalography (MEG) data. However, these approaches are still relatively 

novel, so it is important to validate the methods prior to application in patient 

groups. For a biomarker to be meaningful it should be characteristically stable for an 

individual in the absence of disease or disorder. Here, we investigated the test-retest 

reproducibility of resting-state connectivity derived, using two different approaches 

to assessing amplitude coupling between MEG timeseries. We additionally 

investigated the effects of methodological choices on these connectivity estimates. 

On the basis of the results, we establish a suitable pipeline for application in 

subsequent experiments.
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2.2 Introduction 

2.2.1 Measuring functional connectivity from MEG data 

The study of how individual cortical areas connect both structurally and functionally 

to one another has greatly influenced our current understanding of the brain as a 

networked system. In recent years there has been a considerable surge in interest in 

the networks of cortical regions that are functionally connected at rest (resting state 

networks; RSNs), and the differences in these networks between individuals or 

groups. Typically, RSNs have been investigated using fMRI (see reviews by Smith et 

al., 2013; van den Heuvel & Hulshoff Pol, 2010). Nevertheless, there is now an 

emergence of approaches designed for use with other data modalities, particularly 

those which provide more direct measures of neuronal activity, such as MEG. 

In one of the seminal approaches to deriving RSNs using MEG data,  an independent 

component analysis (ICA) is used to reconstruct cortical networks that co-vary in their 

activity over time, by means of temporal correlations between band limited power 

envelopes (Brookes et al., 2011a). This technique has been applied successfully to 

healthy controls, both at rest (Brookes et al., 2011b; Hall et al., 2013) and during 

cognitive tasks (Brookes et al., 2012; Hall et al., 2013). Networks re-constructed in 

this way show good concordance with networks derived using fMRI (Brookes et al., 

2011a), but without reliance upon indirect changes to blood oxygenation to measure 

cortical activity. Studies have also found this technique to be sensitive to group 

differences, for example following pharmacological manipulation 

(Muthukumaraswamy et al., 2013a; Muthukumaraswamy et al., 2015) and in 

neurological and neuropsychiatric conditions such as epilepsy (Koelewijn et al., 2015) 

and major depressive disorder (Nugent et al., 2015). 
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Another key approach uses an atlas-guided beamformer to generate source space 

signals before calculating functional connectivity (Hillebrand et al., 2012). Here, 

rather than computing some connectivity measure across every voxel, the brain is 

parcellated based on a standardised atlas (e.g. Automatic Anatomical Labelling, AAL; 

Tzourio-Mazoyer et al., 2002) and a single virtual sensor is chosen as a representative 

timecourse for each ROI. This approach was initially suggested to aid interpretation 

of functional connectivity in MEG and also to enable greater ease of multi-modal 

comparison. The authors used a phase coupling measure (phase lag index) as this 

method is thought to be less affected by volume conduction effects than other 

measures of functional connectivity (Hillebrand et al., 2012). However, this atlas-

based approach to source localisation has also been successfully used with an 

envelope correlation method for amplitude coupling (Tewarie et al., 2014), a 

measure which has shown to be more robust in resting-state MEG (Colclough et al., 

2016). 

In the intervening years, the idea of an atlas-based beamformer has been taken up in 

a number of studies. This approach has been shown to be sensitive to group changes 

in source power and frequency in diseases including multiple sclerosis (Van der Meer 

et al., 2013) and Alzheimer's disease (Engels et al., 2016). Furthermore, it has been 

used as a method for source estimation during the recent development of new and 

extended methods for characterising pan-spectral hierarchy and graph theoretical 

organisation in brain networks (Brookes et al., 2016; Tewarie, van Dellen, Hillebrand, 

& Stam, 2015).  

2.2.2 Repeatability of resting-state functional connectivity 

Central to the appeal of the resting-state paradigm in clinical research, and no doubt 

a key factor in its popularity, is the value it affords in patient populations where the 
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ability to perform more demanding cognitive tasks may be compromised (e.g. 

Alzheimer's disease, schizophrenia; Greicius, 2008).  Indeed, differences between 

groups in resting-state functional connectivity are increasingly identified as potential 

biomarkers of disease or disorder, for example in epilepsy (Quraan, McCormick, 

Cohn, Valiante, & McAndrews, 2013) or schizophrenia (Arbabshirani et al., 2013). 

However, if functional connectivity and neural network measures are to be used as 

biomarkers in this way, it is important to determine whether these metrics are stable 

for each person over time in the absence of disease or disorder. In fMRI, the spatial 

pattern of RSNs has been demonstrated to show consistency and overlap across 

healthy individuals (Damoiseaux et al., 2006). Other fMRI work has also shown that 

RSNs exhibit spatial reproducibility over repeated scans (Braun et al., 2012; Meindl et 

al., 2010). There has also been some work investigating network and connectivity 

repeatability using MEG. One MEG study demonstrated, using a seed-based network 

analysis, that primary sensory RSNs exhibit topographical variability both within and 

between subjects, and this variability relates to within-network connectivity levels 

(Wens et al., 2014). Overall, however, individual variability in spatial pattern was 

found to be minimised by sufficient group averaging. Some studies have investigated 

repeatability of graph theory metrics in studying RSNs with MEG (Deuker et al., 2009; 

Jin, Seol, Kim, & Chung, 2011), but neither specifically consider repeatability of the 

underlying estimates of connectivity.  

When considering the reproducibility of resting state network activity it is worth 

noting that there are many choices to made between a number of common 

approaches, even within a single pipeline. So, it is important to consider that small 

changes to the analysis pipeline may impact results. Trying to capture how different 

techniques can vary outcomes is key in order to enable comparison between studies 

in the literature. A recent comparison of twelve different connectivity estimation 
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methods for MEG found that power envelope correlations performed most 

consistently at group- and subject-level, ahead of other techniques including phase 

coupling measures (Colclough et al., 2016). Moreover, Tewarie et al (2014) suggest 

that similar estimates can be obtained from both phase lag index and amplitude 

envelope correlations. 

2.2.3 Aims 

This study had two key aims. Firstly, we examined the test-test repeatability of two 

different methods of characterising resting state network connectivity using MEG, 

namely the ICA analysis first described by Brookes et al (2011a) and an approach 

using the atlas-based beamformer described by Hillebrand et al (2012). Both 

methods use power envelope correlations but each approach expresses this estimate 

within a different context. 

The second aim was to additionally compare small variations in parameters of the 

analysis pipeline and the impact, if any, these may have on results. This aim was 

examined using variations in only the second analysis approach with the atlas-guided 

beamformer, since there is typically more variation within this approach in the 

existing literature.   

Ultimately we hoped to be able to establish, on the basis of these results, a 

preferential pipeline for connectivity analysis in subsequent experiments.    
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2.3 Methods 

2.3.1 Subjects 

Twenty-one healthy volunteers (6 males, 15 females; mean age 22 years, range 19-34 

years) with normal or corrected-to-normal vision participated in the study after giving 

informed consent. All procedures were approved by the Cardiff University School of 

Psychology research ethics committee. All participants had a previously acquired 

structural MR scan (1mm isotropic FSPGR) that was used for source localisation. 

2.3.2 Stimuli and Procedure 

Subjects were seated upright in the MEG scanner inside a magnetically shielded 

room. For the resting state recording, subjects were instructed to maintain fixation 

on a red fixation spot whilst 600 seconds of data was recorded. The visual fixation 

point was displayed on a Mitsubishi Diamond Pro 2070 monitor (1024 pixels x 768 

pixels resolution, 100Hz refresh rate). All stimulus delivery was controlled by Matlab 

software. The data were collected as part of a 45-minute scan, in which the resting-

state recording was always completed first. The scan was repeated a second time for 

all participants, between 6 and 8 days later.   

2.3.3 MEG Recordings  

Whole-head MEG recordings were made using a CTF-Omega 275 channel system 

sampled at 1200Hz, and analysed in synthetic third-order gradiometer mode. An 

additional 29 reference channels were recorded for noise cancellation purposes. Four 

of the 275 channels were turned off due to excessive sensor noise. Eye movements 

and blinks were monitored using vertical and horizontal electrooculogram (EOG) 

recordings. To achieve MEG/MRI co-registration, electromagnetic coils were placed 

at fixed distances from anatomical landmarks (left and right periauricular, nasion) 

prior to the MEG recording, and localised inside the scanner before and after each 
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task. The fiduciary locations were verified using digital photographs and later marked 

on the anatomical MRI. Data recordings were acquired continuously.  

2.3.4 Connectivity method 1: Independent Component Analysis 

The data were divided offline into 2 second intervals. Trials containing artefacts 

including eye movements or excessive blinks were excluded from further analysis. For 

the first analysis, an independent component analysis (ICA) approach developed for 

use with MEG resting state data was applied (Brookes et al., 2011b; Hall et al., 2013). 

An outline of this pipeline is shown in Figure 2-1.  

 

Figure 2-1. Brief outline of the ICA analysis pipeline. Band-filtered data are source 

estimated using a beamformer. Data from all subjects and sessions is concatenated 

prior to temporal ICA. Resulting components are inspected for plausibility, and the 

standard deviation of component amplitude for each subject and recording session is 

used as a measure of network strength.  

Data were filtered into 6 frequency bands: 1-4, 4-8, 8-13, 13-30, 30-50, and 50-90Hz. 

These band limits are consistent with previous work investigating resting state MEG 

(Brookes et al., 2011a; Hall et al., 2013; Muthukumaraswamy et al., 2013b). A 

synthetic aperture magnetometry (SAM) beamformer algorithm (Vrba & Robinson, 

2001) was used to generate source space signals for each subject and session in each 
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of the frequency bands given above. For the first analysis, assessing the stability of 

network activity over time, the virtual-sensor timeseries at each voxel was first 

calculated for each subject, session and frequency range separately. The individual 2s 

trials are concatenated together to give a single virtual-sensor timeseries that lasts 

for the whole experimental session. A Hilbert transform is applied to each timeseries,  

in order to generate the analytic signal and then extract the amplitude envelopes for 

each virtual sensor (Brookes et al., 2011b; Swettenham, Muthukumaraswamy, & 

Singh, 2009). These amplitude envelopes are temporally down-sampled to 1s, both 

for computational efficiency and because most of the correlated network structure 

arises from slower timescales than this (Brookes et al., 2011b; Hipp et al., 2012). For 

all subjects and sessions, these amplitude timeseries were then concatenated 

together at each voxel, for each frequency band separately. A temporal ICA analysis 

was then applied to the concatenated data to derive 15 independent components for 

each frequency band. The spatial pattern of these components indicate a series of 

areas that show strong amplitude-amplitude coupling over the recording time and 

are thus assumed to be functionally connected.  

We produced high resolution images of each component for each frequency band in 

standard space. These images were examined in order to identify existing resting 

state networks (RSNs). Both the sensorimotor network and visual network seen in 

previous work were robustly evident in the 13-30Hz band, and were chosen as an 

exemplar to assess stability and repeatability for each subject. The standard deviation 

of each component’s amplitude was subsequently used as a proxy for network 

strength.  

To assess overall repeatability of the network collapsed across subjects, the standard 

deviation was computed for session 1 and session 2 separately. To assess 
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repeatability for each subject, a one-step forward moving window (20 samples in 

size) was used to generate standard deviations from the component amplitude data 

for each subject and session, up to 600 values per session (less bad trials). A 

bootstrapping approach (10,000 bootstrapped means) was then used to derive 

confidence intervals for the standard deviations for each subject and session. This 

approach allows assessment of stability of the network for each subject and session 

whilst minimising the effect of outliers in the data.  

2.3.5 Connectivity method 2: Atlas-based analysis 

For the second method, we used an atlas based beamformer approach (Hillebrand et 

al., 2012) to estimate power envelope correlations across the whole brain, and varied 

two parameters in order to test the effects of methodological manipulations on the 

experimental outcomes. A brief outline of the analysis steps along with the 

parameter manipulations used in this comparison can be found in Figure 2-2.  
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Figure 2-2. Brief outline of the atlas-based connectivity pipeline. Data is filtered into 

frequency bands and an atlas guided beamformer approach (90 regions) is applied for 

source localisation. Source space connectivity is estimated using amplitude-amplitude 

correlation in each of the atlas regions, to create a connectivity matrix for each 

individual. We additionally conducted a 4-way comparison to test the effects of 2 

parameter variations at point A (ROI representative selection) and B (leakage 

correction) on the resulting adjacency matrices.  

For this analysis, we used the pre-processed data as outlined in the previous analysis, 

and first applied a series of LCMV beamformers implemented in Fieldtrip (Oostenveld 

et al., 2011) to reconstruct sources on a 6mm grid, in the same six frequency bands 

as used previously: 1-4Hz, 4-8Hz, 8-13Hz, 13-30Hz, 30-50Hz and 50-90Hz. As with the 

ICA pipeline, the individual 2s trials are concatenated together to give a continuous 

virtual-sensor timeseries for the whole experimental session.  These source-

estimated timeseries, in each frequency band, were then parcellated into 90 ROIs 
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based on the automatic anatomical labelling (AAL) atlas (Hillebrand et al., 2012). At 

this stage, we incorporated out first parameter manipulation in the choice of the 

representative timeseries for each ROI. The first alternative was to use the 

timecourse of the single voxel, within each ROI, that had the highest average 

percentage power change across the recording, similarly to choosing a peak voxel. In 

the second alternative, we performed Principal Components Analysis (PCA), of all ROI 

timecourses to generate the number of components which explain 95% of the power 

variance in the ROI. Typically this yields around 250-300 virtual sensors, compared to 

90 for the peak-voxel approach. 

We then make our second methodological decision. Due to the ill-posed inverse 

problem, the timecourses for multiple sources may co-vary as a result of signal 

leakage, giving rise to spurious connectivity (O’Neill et al., 2015). Here, we choose 

between two approaches to correct for this. The first, pairwise orthogonalisation, is 

done during the connectivity estimation stage and removes zero lag correlations 

between each pair of sensors (Hipp et al., 2012). A Hilbert transform is performed on 

the virtual sensor timeseries, and the complex form of the analytic signal is used to 

calculate the relative phase of each pair of sources in order to remove zero-lagged 

signal (Hipp et al., 2012). For the second alternative, we applied a multivariate 

extension to the former, termed symmetric orthogonalisation (Colclough et al., 

2015). This two step approach first finds the set of orthonormal vectors that are 

closest to the original ROI timecourses. Then, the magnitude and orientation of these 

vectors is iteratively adjusted to reach a corrected solution that varies minimally from 

the original uncorrected timecourses. Ultimately, this produces a mutually 

orthogonal set of timecourses for the included ROIs where zero-lag correlations have 

been removed and remaining correlations are assumed to reflect true biological 

coupling (Colclough et al., 2015). The Hilbert transform is then computed on these 
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orthogonalised timecourses and the amplitude envelope extracted (Colclough et al., 

2015). 

The amplitude envelopes were then cross-correlated to derive a connectivity matrix 

based on amplitude coupling across ROIs. At this stage, if PCA timecourse selection 

was used, we need to reduce the size of the correlation matrices to 90x90 so that 

they can be combined across participants and sessions. This is done, for each pair of 

90 ROIs, by picking the peak correlation measure between any pair of voxels within 

the two ROIs. Correlation coefficients within this final matrix, for each dataset, were 

then transformed to a normalised z-scores using Fisher’s transform and an estimate 

of the effective degrees of freedom from the raw timeseries. These normalised z-

scores are then suitable for taking forward for statistical analyses.   

For the comparison of parameter manipulations, we used all possible combinations 

so that for each participant and scan session, we produced 4 adjacency matrices 

(Table 2-1). 

  Condition 

  MC-PO PCA-PO MC-SO PCA-SO 

ROI  

Representative 

Max. change     

PCA     

Leakage 
correction 

Pairwise     

Symmetric     

Table 2-1. Comparison of parameter variations in the atlas-based connectivity approach. 

For each participant, we generated four connectivity matrices based on all possible 

combinations of the two alternatives at each stage of manipulation. 
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2.4 Results 

2.4.1 Repeatability of ICA network activity 

From the 8 RSNs extracted in the seminal paper using this ICA method (Brookes et 

al., 2011b), the sensorimotor and visual networks in the beta band (13-30Hz) were 

the most unambiguously identified from the present data. As mentioned above, 

these networks were consequently chosen as exemplars to assess stability and 

repeatability across sessions and for each individual. 

 

Figure 2-3. Spatial maps of the sensorimotor (left) and visual (right) network 

components re-constructed in the beta band (13-30Hz) using ICA. 

The mean network strength and standard deviation for each component and session 

is shown in Table 2-2. A paired t-test on the component means confirmed that the 

differences between the two sessions were non-significant (Sensorimotor network: 

t(20)=0.1251, p>0.05, Visual network: t(20)=0,p>0.05 ).  

 Sensorimotor Network Visual Network 

 Session 1 Session 2 Session 1 Session 2 

Mean 0.95 1.01 0.97 0.95 

Std Dev 0.22 0.20 0.31 0.29   

Table 2-2. Component means and standard deviations (std dev) for each component 

and recording session, collapsed across subjects. Units are nAm. 
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In order to assess inter- and intra-individual variability in network strength and 

stability of the network over each 10-minute recording session, a moving window 

was applied to each individual timeseries (subject and session). This calculated the 

standard deviation of 20 chunks of the timeseries at a time, then moved on one 

sample and repeated the calculation until the number of standard deviation values 

was equal to the original number of samples in the timeseries (range 460-600). This 

approach allowed calculation of a mean standard deviation of power (hereto referred 

to as the 'network strength') for each timeseries, and was necessary in order to use 

bootstrapping to derive confidence intervals. The outcomes of this process for both 

networks and sessions for each individual are plot in Figure 2-4. Both the 

sensorimotor and visual networks show considerable inter-individual variability in the 

index of strength, with the lowest and highest individuals differing by a factor of 

approximately 3 in each component. Conversely, there is very little intra-individual 

variation from session to session. Intraclass correlation coefficients (ICCs) were used 

to assess repeatability. The ICC for the sensorimotor network was 0.959, and for the 

visual network was 0.938. ICCs above 0.75 are considered excellent agreement 

(Cicchetti, 1994). Thus, the ICCs for both networks indicate a high level of consistency 

in the network activity over time. The confidence intervals are generally small and 

clustered about the mean for each session, indicating that the network strength was 

stable for each person over each 10-minute recording.  



36 
 

 

Figure 2-4. Temporal standard deviation of the amplitude envelope (network activity) in 

the sensorimotor (left) and visual (right) network components, for each individual. In 

both cases, session one is plot against session two to show the strength of repeatability 

for each individual over time.  

