The role of copper speciation in the low temperature oxidative upgrading of short chain alkanes over Cu/ZSM-5 catalysts

Robert D. Armstronga, Virginie Peneaua, Nadine Ritterskampb, Christopher J. Kielya, Stuart. H. Taylora and Graham J. Hutchingsa*

Abstract: Partial oxidative upgrading of C1 – C3 alkanes over Cu/ZSM-5 catalysts prepared by chemical vapour impregnation (CVI) has been studied. The undoped ZSM-5 support is itself able to catalyse selective oxidations, for example, methane to methanol, using mild reaction conditions and the green oxidant H2O2. Addition of Cu suppresses secondary oxidation reactions, affording methanol selectivities of up to 97%. Characterisation studies attribute this ability to population of specific Cu sites below the level of total exchange (Cu/Al < 0.5). These species also show activity for radical-based methane oxidation, with productivities exceeding those of the parent zeolite supports. When tested for ethane and propane oxidation reactions, comparable trends are observed.

Introduction

Finite crude oil reserves and increasingly environmentally-conscious legislation are driving the search for alternate feedstocks and routes for the synthesis of bulk chemical products. Proposed as a transitional fuel for the move away from a petroleum-derived economy, the valorisation of natural gas as a chemical feedstock is therefore a key field of research. Comprising mainly methane and ethane, the direct oxidation of these lower alkanes is hindered by their kinetically inert nature, with C-H bond energies of 439.57 and 423.29 kJ mol-1 [1]. As a result, commercialised technologies often use indirect routes and are energy intensive. For instance, syngas is required for the methanol synthesis process, and is produced through steam reforming of methane [2]. Through carbonylation at high pressures of carbon monoxide, methanol then yields an estimated 75% of global acetic acid (ca. 7.8 Mt/annum) via the BP Cativa and Celanese processes [3-5]. Meanwhile steam cracking of ethane yields ethene, a precursor to ethanol, acetaldehyde, acetic acid and polyethylene amongst other higher value products [6]. The direct oxidation of short chain alkanes to partially oxygenated products is therefore economically and environmentally preferable to current practices.

In nature, methane monoxygenase (MMO) oxidises n-alkanes selectively to alcohols under ambient conditions, over a μ-oxo bridged diiron active site [7, 8]. Synthetic approaches to directly oxidise these lower alkanes have been reported, and typically fall into three categories; (i) gas phase systems – typically at high temperatures and/or pressures [9-16], (ii) biomimetic-structural models of MMO active site [17, 18] and (iii) oxidation in acidic media to produce methyl/ethyl esters [19-23]. It should be noted that transition metal-containing materials have also been activated in N2O/O2 and subsequently used to oxidise alkanes, though not in a truly closed catalytic cycle [24, 25].

It has recently been reported that ZSM-5 shows high intrinsic activity in the low temperature oxidation of C1 – C3 alkanes with hydrogen peroxide as oxidant [26-29]. Hammond et al. attributed catalytic activity to trace amounts of iron, present as impurities within the zeolite [26, 30]. These are shown to form catalytically active extra-framework diiron-μ-oxo-hydroxo or oligomeric iron complexes upon high temperature activation [26, 30]. Addition of Cu2+ was shown to afford high selectivity to methanol (ca. 90%) by inhibiting further oxidation to formic acid, with no overall change in catalyst productivity [26]. This effect was shown when Cu was introduced as a homogeneous additive, a supported co-catalyst or supported upon ZSM-5 itself. Through EPR spectroscopy experiments, this effect was shown to be due to a lack of hydroxyl radicals when Cu2+ was present [26, 31]. A shift in reaction selectivity was also reported for ZSM-5 (SiO2/Al2O3 = 30) catalysed ethane oxidation upon addition of Cu2+, though rather than affording high ethanol selectivity as might be expected from C1 studies, this led to lower acetic acid and high ethene selectivity (> 30 %) [27]. Mechanistic studies showed that ethane is activated to yield two primary products; ethylhydroperoxide and ethanol, with ethene also indicated as a potential primary product. These were shown to undergo catalytic oxidation to acetic acid, with C-C scission yielding C1 oxygenates; formic acid, methylhydroperoxide and methanol [27]. Oxygenate selectivity was consistently high (ca. 95%) [27]. Concordantly, high propene selectivities were observed when the same catalysts were tested for propane oxidation under comparable conditions [32].

The aim of the present work is to study the role that Cu speciation plays in effecting the performance of Cu/ZSM-5 catalysts. To this end we characterise Cu/ZSM-5 catalysts using DR-FTIR, TEM, TPR and NH3-TPD to identify specific Cu sites and correlate these with catalyst performance. Through EPR trapping studies we then aim to rationalise testing and characterisation data to determine structure – function relationships. We aim to determine whether Cu sites perform in the same way during the catalytic oxidation of methane, ethane and propane with H2O2.

Results and Discussion

Studies into the selective oxidation of methane to methanol using supported ZSM-5 (30) catalysts have reported increased reaction...
selectivity in the presence of Cu$^{2+}$, with no loss of reaction rate. In that system EPR studies showed that Cu$^{2+}$ was either (i) suppressing the propagation of •OH or (ii) catalytically sequestering •OH and therefore affording high primary product selectivity [26, 31]. Our previous studies into ZSM-5 (30) to catalyse ethane oxidation determined that ethene was formed under reaction conditions, with particularly high selectivity observed upon testing of 2.5 Cu/ZSM-5 (30) and 1.25% Fe 1.25% Cu/ZSM-5 (30) catalysts (30.2 and 34.2 % selectivity respectively) [27]. It was concluded that ethene could form through two pathways; (i) direct H-abstraction from the alkane or (ii) a fully concerted mechanism over [Fe=O] [27]. It was suggested that ethene undergoes activation at the iron sites in ZSM-5 to yield ethene. Ethene can then undergo oxidation or, in the presence of Cu$^{2+}$ desorb from the zeolite surface and diffuse to the liquid-gas interface. Indeed, ethene was shown to undergo catalytic oxidation under reaction conditions, yielding the reaction products; formic acid, CO$_2$ and CH$_3$OOH/ CH$_2$OH [27].

