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North Atlantic variability and its links to European
climate over the last 3000 years
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The subpolar North Atlantic is a key location for the Earth’s climate system. In the Labrador

Sea, intense winter air–sea heat exchange drives the formation of deep waters and the

surface circulation of warm waters around the subpolar gyre. This process therefore has the

ability to modulate the oceanic northward heat transport. Recent studies reveal decadal

variability in the formation of Labrador Sea Water. Yet, crucially, its longer-term history and

links with European climate remain limited. Here we present new decadally resolved marine

proxy reconstructions, which suggest weakened Labrador Sea Water formation and gyre

strength with similar timing to the centennial cold periods recorded in terrestrial climate

archives and historical records over the last 3000 years. These new data support that

subpolar North Atlantic circulation changes, likely forced by increased southward flow of

Arctic waters, contributed to modulating the climate of Europe with important societal

impacts as revealed in European history.
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Ocean circulation has a key role in the Earth’s climate, as it
is responsible for the transport of heat but also its storage
in the ocean’s interior. Because of the large heat capacity

of water and hence its thermal inertia, the ocean is potentially
amongst the most predictable components of the Earth’s climate
system on time scales from decades to centuries. The subpolar
North Atlantic, specifically, is a key region for understanding
climate variability, as it is one of the world’s main areas of deep
water formation. Here, northward flowing warm and salty surface
waters lose their heat to the atmosphere, become denser and
eventually sink, as part of the Atlantic Meridional Overturning
Circulation (AMOC), forming around half of the global deep
water1. This process is not only important for the ventilation of
the oceans abyss but its attendant northward heat transport1

contributes to shaping the climate of northwest Europe.
Changes in the strength of the deepwater formation process

have widely been proposed as the mechanism behind multi-
decadal sea surface temperature variability in the North Atlan-
tic2,3, which has been shown to have important impacts on
atmospheric patterns and the weather in Europe4,5. Recent work
indicates that specifically the strength of deep water formation in
the Labrador Sea is key component for driving variability in the
strength of the AMOC, and hence for modulating recent and also
decadal North Atlantic climate variability6,7. Observational stu-
dies have shown that interannual to decadal changes in the for-
mation of deepwater in the Labrador Sea, namely Labrador Sea
Water (LSW), are driven by changes in the upper ocean density
gradients controlled by heat removal from winds and/or buoy-
ancy forcing from freshwater input8. However, because of the lack
of oceanographic measurements beyond the last 100 years, our
understanding of the oceans’ role, particularly centennial changes
in the strength of LSW formation and associated subpolar gyre
strength, in European climate over longer time scales remains
fairly limited.

Several model studies have suggested that centennial-scale
climate variability in the North Atlantic over the current inter-
glacial was largely driven by changes in the formation of LSW
responding, albeit non-linearly, to freshwater inputs from the
Arctic Ocean into the Labrador Sea9,10. Centennial timescale
increases in the export of polar waters into the subpolar North
Atlantic spanning the last 10,000 years, have been recorded in the
abundance of ice-rafted debris deposited in marine sediment
cores11. These records have been widely used to establish a
temporal framework for cold climatic events recorded in the
circum-North Atlantic region by invoking ocean–land linkages12.
Yet, there are very limited data that support the mechanism by
which these pulses of ice-laden, fresh, Arctic Ocean waters
impacted the ocean circulation in the North Atlantic and speci-
fically, the strength of LSW formation and the surface circulation
around the subpolar gyre, which are very likely candidates for the
modulation of the northwest European regional climate. This is
largely because of the lack of high sediment accumulation sites for
proxy reconstructions at key locations, such as the areas of active
deep water formation in the centre of the Labrador Sea.

In this study, we present a suite of subdecadally to decadally
resolved proxy records from across the subpolar North Atlantic
from which we can infer changes in the formation of deep waters
in the Labrador Sea and its associated gyre strength across the last
3000 years. This interval spans several important periods within
European history, which have often been related to climate
variability such as the warm intervals during the Roman Empire
expansion (colloquially referred to the Roman Warm Period
~250 years Before Common Era (BCE)—400 years Common Era
(CE)) and Medieval times (Medieval Climatic Anomaly
~900–1200 years CE) and the cold periods such as the one
centred around ~2700 years Before Present (BP) known as the

Iron Age Cold Epoch, the short-lived Dark Ages Cold Period
(~500–750 years CE) and the Little Ice Age (~1450–1850 years
CE). Studying the ocean changes over the last 3000 years at high
temporal resolution thereby provides a unique opportunity to
investigate the potential linkages between ocean circulation
changes and European climate variability and its impacts on
societies. Our new findings suggest centennial changes in the
circulation of the subpolar North Atlantic, likely modulated by
the input of Arctic Ocean waters to the Labrador Sea, with similar
timing to climate variability recorded on land in historical and
terrestrial proxy data in Europe for the last 3000 years.

