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Key Points  

- BCR-ABL1-positive cells outside the B-lineage compartment are found in around 40% of BCR-

ABL1-positive adult BCP-ALL  

- Selection of preexistent CD19-negative subclones is a potential source of tumor escape after 

CD19-targeted therapies in adult BCR-ABL1-positive BCP-ALL  
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Abstract 

The bispecific T-cell engager blinatumomab targeting CD19 can induce complete remission in relapsed 

or refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, some patients 

ultimately relapse with loss of CD19-antigen on leukemic cells which has been established as a novel 

escape mechanism to CD19-specific immunotherapies. Here, we provide evidence that CD19-negative 

relapse after CD19-directed therapy in BCP-ALL may be due to selection of preexisting CD19-negative 

malignant progenitor cells. We present two BCR-ABL1-fusion-positive BCP-ALL patients with CD19-

negative myeloid lineage relapse after blinatumomab therapy and show BCR-ABL1-positivity in their 

hematopoietic stem cell (HSC)/progenitor/myeloid compartments at initial diagnosis by fluorescence in 

situ hybridization after cell sorting. Using the same approach in 25 additional diagnostic samples of 

patients with BCR-ABL1-positive BCP-ALL, HSC involvement was identified in 40% of the patients. 

Patients with major-BCR-ABL1 transcript encoding P210BCR-ABL1 mainly showed HSC involvement (6/8), 

whereas in most of the patients with minor-BCR-ABL1 transcript encoding P190BCR-ABL1 only the CD19-

positive leukemia compartments were BCR-ABL1-positive (9/12) (p=0.02). Our data are of clinical 

importance, because they indicate that not only CD19-positive cells, but also CD19 negative precursors 

should be targeted to avoid CD19-negative relapses in patients with BCR-ABL1-positive ALL. 
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Introduction 

B-cell directed therapies have shown promising results in the treatment of chemotherapy resistant or 

relapsed B-cell-precursor acute lymphoblastic leukemia (BCP-ALL). Blinatumomab, a bispecific T-cell 

engager (BITE®) antibody that links CD3-positive T-cells to CD19-positive B-cells and thereby triggers 

serial lysis of B-cells, results in up to 69% complete response rate in relapsed/refractory BCP-ALL.1-4 

Similarly, CD19-specific chimeric antigen receptor modified T-cell (CART-19) therapy induces complete 

response in up to 90% of patients with BCP-ALL.5,6 However, a considerable proportion of patients 

relapse after an initial molecular response while others remain in a lasting remission after CD19-directed 

treatment. For both therapy settings CD19-negative relapses have been described.1,5,7-9 Epitope loss 

due to mutations, alternative splicing or disrupted CD19 membrane trafficking pretending a CD19-

negativity may contribute to resistance against CART-19 therapy.9,10 Furthermore, a few patients with 

CD19-negative relapse have been described which appear as acute myeloid leukemia (AML) indicating 

a previous lineage switch and a real CD19-negativity.8,11 The mechanism behind, such as the cell of 

origin or clonal evolution in those patients, has not been described until now. By applying fluorescence 

in situ hybridization (FISH) after fluorescence activated cell sorting (FACS) in two BCR-ABL1-positive 

BCP-ALL with relapse after blinatumomab and in 25 additional diagnostic samples of BCR-ABL1-

positive BCP-ALL patients, we here provide evidence that CD19-negative, myeloid lineage relapses in 

adult BCR-ABL1-positive BCP-ALL occur in association with hematopoietic stem cell (HSC) 

involvement. 

Study Design 

Cryoconserved bone marrow and peripheral blood samples from adult BCR-ABL1-positive BCP-ALL 

patients treated within the GMALL elderly, 07/2003, MT103-206 and Alcantara trials (trials 

NCT00198978, NCT00198991, NCT01209286, and NCT02000427) were FACS sorted onto slides and 

analyzed by FISH for BCR-ABL1-fusion (LSI BCR/ABL Dual Color, Dual Fusion Translocation probe, 

Abbott, Illinois, USA; cut-off was set up to 3%) (Patient characteristics: supplemental Table 1). In patient 

