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Introduction

Present in all kingdoms of life, terpene synthases catalyse
highly complex biosynthetic reactions, in which achiral, linear

isoprenyl diphosphates are converted into complex often
cyclic or polycyclic structures.[1, 2] In most cases, these carbocat-

ionic reaction cascades are characterised by high stereo- and

regioselectivity and involve changes in the hybridisation of up
to half of the carbon atoms. The final carbocation can either

lose a proton to generate a hydrocarbon product or react with
water to produce a terpene alcohol.[1] Subsequent biosynthetic

reaction steps convert the products generated by terpene syn-
thases into tens of thousands of terpenoids that act, among
other things, as pigments; phytoalexins; semiochemicals or in

primary metabolism as sterols, carotenoids and ubiquinones.
Terpenoids have many important applications, for instance, as
drugs, fragrances, pesticides, fuels or as food additives.[1, 2]

Examination of the structures of terpene synthases and the

mechanisms of the catalysed reactions has revealed common
structural features and distinct phases of activity.[1–6] Class I ter-

pene synthases share a predominantly a-helical fold with an
active site lined with mostly hydrophobic and aromatic amino
acid residues; they contain two conserved Mg2+-binding

motifs (DDXXD and NSE/DTE) on opposite sides of the active
site.[2] They provide a three-dimensional template to bind the

flexible substrate and chaperone the carbocationic intermedi-
ates along distinct reaction paths. Class I terpene synthases ini-

tiate the chemical reaction by catalysing the cleavage of the

carbon–oxygen bond of the substrate to generate a tightly
bound diphosphate (PPi)–carbocation pair.[2, 7] Single-crystal X-

ray structures of several sesquiterpene synthases complexed
with (E,E)-farnesyl diphosphate (FDP, 1), several analogues of 1,

Mg2 + and PPi, together with molecular dynamics simulations,
have provided strong support that loop movements and con-
formational changes are required to form the closed form of

the enzyme, in which substrate 1 is in a reaction-ready confor-
mation.[2–8] After conformational rearrangements of enzyme
and substrate necessary to form the Michaelis complex, the
chemical reaction occurs, with major contributions from carbo-

cation stabilisation by the p electrons of aromatic amino acid
residues, PPi carbocation interactions and general acid–base

catalysis by PPi and/or the enzyme.[1–12] The closed conforma-

tion of sesquiterpene synthases that generates hydrocarbon
products also prevents access of bulk solvent, which avoids

quenching of the reactive carbocationic reaction intermediates
by water.[1–3, 6–11]

In contrast to the wealth of knowledge available on the
mechanistic details of sesquiterpene synthase catalysed reac-

tions, in which the last cationic intermediate is deprotonated

by PPi, little information is available for terpene alcohol
synthases, such as epicubenol,[13] hedycaryol,[14] avermitilol,[15]

epicedrol[16] and germacradien-4-ol synthases[17] (GdolS), which
generate their products through the reaction of the final car-

bocation with water. The mechanism by which sesquiterpene
synthases discriminate between deprotonation or water cap-

d-Cadinene synthase is a sesquiterpene cyclase that utilises the

universal achiral precursor farnesyl diphosphate (FDP) to gen-

erate predominantly the bicyclic sesquiterpene d-cadinene and
about 2 % germacradien-4-ol, which is also generated from

FDP by the cyclase germacradien-4-ol synthase. Herein, the
mechanism by which sesquiterpene synthases discriminate be-

tween deprotonation and reaction with a nucleophilic water
molecule was investigated by site-directed mutagenesis of

d-cadinene synthase. If W279 in d-cadinene synthase was re-

placed with various smaller amino acids, the ratio of alcohol

versus hydrocarbon product was directly proportional to the

van der Waals volume of the amino acid side chain. DCS-

W279A is a catalytically highly efficient germacradien-4-ol syn-
thase (kcat/KM = 1.4 V 10@3 mm s@1) that produces predominantly