To examine any potential influence of head geometry on network strength, the 

standard deviation of power in each component was subsequently correlated with 

two indices for brain size - 1) the intracranial volume extracted using FreeSurfer from 

the anatomical MRI, and 2) the Euclidean distance from left to right periauricular 

fiducial points. Neither index correlated with activity in the RSNs (see Table 2-3).  

 Sensorimotor Network Visual Network 

 Session 1 Session 2 Session 1 Session 2 

ICV 0.0468 0.2100 0.1712 0.3634 

Head Size 0.0851 0.0253 0.0703 0.1731 

Table 2-3. Correlations (Pearson's r) of activity in the sensorimotor and visual networks 

(for session 1 and 2) with two structural indices - intracranial volume (ICV) and left-right 

fiducial distance (head size). All correlations were non-significant at ɑ =0.05. 
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In order to further rule out any artefacts in the analysis method as an explanation 

for the repeatability results, we also correlated activity levels between the two 

networks and sessions (Figure 2-5) and found no significant correlations.  

 

Figure 2-5. Cross-plots of network activity correlations between the two networks for all 

combinations of sessions. None of these correlations were significant at ɑ=0.05. 

Lastly, we correlated network activity with a measure of the magnitude of the 

beamformer weights multiplied by noise in order to ensure that no bias was 

introduced during weights normalisation prior to the ICA (Table 2-4), and again the 

results of these correlations were not significant.  

 Sensorimotor Network Visual Network 

 Session 1 Session 2 Session 1 Session 2 

Weights*Noise 0.13 0.04 0.29 0.28 
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Table 2-4. Correlations (Pearson's r) between activity in each network and session and 

the respective session beamformer weight*noise measure. None were significant at  

ɑ=0.05. 

2.4.2 Effect of parameter variations on atlas based network activity 

For the atlas-based connectivity method, we first considered the effect of small 

parameter manipulations on connectivity estimates. This yielded four conditions: 

maximum change with pairwise orthogonalisation (MC-PO), PCA with pairwise 

orthogonalisation (PCA-PO), maximum change with symmetric orthogonalisation 

(MC-SO) and PCA with symmetric orthogonalisation (PCA-SO). In contrast to the ICA 

method, the atlas-based connectivity technique estimates connectivity across the 

whole brain using a single representative timeseries for each of the 90 AAL ROIs. 

These connectivity values can be plot in a 90x90 matrix where each point represents 

the correlation value between a pair of regions (Figure 2-6). Stronger orange 

colouration in the matrix is indicative of increased connectivity between a pair of 

regions.  

 

Figure 2-6. Examples of the plots used throughout this thesis to display connectivity 

matrices. The map shown is the first session of the MC-SO condition in the alpha band 

(8-13Hz). In the adjacency matrix (left), the 90 AAL regions are plotted along both the X 
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and Y axes, and each element in the matrix represents the amplitude coupling between 

the two given regions. Stronger orange colouration indicates a stronger positive 

correlation between two regions. The same connectivity data is shown in a different 

way, using a circular network plot that uses neuroanatomical information to give a 

more structurally organised representation (right). Positive connections between 

regions are plotted as a red line and increased line opacity indicates a stronger 

connection between two regions. In this case, the strongest correlation structure can be 

seen in parietal and occipital areas. Please note that the ROI order here is consistent 

with other figures in this chapter and throughout the remaining chapters of this thesis.   

The adjacency matrices for each parameter variation condition can be seen in Figure 

2-7. A densely connected 'hub' corresponding to parietal and occipital areas is 

evident in the alpha and beta bands. There is little clear structure in the gamma 

matrices in any condition. In general, symmetric orthogonalisation yields more 

spatially structured matrices, but the combination of PCA for virtual sensors and 

symmetric orthogonalisation leads to poorly resolved connectivity structures.   
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Figure 2-7. Average connectivity matrices for each of the parameter variation conditions 

and frequency bands, for scan session 1 (top) and scan session 2 (bottom). The 90 AAL 

regions are plotted along both the X and Y axes, and each element in the matrix 

represents the amplitude coupling between the two given regions. The matrices for all 

conditions within a given frequency band are plotted at the same scale for ease of 

comparison. 

In order to reduce noise and aid interpretation, we chose to threshold the adjacency 

matrices using a bootstrapping procedure across participants. We combined the band 

limited matrices for session one and two together, and ran 10,000 permutations in 

order to create a binary mask, including only those connections that were present 

within the top 5% of connections for 95% of the bootstrap iterations. The 

thresholded matrices further highlight a strong occipito-parietal connectivity profile 

in the alpha and beta bands across all conditions, except PCA-SO (Figure 2-8). No 

connections in the high gamma band and only one frontal connection in the low 

gamma band survive the thresholding procedure following symmetric 

orthogonalisation. A relatively higher number of suprathreshold connections can be 

seen in both the low and high gamma bands following pairwise orthogonalisation.   
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Figure 2-8. Thresholded connectivity maps for each of the four conditions and six 

frequency bands. AAL areas are split left/right, and grouped around the plot from 

frontal regions (top), through cingulate cortex, temporal lobe, basal ganglia, 

sensorimotor regions, occipital cortex and precuneus (bottom). Each line represents a 

connection that falls within the top 5% of strongest connections for 90% of bootstrap 

iterations, and increased opacity indicates a stronger connection. For display and ease 

of comparison, the scaling for all conditions within a frequency band is the same but 

varies across bands. 

2.4.3 Repeatability of atlas based network activity 

As well as comparing differences between pipeline conditions, we assessed the 

repeatability of these AAL-based connectivity methods between sessions. To this end, 

we summed across the rows of the thresholded z-matrix to extract a single 

representation of connectedness for every AAL region (herein called connection 

strength). Global connection strength is plot in Figure 2-9, and shows that the 

distribution of connection strength is somewhat variable between participants, but 

measures of central tendency show good agreement between sessions. In order to 

test formally for group-level differences in connectivity between sessions, we 

conducted a randomisation test (10,000 permutations) on the connection strength 

and found no statistical differences between sessions, for any frequency band or 

condition (at α=0.05). 
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Figure 2-9. Violin plots showing global connection strength across sessions and 

conditions, for each of the frequency bands studied. Two plots are absent from the 50-

90Hz range due to the fact that no connections survived thresholding in the high 

gamma band following symmetric orthogonalisation. The connection strength indicates 

how connected any given AAL region is to all other regions in the adjacency matrix - 

here we plot the mean of this measure for each participant, in all of the frequency 

bands and conditions studied. There were no significant statistical differences between 

sessions, for any frequency band or condition. 

Having established stability between sessions at the group level for the AAL 

connectivity methods, we also wanted to examine test-retest consistency of 

individual subject estimates. To this end, we calculated ICCs (3,1) using the mean 

connection strength for each participant in session one and session two. We found 

the highest absolute agreement in connectivity estimates in the alpha, beta and theta 

bands for each condition, along with poor agreement across delta and gamma bands 

(Table 2-5).  

 MC-PO PCA-PO MC-SO PCA-SO 

Delta 0 0.4 0.18 0.57 
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Theta 0.65 0.7 0.71 0.35 

Alpha 0.75 0.8 0.81 0.71 

Beta 0.74 0.77 0.71 0.57 

Low Gamma 0 0.07 0.21 0.004 

High Gamma 0.47 0.6 n/a n/a 

Table 2-5. ICC values for each condition and frequency band. A field containing 'n/a' 

denotes that either no connections survived thresholding, and a field containing 0 

indicates that the scale was unreliable. Values less than 0.40 are considered poor 

agreement, 0.41-0.59 indicate fair agreement, between 0.6 and 0.74 are considered 

good agreement, and values above 0.75 are considered excellent agreement (Cicchetti, 

1994). 

As in the ICA analysis, we also examined the potential effects of head geometry on 

network activity. Here, we correlated the mean connection strength with both the 

intracranial volume and the Euclidean distance between left and right preauricular 

fiducial points (head size), for each condition and frequency band. There were no 

significant correlations (at α=0.05) between mean connection strength and head 

geometry, for any condition or frequency band. A full table of Pearson's r values can 

be found in Appendix A.  

 

2.5 Discussion 

2.5.1 Repeatability of ICA-derived RSNs 

The current study examined the test-retest repeatability of two different approaches 

to assessing amplitude coupling using MEG data. The results of the first method, 

using temporal ICA to derive spatial network patterns, suggest that there is some 
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degree of variability between individuals but also that the strength of network 

activity for each individual is stable over a ten minute recording period. Furthermore, 

these results show good repeatability on two sessions taken one week apart. Activity 

within the networks does not correlate with metrics of head geometry, and cannot 

be accounted for by potential bias in beamformer weighting over sessions.  

Determining the stability of RSNs in the absence of illness is of key importance in 

using networks as a marker of presence, progression or treatment of disease or 

disorder. However it is similarly important due to the novelty of analyses in this area, 

to validate and replicate the findings of new network techniques. Here, we found 

that the mean strength of both networks studied was reproducible over two 

recording sessions. This is in line with the results from another study showing that 

MEG-ICA derived networks are stable over different recording sessions and tasks 

(Brookes et al., 2012), and provides indication that the recording technique is robust.  

However, the ICA analysis results also illustrate variation between individuals in the 

strength of activity, for both the sensorimotor and visual network. One existing MEG 

study also demonstrated inter-individual variability in within-network connectivity 

levels (using seed-based networks), that was related to individual variation in 

topography of the RSNs (Wens et al., 2014). In our ICA analysis we were concerned 

with spectral properties of the networks, and so did not examine the spatial 

similarities between individual network topologies and the RSN generated from the 

group data. So, it is possible that the RSNs explored here may show individual 

variation in topography as reported by Wens et al, and more investigation would be 

required to extrapolate the link between spatial topography and activity within the 

RSNs further. It is also worth noting  that in the previous work the effects of 

individual variation on network topography were substantially reduced by averaging 
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over ≥12 subjects (Wens et al., 2014), and the present study used almost double this 

subject threshold to generate RSN maps.  

2.5.2 Atlas-based approach to whole-brain connectivity 

Similarly to the ICA analysis, the results of the second method using an atlas-guided 

approach to estimate whole brain connectivity matrices show, in general, good test-

retest reproducibility that is minimally affected by choice of representative virtual 

sensor for the ROIs and the signal leakage correction method. We additionally found 

that regardless of small variations in the analysis pipeline, the alpha and beta bands 

show the strongest connectivity structure over occipital and parietal areas. This is 

consistent with a number of studies finding evidence of a so-called 'rich club' in both 

structural and functional networks (Grayson et al., 2014; van den Heuvel & Sporns, 

2011). 

The current study adds to a small number of MEG studies that have previously 

examined the repeatability of resting-state networks. One study compared four 

connectivity estimates in MEG and concluded that reliability was dependent on the 

metric being used and frequency band being studied, with amplitude envelope 

correlation showing greatest reliability in the beta band (Garces et al., 2016). The 

strong ICC values observed in the alpha and beta bands in the present study are in 

accordance with these findings. Another comprehensive study suggested that 

amplitude envelope correlations performed best among 12 functional connectivity 

estimates in terms of group-level repeatability, single-subject reliability and between-

subject consistency (Colclough et al., 2016). In the present study, we did not compare 

envelope correlations with other connectivity methods. Nevertheless, our findings of 

no significant group-level differences between sessions along with moderate 
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distribution of connectivity between subjects and good intra-subject consistency are 

in agreement with Colclough et al.  

2.5.3 Settling on the most appropriate pipeline for the present work 

When comparing between the methods used here, there are several considerations 

to be made. Firstly, the ICA pipeline described here includes no signal leakage 

correction. Although we show using the AAL approach that there is little variation 

between orthogonalisation techniques, previous work has shown that non-corrected 

power envelope correlations exhibit a higher level of repeatability than those with 

correction applied (Colclough et al., 2016). This suggests that highly repeatable signal 

leakage may be contributing somewhat to the repeatability observed in the ICA 

network activity. On a related note, the ICA analysis reconstructs source activity at a 

large number of cortical locations over the chosen grid. There is some evidence that 

this makes subsequent connectivity analysis more prone to field spread, even if 

leakage correction is done by removing zero lag correlations (Schoffelen & Gross, 

2009). Finally, using the ICA approach, one must visually inspect the resulting 

components in order to decide which is biologically plausible and/or interesting given 

a particular research question. In contrast, the AAL approach requires no subjective 

interpretation of components and the thresholding procedure offers a data-driven 

approach to reducing noise or spurious connectivity in the whole-brain connectivity 

matrices. Taken together, these observations indicate that atlas-based methods, such 

as the AAL, offers a more suitable approach to estimation of whole brain resting-

state connectivity, for the purposes of this thesis. 

We did not investigate every possible parameter variation in the AAL pipeline. 

However, those we did use had minimal effect on resulting connectivity matrices, 

with one key exception. In the PCA-SO condition, connectivity matrices were poorly 
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resolved, even for connections that were strongly visible in all other conditions. 

There may be a number of potential reasons for this. The initial matrix derived from 

the PCA selection is much larger than the end 90x90 output (approximately 270-300 

sensors). Further, each of the 90 'tiles' (clusters of virtual sensors explaining variance 

in that region) in the initial matrix derived from the PCA is self-orthogonalised. We 

suggest that the combination of these factors result in reduced signal-noise ratio and 

limit the degrees of freedom such that the symmetric orthogonalisation algorithm 

cannot simultaneously orthogonalise the required number of timeseries.   

This anomaly notwithstanding, symmetric orthogonalisation resulted in more 

spatially resolved, or less 'noisy', matrices. This difference seems reasonable given 

that the pairwise orthogonalisation corrects timecourses in a pairwise fashion and so 

does not take into account secondary correlations between areas. Further, more 

connections in the gamma bands survived thresholding following pairwise 

orthogonalisation compared to symmetric orthogonalisation. Connectivity in the 

gamma band is known to have the highest potential for contamination by muscle 

artefacts (Muthukumaraswamy, 2013). Moreover, in simulations the symmetric 

orthogonalisation performs more efficiently in terms of minimising spurious 

correlations (Colclough et al., 2015). Therefore it is prudent to use symmetric 

orthogonalisation in subsequent analyses. The combination of PCA virtual sensor 

selection and symmetric orthogonalisation did not perform well, as discussed above. 

If this alone were not reason enough to elect to use the voxel of maximum change in 

subsequent analysis, we also note that for pairwise orthogonalisation, using the voxel 

of maximum percentage change performed equivalently with constructing virtual 

sensors based on PCA for maximal variance. Further, the former is more 

computationally efficient so it is reasonable to select the voxel of maximum 

percentage change as the ROI representative for subsequent analyses.  
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2.6 Conclusion 

The study of inter- and intra-individual differences in cortical oscillations is gaining 

pace and links to fundamental questions in psychology and medicine about how and 

why humans differ from one another. Here we have presented results to suggest that 

the strength of activity in RSNs exhibits stability over repeated sessions, using both 

ICA and atlas-based approaches to assess amplitude coupling across the brain. These 

results add to a growing body of literature suggesting that RSNs represent a trait 

marker of function and may be used in a valid way as biomarkers of neurological 

disease and neuropsychiatric disorder. Based on the results of the current study and 

discussion above we elect to use the atlas-based connectivity approach, with 

maximum percentage change virtual sensors for each ROI and symmetric 

orthogonalisation leakage correction, in the subsequent experiments of this thesis.  
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3 Comparing MEG and fMRI resting-state connectivity in a 

normative database 

3.1 Abstract 

There are multiple neuroimaging modalities that can be used to investigate the 

functional interactions between brain regions in RSNs. Recent methodological 

advances mean that neurophysiological techniques such as 

magnetoencephalography (MEG) are increasingly used to investigate neural 

networks, but functional magnetic resonance imaging (fMRI) remains the method 

most typically used to study functional connectivity. Each modality has strengths and 

weaknesses but both are used, often independently, in attempts to understand 

altered connectivity patterns in neurological diseases and neuropsychiatric disorders. 

A good understanding of the relationship between connectivity measures derived 

using different modalities is crucial to help build a comprehensive picture of any 

particular pathology. Using a combined MEG and fMRI approach can further allow 

insight into the process and variations of neurovascular coupling. In the previous 

experiment, we established the test-retest reliability of a connectivity analysis 

pipeline that uses an atlas-based source reconstruction and leakage corrected 

amplitude coupling estimates. Here, we apply this pipeline to a larger normative 

dataset in attempts to replicate the previous findings, and compare MEG resting-

state amplitude-amplitude connectivity with connectivity estimates derived using 

fMRI. 
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3.2 Introduction 

3.2.1 The relationship between the MEG and BOLD-fMRI signals 

The phrase 'neural activity' is a nonspecific term encompassing a complex series of 

events that give rise to measurable signals for multiple neuroimaging techniques. 

Methodological advances in recent years mean that researchers have unprecedented 

access to study, non-invasively, the mechanisms of human brain function. Conducting 

multi-modal comparisons helps to construct a more rounded understanding of how 

signals in the two modalities co-vary and what this may mean in terms of studying a 

particular behaviour, cognition or clinical population. 

An overview of the technical and neurophysiological basis of MEG is given in chapter 

one of this thesis. The MEG signal is assumed to arise from post-synaptic current flow 

in pyramidal cells of the cortex (Hämäläinen et al., 1993). These primary current 

dipoles reflect mass coherent activity from thousands of neurons, and give rise to 

magnetic field components that can be measured at the scalp using MEG. This theory 

is supported by a body of literature comparing MEG with invasive recordings at 

different spatial scales. For example, one study compared MEG with simultaneous 

electrophysiology in monkey cortex  during stimulation of primary somatosensory 

cortex (Zhu et al., 2009). The authors found that the intensity and latency of the MEG 

signal in response to stimulation was best correlated with local field potentials (LFPs), 

that are believed to reflect summed excitatory and inhibitory post-synaptic 

potentials.  

The idea that cerebral blood flow could be related to cellular activity was first 

recorded in the late 1800's (Sandrone et al., 2014). From the first fMRI scan using 

blood as an endogenous contrast agent (Ogawa, Lee, Kay, & Tank, 1990), the blood 

oxygenation level dependent (BOLD) response has become one of the most common 
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image contrasts used in fMRI. The BOLD response depends on differences in blood 

flow and oxygenation when a region of the brain is in an activated compared to a 

baseline state. The activated state is associated with increased cerebral blood flow 

(CBF), increased cerebral blood volume (CBV) and a decrease in cerebral metabolic 

rate of oxygen (CMRO2). The net effect is greater uniformity of magnetic field around 

the vessels and thus increased image contrast (Ogawa et al., 1990).  

