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ABSTRACT 

 Developmental and epileptic encephalopathies (DEE) are characterized by the co-occurrence of 

epilepsy and intellectual disability (ID), typically with developmental plateauing or regression 

associated with frequent epileptiform activity. The cause of DEE remains unknown in the majority of 

cases. We performed whole-genome sequencing (WGS) in 197 individuals with unexplained DEE and 

pharmaco-resistant seizures and in their unaffected parents. We focused our attention on de novo 

mutations (DNMs) and identified candidate genes containing such variants. We sought to identify 

additional subjects with DNMs in these genes by performing targeted sequencing in another series of 

individuals with DEE and by mining various sequencing datasets. We also performed meta-analyses to 

document enrichment of DNMs in candidate genes by leveraging our WGS dataset with those of 

several DEE/ID series. By combining these strategies, we were able to provide a causal link between 

DEE and the following genes: NTRK2, GABRB2, CLTC, DHDDS, NUS1, RAB11A, GABBR2 and 

SNAP25. Overall, we established a molecular diagnosis in 63/197 (32%) individuals of our WGS 

series. The main cause of DEE in these individuals was de novo point mutations (53/63 solved cases), 

followed by inherited mutations (6/63 solved cases) and de novo CNVs (4/63 solved cases). De novo 

missense variants explained a larger proportion of individuals in our series than in other series that 

were primarily ascertained because of ID. Moreover, these DNMs were more frequently recurrent than 

those identified in ID series. These observations indicate that the genetic landscape of DEE might be 

different from that of ID without epilepsy. 
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INTRODUCTION 

Epilepsy is often associated with major comorbidities, most frequently intellectual disability 

(ID), which affects 25% of children with epilepsy.1,2 Conversely, the frequency of life-time history of 

epilepsy ranges from 7-15% for individuals with mild to moderate ID to 45-82% for those with severe 

ID.3 The co-occurrence of epilepsy and ID may involve at least two non-exclusive mechanisms. In 

some cases, uncontrolled seizures can be detrimental to developing cortical networks, leading to 

regression and poor cognitive outcomes in children.4 The term “epileptic encephalopathy” (EE) has 

been used to designate disorders where the epileptic activity itself contributes to cognitive slowing or 

regression, and can occur in a child with or without preexisting developmental delay.5 In other 

instances, a single genetic or environmental process is sufficient to induce both seizures and cognitive 

impairment.6 For instance, mutations that induce specific synaptic defects might result in aberrant 

connectivity and seizures as well as alter synaptic plasticity and cause learning disabilities. The term 

“developmental encephalopathy” (DE)” has been proposed to designate disorders where developmental 

delay emerges prior to the presence of epileptic activity or in the presence of infrequent epileptic 

activity.5 Because it is not always easy to dissect the contribution of each of these mechanisms and 

because some genetic disorders can involve both mechanisms in the same or in different individuals, 

the term ‘developmental and epileptic encephalopathy’ (DEE) has been coined to refer to conditions 

characterized by both ID and epilepsy where both mechanisms may play a role.5  

Recently, parent-child exome sequencing studies in sporadic DEE cases have shown that de 

novo mutations (DNMs) are an important cause of DEE. However, only a minority of the studied cases 

were solved by these approaches, thus underlining the genetic heterogeneity of DEE and the need to 

sequence large cohorts to increase the power to identify novel genes associated with DEE.7,8 With an 

average of ~1 DNM affecting the coding sequence of an individual, one of the challenges has been to 

determine whether the candidate DNMs are pathogenic or coincidental. To address this, Samocha et al. 

(2014) published a statistical framework that determined the rate of de novo variants per gene per class 

of variant [e.g., missense, nonsense, frameshift, canonical splice site (CSS)] that could be used to 

determine whether there is gene enrichment for a particular variant class in the studied cohort, thus 

providing evidence that the observed DNMs are likely implicated in the disease.9 This strategy was 

recently successfully employed in meta-analyses of DNMs identified from various ID and/or 

developmental disorder sequenced trios to identify genes enriched in DNMs in these cohorts.10,11 

In this study, we performed whole genome sequencing (WGS) on 197 DEE individuals and 

their unaffected parents. We focused our analyses on DNMs [single nucleotide variations (SNVs), 
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small insertions/deletions (indels)] and copy number variations (CNVs) affecting coding or splice site 

regions). To identify genes implicated in DEE, we performed meta-analyses combining the DNMs 

identified in our series along with those found in other studies of DEE or ID trios and looked for genes 

statistically enriched in DNMs. We also performed targeted sequencing and leveraged our network of 

collaborators and gene-matching tools to find additional similarly affected cases with DNMs in some of 

our prioritized genes, thus providing additional support for their implication in the disease. Based on 

these collective approaches, we provide herein evidence implicating DNMs in 8 genes in DEE. 

 

SUBJECTS AND METHODS 

Subjects. The DEE series screened by WGS (n=197 trios) was recruited at three centers in Canada: the 

Sainte-Justine University Hospital Center in Montreal (HSJ; 99 trios), the Toronto Western Hospital 

(TWH: 35 trios) and the Hospital for Sick Children in Toronto (HSC; 63 trios), after approval by the 

ethics research boards and obtaining informed consent from each participant or legal guardian. This 

series, referred to as the Canadian Epilepsy Network (CENet) DEE cohort, included subjects with 

diverse DEE phenotypes. The criteria used for the selection of these individuals were as follows: 1) 

intractable epilepsy defined as an absence of response to two appropriate and well-tolerated AEDs over 

a 6-month period and an average of at least one focal, generalized tonic-clonic, myoclonic, epileptic 

spasms, tonic, atonic or absence seizure per month during the period of poor control; 2) intellectual 

disability or global developmental delay (GDD); 3) absence of malformations or focal/multifocal 

structural abnormalities on brain MRI; and 4) absence of parental consanguinity and family history of 

epilepsy, intellectual disability or autism in first-degree relatives. Each individual was classified into a 

specific epilepsy syndrome when possible (Table S1). The majority (~90% of cases) had had array 

comparative genome hybridization performed on a clinical basis and only those with no pathogenic or 

possibly pathogenic CNVs were included. Many of the individuals were previously screened negative 

for mutations in various DEE gene panel tests.  A subset of candidate genes identified in the course of 

this study were sequenced in a cohort comprised of 595 individuals with EEs of unknown cause (Table 

S2), most of whom had been tested for mutations in genes previously associated with DEE as well as 

for pathogenic CNVs, as described.12 We were also able to recruit, through various collaborations, 

additional subjects with DNMs in candidate genes identified from clinical or research exomes. 

Informed consent was similarly obtained from these individuals or their legal guardians. 
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Whole genome sequencing. WGS sequencing was performed at the McGill University and Genome 

Quebec Innovation Center as part of the Illumina Genome Network (IGN) and according to the IGN 

standard procedure. Briefly, genomic DNA extracted from blood samples was subjected to an 

additional cleaning step using ZR-96 DNA Clean & ConcentratorTM-5 Kit (Zymo) and then used to 

generate sequencing libraries using the TrueSeq DNA PCR-free library preparation kit and according 

to the manufacturer’s procedure. Sequencing was done either on the HiSeq2000 (100 bp paired-end; 1 

genome/ 3 lanes) or the HiSeq2500 (125 bp paired-end; 1 genome/ 2 lanes) such that a minimum final 

coverage of 30x was attained after data processing.  

 

WGS data processing, variant calling and analyses. The Illumina sequencing reads were generated 

using bcl2fastq v1.8.4. Trimmomatic v0.32 was used to remove bad quality reads and to trim the read 

edges with a lower quality. The filtered reads were aligned to reference Homo sapiens assembly b37 

(GRCh37) using BWA-mem v0.7.10 to create a Binary Alignment Map file (.bam). Read set BAM 

files from different sequencing lanes for the same sample were merged into a single global BAM file 

using Picard v.1.123. Regions containing multiple base mismatches were realigned locally using 

Picard. Once local regions were realigned, Picard was also used to recalculate the read mate 

coordinates and to mark duplicates for removal. Individual base quality values were recalibrated using 

GATK v.3.3-0. Genotypes were called using GATK Haplotype-Caller and all variant calls were 

merged and recalibrated in three different sensitivity tranches using GATK and according to its 

recommended best practices. All variant sites were annotated using a custom version of Annovar.13 

Only variants whose positions were covered at ≥10x and supported by at least 4 variant reads 

constituting ≥ 25% of the total reads for each called position were considered. Rare variants included 

those present with a minor allele frequency (MAF) of ≤0.005 in 1000 Genomes, GoNL, ExAC vs 0.3, 

EVS (NHLBI Exome Sequencing Project; ESP) or ≤ 2% in the unaffected parents from the entire trio 

dataset. A variant segregation analysis (child-parents) was performed using an in-house script. Putative 

DNMs were identified by excluding those present in the genomes of the parents and those with a MAF 

≥ 0.001 in ExAC. Potential de novo variants outside the exonic and splice consensus regions were 

further excluded if present in small-repeat regions (for SNVs and indels), in Alu regions (for indels) or 

had a SNV variant quality recalibration score (VQSRT) of ≥ 99.90-to-100.00 or an indel VQSRT 

different than PASS. The sequencing reads carrying putative DNMs were inspected visually in each 

trio using the Integrative Genomics Viewer (IGV)14 to exclude obvious false positives or inherited 

variants. Putative DNMs affecting the coding and consensus splice regions were validated by Sanger 
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sequencing in the corresponding trio. 