21 a centromere 7 probe (CEP7, Abbott; cut-off was defined as 3%) was added to the BCR-ABL1-fusion 

probe. The following populations were investigated based on the approach described by Castor et al.12: 

CD34+38-19-3- (HSC and multipotential progenitor cells (MPP)), CD34+38+19-3- (myeloid and lymphoid 

progenitors), CD34+19+20-3- (leukemia cells without CD20 coexpression; LAIP 20-), CD34+19+20+3- 

(leukemia cells with CD20 coexpression; LAIP 20+), CD34-19+20+ (mature B-cells), CD34-19-20-3+ 

(mature T-cells), CD34+19-13/33+10-16- (early myeloid compartment), CD34-19-13/33+10-16- (late 

myeloid compartment), CD34-19-13/33+10-16+ (mature myeloid compartment) (supplemental Figure 1; 

supplemental Table 2-4, and supplemental methods). Cell sorting, FISH, array comparative genomic 

hybridization (array CGH), molecular analysis of immunoglobulin (IG) and T-cell receptor (TR) gene 

rearrangements and BCR-ABL1 real-time quantitative PCR were performed as described in 

Supplemental Methods. The clinical study was approved by the local ethics committee (D448/14). 

Informed consent was obtained in accordance with the Declaration of Helsinki. 
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Results and Discussion 

Patient 21 presented with a relapse of a BCR-ABL1-positive BCP-ALL after standard 

induction/consolidation treatment. She received blinatumomab monotherapy and achieved rapid 

complete molecular response. However, within the third application cycle of blinatumomab BCR-ABL1-

positive blasts reoccurred exhibiting a CD19-negative myeloid phenotype (Figure 1A). Molecular 

analysis did not show clonal IG/TR gene rearrangements in the relapse bulk suggesting that leukemic 

relapse derived from cells of a CD19-negative progenitor compartment (Figure 1B). Array CGH revealed 

a monosomy 7 at initial diagnosis but not at relapse (supplemental Figure 2). To elucidate the clonal 

evolution of malignancy, at initial diagnosis bone marrow cells were FACS sorted for distinct cellular 

compartments and subsequently analyzed by FISH with a three-color BCR-ABL1/CEP7 probe (Figure 

1C). Indeed, BCR-ABL1-fusion/monosomy 7 positive cells were not only found in the CD19-positive 

leukemia compartments (CD34-19+20- and CD34+19+20-) but also within the HSC and progenitor 

(CD34+38-19- and CD34+38+19-) as well as within the myeloid compartments (CD34+19-13/33+10-16-, 

CD34-19-13/33+10-16- and CD34-19-13/33+10-16+). BCR-ABL1-fusion-positive cells without monosomy 

7 were also present at initial diagnosis within the myeloid, but not within the CD19-positive leukemia 

compartments. In the HSC/progenitor cells, they remained with 4% and 3% respectively in the range of 

FISH- and sorting purity-cut-off. The same analysis was performed in a second BCR-ABL1-positive 

BCP-ALL patient (patient 29) who suffered a CD19-negative myeloid relapse after blinatumomab 

therapy. Also in this patient the progenitor and subsequent myeloid compartments showed BCR-ABL1-

positivity at initial diagnosis.  

To investigate the clonal architecture of BCR-ABL1 ALL systematically, pretherapeutic samples from 

additional 25 patients with BCR-ABL1-positive BCP-ALL were analyzed accordingly (Figure 2). Ten of 

these patients (40%) also revealed HSC involvement. Nine of them showed the same pattern of BCR-

ABL1-positivity (HSC/progenitor, myeloid and leukemia involvement) as patients 21 and 29 which we 

now termed “MPP-pattern”. In 13/25 patients (52%), a second predominant pattern, referred to as “B-

lineage-pattern”, was identified, in which BCR-ABL1-positivity was restricted to the B-lineage-

determined CD34+19+ cells. In 23/25 evaluable patients, independent of the pattern of BCR-ABL1-

positivity, the mature B-cell compartment was BCR-ABL1-negative indicating a lymphatic maturation 

stop of BCR-ABL1-positive cells. Patients with major-BCR-ABL1 transcript mainly showed the MPP-

pattern (6/8) and much less frequently the B-lineage-pattern (1/8). In contrast, patients with minor-BCR-

ABL1 transcript predominantly exhibited the B-lineage-pattern (9/12) and much less frequently the MPP-

pattern (3/12) (p=0.02; Fisher exact test). 