The reactivity of ethene under test conditions is further explored in Table S1. Addition of Cu to either H-ZSM-5 (30) or 1.25% Fe/ZSM-5 (30) led to no significant change in the rate of H$_2$O$_2$ conversion. However, when Cu was present, the rate of ethene oxidation typically decreased. For example, deposition of 2.5 wt% Cu onto H-ZSM-5 (30) effected a decrease in the rate of ethene oxidation from 1.2 to 0.6 mol$_{\text{formed}}$ ketone kg$_{-\text{cat}}^{-1}$ h$^{-1}$ (Table 1, Entries 1 and 4). Also, whilst selectivity favoured C$_2$ products, Cu-containing catalysts afforded appreciable yields of acetic acid (Table S1, Entries 5 and 7). Given that the oxidation of ethene to acetic acid is well documented [33, 34] it can be concluded that ethene is a primary product in this reaction. Indeed, the reactivity of ethene in this system is comparable to that of methanol under analogous conditions.

ZSM-5 catalysed alkane oxidation reactions

Cu/ZSM-5 catalysts prepared by CVI were tested for the oxidation of methane under mild aqueous conditions, utilising hydrogen peroxide as the oxidant. Although higher rates of methane activation might be attained through co-impregnation of the ZSM-5 supports with Fe, the presence of Fe species would prevent specific characterisation of Cu sites [26]. In line with previous studies, a metal loading of 2.5 wt% Cu was employed [26], whilst the SiO$_2$/Al$_2$O$_3$ ratio was varied within the range of 23 – 280. Reaction data at t = 0.5 h are presented in Table 1 (Entries 1-4). Of the catalysts tested, 2.5% Cu/ZSM-5 (SiO$_2$/Al$_2$O$_3 = 23$) showed relatively high activity, with 42.8 μmol products formed and 97.4 % selectivity towards methanol. This is compared with the previously reported 2.5 % Cu/ZSM-5 (30), which yielded 8.4 μmol products at 78.5 % methanol selectivity. Further increasing the SiO$_2$/Al$_2$O$_3$ to 50 or 280 (at a fixed loading of 2.5 wt. % Cu) led to further decreases in catalyst activity. Higher SiO$_2$/Al$_2$O$_3$ showed a significant change in colour post- reaction, with 2.5% Cu/ZSM-5 (30-280) turning yellow (Figure S2). This is consistent with formation of reduced Cu species, potentially Cu-OH. Notably, 2.5% Cu/ZSM-5 (23) showed no apparent colour change. Alumina- free 2.5 % Cu/Silicate-1 (Table 1, Entry 13) showed relatively low productivity (4.3 μmol) and methanol selectivity (52.9 %) despite a higher rate of H$_2$O$_2$ conversion. To rationalise these data, proton form H-ZSM-5 (SiO$_2$/Al$_2$O$_3 = 23$ or 30) were assessed for activity (Table 1, Entries 5 and 9). Of these unmodified zeolites, H-ZSM-5 (30) showed markedly higher rates of methane conversion (2.1 mol kg$_{-\text{cat}}^{-1}$ h$^{-1}$) than H-ZSM-5 (23) (0.51 mol kg$_{-\text{cat}}^{-1}$ h$^{-1}$) which is consistent with previous studies [26].

This suggests that Cu-promoted reactions can be achieved by the use of Cu$^{2+}$ supported on H-ZSM-5 (23), but the Cu$^{2+}$ may be too low in concentration to achieve the high activity observed at Cu$^{2+}$ concentrations of 2.5 wt% Cu. The Cu-promoted oxidation of methane is therefore data in Table 1 might also indicate formation of a Cu$^{2+}$ species which is capable of propagating radical-based methane oxidation. To better understand the role which Cu sites might play in effecting the differing rates of methane conversion, methane and methanol selectivities observed for Cu/ZSM-5 catalysts in Table 1, the physicochemical properties were fully characterised.

Transmission electron micrographs for 2.5% Cu/ZSM-5 catalysts are shown in Figure 1. A strong support effect was observed for 2.5% Cu/ZSM-5 catalysts (30-280) turning yellow (Figure S2). This is consistent with formation of reduced Cu species, potentially Cu-OH. Notably, 2.5% Cu/ZSM-5 (23) showed no apparent colour change. Alumina-free 2.5 % Cu/Silicate-1 (Table 1, Entry 13) showed relatively low productivity (4.3 μmol) and methanol selectivity (52.9 %) despite a higher rate of H$_2$O$_2$ conversion. To rationalise these data, proton form H-ZSM-5 (SiO$_2$/Al$_2$O$_3 = 23$ or 30) were assessed for activity (Table 1, Entries 5 and 9). Of these unmodified zeolites, H-ZSM-5 (30) showed markedly higher rates of methane conversion (2.1 mol kg$_{-\text{cat}}^{-1}$ h$^{-1}$) than H-ZSM-5 (23) (0.51 mol kg$_{-\text{cat}}^{-1}$ h$^{-1}$) which is consistent with previous studies [26]. This suggests that Cu-promoted reactions can be achieved by the use of Cu$^{2+}$ supported on H-ZSM-5 (23), but the Cu$^{2+}$ may be too low in concentration to achieve the high activity observed at Cu$^{2+}$ concentrations of 2.5 wt% Cu. The Cu-promoted oxidation of methane is therefore data in Table 1 might also indicate formation of a Cu$^{2+}$ species which is capable of propagating radical-based methane oxidation. To better understand the role which Cu sites might play in effecting the differing rates of methane conversion, methane and methanol selectivities observed for Cu/ZSM-5 catalysts in Table 1, the physicochemical properties were fully characterised.

Table 1 Catalytic data for methane oxidation catalysed by Cu/ZSM-5 of varied SiO$_2$/Al$_2$O$_3$ and Cu/Al ratios.