 

CNV analyses. CNVs were identified using two algorithms: Lumpy, whose calls integrate multiple 

breakpoint signals, and PopSV, whose calls rely on deviation from normalized read-depths across 

samples.15,16 Default parameters were used unless otherwise specified. For PopSV, 5kb bin scans of the 

genome were used. CNV calls were filtered to exclude those with a size <1kb and qv (PopSV) or 

evidence set scores (Lumpy) ≤ 0.1%. CNVs falling in regions of segmental duplications were also 

excluded. To identify de novo CNVs, we excluded those present in any of the parents’ samples from 

the entire data set or in population controls from the 1000 Genomes or from the CNV map high quality 

datasets of common variants.17 De novo CNVs called by both Lumpy and PopSV were prioritized for 

validation. Potential de novo CNVs detected by only 1 algorithm, and thus likely enriched in false 

positives, were considered for validation only if they affected exonic regions and if they could not be 

ruled out as inherited or false positives upon visual inspection by IGV of the reads near the breakpoints. 

CNVs were validated in the trio using standard qPCR (Taqman assay) and/or by Sanger sequencing.  

 

Targeted sequencing using the Molecular Inversion Probes (MIPs) technique. Seven of our 

initially prioritized genes (DHDDS, RYR2, HECW2, GABRB2, NUS1, NTRK2 and CLTC) were 

selected for MIPs sequencing in a cohort of 595 individuals with DEE. We used a multiplex targeted 

capture strategy to target the coding exons and intron-exon boundaries (a minimum of five base pairs of 

flanking sequence) in each of the seven genes. Single molecule molecular inversion probes (smMIPs) 

were used as previously described18 with minor modifications detailed below. The molecular tag within 

the probe consisted of five random nucleotides that allowed for distinction of genomic molecules and a 

high-confidence consensus call. Library preparation remained the same as described by O’Roak et al. 

(2012)19 except the ratio of probe to genomic DNA was adjusted to 2,000:1, a tenfold increase than 

previously reported. Sequencing was performed on an Illumina HiSeq2500 to generate 100 base pair 

pair-end reads. Raw read mapping and processing were performed as previously described.12 Private 

variants (absent from SNP public databases: ExAC v0.3, EVS, and 1000 Genomes) predicted to affect 

the protein sequence (missense, nonsense, indels, and canonical splice sites) were validated using 

Sanger sequencing in the proband and the parents.  

 

Gene-specific DNM enrichment. We used DenovolyzeR open access program to assess whether a 

specific gene is enriched in DNMs in subjects with DEE and/or GDD/ID.20 This R package program is 
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based on gene-specific mutation rates.9 DNM gene specific p-values for loss-of-function variants (LoF: 

nonsense, CSS, frameshift indels) and functional variants (missense + LoF) calculated by DenovolyzeR 

were further corrected for multiple testing based on the 19 618 genes with available mutation rates on 

which Denovolyzer based its calculation (Bonferroni correction) and the number of tests (2; for LoF 

and functional categories) (i.e, 2 x 19 618 = 39 236). A corrected p-value (c.p-value) <0.05 was 

considered statistically significant. To increase statistical power, a meta-analysis was performed 

combining DNMs identified herein along with those previously reported from trio whole exome 

sequencing (WES) done on other DEE cohorts.8,21,22 We also performed another meta-analysis 

combining DNMs from the DEE cohorts with those from exome or genome sequencing from published 

ID cohorts.10,11,23-28. Only studies consisting of more than 10 trios were included in these meta-analyses 

(Table S3). To further increase the power to detect DNM-gene enrichment in genes whose mutations 

are not yet an established cause of DEE, we applied a similar strategy as Lelieveld et al (2016)11 who 

excluded from their meta-analysis trios with DNMs found in their curated list of genes previously 

associated with ID. Therefore, we performed a meta-analysis after excluding trios with DNMs affecting 

the autosomal dominant or X-linked genes mentioned in this list  (n = 572), which also includes genes 

associated with DEE, or trios with such mutations in 21 genes not reported in this list but subsequently 

found enriched with DNMs by Lelieveld et al. (2016) and/or by the recent Deciphering Developmental 

Disorders (DDD) trio sequencing study.10,11   

 

Clustering of de novo missense variants. We used the open source program Denovonear used in the 

DDD Study10,29 to calculate the probability of the proximity of de novo missense variants in genes of 

interest based on 1 million simulations weighted by the context trinucleotide rates. We considered a p-

value < 0.01 as statistically significant. 

 

RESULTS 

We performed WGS on 197 individuals with DEE and their unaffected parents. The average 

coverage of the genomes was 37.9x, with 99% of the genome (GRCh37) bases covered at ≥10x (Figure 

S1). The average number of SNVs and indels per genome was ~ 4 182 490 and ~23 532, respectively 

(Table S4). The average number of CNVs per subject, excluding those in segmentally duplicated 

regions, varied between 275 (PopSV) and 400 (Lumpy). In total, we detected an average of 66 high 

quality DNMs (61 SNVs, 5 indels) that passed IGV inspection (~75% of total DNMs calls) per 

individual, translating into a mutation rate of ~1.2x10-8 DNMs per diploid genome/generation, which is 
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in the range reported from other WGS trio studies.24,30-32  

We next focused our attention on the putative DNMs affecting the coding and the CSS that 

passed IGV inspection. We were able to validate by Sanger sequencing 95% of these calls. In total, 288 

DNMs were validated (1.46 DNM/trio), representing an average of ~1.37 de novo SNVs and 0.09 

indels per individual, which is in the range of what was observed in a previous WES study of DEE trios 

(Table S5).8 We did not detect any DNM in the coding or CSS regions of 39 probands (20%) (Figure 

S2A). Considering only de novo SNVs, 7.8% are predicted to cause a loss of function (nonsense and 

CSS variants) while 72% to cause a missense change (Figure S2B). We compared the de novo SNV 

rates observed in our DEE individuals with those observed in unaffected siblings of individuals with 

autism spectrum disorders (ASD; 66.5% missense, 4.8% LoF)33 or in Icelandic controls (82% 

missense, 2.7% LoF).32 We found an excess of LoF SNVs in our EE subjects when compared to these 

control sibling exomes (p = 0.03, binomial exact test) or Icelandic genomes (p = 0.00002; binomial 

exact test), suggesting that a subset of these variants contributes to the disease. 

We also searched for de novo CNVs. In total, 12 CNVs were called as de novo by both Lumpy 

and PopSV, all of which were successfully validated by qPCR and/or Sanger sequencing. In addition, 

35 putative de novo CNVs encompassing exonic regions were identified by only one of the algorithms; 

6 of these putative CNVs were confirmed de novo by qPCR, 17 were inherited and 12 were false 

positives. In total, 10/18 validated de novo CNVs affected exonic regions, including 5 deletions and 5 

duplications (Table S6).    

 

Likely pathogenic variants identified in the CENet series 

 For all DNMs and rare recessive variants (bi-allelic, X-linked hemizygous) affecting the coding 

regions or CSS, we assessed the involvement of the corresponding genes in epilepsy or related 

neurodevelopmental disorders by searching Pubmed [Gene name and (“epileptic encephalopathy” or 

“epilepsy” or “seizure” or “mental retardation” or “intellectual disability”)] and verifying the gene’s 

OMIM description. Using the ACMG 2015 guidelines for sequence variant interpretation,34 we initially 

identified pathogenic or likely pathogenic variants in 50/197 subjects (25%) in genes which, when 

mutated, have been shown to cause DEE and/or ID. Of these, 88% were explained by DNMs and 12% 

were caused by inherited recessive mutations (Tables 1, S5 and S7).  

We also identified pathogenic de novo CNVs in 3 individuals, including a 8 Mb deletion 

encompassing PCDH19 (OMIM 300460) in a female individual, a 5.2 Mb duplication corresponding to 

the 15q11-q13 region located between the recurrent breakpoints BP2-BP3 and a 3.4 kb exonic deletion 
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of DNMT3A (OMIM 615879), all of which have been previously associated with ID and/or epilepsy. 

 

Targeted MIPs sequencing  

From the WGS results of our first 120 DEE trios, we prioritized 7 of our best candidate genes 

(CLTC, DHDDS, GABRB2, HECW2, NTRK2, RYR2 and NUS1) for targeted resequencing in 595 

unsolved DEE cases. These genes were selected based on the documentation of predicted-damaging 

DNMs in at least 2 unsolved individuals from the CENet series or in 1 unsolved individual from the 

CENet series and in at least 1 previously reported case with DEE and/or ID. Exon-1 of NUS1 was 

excluded from the analysis because it was poorly covered across the samples (18% of the target bases 

at ≥10x), possibly due to its high GC content. On average, 90% of the target bases were covered at 

≥10x in 476 samples. Reduced coverage was obtained in the remaining 119 cases such that only 70% 

of the target bases reached the ≥10x, probably due to poor DNA quality. Four predicted-damaging 

missense variants absent from ExAC were identified, each in a single DEE subject, in NTRK2 

(NM_006180.4:c.1301A>G: p.Tyr434Cys), GABRB2 (NM_021911.2:c.730T>C:p.Tyr244His and  

c.911C>T: p.Ala304Val), and HECW2 (NM_020760.1:c.4484G>A: p.Arg1495Lys). These variants 

were validated as de novo by Sanger sequencing. Interestingly, 2 of the DNMs affecting GABRB2 

(p.Tyr244His) and NTRK2 (p.Tyr434Cys) were also recurrent in the CENet series. The missense 

(p.Arg1495Lys) in HECW2 is also recurrent as it was previously reported as a de novo variant in a 

DDD case.10 Recently DNMs in HECW2 have been shown to cause DEE.25,35  

 

Involvement of NTRK2, GABRB2, CLTC, DHDDS and NUS1 in DEE 

  We next sought to identify additional individuals with DEE or ID who carry DNMs in the 

candidate genes that were prioritized for MIPs sequencing by mining GeneMatcher36 and 

DDD/Decipher37 and by contacting our network of collaborators. Through this approach, we were able 

to obtain additional supporting evidence for the involvement of the following genes in DEE.   

NTRK2. Our trio WGS and targeted sequencing strategy led to the identification of 3 

individuals with DEE carrying de novo predicted-damaging missense variants in NTRK2 

(NM_006180.4), including an individual with c.2159C>T (p.Thr720Ile) variant and 2 unrelated 

individuals with the same c.1301A>G (p.Tyr434Cys) variant. In addition, we identified 2 other 

individuals with the de novo p.Tyr434Cys missense through clinical WES.  