Results
Marine sediment cores. Two high-resolution marine sediment
cores located in the South Greenland Margin and South of Ice-
land were used to infer changes in the subpolar North Atlantic
circulation over the last 3000 years. Composite record RAPiD-35-
COM comprising box-core RAPiD-35–25B13 (57°30.47′ N, 48°
43.40′ W, 3486 m water depth) and piston core RAPiD-35-14P
(57° 30.250′ N, 48° 43.340′ W, 3484 m water depth) is located in
the eastern Labrador Sea on the Eirik Drift (Fig. 1). This com-
posite sediment record is in an ideal location to monitor shifts in
the polar front which separates the warm and salty North Atlantic
Current derived waters of the Irminger Current (IC) and the
southward flowing fresh and cold polar waters of the East
Greenland Current (EGC) (Fig. 1)14 and hence the input of polar
waters into the Labrador Sea. The core-chronology is presented in
ref. 15, and indicates an average temporal sample resolution of
20–25 years. In addition, RAPiD-21-COM is a composite sedi-
mentary record comprising box-core RAPiD-21-12B and kasten
core RAPiD-21-3K (57° 27.09′ N, 27° 54.24′ W and 57° 27.09′ N,
27° 54.53′ W, respectively; at 2630 m water depth). RAPiD-21-
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Fig. 1 Sediment core location and regional ocean circulation. Red arrows
indicate the warm and salty waters originating from the North Atlantic
Current (NAC) flowing west as the Irminger Current (IC). Cold and fresh
polar waters from the East Greenland Current (EGC) are indicated by the
dark blue arrows, the dotted blue arrow indicates the West Greenland
Current. The locus of Labrador Sea Water (LSW) formation is indicated by
the blue spiral and the white arrows indicate the spreading of LSW through
intermediate depths to the Irminger and Iceland Basins and to the lower
latitudes. New reconstructions used in this study are shown in black and
location of published proxy records presented in Figs. 2 and 3 are colour-
coded and labelled in grey. Unlabelled red diamonds show the locations of
the deep sea corals from ref. 42. Bathymetric basemap made using ODV
(Schlitzer, R., Ocean Data View, https://odv.awi.de, 2015)
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COM cores were recovered from the southern limb of the Gardar
Drift (Fig. 1) at a location where the near-bottom flow speeds
have been shown to be modified according to the volume of LSW
reaching the Iceland Basin16. The chronology for RAPiD-21-
COM is described in detail in ref. 17 and suggests an average
temporal sample resolution of ~7.6 years.

Changes in the input of polar waters into the Labrador Sea.
Model studies have shown correlation between LSW thickness
and surface density18. Specifically, salinity exerts a dominant
control on the upper-ocean density, which is driven by the
relative input between the salty IC waters and freshwater and sea
ice from EGC19–21. During the spring-summer months, after the
winter convection has ceased in the Labrador Sea, its northwest
boundary currents (the EGC and IC) support restratification of
the surface ocean through lateral transport. The advection of heat
and salt by these currents into the centre of the Labrador Sea has
a critical role in the preconditioning of the water column for
winter convection22. The RAPiD-35-COM site, is therefore ide-
ally located to study past alterations of the surface buoyancy
forcing in the Labrador Sea as a hydrographic preconditioning for
deep water formation by monitoring changes in the relative
presence of these two different waters (EGC and IC) reaching the
eastern Labrador Sea13. To reconstruct the relative influence
between the fresh and cold polar waters from the EGC and the
warm and salty waters of the IC in the eastern Labrador Sea
during spring-summer restratification we use two different
proxies comprising planktonic foraminiferal assemblages and
δ18O composition.