The relationship between BOLD and cellular activation (neurovascular coupling) has 

been modelled, but the mechanism is yet to be fully understood. Using simultaneous 

invasive electrophysiology and BOLD-fMRI in monkey cortex, Logothetis et al, (2001) 

found that the BOLD response best correlated with LFP recordings in the gamma 

band, rather than firing rates or spiking (i.e. multi-unit activity - MUA). Negative 

correlations between low frequency LFPs and BOLD, along with positive correlations 

between high frequency LFPs and BOLD have also been shown in invasive studies 

(Mukamel et al., 2005). In one example, the authors showed that the BOLD-LFP 

coupling varies according to frequency band, with positive BOLD-LFP correlations in 

the gamma band and negative correlations in the beta band (Conner, Ellmore, 

Pieters, DiSano, & Tandon, 2011). Previous studies have also specifically investigated 

the correspondence between the BOLD and MEG signals, and these generally mirror 

the findings from invasive electrophysiology (Singh, Barnes, Hillebrand, Forde, & 

Williams, 2002; Zumer, Brookes, Stevenson, Francis, & Morris, 2010). However, a 

number of studies have also shown nonlinearity in the relationship between synaptic 

activity and hemodynamic responses (Devonshire et al., 2012; Hewson-Stoate, Jones, 

Martindale, Berwick, & Mayhew, 2005; Sheth et al., 2004), suggesting that a 

monotonic increase in BOLD signal area or magnitude does not necessarily 

correspond to an in increase in neuronal activity.  
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3.2.2 Measuring resting-state connectivity in MEG and fMRI 

Given the popularity of resting-state connectivity in both the MEG and fMRI fields 

during recent years, relatively few studies have specifically investigated the 

relationship between resting-state connectivity as measured in fMRI and MEG. That 

said, a number of studies have shown that RSNs derived in fMRI and MEG show good 

spatial concordance. In one of the first examples, de Pasquale and colleagues (2010) 

showed using a seed-based approach that the dorsal attention network (DAN) and 

default mode network (DMN) are most prevalent in the theta-beta ranges and show 

a similar topography to RSNs obtained using the same seed regions in fMRI. Spatial 

similarities between eight fMRI RSNs and independently generated MEG RSNs in the 

beta band was also shown using the ICA analysis applied in the previous chapter 

(Brookes et al., 2011b). In terms of whole brain connectivity, there is also evidence, 

from both fMRI and MEG, for the presence of a hub of increased connectivity in 

occipital and parietal regions at rest (Grayson et al., 2014; Tewarie et al., 2014). The 

findings in the previous experimental chapter are consistent with this notion in MEG. 

The suggestion that BOLD RSNs have frequency specific relationships with RSNs 

measured from MEG is consistent with the framework for the function of oscillations 

proposed by Donner and Siegel (2011), in which it is suggested that functional 

integration is associated with diverse local and long-range cortical interactions in the 

beta band. It should be noted that it is possible that networks in the beta-band are 

biased by increased signal-to-noise ratio (SNR) in that band (Hall, Robson, Morris, & 

Brookes, 2014). Hipp and Siegel (2015) found the strongest relationship with fMRI 

connectivity in the alpha and beta bands, but following correction for SNR a more 

broadband relationship emerged. This notwithstanding, it may be the case that fMRI 

RSNs are best represented by some combination of band-limited MEG connectivity.   
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Although similarities exist between the spatial patterns of resting-state connectivity 

in MEG and fMRI, there are also some differences between the two modalities. In the 

paper by de Pasquale et al (2010), MEG RSNs were generated using seed regions 

derived from fMRI RSNs, and though they showed spatial similarities, the correlation 

was confined in the MEG to the hemisphere ipsilateral to the seed. Strong 

connectivity between homologous regions in opposite hemispheres is often reported 

in fMRI (Guo et al., 2013; Salvador, Suckling, Schwarzbauer, & Bullmore, 2005). 

Conversely, this type of homotopic connectivity is rarely reported in MEG (Tewarie et 

al., 2014). One of the difficulties in directly comparing MEG with fMRI connectivity is 

inherent disparity in spatial resolution between the techniques. Using high-field MRI, 

it is possible to detect activity on a sub-mm scale (Yacoub, Harel, & Ugurbil, 2008), 

whereas MEG is limited at best to 2-3mm (Hämäläinen et al., 1993) and in practice 

may not perform this well, particularly for deeper sources. One way to overcome 

these differences in spatial smoothness is to use the atlas based reconstruction 

described in the previous chapter (Hillebrand et al., 2012) to provide a common 

spatial framework from both the FMRI and MEG datasets.  

3.2.3 Aims 

The first aim of the present study was to replicate the MEG findings shown in the 

previous chapter in a larger independent cohort. Specifically, we wanted to 

determine whether the presence of increased connectivity structures in occipital and 

parietal areas is robust across datasets and validate the pipeline choices made on the 

basis of the previous results. 

The second aim was to compare the connectivity matrices derived from MEG data 

with connectivity matrices derived from fMRI in the same cohort. We wanted to build 
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on previous work to determine how we can use MEG connectivity to best predict 

fMRI connectivity. 

 

3.3 Methods and Materials 

3.3.1 Participants 

The data presented were collected at Cardiff University as part of the UK MEG 

Partnership (UKMP). The UKMP is a collaborative, multi-site project whose aims 

include development of a national normative database of resting-state and task 

related MEG data. We scanned 88 individuals (27 male/61 female) with a mean age 

of 25.5 (range 18-55). All participants were right-handed, had normal or corrected-to-

normal vision, and had no personal history of neurological or neuropsychiatric 

disorder. The study was approved by the relevant ethics committee and all 

volunteers gave written informed consent prior to participation. 

3.3.2 Stimuli and procedure 

The scan session was one hour long. Here we report only on the 5 minute eyes-open 

resting data that was acquired as either the first or second protocol (counterbalanced 

across participants with eyes-closed rest recording). Subjects were seated upright in 

the MEG scanner inside a magnetically shielded room. During the eyes-open rest 

recording, participants were instructed to maintain fixation on a red fixation spot. 

The visual fixation point was displayed on a Sanyo PLC-XP41 projector (1024 pixels x 

768 pixels resolution, 60Hz refresh rate). All stimulus delivery was controlled by 

Matlab software.  
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3.3.3 MEG recordings and pre-processing 

As in the previous chapter, MEG recordings were made over the whole head using a 

CTF-Omega 275 channel system. Data were sampled continuously at 1200Hz and 

analysed in synthetic third order gradiometer mode. Eye movements and blinks were 

monitored using vertical and horizontal electrooculogram (EOG) recordings. To 

achieve MEG/MRI co-registration, electromagnetic coils were placed at fixed 

distances from anatomical landmarks (left and right preauricular, nasion) prior to the 

MEG recording, and localised inside the scanner before and after each task. The 

fiduciary locations were marked manually on the anatomical MRI. Offline, data were 

downsampled to 600Hz and 1-150Hz band-pass filter was applied. Each dataset was 

parsed into 2 second intervals and visually inspected to remove trials including gross 

muscle, eyeblinks and eye movement artefacts.  

3.3.4 MRI recordings and pre-processing 

Anatomical MRIs for each participant were acquired on a 3T system using an FSPGR 

sequence with 1mm isotropic voxel resolution. Additionally, five minutes of resting-

state fMRI data were acquired using a BOLD EPI sequence of 150 volumes (TR/TE = 

2000ms/35ms, flip angle = 90deg, acquisition matrix = 64x64, slice thickness = 

3.4mm). Data were pre-processed using AFNI (Cox, 1996). For fMRI processing, the 

data was despiked and time-shifted to 0. Volumes were aligned using rigid-body 

transformations and then transformed into MNI space. The data was blurred with a 

Gaussian spatial filter with FWHM=4mm and then segmented to calculate the 

average timeseries for cerebrospinal fluid (CSF), white matter (WM) and grey matter 

(GM) masks. In the final pre-processing step, noise confounds were removed using a 

GLM with the following regressors: motion, motion derivatives and motion censor 

(euclidean distance >0.3), average timeseries across WM and CSF tissue masks, 
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bandpass filter (0.01-0.1Hz). The fMRI data for three subjects were excluded due to 

excessive motion, and the remaining 85 participants were included in subsequent 

analysis. 

3.3.5 Combined analysis 

The combined analysis pipeline is presented in Figure 3-1. For the MEG analysis, we 

followed the pipeline validated in the previous chapter. This involves atlas-guided 

beamforming in 6 frequency bands, with selection of the voxel with maximum 

percentage change in each ROI as the region representative. This is followed by 

estimation of functional connectivity using amplitude envelope correlation, with 

leakage correction, across these virtual sensors in each of the 90 AAL regions. In 

order to enable direct comparison between MEG and fMRI data, we calculated fMRI 

timeseries using an average over voxels in each of the same 90 AAL regions used in 

the MEG source reconstruction. We then cross-correlated these timeseries to 

generate an fMRI connectivity matrix. In order to quantify the relationship between 

MEG and fMRI connectivity, we used a partial least squares (PLS) regression to 

determine which combination of MEG correlation matrices best explained the fMRI 

connectivity pattern. We vectorised the mean MEG connectivity matrices for each 

frequency band and combined these to form the predictor variable matrix. We also 

included the squared, cubed and fourth powers of each frequency band in attempts 

to capture more variance in the fMRI data. The fMRI connectivity matrix was also 
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vectorised and used as the response variable in the regression model. 

 

Figure 3-1. Diagrammatic representation of the analysis steps. The MEG pipeline is the 

same as that validated in the previous chapter of this thesis. For fMRI, we use an 

average timecourse in each region to ensure ease of correspondence with MEG 

connectivity matrices. 

 

3.4 Results 

3.4.1 Replication of MEG connectivity matrices 

In order to further validate the connectivity pipeline chosen in the previous chapter, 

we first wanted to replicate the connectivity patterns seen in the MEG data in this 

larger independent cohort. The connectivity matrices derived using the voxel of 

maximum change as the ROI representative for each region with symmetric 

orthogonalisation of the virtual sensor timecourses are shown in Figure 3-2. The 

clearest spatially resolved connectivity structure corresponds to occipito-parietal 

regions in the alpha, beta and theta bands. The delta and theta bands also show an 
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area of increased connectivity corresponding to frontal regions. As before, there is no 

clear structure in either the low- or high-gamma bands.  

 

Figure 3-2. Average whole-brain connectivity matrices for each of the six frequency 

bands studied. The 90 AAL regions are plot along both the X and Y axes, and each 

element in the matrix represents the amplitude coupling between the two given 

regions. Stronger orange colouration indicates stronger connectivity between regions. 

3.4.2 Comparison with fMRI 

The fMRI connectivity matrix was derived using correlations between the average 

timecourse for each AAL region, and is shown in Figure 3-3. The strongest spatially 

resolved connectivity in the fMRI matrix can be seen in the off-diagonal elements, 

corresponding to homologous regions in the two hemispheres. There is also an area 

of increase connectivity around frontal regions, but the occipito-parietal connectivity 

hub that is dominant in the MEG theta-beta ranges is less evident in the fMRI data. 

We used PLS regression to calculate predictor loadings of mean MEG connectivity in 

each frequency band to the fMRI connectivity matrix. The mean fMRI connectivity 

can be predicted to some degree by a combination of the mean MEG adjacency 
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matrices (Figure 3-3). Connectivity in the delta band dominates the MEG prediction 

of fMRI connectivity, with some contribution from alpha, theta and beta bands. There 

is residual connectivity in the fMRI matrix that cannot be accounted for by a 

combination of MEG connectivity, particularly coupling between homologous regions 

across hemispheres.  

 

Figure 3-3. Top left: BOLD fMRI connectivity matrix. Stronger orange colouration 

indicates stronger coupling between two regions. Top right: Combination of MEG 

connectivity that best predicts observed connectivity in fMRI. Bottom left: PLS 

regression loadings for each of the MEG frequency bands to fMRI connectivity. Mean 

connectivity in each frequency band as well as the connectivity squared, cubed and to 

the fourth power are combined into a single bin to represent the total contribution of 

the frequency band. This pattern is mostly dominated by the delta band, with some 

contribution from alpha, theta and beta bands. Bottom right: Residual fMRI 

connectivity that cannot be explained with combination of MEG variables. The 

dominant structure here is the off-diagonal elements representing connectivity 

between homologous regions in the two hemispheres.  
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As well as comparing the mean connectivity across subjects, we also wanted to 

investigate the specific relationship between MEG and fMRI connectivity values for 

individuals. For each MEG frequency band, we computed a correlation across 

subjects between the z-score in that frequency band and the corresponding fMRI z-

score, across the whole connectivity matrix. This measure gives an indication of 

consistency at the single subject level between band-limited MEG connectivity and 

fMRI connectivity values. At the group level (above) we found the greatest 

concordance between connectivity in the delta and alpha bands with fMRI, and prior 

studies show greatest correspondence between fMRI and beta band connectivity 

(Brookes et al., 2011b; de Pasquale et al., 2010). Given these priors, we expected the 

best intra-individual correspondence in one or more of these three bands. The cross-

modality correlation matrices in the delta, alpha and beta bands are plotted in Figure 

3-4. There is no discernible relationship between individual variability in band-limited 

MEG and fMRI connectivity in any frequency band when comparing across the whole 

matrix. However, there is a small but significant correlation between the global (i.e. 

mean) connectivity for each subject in fMRI and the beta-band (r=0.25, p=0.01). The 

same global correlation in the delta band narrowly misses significance (delta: r=0.2, 

p=0.057; alpha: r=0.15, p=0.1.). There was no relationship between fMRI connectivity 

and connectivity in the theta, low gamma and high gamma bands (see Appendix B for 

these plots).  
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Figure 3-4. Top: Correlation between band-limited MEG connectivity and fMRI across 

subjects. Each point in this matrix represents the correlation, across subjects, between 

the z-score of the corresponding connection in (L-R) delta, alpha and beta bands with 

fMRI. There is no clear pattern of correlation between connectivity in any band with 

fMRI. Bottom: Correlation between global connectivity (i.e. mean of the connectivity 

matrix) for each participant in fMRI (X) and MEG connectivity (Y) in the delta, alpha and 

beta bands. The correlation values in each case are low but statistical testing indicates a 

small but significant positive correlation between global connectivity in fMRI and the 

beta band (r=0.25, p=0.01).  

As an additional visual comparison, we thresholded the matrices in order to reduce 

noise and aid contrast between modalities. As in the previous chapter, we used a 

bootstrapping procedure with 10,000 iterations to build a distribution for each 

frequency band and the BOLD-fMRI. A connection was considered supra-threshold if 

it occurred within the strongest 5% of connections for 95% of iterations. The 

thresholded connectivity maps for each MEG frequency band and fMRI are plotted in 

Figure 3-5. For the MEG, the delta band is dominated by a pattern of connections 

within and to/from frontal regions. In the theta, alpha and beta bands, the strongest 

pattern of connectivity can be seen in posterior regions, particularly occipital and 

parietal cortex. There are no connections in the low- or high-gamma bands above the 

threshold. The strong homotopic connectivity previously observed in the 
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unthresholded fMRI matrices continues to dominate the fMRI map across frontal, 

temporal, parietal and occipital cortex as well as deeper structures.  

 

Figure 3-5. Thresholded connectivity maps for all MEG frequency bands and fMRI. Low 

and high gamma frequency bands have been combined as there were no supra-

threshold connections in either band. The threshold was defined to include only the 

connections occurring within the strongest 5% of connectivity for 95% of 10,000 

bootstrap iterations. The AAL regions range from frontal (top) to occipital (bottom) 

around each circle. Plots are weighted so that stronger connections appear more 

opaque. 

 

3.5 Discussion 

In the current work, we sought to replicate the connectivity patterns of resting-state 

MEG observed in the previous chapter using the described connectivity pipeline and 

compare this pattern to BOLD-fMRI connectivity in the same participants. Both the 

unthresholded and thresholded MEG connectivity matrices are consistent with the 

findings in the previous cohort. The fMRI connectivity matrices were dominated by 

homotopic connectivity that cannot be accounted for by a linear combination of the 
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MEG data. The spatial distribution of mean connectivity in the delta and alpha bands 

showed the best correspondence with the mean fMRI connectivity matrix.   

The mean connectivity matrices generated from the MEG data are spatially 

consistent with those generated during validation of the pipeline in the previous 

chapter. In particular, a region of increased connectivity in occipital and parietal areas 

is visible in the theta-beta bands. As before, this is in line with a number of studies 

demonstrating presence of this cortical hub in MEG connectivity (Cabral, Kringelbach, 

& Deco, 2014; Tewarie et al., 2014). Following thresholding, we see fewer frontal 

theta connections relative to the previous cohort, and no supra-threshold gamma 

band connections. Here we used a large cohort of 88 participants, compared to 21 

subjects in the previous chapter, and therefore may expect better SNR in connectivity 

estimations. Frontal theta rhythms are known to have greater susceptibilty to 

contamination from eye movement artefacts (Gasser, Sroka, & Möcks, 1985), and the 

gamma band is prone to contamination from muscle artefact (Muthukumaraswamy, 

2013). Taken together, it is reasonable that we see less of these 'noisy' connections in 

the present work. 

We find that the pattern of MEG connectivity in the delta band describes the highest 

amount of variance in fMRI connectivity, but that global connectivity in the beta band 

shows best correspondence with global fMRI connectivity. This is somewhat 

inconsistent with previous studies suggesting that networks in the alpha and beta 

bands show best correspondence with fMRI connectivity (Brookes et al., 2011b; de 

Pasquale et al., 2010; Tewarie et al., 2016; Tewarie et al., 2014). However, on 

inspection of the spatial pattern of the group-level matrices, the dominant occipito-

parietal connectivity that is typically found in both alpha and beta bands as well as in 

fMRI (Buckner et al., 2009; Tewarie et al., 2016; Tewarie et al., 2014) is less visible in 
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this data. Instead, the most consistent spatial pattern of connectivity between fMRI 

and MEG in the present study is connectivity of frontal regions. A recent study 

showed that regional contribution of MEG to fMRI connectivity varied by frequency 

band, with greatest correspondence between fMRI and MEG connectivity in the delta 

band occurring over frontal regions (Tewarie et al., 2016). Further, the relationship 

between MEG and BOLD matrices may be affected by the 1/f spectral power density 

in MEG. Hipp and Siegel (2015) show that following SNR correction, correlation 

between fMRI and electrophysiology emerges across the 1-128Hz range. It may be 

the case that correspondence between delta connectivity and fMRI in the present 

findings be explained in part by increased SNR in this frequency band. 