Both patients with BCR-ABL1-positive BCP-ALL developing a CD19-negative myeloid lineage relapse 

after blinatumomab therapy, showed BCR-ABL1-positive cells in the HSC/progenitor and myeloid 

compartments at initial diagnosis. These results as well as the fact that the IG genes of the CD19-

negative relapses showed germline configuration and not the clonal rearrangements present at initial 

diagnosis suggest that the CD19-negative relapses in these patients evolved from CD19-negative BCR-

ABL1-positive progenitor cells. It also indicates that the CD19-negative myeloid lineage relapses are not 
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a consequence of dedifferentiation or reprogramming. Jacoby et al.13 did not identify myeloid leukemic 

clones prior to therapy when they induced CD19-negative myeloid lineage relapses in a murine BCP-

ALL model by long-term CART-19 exposure. However, this does not disprove the presence of 

uncommitted leukemic progenitors at low frequencies.13  

Recently, Gardner et al. described two patients of mixed lineage leukemia (MLL) gene rearranged BCP-

ALL which relapsed after CART-19 therapy presenting a myeloid, CD19-negative phenotype. One of 

the patients, an infant MLL-positive BCP-ALL, did not show a clonal IG rearrangement in the myeloid 

blasts analogous to our index patient whereas the other patient showed the same clonal IG 

rearrangement already existing at initial diagnosis obviously representing a different mechanism.8  

Similar to two pediatric BCP-ALL cohorts we demonstrated multilineage involvement of the BCR-ABL1-

positive clone.12,14 In the study of Castor et al.12 this finding was restricted to P210BCR-ABL1 positive ALL 

whereas we also demonstrated clonal involvement of the HSC/MPP compartment in patients with to 

P190BCR-ABL1 positive ALL. Thus, characterization of fusion transcripts does not allow a clear assignment 

to the cell of origin of the BCR-ABL1-fusion even though mainly patients with major-BCR-ABL1 transcript 

showed MPP-pattern. 

In the two index patients reported herein, blinatumomab was able to eliminate the aggressive B-

determined clone but not the ancestral CD19-negative BCR-ABL1-positive precursor that gave rise to 

the CD19-negative relapse. It appears that the BCR-ABL1-fusion frequently represents an antecedent 

event in adult BCP-ALL leukemogenesis which may occur early in the hierarchy of hematopoiesis prior 

to B-lineage determination. More frequently than assumed BCR-ABL1 positive ALL resembles a chronic 

myeloid leukemia-like disease in lymphoid blast crisis.14 Therefore, novel therapeutic strategies should 

target CD19-negative malignant precursor cells in addition to the B-cell leukemic bulk, especially in 

patients with MPP-pattern. As an example, Ruella and colleagues described a dual CD19- and CD123-

CART approach that prevented antigen-loss relapses in xenograft models.15,16 Our findings also favor a 

combination with tyrosine kinase inhibitors to target BCR-ABL1 positive cells without CD19 expression. 

Prospectively, it needs to be verified whether patients with an MPP-pattern of their BCR-ABL1-positive 

ALL show a higher frequency of CD19 escape after application of CD19-directed treatment compared 

to those with a B-lineage pattern. 
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Figure Legends 

Figure 1. Leukemic involvement and evolution of BCR-ABL1-positive blasts in patient 21 (A) Blast 

morphology and flow cytometric dot plots of pre-blinatumomab blasts (first row) and post-blinatumomab 

blasts (second row). Blasts at initial diagnosis were positive for CD19, CD10, cyCD22, cyCD79a, CD34, 

TdT, HLA-DR (not shown), cyIgM (not shown), showed aberrant expression of CD13, and were negative 

for CD33, CD117 and MPO (not shown). Expression profile did not fulfil WHO criteria for classification 

as mixed phenotype leukemia. At relapse after blinatumomab therapy, blasts were negative for CD19, 