germacradien-4-ol in addition to 11 % d-cadinene. Water cap-
ture is not achieved through strategic positioning of a water

molecule in the active site, but through a coordinated series of
loop movements that allow bulk water access to the final car-

bocation in the active site prior to product release.
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ture has not been explored in detail. In enzymes that generate
alcohols, deprotonation of the final cation must be prevented,

and capture of the final carbocationic intermediate must be
tightly controlled to prevent quenching of early cationic inter-

mediates, whereas synthases that generate terpene alcohols
must prevent deprotonation of the final carbocationic inter-

mediate. Clearly, terpene synthases have evolved to control
water access and reactivity. Tightly bound water molecules can

be found in the active sites of terpene synthases in their

closed conformation, even for synthases that do not generate
alcohol products.[2, 7, 9] This finding might suggest that these
sequestered water molecules could be responsible for nucleo-
philic capture of the final carbocationic species.[2, 14] However, a

previously published investigation into the structure and
mechanism of GdolS revealed that the reaction of the final car-

bocation most likely depended on specific loop movements of

the enzyme that allowed bulk water to access the active
site.[18] GdolS must prevent deprotonation from C6 in inter-

mediate 6, so as not to produce d-cadinene (7; Scheme 1),
which in contrast is the pathway for catalysis by d-cadinene

synthase (DCS).[9]

In selina-4(15),7(11)-diene synthase from Streptomyces pristi-
naespiralis, a G1/2 helix break motif, combined with a diphos-

phate sensor–linker–effector motif that is conserved through-

out bacterial sesquiterpene synthases, has been proposed to
play a major role in substrate binding and active-site closure.[19]

This “kink” in the G-helix has also been noted as a potentially
important catalytic feature in human squalene synthase[20] and

hedycaryol synthase.[14] Interestingly, DCS was converted into a
GdolS through saturation mutagenesis by Keasling and co-

workers.[21] A re-evaluation of that work reveals that the amino
acid residues that generate this change of function are located

in the G1/2 helix break motif (see below).
DCS from Gossypium arboreum produces 7 in the first com-

mitted step of the biosynthetic pathway to the phytoalexin
gossypol (Scheme 1).[22] Despite little sequence identity outside

the conserved Mg2+-binding motifs, DCS and GdolS share the
typical structure of class I terpene synthases in the catalytic
domain;[9, 18] many aspects of their active-site compositions and

the respective catalytic reaction pathways from 1 to 7 or 8 are
shared (Scheme 1). The co-crystal structure of DCS, Mg2+ and
the substrate analogue (2Z,6E)-2F-farnesyl diphosphate (2F-
FDP) revealed an unusual Mg2+-binding motif, in which the

NSE/DTE motif is replaced by a second DDXXD motif.[9] Inter-
estingly, depending upon the substrate used, DCS appeared to

follow a 1,6; 1,10 or 1,11 ring closure;[10] this suggested that

these pathways were energetically similar and that DCS might
have some inherent promiscuity, despite its high fidelity when

acting on 1.[10] Only the N-terminal tail of the N-terminal b do-
main of DCS is involved in catalysis and plays an important

role in protecting the active site from water. Truncated pro-
teins that lack the first 8 and 20 amino acids of the b domain

produce increasing amounts of 8.[23]

The double-mutant protein DCS-N403P/L405H was shown to
convert 1 into 8 (93 %) and an additional unidentified cyclic

sesquiterpene alcohol.[21] However, the catalytic activity of DCS-
N403P/L405H is severely compromised relative to that of the

wild-type (WT) enzyme.
In DCS-N403P/L405H, the active site is exposed to solvent

through a potential water channel created by alteration of the

G-helix residues.[21] Analysis of the X-ray structure of DCS re-
veals that the aromatic residues W279 and Y410 are closer to

the isoprenyl chain of the substrate and on the opposite side
of the active-site contour relative to N403 and L405. W279 is

on the C helix of DCS and within 7 a of Y410, just below the
G2 helix and towards the bottom of the active-site cleft