There is some variance in the fMRI connectivity matrices that is not explained using a 

linear combination of MEG connectivity. The most striking of these is the finding of 

strong homotopic connectivity in the fMRI matrices that is not evident in the MEG. 

Previous studies have shown strong coupling between homologous regions in resting-

state fMRI (Owen et al., 2013) so this finding is consistent with existing literature. 

However, the reason for this difference between modalities is unclear and could 

occur for a number of reasons. Firstly, it is possible that homologous regions are 

coupled in frequencies slower than those we studied. A study has shown that MEG 

oscillations at frequencies less than 1Hz synchronise over long distances, and 

particularly in bilateral homologous regions (Liu, Fukunaga, de Zwart, & Duyn, 2010). 

So the high-pass filter of 1Hz applied during pre-processing may have attenuated 

homotopic connectivity in our MEG data. Further, given the relative spatial 

resolutions of the two techniques, it is perhaps unsurprising that fMRI can distinguish 

connectivity in deep structures such as the insula and thalamus where MEG may be 

limited (Hillebrand & Barnes, 2002). Connectivity between some ROIs may have been 

artificially inflated due to smoothing of the fMRI data. As a fairly standard pre-
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processing step BOLD-fMRI data is smoothed (Lindquist, 2008), thus creating the 

possibility that signal is smeared across the boundary line between two ROIs and 

appears as part of the timecourse for both regions. This may be considered 

analogous to the signal leakage problem in MEG, but will only affect connectivity 

between midline structures in fMRI. Lastly, it is also important to consider the 

possibility that such strong homotopic coupling arises as a result of physiological or 

vascular artefact. Although we removed noise regressors from our BOLD-fMRI data, 

there are a number of non-neural confounds that may remain poorly controlled, such 

as CO2 concentration and vasomotion (Murphy, Birn, & Bandettini, 2013). A study 

using CBF from SPECT imaging found the strongest correlations between homologous 

cortical regions (Melie-Garcia, Sanabria-Diaz, & Sanchez-Catasus, 2013). Given that 

CBF represents one component in the BOLD response, homologous connectivity 

could represent a change to this component rather than an increase in coupling of 

neuronal activity per se. However, a recent study showed that MEG connectivity is 

also not infallible and may be affected by some of the same artefacts related to CO2 

concentration (Driver & Whittaker, 2016). Monitoring physiology during recordings 

would allow further investigation about the relative contribution of these non-neural 

signals to both MEG and BOLD-fMRI connectivity.    

We estimate a single connectivity measure based on the correlation of entire MEG 

and fMRI timecourses. This assumption of stationarity leads to some level of inherent 

bias towards slow changes over a long timeframe. The loadings of the MEG to fMRI 

connectivity could also change with a dynamic approach to estimating amplitude 

coupling in MEG, of which a number of techniques have been proposed in recent 

years (O'Neill et al., 2015; O’Neill et al., 2017; Woolrich et al., 2013). These 

approaches utilise the full temporal resolution of MEG to build a picture of varying 

connectivity across the recording length. Lastly, our approach assumes that the best 
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fit to fMRI data can be obtained with a combination of amplitude-coupling estimates 

in band-limited MEG connectivity. In the past year, Tewarie et al (2016) introduce a 

framework that characterises the relationship between MEG and fMRI connectivity in 

terms of multiple connectivity estimates from multiple frequency bands, with linear 

and non-linear interactions. Thus, the fit between MEG and fMRI connectivity here 

may have been improved by adding further parameters to our MEG prediction 

model, such as phase-coupling estimates, non-linear interactions between frequency 

bands and cross-frequency coupling.   

 

3.6 Conclusion 

In this chapter, we were able to replicate from the previous chapter the basic pattern 

of connectivity during resting-state recordings for each of the six frequency bands 

studied, in a larger independent cohort. We additionally compared MEG connectivity 

with BOLD-fMRI connectivity in the same subjects. We saw best correspondence 

between MEG and BOLD in the delta band, driven by frontal connectivity. Strong 

homotopic connectivity in the fMRI matrices could be due to slow fluctuations or 

physiological artefact.  
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4 The effects of AMPA receptor blockade on resting-state 

MEG recording 

4.1 Abstract 

PharmacoMEG is an emerging branch of research that combines MEG with 

pharmacological intervention. This approach not only enables the study of drug 

compounds non-invasively in humans, but also allows investigation into the complex 

neurochemical dynamics underlying the MEG signal. Glutamate is the primary 

excitatory neurotransmitter in the human brain, thus the ionotropic NMDA and 

AMPA receptors of the glutamatergic system are of fundamental importance to 

healthy brain function. Neuroimaging studies in humans have previously been 

conducted using various drugs that interact with NMDA glutamate receptors, but no 

such studies have investigated AMPA receptor signalling. The recent approval of 

Perampanel (Fycompa ©) for use in humans provides a means to specifically study 

the role of AMPA receptors in the pharmacological basis of neuroimaging signals. 

Twenty male subjects participated in this placebo-controlled crossover study in which 

we recorded ten minutes of wakeful rest before and after dosage with 6mg 

perampanel and a placebo. Here, we report the effects of perampanel on both 

spectral power and frequency in the resting-state. We additionally apply the 

connectivity pipeline validated in previous chapters of this thesis in order to 

investigate the effects of changes to endogenous glutamate levels on amplitude 

coupling.  
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4.2 Introduction 

4.2.1 A brief background on glutamatergic neurotransmission 

The MEG signal arises from synchronous activity within neuronal assemblies, in 

particular the summed post-synaptic potentials of cortical pyramidal cells (Lopes de 

Silva, 2010). MEG data are therefore influenced by a complex interplay of 

neurochemical systems. Activity across the frequency range typically measured using 

MEG (0->100Hz) can be selectively modified by pharmacological agents acting on 

neurotransmitters including γ-Aminobutyric acid (GABA; Hall et al.2011; Saxena et al., 

2013), serotonin (Muthukumaraswamy et al., 2013b) and dopamine (Moran, 

Symmonds, Stephan, Friston, & Dolan, 2011), among others. Whereas GABA is the 

primary inhibitory neurotransmitter in the human brain, glutamate is the primary 

excitatory neurotransmitter. Ionotropic glutamate receptors, particularly N-methyl-

D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA) subtypes, are of fundamental importance in neuronal signaling. Both AMPA 

and NMDA receptors co-exist on most excitatory synapses within the central nervous 

system, but crucially possess differing kinetic properties that, coupled together, 

define the timecourse of synaptic transmission (Traynelis et al., 2010). Activation of 

the AMPA receptor is a rapid process whereby channels allowing influx of sodium 

ions open and close within 2-3ms (Dingledine, Borges, Bowie, & Traynelis, 1999). 

NMDA receptors, however, are more permeable to calcium ions and possess a slower 

rise time (~20ms), with a several hundred millisecond delay in closing (Dingledine et 

al., 1999). Voltage-dependent regulation of the glutamate receptors by endogenous 

ions not only defines the timecourse of synaptic transmission but is also thought to 

be key in synaptic plasticity (Traynelis et al., 2010). Furthermore, dysfunction in 

glutamatergic systems is implicated in many neurological and neuropsychiatric 
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disorders including schizophrenia (Goff & Coyle, 2014; Olney & Farber, 1995), mood 

disorder (Sanacora, Treccani, & Popoli, 2012) and Alzheimer's disease (Hynd, Scott, & 

Dodd, 2004).  

4.2.2 Pharmacological intervention with MEG 

There have been various neuroimaging studies of compounds acting on GABA and 

NMDA receptors (among others) using both fMRI (Downey et al., 2016; Licata, 

Lowen, Trksak, MacLean, & Lukas, 2011; Northoff et al., 2005) and EEG/MEG (Lozano-

Soldevilla, ter Huurne, Cools, & Jensen, 2014; Sanacora et al., 2014; Saxena et al., 

2013; Shaw et al., 2015). But there are, to our knowledge, no neuroimaging studies 

to-date that have used a selective AMPA receptor drug as, until recently, such a 

compound was not available for use in humans. Perampanel is a new anti-epileptic 

drug (approved 2012) that acts as a non-competitive antagonist of the AMPA 

receptors, and so reduces the actions of glutamate at the synapse. The compound is 

highly-selective, and at therapeutic doses displays no affinity to the other ionotropic 

glutamate receptors (NMDA or kainate; Rogawski & Hanada, 2013). This drug has 

been licensed in the USA and EU since 2012 as an adjunctive medication in the 

treatment of refractory partial-onset epileptic seizures.   

Conducting non-clinical intervention studies with pharmacoMEG not only enables 

study of the actions of pharmacological agents non-invasively in humans, but also 

helps to develop understanding of the neurotransmission dynamics underlying the 

MEG signal (Muthukumaraswamy, 2014). Using a task-free paradigm enables us to 

investigate the effects of different compounds on both oscillatory power and 

functional connectivity, across a variety of frequency bands, within one recording. 

Previous animal studies suggest that both low and high frequency oscillations are 

affected by AMPA receptor activity. For example, an EEG study in conscious rats 
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demonstrated dose-dependent increases in power across the 1-30Hz spectrum 

following administration of two AMPA antagonists (Sebban, Tesolin-Decros, Ciprian-

Ollivier, Perret, & Spedding, 2002). At higher frequencies, Oke et al (2010) showed 

that application of the AMPA antagonist SYM-2206 to slice preparations taken from 

rat visual cortex almost abolished both low (~50Hz) and high (~80Hz) gamma 

oscillations. Furthermore, concurrent increases in low frequency oscillatory power (1-

4Hz and 7-13Hz) and decreases in high frequency power (30-60Hz) have been found 

in a task-driven study following administration of AMPA antagonists to the visual 

cortex of monkeys in vivo (Herrero, Gieselmann, Sanayei, & Thiele, 2013). 

To the best of our knowledge, no human neuroimaging studies have specifically 

investigated the effects of AMPA receptor mediation on functional connectivity. 

However, studies using compounds that act on monoamine neurotransmitter 

systems have shown that it is possible to detect drug-related changes to functional 

connectivity, typically in low frequency ranges, using a range of methods (Franzen et 

al., 2013; Muthukumaraswamy et al., 2013b). Furthermore, a number studies have 

found altered patterns of connectivity across cortical and subcortical regions 

following administration of the NMDA receptor antagonist, ketamine (Anticevic et al., 

2015; Driesen et al., 2013; Muthukumaraswamy & Shaw, 2015; Scheidegger et al., 

2012). It is worth noting here that ketamine is known to increase extracellular 

glutamate concentration (Stone et al., 2012), but has a complex mechanism of action 

(Tyler, Yourish, Ionescu, & Haggarty, 2017) so results should be interpreted with 

caution. 

4.2.3 Aims 

Therefore, the present study aimed to investigate the actions of glutamate in the 

human brain, by utilising the interaction between perampanel and AMPA receptors 
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at the synapse. Firstly, we describe the oscillatory profile of perampanel during task-

free MEG recordings in a group of healthy volunteers. Based on previous in-vivo 

(Herrero et al., 2013; Sebban et al., 2002) and in-vitro work (Oke et al., 2010), we 

expected to see an increase in power in low frequency bands, coupled with a 

decrease in power of gamma band activity. Further, we reconstruct source locations 

of drug-effects and investigate drug-related changes to broadband functional 

connectivity, using the method validated in previous chapters. It is difficult to make 

predictions regarding this final aim given the lack of existing literature.   

 

4.3 Methods 

4.3.1 Participants 

Twenty healthy volunteers (mean age 22.9 years, SD 3.75; mean weight 75.6 kg, SD 

8.2) participated in the study. Inclusion criteria were that participants be males 

between 18 and 45 years old, non-smokers, with a body mass index of 18-30 kg/m². 

Exclusion criteria included personal history of neuropsychiatric or neurological 

disorder, current recreational or prescription drug use, ongoing health problems 

(including liver and cardiovascular function) and contraindications for MEG/MRI. 

Participants were additionally screened for alcohol misuse with the Alcohol Use 

Disorders Identification Test (AUDIT; Saunders, Aasland, Babor, De la Fuente, & 

Grant, 1993); all participants scored below the threshold for alcohol dependence 

(≥16; mean score 7.1, SD 3.9). Participants were required to abstain from alcohol for 

72 hours prior to study sessions, and from use of illicit substances and 'legal highs' for 

7 days prior. All procedures were approved by the UK National Research Ethics 

Service (South East Wales), and a description of task-related MEG activity from the 
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same recording days is available elsewhere (Muthukumaraswamy, Routley, Droog, 

Singh, & Hamandi, 2016). 

4.3.2 Design and Procedure 

Participants were scanned on two separate days in a single-blind, placebo-controlled 

crossover design. Study sessions were separated by a minimum period of 14 days to 

allow for drug washout. Each session took place at approximately the same time of 

day, and session order (drug/placebo) was counterbalanced across participants. 

During each study session, a 'pre-dose' MEG recording was obtained, following which 

participants orally ingested a capsule containing either 6mg of Perampanel (Fycompa 

©) or an unmarked vitamin E placebo. A further 'post-dose' MEG recording was 

obtained two hours after ingestion, at which time Perampanel is expected to have 

reached peak plasma level (Templeton, 2010). As part of each MEG scan a 10-minute 

resting recording was obtained, during which time participants were instructed to 

remain relaxed but alert with their eyes open and fixated on a red circle presented at 

the centre of the screen. The fixation point was displayed on a Sanyo PLC-XP41 

projector with a screen resolution of 1024x768 and refresh rate of 60Hz. All 

recordings were made with participants lying supine in the scanner. Just prior to each 

MEG recording, participants completed a battery of psychological questionnaires 

including the Subjective High Assessment Scale (SHAS; Schuckit, 1980) and Biphasic 

Alcohol Effects Scale (BAES; Martin, Earleywine, Musty, Perrine, & Swift, 1993) to 

measure subjective drug experience, and the State Hostility Scale (SHS; Anderson, 

Deuser, & DeNeve, 1995) to quantify experience of potential side effects.  

4.3.3 MEG recordings 

As in all previous experiments, whole-head MEG recordings were made using a CTF-

Omega 275 channel system, sampled at 1200Hz and analysed in third-order 
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gradiometer mode. Eye movements and blinks were monitored using vertical and 

horizontal electrooculogram (EOG) recordings. For this study, we also recorded an 

electrocardiogram (ECG) and electromyograms (EMGs) from the frontalis and 

temporalis for additional physiological monitoring following drug dose. 

For source localisation, a 1mm isotropic FSPGR anatomical MRI scan was obtained, 

either on a different day to that of the MEG recording or from previous study 

participation at CUBRIC. To achieve MEG/MRI co-registration, electromagnetic coils 

were placed at fixed distances from anatomical landmarks (10mm anterior to left and 

right tragus, 10mm superior to nasion) and localised immediately before and after 

each recording. Fiduciary locations were later manually marked on the anatomical 

MRI.  

4.3.4 Sensor-level analysis  

Offline, the data were downsampled to 600Hz, and divided into 2 second epochs. 

Each epoch was visually inspected and those containing gross muscle artefacts (e.g. 

jaw clenches) were removed from subsequent analysis. To complete pre-processing 

we applied independent component analysis to the data and rejected artefacts 

including eye movements and cardiac noise, based on topography and waveform 

patterns of each component. This additional pre-processing step was not included in 

previous chapters but was used in this sensor-space analysis as this is more sensitive 

to noise contamination than beamformed source estimates. For the following 

analysis, the frequency bands used were: delta (1-4Hz), theta (4-8Hz), alpha (8-13Hz), 

beta (13-30Hz), low gamma (30-50Hz) and high gamma (50-100Hz). These bandings 

are consistent with similar previous work (Nutt et al., 2015). 

We examined the power spectra of various frequency bands in sensor space, using 

the FieldTrip toolbox (Oostenveld et al., 2011) in a pipeline similar to that described 
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previously (Nutt et al., 2015). The pre-processed data were first converted to planar 

gradient formation and frequency analysis was conducted using Hanning-windowed 

fast Fourier transforms. The gradients over both planar directions were then 

combined to obtain a single positive-valued number under each sensor. In this sensor 

configuration, sources can be assumed to lie directly underneath local maxima on 

field maps, thus allowing the results of this analysis to be more easily interpretable 

(Bastiaansen & Knosche, 2000). Difference images were then created by subtracting 

the pre-dose spectra from the post-dose spectra for each condition (drug/placebo) 

and participant, according to the frequency bands defined above. Statistical 

differences between the drug and placebo conditions were determined used Monte-

Carlo permutation testing of t-statistics on these difference images (5000 

permutations, cluster-based multiple comparisons correction applied).   

Visual inspection of the power spectra indicated that there may be a drug-related 

slowing of alpha oscillations. So, in addition to changes in oscillatory power we also 

chose to selectively examine the effects of perampanel on alpha frequency.  We used 

an approach to peak frequency estimation with quality control that has previously 

been described for gamma oscillations (Magazzini et al., 2016). Here, the single trial 

spectra were averaged separately for each condition and time-point (pre-placebo, 

post-placebo, pre-drug and post-drug) and the channel with greatest alpha power in 

each case selected. Single-trial spectra in the peak channel were then resampled 

(with replacement) using 10,000 iterations of bootstrapping, re-averaged, and peak 

alpha frequency for each participant was defined as the mode of the bootstrapped 

distribution in the 8-13Hz range. To control for data quality, we used the distribution 

of peak frequency estimations generated by the bootstrapping, and included data for 

any participant only when at least 50% of bootstrap iterations occurred within a 

frequency window of ±1Hz around the bootstrapped mode, for all four conditions. In 
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this study, no participants were excluded using this criterion. Differences in peak 

frequency were then analysed using a 2x2 repeated measures ANOVA, using factors 

drug (placebo and perampanel) and time (pre-dose and post-dose).  

