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ARTICLE INFO ABSTRACT

Keywords: Through the removal of parasites, dead skin and mucus from the bodies of visiting reef fish (clients), cleaner fish
Caribbean have a significant ecosystem function in the ecology of coral reefs. Cleaners gain nutrition from these interac-
Cleaner wrasse tions and through offering a ‘service’ are afforded protection from predators. Given these benefits, it is unclear
Coral reef why more fish do not engage in cleaning, and why part-time cleaning strategies exist. On coral reefs, dedicated
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Facultative species clean throughout their life, whereas some species are facultative, employing opportunistic and/or

temporary cleaning strategies. Here, we investigate the cleaning behaviour of a facultative species to assess the
relative importance of this interaction to the cleaner. Using a combination of focal and event sampling from a
coral reef in Tobago, we show that cleaning is not an essential food source for facultative juvenile blue-headed
wrasse (Thalassoma bifasciatum), as cleaning rate was unrelated to their foraging rate on the substrate. These
wrasse displayed two cleaning strategies: stationary versus wandering cleaning, with cleaning frequency being
highest for stationary cleaners. A specific cleaning location facilitated increased cleaning frequency, and wrasse
cleaning rate decreased as cleaner or client abundance increased. We also compared juvenile blue-headed wrasse
cleaning behaviour to a resident dedicated cleaner, the sharknose goby (Elacatinus evelynae), and showed that, in
comparison, juvenile wrasse clean a narrower client range, predominately cleaning three species of gregarious
free-ranging surgeonfish (Acanthurus spp.). The wrasse, however, frequently approached these clients without
cleaning, which suggests that their selective cleaning strategy may be driven by the acquisition of a particular
parasitic food source. Juvenile blue-headed wrasse are generalist foragers, and may thus be limited in their
cleaning behaviour by their nutritional requirements, the availability of a suitable cleaning site, and fish density,
which ultimately means that they do not adopt more dedicated cleaning roles within the reef community.

Thalassoma bifasciatum

1. Introduction world (Reaka-Kudla, 1997) and multiple feeding strategies have de-

veloped to partition food resources. Most coral reef species are gen-

In abundant and species rich environments where competition for
food is high, different feeding strategies have developed to spatio-
temporally partition the available resources between species (Sale,
1977). Generalist feeders are characterised by a diverse diet or consume
a broad dietary niche whilst specialists show a preference for specific
food types or have a narrower dietary range (Bridcut and Giller, 1995;
Amundsen et al., 1996). As predicted by foraging theory, specialist
feeding strategies develop when there are benefits derived from feeding
on specific food types (Stephens and Krebs, 1986). However, given the
tangible benefits, other species must be limited in their feeding strate-
gies or else they too would be expected to adopt these beneficial spe-
cialist strategies.

The abundance and diversity of species supported within coral reefs
environments makes them one of the most complex habitats in the
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eralist feeders (Sale, 1977; Froese and Pauly, 2017) but cleaning, a
symbiotic interaction ubiquitously observed in coral reef communities
(White et al., 2007), represents a specialist feeding strategy where a
cleaner removes ectoparasites and other material from the body of a
heterospecific, a client (Feder, 1966). Dedicated cleaner species (for-
merly known as obligate cleaners; Vaughan et al., 2016) specialise in
cleaning behaviour gaining all their nutrition from client derived ma-
terial (Poulin and Grutter 1996), and since these cleaners interact with
a large diversity of clients on a daily basis, including potential pre-
dators, dedicated cleaners are also afforded protection from predators
(Potts, 1973a; Darcy et al., 1974; Losey, 1979; Coté, 2000). Within a
reef environment, several fish species may act as cleaners (Coté, 2000),
adopting differing cleaning strategies. Facultative cleaners are not so-
lely dependent on cleaning for nutrition (Itzkowitz, 1979; Vaughan
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etal., 2016), and many such species only clean when juvenile. Although
a greater diversity of facultative as opposed to dedicated cleaners is
known (Co6té, 2000), research predominantly focuses on the latter (Coté
and Soares, 2011): namely the Caribbean cleaning gobies, Elacatinus
spp. (e.g. Whiteman and Coté, 2002; Coté and Molloy, 2003; Soares
et al., 2008a,b) and the bluestreak cleaner wrasse, Labroides dimidiatus
(e.g. Grutter, 1995a, 1999; Gingins and Bshary, 2014; Wilson et al.,
2014). The extent to which a facultative cleaner gleans food from cli-
ents and the wider environment, varies spatio-temporally and between
species (Vaughan et al., 2016). Some more specialised facultative spe-
cies (e.g. Pomacanthus paru and Thalassoma noronhanum) are considered
just as central within the reef community as their dedicated counter-
parts (Francini-Filho and Sazima, 2008; Sazima et al., 2010; Quimbayo
et al., 2017) as they clean just as often, interacting with as many client
species. Other facultative species exhibit more opportunistic and/or
temporary cleaning behaviours, and are considered less specialised in
cleaning (Vaughan et al., 2016). Investigating why these facultative
cleaners do not adopt more dedicated cleaning strategies, given the
benefits of cleaning (nutritional, Poulin and Grutter, 1996; and pre-
dator protection, Potts, 1973a; Darcy et al., 1974; Losey, 1979; Coté,
2000), will further our knowledge of why part-time cleaning strategies
exist.