(Figure 1). These two residues are ideally placed not only to

stabilise carbocationic intermediates during the formation of 7,
but also to form hydrophobic interactions that may help to

control the active-site conformation of 1 and mediate active-
site closure and opening. Hence, to test the hypothesis that
alteration of W279 can disrupt hydrophobic interactions with
Y410 and 1 and allow increased water access to the active site,

the contribution of W279 to catalysis was explored by site-
directed mutagenesis. Herein, we show that single amino acid
changes can convert DCS into GdolS that produce up to 90 %
8 with high catalytic efficiency. The results suggest that W279
plays a key role in shielding the active site of DCS from sol-
vent.

Results and Discussion

DCS-His6 was produced in Escherichia coli and its catalytic

properties determined. Steady-state kinetic experiments with
radiolabelled [1-3H]1[9, 10] revealed a turnover number, kcat, of

1.26 V 10@3 s@1; a Michaelis constant, KM, of 0.58 mm (Table 1)
and a catalytic efficiency, kcat/KM, of (2.17:0.4) V 10@4 s@1 mm@1,

Scheme 1. Catalytic mechanisms of the DCS (pathway a) and GdolS (path-
way b) catalysed conversions of 1 to 7 and germacradien-4-ol (8).
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which was identical to the value previously measured for WT-
DCS with no His-tag (kcat/KM = (3.1:0.2) V 10@3 s@1 mm@1).[9]

Analysis of the pentane-extractable products arising from in-

cubations with 1 by GC-MS showed that, in addition to 7, 11 %
of 8 was produced by the His-tagged enzyme. The products
were identified by comparison with the GC retention times
and mass spectra of authentic products generated through the

incubation of 1 with WT-DCS and GdolS from Streptomyces cit-
ricolor.[18]

To address the role of W279 during DCS catalysis, trypto-
phan was replaced by Glu, Gln, Asp, Leu, Met, Als and Tyr and
the pentane-extractable products generated from 1 were ana-

lysed by GC-MS. Remarkably, DCS-His6-W279A produced only
11 % 7 and 81 % 8 (Table 1); a product ratio that represents an

almost complete reversal relative to that measured for DCS-
His6. The values of kcat (3.12 V 10@3 s@1) and KM (2.23 mm) were

similar to the values measured for DCS-His6 ; this indicated that

replacement of the hydrophobic and bulky indole group with
hydrogen allowed water access to the active site to efficiently

quench the intermediate (3Z,7E)-germacryl cation (5) without
loss of the catalytic efficiency. If W279 was replaced by tyro-

sine, the quantity of alcohol 8 formed was only slightly in-
creased relative to that of DCS-His6.

GC-MS analysis of the pentane-extractable products generat-
ed by DCS-His6-W279M and DCS-His6-W279L, in which residues

with similar hydrophobicity, but with reduced van der Waals
volume, replaced tryptophan,[25] showed increased amounts of

alcohol relative to that of DCS-His6 (7 and 8 in approximately

2:1 ratio). These results show that the relative amounts of 7
and 8 are dependent on the volume of the side chain of resi-

due 279. The values of KM for DCS-His6-W279M and DCS-His6-
W279L were slightly increased, relative to that of the DCS-His6

(Table 1). Smaller residues that were hydrophilic, rather than
hydrophobic, were tested to examine the possibility that

hydrophilic residues might form a repulsive interaction with

Y410, leading to a poorly defined active site that compromised
the catalytic activity. Alternatively, an increase in the mobility

of the G1/G2 helix break motif might generate larger quanti-
ties of 8. Consequently, W279 was replaced with glutamine,

glutamate and aspartate. When incubated with 1, DCS-His6-
W279Q, DCS-His6-W279E and DCS-His6-W279D generated de-
creasing amounts of 7 and an increasing proportion of 8, with

the ratio of the two products showing a near-linear relation-
ship between the van der Waals volume of the amino acid and
alcohol production (Figure 2 and Table 1). This provides power-
ful evidence that the van der Waals volume of the C-loop resi-

due 279 is of central importance for product distribution in
DCS catalysis.

