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ABSTRACT: Tungstated zirconia (WO3/ZrO2) is one of the most well-studied 

solid acid catalyst systems and continues to attract the attention of both 
academia and industry. Understanding and controlling the properties of 

WO3/ZrO2 catalysts has been a topic of considerable interest over almost the 

past three decades, with a particular focus on discovering the relationship 
between catalytic activity and the molecular structure of the surface acid site. 

Amorphous tungsten oxide (WOx) species on ZrO2 surfaces were previously 

proposed to be very active for diff erent acidic reactions such as alcohol 
dehydration and alkane isomerization. Recent developments in electron optical 
characterization and in situ spectroscopy techniques have allowed researchers 
to isolate the size, structure, and composition of the most active catalytic 

species, which are shown to be three-dimensional distorted Zr-WOx clusters 

(0.8−1.0 nm). Complemen-tary theoretical calculations of the Brønsted acidity 

of these Zr-WOx clusters  
have confirmed that they possess the lowest deprotonation energy values. This new insight provides a foundation for the 
future characterization and theory of acidic supported metal oxide catalytic materials that will, hopefully, lead to the 
design of more active and selective catalysts. This perspective presents an up-to-date, comprehensive summary of the 

leading models of WO3/ ZrO2 solid acid catalysts.  
KEYWORDS: solid acid catalyst, tungsten oxide, zirconium oxide, mixed W−Zr oxide clusters, spectroscopy, 

electron microscopy, theory 
 

 

1. INTRODUCTION  
Tungstated zirconia (WO3/ZrO2) catalysts hold 
considerable promise for being the next generation of solid 
acid catalysts, and they have attracted considerable research 
attention since their initial discovery in the late 1980s by 

Hino and Arata.
1
 In their pioneering work, solid acid sites 

with strengths stronger than that of pure sulfuric acid were 
obtained on a set of catalysts prepared by impregnation of 
an aqueous ammonium metatungstate solution onto the 
surface of an amorphous zirconium oxyhydroxide support, 

followed by calcination at 800 °C in air.
1 Significantly, 

these materials were reported to be active for butane and n-

pentane isomerization at low temper-ature (303−323 K)
1
 

and also show high stability up to 1173 K. The low 
operational temperature, enhanced regeneration ability, and 

good thermal stability under H2, O2, and H2O atmospheres 
exhibited by tungstated zirconia catalysts are all highly 
desirable characteristics for eventual industrial applica-tion.  

 

 
The desirable solid acid catalytic properties of tungstated 

zirconia have attracted the attention of numerous researchers 
in the catalysis community with multiple interests. Tungstated 
zirconia catalysts have been examined for acid-catalyzed 

vapor-phase reactions (n-butane isomerization,
2
 dehydration 

of glycerol to acrolein,
3,4

 SCR of NOx with NH3,
5
 and SCR of 

NOx with CO
6
) and liquid-phase reactions (esterification of 

acetic acid with methanol,
7
 esterification of acetic acid with 1-

heptanol,
8
 transesterification of triacetin and methanol,

9
 

hydration of cyclohexene,
10

 synthesis of acetyl salicylic 

acid,
11

 reduction of the viscosity of heavy oil,
12

 hydrolysis of 

cellobiose,
13

 fructose conversion into 5-HMF,
14

 conversion of 

glucose to 5-HMF,
15

 alkylation of catechol with tert-butyl 

alcohol,
16

 solvent-free acetalization and ketalization,
17

 con-  
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version of cellulose to hexanedione,
18

 palmitic acid esterifica-tion,
19

 

synthesis of levulinic acid esters,
20

 oxidative desulfuriza-tion of 

thiols,
21

 and oxidation of styrene
22

). Additionally, novel syntheses 
have been reported in an attempt to prepare superior solid acid 

tungstated zirconia catalysts (mesoporous Zr-WOx/ SiO2,
23

  aerogel 

and xerogel WO3/ZrO2,
24

  mesoporous nano-
17,25,26

  MOF-derived 

tungstated zirconia,
27

  two- 

 

phase interface hydrolysis,
28

 metal oxide 
promoted WOx/ ZrO2,

5,29−32
 precious-metal-promoted 

WOx/ZrO2,
6,33−35

 and  
ZrO2-supported tungstaphosphoric acid polyoxo-

metalates
22

). Many of these studies claim that their novel 
syntheses result in superior tungstated zirconia catalysts. 
These studies, however, have primarily focused on the use 

of WOx/ZrO2 solid acid catalysts for numerous 
applications and have given scant attention to their 
fundamentals. For the most part, the interpretation of the 
experimental results has been based on the tungstated 
zirconia models previously proposed in the literature.  

The potential of a promising future of the WO3/ZrO2 catalyst 

serves as the major motivation to further improve the catalytic 

performance of this solid acid catalyst system. In order to achieve 

this goal, the unambiguous identification of the catalytically active 

site responsible for the enhanced solid acidity of the WO3/ZrO2 

catalyst, its molecular and electronic structure, and a more 

thorough understanding of the structure−activity relationship in 

this catalyst system is required. Over the past two decades, an 

extensive variety of catalyst synthesis methods, characterization 

techniques, and catalytic performance testing studies have been 

applied to the WO3/ZrO2 catalyst system in an attempt to 

establish a relationship among the synthesis method, catalyst 

structure, and catalytic performance.
36−47

 In particular, in situ 

optical spectroscopy techniques (including UV−vis, Raman, and 

infrared (IR) spectroscopy) have provided invaluable electronic 

and structural information on the WO3/ZrO2 catalysts at the 

molecular level. Recently, the application of aberration-corrected 

scanning transmission electron microscopy (AC-STEM) has 

further improved the understanding of the catalyst structure at the 

atomic level and provided a direct means by which to visualize 

and identify the surface tungsten oxide structures, atom by 

atom.
44−46,48,49

 The combined application of all these advanced 

characterization techniques has given researchers the capability to 

gain new insights into the structure−activity relationships about 

this solid acid catalyst system. General agreement exists that the 

catalytic activity of the tungstated zirconia catalysts depends on 

the precise structure of the WOx species and their interaction with 

the zirconia support.
36−47

 Specifically, WOx-ZrOx mixed oxide 

clusters (hereafter denoted as Zr-WOx) that are ∼1 nm in size are 

now thought to be the most eff ective catalytic materials, 

comprised of active sites for both alkane isomerization and 

alcohol dehydration reactions.
44−46 

 

In this article, we will review the proposed models and recent 

progress in the study of WO3/ZrO2 catalysts and show how 

advanced in situ spectroscopy and electron microscopy techniques 

have been invaluable in understanding the structural details at a 

molecular level of these complex mixed oxide catalysts, allowing 

new structure−activity relationships to be developed and 

providing guidance as to the molecular design of better-

performing catalysts. In this perspective we will only discuss the 

intrinsic structure−activity relationships of un-promoted 

WO3/ZrO2 catalysts, although it has been noted that the activity 

and isomerization selectivity of the catalysts can be 

 
further increased by promotion with Pt and some transition-

metal oxides (e.g., FeOx).
50

 
−55

 It should be emphasized that 

the WO3/ZrO2 system shares many common characteristics 

with supported oxide-on-oxide catalyst systems, including a 
strong wetting interaction, which is one of the major factors 
that controls the surface structures inherent to these materials. 
The research methodology described in this article, thus, is 
also generally applicable to uncovering the structure−activity 
relationships for other oxide-on-oxide catalyst systems. 
 

2. DETERMINATION OF THE 
STRUCTURE−ACTIVITY RELATIONSHIPS 

 
2.1. Effects of Synthesis Parameters on Catalytic Activity. 

Most of the tungstated zirconia catalysts reported in the literature 

have been synthesized by the aqueous impregnation
1
 
,
 
3 8

 
,
 
4 4

 
,
 
4 6

 

of ammonium metatungstate ((NH4)10W12O41·5H2O) onto a 

zirconia support, followed by calcination at high temperature. Two 
diff erent types of zirconia supports are commonly used: 

amorphous zirconium oxy-hydroxide (ZrOx(OH)4−2x) and 

crystalline zirconia (ZrO2). Several parameters, including the 

nature of the ZrO2 support precursor, the WO3 loading 

(employing ammonium metatung-state), and the calcination 
temperature, seem to have a significant eff ect on the performance 
of the final catalytic materials. Understanding how each synthesis 
parameter aff ects the catalytic performance can serve to help 
optimize the preparation procedure and achieve better catalytic 
performance.  

2.1.1. Effect of Crystallinity and Polymorphic Structure of 

the ZrO2 Support on the Acidic Catalytic Activity. In their 

original paper,
1
 Hino and Arata observed that WOx supported on 

zirconium oxyhydroxide was active for alkane isomerization, 

while strong acid sites cannot be readily generated on a crystalline 

ZrO2 support. This was subsequently confirmed by studies from 

many other groups.
36,38

 
,44,56,57

 Lebarbier et al.
58

 proposed that, 

for a given W surface density (W atoms/nm
2
), the catalytic 

performance is mainly controlled by the tetragonal to monoclinic 

volume fraction ratio of the ZrO2 structural polymorphs 

comprising the support rather than their amorphous or crystalline 

nature. Two diff erent support materials, namely amorphous 

zirconium oxyhydroxide and “crystalline ZrO2”, were examined 

by Lebarbier et al., and they were impregnated with varying 

amounts of ammonium metatungstate and calcined at 1073 K. By 

correlating the crystal structure of the ZrO2 support as determined 

from X-ray diff raction (XRD) and the catalytic activities of these 

two series of catalysts, Lebarbier et al.
58

 concluded that, for the 

same WOx surface density, both series of catalysts gave rise to a 

similar tetragonal ZrO2 volume fraction and catalytic 

performance. It should be noted, however, that the “crystalline 

ZrO2” support used by these researchers was made by calcination 

of an amorphous zirconium oxyhydroxide at a relatively mild 

temperature (773 K) and that unambiguous evidence for the fully 

crystalline nature of this support cannot be determined by XRD. 