<table>
<thead>
<tr>
<th>Entry</th>
<th>SiO$_2$/Al$_2$O$_3$</th>
<th>% wt Cu</th>
<th>Cu/Al ratio</th>
<th>Total Product / μmol</th>
<th>Product / μmol</th>
<th>H$_2$O$_2$/ %</th>
<th>S(MeOH)$^{-}$%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>2.5</td>
<td>0.41</td>
<td>42.82</td>
<td>41.7</td>
<td>0.57</td>
<td>0.55</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>2.5</td>
<td>0.59</td>
<td>8.37</td>
<td>6.57</td>
<td>1.29</td>
<td>0.51</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>2.5</td>
<td>0.76</td>
<td>0.52</td>
<td>0.00</td>
<td>0.14</td>
<td>0.38</td>
</tr>
<tr>
<td>4</td>
<td>280</td>
<td>2.5</td>
<td>4.08</td>
<td>2.2</td>
<td>0.43</td>
<td>1.43</td>
<td>0.34</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>0</td>
<td>n.a</td>
<td>9.91</td>
<td>1.14</td>
<td>5.43</td>
<td>0.34</td>
</tr>
<tr>
<td>6</td>
<td>23</td>
<td>0.4</td>
<td>0.07</td>
<td>40.23</td>
<td>37.71</td>
<td>2.14</td>
<td>0.38</td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td>1.25</td>
<td>0.20</td>
<td>51.89</td>
<td>49.86</td>
<td>1.43</td>
<td>0.60</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>5</td>
<td>0.82</td>
<td>1.38</td>
<td>0.43</td>
<td>0.43</td>
<td>0.52</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>0</td>
<td>n.a</td>
<td>28.15</td>
<td>5.14</td>
<td>14.57</td>
<td>7.43</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>0.4</td>
<td>0.09</td>
<td>44.96</td>
<td>32.86</td>
<td>9.29</td>
<td>0.82</td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>1.25</td>
<td>0.29</td>
<td>48.83</td>
<td>42.00</td>
<td>4.29</td>
<td>0.52</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>5</td>
<td>1.18</td>
<td>5.29</td>
<td>3.14</td>
<td>1.71</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Test conditions; 27 mg catalyst, 0.9 h, P(CH$_4$) = 30 bar (0.03 mol), 50 °C, 1500 rpm, [H$_2$O$_2$] = 0.5 M (5000 μmol). *Catalyst - 2.5% Cu/Silicate-1 (CVI)
converged, with a standard deviation in particle size of 4.20 nm and 0.44 nm for ZSM-5 (23) and ZSM-5 (280) respectively. Such an effect has not, to our knowledge, been reported for Cu/ZSM-5 catalysts. We attribute this relationship between alumina content and copper oxide particle growth to varying degrees of interaction between the hydrophobic Cu (acac)₂ precursor and the zeolite surface. With increasing SiO₂/Al₂O₃ ratio, ZSM-5 becomes more hydrophobic and this would lead to a stronger interaction with Cu (acac)₂. Owing to the lack of solvent, and associated diffusion and pH effects, this might therefore be unique to the CVI methodology. Such particle size control presents an intriguing avenue for future research, assuming that it might be generalised to other supports and metal-acetylacetonates. Average particle size appears to correlate with the activity and selectivity of these catalysts, however a role for exchanged cationic copper species cannot be excluded.

H₂-TPR was employed to probe the reducibility of Cu species in the 2.5% Cu/MFI zeolite catalysts. H₂ uptake plots are shown in Figure 2. All samples exhibit a low temperature reduction (R₁) at ca. 183 – 213 °C, which has been reported to comprise of two simultaneous reductions (i) reduction of isolated Cu²⁺ ions and CuO₂ oxocations to Cu⁺ and (ii) reduction of Cu²⁺ in CuO to Cu[40-45]. 2.5% Cu/ZSM-5 catalysts present a second high temperature peak (R₂), not shown for the Silicalite-1 catalyst, which is attributed to the reduction of Cu⁺ ions to Cu[40, 41, 44-47]. The maxima of R₁ and R₂ shifted to a higher temperature with decreasing SiO₂/Al₂O₃. This is generally ascribed to a change in dispersion and increasing interaction between Cuⁿ⁺ species with framework oxygen as the zeolite matrix becomes more negatively charged (higher Al content) [41, 44, 46]. The increasing breadth of R₂ with decreasing SiO₂/Al₂O₃ suggests the presence of oligomeric Cu species of varying nuclearity [45] and is consistent with the broadening particle size distribution of surface oxides shown in Figure 1. As H₂-TPR studies suggested the presence of exchanged Cu²⁺ species, the occupation of exchange sites was confirmed through
NH$_3$-TPD and FTIR in the O-H stretching region. TPD plots and FTIR spectra for H-ZSM-5 and 2.5% Cu/ZSM-5 catalysts (SiO$_2$/Al$_2$O$_3$ = 23, 30, 50 and 280) are presented in Figure 3. Two key NH$_3$ desorptions were observed for all catalysts in Figure 3i, centred at ca. 270 and 450 °C. The lower temperature desorption is attributed to adsorption at weak acid sites (Brensted and Lewis) with the high temperature desorption unequivocally assigned to NH$_3$ chemisorbed at strongly acidic Brensted sites [48-54]. All zeolites showed decreased NH$_3$ capacity following Cu impregnation, averaging a loss of 26.0 % (± 5.4 %) of total strong-Brønsted sites. This was supported by DRIFTS spectra in Figure 3ii which showed decreased intensity of the peak at 3607 cm$^{-1}$ (OH groups coordinated to Td framework Al$^{3+}$) for each ZSM-5 following Cu impregnation [55]. NH$_3$-TPD and DRIFTS therefore suggest siting of CuII at AlO$_4$ exchange sites.