CD10, cyCD79a, CD34, TdT, HLA-DR (not shown) and MPO (not shown), and expressed their myeloid 

antigens CD13, CD33 and CD117. (B) Hypothetical model of clonal evolution and selection of different 

subclones based on BCR-ABL1 and immunoglobulin heavy chain (IGH) and T-cell receptor beta (TRB) 

gene rearrangement patterns. Leukemia was screened at initial diagnosis for clonal IG and TR gene 

rearrangements. Two clonal IGH gene rearrangements (VH3-23-DH2-2-JH6 and VH6-1-DH3-22-JH4) 

and one clonal cross-lineage TRB gene rearrangement (DB2-JB2.7) were detected, and clone specific 

real-time quantitative (RQ)-PCR assays were established based on sequence information. RQ-PCR and 

BCR-ABL1 FISH showed dominance of the IGH rearranged (R)/R, TRB R/germline (G) and BCR-ABL1 

rearranged clone, whereas at first relapse IGH R/G TRB G/G clone was dominant, whereas the second 

IGH rearrangement was only detected at a level of 0.1%, the TRB only at a level below quantitative 

range of 0.1%. At second relapse the leukemic bulk did not show an IG/TR gene rearrangement but 

only the BCR-ABL1 translocation, RQ-PCR revealed a subclonal IGH gene rearrangement (0.3%). A 

clonal evolution of the leukemic bulk with occurrence of a new dominant IGH/TRB gene rearrangement 

was excluded by IGH/TRB multiplex PCR, which has a sensitivity of about 1-5%. (C) Subclonal 

architecture of BCR-ABL1-fusion and monosomy 7 in immunophenotypic compartments of patient 21 at 

initial diagnosis analyzed by FISH after FACS sorting. Left: FISH results of each compartment. Orange 

circle, aberrant signal constellation; green circle normal signal constellation; *, in the range of the FISH- 

and sorting purity-cut-off. Right: Representative interphase nuclei showing the two different aberrant 

signal constellations in a false color display using MetaSystems software. The meaning of signals is as 

follows: isolated red, ABL1; isolated green, BCR; red green fusion signal. BCR-ABL1-fusion; blue, 

centromere 7.  

B, mature B cells; CEP7, centromere 7 signal; F, BCR-ABL1-signal fusion; LAIP 20-, leukemia cells 

without CD20 coexpression; LAIP 20+, leukemia cells with CD20 coexpression;  M1, early myeloid 

compartment; M2, late myeloid compartment; M3, mature myeloid compartment; MPP, multipotent 

progenitor cells; n.d., not determined ; neg., negative (not detected); Pro, myeloid and lymphoid 

progenitors; SCT, stem cell transplantation; T, mature T-cells. 

 

Figure 2. Analysis of relevant immunophenotypic compartments in 27 adult patients with BCR-

ABL1-positive BCP-ALL using FISH after FACS sorting. (A) BCR-ABL1-positivity of 

immunophenotypic compartments in the two predominant patterns of BCR-ABL1-occurence. The green 
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and orange color content of the boxes represents the ratios of BCR-ABL1-fusion positive and negative 

signal constellations observed in the 27 patients. For details of sorting strategies see supplement. 

 (B) Detailed results of the analysis for each patient and compartment. Green, BCR-ABL1-fusion 

negative; orange, BCR-ABL1-positive; grey, not analyzed. Overall, 11/27 patients showed an MPP 

pattern, 13/27 showed a B-lineage pattern, and in 3/27 patients pattern was in between (n. as., not 

assignable). 

B, mature B cells; LAIP 20-, leukemia cells without CD20 coexpression; LAIP 20+, leukemia cells with 

CD20 coexpression; M, major-BCR-ABL1 transcript; m, minor-BCR-ABL1 transcript; mM, minor- and 

major-BCR-ABL1 transcripts identified; M1, early myeloid compartment; M2, late myeloid compartment; 

M3, mature myeloid compartment; MPP, multipotential progenitor cells; n.a., not analyzable; n.as., not 

assignable; Pro, myeloid and lymphoid progenitors; T, mature T-cells   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Page 12 of 10 
 

 

 
 
 
 
 
 
 
 
 



Page 13 of 10 
 

 
 