We measured the oxygen isotopes from planktonic foramini-
fera which are marine unicellular calcifying organisms that live in
the surface ocean waters. Specifically, we measured two different
species from RAPiD-35-COM, the polar Neogloboquadrina
pachyderma (sinistral coiling) (Nps) and the subpolar Turbor-
otalita quinqueloba (Tq). A core-top study from a longitudinal
transect across the Nordic Seas23 found that the calcification
depth of these two species differs according to the hydrographic
conditions at the site. A constant near-surface calcification depth
was found for Tq (25–75 m) across this region23. In contrast, in
the western section of the Nordic Seas, under the presence of
warm Atlantic waters of the Norwegian Current, Nps was found
to calcify deeper in the water column (100–200 m), whereas in the
east under the influence of the EGC polar waters it calcified closer
to the surface at a similar depth as Tq23. Following these findings,
we used the difference in the δ18O composition between Nps and
Tq (Supplementary Fig. 1), referred hereafter as Δδ18ONps-Tq, as
an indicator of the relative presence of warm Atlantic waters
influencing the RAPiD-35-COM site in the past (See 'Methods'
section). Small/large differences in Δδ18ONps-Tq indicating
increased/decreased presence of warm and salty Atlantic IC
waters vs. polar EGC waters in the upper water column,
respectively. In addition, an independent measure of the relative
presence of polar waters in the eastern Labrador Sea can also be
gained by using the percentage abundance of the polar species
Nps. The distribution of Nps abundances in modern sediments
show the affinity of this species to cold polar surface waters24 and
it also exhibits large abundance changes across oceanic fronts25.
For this reason, Nps abundance is a widely used proxy to track
variability in the position of the polar front across different time
scales26. However, both of these proxies are largely dominated by
temperature whereas it is the buoyancy forcing and hence largely
the haline component that is the most important for the
modification of LSW formation19–21. Thus, we use a 70-year
long observational time-series from the Labrador Sea region to
show the strong positive correlation (R2= 0.86, Supplementary

Note 1; Supplementary Figs. 2 and 3) between temperature and
salinity in the top 150 m at decadal time scales. This relationship
adds confidence to our proxy interpretation that reconstructed
cold ocean conditions were likely also fresh.

Results from RAPiD-35-COM within the eastern Labrador Sea
show coherent changes in the surface ocean conditions in the two
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Fig. 2 Changes in the southward influence of polar waters. a Difference in
the δ18O measurements of N. pachyderma (s) and T. quinqueloba from
RAPiD-35-COM as an indicator of the relative presence of Atlantic waters
in the Eastern Labrador Sea (data between 0 and 1250 years BP presented
in ref. 13). b Percentage of the polar species N. pachyderma (s) from RAPiD-
35-COM (data between 0 and 1250 years BP presented in ref. 13). c Sea ice
reconstructions based on IP25 proxy from core MD99-226928 located
North of Iceland (Fig. 1). d Diatom assemblage derived August
temperatures from North of Iceland27. e Percentage of haematite stained
quartz grains (HSG) from MC52-VM29-19111. Bold lines indicate weighted
three-point running average and grey bars indicate the periods of glacier
advances in Alaska and Swedish Lapland49
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complementary proxies (Δδ18ONps-Tq and %Nps) (Fig. 2a, b). The
Δδ18ONps-Tq shows smaller values, hence reduced influence of
Atlantic waters mostly coincident with intervals of increased
abundance of Nps, suggesting an increased influence of polar
waters and hence a southern advancement of the polar front
position at around 2700–2300 years BP, 1500–1000 years BP and
500–100 years BP (Fig. 2a, b). Although there are other plausible
oceanic processes which could explain the cooling recorded in the
proxies at the RAPiD-35-COM site such as increase in deep
convection and cooling of the surface waters, the magnitude of
variability recorded by the %Nps (approximately equivalent to
2°C24), would be difficult to account for without invoking an
influence of frontal shifts.