In total, we identified 4 individuals with the p.Tyr434Cys missense. All subjects with this 

missense variant had severe GDD/ID and optic nerve hypoplasia with visual impairment, and 3 had 
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significant feeding impairment (Table 2; Supplemental Note). Three of them presented with epileptic 

spasms in the first few months of life and subsequently developed intractable seizures of various types 

associated with multifocal epileptic activity on EEG whereas the remaining individual had startle-like 

myoclonic events at 12 hours of life and developed, at 5 years of age, focal seizures with impaired 

awareness occasionally evolving towards bilateral tonic clonic seizures. Clustering analysis using the 

Denovonear algorithm indicated that the presence of the p.Tyr434Cys variant in 4 individuals with 

similar phenotypes is statistically significant (p = 0.0001). 

The subject with the p.Thr720Ile missense mutation had moderate-severe ID, ASD and 

intractable generalized tonic-clonic and focal seizures with impaired awareness starting at the age of 

2.5 years. Unlike the individuals with the p.Tyr434Cys missense, she had hyperphagia and early-onset 

obesity from the age of 3 years. Interestingly, Yeo et al. (2004) reported an individual carrying the de 

novo c.2165A>G (p.Tyr722Cys) variant, affecting an amino acid residue adjacent to Thr720, who 

presented with a similar phenotype as that of our subject, including excessive weight gain, moderate 

ID, language delay, autistic features, hypotonia and seizures.38  

NTRK2 encodes the TrkB receptor, a member of the neurotrophin receptor tyrosine kinase 

family.39 TrkB has high affinity for the brain derived neurotrophic factor (BDNF) and for neurotrophin-

4 (NT4). BDNF-TrkB signalling is a critical regulator of neuronal development and function.40 The 

p.Tyr434Cys variant is located at the beginning of the transmembrane domain (TM) of NTRK2 (Figure 

1A). The fact that this de novo variant has been identified in 4 cases with a similar phenotype suggests 

that it confers a specific property to the protein, possibly via a gain-of-function or a dominant-negative 

mechanism. The p.Thr720Ile and p.Tyr722Cys variants cluster in the catalytic domain of NTRK2 

(Figure 1A). In vitro studies indicate that p.Tyr722Cys impairs BDNF-induced TRKB receptor 

autophosphorylation and downstream signalling.38 It is currently unknown whether the p.Thr720Ile 

affects NTRK2’s function in a similar way but its proximity to p.Tyr722Cys and the similarity in the 

phenotype of both individuals carrying these mutations suggest that this could be the case. 

Interestingly, mice expressing 25% of TRKB levels are hyperphagic and have excessive weight.41 

Altogether, our findings unequivocally show that DNMs in NTRK2 cause DEE. 

GABRB2. Our WGS and MIPs screens identified 3 individuals with DEE carrying DNMs in 

GABRB2 (NM_021911.2), including the c.911C>T (p.Ala304Val) variant in one subject and the 

recurrent c.730T>C (p.Tyr244His) variant in 2 subjects. Two other individuals with DNMs in GABRB2 

were identified by the DDD study10, one with the c.830T>C (p.Leu277Ser) variant and another with the 

c.373G>A (p.Asp125Asn) variant. We also identified from WES and targeted gene panel sequencing 6 
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individuals with de novo missense variants in GABRB2, including one with the same c.830T>C 

(p.Leu277Ser) as that found in the DDD subject, one with c.851C>A (p.Thr284Lys), one with 

c.878G>C (p.Arg293Pro), one with a missense (c.908A>G:p.Lys303Arg) adjacent to c.911C>T 

(p.Ala304Val) identified in our MIPs screen, one with c.946G>A (p.Val316Ile) and one with a de novo 

c.236T>C (p.Met79Thr) variant. This latter individual was previously reported with a de novo 

frameshift in CHAMP1 (NM_032436.2: c.1876_1877delAG:p.Ser626Leufs), which also likely 

contributes to the cognitive impairment of the subject (F3-II.1 in Isidor et al. 2016).42 All of these de 

novo missense variants are predicted damaging (polyphen-2, SIFT and CADD). Their localization in 

GABRB2 is shown in Figure 1B.  

We were able to obtain detailed clinical information for all of these 11 individuals (Table 3; 

Supplemental Note). They all displayed moderate to severe ID (or severe GDD), with the exception of 

the individual with the p.Val316Ile variant who achieved normal milestones at 21 months of age. Most 

cases had microcephaly (n=7/11), which was acquired in 6 individuals and congenital in the 7th. Most 

individuals developed refractory seizures within the first year of life, with a preponderance of 

myoclonic seizures and absences, sometimes evolving towards myoclonic status epilepticus or non-

convulsive status epilepticus. Some individuals developed focal seizures with impaired awareness or 

autonomic seizures, tonic, atonic seizures, and rarely generalized tonic-clonic seizures. In half of the 

cases, the epilepsy remained refractory despite multiple drug trials. Two individuals were trialled on 

vigabatrin with marked deterioration. Responses were observed to lamotrigine, valproate, levetiracetam 

or high dose steroids in 5 individuals. Axial hypotonia, spasticity, dystonia and choreoathetosis appear 

to be common features. Cortical visual impairment was present in 3/11 cases. Brain MRIs were usually 

normal, except for delayed myelination or diffuse T2 hypersignal in the subcortical white matter, as 

noted in 3 individuals.  

GABRB2 encodes the β2 subunit of the GABAA receptor, a neuronal pentameric ionotropic 

ligand-gated chloride channel that induces synaptic inhibition when activated by its agonist GABA.43 

Mutations in other GABAA receptor subunits encoding GABRA1 (OMIM 137160), GABRB1 (OMIM 

137190), GABRB3 (OMIM 137192) and GABRG2 (OMIM 137164) are established causes of DEE. 

Three cases with DNMs in GABRB2 and detailed phenotypic information have been previously 

published: one of these subjects, who carries the DNM p.Met79Thr, also found in one of our cases, 

showed generalized seizures and moderate ID, another one displayed ID, seizures (of unspecified type) 

and cortical visual impairment (c.754C>G: p.Pro252Ala) and the last one was found to have early-

onset myoclonic encephalopathy (c.859A>C: p.Thr287Pro) .44 45,46 Four additional cases with de novo 
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missense in GABRB2, including c.845T>C (p.Val282Ala), c.863T>G (p.Ile288Ser), c.909G>T 

(p.Lys303Asn), c.911C>T (p.Ala304Val), have been reported.47-49 The amino acid residues affected by 

the latter two of these DNMs (p.Lys303Asn and p.Ala304Val) were also found mutated in our series. 

These 4 individuals appear to show ID/GDD and epilepsy but no detailed clinical information was 

available. 

Out of the 13 DNMs in GABRB2 previously reported or described herein, 10 are clustered 

within a stretch of 60 amino acids (positions 244-304) encompassing 3 transmembrane domains and/or 

their boundaries (p-value = 0.000002, Denovonear) (Figure 1B). These clustering mutations appear to 

be mostly associated with severe GDD/ID and, with the exception of p.Arg293Pro, intractable 

generalized seizures and DEE. So far only 1 of these de novo missense variants, p.Thr287Pro, has been 

functionally tested in transfected HEK293 and found to reduce cell surface expression and peak current 

amplitudes of GABAA channels.46 It is currently unknown whether the other de novo missense variants 

in GABRB2 behave similarly to p.Thr287Pro, especially the closely clustering or recurrent ones 

(p.Tyr244His, p.Leu277Ser, p.Lys303Leu and p.Ala304Val), which may confer specific property to the 

protein such as gain-of-function or dominant negative effects. Collectively, the cases with DNM in 

GABRB2 reported here along with the previously published ones confirm that de novo missense 

mutations in GABRB2 can cause a DEE phenotype.  

CLTC. Our WGS trio screen identified a de novo frameshift variant in the CLTC gene 

(NM_004859.3), c.4575dupA (p.Val1526fs*18), in an individual with moderate ID associated with 

severe refractory seizures (absences, myoclonic, tonic, generalized tonic-clonic and focal seizures). We 

obtained detailed clinical information on 11 additional cases with DNMs in CLTC, 4 of which were 

identified by the DDD study10, while the other 7 we identified through clinical WES (Table 4; 

Supplemental Note). We were able to obtain detailed clinical information for all of these 12 

individuals. Most individuals presented with early-onset hypotonia and GDD, evolving towards mild to 

severe ID (or borderline intelligence). Four individuals also developed ataxia. When performed, 

neuromuscular investigations (EMG, biopsy) were negative. Two individuals had pharmaco-resistant 

epilepsy, with preponderance of myoclonic and generalized tonic-clonic seizures. One individual had 

one isolated seizure and is now seizure-free after being weaned from medication. Two other individuals 

had severe GDD/ID with seizures, starting between the ages of 1 and 2 years, that were well controlled 

with valproate or levetiracetam. Interestingly, 3 of the ID cases (one sequenced by the CAUSES Study, 

a second in the context of the Undiagnosed Patient Program [UPP] at OPBG, Rome) had a recurrent de 

novo missense (c.2669C>T: p.Pro890Leu), which was also reported in a DDD trio for which we were 
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not able to obtain phenotypic information. The presence of the same DNM in CLTC in 4 independent 

cases was statistically significant for missense clustering (p = 0.0000001, Denovonear). The positions 

of these various DNMs in CLTC are shown in Figure 1C. 