Blue-headed wrasse (Thalassoma bifasciatum) are a prominent
member of the Caribbean reef fauna (Feddern, 1965) and only clean
when juvenile (Feddern, 1965; Cheney and Coté, 2003). These fa-
cultative cleaners occupy the same reefs as the dedicated sharknose
goby cleaners (Elacatinus evelynae). Both species are considered prin-
ciple cleaners in the Caribbean (Michael, 2002; Cheney and Co6té, 2003)
but the frequency of observed juvenile blue-headed wrasse cleaning is
variable across reefs (Feddern, 1965; Darcy et al., 1974; Itzkowitz,
1979; Johnson and Ruben, 1988; Walsh et al., 2017) and it has been
suggested that these cleaners play a minor role on the reef despite being
highly abundant (Johnson and Ruben, 1988). Although ectoparasites
have been recovered from the stomachs of these wrasse cleaners
(Randall, 1967), their reliance on cleaning as a food source has not been
quantified. Itzkowitz (1979) described different cleaning strategies ex-
hibited by juvenile blue-headed wrasse on the same reef in Jamaica;
stationary versus wandering cleaners, but the prevalence of these
strategies is also unknown. In comparison to other facultative cleaners
(e.g. Thalassoma noronhanum; see Francini-Filho et al., 2000; Quimbayo
et al.,, 2017), these wrasse are considered less specialised in their
cleaning, adopting a more opportunsitic approach (Itzkowitz, 1979;
Johnson and Ruben, 1988).

Here, we investigated the relative importance of cleaning to juvenile
blue-headed wrasse to further knowledge on why part-time cleaning
strategies exist. Using the behaviour of the resident dedicated cleaner
species (sharknose goby) occupying the same reef in Tobago as a
comparison, we investigated the cleaning strategies of the facultative
wrasse through behavioural observations. To investigate why these
wrasse cleaners do not adopt more specialised cleaning roles within the
community, we must assess what limits their cleaning. Space is the most
competitive resource on coral reefs (Sale, 1977) and although cleaning
represents an opportunistic foraging strategy for juvenile blue-headed
wrasse, the prevalence of cleaning strategies of a species can vary
spatially (Vaughan et al., 2016), with cleaning stations being an im-
portant requisite for other cleaner species (Whiteman and Coté, 2002;
Huebner and Chadwick,2012). Thus, we hypothesised that cleaning by
these wrasse will also vary spatially with the frequency of cleaning
differing between wandering versus stationary cleaners. The prevalence
of feeding strategies within a population and between species is also
regulated by density dependent competition, as more individuals
adopting a strategy, and competing for resources, will reduce the
benefits gained by each individual (Krebs, 1979; Krebs et al., 1993).
Thus it was hypothesised that the prevalence of juvenile blue-headed
wrasse cleaning would also be limited by the number of wrasse cleaners
(increased competition) but would be positively influenced by an
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increase in the number of clients, reducing competition. The im-
portance of cleaning to a species can be assessed by investigating the
cleaners wider diet (Whiteman and Coté, 2002). Juvenile blue-headed
wrasse predominantly feed on benthic organisms (Feddern, 1965) and
so it is hypothesised that if cleaning does provide a compulsory com-
ponent of their diet, the foraging rate of individual wrasse on the
substrate would be negatively influenced by their respective cleaning
rates. The material gleaned from different clients during cleaning in-
teractions, also provides differing nutritional content (Eckes et al.,
2015) and thus like other cleaners (Elacatinus spp. see Soares et al.,
2007; Francini-Filho and Sazima, 2008) it is hypothesised that juvenile
blue-headed wrasse will clean certain client species more frequently
than others to meet their nutritional requirements.

