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Abstract
Classification is a popular task in many application areas, such as decision making, rating, sentiment analysis and pattern 
recognition. In the recent years, due to the vast and rapid increase in the size of data, classification has been mainly undertaken 
in the way of supervised machine learning. In this context, a classification task involves data labelling, feature extraction, 
feature selection and learning of classifiers. In traditional machine learning, data is usually single-labelled by experts, i.e., 
each instance is only assigned one class label, since experts assume that different classes are mutually exclusive and each 
instance is clear-cut. However, the above assumption does not always hold in real applications. For example, in the context 
of emotion detection, there could be more than one emotion identified from the same person. On the other hand, feature 
selection has typically been done by evaluating feature subsets in terms of their relevance to all the classes. However, it is 
possible that a feature is only relevant to one class, but is irrelevant to all the other classes. Based on the above argumentation 
on data labelling and feature selection, we propose in this paper a framework of multi-task learning. In particular, we consider 
traditional machine learning to be single task learning, and argue the necessity to turn it into multi-task learning to allow an 
instance to belong to more than one class (i.e., multi-task classification) and to achieve class specific feature selection (i.e., 
multi-task feature selection). Moreover, we report two experimental studies in terms of fuzzy multi-task classification and 
rule learning based multi-task feature selection. The results show empirically that it is necessary to undertake multi-task 
learning for both classification and feature selection.

Keywords Machine learning · Multi-task learning · Image processing · Fuzzy classification · Granular computing

1 Introduction

Classification is one of the most popular tasks of machine 
learning, which has been frequently used in broad appli-
cation areas, such as decision making (Pedrycz and Chen 
2015a; Liu and Gegov 2015), sentiment analysis (Pedrycz 
and Chen 2016; Liu et al. 2016b) and pattern recognition 
(Teng et al. 2007). In general, classification is aimed at 
assigning a class/label to an unseen instance, i.e., it is to 
judge to which category an instance belongs.

In traditional machine learning, classification is typically 
considered to be of single-task, due to the following aspects:

Firstly, classification is generally undertaken by assum-
ing that different classes are mutually exclusive and thus 
an instance can only belong to one class. However, this 
assumption does not really hold for many real-life prob-
lems. For example, in the context of text classification, the 
same movie may belong to different categories. Similarly, 
the same book may belong to different subjects. There are 
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also many similar examples in other areas, e.g., a patient 
may be found to have more than one health issue in medi-
cal diagnosis.

Secondly, feature evaluation and selection have been 
considered as a very important step towards advancing the 
performance of learning classifiers (Liu et al. 2017a; Dash 
and Liu 1997; Langley 1994). However, the evaluation of 
features has been typically done by measuring their rele-
vance to all classes. In fact, it could happen that a feature is 
only relevant to one class and is irrelevant to all the other 
classes (Cendrowska 1987). For example, in the context of 
image understanding, some target regions need to be iden-
tified, and each of the target regions involves recognizing 
instances of a specific class and extracting a set of features 
(that may be relevant only to this class). In this case, if fea-
tures extracted from different target regions of an image are 
put together to make up a feature set, then the resulted data 
set could involve a sparse matrix. The case of a sparse matrix 
could lead to a large number of features being judged as 
irrelevant and thus filtered. However, these filtered features 
may be highly relevant to a specific class, which may lead 
to poor classification performance on that particular class.

Based on the two aspects described above, we argue in 
this paper the need to turn single-task learning into multi-
task learning, i.e., a learning task per class. In particular, we 
propose the use of fuzzy approaches to allow an instance to 
belong to more than one class by judging the membership 
degree of an instance to different classes. We also show how 
different classes may be related to each other from granular 
computing perspective, through looking at fuzzy member-
ship degrees of an instance to different classes, i.e., each 
class is viewed as a granule and the possible relationships 
between granules are identified.

On the other hand, in terms of feature evaluation and 
selection, we propose to turn it into a multi-task approach, 
from a granular computing perspective. In particular, we 
transform the class feature into a number of binary features, 
and each binary feature corresponds to a class. In this way, 
features are evaluated for each class in terms of their rel-
evance, i.e., for each class, there is a feature subset selected 
towards learning to judge if an instance belongs to this class 
or not. We also show how rule learning approaches are capa-
ble of achieving class-specific feature evaluation.

The rest of this paper is organized as follows: Sect. 2 pro-
vides related work on classification, feature selection and 
granular computing. In Sect. 3, we present how single-task 
learning can be transformed effectively into multi-task learn-
ing, in terms of both classification and feature selection. In 
Sect. 4, we conduct two experimental studies, and discuss 
the results for showing the necessity to achieve multi-task 
classification and feature selection, towards advancing 
machine learning techniques for classification. In Sect. 5, 
we summarize the contributions of this paper and suggest 

further directions that could lead to advances in this research 
area in the future.

2  Related work

In this section, we describe the concepts of granular comput-
ing and justify how granular computing is related to clas-
sification and feature selection. Moreover, we provide an 
overview of classification in the context of machine learning 
and a review of existing approaches of feature selection.

2.1  Granular computing

Granular computing is a computational approach of informa-
tion processing. It is aimed at structural thinking at the philo-
sophical level and is aimed at structural problem-solving at 
the practical level (Yao 2005b). In general, granular comput-
ing involves two operations, namely granulation and organi-
zation (Yao 2005a). The former operation is to decompose a 
whole into parts, whereas the latter operation is to integrate 
parts into a whole. In computer science, granulation and organ-
ization have been frequently involved as the top-down and 
bottom-up approaches, respectively (Liu and Cocea 2017a).

In practice, two main concepts of granular computing, 
which have been popularly used for granulation and organi-
zation, are granule and granularity. A granule generally rep-
resents a large particle, which consists of smaller particles 
that can form a larger unit. There are many real-life exam-
ples as follows:

– In the context of classification, each class can be viewed 
as a granule, since a class represents a collection of 
objects/instances.

– In the context of feature selection, each feature set can 
be viewed as a granule, since a feature set represents a 
collection of features.

In general, granules can be at the same level or differ-
ent levels with specific interrelationships, which leads to 
the need of the concept of granularity (Pedrycz and Chen 
2015b). In particular, if granules are located at the same 
level of granularity, then the relationships between these 
granules are referred to as horizontal relationships (Liu and 
Cocea 2018). In contrast, for granules located at different 
levels of granularity, the relationships between these gran-
ules are referred to as hierarchical relationships (Liu and 
Cocea 2018). For example, in the context of classification, 
a class at a higher level of granularity may be specialized/
decomposed into sub-classes at a lower level of granular-
ity, in terms of specialization/decomposition (hierarchical 
relationships). Also, classes at a lower level of granularity 
may be generalized/aggregated into a super class at a higher 
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level of granularity, in terms of generalization/aggregation 
(hierarchical relationships) (Liu and Cocea 2017a). On the 
other hand, classes may also have horizontal relationships 
between each other when these classes are at the same level 
of granularity, such as mutual exclusion, correlation and 
mutual independence (Liu et al. 2017b).