CLTC encodes the widely expressed clathrin heavy chain 1, which is involved in endocytosis, 

intracellular trafficking and synaptic recycling.50,51 Recently, a de novo frameshift in CLTC 

(c.2737_2738dupGA p.Asp913Glufs*59) was reported in a subject with GDD, unclassified epilepsy 

and dysmorphic features.52,53 Two additional DNMs were also reported by Leliveld et al. (2016)11 from 

their study of 800 probands with ID, including c.4615C>T (p.Glu1539*) and c.3621_3623del 

(p.Asp1207del), the latter being also identified in one of our DEE cases. CLTC is predicted intolerant 

to LoF mutations with a pLi score of 1.00 according to ExAC.54 The phenotypic spectrum associated 

with these cases is heterogeneous ranging from mild ID or learning disability to severe ID or DEE. 

Interestingly, individuals with refractory epilepsy were found to carry mutations in the first section of 

the clathrin LC binding domain, whereas de novo truncating mutations at the C-terminus of CLTC 

tended to be associated with hypotonia, GDD and ID (Figure 1C).   

DHDDS. WGS identified a de novo missense variant (c.110G>A: p.Arg37His) in DHDDS 

(NM_024887.3) in of one of our DEE individuals (HSJ0762). We identified, by clinical WES, another 

individual with EE who carries the same de novo p.Arg37His. Interestingly, this missense lies adjacent 

to p.Arg38His, which has been reported in a DEE case from the Epi4K study.7 Clustering analysis 

indicated that the presence of these two de novo mutations in 3 individuals is statistically significant 

(p=0.0005, Denovonear). In addition, we identified by clinical/research WES two other individuals 

with DEE and a de novo missense c.632G>A (p.Arg211Gln) in DHDDS and obtained detailed clinical 

information on a third subject, also with the same de novo p.Arg211Gln (indvNCJ herein), who was 

previously reported in a recent WES study of ID trios.11 The positions of these various identified 

DNMs in DHDDS are shown in Figure 1D and their associated phenotype are summarized in Table 5 

and detailed in the Supplemental Note. 

 These 5 individuals with DNMs in DHDDS presented with a generalized epilepsy disorder with 

myoclonic seizures, either as myoclonic absences or as isolated cortical myoclonus, sometimes with 

light-sensitivity or fever susceptibility. Two of these individuals also presented other generalized 

seizure types, including atonic seizures or generalized tonic-clonic seizures. In 3 cases, the EEG 

revealed clear generalized spike-wave discharges (in one case with additional photosensitivity). The 

seizures were aggravated by levetiracetam in 2 cases, but favourable responses to valproic acid were 

observed. Interestingly, all cases presented with marked hypotonia and 4 had mixed movement 
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disorders including ataxia, tremors and dystonia.  

DHDDS encodes dehydrodolichyl diphosphate synthase (also known as hCIT), which is 

essential for dolichol monophosphate (Dol-P) synthesis and global N-linked glycosylation.55 The 

Arg37 and Arg38 residues fall into an evolutionary conserved stretch of 5 amino-acids (pos. 34-38) 

corresponding to the catalytic domain of the enzyme (Figure 1D). Based on the crystal structure and 

mutagenesis studies done on the bacterial Dhdds enzyme (M. luteus ndecaprenyl diphosphate synthase, 

UDPS), the Arg203 residue, which is equivalent to Arg211 in the human DHDDS, is critical for the 

homoallylic binding to the substrate isopentenyl diphosphate.56,57 The identification of recurrent or 

clustering DNMs in individuals with a similar phenotype in DHDDS is highly suggestive of 

pathogenicity. 

A homozygous missense variant (c.124A>G: p.Lys42Glu) was previously found in DHDDS in 

consanguineous families with retinitis pigmentosa.58,59 In addition, bi-allelic truncating/splicing 

variants in DHDDS were reported in a case of type I congenital disorder of glycosylation with severe 

GDD and refractory seizures.60 We hypothesize that null alleles of DHDDS disrupt brain development 

only in in the context of a recessive genotype whereas the DNMs documented in our study cause DEE 

via a dominant-negative or gain-of-function mechanism.    

 NUS1. We identified 2 DNMs in NUS1 (NM_138459.3), each in individuals from our WGS trio 

study, including a frameshift variant in exon-1 (c.128_141dup: p.Val48Profs*7) and a ~1.3 kb deletion 

encompassing the entire exon-2 of NUS1 in the other case. In addition, we identified a de novo 

truncating variant in NUS1 (c.743delA: p.Asp248Alafs*4) by clinical WES in an individual with DEE 

(Table 5, Supplemental Note; Figure 1E). These cases with DNMs in NUS1 all presented with GDD (or 

isolated motor delay), evolving towards mild to severe ID. Furthermore, they all presented generalized 

myoclonic seizures (in one case with myoclonic status epilepticus), combined with myoclonic absences 

in 2 cases. In all cases, other generalized seizure types were observed, including atonic seizures (drop 

attacks) or generalized tonic-clonic seizures. EEGs revealed either generalized epileptic activity or bi-

frontal epileptic discharges.  Movement disorders were also common, including tremor (2 cases) and 

ataxia (one case). Together, this clinical phenotype is highly reminiscent of the one we observed in 

cases with DNMs in DHDDS.  

 NUS1 encodes the Nogo-B receptor (NgBR) which physically interacts with DHDDS to 

stabilize the dehydrodolichyl diphosphate synthase complex and potentiate its enzymatic activity.55,61 

Both indel mutations identified in this study affect upstream exons, thus having the potential of 

inducing nonsense mediated decay of the transcript. In addition, both variants are predicted to abolish 



17 
 

the conserved C-terminal domain, which is required for the interaction with DHDDS.61 The deletion of 

exon-2 causes an in-frame deletion of amino acids 139-180 leading to the loss of TM3 which is critical 

for the proper topology of NUS1. Previously, a homozygous missense mutation affecting its C-

terminus (c.869G>A: p.Arg290His) was identified in 2 siblings with type 1a congenital disorder of 

glycosylation and a severe phenotype of early onset refractory epilepsy, congenital scoliosis, 

developmental delay with hypotonia, microcephaly, hearing and visual impairment as well as severe 

cortical atrophy.62 This mutation was found to decrease cis-PTase activity when expressed with hCIT 

(DHDDS) in yeast. In addition, Szafrans et al. (2015) reported cases with early onset seizures and 

microdeletions of chromosome 6q22.1, which are centered on a 250 kb critical region that only 

includes NUS1 and the promoter of SLC35F1.63 

Collectively, our finding of DEE cases with 2 truncating DNMs and 1 de novo whole exon 

deletion in NUS1, the reported DEE cases with NUS1 microdeletions and the fact that NUS1 is a 

functional direct interactor of DHDDS suggest that heterozygous mutations in NUS1 can cause DEE, 

possibly via a mechanism of haploinsufficiency. This is in agreement with the fact that NUS1 does not 

tolerate LoF variants as suggested by the ExAC dataset where no such LoF mutations were reported 

(pLi = 0.87).54 The more severe phenotype previously observed in the siblings with the homozygous 

p.Arg290His mutation could be due to a more dramatic reduction in NUS1 activity due to the recessive 

nature of a potentially hypomorphic mutation. Failure to identify other cases with NUS1 truncating 

mutations from the MIPs screen or other EE published trios maybe in part due to reduced capture 

efficiency of exon-1, which encodes 137/293 amino acids of NUS1 (~ 47%). Indeed, in the ExAC 

database, exon-1 of NUS1 is, on average, poorly covered by WES compared to the rest of exons of this 

gene. 

  

Meta-analyses of DNMs from DEE and DEE-ID cohorts 

 In order to further assess the involvement of various candidate genes in DEE, we sought to 

determine whether DNMs were enriched in certain genes in series of affected individuals by taking 

advantage of a statistical framework that is based on the use of gene-specific mutation rates.9 To 

increase power, we meta-analyzed DNMs from our DEE cohort along with DNMs from published 

WES DEE trio studies (combined DEE trios = 624; Table S3). In total, 12 genes were found to be 

statistically enriched for LoF and/or functional DNMs (Table 6); mutations in all of these genes are 

now considered causative of DEE. 

As epilepsy is a frequent co-morbidity of ID, we performed a second meta-analysis combining 
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the DNMs from published ID trios with those from the DEE-cohorts used above (DEE-ID cohorts: 

5948 trios: 7778 DNMs). In total, 111 genes were found enriched for functional and/or LoF DNMs, 37 

of which were found mutated in at least one DEE case (Table S8). Interestingly, DNM enrichment has 

not been previously documented for 22/111 genes, including 9 genes that have either not been directly 

associated with ID or DEE [(BTF3 (OMIM 602542), CHD3 (OMIM 602120), FBXO11 (OMIM 

607871), PLK5, SETD1B (OMIM 611055), SF1 (OMIM 601516)] or have been described only in 

single or few cases, therefore representing candidates pending additional evidence [(CLTC (OMIM 

118955),52 GABBR2 (OMIM 607340),12,27 PHIP (OMIM 612870)].64 Among these only GABBR2, 

PHIP and CLTC had some DNMs in DEE cases, while the rest had DNMs only in the ID cohorts 

(Table S8). 

Lelieveld et al. (2016) recently showed increased power to detect novel ID-associated genes in a 

meta-analysis after excluding individuals with DNMs in genes previously found to be causally linked 

to ID.11 We applied here a similar strategy to both the DEE-ID cohort and excluded individuals with 

DNMs in any of the genes mentioned in the list established by these authors.11 We also removed the 

cases with DNMs in genes that showed DNM enrichment from the recent meta-analyses done on 

ID/developmental disorder trios.10,11 This retained 4424 trios from the combined DEE-ID cohorts. As a 

result, 3 additional genes from the DEE-ID cohort showed modest but significant functional DNM 

enrichment, including GABRB2 (OMIM 600232; c.p-value = 0.036), RAB11A (OMIM 605570, c.p-

value = 0.036) and SNAP25 (OMIM 600322, c.p-value = 0.042), all of which were found with 

predicted-damaging DNMs in individuals from our CENet DEE cohort as well as in individuals from 

the ID cohorts.  