Paleoceanographic reconstructions from a more northward
location of the polar front on the North Iceland margin (Fig. 1),
show centennial-scale cold events27 (Fig. 2d) and marked
increases in sea ice28 (Fig. 2c) with similar timing to the cold
events recorded in the eastern Labrador Sea (Fig. 2a, b).
Furthermore, these cold events coincide with the increase in the
abundance of haematite stained quartz grains found in core
MC52-VM29-191 located in the Rockall Trough11 (Fig. 1, 2e).
The provenance of these ice-rafted grains has been shown to be
specific to northeast Greenland and hence consistent with an
increase in the southern transport of drift ice within the EGC and

around the subpolar gyre to the core site11. These data collectively
indicate an increase in the influence of ice-laden fresh and cold
EGC waters and a southern migration of the polar front in the
subpolar North Atlantic during 2700–2300 years BP, 1500–1000
years BP and 550–100 years BP (Fig. 2). Conversely, increased
Δδ18ONps-Tq and reduced %Nps between 2300–1500 years BP
and 900–550 years BP consistently suggest periods of enhanced
influence of warm (and salty) Atlantic waters in the Eastern
Labrador Sea at these times (Fig. 2a, b). Additional paleoceano-
graphic records from around Greenland (including for example
Fram Strait29, East Greenland30, Denmark Strait31, and West
Greenland32,33, and references therein), consistently show a
millennial increase in the influence of polar EGC waters and drift
and sea ice over the last ~2500 years coherent with the trends
shown in Fig. 2. Albeit the lower temporal resolution and the
associated dating uncertainties, some of these records record
centennial ocean fluctuations, with an increased influence of
Atlantic waters around Greenland between ~1400–2400
years BP30–32 and an increase influence of cold polar ice-laden
EGC waters at ~2500–2700 years BP31–33 and during the
LIA31,32,34,35.

Labrador Sea Water and Overflow Water interactions. Surface
freshening has a primary role in inhibiting convection in the
Labrador Sea, as identified during, for example, the 1970s Great
Salinity Anomaly21. Similarly, our recorded centennial increase in
cold and fresh polar waters reaching the eastern Labrador Sea
would have led to stratification of the upper water column, likely
also limiting winter deep water formation in the Labrador Sea.
However, because of the intermediate nature of LSW depth8 and
the absence of suitable coring sites directly bathed by this water
mass, confirmation of past changes in the formation of LSW
using marine sediment cores is challenging. To address this, we
compare the data from the eastern Labrador Sea with a new
record from RAPiD-21-COM, that albeit indirectly, allow us to
infer changes in LSW formation through its interaction with the
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Fig. 3 Indirect indicators for Labrador Sea Water changes. a δ13C data from
ODP Site-98040 indicated by the brown line, the depth of this core is 2170
m and hence lies on the lower boundary of LSW, waters with a δ13C
signature closer to modern LSW (~1.3‰) are found during warmer climatic
periods. The compilation of εNd data from deep sea corals recovered
between 630 and 1325m42 shown as red data points. The vertical red and
blue bars on the right-hand axis indicate the approximate εNd-signature for
LSW and Subpolar Mode Waters (SPMW). Superimposed in orange is the
salinity data from South of Iceland from RAPiD-12-1K47 interpreted to be an
indicator of contracted/weaker and expanded/stronger gyre. b Difference
in the δ18O measurements of N. pachyderma (s) and T. quinqueloba from
RAPiD-35-COM as an indicator of the relative presence of Atlantic waters
in the eastern Labrador Sea (data between 0 and 1250 years BP presented
in ref. 13). c Percentage of the polar species N. pachyderma (s) from RAPiD-
35-COM (data between 0 and 1250 years BP presented in ref. 13). d SS from
RAPiD-21-COM, faster speeds of the deep current from the Iceland-
Scotland Overflow indicative of a decreased LSW volume in the Iceland
Basin, normalised near-bottom current speeds were calculated using the
calibration from ref. 39(data between 0 and 166 years BP presented in ref.
16). Bold lines indicate the weighted three-point smoothed data and
horizontal dotted lines show the average of the records for the last 3000
years, e Red and blue rectangles indicate the cold and warm periods
recorded from glacier advances and retreats in Alaska and Swedish
Lapland49 (for more discussion on glacier dynamics refer to Supplementary
Fig. 4) and grey bars highlight only the glacier advances. Acronyms refer to
the historical periods with similar timings to the climatic periods, Roman
Warm Period (RWP), Dark Ages Cold Period (DACP), Medieval Climatic
Anomaly (MCA) and Little Ice Age (LIA)
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strength of the Iceland-Scotland Overflow Water (ISOW).
Although RAPiD-21-COM lies in the pathway of the ISOW, it is
~900 km downstream of the Iceland-Scotland Ridge and there-
fore, the overflow waters that reach the site will have undergone
significant modification through entrainment and mixing with
the LSW36. In the Iceland Basin, LSW is present at mid-depths
with greater thickness during periods of increased deep water
formation in the Labrador Sea37. A subdecadally resolved near-
bottom flow speed reconstruction spanning the last 230 years
from the box-core recovered at the same location as RAPiD-21-
COM, suggested that ISOW strength at this site can be strongly
modulated by the volume/density of the overlying LSW in the
Iceland Basin16. Thus, for example, periods of reduced LSW
presence at intermediate depths in the Iceland Basin, such as in
the 1960’s, corresponded to faster ISOW flow speeds, vs. slower
ISOW during periods of enhanced LSW presence during 199416.