Spectra acquired following NO saturation of 2.5 w% Cu/ZSM-5 (SiO$_2$/Al$_2$O$_3$ = 23-280) are shown in Figure 4. The absolute absorbance decreased with increasing SiO$_2$/Al$_2$O$_3$, suggesting a decreasing concentration of exchanged Cu species. Indeed, this was consistent with NH$_3$-TPD results which showed occupation of ca. 26% of strong Brunsted sites for all zeolites, independent of total acidity. Curved fitted spectral bands for 2.5% Cu/ZSM-5 (23) (a) and 2.5% Cu/ZSM-5 (30) (b) are presented, whilst absorbance in (c) and (d) wasn’t sufficiently intense to allow for objective fitting. Four bands were identified in (a) and (b), centred at: 1915, 1895, 1814 and 1811 cm$^{-1}$. The distribution of Cu sites shifted with an increasing Cu/Al ratio (0.41 and 0.59 for ZSM-5 23 and 30 respectively) with increased relative intensity of bands at 1895 cm$^{-1}$ and 1811 cm$^{-1}$ over that at 1913 cm$^{-1}$. This is consistent with previous reports which showed that Cu-I type sites (AlO$_4$ pair, 1913 cm$^{-1}$) are favourable at low Cu/Al ratios, with Cu-II (1895 cm$^{-1}$) becoming dominant when overexchanged at Cu/Al > 0.5. It has also been reported that Cu-II type species undergo more facile reduction due to the low local negative charge, which results from being bonded to an isolated AlO$_4$ site [35, 65]. In fact, the band at 1811 cm$^{-1}$ (CuII-NO) is believed to result from autoreduction of Cu-II (1895 cm$^{-1}$), resulting from dehydration during the pre-treatment [35, 66].

CuII speciation in Cu/ZSM-5 has long been studied due to its activity in the catalytic decomposition or reduction of NO$_x$ with highly reducible, isolated CuII found to be the preferred active site [35, 37, 56-58]. In probing ion exchanged Cu sites with NO, spectroscopically distinct N-O IR stretching bands have been identified, and shown to arise from binding to CuII in differing coordination environments [35, 37, 47, 59-63]. Four principle N-O-CuII binding modes have been described, differing in geometry and the number of local AlO$_4$ exchange sites. These consist of exchanged divalent CuII of; square pyramidal (AlO$_4$ pair, 1913 cm$^{-1}$, denoted Cu-I), square planar (single AlO$_4$, 1895 cm$^{-1}$, Cu-II), square pyramidal (AlO$_4$ pair, 2121 cm$^{-1}$, Cu-III) and unassigned (low intensity, 1906 cm$^{-1}$, Cu-IV) geometries [36, 59]. Additional bands at 1813 cm$^{-1}$ (monovalent Cu-NO species) and 1875 cm$^{-1}$ (low intensity, gaseous NO) have also been reported [35, 36, 64].

![Figure 2](image-url)
Figure 2 H$_2$-TPR profiles for 2.5% Cu MFI zeolite catalysts prepared by chemical vapour impregnation. (a) ZSM-5 (23), (b) ZSM-5 (30), (c) ZSM-5 (50), (d) ZSM-5 (280) and (e) Silicalite-1.

![Figure 3](image-url)
Figure 3 NH$_3$-TPD traces (i) and DRIFTS spectra in the OH vibrational region (ii) for (H-ZSM-5, 2.5% Cu/ZSM-5) respectively where SiO$_2$/Al$_2$O$_3$ = 23 (a,b), 30 (c,d), 50 (e,f) and 280 (g,h). For (i) dashed lines – peak fit of high temperature desorption.

![Figure 4](image-url)
Figure 4 IR bands of NO adsorbed onto 2.5 wt% Cu/ZSM-5 of varying SiO$_2$/Al$_2$O$_3$. SiO$_2$/Al$_2$O$_3$ being (a) 23, (b) 30, (c) 50 and (d) 280.
Clearly the nature of supported Cu species, both surface oxides and ion exchanged, varied greatly with SiO₂/Al₂O₃ ratio (at a constant 2.5 wt % loading). This made determining the exact catalytic site difficult. Added to this, one had to consider the hydrophobic/ hydrophilic nature of the support itself as rapid diffusion of products out of the zeolite pores is expected to afford higher selectivity towards primary products. Indeed it has been shown that a hydrophobic-hydrophilic shift occurs at a SiO₂/Al₂O₃ ratio of ca. 20 [67, 68]. To decouple the effects of zeolite hydrophilicity, surface oxide dispersion and exchange capacity, H-ZSM-5 with a SiO₂/Al₂O₃ of 23 and 30 were impregnated with 0.4 – 5 wt % loadings of Cu.

These materials were tested for catalytic activity in methane oxidation and testing data is shown in Table 1. At Cu loadings of 0.4 and 1.25 wt. %, ZSM-5 (23) and ZSM-5 (30) catalysts show comparable productivities. Indeed, at 1.25 wt. % Cu, 51.9 μmol and 48.8 μmol of products were observed for ZSM-5 (23) and ZSM-5 (30) respectively. Methanol selectivity was higher for the more alumino catalyst (96.1 % vs 86.0 %). Methane conversion, though low, increased with Cu loading for both zeolites which is consistent with copper’s ability to catalyse H₂O₂ conversion [69-71]. However once the Cu/Al ratio exceeded 0.5, both methane conversion and methanol selectivity were observed to decrease significantly. To determine whether the step change in activity observed between loadings of 2.5 and 5 wt. % Cu was due to pore blocking by Cu species, N₂ adsorptions studies were carried out (Table S2). A steady decrease in surface area was observed with increasing Cu loading, from 423 m² g⁻¹ for the parent zeolite to 259 m² g⁻¹ at 5 wt. % Cu loading (Table S2, Entries 1 and 5). Despite showing markedly different catalytic performance, 2.5% and 5 % Cu/ZSM-5 (23) catalysts show similar micropore volumes (0.10 and 0.09 cm³ g⁻¹ respectively), suggesting that pore blockage is not a key factor.