These results establish an essential role for Trp279 in DCS

catalysis. In the WT enzyme, residue 279 prevents water access
to 5, which is also stabilised through cation–p interactions

with the indole ring. Trp279, hence, facilitates ring closure to 6
and proton loss to generate 7. Replacement of Trp279 with

tyrosine had only a modest effect on the outcome, with a 7 %
increase in 8. However, if Trp279 was replaced with smaller,

non-aromatic residues the quantity of 8 relative to 7 increased

in a manner that depended on the van der Waals volume of
the residue (Figure 2), irrespective of the hydrophobicity of the

amino acid in position 279. Replacement with Gln, Asp or Glu
only significantly affected the product distribution and not the

catalytic efficiency of the enzymes, thus suggesting that
changes to the size of residue 279 might open a channel that

Figure 1. Left : view of the active-site cleft of DCS, showing the bulk surface of the enzyme in blue. Mg2+ ions are depicted as silver spheres; Y410 and W279
are shown with their van der Waals radii in green and red, respectively. Right: sketch of the active site of DCS; N403 and L405 are at the hinge points of the
G1/G2 helix break (magenta). Y410 is shown in green and W279 in red; helices G1, G2 and C as tan cylinders ; and Mg2 + ions as silver spheres. 2F-FDP is
shown as bonds, but in this crystal structure its hydrocarbon tail did not bind within the cleft (PDB ID: 3G4F[9]).

Table 1. Kinetic data and products generated from 1 with DCS and DCS-
W279 mutants.

Enzyme kcat KM 3 a 4 kcat/KM

[V 10@13 s@1] [mm] [%][a] [%][a] [V 10@3 mm@1 s@1]

WT-DCS11 1.00:0.4 3.20:0.02 98 2 3.1:0.2
DCS-His6 1.27:0.005 0.58:0.11 90 10 2.17:0.4
DCS-W279E 0.59:0.01 1.45:0.09 50 50 0.41:0.04
DCS-W279Q 3.00:0.02 8.00:4.00 60 40 0.25:0.13
DCS-W279D 0.67:0.01 9.24:3.00 40 60 0.07:0.02
DCS-W279L 3.80:0.09 9.45:1.10 68 32 0.40:0.05
DCS-W279M 1.09:0.04 1.90:0.20 65 35 0.57:0.06
DCS-W279A 3.12:0.01 2.23:0.51 11 89 1.40:0.32
DCS-W279Y 0.73:0.01 4.28:0.70 83 17 0.17:0.01

[a] Percentage of total products.
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allowed water access to the active site of DCS.[21] The size of
the channel appears to depend on the size of residue 279, so

that small residues allow for the generation of larger amounts
of 8. Inspection of the X-ray crystal structure of DCS[9] reveals

the G1/G2 helix break motif first identified by Pandit et al.

(Figure 1).[20] This motif was missed in an earlier report in
which a homology model for DCS based on epi-aristolochene

synthase was used.[21] N403 and L405 sit at either end of the
helix-break motif, which suggests that the G1/G2 helix break

motif is important for essential loop movements of terpene
synthases, including those found in plants.[19, 21] Aside from

W279, N403 and L405, the active site of DCS is highly robust

to site-directed mutagenesis, in that changes to G276, I130,
T407, C408, G409, L413, E455 and M523—all of which are

located in or around the active site—do not lead to the gener-
ation of products other than 7.[26] This is in stark contrast to

many bacterial and fungal terpene synthases for which
changes to the active-site composition often lead to alterna-
tive products.[3, 27–38] Plant terpene synthases appear to possess

a robust architecture that, in most cases, ensures product fidel-
ity. There are, however, a few hot spots where mutation alters
the reactivity dramatically and, in the case of DCS, these are
found in regions that control the movements of loops involved

in closure of the active site prior to formation of the Michaelis
complex.[8, 9, 19, 21] Specifically, in addition to the G1/G2 helix

mutants reported previously,[21] Trp279 mediates a loop move-
ment to ensure that proton loss occurs in the final step of DCS
catalysis, as opposed to allowing water to cation 5 to generate