4.3.5 Connectivity analysis 

We additionally investigated drug-related changes in source space connectivity 

patterns. Here, we used an amplitude coupling approach that assesses temporal 

interactions between the amplitude envelopes of brain sources, as described in 

previous chapters. A brief description of the pipeline, including the parameters 

chosen based on the comparison in chapter 2, follows: We first applied an atlas-

guided beamformer in the frequency bands delta (1-4Hz), theta (4-8Hz), alpha (8-

13Hz), beta (13-30Hz), low gamma (30-50Hz) and high gamma (50-90Hz) to derive 

source-space signals. The voxel with maximum percentage change in each ROI of the 

AAL atlas was chosen as representative ‘node’ for that region. Once the timeseries 

were estimated for each of the 90 AAL-atlas nodes, we applied symmetric 

orthogonalisation to correct for source leakage (Colclough et al., 2015). These 

orthogonalised virtual-sensor timeseries were then converted to amplitude 

envelopes via the analytic function (Matlab: hilbert). We then cross-correlated the 

envelopes to generate an amplitude coupling connectivity matrix for each participant 

and recording, and converted the matrices to normalised z-scores for statistical 

analysis.  

In order to compare between drug conditions, we first sum along the rows of each z 

matrix to derive a measure of 'connection strength', representing in a single metric 

how strongly connected each node is to the other nodes. As in the sensor space 

analysis, we create difference scores for each participant by subtracting the pre-dose 

connection strength measures from the post-dose measures for both perampanel 



77 
 

and placebo. We then conduct a randomisation test (10,000 permutations) on the 

difference, perampanel – placebo, for each node strength , with omnibus correction 

for multiple comparisons across the 90 nodes (Nichols & Holmes, 2002). 

 

4.4 Results 

4.4.1 Subjective experience of drug 

The behavioural measures indicate changes to subjective experience following 

dosage of the drug, particularly increased feelings of drowsiness or sedation. 

Descriptive statistics for all scales can be found in Appendix C, along with group 

averages for the individual scale items on the BAES (Appendix D) and SHAS (Appendix 

E). In the BAES, there was an average 13.5 point increase on the sedative subscale 

following perampanel dosage (compared to 0.6 point increase on placebo), with the 

greatest increase seen on the 'sedated' item (2.75 point increase, maximum score per 

item is 5 points). Similarly, in the SHAS, many items increased by an average of 10 

points or more following drug dose (maximum score per item is 100), with the 

greatest increase reported in feelings of sleepiness and concentration (31.1 and 24.8 

point average change, respectively). As well as somnolence, perampanel has 

significant association with adverse events of dizziness and irritability (Zaccara, 

Giovannelli, Cincotta, Verrotti, & Grillo, 2013). Reports of dizziness on the SHAS were 

increased by 18.9 points following perampanel administration in this study, but there 

was no increase on the 'irritable' item of the SHS.  

A series of 2x2 ANOVAS revealed significant drug-time interactions in both the 

sedative scale of the BAES (Figure 4-1a; F(1,19)=28.4, p<0.01), and the SHAS (Figure 

4-1c; F(1,19)=23.7, p<0.01). There were no significant interaction effects in the 
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stimulant scale of the BAES (Figure 4-1b; F(1,19)=0.8, p=0.37),  or the SHS (Figure 

4-1d; F(1,19)=2.4, p=0.14). All participants were able to correctly identify the session 

order following completion of the study.  

 

Figure 4-1. Differences in mean scores on psychometric scales between ‘pre’ and ‘post’ 

timepoints for drug and placebo, for the BAES (A and B), SHAS (C) and SHS (D). 

Significant interaction terms (p<0.01) are denoted using '*'. 

4.4.2 Power and frequency changes in sensor space 

Following artefact rejection from the original trials, there were comparable trial 

numbers left in each condition: Placebo pre-dose = 293 (std=8.1), placebo post-dose 

= 292 (std=6.4), drug pre-dose = 294 (std=4.5), drug post-dose = 293 (std=8.9) 

indicating preserved data quality following drug administration. A repeated measures 
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ANOVA confirmed that there was no significant drug*time interaction in trial number 

(F=(1,19)=0.137, p=0.71)  

Drug-induced changes in power were observed in almost all frequency bands. In the 

lower bands (δ – β) we found a significant increase (p<0.01) in power focused around 

posterior sensors. There were no significant changes to power in the low-gamma 

range, but a significant decrease in power (p<0.01) over central parietal sensors in 

the high-gamma range. Figure 4-2 topographically shows the drug-related effects on 

the power spectrum in each frequency band.  

 

Figure 4-2. Contrast performed on drug-placebo difference spectra, in the frequency 

bands: δ, θ, α, β, low γ, high γ. Red indicates a relative increase in power following drug 

and blue indicates relative decrease. Units are t-statistics and significant sensor clusters 

(p<0.01, corrected for multiple comparisons) are marked on the sensor plots using ‘*’. 

The broadband effects of perampanel on oscillatory power at single sensor locations 

around the head are shown in Figure 4-3a. Inspection of these plots indicates that in 

addition to increasing power at low frequencies and decreasing power at higher 
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frequencies, perampanel may also cause frequency slowing in the alpha band. 

Subsequent analysis of peak frequency using the quality-control bootstrapping 

procedure (Magazzini et al., 2016) confirmed this. The drug*time interaction term of 

the 2x2 repeated measured ANOVA was significant (F(1,19)=5.444, p=0.03).  

Inspection of the graphs indicates that this change is mostly due to a reduction in 

alpha frequency following 6mg dose of perampanel (Figure 4-3b;). 

 

Figure 4-3.  (A). Power-Frequency plots for post-dose conditions at single sensors in the 

occipital, temporal, parietal and frontal regions. Frequency is plot on the x-axis and 

power on the y-axis. Sensor locations are shown in the bottom-left schematic. Shaded 

bars are standard error. Inset plots show 50-100Hz on a log-scale. (B). Changes to peak 

frequency in the alpha (8-13Hz) band, for pre-dose and post-dose drug and placebo 

conditions. Bars show standard error. The drug*time interaction of the 2x2 ANOVA 

conducted on this data was significant.  
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4.4.3 Source –space connectivity 

Following source estimation, we assessed drug-related changes to connectivity in 

each of the frequency bands. The average adjacency matrices (90x90 regions) for 

each frequency band are shown in Figure 4-4a. In both the drug and placebo 

conditions, the connectivity shows most structure in the alpha and beta ranges, with 

a 'hub' region of increased connectivity in occipital and parietal areas. Stronger 

orange colouration in the post-drug matrices indicates that amplitude coupling is 

increased across the low frequency ranges following perampanel dose. We 

conducted statistical testing based on the previously described 'connection strength' 

measure, which gives an indication of how connected a region is to all other regions. 

The only connectivity increases that survive statistical testing with multiple 

comparisons correction can be seen in the alpha and beta bands (Figure 4-4b). In 

both cases, these changes localise mainly to connections to/from parietal regions. For 

the alpha band, significantly increased connection strength is observed following 

drug dose in the left superior parietal lobule (p=0.04). For the beta band, this 

increase is observed for the left postcentral gyrus (p<0.01), right inferior parietal 

gyrus (p<0.01) and left caudate (p=0.04).     
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Figure 4-4. (A). Post-dose connectivity matrices for each of the frequency bands studied. 

Each point in the plot indicates the group-averaged correlation of one AAL region with 

another (90x90). (B). For alpha (8-13Hz; top) and beta (13-30Hz; bottom), difference 

scores (post dose - pre dose) for z-corrected mean connection strength for all AAL 

regions. Regions where drug-related connectivity increases survive statistical testing, 

with multiple comparisons correction, are plot on MNI template brains below.  

4.4.4 Subsequent re-analysis: Connectivity matrix thresholding 

The work contained in this chapter, presented above, is currently under review for 

publication. Subsequent to submission of the manuscript, we have further developed 

the connectivity pipeline to include thresholding of connectivity matrices prior to 

calculation of group-level statistics. The thresholding procedure, previously described 

in chapter two of this thesis, includes pooling across all subjects and conditions to 
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select the strongest 5% of connections within the matrix. This is combined with a 

bootstrapping approach (10,000 iterations) to sub-select only those connections 

which appear in the strongest 5% for 95% of iterations. The thresholded maps for the 

alpha and beta bands, that previously showed connectivity changes following 

perampanel, are shown in Figure 4-5a. The pooled thresholded matrices are 

consistent with previous chapters in terms of spatial pattern: Connectivity in the 

alpha band is largely dominated by occipital connections, whilst in the beta band we 

observe increased connectivity with parietal and temporal areas. In the beta band, 

there is increased connectivity in thresholded matrices for perampanel compared to 

placebo, but this pattern is more mixed in the alpha band (Figure 4-5b). A t-test on 

the global connectivity (i.e. mean connectivity of all asked nodes) between 

perampanel and placebo is significant for the beta band (t(19)=3.20, p=0.004) but not 

significant for the alpha band (t(19)=1.28, p=0.2). However, a randomisation test on 

the connection strength in these matrices between perampanel and placebo no 

longer yields any significant areas of connectivity in either frequency band. The 

threshold used is conservative so it is possible that true connectivity is masked, but 

even if this is the case, it may be for a number of reasons.  
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Figure 4-5. (A) Thresholded connectivity maps. The threshold was set to show only 

those connections occurring in the strongest 5% for 95% of bootstrap iterations. 

Stronger colouration is indicative of a stronger connection. (B) Comparison of node-

node connectivity differences between perampanel and placebo (t-statistics). Red lines 

indicate a relative increase in t-value with perampanel relative to placebo and blue lines 

indicate a relative decrease. 

A region could have a high connection strength value driven by moderate 

connections to lots of other regions, or a single strong connection to one region. It is 

therefore possible that some of the regions with significantly different non-

thresholded connection strength between conditions failed to survive the 

thresholding procedure. This is the case for the left caudate in the beta band (Figure 

4-6).  
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Figure 4-6. Average connectivity (correlation values) between each of the previously 

significant regions with all other regions in the connectivity matrix. The non-thresholded 

connectivity values are plot by the solid blue line, and those which survived the 

thresholding procedure are plot as red circles.  

Nevertheless, five supra-threshold connections are found in the left postcentral gyrus 

(beta band), and eight connections survive in both the left superior parietal lobule 

(alpha band) and right inferior parietal gyrus (beta band). Figure 4-6 also highlights 

that the connections with the highest average correlation value in the non-

thresholded maps do not necessarily fall consistently within the strongest subset of 

connections, and thus do not survive the present threshold. Indeed, in each case, 

there seem to be a number of sub-threshold connections that have an equivalent or 

higher average correlation value compared to the supra-threshold connections. It 

may be the case that these non-stable connections, perhaps occurring in only a 

subset of participants, were driving the previously observed statistical differences 

between perampanel and placebo. 
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4.5 Discussion 

We report here, for the first time, the impact of the AMPA antagonist perampanel on 

signal power across 1-100Hz in resting-state EEG/MEG recordings in humans. We 

predicted that perampanel would increase MEG power in low frequency bands and 

decrease power in higher bands, and this hypothesis was supported. Following 

perampanel administration, we saw an increase in posterior power in lower 

frequency bands, but decreased power in the high gamma range over parietal 

sensors. Further, we also investigated the effect of perampanel on functional 

connectivity in source space. We found selective increases in functional connectivity 

following drug dose. Analysis of psychometric scales confirmed increased subjective 

ratings of intoxication following the dose of perampanel compared to placebo.  

Participants reported feeling more intoxicated following perampanel dose compared 

to placebo, and on completion of the study all were able to correctly guess their 

session participation order. The significant effect of perampanel on the SHAS is 

consistent with these subjective reports, and findings of significant drug effects in the 

sedative but not stimulant scale of the BAES is consistent with the drug's mechanism 

of action. In some cases perampanel can have psychiatric side effects including 

increased aggression and hostility (FDA, 2012). However, the results of the SHS 

suggest that there were no such side effects in the present study, likely due to only a 

single administration of the drug. Although the experiment was run under single-

blind conditions the subjective effects that participants experienced effectively 

unblinded them from the intervention. This is a common issue in many 

psychopharmacology experiments. That said, given the basic physiological measures 

reported here (as opposed to clinical responses), and the similar data quality 
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between conditions, we would argue that the effective unblinding is unlikely to have 

affected our central results.   

To the best of our knowledge this is the first human neuroimaging study of the 

effects of a selective AMPA compound and, as such, the results cannot be compared 

to previous human studies. However, our results are consistent with previous animal 

work showing suppression or near elimination of gamma oscillations and increase in 

low frequency oscillations following administration of AMPA antagonists (Herrero et 

al., 2013; Oke et al., 2010; Sebban et al., 2002). It becomes more difficult to compare 

the connectivity analyses to previous literature given the lack of previous studies. It is 

worthwhile to note that the regions showing increases in connectivity following 

perampanel dose appear distinct from those which showed a straightforward power 

increase in the sensor analysis. Generally speaking, we found that connectivity was 

higher in parietal regions in each recording. This is reflective of previously 

documented fMRI connectivity hubs in parietal regions, including the inferior parietal 

cortex and postcentral gyrus (Buckner et al., 2009; Tomasi & Volkow, 2011). There is 

some evidence that focal  epilepsies are associated with reductions in connectivity in 

various networks, including those recruiting parietal regions (e.g. sensorimotor 

networks; Liao et al., 2010; Luo et al., 2012b). So, the increase in connectivity 

following perampanel dose may point to a possible correlate of the seizure 

controlling mechanism of the drug.  

Interestingly, NMDA antagonists (e.g. ketamine) seem to exhibit almost the opposite 

pattern of effects from the present study. Compounds of this type increase fast- and 

decrease slow background rhythms in both in-vivo mouse recordings (Lazarewicz et 

al., 2009) and human EEG (Hong et al., 2009). A recent MEG study showed that 

ketamine reduced posterior alpha power and increased parietal gamma power 
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(Muthukumaraswamy & Shaw, 2015), thus again supporting the idea of differential 

receptor effects. Furthermore, AMPA and NMDA signaling pathways have been 

shown to have differential effects on fMRI signals in rodents (Gsell et al., 2006). 

Taken together, these findings suggest that it is too simplistic to consider generic 

glutamate effects on oscillatory activity, but rather the separation of specific 

receptors, AMPA and NMDA, is critical to understanding the generation of EEG/MEG 

signals and the nature of oscillatory coupling across brain regions. 

The similarities of the perampanel oscillatory modulations to those of tiagabine 

reported by Nutt et al. (2015) is clear for some frequency bands (see Figure 4-7). Both 

drugs increase slow wave activity and decrease faster rhythms, thus shifting the brain 

to a less excitable state, but have marked differences in their mechanism of action. 

Whereas perampanel decreases the actions of glutamate at the synapse via allosteric 

blockade of AMPA receptors, tiagabine is a GABAergic drug that is thought to 

potentiate GABAergic inhibition by blocking reuptake (Meldrum, 1996). However, 

both drugs are most commonly used as an adjunctive treatment for refractory partial 

seizures in epilepsy, so the similarities in spectral power changes may, again, reflect 

the seizure-controlling mechanisms of both compounds. 

 

Figure 4-7. The spectral profile of perampanel shows similarities to tiagabine, with both 

increasing power in lower frequencies (1-30Hz) and decreasing power in higher 
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frequencies (30-100Hz). A full description of the tiagabine results can be found in a 

previous publication (Nutt et al., 2015). 

We chose to complete the second MEG recording two hours after dosage, as a single 

dose <8mg is expected to have reached maximum blood plasma level by this time 

(Templeton, 2010), but with a range from 30 minutes to 2 hours, it is possible that we 

missed the peak for some participants. This being said, the combined effects of fast 

absorption rate and long terminal half-life of perampanel suggests that we would be 

unlikely to be more than 50ng/ml from peak concentration for any given participant. 

Measuring plasma concentrations following dosage with the drug might have 

ensured the post-dose timepoints were collected at the optimum time. Additionally, 

collecting  multiple post dose timepoints as has been done previously (Magazzini et 

al., 2016; Muthukumaraswamy et al., 2013c; Nutt et al., 2015) would give a more 

comprehensive picture of the full effects of the pharmokinetic profile on oscillatory 

activity, though the terminal half life range from 53-123 hours means that collecting 

data over the full range would be difficult in practical terms. Furthermore, it would 

be interesting to study the oscillatory effects of perampanel at sustained doses, for 

example in epilepsy patients prior to commencement of perampanel and again at 

steady-state dose. However such studies in patient populations present practical 

difficulties through disease heterogeneity and variable concomitant medications.  

  

4.6 Conclusion     

The results reported here demonstrate that perampanel has widespread effects on 

MEG spectral power at rest. These results, taken with previous work on NMDA 

receptor antagonists, highlight the sensitivity of MEG to specific receptor-level 

changes within the glutamatergic system. Given these results, caution should be 
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exercised in analyses comparing medicated patient groups with un-medicated 

controls. We also show that non-thresholded connectivity matrices seem sensitive to 

drug-related changes in connectivity in specific regions, but following thresholding 

only global connectivity changes in the beta band maintain statistical significance. 

Given that the thresholding procedure relies on commonly strong connections among 

all participants, it is possible that non-stable connectivity in a subgroup of 

participants drive the differences observed in the non-thresholded maps.  
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5 Assessing changes to MEG spectral power and functional 

connectivity in Juvenile Myoclonic Epilepsy  

5.1 Abstract 

Juvenile Myoclonic Epilepsy (JME) is one of the most common idiopathic generalised 

epilepsies, and is characterised by myoclonic jerks. Patients also commonly experience 

generalised tonic-clonic seizures and in some cases, absence seizures. A growing body of 

evidence implicates a frontal thalamcortical network in generation of epileptiform 

activity in this syndrome. A number of studies have investigated background changes in 

power and connectivity between JME patients and healthy controls, but the findings 

may be confounded by the presence of interictal paroxysms. Non-invasive 

neurophysiological techniques such as MEG are ideally suited to studying background 

oscillatory activity in epilepsy as they allow for identification and removal of 

epileptoform activity. It has previously been shown that generalised epilepsy patients 

exhibit disrupted connectivity across a broad range of frequency bands, but often these 

studies do not distinguish between common syndromes. Here, we examine resting-state 

MEG data in a homogenous group of 25 JME patients and 25 age- and gender- matched 

controls. We use the pipeline established in previous chapters of this thesis with the aim 

of investigating whether JME patients show dysfunction in whole brain connectivity 

across a range of frequencies.  
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5.2 Introduction 

5.2.1 Brief background on Juvenile Myoclonic Epilepsy 

Juvenile myoclonic epilepsy (JME) is a sub-classification of idiopathic generalised 

epilepsy (IGE), characterised by myoclonic jerks, generalised tonic-clonic seizures (GTCS) 

and absence seizures (ILAE, 1989). The syndrome has an estimated prevalence of 0.1-0.2 

per 1000 and accounts for up to 18% of all IGE diagnoses, making it one of the most 

common syndromes in that classification (Camfield, Striano, & Camfield, 2013). 