In practice, granular computing concepts and tech-
niques have been used broadly in popular areas, such as 
artificial intelligence (Wilke and Portmann 2016; Pedrycz 
and Chen 2011; Skowron et al. 2016), computational intel-
ligence (Dubois and Prade 2016; Yao 2005b; Kreinovich 
2016; Livi and Sadeghian 2016), machine learning (Min and 
Xu 2016; Peters and Weber 2016; Liu and Cocea 2017c; 
Antonelli et al. 2016), decision making (Xu and Wang 2016; 
Liu and You 2017; Chatterjee and Kar 2017) and data clus-
tering (Chen et al. 2009; Horng et al. 2005).

Furthermore, ensemble learning is also a subject that 
involves applications of granular computing concepts (Liu 
and Cocea 2017c). In particular, ensemble learning 
approaches, such as Bagging, involve information granulation 
through decomposing a training set into a number of overlap-
ping samples, and also involve organization through combin-
ing the predictions provided from different base classifiers 
towards classifying an unseen instance; a similar perspective 
has also been stressed and discussed in Hu and Shi (2009).

In Sect. 3, we will show how granular computing con-
cepts can be used for advancing classification and feature 
selection in the context of multi-task learning.

2.2  Overview of classification

As mentioned in Sect. 1, classification is one of the most 
popular tasks of machine learning. In terms of the number 
of predefined classes for a learning task, classification can 
be specialized into two categories: binary classification and 
multi-class classification. On the other hand, classification 
can be for different purposes, which leads to different types 
of class attributes, such as nominal, ordinal and string (Tan 
et al. 2005). In this context, the purposes of classification 
include recognition, rating and decision making.

Both binary classification and multi-class classification 
tasks could essentially be for any of the above purposes. In 
particular, binary classification could be for the purpose of 
recognition, such as gender classification (Wu et al. 2011). 
There are also some examples of binary classification for 

the purpose of rating, such as sentiment analysis (positive 
or negative) and assessment of teaching and learning (good 
or bad). In addition, binary classification can be involved in 
a decision-making task, such as voting (support or objec-
tion) and shopping (buy or not). Regarding multi-class clas-
sification, examples of recognition include emotion identi-
fication (Teng et al. 2007; Altrabsheh et al. 2015). There 
are also many examples of rating, such as movie rating and 
multi-sentiment analysis (Jefferson et al. 2017). In addition, 
multi-class classification can be used as a way of decision 
making towards selecting one of the given options.

As argued in Sect. 1, in traditional machine learning, dif-
ferent classes are assumed to be mutually exclusive, but this 
assumption does not always hold in reality. To address this 
issue, some related work was done in Boutell et al. (2004); 
Tsoumakas and Katakis (2007); Tsoumakas et al. (2010); 
Zhang and Zhou (2014) for turning single-label classifica-
tion into multi-label classification. In particular, multi-label 
classification typically includes three types: PT3, PT4 and 
PT5 (Tsoumakas and Katakis 2007).

PT3 is designed to enable that a class consists of two 
or more labels as illustrated in Table 1. For example, two 
classes A and B can make up three labels: A, B and A ∧ B . 
PT4 is designed to do the labelling on the same dataset sepa-
rately regarding each of the predefined labels as illustrated 
in Tables 2 and 3. In addition, PT5 is aimed at uncertainty 
handling. In other words, it is not certain to which class 
label an instance should belong, so the instance is assigned 
all the possible labels and is treated as several different 
instances that have the same inputs but different class labels 
assigned. An illustrative example is given in Table 4: both 
instances (3 and 4) appear twice with two different labels (A 
and B) respectively, which would be treated as four different 
instances (two assigned A and the other two assigned B) in 
the process of learning.

As mentioned in Sect. 2.1, there could be different types 
of relationships between classes. From this point of view, 
multi-label classification approaches still have limitations 

Table 1  Example of PT3 (Liu 
et al. 2017b; Liu and Cocea 
2018)

Instance ID Class

1 A
2 B
3 A ∧ B

4 A ∧ B

Table 2  Example of PT4 on 
Label A (Liu et al. 2017b; Liu 
and Cocea 2018)

Instance ID Class

1 A
2 ¬A

3 A
4 A

Table 3  Example of PT4 on 
label B (Liu et al. 2017b; Liu 
and Cocea 2018)

Instance ID Class

1 ¬B

2 B
3 B
4 B
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as argued in Liu et al. (2017b), and Liu and Cocea (2018) 
as follows:

PT3 may result in a massive number of classes, i.e., 
2n − 1 , where n is the number of class labels. Also, PT3 
may result in high coupling from software engineering per-
spective, while different class labels are not correlated but 
are merged into a new class. Coupling generally refers to the 
degree of interdependence between different parts (Leth-
bridge and Laganire 2005).

PT4 may result in the class imbalance issue. For example, 
a balanced dataset contains instances of three classes A, B 
and C, and thus the frequency 

(
1

3

)
 of class A is far lower 

than the one 
(

2

3

)
 of class ¬ A (i.e.B ∨ C) . From software 

engineering perspective, PT4 may also result in low cohe-
sion, while different class labels that are correlated get sepa-
rated. Low cohesion means the degree to which the parts of 
a whole link together is lower (Lethbridge and Laganire 
2005), and thus failing to identify the correlations between 
different classes.

PT5 may result in a massive size of training sample lead-
ing to high computational complexity, especially when the 
number of class labels is high in the big data era. Also, from 
machine learning perspective, PT5 may result in confusion 
for a learning algorithms. In other words, when a training 
set contains instances that have the same input vector but 
are assigned different class labels, the initial uncertainty in 
the dataset would be increased leading to the difficulty in 
discriminating between classes in the training process, since 
popular learning methods typically belong to discriminative 
learning.

Overall, the above multi-label classification approaches 
still aim at classifying uniquely a test instance, towards 
assigning the instance a single class, although this class may 
consist of more than one label. From granular computing 
perspective, single-label classification is aimed at providing 
a string as the output, whereas multi-label classification is 
aimed at providing a list of strings (as a whole) as the output. 
However, there is no fundamental difference between the 
two ways of classification in terms of the strategy of learn-
ing classifiers, i.e., discriminative learning. On the basis 
of the above argumentation, we consider both single-label 

classification and multi-label classification to be of single-
task, and a framework of multi-task classification will be 
presented in Sect. 3.

2.3  Review of feature selection techniques

As introduced in Dash and Liu (1997), the feature selec-
tion process typically involves four main steps: generation, 
evaluation, stopping criterion and validation. In particular, 
the generation procedure is aimed at generating a candidate 
feature subset based on the original feature set. In the evalu-
ation stage, a function is used to evaluate the goodness of the 
feature subset selected in the generation stage, in terms of 
importance of these selected features. A stopping criterion 
is then used to decide whether it is necessary to stop the 
feature selection process. If yes, the selected feature subset 
is validated in the last stage. Otherwise, the feature selec-
tion process needs to be repeated through the generation and 
evaluation of another candidate feature subset. The process 
of feature selection is illustrated in Fig. 1.