8. Because W279 is located directly across the active site from
Y410, these two residues may form a favourable hydrophobic

contact with the substrate as it folds into its reactive confor-
mation with the active site. The aromatic nature of W279 does

not appear to determine product distribution because replace-

ment with even negatively charged aspartate or glutamate, or
neutral alkyl residues, such as Leu or Ala, do not alter the reac-

tion products ; they only increase the proportion of water cap-
tured in direct proportion to the van der Waals volume of the

side chain. Subsequently, the diphosphate group may act as a
general base for the final deprotonation step (Figure 3). If

W279 is replaced with a smaller, non-aromatic residue this
process may be perturbed; C1 and C6 of 1 (Scheme 1 and

Figure 3) are too far apart to facilitate the final ring closure
and extra space in the active site opens a pore,[21] whereby

water can enter the active site and 5 is quenched (Figure 3). It

is also notable that alteration of the C terminus through the
addition of a hexahistidine tag led to the production of signifi-

cant quantities of 8 ; this is consistent with a precise series of
loop movements that effect closure of the active site of DCS.

As mentioned above, water molecules have been observed in
the crystal structures of several terpene synthases, in both

open and closed conformations.[2, 7, 9, 18] These water molecules,

however, do not take part in reactions and simply cushion the
substrate in the active site.[23] It is perhaps surprising that

water molecules remain tightly bound in an uncreative state,
even in mutant enzymes in which the active site has been al-

tered. In the case of DCS, we have never observed nucleophilic
capture of the bicyclic cadinenyl cation (6 ; Scheme 1).

Terpene synthases generate many high-value products with

applications, for instance, as drugs, agrochemicals or fragran-
ces. Understanding the intricate details of their catalytic mech-
anism will lead to improved methods for the production of
naturally occurring terpenes[39] and help the development of

designer products with new or improved properties.[40–42]

Experimental Section

Introduction of C-terminal hexahistidine tag into DCS : The gene
encoding WT-DCS was available in a pET21d vector from previous
work.[9, 10] A single nucleotide deletion was required to bring the
His6 coding sequence of pET21d in frame with the DCS coding se-
quence. A Quickchange site-directed mutagenesis kit was used to
introduce the desired deletion, according to the manufacturer’s in-
structions. PCR primers were as follows: 5’-GAACC AATTG CACTT
GAGGA TCCGA ATTC-3’ and 5’-GAATT CGGAT CCTCA AGTGC AATTG
GTTC-3’. Plasmids were transformed into E. coli XL1 Blue and then
purified from overnight cultures (lysogeny broth (LB) medium
(10 mL) containing ampicillin (100 mg mL@1)) by using the miniprep
kit, as described by the manufacturer. Deletion was confirmed by
DNA sequencing.