 

Additional supporting evidence for the involvement of RAB11A, GABBR2, SNAP25 in DEE 

 Our meta-analyses of EE-ID trios showed significant enrichment of DNMs in GABBR2, PHIP, 

CLTC, RAB11A, SNAP25 and GABRB2, genes whose mutations have not yet been confirmed as a cause 

of DEE.  With the exception of PHIP, we found predicted-damaging DNMs in all of these genes in 

individuals from the CENet series. We further validated the involvement of GABRB2 and CLTC in 

DEE by identifying additional cases in the context of our MIP screen or other WGS/WES studies (see 

above). As shown below, we also provide additional evidence for the involvement of RAB11A, and 

GABBR2 and SNAP25 in DEE. 

 RAB11A (NM_004663.3). We found a de novo predicted-damaging missense variant in 

RAB11A (c.244C>T: p.Arg82Cys) in a CENet case with refractory epileptic spasms and erratic 
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myoclonus with developmental regression. She subsequently developed focal seizures and severe ID. 

We also identified by WES another predicted-damaging de novo missense in RAB11A (c.71A>G: 

p.Lys24Arg) in an individual with moderate GDD and an abnormal EEG but with no seizures reported 

so far. Three additional individuals with DNMs in RAB11A were identified in the context of the DDD 

study10, including 2 individuals with the same variant (c.461C>T: p.Ser154Leu) and another individual 

with a different variant (c.39A>C: p.Lys13Asn). We were able to obtain detailed clinical information 

on the cases with the p.Ser154Leu variant that both showed moderate GDD without epilepsy. The other 

individual from the DDD study had abnormalities of the nervous system according to the Decipher 

database but we could not get additional clinical information. Brain atrophy and/or abnormalities of the 

corpus callosum were noted for three of the individuals with available MRI information (Table 7; 

Supplemental Note). 

 RAB11A encodes a GTPase that regulates the recycling of a wide range of receptors at the cell 

surface.65 Interestingly, RAB11A regulates synaptic plasticity by modulating the endocytic recycling of 

NTRK2 and AMPA receptors at the post-synaptic membrane of neurons.66-68 The highly conserved 

Arg82 residue is located in the nucleotide-sensitive switch domain II of RAB11A and is involved in 

binding to the RAB11A effector FIP3.69,70 The p.Lys24Arg, p.Lys13Asn and p.Ser154Leu mutations 

do not affect any of the nucleotide-sensitive switch domains of RAB11A (Figure 1F). The fact that 

RAB11A is enriched in DNMs in the DEE-ID cohorts and found with a recurrent de novo missense in 2 

cases of the DDD cohort, suggests that DNMs in this gene can cause a DEE or ID phenotype.  

GABBR2. We identified from our WGS a de novo missense in GABBR2 (NM_005458.7), 

c.2077G>T (p.Gly693Trp), in one subject of our CENet cohort who presented with focal seizures with 

impaired awareness and later developed epileptic spasms while on carbamazepine. He remains with 

refractory focal and generalized tonic-clonic seizures, severe ID, severe limb and axial hypotonia and 

hyporeflexia (Table 7; supplemental Note). The Epi4K consortium reported 2 de novo predicted-

damaging missense variants (c.2114T>A: p.Ile705Asn and c.2084G>T: p.Ser695Ile) in GABBR2 in 

two unsolved cases with infantile spasms.8 Lopes et al. (2016) recently reported a de novo missense in 

GABBR2 (c.1699G>A: p.Ala567Thr) in an individual with severe ID and Rett syndrome-like features 

but no seizures.27  

GABBR2 encodes a γ-aminobutyric acid type B receptor that inhibits neuronal activity through 

G protein-coupled second-messenger signaling, present both at the presynaptic and post-synaptic 

membrane where it regulates neurotransmitter release and the activity of ion channels.71 The receptor is 

the target of baclofen, a medication often used to treat spasticity. The hypotonia and hyporeflexia 
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observed in our case might therefore reflect underactivation at the neuromuscular junction or in spinal 

motor control centers. Interestingly, unlike the missense identified by Lopes et al., which affects 

transmembrane domain 3 (TM3) of GABBR2, the 3 DNMs in cases with infantile spasms cluster 

together in the TM6 of the protein (p = 0.001, Denovonear), suggesting that these TM6 mutations are 

specific for DEE. Meta-analysis of DNMs from DEE-ID cohorts showed an enrichment in functional 

DNMs in GABBR2, In addition to the subject with the c.1699G>A (p.Ala567Thr) variant from Lopes et 

al, the DDD cohort contained 2 other individuals with the p.Ala567Thr variant and one individual with 

a c.1181C>T (p.Thr394Met) variant that affects the N-terminal extracellular region of the receptor.10 

We conclude that de novo missense mutations in GABBR2 have the potential to cause DEE or ID with 

no seizures, depending perhaps on their location in the protein.  

SNAP25. We identified from our WGS a de novo missense in SNAP25 (NM_003081.3/ 

NM_130811.2:c.496G>T: p.Asp166Tyr) in a male with DEE. He presented with apneas, GDD, 

nocturnal generalized tonic-clonic seizures and focal seizures with impaired awareness and progressed 

towards moderate ID (Table 7, Supplemental Note).  SNAP25 is a member of the SNARE complex that 

is required for the exocytosis of neurotransmitters during synaptic transmission by mediating synaptic 

vesicle fusion.72,73 Developmentally regulated alternative splicing of 2 similar exon 5 sequences of 

SNAP25 generates 2 isoforms (a and b), differing only by 9 residues in this exon 5. Various mutant 

Snap25 mouse lines displayed cognitive deficit and seizures or susceptibility to seizures.74,75 SNAP25 

interacts with STXBP1, another SNARE synaptic protein in which mutations are known to cause 

DEE.26,76 So far, only 2 single cases have been published with de novo mutations in SNAP25, including 

one with a missense affecting both isoforms (NM_003081.3/ NM_130811.2: c.142G>T: Val48p.Phe) 

found in a case with DEE77 and another with a missense affecting a conserved residue in exon 5 of only 

SNAP25b (NM_130811.2: c.200T>A: p.Ile67Asn) in a girl showing congenital myasthenia, cerebellar 

ataxia, and ID.78 Both mutations affect the N-terminal t-SNARE coiled-coil homology domain of 

SNAP25. The de novo missense mutation identified in our cohort (p.Asp166Tyr) is predicted damaging 

(SIFT, polyphen-2, CADD) and alters a conserved residue in the second t-SNARE coiled-coil 

homology domain common to both isoforms (Figure 1H).  In addition, three DNMs in SNAP25 were 

recently reported in the DDD study [NM_130811.2: c.118A>G p.(Lys40Glu); c.127G>C 

(p.Gly43Arg); c.520C>T: p.(Gln174*)] but no detailed clinical information were available on these.10 

Collectively, these findings support the involvement of SNAP25 mutations in DEE. 
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Pattern of DNMs associated with DEE 

Out of the 53 pathogenic or likely pathogenic de novo point variants identified in our CENet 

series, 35 are missense and 15 are LoF, resulting in a missense/LoF ratio of 2.5 (Table S5). We 

examined the list of DNMs identified in the Epi4K series of individuals with DEE and found a similar 

ratio of pathogenic or likely pathogenic missense variants to LoFs (n= 56 DNMs; missense = 43, LoF = 

13 ratio; missense/LoF = 3.3).8 Interestingly, these observed de novo missense/LoF ratios of 

pathogenic/likely pathogenic variants in both the CENet (p = 0.004, 2-tailed Fischer’s exact test) and 

Epi4K (p=0.0004, 2-tailed Fischer’s Exact test) series were significantly increased when compared to 

those similarly observed in 192 moderate-to severe ID published trios (WES and WGS) with detailed 

phenotypic and pathogenic variant information (36 missense/42 LoF = 0.85).23,24,26,28 Remarkably, out 

of all the pathogenic/likely pathogenic DNMs identified in the CENet series (n =53), ~45% were also 

independently reported in ClinVar [n = 24 (19 missense and 5 LoF)] (Table S5). This rate of recurrent 

pathogenic/likely pathogenic DNMs was significantly higher in the CENet DEE series compared to 

that identified from the exomes/genomes of the 192 previously published moderate-to severe ID trios 

used in the above comparison [out of 80 pathogenic/likely pathogenic variants only 19 (13 missense, 6 

LoF) were also reported independently in ClinVar] (p = 0.0012, 2-tailed Fischer’s exact test)23,24,26,28.  

 

DISCUSSION 

In this study, we performed WGS on 197 individuals with DEE and their unaffected parents. 

We initially identified pathogenic variants in 53/197 cases (27%), including 50 cases with point 

mutations in genes previously found to be causally linked to DEE/ID, 1 with a recurrent pathogenic 

CNV (15q11-q13 duplication) and 2 cases with CNVs encompassing genes previously associated with 

ID or DEE (PCDH19 and DNMT3A). Moreover, we were able to explain DEE in 10 additional 

individuals from the series by identifying DNMs in candidate genes for which we provide additional 

evidence for their involvement in DEE (NTRK2, GABRB2, CLTC, DHDDS, NUS1, RAB11A, GABBR2 

and SNAP25). Overall, our approach allowed us to obtain a molecular diagnosis in 63/197 (32%) 

individuals. It is important to note that the diagnostic yield of WGS would have likely been higher in 

an unbiased series since many of our subjects had previously been screened by clinical targeted 

sequencing and/or array genomic hybridization. Interestingly, 2 of the 4 pathogenic de novo CNVs 

identified in our series would have been missed by clinical array genomic hybridization because of 

their size (˂ 5 kb), providing some support for the added value of WGS. 
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The main cause of DEE in our series was de novo point mutations (53/63 solved cases), the 

remaining cases being explained by inherited mutations (6/63 solved cases) or de novo CNVs (4/63 

solved cases). De novo missense variants explained a larger proportion of individuals with DEE in our 

series than individuals from other series that were primarily ascertained because of ID. Interestingly, 

more than half of these pathogenic missense mutations were recurrent, suggesting that at least a subset 

of them confer a specific property to the protein such as dominant-negative or gain-of-function effects. 