As mentioned in Sect. 1, feature selection techniques 
can be specialized into two categories, namely, filter and 
wrapper. The main difference between the two types of 
feature selection is in terms of the way of feature evalu-
ation. The filter approach employs heuristics to rank the 
features according to their importance, whereas the wrap-
per approach employs an algorithm to learn classifiers from 
different subsets of features and then check the performance 
of these classifiers for evaluating the corresponding feature 
subsets. In terms of evaluation functions, popular heuristics 
employed by the filter approach include distance functions 
(Montalto et al. 2012), entropy (Shannon 1948), informa-
tion gain (Kullback and Leibler 1951), correlation coeffi-
cients (Yu and Liu 2003), and co-variance (Barber 2012). 
The wrapper approach just simply employs the error rate of 
a classifier as the evaluation function (Dash and Liu 1997).

In terms of the performance of feature selection, the filter 
approach involves evaluation of features regardless of the 
fitness of the employed learning algorithm. In other words, 
a set of features are evaluated and the relevant ones are 
selected without considering that the selected feature subset 
is suitable or not for the chosen algorithm to learn a classi-
fier. According to the experimental results reported in Dash 
and Liu (1997), feature selection through the filter approach 
leads to a low level of time complexity. However, when the 
selected feature subset is used for a pre-employed algorithm 
to learn a classifier, the error rate of classification may be 
high due to the case that the feature subset is not suitable 
for the algorithm to undertake learning tasks (Guyon 2003).

In contrast, the wrapper approach involves evaluation 
of features through checking the accuracy of the classi-
fiers learned from different subsets of features. In other 

Table 4  Example of PT5 (Liu 
et al. 2017b; Liu and Cocea 
2018)

Instance ID Class

1 A
2 B
3 A
3 B
4 A
4 B
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words, a number (n) of different feature subsets are pro-
vided and an algorithm is used to learn n classifiers from 
these feature subsets. The feature subset, which leads to 
the production of the best classifier, is selected. Accord-
ing to the experimental results reported in Dash and Liu 
(1997), feature selection through the wrapper approach 
leads to very high accuracy of classification, but the time 
complexity is very high, due to the case that all the pos-
sible combinations of features (leading to different feature 
subsets) need to be examined.

Moreover, as argued in Cendrowska (1987), a feature 
may be only relevant to one class but irrelevant to all 
the other classes. Also, as mentioned in Sect. 1, in some 
application areas such as image processing, features are 
typically extracted from a specific target region. In this 
context, features could be only relevant to the class corre-
sponding to the target region from which the features are 
extracted. From this point of view, if features extracted 
from different target regions are put together to make up a 
feature set, then it would result in a sparse matrix present 
in the feature set. In this case, it would be very likely to 
occur that some features are highly important for a spe-
cific class but are removed from the feature set due to low 
occurrence (and to reduce sparcity).

On the basis of the above argumentation, it is neces-
sary to incorporate class-specific feature selection into 
both the filter and wrapper approaches. In particular, we 
consider traditional feature selection approaches (filter 
and wrapper) to be of single task and a framework of 
multi-task feature selection will be presented in Sect. 3.2.

3  Multi‑task learning framework

In this section, we present a framework of multi-task 
learning. In particular, we describe how fuzzy approaches 
can be used to achieve multi-task classification and justify 

the significance of this way of classification. Also, we 
describe how Prism (a rule learning algorithm) can be 
used to achieve multi-task feature selection, i.e., feature 
selection for each class, and justify the significance of this 
way of feature selection.

The multi-task learning framework is illustrated in 
Fig. 2. In particular, a subset of features is selected for 
each specific class in the feature selection stage, i.e., all 
the features in a subset are highly relevant to a specific 
class (referred to as target class). In the training stage, 
from each feature set, a classifier is learned towards iden-
tifying instances of a target class, i.e., each classifier cor-
responds to a target class. In the classification stage, each 
classifier is used to identify whether an instance belongs to 
the target class (corresponding to this classifier). Finally, 
the outputs from these classifiers may need to be aggre-
gated towards having a unique output, depending on the 
nature of the classification task, e.g., recognition, rating 
and decision making.

In general, multi-task feature selection is undertaken 
towards serving multi-task classification. However, multi-
task classification can also be done independently, without 
the need to take multi-task feature selection. In Sect. 3.1, 
we will present how to achieve multi-task classification 
without feature selection. In Sect. 3.2, we will present how 
to achieve multi-task feature selection towards advances 
in classification performance.

3.1  Fuzzy multi‑task classification

Multi-task classification is generally aimed at judging 
the membership or non-membership of an instance inde-
pendently for each class. In particular, we adopt fuzzy 
approaches to measure the membership degree of an 
instance to each class.

Fuzzy classification is based on fuzzy logic, which is an 
extension of deterministic logic, i.e., the truth values (in 

Fig. 1  Feature section process (Liu et al. 2017a)
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the context of fuzzy logic) are ranged from 0 to 1 rather 
than binary (0 or 1). Fuzzy logic is typically used in the 
forms of fuzzy sets and fuzzy rule-based systems.

In the context of fuzzy sets, each element xi belongs to 
the set S to a certain degree of membership. The value of 
the membership degree is dependent on the membership 
function fs(xi) defined for the fuzzy set S. Membership 
functions are of various shapes, such as trapezoid, triangle 
and rectangle. In general, trapezoidal membership func-
tions can be seen as a generalization of triangular and rec-
tangular membership functions. A membership function is 
essentially defined by estimating four parameters a, b, c, d, 
as illustrated below and in Fig. 3.

According to Fig. 3, the shape of the membership function 
would be triangle, if b = c , or the shape would be rectangle, 

fT (x) =

⎧⎪⎨⎪⎩

0, when x ≤ a or x ≥ d;

(x − a)∕(b − a), when a < x < b;

1, when b ≤ x ≤ c;

(d − x)∕(d − c), when c < x < d;

if a = b and c = d . A membership function can be defined 
using expert knowledge (Mamdani and Assilian 1999) or 
by learning statistically from data (Bergadano and Cutello 
1993). More details on fuzzy sets and logic can be found 
in (Zadeh 1965; Chen and Chang 2001; Chen and Chen 
2011; Chen 1996).

In the context of fuzzy rule based systems, the main 
operations include fuzzification of continuous attributes and 
learning of fuzzy rules.