2. Methods
2.1. Study site and species

Observations on juvenile blue-headed wrasse (Thalassoma bi-
fasciatum) and sharknose goby (Elacatinus evelynae) cleaning behaviour
were collected from Pirates Bay Reef in Charlotteville, Man-O-War Bay,
Tobago (11° 19’ 00” N, 60° 33’ 00” W) in January to February 2017 by
daily snorkelling between the hours of 08:00 and 17:30. The shallow
reef area sampled (30 m X 50 m, reef top depth 0.5-2 m) is on the east
side of the bay about 100 m offshore. The fringing reef is mainly
composed of rocky sandy substrate, the encrusting zooxanthid (Palythoa
caribaeorum) and living hard coral (Siderastrea spp. and Montastraea
spp.; Mallela et al., 2010), providing suitable habitats for sharknose
goby cleaning stations (Soares et al., 2008a). These small dedicated
cleaning gobies (max 4.5 cm fork length), the predominant Caribbean
cleaner fish, are characterised by conspicuous black and blue lateral
stripes on the body (Cheney and Coté, 2003). They occupy the same
reefs as the more facultative juvenile blue-headed wrasse cleaners (max
15cm fork length). These cleaners are characterised by their yellow
body colouration and black spot on the dorsal fin (Feddern, 1965). All
work was approved by Cardiff University’s animal ethics committee
linked to Home Office licence PPL 302876, and supported by the To-
bago Ministry of Food Production Fisheries Division.

2.2. Cleaner-client interactions

To compare the abundance of juvenile blue-headed wrasse and
sharknose gobies on the reef, 30 m X 2m belt transects (n = 12) were
laid along the reef, and the number of each cleaner species were
counted along each transect. To quantify wrasse cleaning behaviour,
focal individuals (n = 94) were observed for up to 10 min or until focal
fish were lost. Individual wrasse could not be identified due to their
uniform body patterning and free swimming behaviour across the reef,
but it is unlikely that the same individual was observed multiple times
due to their high abundance on the reef; our unpublished fish abun-
dance surveys conducted over the last four years at Pirates Bay Reef
have consistently recorded over 150 individuals of free-ranging juvenile
blue-headed wrasse per 50 min survey. To compare cleaning beha-
viours, we observed at least ten individual sharknose gobies occupying
ten marked cleaning stations (n = 10.7 X 10 min observations per
station = 2.04; mean * S.E.). The number of gobies occupying these
stations ranged from one to seven but only one focal fish was observed
at a time, and it is unknown whether the same individual goby was
observed multiple times. For both cleaner species, the frequency of
cleaning events per unit time was recorded. A cleaning event began
when a cleaner and single client physically interacted, ending when
either the cleaner or client terminated the interaction (Floeter et al.,
2007). In contrast to the sharknose goby cleaners (Coté, 2000), juvenile
blue-headed wrasse reportedly do not rely solely on gleaned material as
a food source (Feddern, 1965) and therefore the non-cleaning substrate
foraging rate of juvenile wrasse was also recorded during these 10 min
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focal observations.

As cleaning was rarely observed during juvenile blue-headed wrasse
focal observations, an event sampling method, which is more likely to
capture rarer behaviours (Altmann, 1974), was also used to quantify the
frequency of wrasse cleaning behaviour across the reef. The occurrence
of cleaning events by juvenile wrasse was recorded during 10 min
random swims over the reef study area (n = 49). When a cleaning event
was observed we recorded the species of the client. At one site on the
reef, which was characterised by large flat boulders covered with the
encrusting Palythoa caribaeorum zooxanthid, we consistently and fre-
quently observed juvenile blue-headed wrasse cleaning interactions. To
supplement snorkelling observations, two underwater video cameras
(QUMOX SJ4000 Action Cams) were used to document wrasse cleaning
behaviour at this station over 10 days. Event and focal surveys did not
include this cleaning station so that a comparison could be made be-
tween juvenile blue-headed wrasse wandering and stationary cleaners
(Itzkowitz, 1979).