Indeed, the “crystalline ZrO2” support used in the Lebarbier et al. 

study exhibited a very high surface area of 108 m
2
/g (i.e., 

equivalent to an average particle size of ∼10 nm), indicating that 

the material may not be fully crystalline.  
In order to clarify the eff ect of the ZrO2 support, Ross-

Medgaarden et al.
44

 performed similar experiments on 

amorphous ZrOx and a series of heat-treated “fully” crystalline 

ZrO2 support materials. By plotting the catalytic performance 
as a function of crystal polymorph ratio for the two sets of 

catalysts (i.e., derived initially from (i) amorphous ZrOx and 

  

 
WOx/ZrO2, 
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(ii) crystalline ZrO2 supports), Ross-Medgaarden et al.
44

 

demonstrated that there is no direct correlation between the 
catalytic activity and the tetragonal to monoclinic ratio of the 

ZrO2 structural polymorphs comprising the zirconia support 
materials (Figure 1). Moreover, the catalysts prepared from the 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Methanol dehydration catalytic activity (in terms of turnover 

frequency, TOF) as a function of monoclinic-ZrO2 (m-ZrO2) volume 

fraction over two series of WO3/ZrO2 catalysts. WZrOH catalysts 

were synthesized using an amorphous (ZrOx(OH)4−2x) support and 

were calcined at diff erent temperatures, whereas WZrO2 catalysts 

were synthesized using heat-treated crystalline ZrO2 support and were 

calcined at 723 K. Steady-state CH3OH dehydration reaction 

conditions: 573 K, 1 atm, 6% CH3OH, 12% O2 in He and overall 

CH3OH conversion <10%. Adapted from ref 44. 
 

 

amorphous (ZrOx(OH)4−2x) support systematically displayed 
a higher catalytic activity level in comparison to those from 

the initially well crystallized ZrO2 supports, suggesting that 

the initial presence of amorphous ZrOx plays an important role 

in developing good activity in the final WO3/ZrO2 catalysts. 

The crucial role of amorphous ZrOx was later determined to be 
related to the formation of the most active catalytic sites in this 

catalyst system (i.e., the Zr-WOx mixed oxide clusters), in 

which the Zr
4+

 cations are supplied by the amorphous 

(ZrOx(OH)4−2x) support.
44−46

 Due to the high catalytic 

activity of the WO3/ZrO2 catalysts derived from amorphous 

ZrOx, the remaining discussion will focus primarily on these 

high-activity catalysts, while the model WO3/ZrO2 catalysts 

derived from initially crystalline ZrO2 supports will be used 
only for comparative purposes. It also needs to be emphasized 
that solid acid catalysis is a surface phenomenon that does not 
involve the zirconia bulk phase and, consequently, catalytic 
performance should not correlate with bulk properties. 
 

2.1.2. Interplay between Tungsten Oxide Loading and the 

Final Form of the ZrO2 Support. By systematic changes in the 
synthesis parameters, it was noticed that there is a strong interplay 
between the tungsten oxide loading and calcination temperature in 

determining the structural characteristics of the ZrO2 support: 

namely, (i) the surface area and (ii) the volume 

 
fraction  of  the  tetragonal  ZrO2  polymorph. When  

amorphous ZrOx(OH)4−2x is used as the support 

precursor and impregnated with WOx species, it was found 

that the WOx species can strongly influence the crystallization 

of the ZrO2 support. As shown in Figure 2A,B, the addition of 

tungsten oxide to the ZrO2 support can help to stabilize the 

metastable tetragonal ZrO2 polymorph and retard the sintering 

of ZrO2 at high temperatures. For a given calcination 
temperature, both 

 

the volume fraction of the tetragonal ZrO2 phase and the 
surface area of the catalyst increase with an increasing 
tungsten oxide loading and level off  at high loadings when 

bulk WO3 crystals begin to form (Figure 2C,D). This 
stabilization eff ect was attributed to the strongly bound 

surface WOx species, which can hinder the rate of the ZrO2 

surface diffusion and thus inhibit the growth of ZrO2 

particles.
37

 This eff ect becomes less significant at very high 

calcination temperatures when the surface WOx species 

agglomerate into bulk WO3 crystals. Consequently, for a 

catalyst with a given WOx surface density, the ZrO2 crystallite 
phase and high surface area can, in principle, be controlled by 
carefully tuning the tungsten oxide loading and the calcination 
temperature.  

2.1.3. Dependence of the Activity of WO3/ZrO2 Catalysts 

on the Surface WOx Density and Calcination Temperature. 

In general, the catalytic activity of the final WO3/ZrO2 catalyst 

can be quite sensitive to the calcination temperature and the 
concentration of the active component (in this case tungsten 
oxide). In early studies, it was noticed that, for a given tungsten 
concentration, the maximum achievable catalytic activity displays 
a strong dependence on calcination temperature, with the 
optimum temperature being in the range of 900−1200  

K (∼600−900 °C) depending on the precise tungsten oxide weight 

loading
1,37

 (Figure 3A). Similarly, for a given calcination 

temperature, there also seems to be an optimum “intermediate” 

tungsten oxide concentration
37,55

 that gives rise to the best 

catalytic activity (Figure 3B). It should be noted, however, that 

the specific surface area of the catalyst also depends on both the 

calcination temperature and the tungsten oxide loading. It was 

found that when the tungsten oxide loading is normalized by the 

final surface area of the catalyst (i.e., obtaining the surface W/nm
2
 

density), the catalytic activity displays a sole depend-ence on the 

W surface density (Figure 4) for reactions such as methanol 

dehydration,
44

 o-xylene isomerization,
37

 and 2-butanol 

dehydration
40

 and a dual dependence on surface density and 

calcination temperature (Figure 5) for reactions such as n-pentane 

isomerization
36,46

 and acetic acid ester-ification.
59

 The strong 

surface density dependence seen in all cases indicates that the 

surface structures of tungsten oxide on ZrO2 are primarily 

controlled by the surface W density. This is only true if there is a 

relatively strong affiliation between the two oxide components and 

if the distribution of tungsten oxide on the surface can quickly 

reach thermodynamic equilibrium under the high-temperature 

synthesis conditions investigated. In section 2.3.4 it will be 

demonstrated that there is indeed a strong wetting interaction 

between WOx species and the surface of ZrO2, as revealed by 

detailed optical spectroscopy and electron microscopy 

characterization.  
Comparison of the 2-butanol dehydration and o-xylene 

isomerization activities (Figure 4) shows that the maximum 
activity shifts from ∼9.5 W/nm

2
 for the former to ∼7.5 

W/nm
2
 for the latter, respectively. Even though, as will be 

discussed later, the distribution of the amorphous WOx 
species on the surface does not change drastically between 
8 and 10 W/nm

2
, there is still a direct specific probe 

molecule−catalytic activity correlation.  
The calcination temperature employed has an additional 

eff ect on the n-pentane isomerization activity of WO3/ZrO2 

materials (Figure 5). When the calcination temperature was 

increased from 773 to 973 K, the n-pentane isomerization 

activity was found to increase by a factor of 10 at a loading of 

∼5.2 W/nm
2
 (Figure 5A).

46
 Scheithauer et al. have also 

reported a similar calcination temperature eff ect.
36

 When their 
  

 
36,37 



          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Tetragonal ZrO2 polymorph volume fraction (A) and BET surface area (B) of pure ZrO2 and a 7.9 wt % WO3/ZrO2 material as a 

function of calcination temperature. (C) Tetragonal ZrO2 polymorph volume fraction of a series of WO3/ZrO2 materials calcined at 1073 K 

as a function of WO3 loading. (D) BET surface area data for two series of WO3/ZrO2 materials calcined at 873 and 1073 K, respectively, 

as a function of WO3 loading. Adapted from ref 37.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. o-Xylene isomerization turnover rates (per W atom) (A) as a function of calcination temperature for diff erent tungsten oxide 
concentrations and (B) as a function of tungsten oxide concentration at the same calcination temperature (1073 K). o-Xylene isomerization 

conditions: 523 K, 0.67 kPa o-xylene, 106 kPa H2 or He, and o-xylene conversion <2%. Adapted from ref 37.  
 

published data is replotted in terms of surface W density, a 

maximum activity occurs at ∼5 W/nm
2
 and the activity 

drops by a factor of 2 when the calcination temperature is 

increased from 923 to 1098 K. 

 
For the quantification of catalytic activity, it is important to 

note that two diff erent approaches are currently employed in 

reporting the catalytic activity. Generally, the catalytic activity 

can be expressed as (i) the reaction rate per gram or atom of 
  



        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Turnover rates (per W atom) as a function of WOx surface density on WO3/ZrO2 catalysts for (A) the o-xylene isomerization reaction and 

(B) the 2-butanol dehydration reaction. o-Xylene isomerization conditions: 523 K, 0.67 kPa o-xylene, 106 kPa H2 or He, and o-xylene 

conversion <2% (adapted from ref 37). Initial 2-butanol dehydration rate conditions: 373 K, 0.8 kPa 2-butanol, 100 kPa H2 or He, and 2-
butanol conversion 1− 50% (adapted from ref 40).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. (A) Turnover rates (per W atom) as a function of WOx surface density on WO3/ZrO2 catalysts for steady-state n-pentane 

isomerization (after 10 h reaction time). Steady-state nC5 isomerization reaction conditions: 523 K, 1.04 atm, 1% nC5 in He. The overall 

nC5 conversion is <3% (adapted from ref 46). (B) Maximum n-pentane isomerization after the induction period. nC5 isomerization reaction 

conditions: 523 K, 1.01 bar, 0.01 bar nC5 in N2. Note that Figure 5B has been modified from the original published version in ref 36: it has 

been replotted as surface WOx density versus activity expressed in terms of the n-pentane TOR.  
 

the active component or (ii) the reaction rate per catalytically 

active site under the given reaction conditions. When the reaction 

rate is normalized by the total loading of the active component, it 

is usually referred as turnover rate (TOR): i.e., the number of 

reactant molecules reacted per active component atom per second. 