In terms of fuzzifying continuous attributes, it is needed 
to determine the number of linguistic terms to be trans-
formed from a continuous attribute. Furthermore, a mem-
bership function needs to be defined for each of the linguistic 
terms, i.e., a linguistic term is viewed as a fuzzy set and the 
domain of the term is [0, 1], so a membership function needs 
to be defined for mapping a value of a continuous attribute 
into a membership degree value of a linguistic term (trans-
formed from the continuous attribute).

Following the fuzzification of continuous attributes, a 
number of rules can be learned from data and the best rules 
can be used for predictions on new data. Some methods 
of fuzzy rules learning can be found in Wang and Men-
del (1992), Chen and Lee (2010), and Berthold (2003). In 
the context of fuzzy rule based classification, following the 
learning stage, the resulting rules are typically represented 
in the following form:

– Rule 1: if x1 is A11 and x2 is A21 and ...and xn is An1 then 
class= C1;

– Rule 2: if x1 is A12 and x2 is A22 and ...and xn is An2 then 
class = C2;

– ⋮

– ⋮

– Rule m: if x1 is A1m and x2 is A2m and ...and xn is Anm then 
class = Ck;

Fig. 2  Multi-task learning framework

Fig. 3  Trapezoid membership function (Liu and Cocea 2017b)
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Anm represents a linguistic term, where n is the index of 
attribute A and m is the index of rule. Also, Ck represents a 
class label, where k is the class index.

In the context of multi-task classification, a fuzzy rule 
based system is used following the four steps: fuzzification, 
application, implication and aggregation. We illustrate the 
whole procedure by using the following example of fuzzy 
rules:

– Rule 1: if x1 is Young and x2 is Long then class = Posi-
tive;

– Rule 2: if x1 is Young and x2 is Middle then class = Neu-
tral;

– Rule 3: if x1 is Young and x2 is Short then class = Nega-
tive;

– Rule 4: if x1 is Middle-aged and x2 is Long then class = 
Neutral;

– Rule 5: if x1 is Middle-aged and x2 is Middle then class 
= Positive;

– Rule 6: if x1 is Middle-aged and x2 is Short then class = 
Negative;

– Rule 7: if x1 is Old and x2 is Long then class = Negative;
– Rule 8: if x1 is Old and x2 is Middle then class = Positive;
– Rule 9: if x1 is Old and x2 is Short then class = Neutral;

The fuzzy membership functions defined for the linguistic 
terms transformed from x1 and x2 are illustrated in Figs. 4 
and 5, respectively.

According to Figs. 4 and 5, if x1 = 30 and x2 = 47 , then 
the following steps will be executed:

Fuzzification:

Rule 1: fYoung(30) = 0.67 , fLong(47) = 0.7;
Rule 2: fYoung(30) = 0.67 , fMiddle(47) = 0.3;
Rule 3: fYoung(30) = 0.67 , fShort(47) = 0;
Rule 4: fMiddle−aged(30) = 0.33 , fLong(47) = 0.7;
Rule 5: fMiddle−aged(30) = 0.33 , fMiddle(47) = 0.3;
Rule 6: fMiddle−aged(30) = 0.33 , fShort(47) = 0;
Rule 7: fOld(30) = 0 , fLong(47) = 0.7;
Rule 8: fOld(30) = 0 , fMiddle(47) = 0.3;

Rule 9: fOld(30) = 0 , fShort(47) = 0;

In the fuzzification step, the notation fLong(47) = 0.7 rep-
resents that the membership degree of the numerical value 
‘47’ to the fuzzy set defined with the linguistic term ‘Long’ 
is 0.7. The fuzzification step is aimed at mapping the value 
of a continuous attribute to a value of membership degree 
to a fuzzy set (i.e., mapping to the value of a linguistic term 
transformed from the continuous attribute).

Application:

Rule 1: fYoung(30) ∧ fLong(47) = Min(0.67, 0.7) = 0.67;

Rule 2: fYoung(30) ∧ fMiddle(47) = Min(0.67, 0.3) = 0.3;

Rule 3: fYoung(30) ∧ fShort(47) = Min(0.67, 0) = 0;

Rule 4: fMiddle−aged(30) ∧ fLong(47) = Min(0.33, 0.7) = 0.33;

Rule 5: fMiddle−aged(30) ∧ fMiddle(47) = Min(0.33, 0.3) = 0.3;

Rule 6: fMiddle−aged(30) ∧ fShort(47) = Min(0.33, 0) = 0;

Rule 7: fOld(30) ∧ fLong(47) = Min(0, 0.7) = 0;

Rule 8: fOld(30) ∧ fMiddle(47) = Min(0, 0.3) = 0;

Rule 9: fOld(30) ∧ fShort(47) = Min(0, 0) = 0

In the application step, the conjunction of the two fuzzy 
membership degrees, respectively, for the two attributes ‘ x1 
and ‘ x2 ’ is aimed at deriving the firing strength of a fuzzy 
rule. For example, the antecedent of Rule 1 consists of x1 
is Young and x2 is Long, so the firing strength of Rule 1 is 
0.67, while fYoung(30) = 0.67 and fLong(47) = 0.7.

Implication:

Rule 1: fRule1→Positive(30, 47) = 0.67;

Rule 2: fRule2→Neutral(30, 47) = 0.3;

Rule 3: fRule3→Negative(30, 47) = 0;

Rule 4: fRule4→Neutral(30, 47) = 0.33;

Rule 5: fRule5→Positive(30, 47) = 0.3;

Rule 6: fRule6→Negative(30, 47) = 0;

Rule 7: fRule7→Negative(30, 47) = 0;

Rule 8: fRule8→Positive(30, 47) = 0;

Rule 9: fRule9→Neutral(30, 47) = 0;Fig. 4  Membership functions for linguistic terms of attribute ‘age’

Fig. 5  Membership functions for linguistic terms of attribute ‘work-
ing hours’
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In the implication step, the firing strength of a fuzzy rule 
derived in the application step can be used further to identify 
the membership degree of the value of an input vector to 
the class label ‘Positive’, ‘Neutral’ or ‘Negative’, depend-
ing on the consequent of the fuzzy rule. For example, 
fRule1→Positive(30, 47) = 0.67 indicates that the consequent of 
Rule 1 is assigned the class label ‘Positive’ and the input 
vector ‘(30, 47)’ has the membership degree of 0.67 to the 
class label ‘Positive’. In other words, the inference through 
Rule 1 leads to the input vector ‘(30, 47)’ having the mem-
bership degree value of 0.67 to the class label ‘Positive’.

Aggregation: 

In the aggregation step, the membership degree value of 
the input vector to the class label (‘Positive’, ‘Neutral’ or 
‘Negative’), which is inferred through a rule, is compared 
with the other membership degree values inferred through 
the other rules, towards finding the maximum among all 
the membership degree values. For example, Rule 1, Rule 5 
and Rule 8 are all assigned the class label ‘Positive’ as their 
consequent and the membership degree values of the input 
vector ‘(30, 47)’ inferred through the three rules are 0.67, 
0.3 and 0, respectively, to the class label ‘Positive’. As the 
maximum of the fuzzy membership degree values is 0.67, 
the input vector is considered to have the membership degree 
value of 0.67 to the class label ‘Positive’.