Shohat et al. (2017) recently showed that genes with LoF mutations compared to genes with missense 

mutations were associated with different pathways across neuro-developmental disorders such as ID, 

autism spectrum disorder and schizophrenia.79 For instance, genes with missense variants involved in 

neuro-developmental disorders code for proteins that show a higher number of protein interactions 

when compared to genes with LoFs. Altogether, this data raises the possibility that the genetic 

landscape of DEE is enriched for gene products that act as protein hubs. It would be important to 

understand why these hubs are specifically associated with DEE.  

Of the 8 genes highlighted herein for their involvement in DEE, we were not able to show de 

novo gene-enrichment for 3 of them, NTRK2, DHDDS and NUS1. However, the multiple occurrences 

of DNMs affecting the same conserved amino acid residues in NTRK2 and DHDDS in cases with a 

similar phenotype, nonetheless, represents a strong evidence implicating these genes in DEE. Indeed, 

other DEE-related genes with site-specific recurrent DNMs, such as GRIN2D (OMIM 300776) and 

FGF12 (OMIM 601513), did not also show DNM enrichment in our meta-analyses. Genetic forms of 

neuro-developmental disorders that are caused by recurrent DNMs associated with gain-of-function or 

dominant negative effects tend to be rare because there are typically a smaller number of variants that 

can confer such effects than variants that can induce haploinsufficiency. It is thus likely that meta-

analyses involving larger number of subjects will be necessary to identify these rare forms of DEE. No 

DNM enrichment was observed for NUS1 in our meta-analysis, possibly due to the poor capture of its 

exon-1, which represents almost half of the entire coding sequence of this gene. However, the 

identification of 3 DNMs in NUS1 (including 2 truncating variants and a microdeletion) in DEE cases 

with similar phenotypes and the fact that NUS1 is a functional direct interactor of DHDDS strongly 

support the involvement of this gene in DEE. 

Several of the DEE-related genes highlighted in this study code for proteins that interact 

directly or indirectly with other proteins encoded by genes associated with epilepsy. This is the case 

for: 1) DHDDS and NUS1, which form a complex for the synthesis of dolichol monophosphate 55,61; 2) 

SNAP25, which interacts with the DEE-associated STXBP1 for the docking of neurotransmitter 
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vesicles; and 3) RAB11A, which is involved in the endocytosis of NTRK2.68 In addition, GABRB2 

and GABBR2 both belong to the family of GABAergic receptors, which include other members 

involved in epilepsy [GABRA1 (OMIM 137160), GABRB1 (OMIM 137190), GABRB3 (OMIM 

137192) and GABRG2 (OMIM 137164)]. The identification of multiple genes acting along pathways or 

playing biological functions that have already been linked to epilepsy raise the possibility that many of 

the major pathways involved in DEE have been identified. Stratification of genetic forms of EE based 

on the involvement of these pathways may facilitate the development of tailored therapies. 

 

Supplemental Data 

Supplemental data include a Supplemental Note, 2 figures,  and 8 tables. 
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Figure 1. Localisation of de novo mutations in protein domains of the genes of interest. A) 

GABRB2, B) CLTC, C) NUS1, D) NTRK2, E) DHDDS, SNAP25, GABBR2 and RAB11A. Recurrent 

DNMs are in italics and red font. The transmembrane domains of GABRB2 and GABBR2 are labeled 

1-4 and 1-7, respectively. TM, transmembrane domain; TD, trimerization domain; SP, Signal Peptide; 

LRRNT, Leucine Rich Repeat N-Terminal domain; LRR, Leucine-rich Repeats; LRRCT, Leucine Rich 

Repeat C-Terminal domain; IGC2, Immunoglobulin C-2 Type 1 domain; IGC2-2, Immunoglobulin C-

2-type 2 domain; Shc, SHC1 interaction domain; IPP, isopentenyl diphosphate binding site; CD, 

catalytic domain; FPP, farnesyl diphosphate binding site; SW, switch domain; CC, prenylation 

residues. 
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Table 1. Genes affected by pathogenic or likely pathogenic variants in the CENet cohort 

variant type genes whose mutations are an established cause of  DEE and/or ID  candidate genes  

DNMs (n=53) (n = 44) (n = 9) 

  missense SCN1A (3), SCN2A (3), SCN8A (4), KCNT1 (3), CACNA1A (2), GNAO1 (2),  
ATP1A3 (1), CDKL5 (1), COL4A1 (1), DDX3X (1), DNM1 (1), FGF12 (1), 
GABRG2 (1), HECW2 (1), KCNA2 (1), KCNQ2 (1), MED13L (1), MEF2C (1), 
NAA10 (1), PPP2R1A (1) 

NTRK2 (2), DHDDS (1), 
GABBR2 (1), GABRB2 (1), 
RAB11A (1), SNAP25 (1) 

  nonsense SCN1A (2), ANKRD11 (1),  HIVEP2 (1), IQSEC2 (2), NF1 (1), SYNGAP1 (1)  - 

  frameshift ARID1B (1 ), CDKL5 (1), IQSEC2 (1), KIAA2022 (1)  CLTC (1), NUS1 (1) 

  CSS SCN1A(1), SCN8A (1) - 

de novo CNVs (n=4) (n = 3) (n = 1) 

  deletions del(exons 21-23) of DNMT3A (1),  
del-encompassing PCDH19 (1) 

del(exon 2) of NUS1 (1) 

  duplications dup-encompassing UBE3A (1) - 

Inherited recessive 
SNVs/indels (n=6) 

(n= 6) (n = 0) 

  bi-allelic WWOX (1), SZT2 (1), NAGA (1), TBC1D24 (1) - 

  hemizygous SLC9A6 (1); IQSEC2 (1) - 
The number of individuals affected by pathogenic or likely pathogenic variants in the specified genes is indicated in parenthesis; CSS, canonical splice site variant. 
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Table 2. Summary of the clinical features in cases with DNMs in NTRK2 (NM_006180.4) 

Individua
l/Gender
/Agea 

De novo 
variant 
(detection) 

Cognitive 
and 
behavioral 

Epilepsy 
diagnosis 

Age at 
Seizure 
onset 

Seizure 
types 

AEDs EEG Brain MRI  Associated neurological features 
/seizure outcome  

HSC0103
/M/2y9
m 

c.1301A>G 
(p.Tyr434Cys) 
(WGSb) 

Severe 
GDD; 

IS 3 days  ES, Fo VGB, 
ACTH, LEV, 
CLB, TPM, 
VPA 

Modified 
hyps. 

Optic nerve 
hypoplasia 

Limb hypertonia and hyperreflexia; 
acquired microcephaly; visual 
impairment, swallowing difficulties, 
intractable seizures.  

indvSLIJ/ 
M/6y3m 

c.1301A>G: 
p.Tyr434Cys 
(cWESc) 

Severe ID; 
ASD;  

DEE 12hrs  with 
recurrence 
at 5 y  

M, FIA OXBZ, DZP DS and 
TIRDA 

Optic nerve 
hypoplasia 

Hypotonia; lower limbs spasticity; 
visual impairment; seizures controlled 
on OXBZ for one month. 

T25821/ 
F/4y7m 

c.1301A>G: 
p.Tyr434Cys 
(MIPs) 

Severe 
GDD and 
severe ID;  

IS 4 m  ES, To Prednisol., 
VGB, B6, 
LEV, CLB, 
TPM, LCM, 
KD, VPA, 
RFN, ZNS, 
CBD, DZP, 
PHT 

MF; Hyps. Optic nerve 
hypoplasia, 
myelination 
delay 

Acquired microcephaly; hypotonia; 
Subtle choreoathetosis; visual 
impairment; feeding difficulties; 
intractable seizures; high tolerance to 
painful stimuli (parents report). 

HF303/ 
M/4y3m 

c.1301A>G: 
p.Tyr434Cys 
(cWESc; WGSd) 

Severe 
GDD, 
suspected 
severe ID; 
ASD;  

IS 4 m ES, FIA PB, LEV, 
ACTH, 
VGB, CLB, 
ZNS, DZP, 
CBD 

DS, MF Optic nerve 
hypoplasia 

Limb hypotonia; visual impairment, 
swallowing difficulties, intractable 
seizures; high tolerance to painful 
stimuli (parents report). 

HSJ0335/
F/9y 

c.2159C>T : 
p.Thr720Ile 
(WGSb) 

GDD; 
mod.-
severe ID; 
ASD 

DEE 2.5 y 
(febrile sz 
at 23 m) 

Febrile, FIA, 
GTC, SE 

CLB, LEV, 
TPM, VPA, 
CBZ 

Normal; 
DS post 
status 

Delayed 
myelination, 
reduced WM, 
ventriculomeg
aly, thin CC 

Swallowing difficulties; hyperphagia 
after 3 years of age; seizure-free for 2 
years under CBZ. 

aage at last examination (years, y; months, m). bCENet. cGeneDx. dHudsonAlpha Study. cWES, clinical WES.  IS, infantile spasms; seizures: Fo, focal; FIA, focal impaired awareness; 

ES, epileptic spasms; M, myoclonus; To, tonic; GTC, generalized tonic-clonic.; SE, status epilepticus. AEDs, anti-epileptic therapies: ACTH, adrenocorticotropin; B6, vitamin B6; 

CBD, cannabidiol; CLB, clobazam; CBZ, carbamazepine; DZP, diazepam; KD, ketogenic diet; LCM, lacosamide; LEV, levetiracetam; OXBZ, oxcarbazepine; PB, phenobarbital; 

PHT, phenytoin; Prednisol., prednisolone; RFN, rufinamide; TPM, topiramate; VGB, vigabatrin; VPA, valproic acid; ZNS, zonisamide; underlined, treatment with clinical response 

(decreased seizure frequency or severity); in italics, negative response (aggravation of seizure frequency/severity). EEG: Hyps., hypsarrhythmia; DS, diffuse slowing; MF, multifocal; 

TIRDA, temporal intermittent rhythmic delta frequency activity;. MRI, magnetic resonance imaging: WM, white matter tracts; CC, corpus callosum. 
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Table 3. Summary of the clinical features in cases with DNMs in GABRB2 (NM_021911.2) 
Individua
l/Gender
/Agea 

De novo variant 
(detection) 

Cognitive/  
behavioral 

Epilepsy 
diagnosis 

Age at 
Seizure 
onset 

Seizure  
types 

AEDs EEG Brain MRI  Associated neurological features 
/seizure outcome 

1242500
/F/9.3y 

c.236T>C: 
p.Met79Thr 
(cWESe) 

GDD, 
Severe ID 

DEE 11 m A or FIA LEV Normal Arachnoid 
cyst 

Acquired microcephaly, axial 
hypotonia, spasticity, ataxia. Minor 
dysmorphic traits: short perineum,  
tapered fingers, short broad great 
toes; seizures controlled with LEV. 