In light of these results, we extended the 230-year near-bottom
flow speed record16 using RAPiD-21-COM, for the last 3000
years (Fig. 1) to gain an indirect and qualitative understanding of
the influence of LSW in the Iceland Basin, through its interaction
with the strength of ISOW flow speeds. We used the near-bottom
flow speed proxy sortable silt mean grain size (SS), the mean
grain size of the 10–63 µm terrigenous material38 (see 'Methods'
section). The new SS data from site RAPiD-21-COM show very
clear variability which according to a recent calibration39 equate
to a maximum variance in the ISOW flow speed of ~2 cm/s
(Fig. 3d). Generally faster near-bottom flow speeds (grain sizes
above the average for the 3000-year interval of 15.7 µm, Fig. 3) are
found during three intervals around 3000–2500, 1200–1000 and
550–100 years BP (Fig. 3d). Following ref. 16, strong ISOW flow
speeds would indicate a reduced presence of LSW in the Iceland
Basin, which has been associated with weak deep water formation
in the Labrador Sea8. The new SS results from RAPiD-21-COM
show clear centennial variability with periods of faster speeds
broadly corresponding to the centennial cold conditions recorded
in the eastern Labrador Sea (Fig. 3b, c). The Iceland Basin results
are therefore consistent with the suggestion that the advancement
of the polar front and an increase in the influence of cold/fresh
Arctic water input into the eastern Labrador Sea likely reduced
the formation of LSW at these times. In contrast, the millennial
timescale variability appears to differ between the proxy records.
The records from the northernmost sites (Fig. 2c, d), show a
linear cooling trend perhaps driven by the Neoglacial decrease in
summer insolation in the northern high latitudes and its effects
on Arctic sea ice production. This long-term cooling trend is also
present in the Δδ18ONps-Tq (Fig. 2a) and differs from the Nps
perhaps due to slight change in the timing of the seasonal bloom
of the two foraminiferal species as a response to changes in
insolation (Supplementary Fig. 1).

Intermediate water mass signatures South of Iceland. As
additional support for the suggested changes in LSW formation
we also use published benthic foraminifera δ13C record from
Ocean Drilling Program (ODP) Site-980 located South of Ice-
land40 (Fig. 1). The δ13C of the dissolved inorganic carbon in the
ocean has a very specific distribution and can be used as a water
mass signature. A recent study that accounts for the addition of
anthropogenically derived CO2 which contains isotopically light
carbon, also known as the Suess effect, shows very distinct δ13C
distributions in the subpolar North Atlantic with a LSW δ13C
signature of 1.2–1.4‰; and a sharp boundary with the under-
lying North East Atlantic Deep Water (δ13C: 0.9–1‰)41. In light
of these findings, ODP Site-980 located at 2179 m depth is
therefore at a sensitive location to monitor past changes in the
thickness/depth and hence ventilation associated with LSW41,
with lower δ13C values suggesting a shallower/thinner and hence

weak LSW formation. Unfortunately, the ODP Site-980 δ13C
record (Fig. 3a) does not span the entire last 3000 years, but it
does show broadly a transition from lower δ13C around
3000–2500 years BP to higher values around 2000–1500 years BP
(Fig. 3a), consistent with our new proxy record suggesting this
interval was characterised by a shift from weaker to stronger LSW
convection as inferred from the reduced ISOW flow speeds
recorded in the SS from RAPiD-21-COM. As the ODP Site-980
δ13C record only reaches 1300 years BP, we also compare pub-
lished εNd data measured in deep sea corals from two nearby
sites recovered from water depths between 635 and 1300 m42

(Fig. 1). In this study, ref. 42 shows a shift in the εNd water mass
signature from a predominantly LSW to a modified Atlantic
water mass signature around 400 years BP (Figure 3a) again
consistent with the transition we observe in the surface hydro-
graphy of the eastern Labrador Sea (Fig. 3b,c) and ISOW strength
(Figure 3d) at the onset of the Little Ice Age at ~500 years BP.