Cu/ZSM-5 (23) and (30) catalysts of increasing Cu wt. loadings were studied using H₂-TPR (Figure 5), at constant molCu⁻. As in Figure 2, two main reduction peaks were observed, at ca. 194 – 308 °C (R₁) and 310 – 507 °C (R₂), which may be assigned as previously. Consistent with Figure 4, the Tₘₚ for both reduction peaks shifted to a lower temperature with increasing Cu/Al (either through increased Cu loading or decreased Al content). At the highest loading (5 wt % Cu) a third reduction event was observed, with Tₘₚ of 256 and 233 °C for ZSM-5 (23) and ZSM-5 (30) respectively. This is assigned as a low temperature Cu⁺ - Cu⁰
reduction where Cu$^{2+}$ of type Cu-II have undergone auto-reduction to Cu$^{+}$ during the pretreatment. Cu/ZSM-5 (23) catalysts of 0.4 and 5.0 wt. % Cu loading were analysed using HRTEM. Representative micrographs are shown in Fig. S3. At 0.4 wt. % Cu loading (Fig S3a) no discreet nanoparticles were observable. However, upon prolonged exposure to the electron beam (Fig S4) apparent nanoparticle formation was observed. This indicates (a) sintering of Cu-species of a size below the sensitivity of the microscope (sub 1 nm), or (b) migration of nanoparticles from deep within the zeolite pores. At 5.0 wt. % Cu loading, a mean particle size of 4.78 nm was observed (Fig. S3a/c). Consideration of particle size data from Figures 1 and S3 alone, with catalyst performance in Table 1 is paradoxical. At a fixed 2.5 wt. % Cu loading, decreasing average NP size (increasing SiO$_2$/Al$_2$O$_3$) correlated with decreasing catalytic activity (Fig. 1). Conversely, a decrease in activity is observed with increasing Cu loading despite apparent increases in average NP size (Fig S3). This contradiction further indicates that the nature/distribution of ion exchanged Cu-species is the key feature which effected the trends observed in Table 1 and not Cu-oxide crystallite size.

DRIFTS spectra for these catalysts are shown in Figure 6. These clearly show a decrease in the intensity of the peak at 3607 cm$^{-1}$ (OH groups coordinated to Td framework Al$^{3+}$) with increasing Cu loading, and this is consistent with a gradual increase in the degree of cation exchange/population of Cu$^{3+}$ species [55]. To better understand the mechanism by which Cu$^{2+}$ sites affect both methane conversion and methanol selectivity, EPR spectroscopy radical trapping studies were performed. EPR revealed that significant quantities of hydroxyl radicals are produced over 2.5 % Cu/ZSM-5 (23) (Figure 8a). This is surprising, as previous studies had correlated termination of such radicals over Cu sites with high methanol selectivity. Spectra for reactions over 2.5 % Cu/ZSM-5 where SiO$_2$/Al$_2$O$_3$ = 30 and 280 are shown in Figures 8b and 8c. Spectrum 8b is consistent with previous EPR DMPO trapping studies over the same catalyst [31], showing weak signals, which were previously attributed to superoxide (O$_2^-$) radicals. As previously discussed, the hydrophobic/hydrophilic nature of the represented ZSM-5 isomorphs differ significantly. To further explore the relationship between supported species and radicals generated, without varying hydrophobicity, the spin trap (DMPO) was added to methane oxidation reactions catalysed by 1.25 % Cu/ZSM-5 (30). This catalyst, with a Cu/Al ratio = 0.2 showed significantly higher methane conversion rates (3.3 mol kg$_{cat}^{-1}$ h$^{-1}$) and methanol selectivity (86.0 %) than 2.5 % Cu/ZSM-5 (30) (Si/Al = 0.59, 0.6 mol kg$_{cat}^{-1}$ h$^{-1}$, 78.5 % methanol selectivity) at near iso-conversion of H$_2$O$_2$ (Table 1, Entries 2 and 11). The EPR spectrum for methane oxidation catalysed by 1.25 % Cu/ZSM-5 (30) is shown in Figure 9a. This is comparable to that of 2.5 % Cu/ZSM-5 (23) in Figure 8a, showing significant DMPO-OH adduct formation. EPR studies therefore suggest that at a Cu/Al of < 0.5, supported Cu/ZSM-5 catalysts behave differently to the previously reported 2.5 % Cu/ZSM-5 (30) (Cu/Al = 0.59) system. When the Cu/Al is less than 0.5 (Cu-I species dominant), addition of copper has a beneficial effect upon both methane conversion rates and methanol selectivity, with EPR radical trapping studies showing these systems to contain appreciable quantities of hydroxyl radicals. These data suggest that (i) ·OH are generated at and relatively stable over Cu-I sites and that either (ii) Cu-I species act as active sites for selective methane oxidation or (iii) Cu-I sites propagate generation of ·OH, with methane activation occurring on a secondary active site within the catalyst. Conversely, the previously reported DFT-derived mechanism for ZSM-5 catalysed methane oxidation with H$_2$O$_2$ involved a concerted, molecular active site with no input of oxygen based radicals [26].

As before, the distribution of Cu$^{3+}$ sites was probed using NO-DRIFTS. Spectra for loadings of 1.25, 2.5 and 5 wt. % Cu/ ZSM-5 (23 and 30) are shown in Figure 7. For both ZSM-5 (23) and (30) an increase in Cu loading was accompanied by increased absorbance and a shift in the distribution of Cu$^{3+}$ species. Increased Cu/Al led to a decrease in the ratio of Cu-I/Cu-II (1915 cm$^{-1}$ / 1895 cm$^{-1}$) and an increase in the population of Cu$^{2+}$ sites (1811 cm$^{-1}$, attributable to reduced Cu-II type sites). In fact, above a Cu/Al ratio of 0.5, population of these highly reducible square planar Cu$^{2+}$ sites (associated with a single AO$_4$ site) became dominant. The shift in speciation of Cu corresponds with the drop in methane conversion and methanol selectivity (shown in Table 1) at Cu/Al > 0.5.
To further study the structure-function relationships in these Cu-MFI catalysts, they were assessed for activity in ethane oxidation, which our previous studies showed to be mediated at least in part by oxygen-based radicals [27]. Trends in Table 2 are consistent with those in Table 1. At a fixed 2.5 wt. % Cu loading, ZSM-5 (23) affords the highest rate of C₂H₆ conversion (1.6 mol kg⁻¹ h⁻¹) and relatively high ethane selectivity (51.7 %). Both metrics decreased at a Cu/Al > 0.5, with 2.5 % Cu/ZSM-5 (280) affording 0.26 % propane conversion and markedly lower ethane conversion rate and reaction selectivity were observed as Table 2 Entries 7 and 8. Trends in selectivity/reaction rate are observed at longer times on line (Figure S5). This further implicates ethene as a primary product of ethane oxidation under these reaction conditions.