K.02591/
F/10y 

c.373G>A: 
p.Asp125Asn 
(WESf) 

GDD, Mod. 
ID 

DEE 6 y Febrile, GTC VPA ND Normal Acquired microcephaly; seizure  
free  (responded to VPA, off 
medication). 

indvLB/ 
F/1.5y 

c.878G>C: 
p.Arg293Pro 
(WES) 

GDD No 
seizures 

NA NA NA Normal Normal Severe psychomotor delay, 
generalized dyskinesia, dystonia, 
cortical visual impairment. 

CNSA01
M/4y 

c.908A>G: 
p.Lys303Arg 
(targeted gene 
panel) 

GDD, 
Severe ID  

EOEE 1 day Fo, MF, To VPA, LEV, TPM, 
LTG  

MF, slow 
background 

Diffuse WM 
hyper T2 at 
birth and 
18m 

Acquired microcephaly, neonatal 
feeding difficulties, 
nonambulatory, hypotonia, 
spasticity, dystonia; rare seizures 
under TPM. 

T21213B 
F/ 14y 
6m 

c.911C>T: 
p.Ala304Val 
(MIPs) 

GDD, 
Severe ID 

DEE 4y M, A, At, non-
convulsive SE 

CLB, VGB, Pred, 
TPM, HCT, VPA, 
LTG, LEV, CZP, 
SULTH 

biF SW or sharp 
SW 

Normal Acquired microcephaly, 
nonambulatory, hypotonia, 
intractable seizures. 

HSJ0753/
F/4y 

c.730T>C: 
p.Tyr244His 
(WGSb) 

Severe 
GDD 

DEE 4m M, GTC, MSE LEV, VPA, TPM, 
B6, DZP, CLB, 
PB, PHT, CBD, 
KD 

biF SW; Hyps.; 
continuous 
diffuse SW 

Normal (9d 
and 1y) 

Acquired microcephaly, 
nonambulatory, axial hypotonia, 
spasticity, nystagmus, cortical 
visual impairment; intractable 
seizures. 

T23211/ 
F/5y1m 

c.730T>C: 
p.Tyr244His 
(MIPS) 

GDD, 
Severe ID 

DEE < 5 m To, Focal, 
autonomic, 
M, SE 

PB, LEV, CZP, 
P5P, B6, FOL, 
VGB, TPM, CBZ, 
NZP, OXBZ, VPA 

MF (biF 
predominant), 
slow background 

delay in 
myelination; 
reduction of 
white 
matter 

Congenital microcephaly, axial 
hypotonia, peripheral hypertonia, 
cortical visual impairment, 
choreoathetosis, dystonia, failure 
to thrive; intractable seizures. 

HA076/ 
M/15y8
m 

c.830T>C : 
p.Leu277Ser 
(WES) 

GDD, 
Severe ID  

DEE 4y8m M, At, A, GTC VPA, TPM, CZP, 
CLB, LEV, LTG 

slow; rhythmic 
notched slow 
waves 

At 2y: MF 
hyper T2 
WM; 
normal at 
4y and 9y 

Spasticity, poor coordination, 
broad-base gait; seizure control 
with LVT + LTG. 
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G64518/
F/10 y 

c.830T>C : 
p.Leu277Ser 
(WESf) 

GDD, 
Severe ID 

DEE  2y GTC, A, 
Febrile 

VPA, LTG high ampl. 
rhythmic slow 
waves 

Mild incr. LV 
at 2y; N at 3 
y 

Acquired microcephaly, brisk 
reflexes, seizure control with LTG. 

31841 
M/17d 

c.851C>A: 

p.Thr284Lys 

(WES) 

Severe 

GDD 

EME 7d M, To PB, LEV, MDZ, 
biotin, FOL, B6 

BS Normal Hypotonia, jitteriness, back 
arching, apneas, intractable 
seizures; deceased at age 17 days. 

3001866
/F/21m 

c.946G>A:  
p.Val316Ile 
(cWESe) 

Language 
delay 

DEE 12mo A or Fo, GTC LEV, OXBZ, CNZ, 
ZNS 

Normal Normal Apneas, neuroendocrine cell 
hyperplasia of infancy; intractable 
seizures. 

Individual 1242500 was also previously identified with a pathogenic de novo mutation in CHAMP1 (Isidor et al. 2016); aage at last examination (y, years; m, months; days, d). bCENet. 

eBCM-Miraca. fDDD Study. NA, not applicable. MAE, myoclonic astatic epilepsy. EME, early myoclonic encephalopathy. Seizures: A, absence; At, atonic, GTC, generalized tonic 

clonic; SE, status epilepticus; MSE, myoclonic status epilepticus. To, tonic, M, myoclonus. AEDs: CZP, clonazepam; FOL, folinic acid; HCT: hydrocortisone; LTG, lamotrigine; 

MDZ, midazolam; NZP, nitrazepam; P5P, pyridoxal 5-phosphate; Pred., prednisone; SULTH, sulthiam. EEG: biF, bi-frontal predominance; BS, burst-suppression; SW, spike wave. 

MRI: WM, white matter tracts; LV: lateral ventricles See footnote of Table 2 for other abbreviations. 
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Table 4. Summary of the clinical features in cases with DNMs in CLTC (NM_004859.3) 
Individual/G
ender/Agea 

De novo variant 
(detection) 

Cognitive/ 
behavioral 

Epilepsy 
diagnosis 

Age at 
Seizure 
onset 

Seizure 
types 

AEDs EEG Brain MRI  Associated neurological features /seizure 
outcome 

PBSD 
F/11y2m 

c.977_980delCAGT: 
p.Ser326Cysfs*8 
(cWESc) 

GDD, 
borderline 
IQ at 5y 

No 
seizures  

NA NA NA NA hyperT2 WM 
(Hypomyelinati
on) 

ADHD, impulsivity and poor socialization skills; 
Mild hypotonia; wide-based gait. 

5289183 
M/20y5m 

c.1660_1668del: 
p.Met554_Tyr556del 
(cWESc) 

Borderline 
IQ, learning 
disabilities 

NA 14y 1 seizure  LEV Normal Normal Progressive paraparesis with LL spasticity, ataxia, 
myoclonus. One seizure without recurrence 
under LEV. Seizure-free for 4 years off meds. 

indvAA 
M/3y2m 

c.2669C>T: 
p.Pro890Leu (cWESg) 

GDD No 
seizures 

NA NA NA Normal Normal Mild ataxia and possibly myoclonus. 

CAUSES1/M/
4y7m 

c.2669C>T: 
p.Pro890Leu (WES) 

GDD, 
suspected 
ID 

No 
seizures  

NA NA NA NA Normal Mild hypotonia, oral and motor apraxia 
suspected ADHD. 

18052017/
F/30y 

c.2669C>T: 
p.Pro890Leu (WESh) 

Mod. ID No 
seizures  

NA NA NA Normal Normal Bradykinesia, bradypsychism,  hypomimia,  
hypokinesia, clumsiness, attention instability.  

indvPAR/M/
16y 
 
 

c.3140T>C: 
p.Leu1047Pro 
(trio cWES) 

Severe ID DEE 1 yr Suspecte
d FIA 

VPA Non 
specific 
irritative 
pattern, 
no foci 

thin, short 
corpus 
callosum, with 
hypoplasia of 
its posterior 
part, wide 
Virchow-Robin 
spaces 

Neonatal-onset hypotonia, noneverbal, acquired 
microcephaly, severe gastroinstestinal reflux; 
seizure-free under VPA. 

273692 
M/4y 

c.3322T>C: 
p.Trp1108Arg (WESf) 

Severe 
GDD, 
suspected 
severe ID 

DEE 2y M, GTC, 
gelastic 
seizures? 

LEV abnormal Pontocerebellar 
atrophy; 
delayed 
myelination  

Non ambulatory; spasticity; dystonia; myoclonus; 
neonatal feeding difficulties; visual impairment; 
seizure control with LEV. 

DDD261801 

M/10y7m 
c.3595C>T: 
p.Gln1199* (WESf) 

Mild GDD, 
Mild ID 

No 
seizures 

NA NA NA NA Normal Neonatal-onset hypotonia, congenital ptosis, 
poor social skills. 

indvMB 
F/7.5y 

c.3621_3623del: 
p.Asp1207del  (WES) 

GDD, 
Severe ID  

DEE 3y Febrile 
GTC, M, 
To 

VPA, 
LTG, CLB, 
CZP, LEV, 
TPM, 
LCM 

M SW, biF  Thin CC; 
hyperT2 WM, 
enlarged LV 

Acquired microcephaly, severe hypotonia; ataxia; 
oral and motor apraxia. Intractable seizures. 
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HSC0054 
F/23y 

c.4575dupA: 
p.Glu1526Argfs*18 
(WGSb) 

GDD, mod. 
ID 
 

DEE 5m A, M, To, 
GTC, Fo 

CLB, 
VPA,HCT
Z, LEV, 
LTG, KD 

gen SW 
and PSW 

Delayed 
myelination. 
Normal at 20y 

Neonatal hypotonia; scoliosis, Intractable 
seizures until puberty. Seizure-free under LEV 
and LTG. 