In traditional machine learning, the classification outcome 
needs to be crisp so defuzzification is typically involved by 
choosing the class label with the highest value of member-
ship degree. For the above example, the final classification 
outcome is to assign the class label ‘Positive’ to the unseen 
instance ‘(30, 47, ?)’, since the value (0.67) of the member-
ship degree to this class label is the highest. In contrast, as 
mentioned above, multi-task classification is aimed at meas-
uring the membership degree value of an instance to each 
class, so it is not necessary to use defuzzification.

On the other hand, multi-task classification can be done 
for providing either a single crisp output (a unique class 
label) or multiple fuzzy outputs (membership degree values 
for these class labels), depending on the nature of the clas-
sification task. In particular, the former way of classification 
is typically taken only when different classes are assumed to 
be mutually exclusive (like the above illustrative example). 
In this context, the outcome of fuzzy classification would 
typically show that the sum of the membership degree values 

fPositive(30, 47) = fRule1→Positive(30, 47) ∨ fRule5→Positive(30, 47)

∨ fRule8→Positive(30, 47) = Max(0.67, 0.3, 0) = 0.67

fNeutral(30, 47) = fRule2→Neutral(30, 47) ∨ fRule4→Neutral(30, 47)

∨ fRule9→Neutral(30, 47) = Max(0.3, 0.33, 0) = 0.33

fNegative(30, 47) = fRule3→Negative(30, 47) ∨ fRule6→Negative(30, 47)

∨ fRule7→Negative(30, 47) = Max(0, 0, 0) = 0

of an instance to the given class labels is 1. The above out-
come is mainly due to the case that the linguistic terms trans-
formed from the same continuous attribute are considered to 
be mutually exclusive. For example, both Figs. 4 and 5 show 
that for the same horizontal coordinate value (the value of a 
continuous attribute) the sum of the corresponding vertical 
coordinate values (membership degree values) is always 1, 
due to the constraint that the linguistic terms (e.g., ‘Long’, 
‘Middle’ and ‘Short’) are defined to be mutually exclusive.

However, as argued in Sect. 1, there are many real-life 
examples indicating that different classes are not mutually 
exclusive. The argumentation can also be supported in the 
context of fuzzy classification, as illustrated in Fig. 6. In 
particular, the membership functions, which are learned 
from the Anneal dataset regarding the carbon attribute, can 
show that the sum of the membership degree values could be 
higher than 1. In this case, the outcome of fuzzy classifica-
tion would show that an instance belongs to more than one 
class with a high value of membership degree (close or even 
equal to 1), as reported in Liu et al. (2017b).

In addition, the outcome of generative multi-task classi-
fication can also show that an instance has the fuzzy mem-
bership degree value of 0 to all the given class labels. The 
above phenomenon can be explained by the possible case 
that the set of given class labels is not complete and it is 
needed to add an extra class label to which the instance actu-
ally belongs.

From mathematical perspective, the above explanation 
can be supported by the concept that a function f is defined 
as a mapping from set A to set B and the range R of this 
function f is a subset of set B. From this point of view, if a 
function f is not a complete mapping, then not all elements 
of set S are in the range R of this function. A classifier is 
essentially a function that provides a discrete value as the 
output, so it is possible that an instance cannot be classified 
due to the case of an incomplete mapping.

On the basis of the above argumentation, it is necessary to 
turn discriminative single-task classification into generative 
multi-task classification. We will show experimental results 
in Sect. 4 to support the argumentation.

Fig. 6  Membership functions learned from anneal data on carbon 
attribute (Liu and Cocea 2018)
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3.2  Multi‑task feature selection

Multi-task feature selection generally means to select a sub-
set of features for each class, since a feature may not be 
relevant to all the classes, as argued in Sect. 1. In particular, 
we propose to use the Prism algorithm (Cendrowska 1987) 
towards class-specific feature selection.

Prism is a rule learning algorithm that follows the sepa-
rate and conquer strategy (Furnkranz 1999). The algorithm 
is capable of self-evaluation of features in terms of their 
relevance to a specific class. The procedure of this algorithm 
is shown in Algorithm 1.

It can be seen from Algorithm 1 that the Prism algo-
rithm needs to select a class as the target class towards 
learning a set of rules that discriminate the target class 
from all the other classes. In particular, each of the n 
classes is selected in turn as the target class, so there are 
n sets of rules learned from the same training set, i.e., the 
learning of each set of rules of a specific class is separate 
from the learning of other sets of rules of other classes.

We use the contact lenses data set (Cendrowska 1987) 
as an example for illustrating the Prism algorithm. The 
details of the dataset are shown in Table 5.

In this data set, there are three classes, namely, ‘no 
lenses’, ‘soft lenses’ and ‘hard lenses’, so there would be 
three sets of rules learned for the three classes, respectively.

According to Table 5, we can get a frequency table for 
each attribute, i.e., we have four frequency tables for the 
four attributes: ‘age’ (see Table 6, ‘spectacle-prescrip’ (see 
Table 7), ‘astigmatism’ (see Table 8) and ‘tear-prod-rate’ (see 
Table 9).

Based on the frequency tables, the conditional prob-
abilities for each attribute–value pair of each attribute can 
be calculated. We display these here for ease of explana-
tion—in the normal course of the algorithm, the prob-
abilities would be calculated when needed, not in advance.

According to Table 6, we can derive the conditional 
probability for each of the three values of attribute ‘age’, 
towards each of the three classes.

P(class = hard lenses|age = young) = 2

8

P(class = hard lenses|age = pre-presbyopic) = 1

8

P(class = hard lenses|age = presbyopic) = 1

8

P(class = soft lenses|age = young) = 2

8

P(class = soft lenses|age = pre-presbyopic) = 2

8

P(class = soft lenses|age = presbyopic) = 1

8

P(class = no lenses|age = young) = 4

8

P(class = no lenses|age = pre-presbyopic) = 5

8

P(class = no lenses|age = presbyopic) = 6

8

According to Table 7, we can derive the conditional prob-
ability for each of the two values of attribute ‘spectacle-
prescrip’, towards each of the three classes.

P(class = hard lenses| spectacle-prescrip = myope) = 3

12

P(class = hard lenses |spectacle-prescr ip = 
hypermetrope) = 1

12

P(class = soft lenses|spectacle-prescrip = myope) = 2

12

P (class  = sof t  lenses |spectacle-prescr ip  = 
hypermetrope) = 3

12

P(class = no lenses|spectacle-prescrip = myope) = 7

12

P (class  = no lenses |  spectacle-prescr ip  = 
hypermetrope) = 8

12

According to Table 8, we can derive the conditional proba-
bility for each of the two values of attribute ‘astigmatism’, 
towards each of the three classes.