2.3. Cleaner-client interactions: video analysis

Following a 30s period after the observer had placed a camera at
the cleaning station, videos (n = 10, =39 min per video) were analysed
at 1 min intervals for 10s (n = 359 observations). We recorded the
number and species of clients posing (stationary postures where an
individual presents their body to cleaners; Feder, 1966; Losey, 1971)
and the number of cleaning events (visible peck on the client’s body) by
each juvenile blue-headed wrasse observed in the video. Due to the
static nature of the camera, not all cleaning events could be observed,
so we recorded when a cleaner associated with a client but subse-
quently went out of view. The percentage of view blocked by the reef
substrate was recorded to account for differences in video position as a
result of rugose habitat. Cleaners were also recorded associating with
and inspecting clients without cleaning.

2.4. Data analysis

Data analysis was conducted using the statistical software R, version
3.2.2 (R Core Team, 2015). All Generalised Linear Mixed Model
(GLMMs) were run using the glmer call in the lme4 package (Bates
et al., 2015). All models were refined by stepwise deletion with the
removal of non-significant terms (Crawley, 2007). Fit was assessed
using residual plots as recommended by Pinheiro and Bates (2000) with
all continuous variables standardised to facilitate model convergence.

The total time for each focal observation accounted for the amount
of time a cleaner was out of view, and thus varied across observations.
A binomial GLMM with a probit link function compared the difference
in cleaning frequency, whilst accounting for observation time, between
juvenile blue-headed wrasse and sharknose goby cleaners. Due to dif-
ferences in data collection method for the video observations, this
model only considered cleaning frequency across the reef. This data was
collected using two methods; focal observations quantified sharknose
goby and free swimming juvenile blue-headed wrasse cleaning fre-
quency, whilst event sampling further quantified blue-headed wrasse
cleaning. Thus observation method (focal and event) was included as a
random factor to control for these differences in data collection method.
This model accounted for repeated observations at the same sharknose
goby cleaning station by including station number as a random factor.
Cleaner species, time into study period and minutes into day were in-
cluded in the model, with relevant two-way interactions, as fixed ef-
fects. To compare the diversity and evenness of clients, Shannon’s di-
versity indices were calculated based on average cleaning rates across
sharknose goby and juvenile blue-headed wrasse event and focal ob-
servations using the ‘vegan' package (Oksanen et al., 2013). A Wilcoxon
matched pairs test compared cleaner species abundance along each
transect.

Client species cleaned were assigned maximum fork lengths using
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Humann and DeLoach (2014) and recorded as either solitary or gre-
garious (associate with > 3 individuals) and sedentary or free ranging,
using FishBase (Froese and Pauly, 2017). To account for overdispersion,
a quasibinomial Generalised Linear Model (GLM) with a logit link
function determined whether the proportion of cleaning events, ob-
served within each cleaner species, differed towards assigned functional
traits of their clients. The two different data collection methods (focal
and event) were combined, and the model included the fixed effects:
cleaner species and the interactions with client: social behaviour, range
and maximum size. Correcting for overdispersion, another quasibi-
nomal GLM with a logit link function determined whether the cleaning
rate (accounting for observation length), day into study and minutes
into day influenced individual wrasse substrate foraging counts.

For video observations, a Poisson GLMM with a log link function
determined whether the number of clients and wrasse cleaners influ-
enced the frequency of observed cleaning interactions. Time into the
day (in minutes), time into study and amount of view blocked by
substrate were also included in the model as fixed factors. As repeat
observations were made within the same video, video number was in-
cluded as a random effect. A similar model with the same fixed and
random terms determined whether juvenile cleaner wrasse and client
abundance influenced the number of cleans per client per cleaner. A
Gaussian family was specified with an identity link function.
Preliminary analyses found the amount of observation view blocked by
substrate did not influence observed results and so is not further in-
cluded here.

3. Results
3.1. Cleaning frequency

Despite being more abundant on the reef than sharknose goby
cleaners (median: 6.5 juvenile blue-headed wrasse; 3 sharknose gobies/
30m, Z = 60, N = 12, p = 0.018), significantly more cleaning events
were observed by sharknose gobies (0.11 * 0.01 cleans per minute;
mean * S.E.), compared to juvenile wrasse observed across the reef
(0.02 + 0.004 cleans per minute; B = 0.60, y3 = 20.06, p < 0.001).
For both cleaner species, this effect was consistent across the day
(%2 = 0.377, p = 0.539) and study period (x = 0.12, p = 0.729). At
one location on the reef, however, juvenile blue-headed wrasse cleaning
rate (1.57 % 0.37 cleaning events per minute) was over 14 x greater
than all other rates observed for both cleaners across the reef (shar-
knose goby: 0.11 + 0.01 cleaning events per minute, juvenile blue-
headed wrasse: 0.02 = 0.004 cleaning events per minute). At this
station, wrasse cleaners also inspected clients but did not clean them
within the observation period (1.42 + 0.30 inspections per minute).