Table 2 Catalytic data for ethane oxidation catalysed by Cu/ZSM-5 of varied SiO₂/Al₂O₃ and Cu/Al ratios.

<table>
<thead>
<tr>
<th>Entry</th>
<th>SiO₂/Al₂O₃</th>
<th>wt% Cu</th>
<th>Cu/Al ratio</th>
<th>CH₃COOH</th>
<th>CH₃CHO</th>
<th>CH₂CHO</th>
<th>EtOH</th>
<th>C₂H₆</th>
<th>C₂H₅OH</th>
<th>C₂H₄</th>
<th>MeOH</th>
<th>Me₂O</th>
<th>HCOOH</th>
<th>C₂H₄</th>
<th>CO₂</th>
<th>C₃H₆ Selectivities / %</th>
<th>C₂H₂ Selectivities / %</th>
<th>C₃H₈ Selectivities / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>2.5</td>
<td>0.41</td>
<td>0.11</td>
<td>6.0</td>
<td>30.2</td>
<td>8.2</td>
<td>0.6</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>51.7</td>
<td>0.9</td>
<td>33.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>2.5</td>
<td>0.59</td>
<td>0.07</td>
<td>13.4</td>
<td>34.1</td>
<td>13.7</td>
<td>1.0</td>
<td>1.6</td>
<td>6.2</td>
<td>0.0</td>
<td>27.1</td>
<td>2.4</td>
<td>33.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>2.5</td>
<td>0.76</td>
<td>0.04</td>
<td>19.0</td>
<td>19.0</td>
<td>44.4</td>
<td>3.2</td>
<td>4.0</td>
<td>1.6</td>
<td>4.0</td>
<td>0.9</td>
<td>2.7</td>
<td>18.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>280</td>
<td>2.5</td>
<td>4.08</td>
<td>0.06</td>
<td>23.2</td>
<td>10.5</td>
<td>47.6</td>
<td>7.0</td>
<td>4.1</td>
<td>1.7</td>
<td>2.3</td>
<td>0.6</td>
<td>2.0</td>
<td>31.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>0</td>
<td>n.a</td>
<td>0.01</td>
<td>4.9</td>
<td>34.6</td>
<td>14.8</td>
<td>14.8</td>
<td>0.0</td>
<td>5.0</td>
<td>4.9</td>
<td>10.6</td>
<td>10.0</td>
<td>14.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>23</td>
<td>0.4</td>
<td>0.07</td>
<td>0.08</td>
<td>9.3</td>
<td>22.8</td>
<td>5.1</td>
<td>4.2</td>
<td>1.3</td>
<td>1.3</td>
<td>0.4</td>
<td>53.4</td>
<td>2.2</td>
<td>6.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td>1.25</td>
<td>0.20</td>
<td>0.10</td>
<td>7.7</td>
<td>25.7</td>
<td>4.9</td>
<td>2.8</td>
<td>0.7</td>
<td>1.4</td>
<td>0.4</td>
<td>55.0</td>
<td>1.5</td>
<td>14.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>5.0</td>
<td>0.82</td>
<td>0.04</td>
<td>18.6</td>
<td>38.7</td>
<td>6.2</td>
<td>13.9</td>
<td>2.3</td>
<td>1.6</td>
<td>0.8</td>
<td>14.3</td>
<td>3.6</td>
<td>33.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>0</td>
<td>n.a</td>
<td>0.06</td>
<td>17.7</td>
<td>24.0</td>
<td>36.7</td>
<td>10.1</td>
<td>2.5</td>
<td>2.5</td>
<td>2.3</td>
<td>1.3</td>
<td>25.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>0.4</td>
<td>0.09</td>
<td>0.20</td>
<td>14.6</td>
<td>24.7</td>
<td>7.7</td>
<td>0.4</td>
<td>0.7</td>
<td>3.7</td>
<td>2.4</td>
<td>45.0</td>
<td>0.7</td>
<td>17.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>1.25</td>
<td>0.29</td>
<td>0.23</td>
<td>14.1</td>
<td>27.5</td>
<td>7.9</td>
<td>2.1</td>
<td>0.3</td>
<td>3.2</td>
<td>2.8</td>
<td>41.6</td>
<td>0.5</td>
<td>14.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>5.0</td>
<td>1.18</td>
<td>0.06</td>
<td>20.4</td>
<td>24.0</td>
<td>12.0</td>
<td>9.6</td>
<td>3.0</td>
<td>1.6</td>
<td>2.6</td>
<td>22.6</td>
<td>2.9</td>
<td>33.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Conversion based on carbon. b 2.5% Cu/Silicalite-1 prepared by CVI. Test conditions; 27 mg catalyst, 0.5 h, P(C₂H₆) = 20 bar, 50 °C, 1500 rpm, [H₂O₂] = 0.5 M (5000 µmol).

To further study the structure-function relationships in these Cu-MFI catalysts, propane was observed in the GC-FID (sensitive to < 1 ppm), with selectivity favouring IPA (38.4 % selectivity) and the rate of H₂O₂ conversion was an order of magnitude greater. As with ethane, the catalytic oxidation of propane under these reaction conditions was previously shown to be at least partially dependent upon oxygen-based radicals [32, 72].