This particular quantification method is commonly used in the 

catalysis literature
36,37,39,40,56

 (see Figures 3−5 for example) and 

serves as a simple and reasonable method for measuring the 

catalytic activity when the active component is 100% dispersed or 

exposed on the catalyst surface. The catalytic activity of the 

surface active sites, however, can be significantly underestimated 

by the TOR method when large particles of the active component 

are formed in the catalyst, since catalytic reactions only take place 

on exposed surface sites in such heterogeneous solid catalysts.
43 

 
A more reliable and meaningful quantification method 
incorporates the concept of turnover frequency (TOF; i.e. the 
number of reactant molecules reacted per exposed catalytically 

active site per second) as championed by Boudart,
60

 where the 

reaction rate is normalized by the number of exposed 
catalytically active sites on the catalyst surface. The number of 
catalytically active sites in the catalyst 

 
can be measured using the temperature-programmed 
surface reaction (TPSR) spectroscopy method, which only 

probes the exposed sites.
43,44 

 
The TOF values can deviate considerably from the TOR value 

if the dispersion of the catalytically active component is poor.
43

 

One example of the consequences of switching between the 

diff erent TOF and TOR metrics is shown in Figure 6 for data 

taken from a set of model WO3/ZrO2 catalysts (using a well-

crystallized ZrO2 support).
43

 The TOF values are calculated on 

the basis of the exposed catalytic sites, which is considered to be 

the true measurement of catalytic activity and can be readily used 

for comparative purposes between diff erent catalyst samples. 

Reporting the catalytic activity as TOR results in a maximum in 

rate that is not reflected when the catalytic activity is reported as 

TOF. The reason for the maximum rate in the TOR plot is that 

WO3 particles are present at higher tungsten oxide loadings and 

the TOR approach does not discriminate between exposed and 

bulk WOx sites and normalizes the rate by all WOx sites in the 

catalyst. Consequently, the TOR values will eventually decrease, 

since most of the WOx sites are in the bulk and do not participate 

in the catalytic reaction. The TOF approach normalizes the rate 
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Figure 6. Comparison of catalytic activity for methanol dehydration to 
dimethyl ether in terms of TOR (solid symbols) and TOF (open 

symbols) for the same series of model-supported WO3/ZrO2 catalysts 

as a function of tungsten oxide surface density. Adapted from ref 43. 
 

 

by only exposed sites and, therefore, does not exhibit this artificial 

maximum in catalytic activity. As the catalytic activity is strongly 

aff ected by the surface structure of the catalyst, utilizing the TOF 

value as an indication of the catalytic activity in establishing the 

structure−activity relationship is considered to be the better 

approach for quantifying catalytic activity.
60 

 

2.2. Monolayer Coverage of WOx on the ZrO2 Support 

Surface. Given that the catalytic activity of WO3/ZrO2 solid acid 

catalysts strongly depends on the surface WOx density, it is 

important to characterize the structure of the catalysts as a 
function of this parameter. The concept of monolayer coverage is 
widely used in supported metal oxide catalyst research to describe 
the maximum dispersion of the active oxide phase on the support 
surface. By definition, a monolayer is a single closely packed 

layer of atoms or molecules on a surface.
61

 Below monolayer 

coverage, the active metal oxide components are generally 
expected to be highly dispersed on the support surface as isolated 
(also known as monotungstates) or polymeric (also known as 

polytungstates) species (e.g., 1D and 2D surface WOx) with single 

atomic layer thickness.
38

 These submonolayer structures will be 

discussed further in section 2.3. Above monolayer coverage, the 

WO3 crystalline phase (e.g., 3D nanoparticles (NPs)) of the active 

metal oxide component usually forms on the surface of the sup- 
 

port. Therefore, the idea of a 

monolayer coverage 
value has been used primarily as a benchmark in the 
quantitative investigation of the surface structure of oxide 

overlayers as a function of surface density.
36,38,56

 Three 
main approaches have been employed to determine surface 

WOx monolayer coverage on ZrO2: namely, (1) an 
experimental determination of the transition from 2D 

surface WOx species to 3D WO3 NPs using physical 
probes, (2) chemical probe studies, and (3) calculations 

based on hypothetical surface WOx structures. 
 

2.2.1. Physical Probes. The transition from 2D surface WOx 

species to 3D WO3 NPs is best determined by Raman 
spectroscopy because of its excellent sensitivity to both surface 

tungsten oxide species and 3D WO3 NPs. The normalized 

intensity of the Raman signals for the surface WOx species and 

crystalline WO3 NPs are plotted in Figure 7 as a function of 

surface W density (W/nm
2
) on a model crystalline m-ZrO2 

support.
43

 The intensity of the Raman band for the surface 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Normalized Raman intensity of the dehydrated surface 

WOx species (∼1000−1020 cm−1
) and crystalline WO3 particles 

(∼805 cm−1
) as a function of tungsten oxide surface density on a 

series of model supported WO3/ZrO2 catalysts. Normalization 

was performed against the 471 cm−1
 band of the ZrO2 support. 

The dashed line indicates the surface density corresponding to 

monolayer coverage at ∼4.5 W/nm
2
 (adapted from ref 43). 

 

 

WOx species increases linearly with tungsten surface density up to 

∼4.5 W/nm
2
 and then levels off  once the surface of the ZrO2 

support is saturated with surface WOx species (i.e., indicating that 

monolayer coverage is attained). Above 4.5 W/nm
2
, the intensity 

of the Raman signal for the 3D WO3 NPs increases linearly with 

tungsten surface density. Barton et al.
38

 also showed that, for 

active WO3/ZrO2 catalysts, the ratio of the intensity of the Raman 

bands for WO3/WOx begins to increase linearly starting at 4.0 

W/nm
2
, indicating that monolayer coverage corresponds to ∼4.0 

W/nm
2
. XPS surface analysis is another physical characterization 

technique that discriminates between the 2D surface WOx phase 

and the 3D WO3 NPs due to the diff erent signal responses to the 

2D and 3D phases.
47

 The XPS transition from 2D to 3D behavior 

occurs at ∼5 W/ nm
2
 for active WO3/ZrO2 catalysts prepared 

from amorphous zirconia hydroxide.
47

 One study also attempted 

to employ UV−vis spectroscopy to determine monolayer loading 

coverage for supported WO3/ZrO2 catalysts.
38

 The UV−vis 

optical edge energy (Eg), which reflects the WOx domain size, 

however, is not particularly sensitive to the 2D to 3D structural 

transition occurring at monolayer coverage, as the Eg value 

continuously decreases with increasing tungsten oxide loading. 

Only by combining UV−vis measurements with other 

spectroscopic studies can the 2D to 3D transition be accurately 

determined.
43,47

 Although XRD has also been used to detect the 

appearance of relatively large 3D WO3 NPs, it is unable to detect 

WO3 crystallites smaller than ∼3 nm that nucleate at the 2D to 3D 

transition at monolayer surface coverage. It is, therefore, not 

surprising that XRD only begins to detect 3D WO3 NPs at 

loadings of 6.2 W/nm
2
, which is much greater than the 4−5 

W/nm
2
 value determined with the more sensitive Raman, XPS, 

and IR spectroscopy techniques.
62

 Thus, most applicable 

experimental spectroscopic measurements agree that monolayer 

coverage of surface WOx species on ZrO2 supports corresponds to 

4−5 W/nm
2
, with a value of ∼4.5 W/nm

2
 being typical for model 

WO3/ZrO2 catalysts. 
 

2.2.2. Chemical Probes. The nature of the exposed surface 

sites for the WO3/ZrO2 catalyst system can also be determined 

with molecular chemical probes.
39,63,64

 Chemisorption of CO at 
  

 
 
 
 

 
 
 

 
36,38,42,43 



77 K on supported WO3/ZrO2 catalysts chemically probes 

exposed Zr sites, and IR spectroscopy reveals that CO surface 

coverage reaches a minimum at 4.7 W/nm
2
 because the 

surface WOx monolayer essentially covers the majority of 

exposed sites on the ZrO2 support.
64

 Chemisorption of CO2 

also titrates the basic zirconia sites, and IR spectroscopy 

reveals that CO2 surface coverage reaches a minimum at ∼4.5 

W/nm
2
.
38,39,63

 Although it is somewhat difficult to determine 

monolayer surface WOx coverage from just UV−vis DRS of 

the oxidized catalysts, it is possible to discriminate between 

reducible and irreducible supported tungsten oxide species on 

ZrO2 with UV−vis spectroscopy. Reduction studies of 

supported WO3/ ZrO2 catalysts using H2 treatments revealed 

that the tungsten oxide species, when present at a coverage 

below 4.1 W/nm
2
, do not reduce under the chosen 

experimental conditions, whereas tungsten oxide species that 

exist above this 4.1 W/nm
2
 surface density are reducible.

38
 

This transition from irreducible to reducible tungsten oxide 

species was originally assigned to the transition from mono- to 

polytungstate surface WOx species on the ZrO2 support
38

 but 

actually corresponds to the transition from 2D surface WOx 

species to 3D WO3 NPs, as revealed in the corresponding 

Raman spectra presented in the same study.
38

  
2.2.3. Hypothetical Surface WOx Structures. The surface 

W density for WOx monolayer coverage has also been estimated 

by invoking the structures of the WOx species present on the ZrO2 

surface. By assuming that the surface WOx oxyanions are present 

as WO4
2− monotungstates anchored to the ZrO2 surface, it was 

estimated that monolayer coverage would correspond to ∼3.6 

W/nm
2
.
57

 Another study estimated the theoretical monolayer 

coverage to be ∼4.3 W/nm
2
, assuming a two-dimensional close-

packing model where one WOx monomeric structural unit 

occupies 23 Å
2
.
65

 On the basis of the dimension of WO6 units 

present in the crystalline WO3 bulk structure, however, a much 

higher monolayer surface coverage of ∼7 W/nm
2
 was estimated.