3.2. Cleaning station

In each 10s period of video analysed, 4.18 * 0.18 clients
(mean *+ S.E., maximum observed = 19 individuals) posed for
1.90 = 0.06 juvenile blue-headed wrasse cleaners (maximum ob-
served = 5 individuals). Juvenile wrasse only cleaned three species
from the same family (Acanthurus spp.; Fig. 1) even though 11 client
species from seven families posed for the cleaners at this location. When
juvenile wrasse cleaners were absent from their cleaning station, posing
behaviour (n = 87) was still observed by six species (predominantly
Acanthurus spp.) across all video observations.

Cleaning frequency significantly increased with the number of ju-
venile blue-headed wrasse cleaners (f = 0.49, x% =19.35,p < 0.001)
and clients (B = 0.29, x? = 7.14, p = 0.008) present at the juvenile
blue-headed wrasse cleaning station. This effect was not influenced by
time of day (% = 0.81, p = 0.369) or time into the study (x3 = 3.22,
p = 0.727). However, an increased number of clients (x? = 12.57,
p < 0.001) or cleaners (x% = 5.73, p = 0.017) at the wrasse cleaning
location (Fig. 2) resulted in a significant decrease (albeit low R? values;
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Fig. 1. Network showing clients cleaned by sharknose goby and ju-
venile blue-headed wrasse cleaners (either swimming free on the reef
or at a specific locality). Sharknose gobies were never observed
cleaning in open water. Edge thickness represents the cleaning rate
per minute for each cleaner and client species. Clients are grouped
based on family.
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Fig. 2) in cleans per client for each juvenile cleaner present, with the
decline more marked when the number of clients increased
(B = —0.03) compared to the number of cleaners (f = —0.02). There
was no interaction effect between the number of juvenile wrasse clea-
ners and clients at the station (7 = 1.07, p = 0.302). The cleaning rate
of each juvenile blue-headed wrasse was not influenced by time of day
(33 =0.11, p = 0.746) but did decrease across the study period
(B = —0.03, x3 = 5.31, p = 0.021).

3.3. Substrate foraging

Those juvenile blue-headed wrasse observed cleaning, also foraged
on the substrate within the same focal observation period. Cleaning rate
was not significantly correlated with the substrate foraging rate of these
focal individuals (x% = 0.004, p = 0.95). Juvenile wrasse foraged on
the substrate at the same rate across the day (3 = 1.36, p = 0.244) and

study period (x% = 3.27, p = 0.071).
3.4. Clients

Across the reef, sharknose gobies cleaned a greater diversity of
clients at a higher evenness than juvenile blue-headed wrasse
(Shannon’s diversity = 2.40 cf. 2.03, evenness = 0.69 cf. 0.58, respec-
tively). Sharknose gobies cleaned 19 species from 11 families whilst
juvenile wrasse cleaned 11 species from five families, both cleaner
species overlapped in the species that they cleaned (Fig. 1). From
snorkelling observations across the reef, juvenile blue-headed wrasse
and sharknose gobies cleaned both gregarious and solitary clients
(Fig. 3a) in similar proportions (X% = 0.61, p = 0.44). The clients’
swimming range, however, did influence the proportion of cleaning
events between cleaner species (x% = 7.48, p = 0.006), with wrasse
only cleaning free-ranging clients, whilst sharknose gobies cleaned both