Changes in the subpolar gyre dynamics. The process of con-
vection associated with LSW formation is driven by intense
surface heat lost during the winter months. This leads to a
doming of isopycnals in the central Labrador Sea and results in an
increase in the zonal density gradient across the subpolar gyre
driving baroclinic circulation43,44. It also potentially modifies the
shape of the subpolar gyre and the location of its associated
fronts45,46. We exploit this connection to test whether periods of
increased in polar water influence in the eastern Labrador Sea
indeed weakened the deepwater formation in the region and also
the strength of the gyre circulation. For this, we compare our
results to published subpolar frontal shifts southeast of Iceland
inferred from salinity reconstructions in core RAPiD-12-1K47

(Fig. 1). Following the work by ref. 45, saltier surface conditions
south of Iceland are suggested to reflect a weak and therefore
contracted gyre and north-westward migration of the subpolar
front. Conversely, fresher conditions south of Iceland are sug-
gested to correspond to an expanded/stronger gyre45. Despite the
lower temporal resolution of the South of Iceland salinity
record47, these data consistently show saltier (and warmer)
conditions indicative of a contracted and weaker gyre (Fig. 3a)
during periods of cold conditions in the eastern Labrador Sea
(Fig. 3b, c) and reduced LSW formation (Fig. 3a, d).

Land–ocean–atmospheric linkages. Comparison of our new and
published records not only reveal consistent timing of ocean
variability in the subpolar North Atlantic across different sites,
but also show a clear temporal correspondence with continental
climate reconstructions and historical records (Figs. 3e, 4). Peri-
ods of increased influence of polar waters in the eastern Labrador
Sea (Fig. 3b, c), reduced LSW formation (resulting in faster
ISOW, Fig. 3d) and weaker subpolar gyre (Fig. 3a) largely coin-
cide with well-established cold periods recorded in glacier
advances, tree-ring and pollen records in the circum-North
Atlantic and northwest Europe48–51 (Fig. 3e; Supplementary
Fig. 4). These cold periods have been associated with historical
events of societal relevance such as famines and pandemics due to
crop failures during the relatively short-lived Cold Ages Dark
Period (recently renamed as the Late Ages Little Ice Age52) and
the demise of the Norse settlements in Greenland at the onset of
the Little Ice Age (LIA) with the consecutive complete isolation of
Greenland by surrounding sea ice for the following centuries
(Fig. 4). Conversely, periods of reduced influence of polar waters
in the eastern Labrador Sea (Fig. 3b, c), stronger subpolar gyre
(Fig. 3a) and increase LSW formation (resulting in slower ISOW,
Fig. 3d) largely coincide with mild/warm periods in Europe
namely the Roman Warm Period and the Medieval Climatic
Anomaly. These intervals are recorded as periods of glacier
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retreats (Fig. 3e)49 and/or periods of no glacier advances (Sup-
plementary Fig. 4), with milder temperatures allowing the
northward expansion of vineyard crops to the North of Italy and
even the British Isles (Fig. 4). This strong correspondence in the
timing of ocean and continental climate variability suggests that
the ocean conditions, particularly the formation of LSW, related
changes in the subpolar gyre strength, and attendant northward
heat transport, were probably key in modulating the climate in
northwest Europe (Fig. 5).

The overriding question is: what drove these shifts in the
subpolar North Atlantic? We present convincing evidence for the
importance of the southward export of polar, sea ice laden waters,
into the North Atlantic delivering the freshwater from the Arctic
Ocean into the Labrador Sea. However, variability in the heat
removal from the central Labrador Sea via wind stress changes
could have also had a role in driving the recorded ocean
variability. For instance, a weaker and more meridional westerly
winds (associated with a persistent negative North Atlantic
Oscillation, NAO) would have not only limited heat loss from the
surface of the central Labrador Sea reducing deep water
formation and weakening the gyre strength, but would have also
enhanced the southward transport of polar waters from the EGC
and vice versa under persistent positive NAO-like conditions.