37
 

The problems with such hypothetical estimates for the surface 

WOx density at monolayer coverage are that (1) idealized surface 

WOx structures are assumed that are not representative of the 

actual surface WOx species on ZrO2 (see sections below) and (2) 

the anchoring mode of the surface WOx species onto the ZrO2 

support is completely ignored. For instance, the number of W− 

O−Zr bonds and the respective bond lengths of the diff erent 

functionalities (W O, W−O−W, and W−O−Zr) are not taken into 

account and neither are the potential eff ects of steric 

hindrance and lateral repulsion between neighboring surface 

WOx species.38,39,64,66,67 
 

The various “monolayer surface coverage” values for WOx/ 

ZrO2 catalysts reported in the literature are summarized in 

Table 1, and a more detailed review of this particular issue has 

recently been published.
68

 The experimentally determined 

values are in general agreement that surface WOx monolayer 

coverage on ZrO2 corresponds to ∼4−5 W/nm
2
, with the mean 

value being ∼4.5 W/nm
2
. The only two experimental studies 

that report unusually high surface WOx monolayer coverage 

values (6.2 and 7 W/nm
2
) employed characterization methods 

(XRD and UV−vis) that are not sensitive to the specific 

structures of the supported tungsten oxide phase. 
 

2.3. Identification of the Acidic Catalytic Active Sites of 

Supported WO3/ZrO2 Catalysts. One of the key issues in 
catalysis research is to identify the structure of the catalytically 
active sites responsible for the chemical reaction of interest. It 
has been reported that a variety of diff erent structures of the 

 
 
 

Table 1. Summary of Monolayer Surface Coverage 
Values Reported in the Literature for Supported 

WO3/ZrO2 Catalysts 
 

monolayer coverage   

(W/nm2) method ref 

3.6−4.3a theoretical calculation (assumes isolated 57, 65 

 WO4 units)  

7 theoretical calculation (assumes WO3 37−39 
 crystal structure)  

4.5a 
CO chemisorption + FT-IR 36 

4.7 CO chemisorption + FT-IR 64 

4.5 Raman spectroscopy 42−44 

6.2 XRD 62 

∼4.5 (model) XPS 44 

∼5 (active) XPS 44 

∼8 UV−vis DRS 38 

4.1 H2 reduction 38 

∼4.5 CO2 chemisorption + FT-IR 38, 39, 
  63  
a
Converted from WO3 mass fraction using specific surface area 

data reported in the papers.  

 

active components can coexist in the highly active catalysts.
69

 

Therefore, knowledge of the key catalytically active sites is 

essential for catalyst design and optimization.
70−75

 A general 

approach in the identification of catalytically active sites is to 
perform structural and chemical characterization on a system-
atic set of catalysts displaying diff erent activities and then to 
correlate the structural information with catalytic performance 
measurements. A variety of such characterization techniques 
and catalytic performance testing studies have been applied to 

the WO3/ZrO2 solid acid catalyst system in an effort to 
correlate the catalyst structure with catalytic perform-

ance.
37−40,44,46,55,56,76

 The reactions catalyzed by WO3/ZrO2  
catalysts reported in the literature include alcohol dehydration 

reactions
40,41,43−45

 and several hydrocarbon, primarily alkane, 

isomerization reactions.
36,37,39,46,57,77

 In general, it has been 
found that the catalytic performance is a function of the surface 

WOx density on the zirconia support, as shown in Figure 4, and a 

function of both surface WOx density and calcination temperature, 
as shown in Figure 5. The maximum acidity is associated with an 

intermediate surface WOx density, but the precise “optimal” 

intermediate WOx surface density varies slightly depending on the 
reaction examined. There is also a general consensus that the 

structure of the supported WOx species depends on the surface 

WOx density present on the ZrO2 support.
36,38,42

 
,43

 A number of 
specific surface species have been proposed to exist in this catalyst 

system at various WOx loading levels, including isolated 

monotungstate and oligomeric polytungstate species, WOx 

clusters, and well-ordered WO3 nanocrystals.
36

 
,
 
38,42−46

 
,78−80

 
Most of these structures were determined from optical 
spectroscopy techniques, including FTIR, Raman, and UV−vis 

diffuse reflectance spectroscopy, and until recently,
44−46,81

 very 
limited effort has been made to provide direct electron 

microscopy images of these various WOx structures.
78−80

 The 

lack of direct imaging of the diff erent surface WOx species at the 
atomic scale undoubtedly led to some controversy in the early 

literature regarding the detailed structural models for the WOx 

catalytically active sites. Note that size-selected (WO3)3 clusters 

have also been reported in model systems as active species.
82,83

 

However, such (WO3)3 clusters are only present for model surface 

science studies where (WO3)3 was deposited on oxide 
 
 

  
 
 
 
 

 
 
 



single crystals and are not present for supported WOx/ZrO2 

powdered catalysts prepared by impregnation and 
coprecipita-tion.  

The leading proposed structural models for the nature of the 

catalytically active sites present in solid acid WO3/ZrO2 

catalysts will be reviewed below. More recent research results 
based on in situ optical spectroscopy and atomic-resolution 
electron microscopy studies will be emphasized at the end of 
this section in an effort to provide additional atomic level 

details about the WO3/ZrO2 solid acid catalysts.  
2.3.1. UC Berkeley Model for Catalytically Active Sites. 

One of the most thorough investigations of the structure−activity 

relationship for WO3/ZrO2 solid acid catalysts has been 

conducted by UC Berkeley researchers, who correlated the acidic 

catalytic activity to the surface WOx structures deduced from a 

variety of in situ characterization techniques (X-ray absorption 
near-edge spectroscopy (XANES), UV−vis diffuse reflectance 
spectroscopy (DRS), Raman spectroscopy, and chemical titration 

techniques).
37−41,56,84 

 
UV−vis DRS is commonly used to establish the cluster (or 

domain) size of surface oxide species via analysis of the 

optical band gap energy.
36−38

 The optical absorption edge 

energy, Eg, is defined as the minimum energy required to 
excite an electron from the highest occupied molecular orbital 
(HOMO) to the lowest unoccupied molecular orbital 

(LUMO),
38

 or equiv-alently from the valence band to the 
conduction band for semiconducting metal oxides. Analogous 
to the case of a particle in a box, where the energy level 
separation increases with the decreasing dimension of the box, 
the UV−vis DRS characterization method relies on an inverse 

relationship between the edge energy (Eg) and the cluster size 

of a semiconductor or insulator particle.
38,47,68,85

 The 

measured UV−vis edge energies (Eg), therefore, can only be 
used to qualitatively compare the cluster sizes of the dominant 

species in the WO3/ZrO2 catalysts, such that a lower Eg is 

indicative of a larger WOx cluster size and, hence, a more 

delocalized electron density.
36,38 

 
By analyzing the UV−vis DRS Eg values as a function of WOx 

surface density, it was observed
38

 that Eg decreases with an 

increasing WOx surface density, as shown in Figure 8. The 

decreasing Eg value suggests the formation of larger polytungstate 

domains at high WO3 loadings.
38

 It was proposed that the 

leveling off  of the Eg values at surface densities higher  

 
than  8  W/nm

2
  was an  indication  of  reaching  monolayer 

coverage, which was consistent with the onset of crystalline WO3 
formation, as detected by Raman spectroscopy and X-ray 

diff raction measurements on the same set of catalyst samples.
38

 

Three distinct regions exist in the Eg plot presented in Figure 8,  
which  were  assigned  to  (i)  the  submonolayer  surface 

monotungstate  region  (0−4  W/nm
2
),  (ii)  the  surface 

polytungstate growth region (4−8 W/nm
2
), and (iii) a surface 

polytungstate/3D WO3  crystal coexistence region (>8 W/ nm
2
), 

respectively.
38

 It was further proposed that only isolated surface 

monotungstate species exist for a surface WOx density below 4 

W/nm
2
, as revealed by the constant UV−vis edge energy in this 

region.
38

 For intermediate surface WOx densities (4−8 W/nm
2
), 

two-dimensional surface polytungstate struc-tures become 

dominant, and the increase of surface WOx density in this region 
leads to a monotonic increase of the surface polytungstate domain 

size until the monolayer coverage is reached at 8 W/nm
2
. The 

constant Eg value measured above  
8 W/nm

2
 was attributed to the presence of 3D crystalline 

WO3 NPs.
36 

 
Corresponding in situ XANES experiments on the dehydrated 

WO3/ZrO2 catalysts over a wide range of surface WOx densities 

(3−15 W/nm
2
) were also conducted. It was concluded from the 

XANES results that the W
6+

 centers in the surface WOx species 

are present as distorted-octahedral WO6 units across the entire 

range of surface WOx density.
37,38

 The W
6+

 centers in the surface 

WOx species are reducible and were proposed to be responsible 

for forming Brønsted acid sites (Hδ+
(WO3)n

δ−) during the acidic 

catalytic reactions.
40,41

 The pre-edge region (1.5−3.2 eV) of the 
in situ UV−vis absorption spectra was used to monitor the 

reducibility of WOx domains during acidic catalytic 

reactions,
40,41

 and it was concluded that the maximum density for 

the reduced WOx species occurred for intermediate surface WOx 
densities. From a comparison of the proposed structures of the 

surface WOx species and the catalytic activity as a function of 

surface WOx density, it was concluded that the partially reduced 
surface polytungstate network structure provides an optimum 

compromise between WOx reducibility and W atom accessibility, 
which comprises the physical state exhibiting the greatest number 

of catalytically active sites in the WO3/ZrO2 catalyst system.
37−41 

 
The Berkeley interpretation of the surface WOx species 

on ZrO2 as a function of surface WOx density is depicted in 
Figure 9.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. In situ UV−vis absorption edge energies as a function of 

surface WOx density for a series of dehydrated WO3/ZrO2 catalysts. 

The dashed curve shows the o-xylene isomerization rates per W atom 
on this particular set of catalysts. Adapted from ref 38. 

 
 
 
 
 
 

 

Figure 9. Structural models for the supported WOx species present 

on the ZrO2 surface, as proposed by UC Berkeley researchers. 
Adapted from ref 38.  
 