 
 
 
 
 
 
 
 



Page 14 of 10 
 

 
SUPPLEMENTARY INFORMATION 

 

Hematopoietic stem cell involvement in BCR-ABL1-positive ALL: a potential mechanism of 

resistance to blinatumomab therapy 

 

I. Supplemental Methods 

II. Supplemental Tables 

III. Supplemental Figures 

 

 

I. Supplemental Methods 

Flow cytometry and cell sorting 

After thawing of cryopreserved mononuclear cells, each vial was suspended in PBS containing 2 % FBS 

and washed twice before antibody labeling. Using the fluorochrome-antibody conjugate combinations 

which are listed in the supplemental Table 2 the following populations were sorted for each patient: 

CD34+38-19-3- (hematopoietic stem cells and multipotential progenitor cells (MPP)), CD34+38+19-3- 

(myeloid and lymphoid progenitors, Pro), CD34+19+20-3- (leukemia cells without CD20 coexpression; 

LAIP 20-), CD34+19+20+3- (leukemia cells with CD20 coexpression; LAIP 20+), CD34-19+20+ (mature B-

cells), CD34-19-20-3+ (mature T-cells), CD34+19-13/33+10-16- (early myeloid compartment, M1), CD34-

19-13/33+10-16- (late myeloid compartment, M2), CD34-19-13/33+10-16+ (mature myeloid compartment, 

M3) (supplemental Figure 1). CD3 and CD16 were combined in a single fluorescence channel. 

Therefore, CD16 positivity in the M3 compartment was assumed for CD3/CD16 positive events due to 

concomitant CD13/CD33 positivity of the cells. Cells were sorted onto slides and fixed as previously 

described.1 Reanalysis (supplemental Figure 1B) of all flow sorted subpopulations was performed 

whenever there was a sufficient number of mononuclear cells available after the initial thawing and 

sorting procedure. Consequently, the sort purity for each population was determined in three patients 

(supplemental Table 4). 

 

 

Fluorescence in situ hybridization 

For FISH analysis, the commercially available LSI BCR/ABL Dual Color, Dual Fusion Translocation 

probe and centromere 7 probe (CEP7), both obtained from Abbott (Illinois, USA), were used. Pre-

treatment of cells in Carnoy’s fixative, hybridizations, washings and evaluation was performed in 

accordance with previously described protocols. 2 The hybridization time was 48 hours. Slides were 

evaluated by two observers using Zeiss fluorescence microscopes equipped with appropriate filter sets 

and documented using the ISIS digital image analysis system version 5.0 (MetaSystems, Altlusheim). 

In patient of sufficient cells 100 nuclei per hybridization were evaluated and counted.  
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Array comparative genomic hybridization analysis 

Array CGH on peripheral blood from initial diagnosis and relapse of patient 21 was performed using the 

SurePrint G3 Human CGH Microarray Kit, 4x180K (Agilent Technologies, Santa Clara, CA, USA). 

Experimental procedures were performed according to the manufacturer’s instructions. One µg of DNA 

from each of both patient probes and, respectively, one µg of reference DNA from a pool of 10 healthy 

donors with a normal female karyotype were hybridized. The array was scanned with the G2565CA 

Microarray Scanner (Agilent Technologies) at a scan resolution of 5 µm/pixel. Signal intensities from the 

generated images were measured and evaluated with the Feature Extraction 10.10.11 and Agilent 

Genomic Standard Workbench Edition 6.5.0.58 (AGW6.5) software (Agilent Technologies) applying the 

Aberration Detection Method-2 (ADM-2) algorithm with a threshold of 6.0.  

 

Array comparative genomic hybridization analysis 

Multiplex ligation-dependent probe amplification (MLPA) was performed on peripheral blood from initial 

diagnosis and relapse of patient 21 to screen for IKZF1, PAX5, ETV6, RB1, BTG1, EBF1, CDKN2A, 

CDKN2B, SHOX-AREA, CRLF2, CSF2RA, IL3RA, P2RY8 and JAK2 copy number alterations according 

to the manufacturer´s instructions using the SALSA MLPA P335 ALL-IKZF1 kit (MRD-Holland). 