P(class = hard lenses|astigmatism = no) = 0

12

P(class = hard lenses|astigmatism = yes) = 4

12

P(class = soft lenses|astigmatism = no) = 5

12

P(class = soft lenses|astigmatism = yes) = 0

12

P(class = no lenses|astigmatism = no) = 7

12

P(class = no lenses|astigmatism = yes) = 8

12
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According to Table 9, we can derive the conditional prob-
ability for each of the two values of attribute ‘tear-prod-rate’, 
towards each of the three classes.

P(class = hard lenses|tear-pro-rate = reduced) = 0

12

P(class = hard lenses|tear-prod-rate = normal) = 4

12

P(class = soft lenses|tear-prod-rate = reduced) = 0

12

Table 5  Contact lenses data Age Spectacle-prescrip Astigmatism Tear-prod-rate Class

Young Myope No Reduced No lenses
Young Myope No Normal Soft lenses
Young Myope Yes Reduced No lenses
Young Myope Yes Normal Hard lenses
Young hypermetrope No Reduced No lenses
Young Hypermetrope No Normal Soft lenses
Young Hypermetrope Yes Reduced No lenses
Young Hypermetrope Yes Normal Hard lenses
Pre-presbyopic Myope No Reduced No lenses
Pre-presbyopic Myope No Normal Soft lenses
Pre-presbyopic Myope Yes Reduced No lenses
Pre-presbyopic Myope Yes Normal Hard lenses
Pre-presbyopic Hypermetrope No Reduced No lenses
Pre-presbyopic Hypermetrope No Normal Soft lenses
Pre-presbyopic Hypermetrope Yes Reduced No lenses
Pre-presbyopic Hypermetrope Yes Normal No lenses
Presbyopic Myope No Reduced No lenses
Presbyopic Myope No Normal No lenses
Presbyopic Myope yes reduced No lenses
Presbyopic Myope Yes Normal Hard lenses
Presbyopic Hypermetrope No Reduced No lenses
Presbyopic Hypermetrope No Normal Soft lenses
Presbyopic Hypermetrope Yes Reduced No lenses
Presbyopic Hypermetrope Yes Normal No lenses

Table 6  Frequency table for age

Class label Age = young Age = pre-pres-
byopic

Age = 
presby-
opic

Hard lenses 2 1 1
Soft lenses 2 2 1
No lenses 4 5 6
Total 8 8 8

Table 7  Frequency table for spectacle-prescrip

Class label Spectacle-prescrip = 
myope

Spectacle-pre-
scrip = hyperme-
trope

Hard lenses 3 1
Soft lenses 2 3
No lenses 7 8
Total 12 12

Table 8  Frequency table for astigmatism

Class label Astigmatism = no Astigma-
tism = 
yes

Hard lenses 0 4
Soft lenses 5 0
No lenses 7 8
Total 12 12

Table 9  Frequency table for tear-prod-rate

Class label Tear-prod-rate = reduced Tear-prod-
rate = 
normal

Hard lenses 0 4
Soft lenses 0 5
No lenses 12 3
Total 12 12
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P(class = soft lenses|tear-prod-rate = normal) = 5

12

P(class = no lenses|tear-prod-rate = reduced) = 12

12

P(class = no lenses|tear-prod-rate = normal) = 3

12

When the target class is ‘no lenses’, the first attribute, i.e., ‘tear-
prod-rate’, is selected (line 6 in Algorithm 1) and the attrib-
ute–value pair (tear-prod-rate = reduced or tear-prod-rate = 
normal) with the maximum conditional probability is chosen 
(line 13 in Algorithm 1). Of the two attribute-value pairs, tear-
prod-rate = reduced has the maximum conditional probability, 
i.e., P(class = no lenses|tear-prod-rate = reduced) = 1.

Since the maximum probability is reached, i.e. 1, the 
learning of the first rule is complete and the first rule learned 
is expressed as: if tear-prod-rate = reduced then class = no 
lenses. Following the completion of learning the first rule, all 
the 12 instances with the attribute-value pair tear-prod-rate = 
reduced are deleted from the training set, and the learning of 
the second rule is started on the reduced training set.

The above illustration indicates that the nature of the 
Prism algorithm is to evaluate each attribute–value pair 
in terms of their importance to a specific class. For exam-
ple, the probability P(class = no lenses|tear-prod-rate = 
reduced) = 1 indicates that the attribute value pair tear-
prod-rate = reduced is highly important for the ‘no lenses’ 
class. In other words, the attribute value pair tear-prod-rate 
= reduced is selected as the only term of the rule: if tear-
prod-rate = reduced then class = no lenses, which indicates 
that the attribute ‘tear-prod-rate’ is relevant to the class ‘no 
lenses’. In contrast, if an attribute has never appeared (along-
side one of its values) as a rule term in any rules of a specific 
class, then it would indicate empirically that the attribute is 
not relevant to the class.

On the basis of the above illustration and argumentation, 
the Prism algorithm is judged to be capable of self-evalua-
tion of features (attributes) in terms of their relevance to a 
specific class. We will show experimental results in Sect. 4 
to this effect.

4  Experiments, results and discussion

In this section, we report two experimental studies for 
multi-task classification and feature selection, respectively. 
In particular, we use the fuzzy rule learning approach for 
multi-task classification to show that an instance may belong 
to more than one class or may not belong to any one of 
the classes. We also compare the fuzzy approach with three 
popular discriminative learning approaches (C4.5, Naive 
Bayes and K Nearest Neighbour), in terms of the classifica-
tion performance on instances that may belong to more than 
one class. In terms of multi-task feature selection, we use 

the Prism algorithm for evaluating features in terms of their 
relevance to each specific class.

For the experimental study on multi-task classification, 
we use four real-world data sets retrieved from the Weka dis-
tribution (David 2005). The characteristics of the four data 
sets are shown in Table 10. In particular, the ERA dataset 
contains information on job applications and the output is 
the degree to which an applicant is acceptable or not. The 
ESL contains information on job applications as well but 
the output is the degree to which an applicant is suitable to 
a specific type of job. The LEV dataset contains information 
on teaching assessment and the output is an overall evalua-
tion of a lecturer’s performance. The SWD dataset contains 
information on real-world assessment of qualified social 
workers and the output is the degree of risk facing children if 
they stay with their families at home. For all of the four data 
sets, the output is actually ordinal, which indicates that the 
classification tasks are for the purpose of rating, as described 
in Sect. 2.2.

The results of fuzzy rule based classification on the four 
data sets are shown in Tables 11, 12, 13 and 14, in terms of 
the membership degree values of the instances to the class 
labels (selected as the representative examples). The first 
column, i.e., out1, represents the true class label, while the 
last column, i.e., prediction, represents the output from the 
fuzzy classification. The results show that it is possible to 
have an instance belong to more than one class, i.e., the 
instance has a very high value of membership degree (close 
or even equal to 1) to more than one class.