Symptoms typically first appear during childhood or adolescence, though age of onset 

range between 8 and 36 years is reported (Delgado-Escueta & Enrile-Bacsal, 1984). More 

recently, the IGE classification has additionally come to be known as genetic generalised 

epilepsies due to evidence of a genetic component in the aetiology (Berg et al., 2010).   

The hallmark seizure of JME is myoclonic jerks, which are most frequent in the morning 

and exacerbated by sleep deprivation (Panayiotopoulos, 2010). The classic EEG feature 

in JME is a 4-6Hz generalised spike-wave (GSW) or polyspike-wave activity. Almost all 

patients with JME will have at least one GTCS, and a smaller number also experience 

absence seizures (Camfield et al., 2013). Related syndromes include juvenile absence 

epilepsy (JAE) and IGE with GTCS only. An EEG study of interictal power ('background' 

activity with no paroxysms present) suggests that JME is associated with increased 

global power in the delta and alpha bands that are most pronounced in frontal regions 

(Tikka, Goyal, Umesh, & Nizamie, 2013). 

Though JME is classified as a generalised epilepsy, focal discharges are reported in some 

patients (Jayalakshmi, Srinivasa Rao, & Sailaja, 2010). Consistent with this notion, an 

increasing body of neuroimaging work indicates the involvement of a frontal 

thalamocortical network in JME (see reviews by Anderson & Hamandi, 2011; Koepp, 

Woermann, Savic, & Wandschneider, 2013). A MEG and EEG study of seven IGE patients 
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found that spike-wave and single spike activity localised most consistently to frontal and 

subcortical/thalamic areas (Stefan, Paulini-Ruf, Hopfengärtner, & Rampp, 2009). This is 

consistent with work suggesting that JME patients show altered structural connectivity 

in mesial frontal areas (Vollmar et al., 2012), though other studies have also found more 

widespread structural changes in IGE/JME (Focke et al., 2014). 

5.2.2 Studying functional connectivity in JME 

Given that epilepsy is fundamentally a disorder of aberrant neural synchrony, the study 

of connectivity is gaining pace and is expected to be a valuable tool in further 

understanding the many facets of the disorder (see reviews by Engel et al., 2013b; 

Hamandi et al., 2016; Pittau & Vulliemoz, 2015). Previous work has focused on studying 

interactions between different brain areas during epileptic paroxysms such as GSW (Lee 

et al., 2014; Moeller et al., 2011; Vaudano et al., 2009). Whilst specific thalamocortical 

networks are implicated in generation of GSW (Blumenfeld, 2005), a recent MEG study 

suggests that epileptic activity in JME is associated with both local and global increases 

in connectivity (Lee et al., 2015).  

However, it is also important to understand background activity,  between seizures, in 

order to elucidate the way in which the brain is kept in an enduring seizure prone state. 

Few studies have specifically examined the interictal connectivity profile in JME. 

Functional magnetic resonance imaging (fMRI) studies have revealed altered 

connectivity, particularly decreases in integration of the default mode network (DMN), 

in both IGE (McGill et al., 2012; Wang et al., 2011) and temporal lobe epilepsy (Pittau, 

Grova, Moeller, Dubeau, & Gotman, 2012). Given the indirect nature of the technique, 

studies using fMRI alone are limited by inability to distinguish true background activity 

from recordings containing paroxysmal discharges. Nevertheless, disrupted DMN 

connectivity has also been shown in concurrent EEG-fMRI studies of absence epilepsy 
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(Luo et al., 2011; Masterton, Carney, & Jackson, 2012), as well as increased connectivity 

in the basal ganglia network in IGE (Luo et al., 2012a). 

Results from MEG and EEG connectivity studies specific to JME are mixed. One EEG 

study found increased connectivity in the 1-10Hz range coupled with decreased 

connectivity in the 10-25Hz range, primarily in cortical regions related to sensorimotor 

function (Clemens et al., 2013). However, another study using sensor space MEG 

analysis found that JME patients exhibit increased connectivity (phase synchronisation) 

across the entire scalp for all frequency bands (Niso et al., 2015). More generally, some 

studies have investigated functional connectivity in heterogenous groups of IGE 

patients, or in those who experience GSW discharges. In JAE, patients exhibit increased 

connectivity in the 5-14Hz range compared to controls (Chavez, Valencia, Navarro, 

Latora, & Martinerie, 2010), somewhat consistent with the JME results from Niso et al 

(2015) who found greatest connectivity increases in the 8-20Hz range. A recent MEG 

graph-theory study found global increases in interictal connectivity at source level in IGE 

patients compared to controls, with the most pronounced effects occurring in mesio-

frontal, temporal and motor areas (Elshahabi et al., 2015). This is consistent with sensor-

space JME results from Niso et al (2015) but provides additional information about areas 

underlying connectivity changes. However, only one patient in the study by Elshahabi et 

al (2015) had a specific diagnosis of JME, so it remains to be seen whether source-

localised connectivity in a homogenous group will exhibit similar patterns.   

5.2.3 Aims 

The present study aims to build on previous EEG and MEG work investigating changes to 

spectral power and functional connectivity during the interictal period in JME patients. 

We will apply the analysis pipeline validated in previous chapters of this thesis to 

estimate whole-brain connectivity during interictal periods and compare to the 
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connectivity pattern of neurotypical control subjects. It is hoped that better 

understanding of background activity will contribute to further elucidating the 

mechanisms by which patients with JME remain in an enduring seizure-prone state.  

 

5.3 Methods  

5.3.1 Participants 

The patient data presented were collected as part of a number of projects conducted at 

CUBRIC involving epilepsy patients. Some of the structural imaging data and task MEG 

data from these patients has been published (Caeyenberghs et al., 2015; Hamandi, 

Singh, & Muthukumaraswamy, 2011; Perry, Brindley, Muthukumaraswamy, Singh, & 

Hamandi, 2014), but the resting-state MEG data have not been reported previously. 

Healthy control subjects are taken from the first phase of the '100 Brains' genetic 

neuroimaging project (for a full description, see Brealy, 2015). All studies were approved 

by NHS ethics and research and development committees and participants gave written 

informed consent prior to participation.  

We analysed rest data from 25 patients (19F/6M, mean age 27.5, range 18-47). Twenty-

five control subjects were matched to patients for age and gender (19F/6M, mean age 

26.5, range 18-47). Each of the patients included in this analysis had a diagnosis of IGE 

with sub-classification to JME, and an overview of clinical characteristics can be seen in 

Table 6. A more extended clinical information table can be found in the appendices.  

 

Seizure type MJ 100% 
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 GTCS 100% 

 ABS 48% 

Age at onset (MJ) 15 ± 4years 

AEDs LEV 52%, VPA 40%, LTG 28%, TPM 16%, ZNM 12%, CLB 8% 

Status Refractory 76%  

 Controlled 24% 

Table 6. Clinical information for the 25 JME patients included in this analysis. 

Abbreviations: MJ - myoclonic jerks, GTCS - generalised tonic clonic seizures, ABS - 

absence seizures, AEDs - anti-epileptic drugs, LEV - levetiracetam, VPA - valproate, LTG - 

lamotrigine, TPM - topiramate, ZNM - zonisamide, CLB - clobazam. 

5.3.2 Stimuli and procedure 

Subjects were seated upright in the MEG scanner inside a magnetically shielded room. 

For the 5 minute eyes-open rest recording, subjects were instructed to maintain their 

gaze on a fixation spot in the centre of the screen. The visual fixation point was 

displayed on a Mitsubishi Diamond Pro 2070 monitor (1024 pixels x 768 pixels 

resolution, 100Hz refresh rate). All stimulus delivery was controlled by Matlab software.  

5.3.3 MEG recordings 

Resting-state MEG data were acquired as a continuous recording, using a CTF-Omega 

275 channel system sampled at either 600Hz or 1200Hz. Consistent with previous 

experiments, all recordings were later downsampled to 600Hz for analysis and the data 

were analysed in synthetic third order gradiometer mode. For MEG/MRI co-registration, 

electromagnetic coils were placed at fixed distances from anatomical landmarks 

(left/right preauricular and nasion) prior to the MEG recording, and localised inside the 
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scanner before and after each task. The fiduciary locations were later marked manually 

on the anatomical MRI.  

5.3.4 Analysis 

For pre-processing, the data were cut into 2 second epochs and visually inspected to 

remove artefacts. Given the aims of the present study to characterise the background 

connectivity profile in JME, any trials containing interictal spiking activity in the patient 

datasets were also discarded.  

As in previous chapters, we used an atlas-based source reconstruction to derive virtual 

sensors in each of the 90 regions of the AAL atlas. We first considered group differences 

in oscillatory power. For this purpose, we used the percentage change in the Hilbert 

envelope (herein referred to as 'activation') that is calculated for each region prior to 

generation of the connectivity matrices. Given that we use the voxel of maximum 

change as the ROI representative in subsequent steps, the activation measure 

represents the maximally active voxel within a region, for each person and frequency 

band. We additionally extracted kurtosis values for each representative voxel in order to 

determine whether any inherent differences in data smoothness remained in the 

patient data relative to control subjects, even after removal of epileptic spiking events. 

Kurtosis is a mathematical operator that measures the susceptibility of a given data 

distribution to outliers, and is used in automatic localisation algorithms for epileptic foci 

(e.g. SAM(g2); Robinson, Nagarajan, Mantle, Gibbons, & Kirsch, 2004). In this case, we 

apply a simple kurtosis measure (matlab implementation) to the envelope data from 

each virtual sensor to derive an index of data 'spikiness'.  

The connectivity analysis pipeline used is consistent with that reported in previous 

chapters. Briefly, this includes generation of whole-brain amplitude-amplitude 
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connectivity matrices using the voxel of maximum change for each of the 90 AAL 

regions, with multivariate leakage correction applied.  

 

5.4 Results 

5.4.1 Spectral characteristics 

Following artefact rejection, there were no significant differences in the number of 

remaining trials between controls (mean=146, std=4.6) and patients (mean=142, 

std=11.9; t(48)=1.65, p=0.1).  

In order to determine whether there were any differences between patients and 

controls in activation, we examined the percentage change in power for each of the 90 

AAL regions (Figure 5-1). In the theta and alpha bands, there were a small number of 

areas around occipital and parietal regions where average activation seemed to trend 

towards an increase for patients compared to controls. We formally tested differences 

in activation using a randomisation test (10,000 permutations of the mean), and found 

that only the right angular gyrus (region 66) in the theta band differed significantly 

between patients and controls (t=2.764, p=0.02). We also compared kurtosis values for 

each of the 90 AAL regions, but found no significant differences between patients and 

controls on this measure (see Appendix G for figure).   
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Figure 5-1. Average activation (percentage change) in each of the 90 AAL regions, for 

patients (in blue) and controls (in red). Activation in the right angular gyrus in the theta 

band (4-8Hz) was significantly higher for patients compared to controls, marked with a 

black circle on the plot.  
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5.4.2 Functional Connectivity 

For the next stage of the analysis, we assessed functional connectivity using a pipeline 

validated in previous chapters of this thesis. The unthresholded connectivity matrices for 

patients and controls are plotted in Figure 5-2a. The matrices for both patients and 

controls exhibit the same spatial structure as shown previously; namely a hub of 

increased connectivity across occipital and parietal areas that is strongest in the alpha 

band, but also evident in other bands. Patients also appear to have widespread 

increases in connectivity relative to controls, particularly in the theta-beta bands (Figure 

5-2b).  

 

Figure 5-2. (A)Unthresholded connectivity matrices for patients (top) and controls 

(bottom), for each of the frequency bands studied. Stronger orange colouration is 

indicative of increased functional connectivity. (B) Differences in unthresholded node-
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node connectivity between patients and controls. Lines plotted are t-statistics, p=0.05 

(uncorrected). Red indicates a relative increase in patients and blue is a relative 

decrease. 

To compare global connectivity differences between patients and controls, we 

computed the mean connectivity across all AAL regions in the unthresholded matrices 

for each participant (Figure 5-3). Using a between-subjects t-test, we found significant 

differences in global connectivity in the theta (t(48)=2.87, p<0.01), alpha (t(48)=2.28, 

p=0.02), and beta (t(48)=2.26, p=0.02) frequency bands. There were no significant group 

differences in the delta (t(48)=1.84, p=0.07), low gamma (t(48)=1.66, p=0.1) or high 

gamma (t(48)=1.01, p=0.3) frequency bands. 

 

Figure 5-3. Global connectivity for patients and controls across delta-high gamma 

frequency bands, computed by taking a single value for each participant of the average 

unthresholded connectivity matrix in each band. Statistically significant differences are 

present in the theta, alpha and beta ranges (denoted '*'). 

We then pooled the matrices from all participants and thresholded the data in order to 

retain only the strongest and most consistent connections, consistent with the approach 

in previous chapters. The threshold was set to include the top 5% of connections 
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occurring for 95% of 10,000 bootstrap iterations. The remainder of the results herein are 

grouped by frequency band and the thresholded connectivity in the delta band is 

plotted in Figure 5-4. The pattern of connectivity following thresholding is consistent 

with previous chapters, with the greatest number of connections in frontal and temporal 

areas. However, there are no significant differences between patients and controls in 

single connections after omnibus correction, connectivity strength or global 

connectivity.  

 

Figure 5-4. Top Left: Thresholded delta connectivity. Top Middle: Node-node 

connectivity (t-statistics) in thresholded maps at p=0.05, uncorrected. Top Right: No 

single connections survive statistical testing with omnibus correction. Bottom right: 

Thresholded connection strength for patients and controls, no significant differences. 

Bottom left: Thresholded global connectivity for patients and controls (t(48)=0.72, 

p=0.4).  

The thresholded connectivity in the theta band is shown in Figure 5-5. The connections 

are concentrated in occipital and parietal areas with some projections to the temporal 

lobe. Again, statistical testing of node-node connectivity and connection strength using 
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randomisation testing (10,000 permutations) yields no significant differences between 

patients and controls. As in the unthresholded maps, global connectivity in the 

thresholded matrices is higher in patients compared to controls, though this difference 

now narrowly misses out on statistical significance (t(48=1.92, p=0.06).  

 

Figure 5-5. Top left: Thresholded theta connectivity. Top middle: Node-node 

connectivity in thresholded map (t-statistics, p=0.05 uncorrected). There are no 

statistical differences between patients and controls in single connections following 

omnibus correction (top right) or connection strength (bottom left). Bottom right: 

Patients still exhibit higher global connectivity values following thresholding, but this 

difference is no longer statistically significant (t(48)=1.92, p=0.06). 
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Thresholded connectivity in the alpha and beta bands also shows a pattern consistent 

with previous chapters (Figure 5-6 and Figure 5-7). However, similarly to the other 

frequency bands, there are no statistically significant differences between patients and 

controls in these thresholded matrices at the level of single connections or connection 

strength, or global connectivity value.  

 

Figure 5-6. Top left: Thresholded alpha connectivity. Top middle: Single connections in 

the thresholded map plot as t-statistics, p=0.05 (uncorrected). As before, there are no 

statistically significant group differences in single connections with omnibus correction 

(top right), connection strength (bottom left) or global connectivity ((t(48)=1.48, p=0.1); 

bottom right). 
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Figure 5-7. Top left: Thresholded beta connectivity. Top middle: Node-node 

connectivity (t-statistics) in the thresholded maps, p=0.05 (uncorrected). As before, 

there are no statistically significant group differences in single connections with 

omnibus correction (top right), connection strength (bottom left) or global connectivity 

((t(48)=1.49, p=0.1); bottom right). 
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The thresholded maps for both gamma bands are plotted in Figure 5-8. It is notable that 

a number of connections survive thresholding in this cohort in both the low and high 

gamma bands. For the low gamma band the pattern bears similarity to the spatial 

distribution of thresholded beta connectivity and may represent frequency leakage from 

the higher SNR band. In the high gamma band the remaining connections are largely 

focused in frontal and temporal regions that are known to be sensitive to contamination 

by muscle artefact (Muthukumaraswamy, 2010). Further, given that thresholded gamma 

connections were not observed in any chapter previously using the same pipeline we 

suspect that, in both cases, this suprathreshold connectivity is artefactual and the 

gamma bands were not analysed further.    

 

Figure 5-8. Thresholded connectivity for low-gamma (left) and high-gamma (right). This 

connectivity is presumed to reflect non-neural artefact and was not analysed further. 

 

5.5 Discussion 

Here we aimed to investigate source-space differences in spectral properties and 

connectivity between a group of JME patients and age- and gender- matched control 

subjects. We found that patients exhibit significantly higher source activation in the right 
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angular gyrus in the theta band, but that there are no differences between patients and 

controls in source-level kurtosis. Patients show increases in functional connectivity 

relative to controls across the 4-30Hz range prior to thresholding, but these findings are 

not preserved in the thresholded matrices. 

The only statistically significant difference in source activation between patients and 

controls was in the right angular gyrus in the theta band. This finding is somewhat 

consistent with findings of disruption to areas involved in the default mode network in 

generalised epilepsies (McGill et al., 2012; Wang et al., 2011), and also in a previous 

paper using data from the same patients showing abnormalities in a structural network 

involving parietal areas (Caeyenberghs et al., 2015). The lack of group differences in beta 

activation is consistent with a previous paper from our group in which no significant 

differences in baseline beta amplitude (during the inter-trial interval of a visual task) 

were found between JME patients and controls (Hamandi et al., 2011). However, it is 

important to note that SNR is comparably high on the lateral surface (Goldenholz et al., 

2009) as well as in low frequency bands due to the power-law distribution of oscillatory 

frequency. Therefore, we cannot rule out the possibility that this finding could be 

attributed to relatively increased SNR in this region and frequency band.   

The JME patients included here form a sub-set of a larger group of patients in the study 

published by Caeyenberghs et al (2015). In that study, the authors find that JME patients 

exhibit hyperconnectivity in a structural network involving primary motor, parietal and 

subcortical regions, but no differences between patients and controls on global 

measures of structural connectivity (Caeyenberghs et al., 2015). Here, we do not find 

region-specific changes to functional connectivity but do observe an overall increase in 

global functional connectivity for patients relative to controls prior to thresholding, as 

well as increased power in an ROI in the right parietal lobe. It is possible that structural 
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changes in this cortical-subcortical network are related to changes in functional 

connectivity but further work is required to elucidate the nature and direction of this 

relationship. Our findings of increased connectivity in a number of frequency bands in 

the unthresholded matrices are consistent with previous electrophysiological work on 

functional connectivity in IGE (Elshahabi et al., 2015; Niso et al., 2015).  