Fig. 2. Number of cleaning events (n = 74) per client per juvenile
blue-headed wrasse, showing a negative relationship with the number
of clients and cleaners present.
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Fig. 3. Proportion of juvenile blue-headed wrasse (JBHW) and shar-
knose goby (SN) total cleaning events elicited by a) gregarious vs
solitary clients with median and inter-quartile ranges (proportion
values are arcsine square root transformed) b) free ranging vs se-
dentary clients with median and inter-quartile ranges (proportion
values are arcsine square root transformed) and c) clients of differing
max body size on Pirates Bay Reef, Tobago. D) Size range of clients
cleaned by both cleaner species, with median and inter-quartile
ranges.
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free ranging and sedentary clients, but a higher proportion of sedentary
clients (Fig. 3b). For both cleaner species, the maximum body size of
the client did not influence the proportion of cleaning events received
(x% = 0.73, p = 0.393; Fig. 3c). However, juvenile wrasse cleaned cli-
ents at the upper end of the sharknose goby client’s body size range
(Fig. 3d). From video observations of the cleaning station, juvenile
blue-headed wrasse only cleaned three gregarious free-ranging herbi-
vorous species (Fig. 1) at the lower end of their client size range
(30-38 cm; Fig. 3c), despite 11 species posing.

4. Discussion

Overall, juvenile blue-headed wrasse cleaned less frequently than
sharknose goby cleaners and foraged predominantly on the substrate
across the reef. A specific cleaning station facilitated an increased
cleaning frequency by these wrasse, where just three larger bodied free
ranging client species were cleaned despite posing by a total of 11
species. At this juvenile wrasse station, total cleaning frequency in-
creased with the number of cleaners or clients present, but individual
cleaning rate decreased as the number of other fish increased.

We recorded a dual cleaning strategy for juvenile blue-headed
wrasse (confirming Itzkowitz, 1979); cleaning by wandering in-
dividuals across the reef and cleaning by individuals or groups at a
specific location. We quantified, for the first time, the frequency of
these two different cleaning strategies. Wrasse cleaning behaviour
varied spatially, with a high frequency of cleaning observed at the
single cleaning station, whilst cleaning was rarely observed by wan-
dering individuals. In contrast to the numerous sharknose goby
cleaning stations on our study reef, the presence of only one juvenile
wrasse cleaning station limits our knowledge on how widespread the
different wrasse cleaning strategies are. However, on a similar sized
reef (50 m X 50 m, Booby Reef), again within the Man O’War Bay, we
also observed one juvenile blue-headed wrasse cleaning station. Anec-
dotal observations at this second cleaning station also showed an in-
creased cleaning frequency by wrasse in comparison to resident shar-
knose gobies, which in combination with observations by Itzkowitz
(1979), suggests that this cleaning strategy adopted by juvenile blue-
headed wrasse is more widespread. It is not clear why cleaning was so
frequent at the two locations on our study reefs; cleaning stations are
usually associated with topological features of the reef (e.g. Potts,
1973a), but there was no obvious unique characteristics of our observed
juvenile blue-headed wrasse stations. Itzkowitz (1979) suggested that
juvenile blue-headed wrasse clients do not learn specific locations for

SN

Cleaner

cleaning and act opportunistically, but we observed clients posing at
the wrasse stations consistently across years in the absence of cleaners,
suggesting that the presence of a cleaning station facilitates more fre-
quent access for these cleaners to their clients. Further observations of
juvenile blue-headed wrasse cleaning behaviour across multiple reefs
would quantify the prevalence of these cleaning stations and help assess
their functions. The number of juvenile cleaners at the cleaning station
varied (as also shown by Itzkowitz, 1979), but given that these cleaners
cannot be individually identified, it is unclear whether these were the
same or different individuals (Deady et al., 1995), representing in-
dividual plasticity or inter-individual differences in cleaning strategies.
Thus, a further study where marked individuals are observed, will help
to elucidate why and how these part-time cleaning strategies exist.

Previously, it has been suggested that facultative cleaners only use
cleaning stations already occupied by dedicated cleaners (Johnson and
Ruben, 1988; Whiteman and Coté, 2002). In the absence of dedicated
cleaners however, facultative cleaners occupy their own stations or
share stations with other facultative species (Quimbayo et al., 2012;
Walsh et al., 2017). In contrast to Johnson and Ruben (1988) and Walsh
et al. (2017), we only observed blue-headed wrasse simulatenously
associating with sharknose gobies and clients in 3% of observed
cleaning interactions at our juvenile blue-headed wrasse cleaning sta-
tion, and no such association was observed elsewhere on the reef.
Further, no other facultative cleaner species (e.g. Pomacanthus paru or
Bodianus rufus) were observed on the study reef. In aquaculture, where
facultative cleaners (e.g. ballan wrasse, Labrus bergylta; goldsinny,
Ctenolabrus rupestris and lumpfish, Cyclopterus lumpus) are deployed to
biologically control ectoparasites of farmed fish (e.g. sea lice, Le-
peophtheirus salmonis and Caligus spp. infecting farmed Atlantic salmon,
Salmo salar, see Rae, 2002), the simulatenous use of two cleaner species
is thought to enhance their cleaning efficiency (Powell et al., 2017).
However, from the current study it appears that other cleaner species
are not required to facilitate facultative cleaning.