 

Molecular IG /TR analysis 

Molecular analysis of clonal immunoglobulin (IG) and T-cell receptor (TR) gene rearrangements was 

performed as described previously.(1) Clonal IG and TR gene rearrangements were sequenced, and 

primers were designed annealing to the hypervariable region of the respective IG or TR gene 

rearrangement and put in a real-time RQ-PCR together with a consensus primer and a TaqMan probe 

according to published protocols to quantify the respective target rearrangement.(2, 3) Data 

interpretation followed the EuroMRD guidelines.(4) 

 

Molecular BCR-ABL1 analysis 

BCR-ABL1 RQ-PCR was performed following standard procedures.(5) Briefly, total RNA was extracted 

from bone marrow using Trizol based extraction and was reverse transcribed from 1-5 µg RNA using 

random oligonucleotide primers. Real-time PCR was performed using 5 µl cDNA, with primers and 

hydrolysis probes specific for BCR-ABL1 mRNA and for the BCR control gene. 
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II. Supplemental Tables 

Supplemental Table 1. Patient characteristics 

Patient no. 
Age at 
initial 
diagnosis 

Sex 

BCR-
ABL1-
fusion 
transcript 

Material 

Patient 1 63 Male M Peripheral blood 

Patient 2 35 Female M Bone marrow 

Patient 3 67 Male M Peripheral blood 

Patient 4 62 Female M Peripheral blood 

Patient 5 53 Male Mm Peripheral blood 

Patient 6 47 Male m Peripheral blood 

Patient 7 44 Female m Bone marrow 

Patient 8 22 Female M Bone marrow 

Patient 9 45 Female m Bone marrow 

Patient 10 45 Female m Bone marrow 

Patient 11 77 Female M Bone marrow 

Patient 12 71 Female m Peripheral blood 

Patient 13 45 Male m Bone marrow 

Patient 14 32 Female M Bone marrow 

Patient 15 59 Male M Bone marrow 

Patient 16 69 Female unknown Peripheral blood 

Patient 17 50 Female m Peripheral blood 

Patient 18 40 Female m Bone marrow 

Patient 19 60 Male Mm Bone marrow 

Patient 20* 52 Male m Bone marrow 

Patient 21 66 Female M Bone marrow 

Patient 22* 21 Male M Peripheral blood 

Patient 23 44 Male m Peripheral blood 

Patient 24 35 Male m Peripheral blood 

Patient 25 36 Male unknown Bone marrow 

Patient 26 31 Female m Peripheral blood 

Patient 27 49 Male unknown Peripheral blood 

Patient 28 60 Male unknown Peripheral blood 

Patient 29 73 Female m Bone marrow 

M, major-BCR-ABL1 transcript; m, minor-BCR-ABL1 transcript; mM, major- and minor-BCR-ABL1 

transcripts identified  

* Patients were excluded because FISH was not evaluable after cell sorting 
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Supplemental Table 2. Sorting Panels with conjugates 

Panel 1 
  Fluorochrome 

FITC PE PE-Cy7 APC PB 

Tube 1 

Antigen CD34 CD3 CD19 CD38 CD20 

Volume 30µl 30µl 10µl 10µl 3µl 

Clone Name 8G12 SK7 J3-119 HB7 2H7 

Company BD BD BD BD BL 

Tube 2 

Antigen CD34 CD13 CD33 CD19 CD38 CD3 CD16 

Volume 30µl 15µl 25µl 10µl 10µl 2 µl 7µl 

Clone Name 8G12 SJ1D1 P67.6 J3-119 HB7 UCHT1 3G8 

Company BD BC BD BD BD BD BL 

Panel 2 
  Fluorochrome 

FITC PE PE-Cy7 APC PB 

Tube 1 

Antigen CD34 CD3 CD19 CD38 CD20 

Volume 30µl 30µl 10µl 10µl 3µl 

Clone Name 8G12 SK7 J3-119 HB7 2H7 

Company BD BD BD BD BL 

Tube 2 

Antigen CD34 CD13 CD33 CD19 CD10 CD3 CD16 

Volume 30µl 15µl 25µl 10µl 10µl 2 µl 7µl 

Clone Name 8G12 SJ1D1 P67.6 J3-119 HB7 UCHT1 3G8 

Company BD BC BD BD BD BD BL 

BD, Becton Dickinson; BC, Beckman Coulter  
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Supplemental Table 3. Sort-Panel and leukemia associated immunophenotype of each patient 