LDKQS 
M/12y10m 

c.4605+2T>C 
(c.WESc) 

GDD, mod. 
ID 

No 
seizures 

NA NA NA NA Normal Hypotonia, neonatal feeding difficulties, 
sensorineural hearing loss. 

DDD0280 
F/6y 

c.4663C>T 
p.Gln1555* (WESf) 

GDD, mod.-
severe ID 

No 
seizures 

NA NA NA NA ND Hypotonia. 

281177 
M/11y 

c.4667G>A: 
p.Trp1556*(WESf) 

Mod. ID No 
seizures 

NA NA NA NA ND Neonatal hypotonia. 

aage at last examination (y, years; m, months). cGeneDx. gRadboud UMC. fDDD Study. bCENet. hOPBG. NA: not-available or not-applicable. ND: not done. HCTZ: 

hydrochlorothiazide. EEG: MSW, multifocal spike-wave; biF, bi-frontal predominance, gen. SW, generalized spike-wave; PSW, poly-spike and wave. NA, not applicable. ND, not 

done. See footnotes of Tables 2, 3 for other abbreviations. 

 

 

Table 5. Summary of the clinical features in cases with DNMs in DHDDS (NM_024887.3) and NUS1 (NM_138459.4) 
ID/Gend
er/Agea 

Gene De novo variant 
(detection) 

Cognitive/  
behavioral 

Epilepsy 
diagnosis 

Age at 
Seizure 
onset 

Seizure 
types 

AEDs EEG Brain MRI  Associated neurological features /seizure 
outcome  

indvSG/ 
F/5y1m 

DHDDS c.110G>A: 
p.Arg37His 
(c.WESe) 

GDD, severe 
ID 

DEE 
18m 

MA photo, 
GTC, 
febrile Fo 

VPA, 
LTG, LEV, 
ETH, VPA 

gen. SW, 
photo+ 

Normal Hypotonia; short stature, intractable 
seizures. 

HSJ0762/ 
M/5y6m 

DHDDS c.110G>A: 
p.Arg37His 
(WGSb) 

GDD DEE 1y M, A, At, 
fever- 
sensitive 

LEV, VPA  gen. SW, 
diffuse 
slowing 

Normal Hypotonia, tremor, wide-based gate, 
ataxia. Seizure-free x 1 year on VPA. 

indvEF/ 
F/5y6m 

DHDDS c.632G>A: 
p.Arg211Gln 
(c.WESc) 

GDD, 
borderline IQ 

DEE 4y MA LEV, LTG, 
OXBZ 

epileptif
orm 

Normal;  
Chiari I 
malformation 

Hypotonia, tremor, ataxia, inattention, 
obesity; seizures controlled with OXBZ. 

MDB318
82/M/35 

DHDDS c.632G>A: 
p.Arg211Gln 
(WESh) 

GDD, severe 
ID 

DEE 6-9y Myoclonic VPA, 
benzodia
zepines 

gen. PSW  Normal Generalized tremor, facial myokimia, 
bradykinesia, hypomimia, rigidity, freezing  
and impaired postural reactions, frontal 
lobe impairment features. Seizure free 
since the age of 9y. Current therapy: VPA, 
Clonazepam, Tetrabenazine.   Normal 
glycosylation assay. 

indvNCJ/
F/7y1m 

DHDDS c.632G>A: 
p.Arg211Gln 
(c.WESg) 

GDD, mod-
severe ID 

NA 7y M None Normal Normal Ataxia, myoclonus, tremor, dystonia, short 
stature; no treatment initiated yet for 
cortical myoclonus. Normal glycosylation 
assay. 
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indvKW/
M/7y11
m 

NUS1 c.743delA: 
p.Asp248Alafs 
(c.WESc) 

GDD, severe 
ID 

DEE 12m M, GTC LEV BiF 
epileptif
orm 

Normal Ataxia with LEV. Lack of coordination. 
Seizures controlled with LEV. 

HSJ0623/
M/15y 

NUS1 c.128_141dup: 
p.Val48Profs*7 
(WGSb) 

GDD, mod. 
ID, ASD 

DEE 10m MA, At, 
Febrile 
GTC 

VPA, 

LTG, LEV, 

ETH, CZP, 

CBZ, Stiri. 

CLB 

Diffuse 
slowing, 
BiF or 
gen. 
spikes  

Normal ADHD, tremor. Seizures controlled under 
VPA/CLB. 

HSJ0627/
F/20y 

NUS1 exon2-deletion 
(WGSb) 

Motor delay, 
mild ID 

DEE 2.5y M status, 
MA, At 

VPA, LEV, 
CLB, FEL, 
LTG, CZP  

gen. SW 
and PSW 

Normal Tremor, dysarthria. Seizures controlled on 
VPA/LTG/CZP. 

1age at last examination (years, y; months, m); eBCM, bCENet, cGeneDx, gRadboud UMC. Seizure types: MA, myoclonic absence; MA photo: myoclonic absences with 

photosensitivity; GTC: generalized tonic-clonic; Fo, focal; M, myoclonic; A. absences; At, atonic. AED: FEL, Felbamate; OXBZ, oxcarbazepine; Stiri, stiripentol. See footnotes of 

Tables 2, 3 for other abbreviations. 

 

 

Table 6. Genes enriched in DNMs in the DEE cohorts 
 de novo LoF variants de novo functional variants 

gene observed expected p-value c.p-value observed expected p-value c.p-value 

CDKL5 3 0 8.57E-09 0.0003 5 0 8.90E-10 3.49E-05 

DNM1 0 0 1 1 6 0 1.03E-11 4.04E-07 

GABRB3 0 0 1 1 4 0 7.58E-09 0.0003 

GNAO1 0 0 1 1 4 0 4.47E-09 0.0002 

IQSEC2 3 0 6.76E-09 0.00026 3 0 1.14E-05 0.45 

KCNQ2 0 0 1 1 4 0 1.69E-07 0.007 

KCNT1 0 0 1 1 4 0.1 9.12E-07 0.036 

SCN1A 7 0 1.84E-17 7.2E-13 14 0.1 6.37E-27 2.5E-22 

SCN2A 0 0 1 1 7 0.1 3.81E-12 1.49E-07 

SCN8A 1 0 0.007 1 7 0.1 3.08E-12 1.21E-07 

SLC35A2 2 0 4.74E-07 0.018 3 0 4.89E-07 0.019 

STXBP1 1 0 0.006 1 6 0 1.27E-12 4.98E-08 

c.p-value, corrected p-value = p-value x 2 x 19618 (significant < 0.05, in bold). LoF: nonsense, frameshift and CSS de novo variants. Functional: LoF + missense variants 
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Table 7.  Summary of the clinical features in cases with DNMs in RAB11A (NM_004663.4), GABBR2 (NM_005458.7) and SNAP25 (NM_003081.3) 
Individual
/Gender/
Agea 

Gene De novo 
variant 
(detection) 

Cognitive/ 
behavioral 

Epilepsy 
diagnosis 

Age at 
Seizure 
onset 

Seizure 
types 

AEDs EEG Brain MRI  Associated neurological features 
/seizure outcome  

HK055/M/
5.5y 

RAB11A c.71A>G: 
p.Lys24Arg 
(WES) 

GDD, 
Mod. ID 

No 
seizures 

NA NA NA Abnormal 
background 
activity, but 
no epileptic 
charges 

Central brain 
atrophy and 
bilateral 
periventricular 
white matter 
damage, thin 
CC 

Acquired microcephaly, axial 
hypotonia, obesity, aggressive 
behavior. 

HSJ0637/F
/9.5y 

RAB11A c.244C>T: 
p.Arg82Cys 
(WGSb) 

GDD, 
Severe ID 

IS 4m M, ES, Fo NZP, CLB, 
VGB, TPM, 
CLB, VPA, 
LEV 

Modified 
Hyps.; M; 
Diffuse 
slowing with 
M spikes 

Atrophy, 
partial 
agenesis of 
CC, delayed 
myelination. 
Decrease NAA  

Acquired microcephaly, axial 
hypotonia. 

24631/M/
4y 

RAB11A c.461C>T: 
p.Ser154Leu
(WESf) 

mod. GDD No 
seizures 

NA NA NA NA partial 
agenesis of 
the CC 

Distractible, ADHD? 

84049/F/9
y/11m 

RAB11A c.461C>T: 
p.Ser154Leu
(WESf) 

mod. ID No 
seizures 

NA NA NA NA ND Possible hyperactivity. Obesity. 

HSJ0048/
M/14 

GABBR2 c.2077G>T: 
p.Gly693Trp
(WGSb) 

Severe 
GDD, 
severe ID 

DEE, IS 11m FIA, ES, 
GTC 

CBZ, VGB, 
VPA, TPM, 
CLB, PHT, 
LEV, LCM, 
LTG 

Modified 
Hyps. 

Increased sub-
arachnoid 
spaces 

Axial and limb hypotonia, 
hyporeflexia, scoliosis, 
hypersalivation. 

HSJ0745/
M/23y 

SNAP25 c.496G>T: 
p.Asp166Tyr
(WGSb) 

GDD, mod. 
ID 

DEE 18m GTC, FIA VPA, CLB gen. SW, 
CSWS 

mild diffuse 
cortical 
atrophy 

Apneas, bradycardia, severe 
constipation. Minor dysmorphic 
traits. Seizure-free x 2y on VPA. 

aage at last examination (years, y; months, m). bCENet. fDDD Study.  CSWS, continuous spike and-wave during sleep. NAA, N-acetylaspartate. See footnotes of Tables 2, 3 for other 

abbreviations. 
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