To our knowledge, we provide the first in situ evidence that the local
abundance of fish on the reef influences the observed patterns of fa-
cultative cleaning for juvenile blue-headed wrasse. At the wrasse
cleaning station, the overall cleaning frequency increased with the
number of cleaners or clients, whilst the cleaning efficiency of juvenile
blue-headed wrasse (cleaning rate per fish) decreased when more fish
(both cleaners and clients) were present. Previous ex situ studies also
show a decreased cleaning efficiency when the number of facultative
cleaners increases (Groner et al., 2013; Skiftesvik et al., 2013; Imsland
et al., 2014a). A high density of fish may increase the chance of a
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predatory attack (Wittenberger and Hunt, 1985), or, these facultative
cleaners may experience a ‘confusion effect’, whereby the presence of a
large number of individuals may make it difficult for the cleaner to
assess the client availability (Krakauer, 1995; Ward et al., 2004). In
contrast, dedicated cleaners are afforded protection from predators
throughout their lifespan (Potts, 1973a; Darcy et al., 1974; Losey, 1979;
Coté, 2000) and interact with a large number of clients daily (e.g.
Elacatinus figaro engage in 110 cleaning interactions per day; Sazima
et al., 2000); the cleaning efficiency of dedicated captive barber gobies
(Elacatinus figaro) increased when the number of clients increased (de
Souza et al., 2014). For cleaners deployed in aquaculture, finding op-
timal cleaner client ratios (e.g. 1 cleaner: 20 farmed fish; Skiftesvik
et al., 2013) is key to increasing deployed cleaners ectoparasite removal
efficiency (Deady et al., 1995; Imsland et al., 2014a; Leclercq et al.,
2014; Imsland et al., 2015). However, consideration of the overall
numbers of both cleaners and clients in fish farm pens may enhance the
efficiency of cleaning rates.

Unlike other facultative wrasse cleaners (e.g. Thalassoma nor-
onhanum see Francini-Filho and Sazima, 2008; Quimbayo et al., 2017,
and Bodianus rufus see Johnson and Ruben, 1988), juvenile blue-headed
wrasse clean less frequently than resident dedicated goby cleaners
(Johnson and Ruben, 1988; current study). When not cleaning, juvenile
Thalassoma wrasse feed on benthic reef organisms (Feddern, 1965;
Narvaez et al., 2015) and in this study wrasse predominantly fed on the
benthos, and did not alter their substrate foraging rates when also
cleaning, suggesting that they are generalist foragers with cleaning only
supplementing their diet. For other facultative cleaners (e.g. juvenile
Pomacanthus paru; Sazima et al., 1999), gleaned material forms a pre-
dominant dietary source. Morphologically, juvenile wrasse may not be
as efficient at removing parasites compared to more frequent cleaners:
Elacatinus genie gobies are better at removing monogenean ectopar-
asites (Neobenedenia melleni) from clients than juvenile blue-headed
wrasse (Cowell et al., 1993). Additionally, for larger facultative cleaner
species, ectoparasite consumption alone does not lead to satiation
(Leclercq et al., 2014), and although similar sized dedicated cleaner
wrasse (e.g. Labroides dimidiatus) do rely on gleaned material (Coté,
2000), they can consume up to 1200 gnathiids daily (Grutter, 1996).
Thus, nutrition gained from gleaned material is unlikely to replace that
gained from substrate foraging for juvenile blue-headed wrasse; hence
their minor role as reef cleaners (Johnson and Ruben, 1988) and gen-
eralist feeding strategy. The lack of relationship between cleaning and
substrate foraging rate found in this study, provides further evidence
that these juvenile wrasse clean opportunistically (Itzkowitz, 1979;
Johnson and Ruben, 1988) as an extension of their existing benthic
foraging behaviour (Poulin and Grutter, 1996). Such opportunistic be-
haviour is commonly observed by deployed commercial facultative
cleaners which “ignore” clients to forage on detritus or commerical feed
(Deady et al., 1995; Imsland et al., 2014b; Leclercq et al., 2014).