Nonetheless, we find no statistically significant group differences in connectivity 

following matrix thresholding that may be for a number of reasons aside from an 

absence of a true difference between groups. It is possible that our analysis was lacking 

in power to detect a between-groups effect, though other studies have detected 

statistically significant differences with similar or fewer participant numbers (Elshahabi 

et al., 2015; Niso et al., 2015). However, given the connections surviving in the gamma 

bands, it may be the case that SNR in this cohort is generally low. An additional 

consideration is in the choice of thresholding procedure, which selects only connections 

that are commonly strong among all groups. Therefore, this approach may not be 

suitable in cases where there are plausible differences in the spatial patterns of 

connectivity between groups as well as connectivity strength. For example, in this 

instance, structural and functional changes in frontal areas are commonly implicated in 

JME (Holmes, Quiring, & Tucker, 2010; Tae et al., 2006) and yet very few frontal 

connections survive thresholding.  

Some previous studies have suggested that epileptoform activity drives altered 

connectivity patterns in epilepsy. For example, one fMRI study found that areas involved 

in GSW do not show interictal changes in connectivity (Moeller et al., 2011). Other 

studies show correlations between interictal paroxyms and increased network 

connectivity (Zhang et al., 2010), or increased connectivity in data containing GSW 

compared to non-GSW data (Zhang et al., 2014). In the current study, we manually 
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inspected the data to remove suspected epileptoform activity as well as physiological 

artefacts. Therefore, it is unlikely that any differences between patients and controls can 

be attributed to interictal paroxysms, and a more likely to reflect a difference in the 

baseline connectivity profile.  

Although we used a fairly homogenous group of JME patients, there was variation 

among the cohort in seizure frequency, controlled or refractory status, duration of 

epilepsy and a variety of anti-epileptic medications. So, it is likely that even in this group, 

there are a number of factors that may have influenced the results. For example, we 

already show in the previous chapter that AEDs can affected the connectivity profile, 

and other studies also highlight drug-related changes to power and connectivity. 

Lamotrigine has been shown to decrease delta and theta power, and the level of LTG 

related power decrease was correlated with initial (untreated) power (Clemens, Piros, 

Bessenyei, & Hollody, 2007). Further, when compared with unmedicated patients, IGE 

patients treated with valproate show more 'normalised' functional connectivity 

(Clemens et al., 2014). So ,it may be the case that differences in power or connectivity 

were masked and/or exacerbated by a number of uncontrolled variables in the current 

cohort.  

 

5.6 Conclusion 

Relative to controls, patients show increased activation in the right angular gyrus in the 

theta band that may be consistent with the notion of disruption to the DNM in JME. The 

JME patients exhibit increases in global connectivity compared to controls in the theta-

beta bands, but these differences are not preserved following matrix thresholding. This 

may be due in part to the use of a thresholding procedure that is potentially insensitive 
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to differences between groups in the spatial profile of the connectivity matrix. The 

findings of the present study are consistent with previous work and add to the growing 

body of literature implicating pathology in theta band oscillations in JME. 
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6 General discussion 

6.1 Thesis rationale and main findings 

The work contained within this thesis is an investigation of the resting-state in MEG, 

and more specifically functional connectivity measured using amplitude coupling. We 

first sought to establish reproducibility and suitability of a full connectivity analysis 

pipeline for a variety of applications in resting-state MEG. These included a 

comparison of MEG and fMRI derived connectivity and an examination of the neural 

activity underlying the MEG signal using pharmacological intervention, as well as the 

application of this technique in the non-invasive study of epilepsy.  

6.1.1 MEG RSNs measured using both ICA and atlas-based correlation of 

amplitude envelopes are robust over repeated recordings 

In the first experimental chapter, we assessed the repeatability of connectivity in 

resting-state MEG recordings from 21 participants using two analysis techniques. For 

the first technique, we extracted biologically plausible RSNs using an ICA approach to 

assess amplitude coupling and found a number of robust networks in the beta band, 

consistent with the seminal paper on the approach (Brookes et al., 2011b). Focusing 

on the sensorimotor and visual networks, we found some degree of individual 

variability in network strength but estimates for each individual were consistent over 

repeated recording. Using the second technique, we instead estimated whole brain 

amplitude coupling using an atlas-based approach (Hillebrand et al., 2012). Not 

surprisingly, the alpha and beta band connectivity in the atlas-based approach 

showed the highest degree of repeatability. This is consistent with previous work 

demonstrating that corrected amplitude envelope correlation provides a stable 

estimate of connectivity over multiple recordings (Colclough et al., 2016; Garces et 

al., 2016). Given that the atlas-based approach inherently minimises signal leakage 
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that could give rise to spurious correlation (Schoffelen & Gross, 2009) and offers an 

entirely data driven approach to connectivity analysis, we selected this pipeline for 

subsequent chapters.   

6.1.2 Varying minor parameters of the analysis pipeline has little effect on 

connectivity estimates 

We chose to vary two minor parameters in the atlas-based pipeline, namely the 

choice of ROI representative and the orthogonalisation method, in order to 

determine the effects of these changes on the stability of connectivity estimates. 

Regardless of condition, we saw the greatest spatial structure in connectivity in the 

alpha and beta bands, consistent with a number of similar studies (Hillebrand et al., 

2012; Tewarie et al., 2016; Tewarie et al., 2014). There was little difference between 

choosing the voxel of maximum change or conducting a PCA to determine those 

voxels within each ROI that explain 95% of the temporal variance, so we opted for 

the voxel of maximum change as the more parsimonious and computationally 

efficient choice. Symmetric orthogonalisation (Colclough et al., 2015) led to more 

spatially resolved matrices compared to pairwise orthogonalisation (Hipp et al., 

2012), so we elected to use the former for subsequent analyses. Following selection 

of the most appropriate pipeline, we also replicated the same pattern of connectivity 

in an independent cohort in the second experimental chapter.  

6.1.3 Using a linear combination of band-limited MEG connectivity gives a 

moderate estimate of BOLD-fMRI connectivity 

After choosing our preferred MEG connectivity technique, we also wanted to see 

how MEG connectivity in the resting state would compare to fMRI resting-state 

connectivity in the same cohort. One of the key advantages of the atlas-based 

approach is that it enables ease of comparison between modalities (Hillebrand et al., 
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2012). To generate fMRI connectivity matrices on the same spatial scale as MEG, we 

created a single BOLD timeseries for each AAL region by taking an average over all 

voxels in the ROI. We compared connectivity patterns among the two modalities 

using a regression approach and found that activity in the delta band had the 

greatest loading to the fMRI connectivity map. There was some variance in the fMRI 

connectivity that could not be explained by a linear combination of the MEG 

frequency bands, and this corresponded to connectivity between homologous areas 

in the two hemispheres. Although some MEG studies do report observing this 

homotopic connectivity (Hipp et al., 2012; Liu et al., 2010), this often occurs in 

frequencies <1Hz. We routinely filter MEG data with a high pass filter at 1Hz during 

pre-processing prior to analysis, so this may explain why the homotopic connectivity 

effects are not strong in this analysis.    

6.1.4 Changes to endogenous glutamate levels affect power and connectivity 

in the resting-state 

We next applied the validated pipeline in a pharmacoMEG experiment, where we 

also studied changes to spectral power following administration of a single 6mg oral 

dose of the selective AMPA antagonist, Perampanel. As well as probing the possible 

mechanisms of therapeutic action of these anti-epileptic drugs, this type of 

intervention study may help to better understand the complex biochemical dynamics 

underlying the MEG signal. We found widespread drug-related changes to spectral 

power, with increases in posterior regions across low frequencies (1-30Hz) and a 

decrease in the high gamma range (50-90Hz). We additionally observed drug-related 

changes in global connectivity in the beta band that survived matrix thresholding. 

These findings are completely novel in humans, but are consistent with invasive 

animal work (Sebban et al., 2002). Our findings related to spectral power show some 

similarities to the profile of another anti-epileptic medication that may hint at the 
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seizure controlling mechanisms of these compounds (Magazzini et al., 2016; Nutt et 

al., 2015). Both animals and human studies using drugs that act primarily on NMDA 

receptors in the glutamate system show a largely opposite pattern of results 

(Lazarewicz et al., 2009; Muthukumaraswamy & Shaw, 2015; Shaw et al., 2015). 

Taken together, this suggests that MEG may be differentially sensitive to the effects 

of activity of multiple receptor types as well as discrete neurotransmitter systems.  

6.1.5 JME patients show altered patterns of connectivity during resting-state 

recordings compared to healthy controls 

In the final experimental chapter, we investigated resting-state changes in a group of 

patients with JME compared to age- and gender- matched controls. We found 

significantly increased source activation in patients relative to controls in the right 

angular gryus in the theta band. It is possible that this finding links with work 

exploring disruption to the default mode network in generalised epilepsies (McGill et 

al., 2012; Wang et al., 2011), but it is important to recognise the possibility that this 

outcome could also be caused due to increased SNR from the combination of location 

on the lateral surface (Goldenholz et al., 2009) and low frequency band.  

We also saw widespread increases in connectivity in low frequencies in patients 

relative to controls, with a notable increase in connectivity structure around frontal 

regions in patients. This is consistent with the general implication of frontal regions in 

JME (Holmes et al., 2010; Jayalakshmi et al., 2010), as well as a number of studies 

that have specifically shown increased connectivity in networks recruiting frontal 

regions (Clemens et al., 2013; Lee et al., 2015). However, these changes did not 

survive matrix thresholding and significance testing. We suggest that the thresholding 

procedure used could have masked true connectivity differences, and may not be 
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appropriate for scenarios where the spatial pattern of connectivity differs between 

groups.   

 

6.2 Towards the use of functional connectivity as a 'biomarker' 

6.2.1 Stability of estimates over time 

Functional connectivity is shown to be affected in many circumstances including 

neuropsychiatric disease (Greicius, 2008) and pharmacological interventions 

(Muthukumaraswamy, 2014). But in order for functional connectivity to be a valid 

marker of group differences, it must be shown to be reproducible in healthy 

participants using multiple analysis techniques and over repeated recording sessions. 

A number of studies have demonstrated the repeatability of RSNs using a variety of 

techniques in fMRI (Damoiseaux et al., 2006) and MEG (Colclough et al., 2016; Garces 

et al., 2016). Further, the work contained in this thesis shows that a reproducible 

connectivity estimate is affected following manipulation of glutamate using 

pharmacoMEG and in the JME syndrome of IGE (chapters 2, 4 and 5 respectively).  

However, assessing stability in the absence of disease or disorder goes only one step 

towards full understanding of functional connectivity as a biomarker. In order for any 

technique to be a valuable clinical tool, it is important to establish the ability to draw 

conclusions based on data from one person (Lee, Smyser, & Shimony, 2013; Liuzzi et 

al., 2016). Although we show in chapter 2 that global connectivity estimates vary 

little between individuals, we cannot claim that the analysis technique is robust or 

diagnostic on a single-subject level. It is also unwise to draw conclusions about mid-

length or longer term repeatability of RSNs based on the current study of scans only 

one week apart. Previous work from our group has shown that oscillatory activity in 
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the cortex is repeatable over multiple recording sessions (Muthukumaraswamy, 

2010), but changes with age (Gaetz, Roberts, Singh, & Muthukumaraswamy, 2012). A 

recent MEG study also indicates that connectivity both within and between RSNs 

changes during development up to age 34 (Schafer, Morgan, Ye, Taylor, & Doesburg, 

2014), but less is known about changes to RSNs across the full lifespan. It is plausible 

that there are ongoing changes to various aspects of functional connectivity with age 

(e.g. strength or spatial extent and pattern) but more longitudinal repeatability work 

or studies with a wider age range of subjects is required to delineate this possibility 

further. Recently a large (N=652) normative MEG database, spanning the age-ranges 

from 18 to 88, has been released by the Cambridge MEG group (https://camcan-

archive.mrc-cbu.cam.ac.uk/dataaccess/). The validated pipelines I have outlined in 

this thesis could easily be used to assess age-related changes within this dataset. 

6.2.2 The biological importance of functional connectivity 

Although spontaneous statistical dependencies between regions, or 'functional 

connectivity', are now a well-established phenomenon, the physiological processes 

underlying this coupling are yet to be fully elucidated. The presumption that the MEG 

signal arises from post-synaptic potentials of pyramidal neurons (Lopes de Silva, 

2010) indicates that any coupling changes measured by this technique at the 

macroscopic level are likely to reflect microscopic changes to the excitation-inhibition 

balance. For example, a recent modelling study by Gao, Peterson, and Voytek (2017) 

demonstrates that it is possible to infer the cortical excitation-inhibition balance 

using invasive electrophysiological data. The results of that study are consistent with 

the alterations to the MEG spectral profile following AMPA receptor blockade in 

chapter 4 of this thesis. Furthermore, increased connectivity in JME patients reported 

in chapter four of this thesis, as well as in previous literature, could indicate that 

https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/)
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/)
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functional connectivity represents underlying physiological processes related to 

balancing excitability across the cortex. In the same vein, there is yet no agreed 

mechanistic account of the functional role that functional networks perform in 

mammalian cortex. Postulated theories are numerate, with many centred around 

capabilities related to information transfer and cognitive processing. For example, 

fMRI studies suggest that the default mode network is presumed to be involved in 

memory retrieval and manipulation (Greicius et al., 2003), and gamma band 

oscillatory networks are believed to have a role in attention and information flow 

regulation (Sejnowski & Paulsen, 2006). Further, there is a suggestion that oscillatory 

networks may have evolved as a mechanism to minimise energy expenditure during 

computational processing (Laughlin & Sejnowski, 2003). Based on these observations, 

one could speculate that inter-regional dependencies at rest reflect a 'baseline' state 

of excitability, or the maintenance of a state of preparedness to receive and process 

input. In this scenario, excitatory synaptic drive could be maintained at a higher basic 

level in a subset of regions that perform as a hub to the rest of the cortex. When the 

system is perturbed by pharmacological manipulation or disease state (e.g. epilepsy) 

this state of preparedness is interrupted, which can lead to pathologically increased 

or decreased connectivity across a wide range of regions. The fact that functional 

coupling typically manifests most clearly in the alpha and beta bands and across a 

consistent set of posterior regions could be seen as further evidence for this notion, 

especially given the theorised involvement of oscillatory activity at these frequencies 

in routing information transfer (Jensen & Mazaheri, 2010). Nevertheless, this could 

also merely be a manifestation of the increased SNR in these frequency bands and at 

these locations, so this interpretation should be taken with caution. 

Within the remit of non-invasive electrophysiology alone, there are multiple ways in 

which the brain can become functionally connected (Schölvinck, Leopold, Brookes, & 
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Khader, 2013). This includes coupling between the amplitude of activity in different 

areas as studied in this thesis, but also fixed relationships between the phase of 

oscillations. There is some suggestion that phase synchronisation specifically is the 

most biologically plausible mechanism of long-range integration (Canolty & Knight, 

2010; Varela, Lachaux, Rodriguez, & Martinerie, 2001). However, a recent framework 

suggests that both phase and amplitude coupling represent distinct intrinsic coupling 

modes that can co-exist from moment to moment in the brain (Engel, Gerloff, 

Hilgetag, & Nolte, 2013). In this framework, Engel et al. (2013) suggest that the 

function of spontaneous amplitude coupling is to modulate cortical excitability as a 

mechanism to assist sensory and cognitive processing. It may be argued that our 

results somewhat support this hypothesis, with changes to connectivity related to 

situations with known altered excitability observed in both chapters 3 and 4. 

However it is unclear from this resting-state work whether these connectivity 

fluctuations subserve sensory or cognitive performance. Further, the model is 

tailored to amplitude coupling at very low frequencies such as those measured in 

BOLD (<1Hz), so it remains to be seen whether this account also provides a 

reasonable explanation for amplitude coupling in higher frequencies.  

Another facet in understanding the basis of functional connectivity relates to the 

association between functional coupling measured with different techniques. In 

chapter three, we show using a regression analysis that coupling in the delta and 

alpha bands have the strongest loading to fMRI connectivity. This finding is consistent 

with the suggestion that low frequencies engender long-range integration in the 

brain (Donner & Siegel, 2011; von Stein & Sarnthein, 2000), but somewhat 

inconsistent with other studies that show most similarity between fMRI and beta 

band connectivity (Brookes et al., 2011a; Brookes et al., 2011b). However, this 
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discrepancy may be explained by the fact that the strong parietal-occipital structure 

that dominates alpha and beta connectivity is less present in our fMRI data.  

 

6.3 Relating neurotransmission to neuroimaging signals 

6.3.1 Studying excitation and inhibition with MEG 

GABA and glutamate respectively are the primary inhibitory and excitatory 

neurotransmitters present in the human brain and are intrinsically related to the 

excitation/inhibition balance(Isaacson & Scanziani, 2011). Studies relating the MEG 

signal to neurotransmitters have focused on GABA. For example, in visual task 

paradigms, GABA concentration has been linked to modulations of visual gamma 

frequency and gamma amplitude (Magazzini et al., 2016; Muthukumaraswamy et al., 

2013c), though a larger study failed to replicate the link between GABA and gamma 

frequency (Cousijn et al., 2014). At rest, pharmaco-MEG work has shown that 

generally, increased GABA action is associated with increased low frequency power 

and decreased gamma power, though this pattern does vary according to mechanism 

of action (Nutt et al., 2015). To our knowledge, no previous studies have conducted 

this kind of work regarding the glutamate system. In chapter 4, we use the selective 

AMPA antagonist Perampanel in a pharmacoMEG intervention to show that 

transiently decreasing the actions of glutamate at the synapse is associated with 

increased power in delta-beta oscillations and decreased power in the high-gamma 

range. Our findings are consistent with previous invasive animal recordings (Oke et 

al., 2010; Sebban et al., 2002), and also consistent with the results of Nutt et al. 

(2015) in terms of net inhibition relating to increased low- and decreased high-

frequency oscillatory power.   