Two diff erent approaches were employed to estimate the 
number of active sites, focusing on Brønsted acid sites. Using 

NH3-IR spectroscopy combined with temperature-programmed 

desorption (TPD) measurements,
39

 a ratio of 5 W atoms per 

Brønsted site was found at a surface density of 5.5 W/nm
2
. From 

in situ pyridine and 2,6-di-tert-butylpyridine titration during 2-

butanol dehydration,
40

 however, a ratio of 25 W atoms per 

Brønsted site at a surface density of 6.0 W/nm
2
 was 
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reported, assuming that pyridine and 2,6-di-tert-butylpyridine 

block only one Brønsted acid site for 2-butanol dehydration. 

The discrepancy between the two methods was attributed to 

diff erences in the acidic strength, steric hindrance of the 2,6-

di-tert-butylpyridine, and the competitive chemisorption 

mecha-nism between 2-butanol dehydration and the pyridines 

during these in situ titration studies. In accordance with the 

TOF calculation described in section 2.1.3, these two methods 

suggest that the catalytically active sites (considered to be 

Brønsted acid sites) represented only a minor fraction of the 

supported tungsten oxide.  
Although not explicitly stated in the Berkeley papers, the 

increasing surface polytungstate domain size was correlated 

with the increasing catalytic activity in the 4−8 W/nm
2
 surface 

density region.
37,38

 Both “poly-tungstate” and “WOx clusters” 

terminologies were interchangeably used to describe the 

catalytically active site in the 4−8 W/nm
2
 surface density 

region.
37,38

 Monolayer surface coverages were reported to 

correspond to 8 W/nm
2
, which implies that the catalytically 

active site has a two-dimensional character (as indicated in the 

schematic in Figure 9). It was also proposed that strong acid 

sites can be generated by the replacement of a high-valent 

cation with ones of lower valence (e.g., W
6 +

 → 

(H
δ+

(WO3)n
δ−

)). Monolayer surface coverage of WOx on 

ZrO2 actually corresponds to ∼4−5 W/nm
2
, as reviewed in 

section 2.2 and similarly suggested by CO2 chemisorption 

(∼4.5 W/nm
2
), UV−vis H2 reduction (∼4.1 W/nm

2
), and 

Raman spectroscopy (<5.0 W/nm
2
) measurements reported by 

the Berkeley group.
39

 The proposed model is not consistent  
with the known monolayer surface WOx coverage on ZrO2 of 
∼4.5−5.0 W/nm

2
.
36,76,86 

 
2.3.2. University of München Model for Catalytically 

Active Sites. The structural model for the catalytically active 
sites proposed by the University of Mu ̈nchen group and their co-

workers emphasized an interesting eff ect related to the ZrO2 

support. In situ low-temperature IR spectroscopy coupled with 
CO adsorption was applied to the study of the surface cation 
species and their bonding with CO. The in situ IR spectra of the 
WO /ZrO catalyst prior to and after CO exposure are  

3 2  
shown in Figure 10. The IR bands of surface W O before 
CO chemisorption appear at 1024 and 1005 cm

−1
 and were 

assigned to two independent surface W O species. Interest-
ingly, low-temperature adsorption of CO on the surface of 
the WO /ZrO catalyst (estimated ∼3.2 W/nm

2
) red-shifts 

the W 
3
O IR 

2
bands from 1024 to 1013 cm

−1
 and from 

1005 to 997 cm
−1

. It was proposed that this eff ect is caused 
by the inductive eff ect of CO coordinated to Zr

4+
 sites in 

the vicinity of WOx species.
36,76,86

 This red shift, however, 
was not observed in samples with high tungsten oxide 
loading above monolayer coverage, as Zr

4+
 sites are no 

longer accessible by CO and could no longer aff ect the W 
O stretching bands.

36,76
 

,86
 It should be noted, however, 

that Zr
4+−CO stretching bands were still observed in the IR 

spectra reported by the same group even when the tungsten 
oxide loading was much higher than monolayer coverage. 
This interesting experimental observation suggests that 
exposed Zr

4+
 cations are still present in the catalyst above 

monolayer surface WOx coverage.  
The University of Mu ̈nchen researchers proposed that the 

surface WOx network structure resembles pseudo-heteropoly-

tungstates containing Zr
4+

 cations (such a structure would 

have Zr
4+

 in the center of a spherical cage where the cage wall 

is made up of mono-oxo WO6 units). On correlation of this 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Low-temperature in situ IR spectra of a dehydrated 
3.6% WO3/ZrO2 (∼3.2 W/nm

2
) 1098 K sample at 85 K showing 

the red shift of the W O stretching bands under CO adsorption at 
equilibrium pressures of (a) 0 mbar, (b) 0.1 mbar, and (c) 40 
mbar. Adapted from ref 36.  

 

observation with the acidity change in a systematic set of 

catalysts, it was proposed that a fully oxidized polytungstate 

WOx network incorporating trace levels of surface-exposed 

Zr
4+

 and charge-compensating protons should be the 

catalytically active sites in the WO3/ZrO2 catalyst 

system.
36,76,86

 This model, however, does not account for the 

observed Zr
4+

−CO vibrations above monolayer coverage. 

Raman bands for such heteropolytungstate clusters of 

(XW12O40)
3
 
−
 are well docu-mented

87,88
 but have never been 

detected by any research group for supported WO3/ZrO2 

catalysts. Furthermore, silicotungstic acid (SiW12O40)
3−

 

supported on ZrO2 thermally decomposes at 723 K, which is 

significantly below the calcination temperatures required to 

activate WO3/ZrO2 catalysts (∼923−1173 K) and, thus, cannot 

be present in activated WO3/ZrO2 catalysts.
47

 This model, 

therefore, also does not account for all of the reported 

observations about WO3/ZrO2 catalysts.  
2.3.3. Mobil Model for Catalytically Active Sites. A team 

of Mobil investigators focused on the chemical nature of the 

catalytically active sites present in the WO3/ZrO2 catalyst 

system. Using a novel approach that combined XPS surface 
analysis and chemical titration with 2,6-dimethylpyridine and 

pyridine, the Mobil researchers
57,77,89

 were able to quantify 
the population and strength of both surface Brønsted acid and 
Lewis acid sites in the catalysts. By correlating the catalytic 
performance and the concentration of strong surface Brønsted 

and Lewis acid sites, the Mobil group
57,77

 
,89

 postulated that a 

conjugate site having a 1:1 ratio of strong surface Brønsted to 
Lewis acid character would generate optimum catalytic 
performance for alkane isomerization, but a model for the 

molecular structure for such supported WOx catalytically 
active sites was not given.  

The Mobil team also found that ∼16 wt % W loading was 

required to maximize the acid site density of the catalyst, which 

they proposed represents coverage of about two mono-layers.
57,77

 
,89

 However, it should be noted that the monolayer coverage used 

here is calculated by assuming WO4
2− monotungstates anchored 

to the ZrO2 surface, i.e. ∼3.6 W/ nm
2
,
57

 as discussed in section 

2.2. The results thus suggest that 

 

 

 
  
  



 
the Brønsted to Lewis acid ratio increases with surface 

WOx density and peaks above 4.5 W/nm
2
 (typically 6−7 

W/nm
2
), which is consistent with the formation of 

Zr−WOx clusters above monolayer coverage.
44−46,90 

 
2.3.4. Lehigh−Rice−Virginia Model for Catalytically Active 

Sites. The work of the three aforementioned catalyst research 
groups provided many insights into the fundamental structure− 

activity relationship for the supported WO3/ZrO2 catalysts, but the 

proposed models could not account for all the experimental 

observations and lacked direct supporting evidence.  
The Lehigh−Rice−Virginia research group applied a wide 

range of characterization methods (including XRD, XPS, in 

situ Raman spectroscopy, in situ UV−vis DRS, and atomic 

resolution electron microscopy imaging) to carefully and 

systematically investigate two series of WO3/ZrO2 catalyst 

systems side by side: namely, the highly active WZrOH 

catalysts (employing an amorphous ZrOx(OH)4−2x support 

precursor) and low-activity model WZrO2 catalysts (using a 

crystalline ZrO2 (monoclinic) support).
42−46,49

 While Raman 

and UV−vis spectroscopy provide local structure and 

electronic information at the molecular level from sampling 

volumes of ∼100 nm, electron microscopy can provide 

detailed structural and compositional information with atomic 

resolution at the nanometer scale to complement the optical 

spectroscopy studies.  
The molecular structures of the diff erent WOx species present 

on ZrO2 supports were determined from combined in situ UV−vis 

and Raman spectroscopy. For the model supported WO3/ZrO2 

catalyst system, the Eg values derived from UV−vis DRS 
measurements as a function of surface W density are shown in 

Figure 11. Comparison of the Eg values for  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12. Correlation between the UV−vis DRS edge energy 

(Eg) and the average number of bridging W−O−W bonds around 

the central W
6+

 cation in bulk tungstate reference compounds. 
Adapted from ref 47.  
 

The corresponding in situ Raman spectra of the model 

WZrO2 are presented in Figure 13. The vibrations below 700  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 11. UV−vis DRS edge energy, Eg (eV), for supported 
tungsten oxide catalysts as a function of surface density (W 

atoms/nm
2
) for “model” WZrO2 catalysts (■) and highly active 

WZrOH catalysts calcined at diff erent temperatures (open 
symbols). Adapted from ref 44.  
 

the model WO3/ZrO2 catalysts with WOx reference com-pounds 

in Figure 12, reveals that isolated surface monotung-state species 

are only present below a tungsten oxide surface density of ∼1 

W/nm
2
 (Eg ≈ 5.2−5.3 eV) and that the surface WOx species 

become progressively more polymerized as surface polytungstates 

as monolayer surface coverage of ∼4.5 W/nm
2
 is attained (Eg ≈ 

4.2 eV).
43,44,47

 Above monolayer coverage (>4.5 W/nm
2
), the 

UV−vis DRS Eg values drop further to ∼3.8 eV and approach the 

Eg value characteristic of bulk WO3 crystals, reflecting the 

dominance of the WO3 phase in these catalysts. 