Atmospheric circulation reconstructions across the last 3000
years are limited and show differing results. Yet, several studies
suggest periods of a predominant negative NAO during
3000–2500 years BP and the LIA (~500 years BP) with generally
more positive NAO-like circulation around 500–2000 years BP53–

56, which would broadly correspond with the timing in the ocean
variability presented in Fig. 3. However, most of these records use
single or bi-proxy environmental records for NAO reconstruc-
tions, a methodology that has been recently questioned to yield
robust results57. For example, if we focus on the last millennium,
where there is more data available, a new statistical method
applied to a network of 48 annually resolved proxy records has
found no evidence for a persistent negative NAO conditions
during the LIA57, supporting modelling studies that suggest no
significant atmospheric change at this time58. Similarly, to the
LIA, it may be that the NAO did not undergo long-lasting
centennial shifts during the climatic events of the last 3000 years.
This would be in agreement with atmospheric variability exerting
a more dominant control on the ocean over shorter time scales
(decadal)59, whereas the longer centennial timescale changes
likely being forced by the ocean through small buoyancy changes
in central Labrador Sea58, also perhaps impacting the atmo-
spheric circulation as a result. If this is the case, an increase in the
southward transport of polar waters into the Labrador Sea alone
would have been sufficient to drive the reconstructed ocean
variability in the LSW formation and gyre strength, as suggested
by last millennium model studies60,61.

Our data provide evidence of concomitant centennial-scale
changes in the subpolar North Atlantic circulation and northwest
European climate over the last 3000 years. Yet, whether these
changes were associated with an overall AMOC reduction during
these centennial events still remains equivocal. The Nordic Seas
Overflows contribute with the densest waters to the deep limb of

Roman Ages Warm Period Medieval Warm
Period

Roman Optimum: Warm W Europe3

(eg. viticulture in Britain) Success of English vineyards'

300–500 km shift north of
sensitive crops in Europe'

Largely ice-free around Iceland7

favourable conditions for voyages
and settling in Greenland and
Iceland ~950AD3

Alp glacier retreat. (Roman gold mines)'

Warm nettlebug (Britain)3

Repetitive severe winters Romans
record freezing ofTiber'

619-696AD Volc3

536: Dust veil documented1,2

(two large volcanic eruptions 536,540AD4,5)

Justinian Plague and famines3

Abandonment of sailing
routes to Greenland'

Increased sea ice around Iceland6

Demise of Norse settlements7

(adverse hunting marine
conditions around Greenland)

Shift in Norse food
source (more marine)7

Increase in ice
encounter in sailing
route to Greenland'

More prominent frosts in Europe'

Glacier advances in Alps'

Cold Dry N and W Greenland
(ice-cores, paleobotanism)'

Glacier advances in Alps
lowered Snow Line Lebanon,
Near East and Equatorial Africa'

Iron Ages Cold Epoch Dark Ages
Cold Period

Little Ice Age

Cluster of volc.
eruptions3

Years BP
3000 2000

LSW/SPG records

No more data

RAPid-35-COM (%Nps)*
RAPid-35-COM (Δδ18OTq-Nps)*
RAPid-2I-COM (SS)*
  δ13C40and εNd,42 RAPiD-I2-IK47

1000

Years CE/BCE

500 0 500 1000 1500 2000

1000 0

Savena and Son : North spreading of vine and
olive cultivating in Italy (transplants would not
survive in earlier centuries)'

Fig. 4 Schematic timeline highlighting historic records of climate variability in Europe. Red and blue lines denote the time-span for the evidence for warm
and cold periods, respectively. Ages are in years BP (black) and years CE/BCE (grey). This information has been extracted from several publications
indicated by the superscript in the annotations: 1. ref. 68 and references herein; 2. ref. 69; 3. ref. 70 and references herein; 4. ref. 71; 5. ref. 72; 6. ref. 73; 7.
ref. 74 The cold and warm periods established through the glacier advances and retreats used as a framework for the study of these centennial events49 are
found within the axis of the timeline and highlighted by the vertical grey bars (consistent with Figs. 2 and 3). The marine paleoceanographic reconstructions
for the LSW and Subpolar Gyre (SPG) presented in Fig. 3 are represented in blue and pink horizontal bars indicating time intervals below and above average
values of the records for the last 3000 years for weaker and stronger LSW/SPG, respectively. For more information on the agreement with terrestrial proxy
records and historical events see Supplementary Fig. 4