The catalysis and characterisation studies reported herein show strong trends between Cu/ZSM-5 catalysed oxidative upgrading of C₂-C₄ alkanes in water using hydrogen peroxide as oxidant. It is clear that Cu speciation plays a key role in achieving high primary product selectivity, be it to methanol, ethene or propene. Whilst H-ZSM-5 (SiO₂/Al₂O₃ = 30) shows the highest intrinsic activity of proton form zeolites, following modification with Cu, ZSM-5 (23) shows appreciable rates of alkane oxidation and, crucially, high reaction selectivity. The production of ethene/propene in this way using H₂O₂ is academically interesting, and provides mechanistic insight into the performance of these catalysts under methane oxidation conditions. The performance of the copper catalysts exceeds that of previous reports [26, 30], crucially due to use of catalysts with a Cu/Al ratio of < 0.5. Spectroscopic and temperature programmed studies show that this favours formation of Cu-I sites and this correlates with enhanced catalyst productivity (relative to the parent proton-form of the zeolite). Over exchanging ZSM-5 (Cu/Al > 0.5) leads to population of spectrscopically distinct Cu-II sites. This shift from a majority of Cu-I to Cu-II species is associated with: lower rates of alkane oxidation, lower primary product selectivity and increased rates of H₂O₂ conversion. This relationship between Cu/Al (at fixed 2.5 wt. % Cu) and reaction productivity for the catalytic oxidation of short chain alkanes is illustrated in Figure 10. It is therefore clear that Cu-I sites have bi-functionality:

Table 3 Catalytic data for propane oxidation catalysed by 2.5% Cu MFI zeolites of varied SiO₂/Al₂O₃ ratios.

<table>
<thead>
<tr>
<th>Entry</th>
<th>SiO₂/Al₂O₃</th>
<th>wt% Cu</th>
<th>Cu/Al ratio</th>
<th>CH₃COOH</th>
<th>EtOH</th>
<th>C₂H₆</th>
<th>C₂H₅OH</th>
<th>C₂H₄</th>
<th>MeOH</th>
<th>C₂H₂ Selectivities / %</th>
<th>C₂H₂ Selectivities / %</th>
<th>C₃H₈ Selectivities / %</th>
<th>C₃H₆ Selectivities / %</th>
<th>C₃H₇ Selectivities / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>0.39</td>
<td></td>
<td>8.4</td>
<td>1.1</td>
<td>0.0</td>
<td>5.6</td>
<td>1.7</td>
<td>1.0</td>
<td>1.1</td>
<td>1.1</td>
<td>0.4</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>0.26</td>
<td></td>
<td>9.3</td>
<td>1.0</td>
<td>0.0</td>
<td>12.6</td>
<td>2.1</td>
<td>2.5</td>
<td>1.6</td>
<td>1.2</td>
<td>3.2</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>0.06</td>
<td></td>
<td>18.6</td>
<td>6.7</td>
<td>9.0</td>
<td>33.3</td>
<td>0.3</td>
<td>1.9</td>
<td>0.0</td>
<td>9.4</td>
<td>5.8</td>
<td>8.6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>280</td>
<td>0.06</td>
<td></td>
<td>25.3</td>
<td>11.8</td>
<td>7.7</td>
<td>17.7</td>
<td>2.3</td>
<td>0.6</td>
<td>4.4</td>
<td>5.4</td>
<td>5.3</td>
<td>14.8</td>
<td></td>
</tr>
</tbody>
</table>

Test conditions; 27 mg catalyst, 0.5 h, P(C₂H₆) = 4 bar, P(Total/ C₂H₆/ Helium) = 20 bar, 50 °C, 1500 rpm, [H₂O₂] = 0.5 M (5000 µmol). * Selectivity (CO + CH₄). ** Catalyst – 2.5% Cu/Silicalite-1 (CVI).
suppressing over-oxidation of methanol to formic acid and increasing catalyst productivity. Once population of Cu-II sites becomes preferable, over Cu-I, further oxidation of methanol is still suppressed, though these sites are associated with decreased rates of methane oxidation coupled with increased \(\text{H}_2\text{O}_2 \) conversion rates.

Conclusions

Cu/ZSM-5 catalysts are active for liquid phase oxidative upgrading of short chain alkanes, with \(\text{H}_2\text{O}_2 \) under mild conditions. In the present work, we have shown that both the activity and selectivity of these catalysts correlates strongly with the Cu/Al ratio, and thereby the degree of ion exchange. Catalytic performance correlates strongly with the speciation of exchanged Cu- species as determined by characterisation studies. Optimal conversion and primary product selectivity (that is; methanol, ethene and propene for C\(_1\), C\(_2\) and C\(_3\) alkanes respectively) were observed when the speciation of Cu is dominated by so-called Cu-I sites. These are favoured when the zeolite catalyst’s Cu/Al ratio is below the level of total exchange (Cu/Al < 0.5). Once over-exchanged, catalyst performance and selectivity decreases, and this coincides with formation of spectroscopically distinct, Cu-II sites. This study provides insight as to the nature of the Cu sites within ZSM-5 that afford the high methanol selectivities, which have previously been reported and goes further, identifying Cu sites that are capable of effecting increased reaction yields. Indeed, 1.25 wt. % Cu/ZSM-5 (23) yielded 49.86 μmol MeOH in 0.5 h. This equated to 96.1 % selectivity towards methanol and a methane converted mol\(\text{Cu} \)^\(-1\)h\(^{-1}\). Furthermore, accounting for the intrinsic activity of the ZSM-5 (23) support, this catalyst showed an apparent TOF (based on Cu) of 16.9 mol \(\text{Cu} \)/h. Once over-exchanged, Cu-II sites have previously been reported and goes further, identifying Cu sites that are capable of effecting increased reaction yields.

Acknowledgements

We thank Cardiff University for financial support. We would like to thank the Cardiff Electron Microscopy Facility for the HRTEM analysis.

Experimental

Catalyst Preparation

Supported metal catalysts were prepared by chemical vapour impregnation (CVI). This methodology has previously been discussed in detail [27, 73].