 

Patient no. Sort Panel LAIP 

Patient 1 2 CD34+19+38+10+13/33+20- 

Patient 2 2 CD34+19+38-10+13/33-20+ 

Patient 3 1 CD34+19+38+13/33+20- 

Patient 4 2 CD34+19+38+10+13/33-20- 

Patient 5 1 CD34+19+38-13/33-20- 

Patient 6 1 CD34+19+38+13/33+20- 

Patient 7 1 CD34+19+38+13/33+20- 

Patient 8 1 CD34+19+38+13/33+20- 

Patient 9 1 CD34+19+38+13/33+20- 

Patient 10 2 CD34+19+38+10+13/33+20+ 

Patient 11 2 CD34+19+38+10+13/33+20- 

Patient 12 2 CD34+19+38+10+13/33+20- 

Patient 13 2 CD34+19+38+10+13/33+20- 

Patient 14 2 CD34+19+38+10+13/33+20+ 

Patient 15 2* CD34+19+38+10+13/33+ 

Patient 16 1 CD34+19+38+13/33+20- 

Patient 17 2 CD34+19+38-10+13/33+20+ 

Patient 18 2 CD34+19+38+10+13/33+20- 

Patient 19 2 CD34+19+38+10+13/33+20- 

Patient 21 1 CD34+19+38+13/33+20- 

Patient 22 1 CD34+19+38-13/33-20+ 

Patient 23 1 CD34+19+38+10+13/33- 

Patient 24 2 CD34+19+38+10+13/33+20- 

Patient 25 2 CD34+19+38+10+13/33+20- 

Patient 26 2 CD34+19+38-10+13/33-20- 

Patient 27 2 CD34+19+38+10+13/33+20+ 

Patient 28 2 CD34+19+38-10+13/33-20- 

LAIP, Leukemia associated immunophenotype.  
*In patient 15, markers of sorting panel 2 were used, but partly  
in other fluorescence channels. 
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Supplemental Table 4. Sorting purity as determined by post-sort analysis in three patients. 

Percentage of events with immunophenotype of sorted population is stated in relation to all measured 

events. Sort Purity ranged between 94% and 99%. 
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LAIP 

20+ 

LAIP 

20- 
B T MPP Pro M1 M2 M3 

12 n.a. 99% 99% 95% 94% 95% 95% 97% n.a. 

17 98% 98% 99% 99% 98% 96% 99% 96% 95% 

27 99% 99% 99% 97% 99% 98% 99% 96% 97% 
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III. Supplemental Figures 

Supplemental Figure 1. (A) Gating strategy for sorting of the following subpopulations: CD34+38-19-3- 

(hematopoietic stem cells and multipotential progenitor cells (HSC/MPP)), CD34+38+19-3- (myeloid and 

lymphoid progenitors), CD34+19+20-3- (leukemia cells without CD20 coexpression; LAIP 20-), 

CD34+19+20+3- (leukemia cells with CD20 coexpression; LAIP 20+), CD34-19+20+ (mature B-cells), 

CD34-19-20-3+ (mature T-cells), CD34+19-13/33+10-16- (early myeloid compartment), CD34-19-13/33+10-

16- (late myeloid compartment), CD34-19-13/33+10-16+ (mature myeloid compartment). (B) Strategy to 

evaluate the sorting purity. Sorted populations were reanalyzed by flow cytometry to determine sorting 

purity (in this figure purity of the CD34+CD19+CD20-CD3- population). The purity of sorted cell 

populations ranged between 94% and 99%. 
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Supplemental Figure 2. Array CGH on patient 21. Genomic profile showing the monosomy 7 of 

patient 21 at initial diagnosis. In concordance to this finding multiplex ligation-dependent probe 

amplification detected an exon 1-8 IKZF1 deletion in the diagnostic but not in the relapse sample. Red: 

Initial diagnosis; Blue: Relapse.   
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