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01884-8

6 NATURE COMMUNICATIONS | 8:  1726 |DOI: 10.1038/s41467-017-01884-8 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


the AMOC62, but these do not show coherent centennial changes
in their flow speed over the last 3000 years15, and, in fact, their
multicentennial scale variability suggests compensating transport
between the overflows east and west of Iceland (Faroe Bank
Channel and Denmark Strait, respectively)15. Although it is
therefore probable that LSW formation had an important role in
modulating centennial-scale changes in the AMOC strength, it is
also entirely conceivable that these oceanic processes did not
significantly reduce the AMOC and perhaps the climate of
northwest Europe during the last 3000 years was mainly a
response to changes in the oceanic northward heat transport
predominantly controlled by subpolar gyre strength and the heat
transport by its boundary currents. This mechanism is consistent
with processes found in numerical model studies, which explain
the onset of the LIA and its associated cold European winter
temperatures as a result of changes in the subpolar gyre
strength61,63.

Observations and model studies coherently suggest a twentieth
century freshening of the North Atlantic particularly in the
Labrador Sea due to an accelerated melting of the Greenland Ice
Sheet and Arctic run-off64. This freshening is already having
effects on deep water formation in the Labrador Sea and the
AMOC65,66. However, unlike the natural late Holocene oceanic
variability presented in this study, the twentieth century
freshening of the surface waters in the Labrador Sea is also
accompanied by general warming, particularly of the IC waters,
which will lead to a greater reduction in surface densities
potentially further limiting convection in the Labrador Sea18. In
addition, a recent model comparison study has highlighted the
inability of most climate models to correctly represent the surface
mixed layer depth in the subpolar gyre region and hence likely
underestimating the potential for a future collapse of the LSW
formation/subpolar gyre under enhanced freshwater forcing67. It
is therefore essential that we continue to improve our under-
standing of the LSW/subpolar gyre dynamics at a range of time
scales to reduce uncertainty in future climate predictions.

Methods
Planktonic foraminifera oxygen isotope measurements. We measured the δ18O
of the foraminiferal calcite of approximately 40–70 Turborotalita quinqueloba (Tq)
individuals and 50 Neogloboquadrina pachyderma (s) (Nps) individuals in the
150–212 µm size fraction in RAPiD-35-COM (Supplementary Fig. 1). Stable iso-
tope measurements on the foraminiferal shells were performed on the Thermo
Finnigan MAT 253 mass spectrometer coupled to a Kiel II carbonate preparation
device at Cardiff University. The mass spectrometer was calibrated through the
international standard NBS-19, and all isotopic results are reported as a per mil
deviation from the Vienna Pee Dee Belemnite scale (‰VPDB). External repro-
ducibility of carbonate standards was ±0.08‰ for δ18O.

N. pachyderma (s) counts. We estimated the %Nps in RAPiD-35-COM by
splitting each sample and counting a minimum of 350 planktonic foraminiferal
individuals between the 150–250 µm size fractions.

Sortable silt mean grain size. Sortable silt mean grain size (SS) is the mean grain
size of the 10–63 µm terrigenous material38. The size sorting of this particle size
range behaves non-cohesively and thereby responds to hydrodynamic processes
making it useful as a proxy for near-bottom flow speeds of its depositing current38.
The preparation of the sediment from RAPiD-21-COM for SS analysis involved the
removal of carbonate and biogenic opal using 2 M acetic acid and 0.2% sodium
carbonate (Na2CO3) at 85 oC for 5 h. To ensure full disaggregation the samples
were suspended in 0.2% Calgon (sodium hexametaphosphate) in 60 ml Nalgene
bottles, and placed on a rotating wheel for a minimum of 24 h. Before measuring in
a Beckman Multisizer 2 Coulter Counter the samples were finally ultrasonicated for
3 min. Each sample was measured three times with an average standard deviation
between the average particle sizes of the three runs from the same sample of 0.19
µm. The splicing between RAPiD-21-12B and RAPiD-21-3K, into RAPiD-21-COM
was done as described in ref. 17 using the % coarse fraction. The SS variability
between the overlapping sections (35 cm) of the two cores (RAPiD-12-21B and
RAPiD-21-3K) was in close agreement, although the SS values were consistently
offset by 0.36 µm. To address this, the spliced SS record was constructed by
applying an offset of +0.36 µm to RAPiD-21-3K.

Data availability. The data sets generated during the current study are available
through the NOAA climate data centre (https://www.ncdc.noaa.gov/paleo/study/
22790) and available from the corresponding author.
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