As mentioned above, all of the four data sets contain 
information about subjective evaluation, i.e., the classifica-
tion tasks involved in the four data sets belong to rating, 
since the outputs are all ordinal. In this context, the phenom-
enon that an instance may belong to more one class could be 
explained by the nature case that the same item can be given 
very different ratings by different users, since they may have 
different backgrounds and preferences.

From machine learning perspective, an instance is 
labelled subjectively by a person randomly selected, but 
people who have different backgrounds and preferences 
from this person would be very likely to provide the same 
instance with other labels. Moreover, a training set could 
contain instances which are highly similar to each other but 
are provided with different labels, due to the case that these 

Table 10  Characteristics of data sets

Dataset Attribute types Attributes Instances Classes

ERA Continuous 4 1000 9
ESL Continuous 4 488 9
LEV Continuous 4 1000 5
SWD Continuous 10 1000 4
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instances are labelled by people who are highly dissimilar 
to each other, in terms of their backgrounds and preferences.

In common sense, subjective evaluation generally means 
that people are biased on some particular aspects. For exam-
ple, a soldier may be very good at fighting and has got a lot 
of military awards, but the solider may also have made a 
lot of mistakes in daily life, leading to disciplinary actions 
being taken against the solider. In this case, it is very dif-
ficult to say that this is a good or bad solider. For military 
commanders, the capability of fighting may be treated as 
more important, so they may be biased towards saying that 

this is a good solider. In contrast, for political officers, the 
behavior of a soldier in daily life may be considered to have 
a higher impact, so they may be biased towards saying that 
this is a bad solider.

In the context of machine learning, the above example 
could indicate that people may do data labelling without 
considering all the provided features, i.e, they may provide 
an instance with a label based only on those features that 
they think of higher importance. In the context of genera-
tive multi-task classification through fuzzy approaches, the 
above example can indicate that the solider could have a 

Table 11  Results sample on 
ERA data

out1 1 2 3 4 5 6 7 8 9 Prediction

5 1 1 1 1 1 1 0 0 0 5
4 0 0 1 1 1 1 1 1 1 4
8 0 0 1 0 1 1 1 1 0 8
8 1 0 0 0 0 1 1 1 1 8
5 1 1 1 1 1 1 0 0 0 5
9 0 0 1 0 0 1 1 1 1 9
9 0 0 1 0 0 1 1 1 1 9
4 1 1 1 1 1 1 0 0 0 4
6 1 1 1 1 1 1 1 1 1 6
3 0 0 1 1 1 1 1 0 0 3

Table 12  Results sample on 
ESL data

out1 1 2 3 4 5 6 7 8 9 Prediction

4 0 0 1 1 0 0 0 0 0 4
7 0 0 0 0 0 1 1 1 0 7
5 0 0 0 0 1 0 0 0 0 5
6 0 0 0 0 0 1 0 0 0 6
3 0 0 1 0 0 0 0 0 0 3
2 0 1 0 0 0 0 0 0 0 2
5 0 0 0.5 0 1 0 0 0 0 5
6 0 0 0 0 0 0 0 0 0 ?
3 0 0 0 0 0 0 0 0 0 ?
2 0.75 1 0 0.5 0 0 0 0 0 2

Table 13  Results sample on 
LEV data

out1 0 1 2 3 4 Prediction

2 0 1 1 0 0 2
2 0 1 1 0 0 2
1 0 1 1 0 0 1
3 0 0 0 1 1 3
2 0 1 1 1 0 2
3 0 0 1 1 1 3
4 0 0 0 1 1 4
3 0 0 0 1 0 3
2 0 0 1 0 0 2
0 1 0 0 0 0 0

Table 14  Results sample on 
SWD data

out1 2 3 4 5 Prediction

4 0 1 1 0 4
4 1 1 1 0 4
3 0 1 1 1 3
5 0 0 1 1 5
3 0 1 1 0 3
2 1 1 1 0 2
2 1 1 0 0 2
3 0 1 0 0 3
4 0 0 1 0 4
5 0 0 0 1 5
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very high membership degree to both the ‘good’ and ‘bad’ 
classes, due to subjective evaluations from different kinds 
of people.

The above argumentation can also be supported by the 
results shown in Tables 11, 12, 13 and 14. For example, 
the first two data sets are about evaluation of the accept-
ance degree and the suitability of each job applicant. In this 
context, each applicant may have strengths and weaknesses 
reflected from the values of different features, so different 
recruiters may have different opinions on the acceptance 
degree and the suitability of an applicant to a particular job, 
unless the applicant is extremely strong in all these criteria 
or does not meet these criteria. From this point of view, it is 
generally likely that a job applicant has a high membership 
degree to more than one class. The same argumentation also 
applies to the results on the other two data sets. For example, 
the third dataset is about evaluation of teaching performance 
of lecturers, and judgment could usually be subjective, due 
to different opinions from different people on what constitute 
professional teaching.

In real applications, the case that a fuzzy classifier pro-
vides an instance with multiple highest values of member-
ship degree would be considered as the possibility of having 
different labels assigned to the same instance by different 
kinds of people.

In addition, the results shown in Table 12 can indicate 
that it is possible that an instance has the membership degree 
value of 0 to all the classes. This phenomenon generally 
indicates that the instance does not belong to any one of the 
given classes and thus an extra class needs to be provided, 
as mentioned in Sect. 3.1. However, in the context of rating, 
the above phenomenon is more likely due to the case that the 
profile of a particular applicant is a very special example and 
does not have any similarity to all of the other applicants’. 
In other words, the applicant has a profile much stronger or 
weaker than all of the other applicants’. In the context of 
fuzzy rule based classification, this indicates that for each 
class none of the rules fires, i.e., the firing strength of each 
of these rules is 0. This also indicates that fuzzy classifiers 
generally have no bias towards one class and against all the 
other classes, unlike classifiers produced by discriminative 
learning approaches.

In terms of classification accuracy (obtained using cross 
validation), the fuzzy rule learning approach is compared 

with C4.5, Naive Bayes (NB), K Nearest Neighbour (KNN). 
The results are shown in Table 15. In particular, the results 
show that the fuzzy approach outperforms significantly the 
three discriminative learning approaches in all of the four 
cases. The results are very likely due to the case that the 
fuzzy approach aims at classifying each instance through 
measuring independently the membership degree value of 
an instance to each class, unlike the discriminative learning 
approaches, which aim at discriminating one class from the 
other classes towards assigning an instance a unique class. 
In other words, in the context of generative multi-task clas-
sification, the fuzzy approach leads to correct classification 
when identifying the case that the membership degree value 
of the instance to the class (labelled as the ground truth) is 
the highest one (usually close or even equal to 1), without 
the need to discriminate this class from the other classes.