NH\(_4\)ZSM-5 (Zeolyst) was calcined in a flow of air (550 °C, 20 °C min\(^{-1}\), 3h) to yield H-ZSM-5. The proton form zeolite was then either: activated in static air prior to testing (550 °C, 20 °C min\(^{-1}\), 3h), or impregnated with Cu via chemical vapour impregnation. The procedure for preparation of 2.5 wt% Cu/ZSM-5 through CVI is as follows; a known mass of H-ZSM-5 (typically 3.5 g) was dried at 150 °C for 2 h under continuous vacuum. Once dried, the desired mass of H-ZSM-5 (1.95 g) was added to a Schlenk flask and Cu(acac)\(_2\) (Sigma Aldrich, 99.9% purity, 0.206 g, 0.787 mmol) added. Following physical mixing of the metal precursor and zeolite, the dry mixture was heated to 140 °C under continuous vacuum (ca. 10\(^{-3}\) mbar) for 1 h. The sample was then allowed to cool to ambient temperature and calcined (550 °C, 20 °C min\(^{-1}\), 3h) in static air.

Alkane oxidation

Catalyst performance assessed in a 50 mL Teflon lined Parr autoclave reactor. A procedure for ethane oxidation reactions is described here. The reactor was charged with H\(_2\)O\(_2\) (0.5 M, 5000 μmol) and catalyst added (27 mg). Once sealed, the reactor was purged 3 times with the reactant gas (20 bar) to remove residual gasses. The reactor was then charged with one of; methane (30 bar, CH\(_4\)), Air Products 99.9%, 0.03 mol CH\(_4\)), ethane (20 bar CuH\(_2\)), Air Products 99.9%, 0.02 mol CuH\(_2\)) or propane (P(CuH\(_2\)) = 4 bar, P He = 16 bar, BOC, 0.004 mol). The reactor was then heated to the reaction temperature (50 °C) under vigorous stirring (1500 rpm). Once the set point temperature was reached, the reaction was carried out for the desired time. The autoclave was then cooled to ca. 10 °C to minimise loss of volatile products. Post reaction, unreacted hydrogen peroxide was quantified through titration with acidified Ce (SO\(_4\)) (8 x 10\(^{-3}\) mol dm\(^{-3}\)) of known concentration, with a Ferroin indicator. Aqueous products were quantified with solvent suppressed ‘\(\text{H}_2\text{NMR} \) at ambient temperature on a Bruker Ultrashield 500 MHz spectrometer using a TMS/ DCO\(_2\) internal standard. Gaseous products were quantified using a Varian 450- GC fitted with a CP-Sil 5CB capillary column (50m length, 0.32mm diameter, carrier gas = He), a methaniser unit and both FID and TCD detectors.

For EPR radical trapping studies, the reactor was charged with methane as previously described, with the addition of 5,5-Dimethyl-1-pyrroline N-oxide (0.05 g, Sigma Aldrich, > 97%). Reactions were carried out for 5 min at 50 °C, after which time the reactor was depressurised, opened and solution filtered prior to analysis. EPR spectra were collected at 298 K in a high sensitivity cavity (Bruker ER 4119 HS) Bruker EMX spectrometer, field modulation 100 kHz, microwave power 1 mW.

Catalyst Characterisation

H\(_2\)-TPR was carried out using a TPDRO 1100 series analyser. Samples (equivalent to 0.03 mmol Cu) were pre-treated for 1 h at 130 °C (20 °C min\(^{-1}\)) in a flow of Argon (20 ml min\(^{-1}\)). Following this the gas flow was changed to 10% H\(_2\) / Argon and the temperature was ramped to 800 °C (10 °C min\(^{-1}\)). Hydrogen uptake was monitored using a TCD.

NH\(_3\)-TPD was carried out using a CHEMBET TPR/TPD chemisorption analyser, Quantachrome Industries fitted with a TCD. 50 mg of sample was pre-treated for 1 h at 130 °C (15 °C min\(^{-1}\)) in a flow of helium (80 ml min\(^{-1}\)). The sample was then cooled to ambient temperature and ammonia flowed through for 20 min to ensure saturation. The system was then heated 1 h at 100 °C (15 °C min\(^{-1}\)) under a flow of helium (80 ml min\(^{-1}\)) to remove physisorbed ammonia. Subsequently, chemisorbed ammonia was desorbed by heating to 900 °C (15 °C min\(^{-1}\)) in a flow of helium (80 ml min\(^{-1}\)) during which period desorbed ammonia was monitored using a TCD, current 180 mV, attenuation 1.

TEM images were collected on a JEM, JEM-2100 transmission electron microscope fitted with a LaB\(_6\) filament. Samples were prepared by dispersing powdered catalyst in high purity ethanol, before adding a drop
of the suspension to porous carbon film supported by a meshed copper TEM grid.

IR spectra were collected on a Bruker Tensor 27 spectrometer fitted with a liquid N₂ - cooled MCT detector. Samples were housed in a Praying Mantis high temperature diffuse reflection environmental reaction chamber (HV-C-DRP-4) fitted with calcium fluoride windows. For characterisation of the hydroxyl region, samples were pre-treated prior to acquisition by heating at 200 °C (10 °C min⁻¹) in a flow of N₂ (10 ml min⁻¹) for 1 h. Scans were collected across the range 4000 cm⁻¹ to 1500 cm⁻¹, 4 cm⁻¹ resolution, 64 scans against a KBr background. For NO adsorption studies, samples were degassed (150 °C, 6 h) prior to analysis. Analyses were carried out at room temperature. NO (5000 ppm in N₂, 1 bar) was then flowed over the sample at ambient conditions, with spectra collected at 1 min intervals over a 20 min period.

N₂ isotherms were collected on a Micromeritics 3Flex. Samples (ca. 0.020 g) were degassed (150 °C, 6 h) prior to analysis. Analyses were carried out at 77 K with P₀ measured continuously. Free space was measured post- analysis with He. Pore size analysis was carried out using Micromeritics 3Flex software, N₂-Cylindrical Pores- Oxide Surface Model.

Keywords: Selective Oxidation • Methane • Ethane • Propane • Cu/ZSM-5

Coppers vs Alkanes: Partial oxidation of short chain alkanes is a key challenge for the chemical sciences. Recently, a number of articles have reported C$_1$-C$_3$ alkane activation over Cu/ZSM-5 catalysts with H$_2$O$_2$. In this article, the specific Cu-sites which afford high product selectivity are identified through correlation of catalytic performance with the distribution of Cu-sites, as determined by spectroscopic and temperature-programmed analyses.