Figure 2. Histogram of the percentage distributions of products 7 (&) and 8 (&) generated by DCS-His6 and its mutants versus the van der Waals volume[25] of
residue 279 (&).
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Expression and purification : DCS-His6 was produced in E. coli
BL21(DE3) cells that harboured the cDNA for DCS-His6 under con-
trol of the T7 promoter. E. coli BL21(DE3) cells were gently defrost-
ed on ice before plasmid (1 mL; 60 ng mL@1) was added to the cell
suspension. The resulting mixture was stored on ice (30 min), heat-
shocked in a water bath (42 8C, 30–35 s) and then returned to the
ice (2 min). LB medium (1 mL) was added and the solution was in-
cubated for 1 h at 37 8C with shaking (150 rpm). The cells were har-
vested by centrifugation (1 min, 3300 g), resuspended in a mini-
mum amount of LB medium and spread on an agar plate contain-
ing ampicillin (100 mg mL@1). The plate was then incubated over-
night at 37 8C. A single colony from the agar plate harbouring the
transformed cells was used to inoculate LB medium (100 mL) con-
taining ampicillin (100 mg mL@1) and the culture was incubated at
37 8C with shaking (150 rpm) overnight. The overnight culture
(10 mL) was transferred to each of 6 V 500 mL of LB medium con-
taining the same concentration of ampicillin as before. Cells were
incubated at 37 8C with shaking (150 rpm). When an optical density
(OD600) of 0.6 was reached, isopropyl b-d-1-thiogalactopyranoside
(IPTG) was added (0.5 mm final concentration) and the cultures
were incubated for 24 h with shaking (250 rpm), at 20 8C. Cells
were harvested by centrifugation at 5 8C (4200 g, 10 min). The

supernatant solution was discarded and the pellets were stored at
@20 8C.

Pellets were allowed to thaw at 5 8C and resuspended in cell lysis
buffer (50 mL; 20 mm Tris-Base, 5 mm b-mercaptoethanol (bME),
pH 8) and stirred gently for 1 h at 0 8C. Cells were then disrupted
by sonication at 5 8C (40 % amplitude for 3 min with 5 s on/10 s off
cycles) and the resulting suspension was centrifuged at 5 8C
(17 000 g, 30 min). SDS-PAGE analysis showed that protein was in
the soluble fraction and the pellets were discarded. The superna-
tant solution was then loaded onto a 2 cm Amintra nitrilotriacetic
acid (NTA) Ni2 + column (Expedeon, Over, UK) and eluted under
gravity-controlled drip flow. After 40 min, the column was washed
with four column volumes (CV) of binding buffer (Tris·HCl 100 mm,
bME 5 mm, NaCl 500 mm, imidazole 5 mm, pH 8). The column was
then washed with a gradient of imidazole (from 5 to 300 mm, 20
CV) in binding buffer. DCS-His6 eluted in the range 60–100 mm imi-
dazole; column fractions were analysed by SDS-PAGE. The fractions
containing pure protein corresponding to a molecular weight of
64 000 (DCS-His6) were pooled, dialysed overnight (10 mm Tris-
Base, 5 mm bME, pH 7.5; molecular weight cutoff (MWCO) 30000)
and then concentrated to a final volume of about 5 mL (AMICON

Figure 3. Representations of the active site of WT DCS (left)[9] and DCS W279A (right) to illustrate the gap in the active site created by the disruption of the
interaction between W279 and Y410 that assists in active-site closure and formation of the catalytic active-site contour. Water is proposed to ingress through
this gap and attach at C3 of 2 to generate 8 (PDB ID: 3G4F[9]).
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system, YM 30). The solution was aliquoted and stored at 0 8C. The
concentration of protein was estimated by using the method of
Bradford.[24]

Site-directed mutagenesis of recombinant DCS-His6 and mutagenic
primers is described in the Supporting Information. The expression
and purification of mutant DCS-His6 enzymes was identical to that
described for the WT.

Analytical incubations of DCS-His6 and mutants with 1: Com-
pound 1 (25 mL, 10 mm) was added to assay buffer (250 mL; 20 mm
Tris, 5 mm bME, 10 mm MgCl2 at pH 7.5) followed by addition of
enzyme (100 mL, 40 mm). The aqueous solution was overlaid with
HPLC-grade pentane (0.5 mL) and the resulting mixture was incu-
bated with gentle agitation (18–24 h) at 25 8C. The incubations
were repeated without enzyme as negative controls. The pentane
extracts were then analysed by GC-MS as described in the Support-
ing Information.

Steady-state kinetics of DCS-His6 and mutants : Kinetic assays
were performed according to the standard, linear range, micro-
assay procedure previously developed for DCS (see the Supporting
Information).[9, 10]
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