For the experimental study on multi-task feature selec-
tion, the results are shown in Figs. 7 and 8. Also, there are 
247 rules learned from the image segmentation dataset 
retrieved from the UCI repository (Lichman 2013). In addi-
tion, through ten-fold cross validation of the Prism algorithm 
learning from the above data set, the classification accuracy 
is 92%, which indicates that the rules learned by the algo-
rithm are trust-worthy. 

Figure 7 represents the frequency of each feature used 
in rules of each class and shows that some features are 
frequently used in general, such as ‘region-centroid-row’, 
‘intensity-mean’ and ‘hue-mean’. However, through looking 
at the frequencies of these features used for each specific 
class, it can be indicated that the features are more frequently 
used in rules of one or two classes but are much less fre-
quently or even never used in rules of all the other classes. 
For example, the total frequency of the ‘region-centroid-
row’ feature is 106, which means that the feature is used in 
106 out of the all 247 rules. However, the frequency of the 
feature is very different for different classes. In particular, 
the frequency is 45 for cement, 28 for window, 21 for foli-
age, 6 for path, 4 for brickface, 2 for grass, and 0 for sky.

Figure 8 represents how often a feature has been used in 
rules of a specific class. For example, there are 15 rules of 
the ‘brickface’ class and the ‘hue-mean’ feature has been 
used in 11 out of the 15 rules, which indicates that the selec-
tion rate of the ‘hue-mean’ feature for the ‘brickface’ class 
is 0.73. The results on selection rate indicate that features 
selected for a specific class could be of different levels of 
relevance. For example, for the ‘brickface’ class, there are 10 
out of the 19 features used in the 15 rules, namely, ‘region-
centroid-col’ (used in 1 out of the 15 rules), ‘region-cen-
troid-row’(used in 4 out of the 15 rules), ‘vedge-mean’ (used 
in 1 out of the 15 rules), ‘vegde-sd’ (used in 1 out of the 15 
rules), ‘hedge-sd’ (used in 1 out of the 15 rules), ‘intensity-
mean’ (used in 3 out of the 15 rules), ‘rawred-mean’ (used 
in 2 out of the 15 rules), ‘rawgreen-mean’ (used in 4 out of 

Table 15  Classification accuracy

Dataset C4.5 NB KNN Fuzzy

ERA 0.264 0.262 0.274 0.934
ESL 0.656 0.662 0.676 0.805
LEV 0.621 0.557 0.631 0.925
SWD 0.570 0.582 0.568 0.916
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the 15 rules), ‘exred-mean’ (used in 1 out of the 15 rules), 
‘exgreen-mean’ (used in 4 out of the 15 rules) and ‘hue-
mean’ (used in 11 out of the 15 rules).

The results shown in Figs. 7 and 8 indicate that the Prism 
algorithm is capable of self-evaluation of features in terms of 
their relevance to each specific class. As mentioned above, 
rules of different classes learned by Prism include different 
features in the rule antecedents, i.e., for each class, only 
some of the features are selected for appending terms into 
the antecedents of the learned rules. The rules of different 
classes, which are used together as a rule based classifier, 
perform well on the image segmentation data set, as men-
tioned above.

In comparison with the traditional filter approach, the 
capacity of Prism in self-evaluation of features can lead to 
avoiding the case that some features are highly required for 
an algorithm to learn, but are removed from the feature set 
by a filtering-based feature selection method. In other words, 
a filtering-based method may judge independently some fea-
tures as irrelevant without considering the fitness of these 
features to a particular learning algorithm.

In comparison with the traditional wrapper approach, use 
of the Prism algorithm for multi-task feature selection is 
likely to lead to the reduction of computational complexity, 

since the wrapper approach needs to evaluate all combina-
tions of features and the dimensionality of image data is 
typically high. In other words, feature selection through the 
Prism algorithm or other rule learning algorithms is self-
inclusive in the training stage, and all relevant features are 
already selected once the learning of a rule based classifier 
is complete. The selected features can also be used for other 
algorithms to learn classifiers.

5  Conclusions

In this paper, we proposed the framework of multi-task 
learning (a learning task per class) to deal with practical 
issues in classification and feature selection. In particular, 
we used fuzzy approaches for transforming discriminative 
single-task classification into generative multi-task classifi-
cation. Also, we used the Prism algorithm for transforming 
single-task feature selection into multi-task feature selection, 
i.e., the Prism algorithm is used as a wrapper approach for 
evaluating features in terms of their relevance to each spe-
cific class and selecting a subset of features important for 
the class. The experimental results show that it is effective 
and leads to advances in prediction performance to adopt 

Fig. 7  Frequency of features 
selected in rules of a specific 
class
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the proposed framework of multi-task learning for both clas-
sification and feature selection.

In terms of generative multi-task classification through 
fuzzy approaches, the experimental results show that an 
instance may have a high value of membership degree (close 
or even equal to 1) to more than one class. The results also 
show that an instance may have a membership degree value 
of 0 to all the classes, which indicates that the instance does 
not belong to any of the given classes and an extra class 
is thus needed to be added into the set of given classes. In 
comparison with popular algorithms that belong to discrimi-
native learning, such as C4.5, Naive Bayes and K Nearest 
Neighbour, fuzzy approaches, which typically belong to 
generative learning, perform better accuracy of classifica-
tion, when different classes may be correlated or mutually 
independent rather than mutually exclusive.

In terms of multi-task feature selection through using the 
Prism algorithm, seven sets of rules were learned from the 
image segmentation dataset and each set of rules is specific 
for one of the seven classes involved in the data set. Through 
checking each set of rules, it can be seen that some features 
are frequently used alongside their values as terms in differ-
ent rules but some other features are never used in any rules. 
Also, it can be seen that the same feature is frequently used 
in the rules of one class, but is less frequently or even never 
used in the rules of the other classes.

On the basis of the above description, it is necessary to 
turn single-task learning into multi-task learning in terms 
of both classification and feature selection. In future, we 
will investigate the use of fuzzy approaches towards iden-
tifying the relationships between different classes, based 
on the membership degree values of the same instances 
to these classes. It is also worthy of future research in 
the context of multi-granularity learning, especially when 
there are vertical relationships between classes, such as 
super-classes and sub-classes. For example, in the context 
of image processing, features could be extracted from dif-
ferent target regions and the classes (corresponding to the 
regions) could be located at different levels of granularity. 
In this case, both feature selection and classification need 
to be done in the setting of multi-granularity learning. In 
terms of feature selection, we will also compare the Prism 
algorithm with traditional approaches (filter and wrapper), 
in terms of their impact on the performance of popular 
learning algorithms. It is also worth to investigate the use 
of genetic algorithms (Chen and Chung 2006), parallelized 
genetic ant colony systems (Chen and Chien 2011), parti-
cle swarm optimization algorithms (Chen and Kao 2013) 
and parallel cat swarm optimization algorithms (Tsai et al. 
2008, 2012), towards finding an optimal set of features.

Fig. 8  Selection rate of features 
for a specific class
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