 
 
 
 
 
 
 
 
 
Figure 13. Comparison of in situ Raman spectra as a function of 

tungstate surface density for supported WZrO2-723 and WZrOH-
773 catalysts under dehydrated conditions. Adapted from ref 44.  
 

cm−1
 arise from the ZrO2 (monoclinic) support, and the 

vibrations above 700 cm−1
 are associated with the supported 

tungsten oxide phase. Up to monolayer surface coverage (4.5 

W/nm
2
), only one band is present at ∼1000 cm−1

 characteristic 
of surface WO  species on the ZrO  support (i.e., mono-oxo 

  x 44 2 

O WO4 species). The continuous shift in the Raman band from 
∼990 to 1015 cm

−1
 with increasing tungsten oxide coverage 

reflects the progressive polymerization of the surface WOx 
species. Above monolayer coverage (>4.5 W/nm

2
), new bands 

from crystalline WO3 nanoparticles are also present at 805 and 
715 cm

−1
, in agreement with the decreasing Eg value trends 

obtained from UV−vis spectroscopy in Figure 11.  
The UV−vis DRS Eg trend with surface W density for the 

active WZrOH catalysts is similar to that for the model WZrO2 

catalysts, as shown in Figure 11, initially rapidly decreasing due 

to polymerization of the surface WOx species and asymptoti-cally 

stabilizing above monolayer coverage. However, the asymptotic 

Eg value is ∼4.1 eV vs 3.8 eV for the model catalyst, reflecting the 

smaller WOx domains for the highly active catalyst. The 

corresponding Raman spectra are presented 

 

 

 
  
 
 

 
 



 
in Figure 13. The major diff erence between the Raman spectra 

of the highly active WZrOH and the model WZrO2 catalysts is 

the presence of the broad bands in the ∼820−850 and ∼900− 

925 cm
−1

 ranges for the active WZrOH catalysts. These bands 

can plausibly arise from Zr-stabilized disordered WO3 NPs, 

since crystalline WO3 exhibits its highest vibration at 805 

cm
−1

 and structural distortions will shift this band to higher 

wavenumbers.
44

 The broader bands at ∼990−925 cm
−1

 are 

related to highly disordered Zr-WO3 NPs having a greater 

amount of zirconia present, and the sharper ∼820−850 cm
−1

 

bands arise from mildly disordered Zr-WO3 NPs containing a 

lower amount of zirconia. The comparative spectroscopic 

results reveal that the diff erence between the highly active 

WZrOH catalysts and less active WZrO2 catalysts is the 

presence of distorted Zr-WO3 NPs in the former.  
Although in situ Raman and UV−vis spectroscopy provide 

molecular and electronic structural information about the diff erent 

supported WOx species on ZrO2, these optical techniques cannot 

provide information on the spatial distribution of the various 

supported WOx phases with atomic resolution. In order to identify 

the detailed atomic structure of the surface supported species, 
atomic resolution electron microscopy studies on a systematic set 

of supported WO3/ ZrO2 catalysts having diff erent surface 

tungstate loadings and catalytic activities were performed.
44−46,90

 

Conventional high-resolution transmission electron microscopy 
(HR-TEM) imaging, as commonly used to study the crystal 

structure of catalyst materials at the atomic scale,
90

 was first 

performed on active supported WO3/ZrO2 catalysts.
44

 As shown 

in Figure 14,  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 14. Representative HR-TEM images from (A) a WZrOH catalyst 

having a low catalytic activity (2.9WZrOH-773 K, with a surface WOx 

density of 2.9 W/nm2 and calcination temperature of 773  
K) and (B) a WZrOH catalyst having a high catalytic activity 

(6.2WZrOH-1073 K). Red circles denote WOx clusters with diameter 

∼0.8−1 nm. These latter clusters were only found in samples with 

surface W density above monolayer coverage, which exhibit higher 

catalytic performance.
44,45

 Adapted from refs 44 and 45.  

 

the lattice fringes from the ZrO2 support particles can be well 

resolved and clusters ∼1 nm in size can be clearly observed in 

samples having a surface W density exceeding monolayer 

coverage, as highlighted in Figure 14B. HR-TEM imaging, 

however, fails to provide any structural information about the 

surface isolated monotungstate and oligomerized polytungstate 

species (Figure 14A), as they display very little image contrast 

due to their highly dispersed nature and the underlying image 

formation mechanism of HR-TEM.
90 

 
When high-angle annular dark-field (HAADF) imaging in an 

aberration corrected STEM is used, which provides atomic 

number (Z) contrast, direct imaging of all the surface WOx 

entities on the ZrO2 support at all surface WOx density loadings 

 

becomes possible.
45

 The STEM-HAADF imaging results from a 

systematic set of supported WZrOH catalysts having diff erent 

surface tungstate loadings and catalytic activities are summar-ized 

in Figure 15. In this imaging mode, individual heavy atoms  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 15. Representative STEM-HAADF images of supported 
WZrOH2 catalysts: (A) a less active catalyst with low WOx 
surface density; (B) a highly active catalyst with surface density 
higher than the monolayer coverage. The blue circles highlight the 
presence of single W atoms corresponding to isolated surface 
monotungstate species, and the green circles indicate oligomeric 
surface polytungstate species with several W atoms linked by 
oxygen bridging bonds. The red circles highlight Zr-WOx mixed 
oxide clusters with diameter ∼0.8− 1 nm. These last clusters are 
only found in the highly active catalyst samples having a surface 
WOx density above monolayer coverage and are identified as the 
most reactive catalytically active species. Adapted from ref 45.  
 
appear as bright spots, and the atoms with larger atomic 

number, i.e. W in this case, display higher image contrast 

against the ZrO2 support particles. For the low-activity sample 

with surface density below the monolayer coverage, the WOx 

was found to be highly dispersed on the ZrO2 surface mainly 

as mono- and polytungstate species with single atomic layer 

thickness (Figure 15A). The existence of the surface WOx 

species has long been proposed in the literature from Raman 

spectroscopy, but this work represented the first time that they 

had been directly imaged. The high-activity samples with 

surface density above monolayer coverage, however, possess 

additional numerous disordered WOx clusters ∼0.8−1.0 nm in 

size (Figure 15B) coexisting with the surface mono- and 

polytungstate species. Determining the composition of such 

small clusters would be almost impossible using other 

techniques; however, the Z-contrast images also contain such 

useful information. By careful analysis of the subtle contrast 

variation observed in HAADF images from these ∼1 nm 

clusters, it was proposed that they were in fact mixed oxide 

clusters containing both Zr cations and WOx species,
44−46

 an 

assertion which was supported by results from in situ Raman 

spectroscopy studies,
44

 novel catalyst design experiments,
45

 

and image simulations.
45,46,49 

 
The catalytic activities of the supported tungstated zirconia 

catalysts were investigated for both methanol dehydration
44,45

 

and n-pentane isomerization
46

 reactions, and a similar surface W 
density dependence of the catalytic activity was found for both 

reactions. Specifically, in the low surface WOx density region 

(<4.5 W/nm
2
), corresponding to the submonolayer coverage 

regime, the WO3/ZrO2 materials display low catalytic activity, 

while high activity was observed for catalysts with surface WOx 

densities higher than 4.5 W/nm
2
, corresponding to a surface 

coverage exceeding a monolayer. The comple-mentary 
structural/activity information provided by these diff erent 
characterization techniques provides an in-depth 

  



 

overview of the WO3/ZrO2 structures from the macro scale 
down to the single-atom level, which can be correlated with 
the catalytic performance data.  

The ability to visualize all of the supported tungstate species 

present in a systematic set of samples displaying a variety of 

catalytic activities allowed the Lehigh−Rice−Virginia group to 

draw a direct correlation between the supported tungstate 

structures and their catalytic performance. By combining 

structural information from aberration corrected STEM-HAADF 

imaging studies and complementary in situ Raman, UV−vis 

spectroscopy data, it was shown that surface isolated 

monotungstate and oligomeric polytungstate species are the 

dominant WOx entities on the ZrO2 surface when the surface 

density is lower than monolayer coverage (∼4.5 W/nm
2
) and that 

additional disordered mixed oxide Zr-WOx clusters ∼0.8− 1.0 nm 

in size coexist with the surface mono- and polytungstate species 

once the surface W density exceeds monolayer coverage,
44,45

 as 

shown schematically in Figure 16. The use  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16. Schematic representation of isolated surface 
monotungstate (blue circle), oligomeric two-dimensional 

polytungstate (green circle), and three-dimensional Zr-WO3 

clusters (red circle) and crystalline WO3 NPs (no circle) 

supported on ZrO2 surfaces. Adapted from ref 90.  
 
of an amorphous ZrOx(OH)4−2x support precursor provides 

easy access to surface Zr cations that can be extracted and 

incorporated into the WOx clusters during crystallization by 

calcination above the Hu ̈ttig temperature of ZrO2 (where 

surface species have sufficient mobility to agglomerate and 

sinter) and help to generate the highly active mixed Zr-WOx 

cluster sites.
45

 A further increase in tungsten oxide loading 

results in the formation of inactive bulk WO3 crystals. By 

correlation of the structural information with catalytic 

perform-ance, it was possible to conclude that the least active 

sites are the isolated surface monotungstate species (∼1 

W/nm
2
) and the surface polytungstate species are only slightly 

more active (∼1.5−4.5 W/nm
2
), as reflected by their respective 

catalytic activity (see Figures 5 and 6). The well-ordered WO3 

nanoparticles present in the model WZrO2 catalysts are 

slightly more active than the surface tungstate species (see 

Figures 5 and 6). The ∼1 nm disordered Zr-WOx mixed oxide 

clusters only present in the supported WZrOH catalyst system, 

however, are unequivocally the most active catalytic sites for 

both the methanol dehydration and n-pentane isomerization 

reactions.
44−46

 This model accounts for all the reported 

experimental observations and the presence of exposed Zr
4+

 

sites above monolayer surface coverage. 