122 
 

6.3.2 Functional connectivity and neurovascular coupling 

A number of fMRI studies have related GABA and glutamate function to BOLD 

responses. In general, studies of GABA show that increased GABA concentration is 

related to decreases in both task-driven and resting-state BOLD responses (for a 

review, see Duncan, Wiebking, & Northoff, 2014). Given that oscillatory activity in the 

gamma band is shown to have the closest correlation with BOLD activity (Zumer et 

al., 2010), these findings are consistent with the MEG-GABA literature. As in MEG, 

fewer fMRI studies have specifically investigated the actions of glutamate. For 

example, in studies using fMRI combined with magnetic resonance spectroscopy, a 

positive correlation has been shown between glutamate concentration and activity in 

nodes of the default mode network (Enzi et al., 2012; Kapogiannis, Reiter, Willette, & 

Mattson, 2013). The findings in chapter 4 are consistent with these reports, as we 

show a decrease in gamma power related to decreased glutamatergic action. It 

follows that a decrease in oscillatory power in the gamma range should be associated 

with a decrease in local BOLD activity (Zumer et al., 2010). It should be noted that 

neurotransmitter concentration is not necessarily related to the hemodynamic 

response in a linear fashion over time (Forman et al., 1998), so changes to BOLD 

could represent changes to neurovascular coupling rather than neuronal activity per 

se. Nonetheless, these types of comparison offer a good method for assessing both 

neurovascular coupling and the microscale activity underlying neuroimaging 

methods.  

There is some implication from the results in chapter 4 that further than the effects 

of different neurotransmitter systems, MEG may be sensitive to differential effects of 

receptor types in the glutamate system. For example, a previous study using the 

NMDA receptor antagonist ketamine showed drug-related decreases in delta, alpha 
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and beta activity along with an increase in theta and gamma power 

(Muthukumaraswamy & Shaw, 2015). Conversely in chapter 4 of this thesis, using an 

AMPA-receptor antagonist we show drug-related increases in low-frequency and 

decreases in high-frequency oscillatory power. The two receptors are known to have 

distinct physiological properties that may relate to these differential effects (Dodt, 

Frick, Kampe, & Zieglgänsberger, 1998; Kidd & Isaac, 2000). Further, a study in 

rodents showed that whilst an AMPA receptor antagonist significantly decreased 

both BOLD and evoked potentials to forepaw stimulation, administration of a NMDA 

receptor antagonist significantly decreased BOLD but only moderately decreased the 

electrophysiological response (Gsell et al., 2006). This indicates that 

electrophysiological measures may be more sensitive to differential receptor effects 

than BOLD-fMRI. Taken together with the findings of Muthukumaraswamy and Shaw 

(2015), our results indicate that it is possible to observe these same differential 

receptor effects non-invasively in humans using MEG. However, more work and 

replication of the effects seen in chapter 4 are necessary to delineate this possibility 

further.  

 

6.4 Imaging functional connectivity in epilepsy using MEG 

Epilepsy is one of the most common serious neurological conditions (WHO, 2017). 

Though it has been known for some time that epileptic seizures are associated with 

massive hypersynchrony in the brain, substantial heterogeneity in aetiology, seizure 

types and co-morbidities means that it is difficult to elucidate the true nature of the 

disorder. Recent research has led to the suggestion of epilepsy as a network disorder 

(see review by Hamandi et al., 2016), and subsequent re-organisation of diagnostic 

guidelines to accommodate for this (ILAE, 1989; Scheffer et al., 2017). Some models 
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even suggest that terminology relating to a 'seizure onset zone' is unhelpful and 

places too much emphasis on focal features of the disorder (Spencer, 2002). Indeed, 

there is evidence to suggest that there are networks involved in seizure generation 

and propagation in a variety of focal and generalised epilepsies including medial 

temporal lobe epilepsy (Bartolomei, Wendling, Bellanger, Régis, & Chauvel, 2001), 

absence seizures (Amor et al., 2009) and the focus of chapter 5, JME (Lee et al., 

2014).  

However, background activity and connectivity in both JME and other epilepsies has 

received less research attention, despite the potential for this work to uncover 

phenomenon related to transition to seizure. In chapter 5, we show global 

connectivity increases for JME patients relative to controls in theta-beta bands. We 

further highlight that only global connectivity differences in the theta band come 

close to statistical significance following thresholding. These findings are consistent 

with a recent EEG study in JME that found increased functional connectivity in the 1-

10Hz range during interictal recordings, with a further increase in delta connectivity 

preictally (Clemens et al., 2013). In focal epilepsies, there is some evidence that 

activity in low frequency rhythms, particularly delta and theta, is associated with 

epileptic foci (Panet-Raymond & Gotman, 1990a, 1990b; Vanrumste, Jones, Bones, & 

Carroll, 2005).  

However, there are a number of considerations to be made in this type of patient 

study, many of which relate to heterogeneity of the disease. Most of the prior studies 

mentioned in chapter 5 group together multiple IGE syndromes, making it difficult or 

inappropriate to tease apart findings in relation to specific sub-groups. The patient 

group reported in chapter 5 of this thesis all had a specific diagnosis of JME, but this 

still does not make the sample homogenous. All patients were medicated with anti-
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epileptic drugs (AEDs), though the type and dosage of medication was variable (for 

summary see chapter 5, full clinical characteristics can be found in Appendix F). Many 

of these medications have been shown to impact electrophysiology signals (Clemens 

et al., 2007; Clemens et al., 2014; Specchio et al., 2008). Further, some patients were 

well controlled using AEDs but others were drug-refractory, and seizure frequency 

and time since diagnosis also varied among participants. There is some evidence that 

any one of these factors could impact on neuroimaging measures (Deppe et al., 2008; 

Fernando-Dongas, Radtke, VanLandingham, & Husain, 2000; Kim et al., 2007). In this 

case, the sample size was too small for meaningful sub-groups to be separated, but 

future studies could investigate the effects of these uncontrolled variables on 

functional connectivity.  

  

6.5 Methodological developments and future directions 

6.5.1 Complexity in functional connectivity 

Estimating functional connectivity from the information dense MEG signal is a 

process with many options, not all of which could be covered within this thesis. The 

basic building blocks of band-limited amplitude and phase connectivity can give rise 

to more complex regulatory processes such as cross-frequency coupling (Canolty & 

Knight, 2010). This can occur when either the phase or amplitudes of oscillations in 

different frequency bands becomes coupled, but is more commonly used to refer to 

the process by which the phase of one oscillation becomes coupled to the amplitude 

of another (Canolty & Knight, 2010). Using MEG, Florin and Baillet (2015) show that 

cross-frequency coupling of low-frequency phase to high-frequency amplitude 

oscillations represents a plausible mechanism of local to global integration in the 

resting-state. Further, dysfunction of cross-frequency coupling has been implicated in 
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a variety of conditions including traumatic brain injury (Antonakakis et al., 2016), 

depression (Noda et al., 2017) and epilepsy (Amiri, Frauscher, & Gotman, 2016). A 

recent study using both phase- and amplitude-coupling measures showed that 

incorporation of multiple frequency bands, cross-frequency terms and non-linear 

interactions provides a significantly better estimate of similarity between MEG and 

fMRI connectivity than using linear and band-limited terms alone (Tewarie et al., 

2016). This finding is particularly relevant to the results of moderate prediction of 

fMRI from band-limited MEG connectivity reported in chapter 3 of this thesis. 

Introducing additional complexity into the model may help to gain a better 

understanding of the interaction between coupling in different frequency bands, 

neurovascular coupling and the mechanistic importance of these processes.  

6.5.2 Dynamic functional coupling 

Along with the richness and complexity of coupling 'type', there is an increasing 

acceptance that the assumption of temporal stationarity in functional connectivity 

estimates is likely to be an oversimplification (Allen et al., 2014; de Pasquale et al., 

2010; Honey, Kotter, Breakspear, & Sporns, 2007). Of the non-invasive imaging 

techniques, MEG is ideally suited to study dynamic, non-stationary connectivity 

processes due to the higher temporal resolution and more direct measure of 

neuronal activity relative to techniques such as BOLD fMRI. For example, O'Neill et al. 

(2015) show that when assessing amplitude envelope correlation over smaller time 

windows (3-6 seconds) within a MEG recording it is possible to distinguish multiple 

transient sub-networks that form and dissolve rapidly. The additive effect of these 

transient sub-networks over the whole recording is a spatial pattern of connectivity 

that appears remarkably similar to established beta-band RSNs (O'Neill et al., 2015). 

Another method uses a hidden Markov model to infer a number of discrete 
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microstates that reoccur transiently throughout the recording period (Baker et al., 

2014). Future work could apply these dynamic techniques (e.g. those in Baker et al., 

2014; Brookes et al., 2016; O'Neill et al., 2015) in order to further investigate resting-

state connectivity in epilepsy, or use in conjunction with pharmacoMEG to study 

dynamic properties of the biochemical interactions underlying the MEG signal. 

 

6.6 Conclusions 

In summary, this thesis set out to validate a connectivity pipeline for resting-state 

MEG and use this in a number of applications relating to the resting-state in health 

and epilepsy. We show that it is possible, using an atlas-based approach, to obtain 

reliable estimates of band-limited static connectivity, and that these estimates in the 

delta and alpha bands relate most closely to fMRI connectivity. Furthermore, we go 

on to demonstrate that resting-state MEG is sensitive to specific AMPA-receptor 

mediated changes to spectral power and connectivity. Finally, we show that the JME 

patients show global connectivity changes in the theta and beta bands. These 

findings have implications regarding the use of MEG as a tool to study investigate 

neurovascular coupling and neurochemical dynamics, as well as the study of JME as a 

network epilepsy. The main limitation of the analysis contained herein is in the 

stationary nature of temporal and spatial connectivity inferences, over a period of 

minutes. Recent methodological developments mean that it is now possible to 

characterise dynamic connectivity on a much shorter timescale using MEG, and this 

should be the focus of future work.  
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Appendices 

A. Correlations between mean band-limited connection 

strength and head geometry.  

 1-

4Hz 

4-

8Hz 

8-

13Hz 

13-

30Hz 

30-

50Hz 

50-

90Hz 

Max. Change/ 

Pairwise  

-0.43 0.03 -0.21 -0.03 -0.2 0.33 

PCA/  

Pairwise 

-0.28 0.01 -0.23 -0.16 0.01 0.43 

Max. Change/ 

Symmetric 

-0.16 0.01 -0.12 -0.02 0.19 0.38 

PCA/ 

Symmetric 

-0.26 -0.2 -0.14 0.08 0.05 0.21 

Appendix A. Correlation values (Pearson's r) between mean connection strength and 

intracranial volume for each condition and frequency band in the first experimental 

chapter.  
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B. Single subject fMRI to band-limited MEG connectivity 

correlation. 

 

Appendix B. Top: Correlation between band-limited MEG connectivity and fMRI across 

subjects. Each point in this matrix represents the correlation, across subjects, between 

the z-score of the corresponding connection in (L-R) theta, low-gamma and high-gamma 

bands with fMRI. There is no clear pattern of correlation between connectivity in any 

band with fMRI. Bottom: There is no statistically significant correlation between global 

connectivity (i.e. mean of the connectivity matrix) for each participant in fMRI (X) and 

MEG connectivity (Y) in the theta, low- or high-gamma bands.  

 

C. Descriptive statistics for psychometric questionnaires used 

during pharmacological intervention. 

SHAS 
 

Pre-Dose Post-Dose 

Perampanel 
Mean 43.2 195.5 

SD 46.5 159.1 

Placebo 
Mean 48.5 45.2 

SD 77.9 73.8 

BAES - Sedative 
   

Perampanel Mean 12.0 25.5 
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SD 5.4 11.5 

Placebo 
Mean 11.3 11.9 

SD 4.9 7.3 

BAES - Stimulant 
   

Perampanel 
Mean 30.7 23.8 

SD 14.4 12.1 

Placebo 
Mean 31.4 27.3 

SD 11.7 14.0 

SHS 
   

Perampanel 
Mean 55.3 58.0 

SD 9.2 12.7 

Placebo 
Mean 54.2 53.4 

SD 9.2 9.5 

Appendix C. Descriptive statistics (overall pre- and post-dose mean/SD) for the 

psychometric questionnaires used to assess perception of drug-related changes in the 

perampanel experiment.  

 

D. PharmacoMEG - Biphasic Alcohol Effects Scale (BAES) item 

averages 

BAES - Sedative subscale     

 
Perampanel Placebo 

 
  Pre-dose Post-dose Pre-dose Post-dose 

Difficulty in concentrating 1.95 4.05 1.5 1.7 

Down 1.6 1.9 1.55 1.45 

Heavy head 1.45 3.75 1.6 1.65 

Inactive 2.45 3.9 2.1 1.9 

Sedated 1.35 4.1 1.4 1.5 

Slow thoughts 1.4 3.7 1.45 1.75 

Sluggish 1.8 4.1 1.65 1.9 
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Total 12 25.5 11.25 11.85 

 

BAES - Stimulant subscale 
    

 
Perampanel Placebo 

 
  Pre-dose Post-dose Pre-dose Post-dose 

Elated 3.55 3.5 4.2 3.55 

Energized 4.35 2.8 4.75 3.85 

Excited 4.55 3.1 3.95 3.65 

Stimulated 4.2 3.25 4.6 3.9 

Talkative 4.9 4.2 4.65 4.45 

Up 5.1 4.25 5.5 4.65 

Vigorous 4 2.7 3.7 3.25 

Total 30.65 23.8 31.35 27.3 

Appendix D. BAES sedative and stimulant subscale item averages. 

 

E. PharmacoMEG - Subjective High Assessment Scale (SHAS) 

item averages 

SHAS         

 

Perampanel 

 

Placebo 

   Pre-dose Post-dose Pre-dose Post-dose 

Uncomfortable 15.7 6.1 8.8 5.5 

High 5.1 8.2 7.2 7.3 

Clumsy 5.1 21.1 5.8 3.4 

Muddled or confused 3.8 12.4 3.1 2.9 

Slurred speech 0.7 7.6 1.0 1.6 

Dizzy 0.0 18.9 0.9 2.5 

Nauseated 0.3 4.5 2.0 1.7 

Drunk or intoxicated 0.0 15.8 0.4 0.6 

Sleepy 9.7 40.8 14.4 13.5 
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Distorted sense of time 0.0 7.3 0.9 3.8 

Effects of alcohol 0.0 13.7 0.4 0.0 

Difficulty concentrating 2.7 27.4 3.1 1.6 

Feeling of floating 0.3 12.1 0.9 1.2 

Appendix E. SHAS item averages. 

 

F. Clinical characteristic table for JME patients. 

    Seizure type (age onset, 
current frequency, last to 
scan) 

 

Patient 
no. 

Gender Age  Status MJ ABS GTCS AEDs (daily 
dose in mg) 

1 F 18 r-jme 15, 1/m, 
1m 

15, 1/m, 1m 15, 4/y, 
1m 

LEV 2250 

2 M 26 c-jme 18, 1/y, 
1m 

n/a 18, 1y, 
1m 

VPA 500 

3 F 21 r-jme 17, 4/y, 
2m 

17, 4/y, 6m 20, 4/y, 
2m 

LTG 450 

4 F 22 c-jme 12, 6/y, 
1 m 

n/a 18, <1/y, 
3 y 

VPA 400 

5 F 20 r-jme 20, 1/m, 
1 m 

n/a 15, 2/w, 
1w 

LTG 450  

6 F 38 c-jme 14, 0, 2y n/a 24, 1/y, 
6m 

LEV 3250 

7 F 19 r-jme 15, 1/m, 
1m 

15, 1/m, 1m 15, 1/m, 
1m 

LEV 2000, 
ZNM 25 

8 F 35 r-jme 15, 8/d, 
2 hr 

35, <1/y, 2 m 12, <1/y, 
>1y 

LTG 300, 
CLB 10 

9 F 18 r-jme 17, 1/d, 
1d 

n/a 17, 3/w, 
1w 

LTG 150, 
VPA 1500  

10 F 18 c-jme 15, 1/d, 
9m 

n/a 15, 1/y, 
9m 

LEV 1000 

11 M 22 r-jme 18, 2/w, 
12 hs  

14, 0, 4 y 18, 1/w, 
10d 

VPA 2500, 
LEV 500 

12 F 33 r-jme 11, 2/m, 
3w 

n/a 11, 2/m, 
3w 

LEV 1000 

13 F 31 c-jme 10, <1/y, 
1y 

n/a 8, 4 in life VPA 1000 
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14 F 25 r-jme 15, 1/m, 
2m 

6, none, 1 m 3, 2/y, 4 
m 

LEV 1500, 
ZNM 150, 
LTG 100 

15 F 36 r-jme 13, 0, 
>1y 

9, 3/w, 3 d 13, 1/m, 
1w 

LEV 3000, 
TPM 500, 
CLB 40 

16 F 38 r-jme 30, 2/y, 
5m 

10, n, >1y 10, <1/y, 
1 m 

VPA 800, 
LTG 300 

17 M 22 c-jme 12, 1/y, 
1y 

13, 1/m, 1 m 13, 2 in 
life, 7 y 

LEV 1000  

18 M 44 r-jme 15, 1/d, 
1d 

n/a 15, 2/y, 5 
m 

VPA 1500, 
LEV 2000 

19 F 47 r-jme 10, 1/m, 
1w 

10, 1/w, 1w 10, 1/w, 
1w 

LTG 600 

20 F 26 r-jme 10, 2/w, 
4d 

n/a 8, 3/y, 1y ZNM 50, 
LEV 1500 

21 F 20 r-jme 17, 0, 
>1y 

n/a 17, 4/y, 
1m 

LEV 1000, 
TPM 250 

22 F 20 r-jme 15, 2/w, 
2w 

8, 3/m, 3m 8, 4/y, 5 
m 

VPA 2000, 
TPM 25 

23 M 30 r-jme 14, 1/w, 
0 d 

14, 1/w, 2d 18, 2/y, 
3w 

VPA 600 

24 M 29 r-jme 15, 
<1/m, 
2m 

15, 0, >1y 15, 0, 5y VPA 1500 

25 F 31 r-jme 13, 1/m, 
1m 

n/a 13, <1/y, 
>1y 

TPM 275, 
LEV 1500 

 

Appendix F. Full clinical characteristics for JME patients included in chapter 5 analysis. 

Abbreviations as follows. Seizure type: MJ - myoclonic jerks, GTCS - generalised tonic 

clonic seizures, ABS - absence seizures. Status: r-jme - treatment refractory, c-jme - 

treatment controlled. Anti-epileptic drugs (AEDs): LEV - levetiracetam, VPA - valproate, 

LTG - lamotrigine, TPM - topiramate, ZNM - zonisamide, CLB - clobazam 
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G. Source space kurtosis values for JME patients and controls 

Appendix G. Average kurtosis for each of the 90 AAL regions in JME patients (blue) and 

healthy controls (red), for each frequency band. Using randomisation testing, no 

significant group differences were found.

 