Rather than relying on cleaning for nutrition, juvenile blue-headed
wrasse may instead use cleaning to gain a particular food type. Unlike
other more specialised facultative cleaners (e.g. Pomacanthus paru;
Sazima et al., 1999), and despite being more generalist foragers, these
wrasse cleaners were more selective in their cleaning than the resident
specialist sharknose gobies, which cleaned a larger client range and all
client types and body sizes (as in Darcy et al., 1974; Johnson and
Ruben, 1988; Francini-Filho and Sazima, 2008). Facultative cleaners
tend to clean non-threatening, herbivorous and detrivorus clients (e.g.
Francini-Filho & Sazima 2008; Quimbayo et al., 2012) and despite 11
species posing for juvenile wrasse, they predominantly cleaned three
focal herbivorous species within the surgeonfish family. The pre-
dominant cleaning of surgeonfish species; blue tang (Acanthurus coer-
uleus) and ocean surgeonfish (Acanthurus bahianus), was also anecdo-
tally observed at another juvenile blue-headed wrasse cleaning station
on a different reef in Man-O-War Bay. These free-ranging, gregarious
clients may host a high prevalence of parasites (Patterson and
Ruckstuhl, 2013) and/or high quality mucus; surgeonfish mucus has
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high calorific content (Arnal et al., 2001). Juvenile wrasse were also
observed approaching and inspecting these client species but not
cleaning (also noted by Feddern, 1965; Johnson and Ruben, 1988),
suggesting that these cleaners search for a particular food source on
their preferred client species. Different types of gleaned material differ
in their nutritional content, and client species vary in the quantities of
these materials (Eckes et al., 2015). Unlike the facultative cleaner
Thalassoma lunare, and more similarly to Thalassoma klunzingeri (Barbu
et al., 2011), juvenile blue-headed wrasse were unlikely preferentially
feeding on client mucus during their cleaning interactions, as clients
were rarely observed jolting (client jolts are indicative of cleaners re-
moving scales or mucus e.g. Barbu et al., 2011). Instead, different client
species are infected with specific parasite assemblages (Grutter, 1994),
which may explain why, body length did not influence juvenile blue-
headed wrasse and sharknose goby cleaning rates (confirming Grutter
and Poulin, 1998; Arnal et al., 2000). The conspicuous gnathiid and
copepod crustaceans are the most cited ectoparasites in cleaning in-
teractions (Cheney and Coté, 2003; Grutter, 2010; Coté and Soares,
2011), and the role of other ectoparasites, such as monogeneans
(Grutter, 1994, 1995b), remains relatively unexplored. Parasite di-
versity and abundance varies spatially amongst reefs (Cheney and Coté,
2003; Sellers et al.,2015), and if the food source rather than the host
species influences the selective cleaning behaviour of this facultative
cleaner, this may explain why different studies have recorded variable
frequencies of their cleaning (Feddern, 1965; Darcy et al., 1974; Walsh
et al.,, 2017). Molecular anaylsis of stomach content would provide
useful nutritional information on juvenile blue-headed wrasse diet to
further quantify the importance of cleaning to this faculative species.

This current study suggests that cleaning is not key for juvenile blue-
headed wrasse nutrition, which explains why they only adopt a minor
cleaning role on the reef. Although these cleaners are opportunistic
adopting a more generalist foraging strategy, they are also selective in
their client choice, suggesting that the availability of certain supple-
mentary food types, may be driving the frequency of their cleaning
behaviour. A specific cleaning station facilitated juvenile blue-headed
wrasse cleaning frequency, providing a stable location for visiting cli-
ents. However, the presence of more clients or cleaners inhibited wrasse
cleaning rates restricting the facultative nature of their cleaning beha-
viour. Cleaning behaviour observed for this wrasse species, appears to
parallel cleaning observed in aquaculture where maintaining and en-
hancing the feeding efficiency of deployed cleaner fish is a major
challenge (Imsland et al., 2016). Like the wandering juvenile blue-
headed wrasse, deployed cleaners are facultative, rarely adopting
cleaning behaviours in their natural environments (Potts, 1973b),
suggesting that perhaps the cleaning efficiency of existing deployed
cleaner species cannot be substantially increased, and alternative spe-
cies should be sought. Future work should determine the food types
(e.g. parasites) driving the selective nature of juvenile wrasse cleaning
behaviour and identify whether certain habitat features of cleaning
stations determine spatial variation in cleaning.
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