2.3.5. Theoretical Insights into the Acidity of WOx/ZrOx  
Domain Structures. The catalytic activity of solid acid catalysts 

is often linked to the acidity of the catalyst.
91−101

 Much can be 

learned  about  the  reactivity  of  solid  acid  catalysts  by 

 
understanding their intrinsic acidity, provided that the 
solvation environment remains the same and there are minimal 

confinement eff ects.
102,103

 While the adsorption of basic 

probe molecules and in situ spectroscopy provide insights into 
structural and electronic features that influence acidity, there 

are no direct experimental probes of solid acidity.
91

 Ab initio 

simulations of the deprotonation energy (DPE), which is the 
energy required to remove a proton from the solid acid to form 
the conjugate base and a separated proton, can provide an 
idealized yet direct measure of the Brønsted acidity. Such 
simulations have helped to provide establish the intrinsic 
acidity for a wide range of model solid acids, including 

zeolites
92,93

 and heteropolyacids.
94−100

 The results for many 

of these systems have shown direct correlations between the 
rate constants for solid acid catalyzed reactions and the 
deprotonation energies of the acid for diff erent reactions, 
including dehydration and isomerization, provided that the 

entropic changes for such systems are small. Macht et al.
99

 

extended the direct linear relationship between the logarithm 
of experimentally measured intrinsic rate constants and 
theoretically calculated DPE values for heteropolyacids. They 
used experimentally measured rate constants for the 
dehydration and isomerization to regress or back-calculate 
DPE values for sulfated zirconia (1110 kJ/mol (isomerization) 
and 1120 kJ/mol (dehydration)) as well as tungstate zirconia 
(1120 kJ/mol (isomerization) and 1185 kJ/ mol (dehydration)) 
for isomerization and dehydration reactions.  

The acidic properties of the diff erent model domain structures 

present on supported WOx/ZrOx catalysts discussed herein were 
calculated using density functional theory (DFT). The model 
domain structures chosen for investigation consisted of single-

layer 2D WOx structures (isolated WOx, W2Ox dimers, and WyOx 

oligomers) on ZrO2, which are shown in Figure 17, and three-

dimensional Zr-promoted WOx clusters  
 
 
 
 
 
 

 
Figure 17. Structures and deprotonation energies of model (a) 

monomeric WO4, (b) dimeric W2O7, and (c) trimeric W3O10 clusters 

supported on ZrO2. The tungsten, zirconium, oxygen, and hydrogen 
atoms are shown in blue, light blue, red, and white, respectively.  

 

(ZrOx containing polyoxotunstate Keggin structures with 

monomeric ZrOx in diff erent locations), shown in Figure 
18, that were chose to mimic the active sites.  

While the specific atomic structures of the active sites in the 

Zr-WOx systems are still unclear, the detailed STEM-HAADF 

imaging, in situ Raman and UV−vis spectroscopy, and kinetic 

studies discussed in section 2.3.4 indicate that the active 

environments are comprised of structurally distorted and 

disordered three-dimensional Zr-WOx clusters on the order of 

0.8−1 nm in size where the W resides in distorted-octahedral 

environments in direct contact with exposed Zr cations. In 

order to provide a more direct understanding of the influence 

of structure on reactivity, we carried out calculations on well-

defined model 3D Zr-WOx systems. The ZrOx-supported and 

Zr-substituted tungstate Keggin structures presented in Figure 

18 match many of the structural attributes of the active Zr-

WOx clusters presented in section 2.3.4 in that they are ∼1 nm 
  



       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 18. Deprotonation energies (DPE) and electron density diff erence maps for the conjugate bases of model ZrOx-containing 

polytungstate Keggin clusters. The structures examined include ZrO4
4− in the central shell (H4ZrW12O40), ZrO4 in the outer addenda shell 

(H3PW11ZrO39), and one, two, and three attached ZrO2 clusters. Color scheme: red, O; blue, W; purple, P; cyan, Zr; white, H.  
 

diameter WOx clusters in distorted-octahedral environments 

and in direct contact with Zr cations. While these models 
provide a reasonable local structure, they are overly simplified 
models. At the higher temperatures of reaction, the Keggin 
structures are known to undergo cage opening and structural 
rearrangements. While such structural reorganization would 

change the environment, the local distorted Zr-WOx 

architecture would still likely maintain the distorted Zr-WOx 

clusters with similar structure.  
The Keggin models used examine Zr substituted at 

addenda sites as well as ZrOx clusters anchored to the 

exterior of the H3PW12O40 cluster. These models capture 

the Zr
4+−CO vibrational stretches that are observed 

experimentally at greater than monolayer WOx coverages, 
thus overcoming one of the issues of the Munich model 

which assumed that the ZrOx is encapsulated in the interior 

of the WOx outer shell. The Keggin models used here, 
however, are still very simplified models of the active sites.  

For the 2D WOx structures supported on ZrO2 (shown in 

Figure 17), there is a significant increase in acidity and activity 

of Zr−O(H)−W Brønsted acid sites as the WOx domain size 
increases from monomers (1196−1203 kJ/mol) to dimers 
(1175−1185 kJ/mol) to oligomers (1090−1180 kJ/mol). This is 

consistent with recent in situ 
1
H NMR and 

13
C-acetone 

adsorption experiments and theoretical simulations which 
indicate that the dimeric W−OH−Zr sites are much more 

acidic than the monomeric W−OH sites.
101

 The increase in 

acidity with an increase in the WOx domain size is directly 

associated with the ability of the conjugate base that results 
upon deprotonation of the acid to delocalize electrons. The 
acidity and activity of Zr−O(H)−W sites in the 3D structures, 
however, are significantly higher than those of any of the 2D 

structures. The DPE values calculated here for the ZrO2-
supported polytungstates which range from 1090 to 1185 kJ/ 

 
mol are consistent with the values of 1120−1185 kJ/mol 
that were back-calculated from experimental dehydration 

and isomerization kinetics by Macht et al.
99 

 
To better understand the variation of acidity and activity of 

the 3D ZrOx-WOx structures as a function of the location of 

ZrOx, the Zr-substituted or Zr-promoted H3PW12O40 Keggin 
structures discussed above were used. To examine the eff ect 

of ZrOx on the acidity and activity of the 3D H3PW12O40 

polytungstate cluster, ZrOx was placed in diff erent positions 
by (a) substituting Zr for W addenda atoms, (b) substituting Zr 

for the central P atom, and (c) supporting model ZrOx clusters 

on the H3PW12O40 cluster, as shown in Figure 18.  
The deprotonation energies for the 3D Keggin Zr-WOx 

clusters shown in Figure 18, with the exception of the 

H4ZrW12O40 structure, where Zr acts as the central cation 
Keggin unit, were all calculated to be 70 kJ/mol lower and 

hence more acidic than the 2D polymeric WOx/ZrO2 
structures. The increase in the DPE value (to 1137 kJ/mol) for 

the H4ZrW12O40 structure is due to the increased number of 
charge-balancing protons from 3 to 4, which decreases the 
Keggin acidity as it decreases the strength of the conjugate 
base, as the Keggin structure less readily delocalizes the 
excess negative charge. The lowest DPE values (1073−1041 
kJ/mol) and hence highest Brønsted acid site strengths were 

found for ZrOx clusters supported on the external surface of 

the H3PW12O40 cluster with calculated DPE values decreasing 

with increasing numbers of ZrO2 and ZrO4
4− clusters bound 

to the external surface. The charge density diff erence maps 
plotted in Figure 18 indicate that the supported zirconia 
cluster(s) on the Keggin structure can more easily delocalize 
the electron density over the polytungstate structure, which in 
turn increases its Brønsted acidity. The increase in the number 

of ZrOx clusters further increases the delocalization and 
stabilization of the polytungstate Keggin cluster. 

  



           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Sequential (P1) and simultaneous (P2) methanol dehydration pathways over tungstated zirconia. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Activation barriers for both the sequential and simultaneous methanol dehydration paths plotted against deprotonation energies 

of the acid sites on tungstated zirconia. TS1, TS2, and TS3 refer to the transition states for the H2O elimination step in the sequential path, 
the DME formation step in the sequential path, and direct DME formation in the simultaneous path, respectively. The 3D Keggin-type Zr-

WOx structures are more acidic and more reactive than the 2D WOx/ZrO2 structures and, as such, lie to the right-hand side. 
 

 

2.3.6. Theoretical Aspects of Acidity−Activity Relation-
ships for Tungstated Zirconia. Methanol dehydration was 

used as a chemical probe reaction to study the acidity−activity 
 

relationship in the 2D and 3D tungstated zirconia systems. 
 

There are two diff erent pathways by which the reaction 

can proceed.
95−100

 The first proceeds by the sequential 

activation of methanol to form a methoxy intermediate and a 

water molecule. This is followed by the adsorption of a second 

methanol molecule and its reaction with the adsorbed methoxy 

to form dimethyl ether and regenerate the acid site. The second 

path proceeds by the simultaneous addition of the two 

adsorbed methanol molecules to form DME and water, which 

desorb from the surface. The simultaneous path avoids 

forming the strongly bound methoxy intermediate. The 

elimination of water is calculated to be the rate-limiting step 

for both of these paths. These methanol reaction pathways are 

shown in Figure 19.  
The activation barriers for the rate-limiting elimination step 

in methanol dehydration for both mechanisms have been 

 
calculated for all 2D surface tungstate domains and various 
3D tungstate-zirconia mixed oxide Keggin clusters and are 
plotted against the DPEs in Figure 20. In general, the 
Brønsted acidity increases as the tungstate domain size 
increases. The increased acidity subsequently results in 
lower activation barriers and higher reactivity. 

The supported WOx/ZrO2 results all lie on the left-hand 
side of Figure 20, where the DPE values decrease from 
1196 to 1100 kJ/mol on moving from the monomeric to 

polymeric WOx/ ZrO2 structures. The activation barriers 
for the methoxy formation transition state (TS1) and the 
DME formation transition state (TS2) involved in the 
sequential dehydration path and the transition state for the 
direct simultaneous path (TS3) decrease from 151 to 138 
kJ/mol, from 129 to 118 kJ/ mol, and from 81 to 75 kJ/mol, 
respectively, with increasing acidity.  

The 3D Zr-WOx Keggin structures, as discussed above, are 
much more acidic and, as such, they lie along the right-hand 
side of Figure 20 with DPE values that range from 1089 to 

 
 

  
 
 

 
 

 
42,45 



 
1060 kJ/mol. The barriers for TS1, TS2, and TS3 were 
calculated to be respectively 6−8, 22−23, and 20−30 kJ/mol 

lower than those for the polymeric WOx clusters on ZrO2. 
Despite the diff erences in structure between the 2D 

WOx/ZrO2 and 3D Zr-WOx Keggin structures, they follow the 
same linear relationships between acidity and activity as 
shown in Figure 20. This is consistent with the reactions 
carried out on other  
solid acids such as sulfated zirconia,

99
 heteropolya-cids,

94,96,97,99,100
 

and zeolites,
92,93,104

 which provide the ranking 
 

zeolites <  perfluoro‐ sulfonic resins <  WOx /ZrO2  
< sulfated zirconia <  W‐heteropolyacids 

 
When the slopes of three acidity−activity trend lines in Figure 

20 are compared, it is clear that the dehydration activation barriers 

in the sequential paths are much more sensitive to changes in 

catalyst acidity than the steps involved in the simultaneous 

pathway. The acidity−activity sensitivity is largely dependent on 

the structure of the transition state or, more specifically, on how 

the carbenium ion is stabilized in the transition state. One can see 

in Figure 20 that the methyl carbenium ions that form in the 

sequential path transition states are directly stabilized by the 

surface oxygen atom on the Keggin structure as well as by the 

water that is eliminated in the first reaction step or by the 

coadsorbed methanol in the second reaction step. The methyl 

carbenium ion in the simultaneous path transition state, however, 

is stabilized by the coreactant methanol molecule and the 

eliminated water as well as by the oxygen on the Keggin structure. 

The extra water or methanol molecule in this latter path 

significantly stabilizes the transition state, as is shown by the 

lower energy barriers. In addition, it further removes the methyl 

carbenium ion from the negatively charged O* on the Keggin 

structure. The addition of the extra water and the change in the 

structure both act to significantly lower the sensitivity of the 

reaction to acid site strength.  
The results from the DFT calculations are in full 

agreement with the experimental findings that the most 

active Brønsted acid sites in the supported WOx/ZrO2 solid 

acid catalysts are associated with 3D mixed Zr−W−O 
clusters. The optimum size of the Zr−W−O clusters cannot 
be directly estimated by these calculations, but it is 
demonstrated experimentally to be in the 0.8−1 nm range. 
 

3. CATALYST DESIGN AND OPTIMIZATION  
The identification of ∼1 nm mixed oxide Zr-WOx clusters as the 

most reactive catalytically active site
44−46

 provides a new 

perspective for solid acid supported oxide catalyst research and 

suggests new directions for the rational design of such catalysts 

with enhanced performance. This principle has been demon-

strated by coimpregnating amorphous ZrOx and WOx precursors 

onto a crystalline ZrO2 support followed by high-temperature 

calcination to synthesize the Zr-WOx clusters via thermally 

activated surface diffusion.
45

 The catalyst design experiment 

made use of a relatively inactive model supported WZrO2 catalyst 

(2.5WZrO2-723 K) that had below monolayer coverage as the 

starting material, which was postimpregnated with (i) ZrOx or 

WOx precursors separately or (ii) both precursors simultaneously, 

followed by a 973 K calcination step.  
Simultaneous coimpregnation of both WOx and ZrOx 

precursors was designed to mimic the formation of mixed-

oxide clusters on the ZrO2 surface during calcination. The 973 
K calcination temperature was carefully chosen to be slightly 

higher than the 896 K Hu ̈ttig temperature of ZrO2 (at which 

 
surface ZrO2 species have sufficient mobility to agglomerate 
and sinter) but well below the 1494 K Tammann temperature 

of ZrO2. This intermediate temperature of 973 K would 

therefore promote the intermixing of the surface WOx and 

ZrOx species into the mixed oxide clusters without activating 

bulk diffusion of Zr species from the bulk ZrO2 crystal.  
Aberration corrected STEM-HAADF imaging was employed to 

monitor the structural evolution of the surface WOx species 

during the postimpregnation process. As shown in Figure 21A,  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 21. Aberration-corrected STEM-HAADF images of (A) 
the starting model WZrO2 catalyst (2.5WZrO2-723 K) and (B) the 

ZrOx and WOx postimpregnated catalyst 

((3.5W+3.5Zr)/2.5WZrO2-973 K). Adapted from ref 45.  
 

the starting low-activity 2.5WZrO2-723 K model catalyst 
exclusively shows highly dispersed surface monotungstate and 

polytungstate species, as expected. The simultaneously ZrOx 

and WOx postimpregnated sample shows an additional high-
density population of subnanometer mixed oxide clusters, 
containing both W and Zr cations, as evidenced by subtle 
contrast variations within single clusters (Figure 21B).  

The formation of mixed oxide clusters in the coimpregnated 
catalyst was found to dramatically increase the catalytic 
activity for the methanol dehydration reaction by more than 2 
orders of magnitude relative to the starting model catalyst. In 

contrast, postimpregnation with the ZrOx precursor or the 

WOx precursor alone gave only a minimal improvement in 

catalytic performance.
45

 These results provide strong 
complementary support for the catalytically active site 
structural model that three-dimensional 0.8−1.0 nm mixed Zr-

WOx clusters constitute the most reactive catalytically active 

species in the WZrOH catalyst system.
45 

 
Some other important contributions toward the development 

of monodisperse Zr-WOx supported catalysts have also been 

made very recently. Song et al.
28

 synthesized a novel WO3/ 

ZrO2 catalyst via a two-phase interface hydrolysis (TPIH) 
method. The catalysts demonstrated an enhanced n-pentane 
isomerization performance due to their thermostructural 

stability that resulted in higher amorphous WOx loadings after 
calcination. The Raman spectra presented in their work clearly 

demonstrated that the most active TPIH WO3/ZrO2 catalyst 

(6.0 W/nm
2
) shows the highest concentration of highly 

distorted Zr-WOx clusters, even though this point was not 

exclusively stated.
44

 Kim et al.
23

 reported the synthesis of a 

novel mesoporous Zr-WOx/SiO2 catalyst via a soft-templating 
method. By using this technique the authors selectively 

deposited Zr-WOx clusters, having diff erent but controllable 

W/Zr ratios, within the SiO2 framework. It was demonstrated 
from this work that the sample with a W/Zr ratio of 0.3 had the 
strongest Brønsted acidity and highest catalytic activity for the 
esterification of 1-butanol with acetic acid. 

 
 

              
 
 

 
 



 
The post-impregnation experiment and the new synthetic 

routes that have recently been reported demonstrate that a 

superior catalyst with a higher Zr-WOx cluster density can 
indeed be intentionally and deliberately engineered. 
 
4. FUTURE PROSPECTS: IN SITU 

IMAGING AND CATALYSTS BY DESIGN 
 
The application of advanced characterization techniques, such 
as in situ optical spectroscopy and aberration corrected 
scanning transmission electron microscopy, has substantially 
improved our understanding of the relationship between the 
molecular/electronic structure and the catalytic performance of 

WOx/ZrO2 catalysts. By using aberration corrected electron 

microscopy, it was possible to directly identify and distinguish 

diff erent WOx surface species down to subnanometer 

resolutions, which when combined with deductions from in 
situ optical spectroscopy, allowed us to extract useful 
information that informed the development of a more cohesive 
structure−activity correlation model.  

It is important to realize that new opportunities are 
continually arising for applying newly developed in situ 
characterization techniques that can reveal detailed 
information on the true nature of the active site(s) in various 
catalytic systems. For example recent improvements in in situ 
aberration corrected electron microscopy now allows atomic 
resolution imaging to be performed at elevated temperatures 

and under nonvacuum environments.
105,106

 Such in situ real-

space direct imaging, in combination with the rich structural 

information provided by in situ optical
107

 spectroscopy, can 
potentially provide an unprecedented understanding of how 

such catalysts function at the atomic scale.
108 

 
A better understanding of the structure−catalytic activity 

relationship is essential in developing improved catalyst 

synthesis methods.
23,28,45

 As has been demonstrated, a simple 
postimpregnation procedure can transform an inactive model 

WO3/ZrO2 catalyst into a highly active catalyst by increasing 

its Zr-WOx cluster density. This concept applied to other novel 

synthesis approaches can lead to more sophisticated catalyst 
synthesis protocols for designing supported metal oxide 
catalysts with enhanced performance.  

Advanced theoretical calculations have improved our 
fundamental understanding of the complex structure−activity 
correlations and can lead to critical improvements over current 
catalyst synthesis techniques. The experimental work reviewed 

in this article demonstrated that ZrOx species play a crucial 

role in the formation of the active sites (Zr-WOx clusters) but 
could not explain the specific eff ect of those species on the 
intrinsic cluster activity. Preliminary first-principles theoretical 

DFT calculations are starting to explain the role of ZrOx 

species (Zr
4+

) in lowering the deprotonation energy (or 

increasing the Brønsted acidity) of the WOx clusters. More 

informed theoretical studies of this type can further elucidate 
structure−activity correlations that can be exploited to 
rationally design experiments to test the validity of a 
hypothesized model and, hopefully, ultimately lead to better 
catalyst synthesis methods.  

The supported WO3/ZrO2 solid acid catalyst system featured in 

this perspective article provides an excellent example for 

showcasing how advanced characterization techniques, includ-ing 

optical spectroscopy and electron microscopy methods, coupled 

with state of the art theoretical calculations comple-ment each 

other in providing new fundamental insights into the 

structure−activity relationship of an important oxide-on-oxide 

 
catalyst system. These advanced characterization techniques, in 

combination with atomistic simulation and improved synthesis 

methods, will continue to help catalysis researchers to solve the 

workings of complex catalyst systems and make new discoveries 

when designing catalysts at the molecular and atomic level. 
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